

ASX Release

27 November 2018

CASTILLO COPPER LIMITED ACN 137 606 476

Level 26 140 St Georges Terrace Perth WA, 6000 Australia

Tel: +61 8 6558 0886 Fax: +61 8 6316 3337

Contact:

Alan Armstrong **Executive Director**

E-mail: info@castillocopper.com

For the latest news:

www.castillocopper.com

Directors / Officers: Peter Meagher Alan Armstrong Peter Smith

Issued Capital: 580.1 million shares 84.5 million options

> ASX Symbol: CCZ

Diamond drill results underpin Cangai's status as a high-grade polymetallic deposit FIGURE 1: DIAMOND DRILL CORE

- \geq A 9.6m mineralised diamond drill core intersection extracted (CC0036D) Cangai at Copper Mine from а shallow 50m (Figure 1) intersecting massive sulphides
- This included two subintersections exhibiting mineralisation up to 45% chalcopyrite and 15% sphalerite, which are now being assayed
- > Assays for drill-holes CC0026-to-34R delivered consistent. high-grade mineralisation up to 4.57% Cu, 1.41% Zn and 19.1 g/t

Note: Drill-hole CC0036D 53.1-54.3m chalcopyrite dominant Source: CCZ geology team

Ag, with all holes intersecting mineralisation

- > Bundled, these latest results build on earlier work verifying that Cangai Copper Mine, in the Board's view, is a highgrading polymetallic deposit
- > Over the course of two drilling campaigns, drill-hole CC0023R has produced the best results with 11m @ 5.94% Cu, 2.45% Zn & 19.1 g/t Ag from 40m including 1m @ 10.25% Cu, 1.68% Zn & 32.5 g/t Ag from 48m¹
- > The down-hole electromagnetic (DHEM) survey results have been finalised, with several new sizeable massive sulphide target conductors identified under Volkhardts, Greenburg & Mark lodes which highlight the mineralised system's potential to be open at depth
- These new targets highlight the potential scalability of the ore body at Cangai Copper Mine and provide fresh targets to be optimised over the balance of the Phase II campaign

+++

Castillo Chairman Peter Copper's Meagher commented: "Exploration at the Cangai Copper Mine continues gaining momentum, with high-grade diamond drill core extracted from a shallow depth. Further, the DHEM results have provided greater clarity on incremental sizeable massive sulphide conductors interpreted to be open at depth which may deliver the project scale. The geology team are now optimising new priority targets, so the current drilling campaign can finish up enabling the Board to have a solid understanding of the ore body going into 2019."

Castillo Copper Limited's ("CCZ" or "the **Company")** Board is delighted to present shareholders with an update on the preliminary diamond drilling results, final assays for drillholes CC0026-34R and DHEM survey findings that highlight the potential scalability of the polymetallic mineralised system of Cangai Copper Mine.

EXCELLENT DIAMOND DRILL CORE

Having identified several sizeable conductors with the earlier DHEM campaign, the diamond drill team targeted a known quantity near Volkhardts' lode (DHEM Conductor 1 – Figure 5) that hosts massive sulphides from a nearby position to drill-hole CC0023R (refer Table 1).

Preliminary field results for drill-hole CC0036D was a 9.6m mineralised envelope (refer Figure 1 & 2), with two highly distinctive intersections that had up to 45% chalcopyrite and 15% sphalerite (refer Figure 3 & Table 1 for details) from a relatively shallow 50m depth.

in addition to chalcopyrite and sphalerite, the two massive sulphide intercepts – from 49.9m to 50.8m and 53.1m to 54.3m – comprised pyrite and pyrrhrotite hosted within heavily bleached

FIGURE 2: DIAMOND DRILL CORE SAMPLE 2

Note: From Drill-hole CC0036D 49.9-50.8m sphalerite and chalcopyrite Source: CCZ geology team

dacitic ash tuff's of the Siluro-Devonian Willowie Creek Beds (Figure 3).

All collected samples from the diamond drilling campaign have been sent to the laboratory for further analysis - shareholders will be apprised once the results are available.

Fr	rom (m)	To (m)	Lithology	Mineralisation
\bigcirc	0.0	23.0	Dacitic ash tuff	Trace sulpides
	23.0	23.4	Felsic intrusive	Trace sulpides
			Dacitic ash tuff, rare banded	
	23.4	49.9	mudstone	Trace sulpides
				Sphalerite (15%), chalcopyrite (10%), pyrite (20%) &
	49.9	50.8	Massive sulphide	phyrrotite (20%)
			Highly altered bleached dacitic	
	51.2	53.1	ash tuff	Disseminated & vein sulphides
				Chalcopyrite (45%), sphalerite (5%), pyrite (20%) & phyrrotite
	53.1	54.3	Massive sulphide	(20%)
			Highly altered bleached dacitic	Minor disseminated <5%
	54.2	59.5	ash tuff	sphalerite in narrow veins
Sol		ogytoam		

FIGURE 3: DIAMOND DRILL-HOLE PROFILE – CC0036D

HIGH-GRADE POLYMETALLIC MINERALISED SYSTEM

Based on the evidence seen from the diamond drill core and what is already known, the geology team increasingly believe Cangai Copper Mine is a unique high-grade polymetallic mineralised system. Notably, over the course of the two drilling campaigns this year, the assay results have confirmed considerable high-grade mineralisation apparent:

- Drill-hole CC0023R, the standout, delivering excellent results from shallow depth including: 11m @ 5.94% Cu, 2.45% Zn & 19.1 g/t Ag including 1m @ 10.25% Cu, 1.68% Zn & 32.5 g/t Ag from 48m¹
- Assays for CC0026-34R highlighted consistent high-grade the results up to 4.57% Cu, 1.41% Zn and 19.1 g/t Ag (refer Figure 4 and Appendix A).

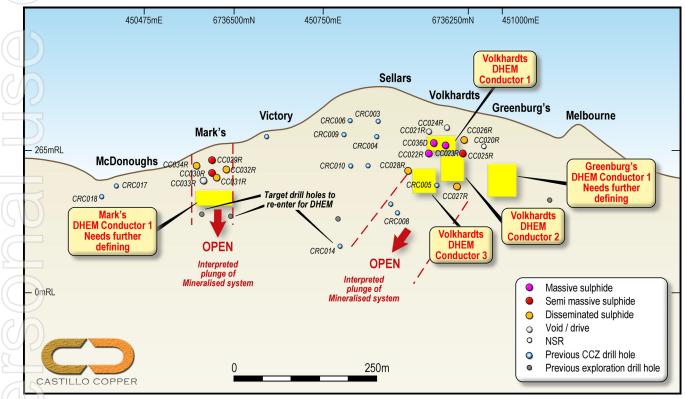

74					
Hole	D I	From (m)	To (m)	Width (m)	Best intersections
CRC	004	92	97	5	1.56% Cu, 0.42% Zn & 4.4 g/t Ag
inclu	ding:	94	97	3	2.22% Cu, 0.60% Zn & 6.4 g/t Ag
CRC	005	221	224	3	1.76% Cu, 1.33% Zn & 13.1 g/t Ag
inclu	ding:	221	222	1	2.66% Cu, 2.35% Zn & 20.7 g/t Ag
CRC	800	210	232	22	1.01% Cu, 0.34% Zn & 6.6 g/t Ag
CRC	010	145	147	2	0.63% Cu, 0.18% Zn & 13.1 g/t Ag
CRC	013	2	7	5	2.69% Cu, 0.39% Zn & 6.2 g/t Ag
inclu	ding	2	6	4	3.08% Cu, 0.44% Zn & 10.6 g/t Ag
CRC	014	232	233	1	0.75% Cu, 0.13% Zn & 1.9 g/t Ag
CRC	016	0	1	1	1.14% Cu, 0.18% Zn & 7.9 g/t Ag
CRC	017	4	7	3	0.71% Cu, 0.1% Zn & 2.2 g/t Ag
CRC	018	13	14	1	1.43% Cu, 0.17% Zn, 2.3 g/t Ag
CRC	018	39	41	2	2.17% Cu, 0.71% Zn & 5.7 g/t Ag
inclu	ding:	39	40	1	3.31% Cu, 1.11% Zn & 3.7 g/t Ag
CCO	022R*	92	94	2	2.5% Cu, 0.38% Zn & 9.8 g/t Ag
CCO	022R*	109	114	5	1.5% Cu, 0.38% Zn & 9.7 g/t Ag
CC0	023R*	40	51	11	5.94% Cu, 2.45% Zn & 19.1 g/t Ag
inclu	ding:	41	44	3	8.10% Cu, 2.45% Zn & 23.4 g/t Ag
inclu	ding:	48	49	1	10.25% Cu; 1.68% Zn & 32.50g/t Ag
inclu	ding:	50	51	1	7.53% Cu; 6.04% Zn & 30.6g/t Ag
CC0	023R*	56	58	2	2.27% Cu; 2.78% Zn & 10.9g/t Ag
CC0	023R*	85	87	2	1.19% Cu; 0.35% Zn & 11.2g/t Ag
CCO	025R*	90	93	3	2.66% Cu; 0.50% Zn & 7.4g/t Ag
inclu	ding:	90	91	1	4.53% Cu; 0.41% Zn & 9.7g/t Ag
CC0	025R*	103	106	3	1.26% Cu; 0.37% Zn & 6.4g/t Ag
CC0	026R	59	60	1	0.83% Cu, 0.26% Zn & 2.9 g/t Ag
CC0	028R	109	110	1	0.53% Cu, 0.13% Zn & 2.9 g/t Ag
CC0	029R	36	37	1	4.57% Cu, 1.41% Zn & 19.1 g/t Ag
CC0	030R	56	57	1	2.07% Cu, 0.48% Zn & 5.5 g/t Ag
CC0	030R	57	58	1	2.83% Cu, 0.65% Zn & 6.1 g/t Ag
CC0	032R	58	59	1	1.18% Cu, 0.35% Zn & 3.1 g/t Ag
CC0	032R	59	60	1	1.70% Cu, 0.48% Zn & 3.7 g/t Ag
CC0	034R	41	42	1	0.98% Cu, 0.26% Zn & 5.5 g/t Ag
Note:	Minimum c	riteria = 4000pp	om Cu or 20	00ppm Zn or 2g	/t Ag; * Wtd average
Sourc	e: CCZ AS	X Release 9 Ma	arch, 17 Ma	y & 3 Septembe	r 2018

FIGURE 4: BEST INTERSECTION SUMMARY DRILL-HOLES 1-34

DHEM RESULTS HIGHLIGHT SCALE

Undertaking DHEM surveys has been key to identifying several sizeable high-grade massive sulphide conductors under the Greenberg, Volkhardts and Mark lodes. Encouragingly, after analysing the data, the geophysicist consultant determined the mineralised system below these conductors is open at depth – clearly highlighting the potential scale of the ore body at Cangai Copper Mine (Figure 5).

The geology team now has several new, high priority massive sulphide targets to optimise and factor into the balance of the current Phase II drilling program. Moreover, further DHEM work will accompany the remainder of the drilling campaign to garner a broader understanding of potential extensions to the known mineralisation.

FIGURE 5: MASSIVE SULPHIDE DHEM CONDUCTORS AT CANGAI COPPER MINE

Source: CCZ geology team

Next steps

Three priorities are:

- Optimise the final phase of the current RC drilling campaign to factor in the new high-grade massive sulphide targets which were identified by the DHEM campaign;
- Report on assay results for the diamond drill core once received; and
- Provide an update on metallurgical testwork currently being undertaken on stockpile ore in connection with the Noble Group MOU.

For and on behalf of Castillo Copper

Alan Armstrong

Executive Director

References:

1) CCZ ASX Release 3 September 2018

COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Peter Smith, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Peter Smith is employed by Castillo Copper Pty Ltd. Peter Smith has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Peter Smith consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

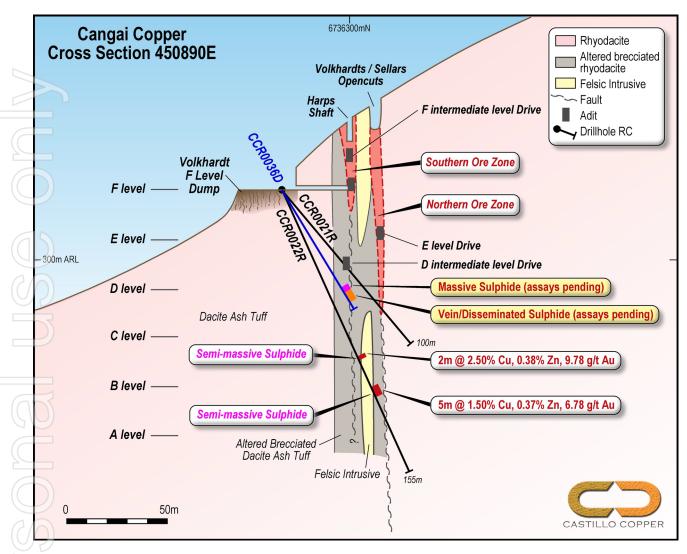
ABOUT CASTILLO COPPER

Castillo Copper Limited (ASX: CCZ) is an ASX-listed base metal explorer that's flagship project is the historic Cangai Copper Mine near Grafton in northeast NSW. The project comprises a volcanogenic massive sulphide ore deposit, with one of Australia's highest grade Inferred Resources for copper: 3.2Mt @ 3.35% Cu Inferred Resource reported according to the guidelines of the JORC Code (2012) (6 September 2017). In terms of contained metal, the Inferred Resource is 107,600t Cu, 11,900t Zn, 2.1Moz Ag and 82,900 Moz Au. A notable positive is the presence of supergene ore with up to 35% copper and 10% zinc which is ideal feedstock for direct shipping ore. Incrementally, the project holds five historic stock piles of high-grade ore located near Cangai Copper Mine.

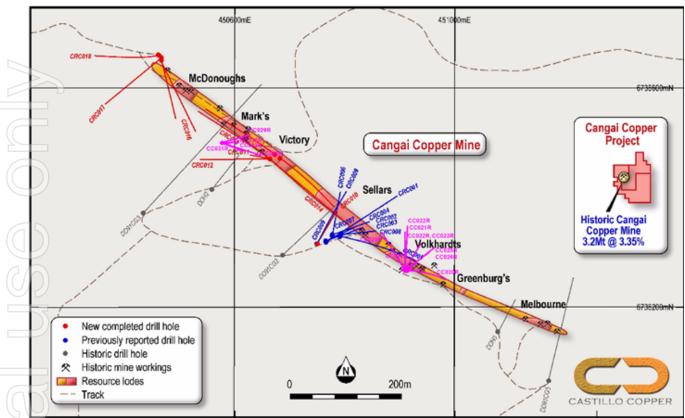
In brief, CCZ's Australian assets are 100% owned and comprise four tenure groups detailed briefly as follows:

NSW assets: Consists of two projects: 1) Jackaderry, which includes Cangai Copper Mine, is in an area highly prospective for copper-cobalt-zinc and made up of three tenements; and, 2) Broken Hill which consists of two contiguous tenements prospective for cobalt-zinc that are located within a 20km radius of Broken Hill and just north of Cobalt Blue's ground (ASX: COB).

Queensland assets: Comprises two projects: 1) Mt Oxide made up of four prospects (three are contiguous) in the Mt Isa region, northwest Queensland, and are well known for copper-cobalt systems; and, 2) Marlborough which includes three prospects located north-west of Gladstone (adjacent to Queensland Nickel mining leases) in **an area** with proven high-grade cobalt-nickel systems.


APPENDIX A: DRILL-HOLE ASSAYS AND SUPPORTING DATA FIGURE A1: ASSAY RESULTS FOR DRILL-HOLES CC0026-34R

	Hole ID	From (m)	To (m)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Geology Co	omments	Minera	ls		
	CC0026R	0	1	2360	787		Malacite on fract	ures surfaces	< 5% ma	alachite		
	CC0026R	14	15	2590	195		Malacite on fract		< 5% ma	alachite		
	CC0026R	15	16	1905	197	0.04	Malacite on fract	ures surfaces	< 5% ma	alachite		
	CC0026R	16		2750	458	0.06	Malacite on fracti	ures surfaces	< 5% ma	alachite		
	CC0026R	53		4580	1670	1.54	Disseminated sul	phides	< 5% py	rite and chalcop	oyrite	
	CC0026R	54	55	2310	1120		Disseminated sul			rite and chalcop		
	CC0026R	55		3330	138		Disseminated sul		17	rite and chalcop	,	
	CC0026R	57	58	3550	1080		Disseminated sul			rite and chalcop		
	CC0026R	58		4920	1480		Disseminated sul			rite and chalcop		
	CC0026R	59 1	60 2	8220 3750	2660 1580		Disseminated sul Malacite on fracti		< 5% py	rite and chalcop	byrite	
	CC0027R CC0027R	12	13	2190	469		Malacite on fracti		< 5% ma			
	CC0027R	125	126	5540	3870		Disseminated sul			rite and chalcop	vrite	
	CC0028R	0		2350	581		Malacite on fract		< 5% ma		, jiito	
	CC0028R	1	2	2230	933		Malacite on fract		< 5% ma			
	CC0028R	105	106	2110	77	0.24	Disseminated sul	lphides	< 5% py	rite and chalcop	yrite	
	CC0028R	106	107	3690	85	0.34	Disseminated sul	phides	< 5% py	rite and chalcop	yrite	
	CC0028R	107	108	2400	198	0.43	Disseminated sul	phides	< 5% py	rite and chalcop	oyrite	
	CC0028R	109	110	5260	1300		Disseminated sul		17	rite and chalcop	,	
	CC0028R	110		2520	670		Disseminated sul			rite and chalcop		
	CC0028R	119		2730	627		Disseminated sul			rite and chalcop	1	
	CC0029R	35		2480	1620		Disseminated sul			rite and chalcop	,	20/
	CC0029R CC0029R	<u>36</u> 37	37 38	45700 6240	14100 1500		Massive Sulphide				- <u>15% pyrite, 5-10</u>	J% pyrrnotite
	CC0029R	56		20700	4760		<mark>Disseminated sul</mark> Semi-massive su			rite and chalcop	opyrite, pyrrhotite	
	CC0030R	57	58	28300	6500		Semi-massive su	1			pyrite, pyrrhotite	
	CC0030R	58		4990	1320		Disseminated sul			rite and chalcop		·
	CC0031R	71	72	14700	3030		Disseminated sul	•		rite and chalcor		
	CC0032R	58	59	11800	3510		Disseminated sul			rite and chalcop		
	CC0032R	59	60	17000	4770	3.68	Semi-massive su	Iphide	5-10% p	yrite and chalco	pyrite, pyrrhotite	•
	CC0032R	60		7920	1900	1.71	Disseminated sul	phides	< 5% py	rite and chalcop	yrite	
	CC0032R	61	62	2660	864		Disseminated sul	•		rite and chalcop		
	CC0033R	74	75	2050	560		Disseminated sul			rite and chalcop		
	CC0034R	41	42	9770	2570		Disseminated sul			rite and chalcop		
	CC0034R	42		2460	839	1.61	Disseminated sul	phides	< 5% py	rite and chalcop	oyrite	
	Notes. Withinto	m criteria = 2		r 2000ppm Zn	or 2ppm Ag							
]	Source: CCZ	geology team	OLLAR	R TABLE	E UPDA							
1	Source: CCZ	geology team	OLLAR	R TABLE	E UPD/		NAT_East	NAT_North	_	Hole Inc	Hole Dec (Grid)	
	Source: CCZ	geology team	OLLAR	TABLE Max_Dep (r	E UPDA			NAT_North 6736270	NAT_RL 324	Hole Inc		Metho
1	Source: CCZ FIGURE Hole_ID	geology team	OLLAR	r 2000ppm Zn C TABLE Max_Dep (r 1	E UPDA	AT_Grid_ID MGA94_56	450915	6736270	_		(Grid)	Metho Theodolit
]	Source: CCZ s FIGURE Hole_ID CC0026R CC0027R	geology team	OUDOppm Cu o OLLAR <u>-Type</u> RC RC	r 2000ppm Zn X TABLE Max_Dep (r 10 14	E UPD/ th n) N/ 02 45	\T_Grid_ID MGA94_56 MGA94_56	450915 450912	6736270 6736270	324 324	53 81	<mark>(Grid)</mark> 49 27	Method Theodolite Theodolite
1	FIGURE FIGURE Hole_ID CC0026R CC0027R CC0028R	geology team	OUDppm Cu o OLLAR - Type RC RC RC	r 2000ppm Zn (X TABLE Max_Dep (r 1(14 14	E UPDA th n) NA 02 45 40	AT_Grid_ID MGA94_56 MGA94_56 MGA94_56	450915 450912 450907	6736270 6736270 6736272	324 324 325	53 81 59	(Grid) 49 27 329	Metho Theodolit Theodolit Theodolit
1	FIGURE Hole_ID CC0026R CC0027R CC0028R CC0029R	geology team	OUDppm Cu o OLLAR <u>-Type</u> RC RC RC RC	r 2000ppm Zn (X TABLE Max_Dep (r 10 14 14 8	E UPDA th n) NA 02 45 40 84	NT_Grid_ID MGA94_56 MGA94_56 MGA94_56 MGA94_56	450915 450912 450907 450582	6736270 6736270 6736272 6736501	324 324 325 259	53 81 59 55	(Grid) 49 27 329 75	Metho Theodolit Theodolit Theodolit Theodolit
]	FIGURE Hole_ID CC0026R CC0027R CC0028R CC0029R CC0030R	geology team	OOU0ppm Cu o OLLAR RC RC RC RC RC RC RC	r 2000ppm Zn (TABLE Max_Dep (r 1(14 14 14 14 14 10 11 10 10 10 10 10 10 10 10	E UPDA th n) NA 02 45 40 84 03	AT_Grid_ID MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56	450915 450912 450907 450582 450583	6736270 6736270 6736272 6736501 6736500	324 324 325 259 259	53 81 59 55 75	(Grid) 49 27 329 75 88	Metho Theodolit Theodolit Theodolit Theodolit Theodolit
	Source: CCZ 9 FIGURE Hole_ID CC0026R CC0027R CC0029R CC0029R CC0031R	geology team	COUDED CU O COUDED CU O CU O CU O CU O CU O CU O CU O CU O	r 2000ppm Zn (TABLE Max_Dep (r 1(14 14 14 14 14 10 11 10 10 10 10 10 10 10 10	E UPDA th n) NA 02 45 40 84 03 27	AT_Grid_ID MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56	450915 450912 450907 450582 450583 450582	6736270 6736270 6736272 6736501 6736500 6736498	324 324 325 259 259 259	53 81 59 55 75 75	(Grid) 49 27 329 75 88 112	Metho Theodolit Theodolit Theodolit Theodolit Theodolit Theodolit
	FIGURE Hole_ID CC0026R CC0027R CC0028R CC0029R CC0030R	geology team	OOU0ppm Cu o OLLAR RC RC RC RC RC RC RC	r 2000ppm Zn 4 X TABLE Max_Dep (r 10 14 14 14 14 11 12 11 12 12 12 12 12 12 12	E UPDA th n) NA 02 45 40 84 03 27	AT_Grid_ID MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56	450915 450912 450907 450582 450583 450582	6736270 6736270 6736272 6736501 6736500	324 324 325 259 259	53 81 59 55 75	(Grid) 49 27 329 75 88	Metho Theodolit Theodolit Theodolit Theodolit Theodolit Theodolit
	Source: CCZ 9 FIGURE Hole_ID CC0026R CC0027R CC0029R CC0029R CC0031R	geology team	COUDED CU O COUDED CU O CU O CU O CU O CU O CU O CU O CU O	X TABLE Max_Dep (r 10 14 14 14 14 14 14 14 14 14 14 14 14 14	E UPDA th n) NA 02 45 40 84 03 27 18	AT_Grid_ID MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56	450915 450912 450907 450582 450583 450582 450583	6736270 6736270 6736272 6736501 6736500 6736498	324 324 325 259 259 259	53 81 59 55 75 75	(Grid) 49 27 329 75 88 112	Metho Theodolit Theodolit Theodolit Theodolit Theodolit Theodolit Theodolit
	FIGURE FIGURE Hole_ID CC0026R CC0027R CC0028R CC0029R CC0030R CC0031R CC0032R CC0032R	geology team	COUOPPM Cu o CUOOPPM Cu o Cu o Cu o Cu o Cu o Cu o RC RC RC RC RC RC RC RC	r 2000ppm Zn 4 X TABLE Max_Dep (r 10 14 14 14 16 11 14 14 14 14 14 14 14 14 14	E UPDA th m) NA D2 45 40 84 03 27 18 47	AT_Grid_ID MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56	450915 450912 450907 450582 450583 450583 450583 450583 450583	6736270 6736270 6736272 6736501 6736500 6736498 6736498 6736500	324 324 325 259 259 259 259 260 259	53 81 59 55 75 75 55 85	(Grid) 49 27 329 75 88 112 112 82	Metho Theodolit Theodolit Theodolit Theodolit Theodolit Theodolit Theodolit Theodolit
	Source: CCZ 9 FIGURE Hole_ID CC0026R CC0027R CC0029R CC0030R CC0031R CC0032R CC0032R CC0034R	geology team	OOU0ppm Cu o OLLAR RC RC RC RC RC RC RC RC RC R	r 2000ppm Zn 4 X TABLE Max_Dep (r 1(14 14 14 14 14 14 14 14 14 14	E UPDA th m) NA D2 45 40 84 03 27 18 47 79	AT_Grid_ID MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56	450915 450912 450907 450582 450583 450582 450583 450582 450582 450541	6736270 6736270 6736272 6736501 6736500 6736498 6736498 6736500 6736547	324 324 325 259 259 259 259 260 259 259 236	53 81 59 55 75 75 55 85 85 85	(Grid) 49 27 329 75 88 112 112 112 82 27	Method Theodolite Theodolite Theodolite Theodolite Theodolite Theodolite Theodolite Theodolite
	FIGURE FIGURE Hole_ID CC0026R CC0027R CC0028R CC0029R CC0030R CC0031R CC0032R CC0032R	geology team	COUOPPM Cu o CUOOPPM Cu o Cu o Cu o Cu o Cu o Cu o RC RC RC RC RC RC RC RC	r 2000ppm Zn 4 X TABLE Max_Dep (r 1(14 14 14 14 14 14 14 14 14 14	E UPDA th n) NA D2 45 40 84 03 27 18 47 79 00	AT_Grid_ID MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56 MGA94_56	450915 450912 450907 450582 450583 450583 450583 450582 450581 450541 450909	6736270 6736270 6736272 6736501 6736500 6736498 6736498 6736500	324 324 325 259 259 259 259 260 259	53 81 59 55 75 75 55 85	(Grid) 49 27 329 75 88 112 112 82	NAT_Survey Method Theodolite Theodolite Theodolite Theodolite Theodolite Theodolite Theodolite Theodolite GP


FIGURE A2: COLLAR TABLE UPDATE

		Max_Depth						Hole Dec	NAT_Survey_
Hole_ID	Hole_Type	(m)	NAT_Grid_ID	NAT_East	NAT_North	NAT_RL	Hole Inc	(Grid)	Method
CC0026R	RC	102	MGA94_56	450915	6736270	324	53	49	Theodolite
CC0027R	RC	145	MGA94_56	450912	6736270	324	81	27	Theodolite
CC0028R	RC	140	MGA94_56	450907	6736272	325	59	329	Theodolite
CC0029R	RC	84	MGA94_56	450582	6736501	259	55	75	Theodolite
CC0030R	RC	103	MGA94_56	450583	6736500	259	75	88	Theodolite
CC0031R	RC	127	MGA94_56	450582	6736498	259	75	112	Theodolite
CC0032R	RC	118	MGA94_56	450583	6736498	260	55	112	Theodolite
CC0033R	RC	147	MGA94_56	450582	6736500	259	85	82	Theodolite
CC0034R	RC	79	MGA94_56	450541	6736547	236	85	27	Theodolite
CC0035D	DD	100	MGA94_56	450909	6736270	324	77	24	GPS
CC0036D	DD	61.4	MGA94_56	450890	6736272	324	62	18	GPS

FIGURE A3: DRILL-HOLE 36D CROSS SECTION

FIGURE A4: DRILL-HOLES COMPLETED ALONG LINE OF LODE

APPENDIX B: JORC CODE, 2012 EDITION – TABLE 1; CANGAI DRILLING PROGRAM

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

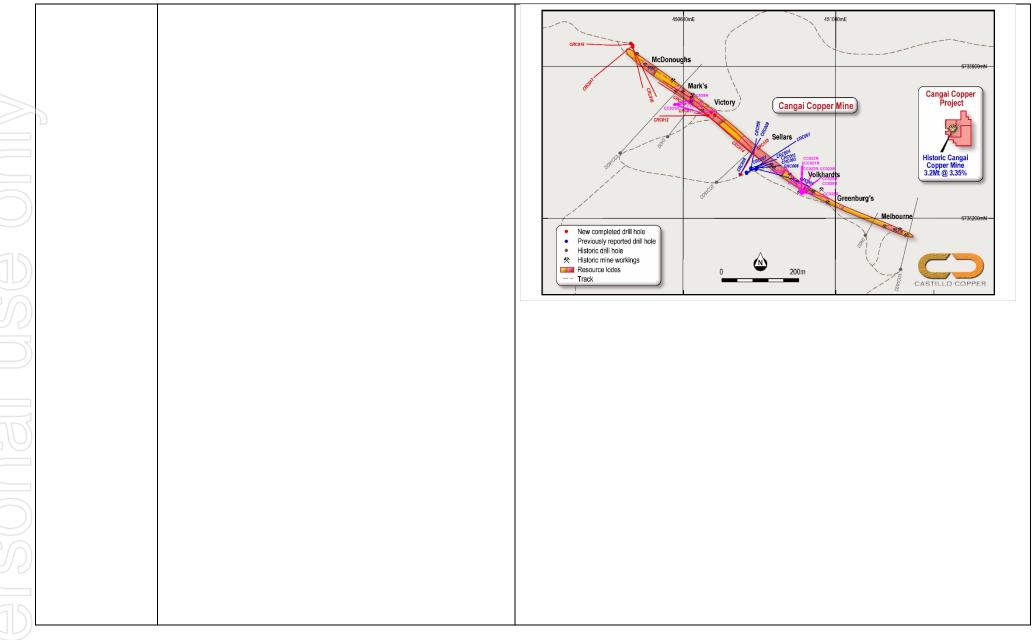

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30-g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	Samples from the Cangai drilling program were collected using the reverse circulation method of drilling on a 1 metre basis. Initially 20-25kg of chips and dust was collected and riffled down to a 1-2kg sample for further lab analysis. All samples are delivered for to ALS Laboratory in Brisbane QLD where the lab undertakes the splitting and compositing of the 5m composite samples and undertakes multi-element analysis on the 1m and 5m composite samples. The 1m samples were also sent to ALS Brisbane for a suite of major oxide and trace element determinations as described in later sections. The drilling program completed to date is shown in the Appendices within the report.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	Drilling was provided by Budd Drilling using a modified track-mounted UDH RC rig as illustrated below:

			Figure A1-1 Budd Drilling at Cangai
0			
\bigcap			Diamond Core drilling was carried out using a Proactive Drilling Services,
72			Commachio Drill Rig configured to run HQ Triple Tube.
7			Drill core was oriented using the Reflex Act III orientation tool.
	Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Sample recovery was generally 90-100% for each metre except when mining cavities (workings >5m wide) were intersected.

Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	All drilling has been completed to high modern-day standard by a competent field teams & drill crew. Logging of the lithology has been to coded sheets for data entry into Excel and added to the geology database. Plastic chip trays were used to store sample on 1m intervals for future reference as illustrated below: Budd Drilling has provided a single shot tool for hole deviation. Readings are taken
	•The total length and percentage of the relevant intersections logged	every 30m downhole. Hole deviations are in-line with expectations and follow the trend of the geological features. Diamond core was surveyed post drilling with a W&R Deviation tool. Figure A1-2 1M Sample chips preserved in plastic sample trays
Subsampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	RC sample are collected in 1m samples and riffle split in to calico bags at the rig. The samples are weighed details recorded. A pXRF unit is utilized to test the samples for mineralisation to determine which samples are tested as individual meters and which samples are to composited into 5m samples. Composite samples are being homogenized and riffle split at the labs prior to assaying. Diamond core are logged for structural measurements of Alpha and Beta angles as well as RQD. Drillcore is then ½ cored and then ¼ cored with ½ core remaining in core tray for further reference, and ¼ core sent to the assay labs, whilst a ¼ core is cut and made available for metallurgical sampling if required. The drillcore after processing and logging, is then dried andsulphide intersections

			are vacuum sealed to prevent deterioration of the sulphide minerals. Industry acceptable standards and blanks were used as certified reference material to ensure satisfactory performance of the laboratory.
	Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Multi-suite analysis methodology (MS-ME61) which involves a four-acid digestion, is being completed by ALS in Brisbane QLD, for the following elements ; Ag, As, Se, Ca, K, S, Ba, Sb, Sn, Cd, Pd, Zr, Sr, Rb, Pb, Hg, Zn, W, Cu, Ni, Co, V, Ti, Au, Ga, Ge, LI, La, Fe, Mn, Cr, Sc, Mo, Th, U, Ta. Samples containing >1000ppm Cu are being tested for Au by fire assay method CU- OG62.
\mathcal{D}	Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Field reading of multi-elements are estimated using Olympus Vanta M Portable XRF analyser as conducted as in internal check prior to sending samples for laboratory analysis. Reading times using 2 beam Geochem Mode was employed via 30sec/beam for a total of 60 sec. All logging and sampling data is collected, and data entered into excel spread sheets.

Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Drill pads were initial located using an RTK differential GPS. Drillholes collar locations have been picked using a Garmin handheld GPS to $\pm 3m$. At completion all drill hole will be accurately surveyed. Collars RLs are corrected and tagged to a recently completed Drone DTM topography model which has accuracies for AHD of $\pm 0.3m$.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Drillholes CC0019R was abandoned after 36m due to Rig problems Drillhole CC0020R deviated to much from the original plan and was abandoned at 155m All other drillhole have been drilled from the same drill pad on the Mullock dump from the Volkhardts F level adit, in a fan fashion on 4 nominal sections. Or from prepared drill pads for the Marks drilling.
		Other than field 5m composites the raw assay results returned from the labs have not been composited in the database (other than the 5m sample composites of non mineralised samples at the lab).

	Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drilling is planned to intersect workings and drill into data gaps between orebodies such that in general the intersections are where possible (due to restricted access) perpendicular to a strike of 126 degrees. Additional surface bedding and foliation data, and that from some of the accessible underground mine adits was compiled from a UNSW Honours thesis (Brauhart 1991). Information is available from underground workings, open cut(s), shaft(s), adit(s), shallow pits and scrapings. The Lode sub-vertical to vertical, striking 126 degrees true north and pitching at 60 degrees to the west. The high-grade ore as mined, varies from 0.3m-3.9m wide The known copper-gold mineralisation around Cangai strikes from 290-330 degrees, It should be noted that these orebody shapes were drawn at >13% Cu so that the with the major orebody shapes shown by Figure A1-5, below: Figure A1-5: Orientation of Copper-Gold Mineralisation at the Cangai Mine
\mathcal{O}				Form E level Form F level Form Greenburgs tunnel Form E level Form F level Form Greenburgs tunnel to Surface in D level Form I level to F level Form F level Form Greenburgs tunnel to Surface in D level Form I level to Surface in D level Income sense Image: Comment Image: Surface Image: Surface Image: Comment
5)			mineralisation down to 0.5% Cu.
				15

		Cangai Copper Cross Section 450890E Volkhardts / Sellars Opencuts Image: Comparison of the control opencuts Image: Comparison of the control opencuts Volkhardt Fintermediate level Drive Image: Comparison of the control opencuts Image: Control opencuts Volkhardt Fintermediate level Drive Image: Control opencuts Image: Control opencuts Fievel Dump Northern Ore Zone Image: Control opencuts E level Decide Ash Tuff Volkhardt Volkhardt Decide Ash Tuff Toom Image: Control opencuts Image: Control opencuts B level Semi-massive Sulphide Toom Image: Control opencuts Image: Control opencuts A level Altered Bieccciated Toom Image: Control opencuts Image: Control opencuts 0 50m Southern Ore Zone Image: Control opencuts Image: Control opencuts
Sample security	 The measures taken to ensure sample security. 	Samples were bagged and have been delivered by Gnomic Exploration Staff to ALS Laboratories Brisbane.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews have yet been undertaken. This will commence once all assay results have been received.

		Max_Depth						Hole Dec	NAT_Survey_
Hole_ID	Hole_Type	(m)	NAT_Grid_ID	NAT_East	NAT_North	NAT_RL	Hole Inc	(Grid)	Method
CC0026R	RC	102	MGA94_56	450915	6736270	324	53	49	Theodolite
CC0027R	RC	145	MGA94_56	450912	6736270	324	81	27	Theodolite
CC0028R	RC	140	MGA94_56	450907	6736272	325	59	329	Theodolite
CC0029R	RC	84	MGA94_56	450582	6736501	259	55	75	Theodolite
CC0030R	RC	103	MGA94_56	450583	6736500	259	75	88	Theodolite
CC0031R	RC	127	MGA94_56	450582	6736498	259	75	112	Theodolite
CC0032R	RC	118	MGA94_56	450583	6736498	260	55	112	Theodolite
CC0033R	RC	147	MGA94_56	450582	6736500	259	85	82	Theodolite
CC0034R	RC	79	MGA94_56	450541	6736547	236	85	27	Theodolite
CC0035D	DD	100	MGA94_56	450909	6736270	324	77	24	GPS
CC0036D	DD	61.4	MGA94_56	450890	6736272	324	62	18	GPS

Table A1-1: Cangai Copper Drilling Collar Table Stage 2

Source: CCZ geology team

TABLE 1: DIAMOND DRILL-HOLE PROFILE – CC0036D

From (m)	To (m)	Lithology	Mineralisation
0.0	23.0	Dacitic ash tuff	Trace sulpides
23.0	23.4	Felsic intrusive	Trace sulpides
		Dacitic ash tuff, rare banded	
23.4	49.9	mudstone	Trace sulpides
			Sphalerite (15%), chalcopyrite (10%), pyrite (20%) &
49.9	50.8	Massive sulphide	phyrrotite (20%)
		Highly altered bleached dacitic	
51.2	53.1	ash tuff	Disseminated & vein sulphides
53.1	54.3	Massive sulphide	Chalcopyrite (45%), sphalerite (5%), pyrite (20%) & phyrrotite (20%)
00.1	01.0		Minor disseminated <5%
54.2	59.5	Highly altered bleached dacitic ash tuff	sphalerite in narrow veins

Source: CCZ geology team

* For visual sulphide estimates

Disseminated sulphides > 5%-10% sulphides Semi-Massive 10% - 30% sulphides Massive over 30% sulphides Source: CCZ geology team

Hole ID	From (m)	To (m)	Length (m)	Cu %	Zn %	Ag g/t	Au g/t
CC0026R	0	1	1	0.24	0.08	0.32	
CC0026R*	14	17	3	0.24	0.03	0.04	
CC0026R*	53	60	7	0.42	0.13	2.28	
inc	59	60	1	0.82	0.27	2.79	
CC0027R	1	2	1	0.38	0.16	0.06	
CC0027R	12	13	1	0.22	0.05	0.05	
CC0027R	125	126	1	0.55	0.39	2.50	
CC0028R*	0	2	2	0.23	0.08	0.11	
CC0028R*	105	108	3	0.28	0.01	0.33	
CC0028R*	109	111	2	0.42	0.11	2.37	
inc	109	110	1	0.53	0.13	2.92	
CC0028R	119	120	1	0.27	0.06	2.12	
CC0029R*	35	38	3	2.06	0.65	8.39	
inc	36	37	1	4.57	1.41	19.15	0.36
CC0030R*	56	59	3	1.70	0.40	4.02	
inc	56	58	2	2.45	0.56	5.83	0.24
CC0031R	71	72	1	1.47	0.30	5.58	0.14
CC0032R*	58	62	4	0.90	0.26	2.11	
linc	58	60	2	1.44	0.41	3.38	0.19
CC0033R	74	75	1	0.21	0.06	1.06	
CC0034R*	41	43	2	0.57	0.16	3.35	
inc	41	42	1	0.98	0.26	5.55	0.17

Cangai Copper Drilling Stage 1 Intersection Summary Table

* Weighted Average

Minimum criteria = 0.2% Cu or 0.2% Zn or 2 g/t Ag

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Castillo Copper holds 100% of EL 8625 & EL 8635. The tenure has been granted for a period of thirty-six months until 17th July 2020, for Group 1 minerals. The location of the tenure is shown in Figure A2.1 below: Figure A2.1: Location of EL 8625 and EL8635 Jackaderry South
		The current drilling has all been completed on EL 8625 and EL 8635 Jackaderry South only.

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Some mining history and discovery information provided by North Broken Hill Ltd (1970) is as follows:
		Cangai The Cangai copper mine, located 10 km north west of Jackadgery, is one of the richest copper and gold mines in the region. This deposit was discovered in 1901 by J. Sellers and was subsequently mined by the Grafton Copper Mining Company Ltd from 1904 to 1917. A copper smelter was built and a substantial village with a sawmill developed. Recorded production is 5080 tonnes of copper, 52.7 kg of gold and 1035 kg of silver (Henley and Barnes 1992). The mine was unusual in that its discovery post-dated much of the initial mineral discoveries in New England. It had the distinction of paying its own way from ore produced from the mine and paid rich dividends to its shareholders as a result of the rich ore and the low production costs related to the self fluxing ore and that ore could be easily hauled downhill to the smelter. The mine prompted upgrades to roads and communications into the area.
		Previous explorers (Brownlow, 1989; Abraham-Jones, 2012) have noted that a 'basement window' of exposed magmatic hydrothermal alteration and historical copper workings may represent the western and upper extent of a much larger hydrothermal system concealed under Mesozoic cover to the east, prospective for:
		 Quartz-tourmaline-sulphide-cemented, magmatic-hydrothermal breccia hosted copper-gold-molybdenum-cobalt (Cu-Au-Mo-Co) deposit; Concealed porphyry copper-gold-molybdenum-cobalt (Cu-Au-Mo-Co) ore body associated with quartz diorite to tonalitic porphyry apophyses proximal to the tourmaline-sulphide cemented breccia's;
		• Potential also exists for copper-gold (Cu-Au) skarn; Considerable exploration has taken place in and around the Cangai Copper Mine (closed) by several large explorers such as Western Mining and CRA Exploration, the results of which are covered in the Local Geology section

Geology	Deposit type, geological setting and style of mineralisation.	Regional Geology
		 The underlying geology is contained within the Coffs Harbour Block, east of the Demon Fault. The major basement unit is the Silurian-Devonian Silverwood Group (locally the Willowie Creek Beds), a mixed sequence of tuffaceous mudstones, intermediate to basic igneous rocks, slates, and phyllites, a low stage of regional metamorphism. Overlying this rock formation is a younger tectonic melange of Early Carboniferous age – the Gundahl Complex of slates, phyllites and schist, with chert, greenstone and massive lithic greywackes. These rocks are intruded by the Early Permian Kaloe Granodiorite (tonalite), which also in turn is intruded by numerous later-stage mafic (lamprophyre) dykes. Local Geology
5		The local geology is well understood as considerable exploration has taken place in and around the Cangai Copper Mine (closed) by several major explorers such as Western Mining and CRA Exploration, the results of which are covered in the section below. The mineralisation is controlled by the presence of shear zones within the country rock and persistent jointing. Chloritic alteration is pervasive, with the major minerals identified (Henley
$\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$		and Barnes 1990) as: • Azurite major ore • Chalcocite major ore • Chalcopyrite major ore • Copper major ore • Malachite major ore
0)		 Pyrite major ore Pyrrhotite major ore Arsenopyrite minor ore Sphalerite minor ore Cuprite minor ore Gold minor ore
2		 Limonite minor ore Chlorite major gangue Calcite major gangue Quartz major gangue Sericite minor gangue
5		

	Western Mining 1982-1984
	Western Mining found that the recognition of substantial amounts of pyrrhotite in high grade ore collected from mine dumps led to the reappraisal of previous explorer's ground magnetics (Brown, 1984). Two soil anomalies were identified @ +60ppm Cu (max 1100ppm) and several strong linear magnetic anomalies (=250nT above background). Soil sampling and detailed ground inspections conducted over the linear magnetic high failed to identify any anomalous geochemistry or a possible source lithology. A 180m diamond drill hole was drilled to test the anomaly. Given the poor results of both the drilling and the follow-up stream sediment sampling, no further work was recommended. The decision was made to relinquish the licence in 1984. CRA Exploration 1991-1992
	CRA Exploration examined the geological form, setting and genesis of the mineralisation at the Cangai Copper Mine over several years. The work carried out consisted of geological mapping, collection of rock chip samples, and underground investigations at the mine site. Drill core from a CRA exploration program and mine dumps were also inspected. They concluded that the Cangai Copper Mine is hosted by sedimentary rocks of the Siluro-Devonian Willowie Creek Beds of tuffaceous mudstones, tuffaceous sandstones and conglomerates. Mineralisation appears to be associated with steeply plunging ore shoots in and adjacent to the main shear zone (Figure A2-2). Massive primary ore consists of chalcopyrite, pyrite and pyrrhotite with lesser sphalerite and minor arsenopyrite and galena. A detailed, well documented report was produced, but no reasons were given for the relinquishment of the licence.
	22
7	

		Figure			p Sampli	-	ngai Cop
	Simila submit presen	ar dump ted for ited belo	samples to analysis ow. Values	by CRA Exp are ppm t	llected by ploration. unless othe	the author Selected a rwise stat	r were assays are ted.
	1	L	2	3	4	5	6
	Pb 6 Zn 4 Ag 7 As 4 Mn 1 Au 1 Fe 3 S 2	5.3% 540 1.68% 76 1750 85 .80 80.9% 77.5% 70	28.6% 1200 1.27% 86 1650 240 2.50 22.6% 3.73% 25	12.4% 1800 2.35% 30 4850 370 0.72 28.2% 16.6% 300	14.8% 7550 9.50% 49 3800 430 2.30 32.9% 29.6% 330	10.6% 800 6400 160 4750 155 1.32 33.8% 370 <10 <10 <5 30 14	11.0% 2500 5.10% 150 150 1.85 27.4% 300 <10 20 <5 80 90
	1 Ma 2 Ox 3 Ma 4 We 5 We	ide mate ssive py ll bande akly bar	halcopyrit erial yrite chal ed pyrite- nded massi	e-pyrite o copyrite n sphalerite ve sulfide ve sulfide	ock with g ore	angue clas	sts

Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case 	Drill hole collar summary table (A1-1) and intersection summary tables are included as an Appendices in the report and shown in table A1-1 above. Mineralised zones are identified by the field geologist and flagged as geological/mineralised zones as shown in Table A1-2.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No top cuts have been applied to reporting of the Significant Intersections and lower cut of 0.5% (5,000ppm) Cu has generally been used. No more than 1m of lower internal dilution has been used in the calculations. Full detailed assay intervals for the key elements are included in the Appendices of this report Summary Intersections have been reported based on estimated sulphide content Minimum criteria = 0.5% Cu or 0.2% Zn or 2 g/t Ag if assays For visual sulphide estimates <i>Disseminated sulphides</i> > 5%-10% <i>sulphides</i> <i>Semi-Massive 10% - 30% sulphides</i> <i>Massive over 30% sulphides</i>

	Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	All intersections are reported as downhole widths. Once assays are returned and the geological controls are fully established, the 3D modelling package will determine true widths which will be reported in due course. The Lode is currently modelled to be sub-vertical to vertical, striking 126 degrees and pitching at 60 degrees west. Varies from 0.3m-3.9m wide. The main mining was from Volkardts, Melbourne, Marks, Sellers & Greenbergs lens. The secondary supergene zone grades averaged 20-35% Cu. The sulphide zone decreased to 8-10% Cu at depth. The Lode was largest at structural intersections. Breccia was recorded at D level. The host rock is massive fine-grained intermediate volcanic, and bedding is difficult to define. The deposit is structurally controlled with lodes following or adjacent to the shear zone. A temperature of formation is suggested to be about 380 degrees centigrade (Brauhart 1991). The NSW Geological Survey has characterized Cangai as a metahydrothermal structurally-controlled deposit. Figure A2-3, below is a cross-section
5)		showing the four (4) main near vertical mineralised zones at the Cangai Mine. Figure A2-3: NW to SE Cross-section of workings at Cangai Mine
			PIEURO 5 PIEURO
5			 Possible drill targets) Geo-registering was undertaken in June 2018, particularly the anomalous zones (which are in the process of being digitised off the 1908,1912, and 1914 mine plans (Brauhart 1991), which become priority targets for geological mapping, ground magnetic and EM surveys. Data has also been extracted from a thorough UNSW Honours Thesis as referenced below: Brauhart, C. (1991). The Geology & Mineralisation of the Cangai Copper Mine, Coffs Harbour Block Northeastern New South Wales. CRAE Report No: 17739. University of
5)		NSW.

Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body text of the announcement.
		Cangai Copper Cross Section 450890E Volkhardts / Sellars Opencuts Shaft Volkhardts / Sellars Opencuts Shaft Fierel Dump Elevel Dump Elevel Devide Bievel Semi-massive Sulphide Semi-massive Sulphide Decide Ash Tuff Cievel Alevel Semi-massive Sulphide Decide Ash Tuff Fiele (Lintusive Cievel Semi-massive Sulphide Decide Ash Tuff Fiele (Lintusive Cievel Cievel Semi-massive Sulphide Decide Ash Tuff Fiele (Lintusive Cievel Semi-massive Sulphide) Semi-massive Sulphide Decide Ash Tuff Fiele (Lintusive Semi-massive Sulphide) Semi-massive Sulphide Decide Ash Tuff Fiele (Lintusive Semi-massive Sulphide) Semi-massive Sulphide Semi-massive Sulphide Semi-massive Sulphide) Semi-massive Sulphide Semi-massive Sulphide (Semi-massive Sulphide) Semi-massive Sulphide (Semi-massive Sul

Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	All drillholes completed to date have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Historical explorers have also conducted airborne and ground gravity, magnetic, A new EM Survey has been undertaken and has been previously reported (Multiple conductors discovered from FLEM survey, drill program to be expanded 8th January ASX Release). Castillo Copper has collected and continues to collect DHEM data, to identify off hole conductors. The configuration utilized is that of a single fixed loop, with a combination of sensor probes (including EMIT's Atlantis Digital Fluxgate probe, and Geonics BH43-3C) with station spacing at 5m down the drillhole. Survey frequency and sample stacking are optimized to ensure clean data is available for the consultant geophysicist to interpret. Interpretation of the data is carried out using EMIT's Maxwell EM modelling software.
) 1 7	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Castillo Copper is preparing for completion a Phase 2 of drilling with 39 drillholes submitted for regulatory approval by the NSW Dept Mines. Targeting the following locations Smelter Creek Copper Smelter Dumps Along strike and under the McDonoughs workings Proximal to Marks' workings Underneath Volkhardts' workings DHEM anomaly located along strike from CRC005