Pure Minerals Limited

ASX Announcement

INFILL SOIL SAMPLING DEFINES HIGH-PRIORITY LITHIUM-TANTALUM TARGETS AT MORRISSEY HILL PROJECT

- Objective achieved in improving the resolution of the 5 km -long $\mathbf{x} \mathbf{1 k m}$ wide anomaly announced in October 2017
- One high-priority lithium-tantalum anomaly and at least one other priority tantalum anomaly identified
- Previous rock chip samples within these anomalies have returned up to 1.31\% $\mathrm{Li}_{2} \mathrm{O}$ and 238.7 ppm $\mathrm{Ta}_{2} \mathrm{O}_{5}$
- Similarities to initial results from nearby lithium discoveries

Pure Minerals Limited (ASX: PM1) ("Pure Minerals", "the Company") is pleased to announce results from infill soil sampling at its 80%-owned Morrissey Hill project located in Western Australia's Gascoyne region.

Further soil sampling was completed at Morrissey Hill as follow-up to a soil sampling programme that was announced on the $5^{\text {th }}$ October 2017. That initial programme defined a significant elevated lithium-tantalum anomaly more than 5 km long and up to 1 km wide, a further two additional tantalum anomalies each more than 1 km long were also delineated. The objective of the current programme was to improve the resolution of the larger anomaly to provide greater resolution to target planned drilling.

Well-defined lithium-tantalum soil anomalies discovered

The soil survey consisted of 1,114 samples over a $200 \mathrm{~m} \times 50 \mathrm{~m}$ grid that infilled and extended the previous program of 133 samples collected on an $800 \mathrm{~m} \times 200 \mathrm{~m}$ grid. A minus 80 mesh fraction was also trialled to improve the resolution of the anomalous area. All samples were then subjected to analysis using a portable XRF analyser, from this a further 507 samples were prioritised for further analysis, including analysis for Lithium in Perth.

The $59 \mathrm{~km}^{2}$ Morrissey Hill project is known to host multiple pegmatite intrusions and fractionated granites which have the potential to host lithium mineralisation. The soil sampling program was designed to identify lithological packages with anomalous pathfinder elements
for lithium-caesium-tantalum pegmatites ($\mathrm{Li}, \mathrm{Cs}, \mathrm{Ta}, \mathrm{Nb}, \mathrm{Rb}$) which may indicate sub-cropping prospective pegmatites.

The program successfully delineated and defined two high priority lithium and tantalum anomaly areas (see Figure 1, Appendix A), including:
(1) a $2.1 \mathrm{~km} \times 1.1 \mathrm{~km}$ lithium and tantalum soil anomaly, with results up to $474 \mathrm{ppm} \mathrm{Li}_{2} \mathrm{O}$ and $28 \mathrm{ppm} \mathrm{Ta} 2 \mathrm{O}_{5}$, and
(2) a smaller tantalum-rich soil anomaly of $0.7 \mathrm{~km} \times 0.2 \mathrm{~km}$ with results up to $19 \mathrm{ppm} \mathrm{Ta} 2 \mathrm{O}_{5}$

Both anomalies may reflect one contiguous zone of mineralisation overlain by a SW-NEtrending drainage channel that has split the anomalies into two.

Figure 1: Soil anomalies of lithium (left) and tantalum (right), along with corresponding rock chip sampling results. A lithium-tantalum soil anomaly near the centre of the tenement is clearly evident, plus a smaller more tantalum-rich anomaly located 2 km to the south of the main anomaly.

The z-score analysis indicates a far broader anomaly which is interpreted to be extending more than 5 km long and 1.5 km wide that has been truncated by SW-NE trending drainage.

Figure 2: Soil anomalies, soil sampling locations showing multivariate Z-score (Li, $\mathrm{Ta}, \mathrm{Cs}, \mathrm{Rb}, \mathrm{Nb}$), and highlighted rock chip samples.

The soil anomalies are consistent with lithium and tantalum rock chip samples collected on site. Previous rock chip samples in the northern $\mathrm{Li}-\mathrm{Ta}$ anomaly registered grades up to $1.31 \% \mathrm{Li}_{2} \mathrm{O}$ and 238.7ppm Ta O_{5} (refer ASX Announcement/Prospectus dated 5 May 2017 and the ASX Announcement dated 5 October 2017).

Proximity to Malinda lithium discovery

Morrissey Hill is located approximately 10km west of Arrow Minerals' (formerly Segue Resources) recent Malinda (formerly Reid Well) lithium discovery. Arrow Minerals completed a maiden reverse circulation (RC) drilling programme of four outcropping pegmatites in September 2017, intersecting up to $2.0 \% \mathrm{Li}_{2} \mathrm{O}$ (lithium) and over $800 \mathrm{ppm} \mathrm{Ta}{ }_{2} \mathrm{O}_{5}$ (tantalum). In addition, XRD analysis of high-grade lithium samples from the Blade Prospect confirmed the primary lithium-bearing mineral as spodumene.

The Malinda discovery was based off a soil sampling and rock chip sampling program, announced 12 April 2017, that delineated a $1.3 \mathrm{~km} \times 1.0 \mathrm{~km}$ lithium and tantalum anomaly of similar magnitude to the Morrissey Hill anomaly.

Arrow intends to re-commence drilling in July 2018 (Arrow Minerals ASX Announcement dated 22 March 2018).

Next Steps at Morrissey Hill

Having successfully defined high-priority lithium-tantalum soil anomalies, Pure Minerals believes that a targeted program of drilling testwork is warranted and has begun planning to that effect.
-Ends-

For and on behalf of the Board Mauro Piccini, Company Secretary

COMPETENT PERSON STATEMENT:

The information in this report that relates to Exploration Results at the Morrissey Hill Project complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and has been compiled and assessed under the supervision of Mr Kell Nielsen BSc (Geol.), MSc (Mineral Econ.), a consultant to Pure Minerals Limited and director of Mannika Resources Group Pty Ltd. Mr Nielsen is a Member of the Australasian Institute of Mining and Metallurgy. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Nielsen consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears. The Exploration Results are based on standard industry practises for drilling, logging, sampling, assay methods including quality assurance and quality control measures as detailed in Appendix 3.

Appendix A: Soil Sampling Results

Sample Id	East	North	$\begin{gathered} \mathrm{Li} \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{Li}_{2} \mathrm{O} \\ (\text { ppm) } \end{gathered}$	$\begin{gathered} C s \\ (p p m) \end{gathered}$	$\begin{gathered} \mathrm{Nb} \\ (p p m) \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} T a \\ (p p m) \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (\text { ppm) } \end{aligned}$
MSSO134	412,303	7,289,312	0.005	107.7	12.10	24.0	139.0	4.0	4.88
MSSO135	412,374	7,289,383	0.007	150.7	14.60	22.0	143.0	2.8	3.42
MSSO136	412,445	7,289,454	0.006	129.2	9.50	24.0	122.5	2.7	3.30
MSSO137	412,515	7,289,525	0.006	129.2	6.20	24.0	102.0	2.6	3.17
MSSO138	412,586	7,289,595	0.005	107.7	4.40	18.0	91.1	1.8	2.20
MSSO139	412,657	7,289,666	0.006	129.2	6.50	18.0	112.5	1.9	2.32
MSSO140	412,727	7,289,737	0.006	129.2	9.20	21.0	119.0	2.4	2.93
MSSO141	412,798	7,289,807	0.005	107.7	5.50	15.0	75.8	1.5	1.83
MSSO142	412,869	7,289,878	0.005	107.7	6.50	15.0	81.9	1.4	1.71
MSSO143	412,940	7,289,949	0.005	107.7	6.80	20.0	125.5	2.3	2.81
MSSO144	413,010	7,290,020	0.005	107.7	7.40	30.0	128.0	2.9	3.54
MSSO145	413,081	7,290,090	0.007	150.7	13.80	24.0	152.0	13.6	16.61
MSSO146	412,303	7,288,747	0.005	107.7	7.40	20.0	123.5	2.4	2.93
MSSO147	412,445	7,288,888	0.006	129.2	8.30	20.0	140.0	2.3	2.81
MSSO148	412,586	7,289,030	0.005	107.7	5.30	21.0	108.0	3.0	3.66
MSSO149	412,727	7,289,171	0.007	150.7	15.20	17.0	109.5	2.0	2.44
MSSO150	412,869	7,289,312	0.006	129.2	18.30	23.0	184.0	2.7	3.30
MSSO151	413,010	7,289,454	0.006	129.2	10.10	26.0	143.5	2.2	2.69
MSSO152	413,152	7,289,595	0.006	129.2	21.30	12.0	103.5	1.2	1.47
MSSO153	413,293	7,289,737	0.006	129.2	9.10	21.0	133.0	2.4	2.93
MSSO154	413,435	7,289,878	0.005	107.7	8.90	21.0	145.5	2.1	2.56
MSSO155	413,576	7,290,020	0.006	129.2	8.80	23.0	196.5	2.2	2.69
MSSO156	412,480	7,288,358	0.006	129.2	7.50	19.0	118.5	2.0	2.44
MSSO157	412,551	7,288,429	0.006	129.2	8.40	18.0	123.0	1.7	2.08
MSSO158	412,621	7,288,499	0.005	107.7	5.90	19.0	113.5	2.4	2.93
MSSO159	412,692	7,288,570	0.005	107.7	5.80	21.0	115.5	2.0	2.44
MSSO160	412,763	7,288,641	0.006	129.2	12.30	23.0	199.5	3.5	4.27
MSS0161	412,833	7,288,711	0.004	86.1	8.50	19.0	141.0	2.7	3.30
MSSO162	412,904	7,288,782	0.006	129.2	15.20	23.0	195.5	3.5	4.27
MSSO163	412,975	7,288,853	0.005	107.7	7.80	20.0	115.0	2.7	3.30
MSSO164	413,046	7,288,924	0.009	193.8	10.30	20.0	128.0	2.4	2.93
MSSO165	413,116	7,288,994	0.007	150.7	12.50	22.0	138.0	2.7	3.30
MSSO166	413,187	7,289,065	0.005	107.7	10.40	23.0	126.0	3.0	3.66
MSS0167	413,258	7,289,136	0.005	107.7	8.60	20.0	104.0	2.1	2.56
MSS0168	413,328	7,289,206	0.005	107.7	8.40	22.0	134.5	2.6	3.17
MSSO169	413,399	7,289,277	0.005	107.7	6.50	20.0	126.0	1.8	2.20
MSSO170	413,470	7,289,348	0.004	86.1	10.50	20.0	109.5	1.9	2.32
MSS0171	413,541	7,289,419	0.005	107.7	12.00	24.0	114.5	2.5	3.05
MSSO172	413,611	7,289,489	0.005	107.7	6.80	23.0	111.5	2.8	3.42
MSSO173	413,682	7,289,560	0.005	107.7	7.60	19.0	108.5	2.1	2.56
MSSO174	413,753	7,289,631	0.005	107.7	7.10	21.0	120.5	2.1	2.56
MSSO175	413,823	7,289,701	0.005	107.7	11.20	21.0	132.5	2.0	2.44
MSSO176	413,894	7,289,772	0.005	107.7	5.40	21.0	121.0	2.0	2.44
MSSO177	413,965	7,289,843	0.005	107.7	5.90	22.0	122.5	2.7	3.30

Sample Id	East	North	$\begin{gathered} L i \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{Li}_{2} \mathrm{O} \\ (p p m) \end{gathered}$	$\begin{gathered} C s \\ (p p m) \end{gathered}$	$\begin{gathered} N b \\ (p p m) \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} T a \\ (p p m) \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (p p m) \end{aligned}$
MSSO178	414,036	7,289,914	0.005	107.7	8.10	22.0	135.0	2.0	2.44
MSSO179	414,106	7,289,984	0.006	129.2	7.00	32.0	142.5	2.9	3.54
MSS0180	414,177	7,290,055	0.007	150.7	15.90	21.0	160.5	2.7	3.30
MSSO216	413,930	7,288,110	0.005	107.7	8.00	22.0	124.5	2.6	3.17
MSSO217	414,000	7,288,181	0.004	86.1	12.90	21.0	126.0	2.2	2.69
MSSO218	414,142	7,288,323	0.006	129.2	12.50	25.0	148.5	3.6	4.40
MSSO219	414,283	7,288,464	0.005	107.7	9.80	26.0	159.5	3.3	4.03
MSSO220	414,424	7,288,605	0.005	107.7	15.30	25.0	149.5	2.9	3.54
MSSO221	414,566	7,288,747	0.006	129.2	10.10	11.0	85.1	1.1	1.34
MSSO222	414,707	7,288,888	0.006	129.2	8.10	18.0	115.5	1.9	2.32
MSSO223	414,849	7,289,030	0.006	129.2	14.80	19.0	106.0	1.8	2.20
MSSO224	414,990	7,289,171	0.006	129.2	7.80	22.0	99.5	3.1	3.79
MSSO225	415,132	7,289,312	0.005	107.7	5.50	21.0	117.5	2.1	2.56
MSSO226	415,273	7,289,454	0.006	129.2	6.30	22.0	135.5	2.1	2.56
MSSO227	415,414	7,289,595	0.006	129.2	8.10	19.0	124.5	1.9	2.32
MSSO228	415,556	7,289,737	0.006	129.2	16.00	21.0	158.0	3.2	3.91
MSSO229	413,965	7,287,580	0.005	107.7	6.80	23.0	154.5	2.3	2.81
MSSO230	414,036	7,287,651	0.005	107.7	10.00	26.0	171.0	3.4	4.15
MSSO231	414,106	7,287,722	0.005	107.7	7.90	21.0	126.0	2.0	2.44
MSSO232	414,177	7,287,792	0.004	86.1	8.40	19.0	106.5	2.9	3.54
MSSO233	414,248	7,287,863	0.004	86.1	4.90	20.0	104.0	2.3	2.81
MSSO234	414,318	7,287,934	0.004	86.1	6.50	19.0	115.5	2.3	2.81
MSSO236	414,389	7,288,004	0.005	107.7	8.50	20.0	140.0	2.1	2.56
MSSO237	414,460	7,288,075	0.004	86.1	9.60	20.0	138.0	2.5	3.05
MSSO238	414,531	7,288,146	0.006	129.2	17.40	33.0	171.5	3.9	4.76
MSSO239	414,601	7,288,216	0.004	86.1	15.20	24.0	144.0	3.5	4.27
MSSO240	414,672	7,288,287	0.005	107.7	15.10	35.0	172.0	4.9	5.98
MSSO241	414,743	7,288,358	0.008	172.2	18.40	24.0	189.5	4.1	5.01
MSSO242	414,813	7,288,429	0.005	107.7	13.40	26.0	154.5	5.5	6.72
MSSO243	414,884	7,288,499	0.006	129.2	15.20	27.0	198.0	5.7	6.96
MSSO244	414,955	7,288,570	0.004	86.1	6.70	22.0	110.0	2.4	2.93
MSSO245	415,026	7,288,641	0.004	86.1	9.60	20.0	110.5	2.1	2.56
MSSO246	415,096	7,288,711	0.010	215.3	8.90	23.0	130.0	2.7	3.30
MSSO247	415,167	7,288,782	0.006	129.2	13.20	23.0	109.0	2.5	3.05
MSSO248	415,238	7,288,853	0.004	86.1	7.90	22.0	108.5	2.7	3.30
MSSO249	415,308	7,288,924	0.005	107.7	7.90	20.0	120.5	2.3	2.81
MSSO250	415,379	7,288,994	0.004	86.1	3.30	20.0	67.3	2.5	3.05
MSSO251	415,450	7,289,065	0.004	86.1	7.70	22.0	130.5	2.4	2.93
MSSO252	415,520	7,289,136	0.005	107.7	5.30	18.0	112.0	1.6	1.95
MSSO253	415,591	7,289,206	0.005	107.7	10.60	23.0	110.5	2.4	2.93
MSSO254	415,662	7,289,277	0.004	86.1	7.20	21.0	125.0	2.4	2.93
MSSO255	415,733	7,289,348	0.006	129.2	14.10	22.0	164.5	3.2	3.91
MSSO256	415,799	7,289,422	0.005	107.7	6.30	22.0	137.5	2.5	3.05
MSSO257	415,870	7,289,493	0.006	129.2	8.70	23.0	125.0	3.4	4.15
MSSO258	415,941	7,289,563	0.005	107.7	7.80	21.0	135.0	2.2	2.69
MSSO265	414,813	7,287,863	0.007	150.7	10.10	20.0	129.5	3.4	4.15
MSS0266	414,849	7,287,898	0.007	150.7	9.60	24.0	126.5	3.7	4.5

Sample Id	East	North	$\begin{gathered} \mathrm{Li} \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{Li}_{2} \mathrm{O} \\ (p p m) \end{gathered}$	$\begin{gathered} \text { Cs } \\ (p p m) \end{gathered}$	$\begin{gathered} \mathrm{Nb} \\ (p p m) \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} T a \\ (p p m) \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (p p m) \end{aligned}$
MSSO267	414,884	7,287,934	0.006	129.2	9.50	23.0	144.5	3.7	4.52
MSSO268	414,955	7,288,004	0.007	150.7	11.90	33.0	175.5	4.5	5.49
MSSO269	414,990	7,288,040	0.006	129.2	9.30	22.0	138.0	3.0	3.66
MSSO270	415,026	7,288,075	0.008	172.2	12.10	25.0	183.5	4.4	5.37
MSSO271	415,096	7,288,146	0.011	236.8	14.10	28.0	197.0	5.0	6.11
MSSO272	415,132	7,288,181	0.008	172.2	12.80	25.0	182.0	3.9	4.76
MSSO273	415,167	7,288,216	0.007	150.7	10.50	26.0	173.0	4.1	5.01
MSSO274	415,238	7,288,287	0.006	129.2	11.40	24.0	181.5	4.1	5.01
MSSO275	415,273	7,288,323	0.006	129.2	9.40	40.0	204.0	8.1	9.89
MSSO276	415,308	7,288,358	0.007	150.7	25.90	24.0	244.0	4.1	5.01
MSSO277	415,379	7,288,429	0.006	129.2	13.10	29.0	157.0	4.1	5.01
MSSO278	415,414	7,288,464	0.005	107.7	16.20	21.0	120.0	2.6	3.17
MSSO279	415,450	7,288,499	0.005	107.7	16.50	24.0	151.5	2.8	3.42
MSSO280	415,520	7,288,570	0.004	86.1	6.00	23.0	111.5	2.8	3.42
MSSO281	415,556	7,288,605	0.004	86.1	8.00	21.0	131.5	2.2	2.69
MSSO282	415,591	7,288,641	0.006	129.2	16.40	20.0	111.5	2.1	2.56
MSSO283	415,662	7,288,711	0.006	129.2	12.90	19.0	105.5	2.4	2.93
MSSO284	415,697	7,288,747	0.005	107.7	9.00	24.0	134.5	2.6	3.17
MSSO285	415,733	7,288,782	0.005	107.7	8.80	23.0	123.0	2.7	3.30
MSSO287	415,803	7,288,853	0.006	129.2	8.90	19.0	113.5	1.8	2.20
MSS0288	415,839	7,288,888	0.005	107.7	6.50	21.0	111.5	2.1	2.56
MSS0289	415,874	7,288,924	0.007	150.7	7.00	20.0	124.0	1.9	2.32
MSSO290	415,945	7,288,994	0.004	86.1	7.40	21.0	127.0	1.9	2.32
MSSO291	415,980	7,289,030	0.005	107.7	10.00	21.0	130.5	2.4	2.93
MSSO292	416,015	7,289,065	0.007	150.7	22.30	26.0	131.0	2.5	3.05
MSSO293	416,086	7,289,136	0.006	129.2	12.70	20.0	126.0	2.2	2.69
MSSO294	416,122	7,289,171	0.006	129.2	9.90	19.0	123.5	2.3	2.81
MSSO295	416,157	7,289,206	0.007	150.7	10.80	21.0	138.5	2.9	3.54
MSSO296	416,263	7,289,312	0.006	129.2	14.30	19.0	123.0	2.2	2.69
MSS0362	415,202	7,287,686	0.007	150.7	10.60	21.0	137.5	2.9	3.54
MSSO363	415,238	7,287,722	0.007	150.7	11.00	21.0	147.0	2.8	3.42
MSS0364	415,273	7,287,757	0.009	193.8	20.00	22.0	198.0	2.7	3.30
MSS0365	415,308	7,287,792	0.007	150.7	13.50	22.0	167.5	2.9	3.54
MSS0366	415,344	7,287,828	0.008	172.2	17.60	24.0	191.5	3.0	3.66
MSS0367	415,379	7,287,863	0.006	129.2	9.70	25.0	160.0	5.3	6.47
MSS0368	415,414	7,287,898	0.009	193.8	14.20	24.0	209.0	4.2	5.13
MSS0369	415,450	7,287,934	0.010	215.3	21.00	26.0	190.5	6.3	7.69
MSS0370	415,485	7,287,969	0.013	279.9	29.60	23.0	183.5	10.2	12.45
MSS0371	415,520	7,288,004	0.016	344.5	21.90	27.0	199.5	8.7	10.62
MSS0372	415,556	7,288,040	0.010	215.3	15.70	38.0	194.0	22.6	27.59
MSS0373	415,591	7,288,075	0.009	193.8	12.90	32.0	180.0	11.9	14.53
MSS0374	415,627	7,288,110	0.009	193.8	14.20	24.0	205.0	5.3	6.47
MSS0375	415,662	7,288,146	0.007	150.7	19.60	29.0	225.0	4.8	5.86
MSS0376	415,697	7,288,181	0.008	172.2	17.40	24.0	178.0	3.0	3.66
MSS0377	415,733	7,288,216	0.006	129.2	13.50	26.0	153.0	3.9	4.76
MSS0378	415,768	7,288,252	0.007	150.7	20.30	23.0	143.5	5.2	6.35
MSS0379	415,803	7,288,287	0.008	172.2	29.90	29.0	151.0	4.1	5.0

Sample Id	East	North	$\begin{gathered} \mathrm{Li} \\ (\%) \end{gathered}$	$\begin{aligned} & \mathrm{Li}_{2} \mathrm{O} \\ & (\text { ppm }) \end{aligned}$	$\begin{gathered} C s \\ (p p m) \end{gathered}$	$\begin{gathered} N b \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} T a \\ (p p m) \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (\text { ppm) } \end{aligned}$
MSS0380	415,839	7,288,323	0.008	172.2	22.90	23.0	144.0	3.4	4.15
MSS0381	415,874	7,288,358	0.006	129.2	18.40	22.0	138.0	2.7	3.30
MSS0382	415,909	7,288,393	0.009	193.8	21.40	23.0	129.0	3.3	4.03
MSS0383	415,945	7,288,429	0.006	129.2	10.40	19.0	124.5	2.4	2.93
MSS0384	415,980	7,288,464	0.005	107.7	12.70	19.0	123.5	1.8	2.20
MSS0385	416,015	7,288,499	0.006	129.2	19.80	22.0	154.5	2.4	2.93
MSS0386	416,051	7,288,535	0.006	129.2	10.40	17.0	110.0	2.1	2.56
MSS0387	416,086	7,288,570	0.005	107.7	7.10	18.0	123.0	1.8	2.20
MSS0389	416,122	7,288,605	0.005	107.7	7.10	22.0	100.5	1.8	2.20
MSS0390	416,157	7,288,641	0.004	86.1	6.60	21.0	120.0	2.4	2.93
MSSO391	416,192	7,288,676	0.006	129.2	10.80	27.0	154.0	2.8	3.42
MSSO392	416,228	7,288,711	0.006	129.2	17.30	22.0	175.5	6.5	7.94
MSSO393	416,263	7,288,747	0.005	107.7	8.90	19.0	135.0	2.0	2.44
MSSO394	416,298	7,288,782	0.005	107.7	10.50	20.0	138.5	2.2	2.69
MSSO395	416,334	7,288,818	0.007	150.7	15.00	19.0	140.0	2.4	2.93
MSSO396	416,369	7,288,853	0.005	107.7	9.70	18.0	115.0	1.9	2.32
MSS0397	416,404	7,288,888	0.005	107.7	8.00	18.0	122.5	1.8	2.20
MSSO398	416,440	7,288,924	0.005	107.7	7.10	21.0	127.0	2.4	2.93
MSSO399	416,475	7,288,959	0.008	172.2	20.50	22.0	138.0	2.0	2.44
MSSO400	416,510	7,288,994	0.007	150.7	13.00	18.0	116.5	2.6	3.17
MSSO401	416,546	7,289,030	0.008	172.2	12.80	20.0	159.0	2.6	3.17
MSSO402	416,581	7,289,065	0.009	193.8	11.40	23.0	152.0	2.6	3.17
MSSO403	416,652	7,289,136	0.006	129.2	8.80	19.0	123.5	2.3	2.81
MSSO404	416,723	7,289,206	0.006	129.2	13.00	18.0	133.0	1.8	2.20
MSSO405	416,793	7,289,277	0.005	107.7	15.80	25.0	186.5	2.5	3.05
MSS0406	416,864	7,289,348	0.007	150.7	15.50	27.0	178.0	3.1	3.79
MSSO456	414,071	7,285,989	0.004	86.1	6.90	23.0	97.6	2.5	3.05
MSSO457	414,142	7,286,060	0.008	172.2	12.50	18.0	147.0	2.5	3.05
MSSO458	414,283	7,286,201	0.007	150.7	11.10	18.0	135.0	1.8	2.20
MSSO459	414,424	7,286,343	0.006	129.2	10.70	19.0	129.5	1.8	2.20
MSSO460	414,566	7,286,484	0.006	129.2	8.50	19.0	131.0	2.1	2.56
MSSO461	414,707	7,286,625	0.006	129.2	8.10	24.0	106.5	5.6	6.84
MSSO462	415,132	7,287,050	0.008	172.2	26.60	21.0	173.5	3.4	4.15
MSSO463	415,273	7,287,191	0.007	150.7	10.80	23.0	131.0	3.5	4.27
MSSO464	415,379	7,287,297	0.006	129.2	7.80	22.0	114.5	2.8	3.42
MSSO465	415,414	7,287,333	0.006	129.2	8.20	20.0	114.5	2.0	2.44
MSSO466	415,450	7,287,368	0.005	107.7	5.90	20.0	97.5	2.6	3.17
MSSO467	415,520	7,287,439	0.005	107.7	8.50	33.0	115.0	5.1	6.23
MSSO468	415,556	7,287,474	0.009	193.8	35.00	23.0	161.0	3.7	4.52
MSSO469	415,591	7,287,509	0.006	129.2	17.80	23.0	137.5	3.5	4.27
MSSO470	415,662	7,287,580	0.006	129.2	12.70	19.0	126.5	2.9	3.54
MSS0471	415,697	7,287,615	0.008	172.2	41.50	27.0	223.0	5.8	7.08
MSS0472	415,733	7,287,651	0.007	150.7	31.40	25.0	190.0	9.4	11.48
MSSO473	415,803	7,287,722	0.009	193.8	12.50	18.0	136.0	2.7	3.30
MSSO474	415,839	7,287,757	0.009	193.8	13.30	22.0	165.0	3.4	4.15
MSS0475	415,874	7,287,792	0.009	193.8	16.80	25.0	193.0	5.3	6.47
MSS0476	415,945	7,287,863	0.010	215.3	16.30	33.0	180.5	5.2	6.35

Sample Id	East	North	$\begin{gathered} \mathrm{Li} \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{Li}_{2} \mathrm{O} \\ (p p m) \end{gathered}$	$\begin{gathered} \text { Cs } \\ (p p m) \end{gathered}$	$\begin{gathered} \mathrm{Nb} \\ (p p m) \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} T a \\ (p p m) \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (p p m) \end{aligned}$
MSS0477	415,980	7,287,898	0.014	301.4	37.70	27.0	234.0	3.8	4.64
MSS0478	416,015	7,287,934	0.013	279.9	19.90	38.0	222.0	11.3	13.80
MSS0479	416,086	7,288,004	0.009	193.8	34.60	26.0	171.0	4.0	4.88
MSSO480	416,122	7,288,040	0.007	150.7	17.00	25.0	143.0	3.3	4.03
MSS0481	416,157	7,288,075	0.007	150.7	11.50	23.0	142.0	2.6	3.17
MSSO482	416,228	7,288,146	0.010	215.3	26.40	21.0	167.5	2.6	3.17
MSSO483	416,263	7,288,181	0.009	193.8	21.90	24.0	170.5	4.0	4.88
MSSO484	416,298	7,288,216	0.006	129.2	7.40	26.0	119.5	6.2	7.57
MSSO485	416,369	7,288,287	0.011	236.8	27.60	23.0	166.0	2.0	2.44
MSS0486	416,404	7,288,323	0.011	236.8	30.10	23.0	170.5	2.2	2.69
MSS0487	416,440	7,288,358	0.008	172.2	13.30	20.0	141.5	2.0	2.44
MSSO488	416,510	7,288,429	0.006	129.2	14.00	28.0	153.0	3.9	4.76
MSS0489	416,546	7,288,464	0.007	150.7	11.20	23.0	133.5	2.8	3.42
MSSO491	416,581	7,288,499	0.005	107.7	22.50	28.0	134.5	2.2	2.69
MSSO492	416,652	7,288,570	0.006	129.2	12.40	25.0	124.0	4.1	5.01
MSSO493	416,687	7,288,605	0.007	150.7	15.90	40.0	156.0	2.5	3.05
MSSO494	416,723	7,288,641	0.007	150.7	10.80	23.0	120.0	4.5	5.49
MSSO495	416,793	7,288,711	0.006	129.2	7.50	22.0	122.5	2.2	2.69
MSSO496	416,829	7,288,747	0.006	129.2	9.40	25.0	144.0	2.9	3.54
MSSO497	416,864	7,288,782	0.006	129.2	7.80	25.0	123.5	2.8	3.42
MSSO498	416,935	7,288,853	0.005	107.7	8.00	22.0	116.5	2.0	2.44
MSSO499	416,970	7,288,888	0.005	107.7	7.40	19.0	101.5	2.1	2.56
MSS0500	417,005	7,288,924	0.008	172.2	14.20	22.0	169.0	2.8	3.42
MSS0558	415,061	7,286,413	0.006	129.2	9.30	18.0	110.0	2.1	2.56
MSS0559	415,132	7,286,484	0.010	215.3	17.30	23.0	131.0	3.1	3.79
MSS0560	415,202	7,286,555	0.007	150.7	13.00	20.0	153.0	2.7	3.30
MSS0561	415,273	7,286,625	0.006	129.2	9.60	20.0	121.5	2.2	2.69
MSS0562	415,344	7,286,696	0.006	129.2	5.70	25.0	104.5	2.5	3.05
MSS0563	415,414	7,286,767	0.006	129.2	6.60	45.0	105.0	4.9	5.98
MSS0564	415,556	7,286,908	0.006	129.2	13.80	24.0	172.5	2.8	3.42
MSS0565	415,627	7,286,979	0.008	172.2	16.30	24.0	153.0	2.8	3.42
MSS0566	415,697	7,287,050	0.008	172.2	15.30	24.0	152.0	3.1	3.79
MSS0567	415,733	7,287,085	0.008	172.2	14.10	28.0	154.0	3.4	4.15
MSS0568	415,768	7,287,120	0.007	150.7	13.60	25.0	146.0	2.8	3.42
MSS0569	415,803	7,287,156	0.006	129.2	7.90	24.0	118.5	3.7	4.52
MSS0570	415,839	7,287,191	0.006	129.2	8.20	22.0	126.5	3.1	3.79
MSS0571	415,874	7,287,227	0.006	129.2	13.00	24.0	148.5	4.7	5.74
MSS0572	415,909	7,287,262	0.008	172.2	22.20	26.0	188.0	3.9	4.76
MSS0573	415,945	7,287,297	0.008	172.2	20.80	31.0	195.5	4.8	5.86
MSS0574	415,980	7,287,333	0.010	215.3	14.20	25.0	171.0	3.9	4.76
MSS0575	416,015	7,287,368	0.010	215.3	27.20	25.0	220.0	3.2	3.91
MSS0576	416,051	7,287,403	0.009	193.8	17.60	20.0	188.0	2.9	3.54
MSS0577	416,086	7,287,439	0.006	129.2	9.20	21.0	156.0	3.0	3.66
MSS0578	416,122	7,287,474	0.005	107.7	11.00	24.0	183.5	3.1	3.79
MSS0579	416,157	7,287,509	0.010	215.3	16.40	23.0	200.0	3.0	3.66
MSS0580	416,192	7,287,545	0.009	193.8	10.20	21.0	140.5	2.6	3.17
MSS0581	416,228	7,287,580	0.022	473.7	14.30	15.0	135	2.4	2.93

Sample Id	East	North	$\begin{gathered} \mathrm{Li} \\ (\%) \end{gathered}$	$\begin{aligned} & \mathrm{Li}_{2} \mathrm{O} \\ & (\text { ppm }) \end{aligned}$	$\begin{gathered} C s \\ (p p m) \end{gathered}$	$\begin{gathered} N b \\ (p p m) \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} T a \\ (p p m) \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (p p m) \end{aligned}$
MSS0582	416,263	7,287,615	0.008	172.2	14.60	24.0	160.0	3.7	4.52
MSS0583	416,298	7,287,651	0.012	258.4	25.60	25.0	217.0	4.2	5.13
MSSO584	416,334	7,287,686	0.009	193.8	19.10	27.0	208.0	6.2	7.57
MSS0585	416,369	7,287,722	0.013	279.9	19.60	26.0	213.0	5.4	6.59
MSS0586	416,404	7,287,757	0.013	279.9	23.30	28.0	228.0	5.5	6.72
MSS0587	416,440	7,287,792	0.012	258.4	23.80	33.0	205.0	7.3	8.91
MSS0588	416,475	7,287,828	0.012	258.4	21.90	28.0	198.0	6.7	8.18
MSS0589	416,510	7,287,863	0.020	430.6	40.50	39.0	285.0	12.5	15.26
MSS0590	416,546	7,287,898	0.010	215.3	19.70	23.0	179.0	3.8	4.64
MSS0591	416,581	7,287,934	0.008	172.2	16.50	18.0	135.0	2.4	2.93
MSS0593	416,617	7,287,969	0.011	236.8	28.20	25.0	184.0	5.0	6.11
MSSO594	416,652	7,288,004	0.009	193.8	14.90	47.0	163.0	12.5	15.26
MSS0595	416,687	7,288,040	0.008	172.2	17.40	33.0	169.5	6.2	7.57
MSSO596	416,723	7,288,075	0.009	193.8	19.40	28.0	186.5	5.7	6.96
MSS0597	416,758	7,288,110	0.009	193.8	29.10	29.0	265.0	5.6	6.84
MSS0598	416,793	7,288,146	0.007	150.7	15.80	25.0	161.5	2.7	3.30
MSS0599	416,829	7,288,181	0.008	172.2	8.50	23.0	131.0	3.6	4.40
MSS0600	416,864	7,288,216	0.005	107.7	7.50	22.0	123.5	2.1	2.56
MSS0601	416,899	7,288,252	0.005	107.7	10.50	21.0	145.5	2.3	2.81
MSS0602	416,935	7,288,287	0.006	129.2	12.10	22.0	184.5	2.5	3.05
MSS0603	416,970	7,288,323	0.004	86.1	7.50	25.0	120.0	2.2	2.69
MSS0604	417,005	7,288,358	0.006	129.2	13.60	24.0	155.0	2.6	3.17
MSS0605	417,041	7,288,393	0.006	129.2	9.30	24.0	150.5	2.2	2.69
MSS0606	417,076	7,288,429	0.005	107.7	7.20	23.0	146.0	2.4	2.93
MSS0607	417,111	7,288,464	0.005	107.7	8.40	22.0	120.5	1.8	2.20
MSS0608	417,147	7,288,499	0.005	107.7	12.20	21.0	163.5	2.0	2.44
MSS0609	417,182	7,288,535	0.006	129.2	9.60	20.0	148.0	1.9	2.32
MSS0610	417,218	7,288,570	0.005	107.7	14.60	25.0	139.0	3.3	4.03
MSS0611	417,253	7,288,605	0.004	86.1	9.50	22.0	140.5	2.4	2.93
MSS0612	417,288	7,288,641	0.005	107.7	9.10	23.0	134.0	2.2	2.69
MSS0613	417,324	7,288,676	0.007	150.7	7.90	22.0	120.0	2.3	2.81
MSS0614	417,394	7,288,747	0.005	107.7	11.50	23.0	125.5	2.6	3.17
MSS0615	417,465	7,288,818	0.006	129.2	10.70	22.0	138.5	2.1	2.56
MSS0616	417,536	7,288,888	0.005	107.7	12.60	22.0	137.5	2.9	3.54
MSS0617	417,606	7,288,959	0.005	107.7	8.60	22.0	130.5	2.3	2.81
MSS0664	417,500	7,288,570	0.005	107.7	10.70	23.0	142.5	2.6	3.17
MSS0665	417,536	7,288,605	0.005	107.7	8.80	22.0	128.5	2.0	2.44
MSS0666	414,849	7,285,636	0.005	107.7	6.60	17.0	106.5	1.8	2.20
MSS0667	414,919	7,285,706	0.004	86.1	6.20	16.0	104.0	1.7	2.08
MSS0668	414,990	7,285,777	0.004	86.1	5.80	17.0	90.8	1.9	2.32
MSS0669	415,061	7,285,848	0.005	107.7	8.60	19.0	126.0	1.7	2.08
MSS0670	415,132	7,285,918	0.005	107.7	6.90	21.0	112.5	2.0	2.44
MSS0671	415,273	7,286,060	0.006	129.2	8.20	20.0	116.0	2.3	2.81
MSS0672	415,414	7,286,201	0.011	236.8	24.00	25.0	210.0	2.9	3.54
MSS0673	415,556	7,286,343	0.010	215.3	13.60	18.0	149.5	1.7	2.08
MSS0674	415,697	7,286,484	0.006	129.2	8.20	23.0	129.5	2.3	2.81
MSS0675	415,839	7,286,625	0.008	172.2	20.70	19.0	196.0	2.5	3.05

Sample Id	East	North	$\begin{gathered} \mathrm{Li} \\ (\%) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Li}_{2} \mathrm{O} \\ & (p p \mathrm{~m}) \end{aligned}$	$\begin{gathered} C s \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} N b \\ (p p m) \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} T a \\ (p p m) \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (\mathrm{ppm}) \\ & \hline \end{aligned}$
MSS0676	415,980	7,286,767	0.004	86.1	9.00	17.0	127.0	2.2	2.69
MSS0677	416,157	7,286,944	0.006	129.2	12.00	19.0	142.0	3.5	4.27
MSS0678	416,263	7,287,050	0.007	150.7	15.70	23.0	154.5	2.4	2.93
MSS0679	416,404	7,287,191	0.005	107.7	9.90	35.0	129.5	2.9	3.54
MSS0680	416,546	7,287,333	0.005	107.7	9.70	25.0	164.0	2.8	3.42
MSS0681	416,687	7,287,474	0.006	129.2	13.20	25.0	171.0	3.2	3.91
MSS0682	416,829	7,287,615	0.007	150.7	14.90	21.0	143.0	2.4	2.93
MSS0683	416,970	7,287,757	0.008	172.2	13.10	22.0	116.5	2.7	3.30
MSS0684	417,111	7,287,898	0.007	150.7	23.60	25.0	192.5	3.9	4.76
MSS0685	417,253	7,288,040	0.006	129.2	28.40	22.0	125.5	2.5	3.05
MSS0686	417,394	7,288,181	0.008	172.2	15.20	21.0	127.0	2.5	3.05
MSS0687	417,536	7,288,323	0.006	129.2	18.90	14.0	107.5	2.7	3.30
MSS0688	417,677	7,288,464	0.004	86.1	7.80	20.0	106.0	2.1	2.56
MSS0689	417,819	7,288,605	0.005	107.7	10.10	19.0	113.5	1.9	2.32
MSS0690	417,960	7,288,747	0.004	86.1	8.40	18.0	119.5	1.8	2.20
MSS0691	418,101	7,288,888	0.008	172.2	48.20	25.0	218.0	3.0	3.66
MSS0705	416,157	7,286,378	0.006	129.2	16.50	17.0	158.0	2.1	2.56
MSS0706	416,228	7,286,449	0.005	107.7	7.70	15.0	116.5	1.5	1.83
MSS0707	416,298	7,286,519	0.005	107.7	10.00	20.0	128.5	2.4	2.93
MSS0708	416,369	7,286,590	0.008	172.2	10.50	19.0	129.5	2.5	3.05
MSS0709	416,440	7,286,661	0.006	129.2	9.20	19.0	127.0	2.2	2.69
MSS0710	416,510	7,286,732	0.006	129.2	11.70	20.0	154.0	2.9	3.54
MSS0711	416,581	7,286,802	0.004	86.1	8.30	21.0	144.5	2.5	3.05
MSS0712	416,652	7,286,873	0.004	86.1	11.30	23.0	167.5	2.6	3.17
MSSO713	416,723	7,286,944	0.004	86.1	10.30	21.0	156.0	2.3	2.81
MSSO714	416,793	7,287,014	0.005	107.7	15.60	24.0	180.5	6.5	7.94
MSS0715	416,864	7,287,085	0.007	150.7	13.80	23.0	181.0	2.6	3.17
MSSO716	416,935	7,287,156	0.008	172.2	23.20	23.0	206.0	3.2	3.91
MSS0717	417,005	7,287,227	0.004	86.1	7.40	19.0	150.5	2.4	2.93
MSS0718	417,076	7,287,297	0.004	86.1	9.00	18.0	153.5	2.1	2.56
MSSO719	417,147	7,287,368	0.004	86.1	10.60	19.0	144.0	2.4	2.93
MSSO720	417,218	7,287,439	0.005	107.7	13.30	23.0	151.0	2.5	3.05
MSSO721	417,288	7,287,509	0.005	107.7	6.80	18.0	99.5	1.8	2.20
MSSO722	417,359	7,287,580	0.005	107.7	9.40	22.0	147.0	3.0	3.66
MSSO723	417,430	7,287,651	0.006	129.2	19.90	19.0	156.5	2.1	2.56
MSSO724	417,500	7,287,722	0.005	107.7	12.30	19.0	136.0	2.1	2.56
MSSO725	417,571	7,287,792	0.004	86.1	8.30	19.0	107.0	1.7	2.08
MSS0726	417,642	7,287,863	0.006	129.2	10.20	22.0	144.5	2.0	2.44
MSS0727	417,713	7,287,934	0.004	86.1	28.10	22.0	121.5	2.3	2.81
MSS0728	417,783	7,288,004	0.005	107.7	20.90	20.0	136.0	2.3	2.81
MSS0729	417,854	7,288,075	0.005	107.7	16.60	23.0	137.0	3.7	4.52
MSS0730	417,925	7,288,146	0.004	86.1	9.30	20.0	132.5	1.8	2.20
MSS0731	417,995	7,288,216	0.003	64.6	7.50	20.0	123.0	2.2	2.69
MSSO732	418,066	7,288,287	0.004	86.1	8.50	22.0	118.0	2.2	2.69
MSSO772	416,228	7,285,883	0.007	150.7	18.70	26.0	176.0	7.7	9.40
MSS0773	416,263	7,285,918	0.007	150.7	13.60	22.0	149.0	2.8	3.42
MSS0774	416,298	7,285,954	0.006	129.2	9.00	22.0	134.0	2.3	2.81

Sample Id	East	North	$\begin{gathered} \mathrm{Li} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Li}_{2} \mathrm{O} \\ (p p m) \end{gathered}$	$\begin{gathered} C s \\ (p p m) \end{gathered}$	$\begin{gathered} N b \\ (p p m) \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} \text { Ta } \\ \text { (ppm) } \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (p p m) \end{aligned}$
MSS0775	416,369	7,286,024	0.005	107.7	9.60	21.0	141.0	2.7	3.30
MSS0776	416,404	7,286,060	0.007	150.7	13.10	22.0	148.5	4.3	5.25
MSS0777	416,440	7,286,095	0.006	129.2	8.40	20.0	128.0	2.7	3.30
MSS0778	416,510	7,286,166	0.006	129.2	7.70	22.0	155.5	2.3	2.81
MSS0779	416,546	7,286,201	0.009	193.8	8.70	22.0	132.5	9.3	11.36
MSS0780	416,581	7,286,237	0.006	129.2	5.80	17.0	124.0	1.9	2.32
MSS0781	416,652	7,286,307	0.007	150.7	15.30	24.0	187.5	2.9	3.54
MSS0782	416,687	7,286,343	0.006	129.2	16.60	24.0	168.0	3.9	4.76
MSS0783	416,723	7,286,378	0.007	150.7	15.40	22.0	162.0	2.8	3.42
MSS0784	416,793	7,286,449	0.007	150.7	16.80	24.0	173.0	4.9	5.98
MSS0785	416,829	7,286,484	0.009	193.8	22.30	24.0	192.0	5.0	6.11
MSS0786	416,864	7,286,519	0.010	215.3	27.90	27.0	264.0	3.5	4.27
MSS0787	416,970	7,286,625	0.007	150.7	19.90	23.0	238.0	3.1	3.79
MSS0788	417,111	7,286,767	0.007	150.7	21.40	24.0	261.0	2.5	3.05
MSS0789	417,253	7,286,908	0.006	129.2	15.30	23.0	233.0	2.6	3.17
MSS0790	417,394	7,287,050	0.017	366.0	60.80	24.0	250.0	2.8	3.42
MSSO791	417,536	7,287,191	0.006	129.2	13.30	29.0	177.0	3.6	4.40
MSSO792	417,677	7,287,333	0.006	129.2	12.70	27.0	157.0	4.1	5.01
MSS0793	417,819	7,287,474	0.007	150.7	15.40	22.0	161.0	2.9	3.54
MSSO794	417,960	7,287,615	0.006	129.2	13.60	23.0	144.0	2.1	2.56
MSS0795	418,101	7,287,757	0.007	150.7	29.00	20.0	159.0	4.2	5.13
MSS0797	418,243	7,287,898	0.007	150.7	30.30	24.0	136.5	4.2	5.13
MSS0798	418,384	7,288,040	0.004	86.1	10.30	23.0	127.5	2.3	2.81
MSS0799	418,526	7,288,181	0.005	107.7	6.80	22.0	112.5	1.7	2.08
MSS0800	418,596	7,288,252	0.004	86.1	7.70	19.0	137.0	1.6	1.95
MSS0830	415,980	7,285,070	0.005	107.7	8.00	20.0	158.0	1.7	2.08
MSS0831	416,015	7,285,105	0.004	86.1	5.00	23.0	118.5	3.0	3.66
MSS0832	416,051	7,285,141	0.008	172.2	9.40	19.0	146.0	1.8	2.20
MSS0833	416,086	7,285,176	0.008	172.2	6.70	19.0	142.0	2.6	3.17
MSS0834	416,122	7,285,211	0.006	129.2	6.20	21.0	130.5	2.3	2.81
MSS0835	416,157	7,285,247	0.006	129.2	8.40	20.0	125.5	2.0	2.44
MSS0836	416,192	7,285,282	0.005	107.7	7.10	18.0	118.0	1.7	2.08
MSS0837	416,228	7,285,317	0.010	215.3	20.80	20.0	185.5	1.7	2.08
MSS0838	416,263	7,285,353	0.006	129.2	11.00	21.0	127.5	2.7	3.30
MSS0839	416,298	7,285,388	0.007	150.7	16.10	21.0	174.5	2.2	2.69
MSS0840	416,334	7,285,423	0.005	107.7	7.90	19.0	148.0	1.6	1.95
MSS0841	416,369	7,285,459	0.005	107.7	6.50	19.0	140.0	1.9	2.32
MSS0842	416,404	7,285,494	0.005	107.7	6.70	22.0	135.0	2.7	3.30
MSS0843	416,440	7,285,529	0.009	193.8	9.80	19.0	164.5	2.1	2.56
MSS0844	416,475	7,285,565	0.007	150.7	10.70	21.0	153.5	2.1	2.56
MSS0845	416,510	7,285,600	0.004	86.1	5.00	18.0	111.0	2.0	2.44
MSS0846	416,546	7,285,636	0.008	172.2	9.50	21.0	174.5	1.8	2.20
MSS0848	416,581	7,285,671	0.005	107.7	5.40	31.0	117.0	2.1	2.56
MSS0849	416,617	7,285,706	0.004	86.1	5.00	26.0	104.0	3.1	3.79
MSS0850	416,652	7,285,742	0.005	107.7	9.10	30.0	125.5	3.0	3.66
MSS0851	416,687	7,285,777	0.005	107.7	5.60	24.0	103.5	4.0	4.88
MSS0852	416,723	7,285,812	0.009	193.8	8.00	34.0	107.0	10.4	12.70

Email info@pureminerals.com.au Website www.pureminerals.com.au

Sample Id	East	North	$\begin{gathered} \mathrm{Li} \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{Li}_{2} \mathrm{O} \\ (p p m) \end{gathered}$	$\begin{gathered} C s \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} N b \\ (p p m) \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} T a \\ (p p m) \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (p p m) \end{aligned}$
MSS0853	416,758	7,285,848	0.015	323.0	11.80	34.0	171.5	11.3	13.80
MSS0854	416,793	7,285,883	0.005	107.7	5.60	22.0	103.0	3.0	3.66
MSS0855	416,829	7,285,918	0.008	172.2	12.10	19.0	137.5	1.7	2.08
MSS0856	416,864	7,285,954	0.004	86.1	4.50	19.0	92.0	1.8	2.20
MSS0857	416,899	7,285,989	0.004	86.1	4.90	19.0	103.5	2.2	2.69
MSS0858	416,935	7,286,024	0.003	64.6	8.40	19.0	136.0	2.8	3.42
MSS0859	416,970	7,286,060	0.005	107.7	11.10	19.0	120.5	3.3	4.03
MSS0860	417,005	7,286,095	0.007	150.7	12.40	20.0	171.0	3.0	3.66
MSS0861	417,041	7,286,131	0.004	86.1	17.80	24.0	143.5	5.6	6.84
MSS0862	417,076	7,286,166	0.003	64.6	8.80	24.0	146.5	3.6	4.40
MSS0863	417,111	7,286,201	0.005	107.7	11.70	23.0	161.0	2.9	3.54
MSS0864	417,147	7,286,237	0.007	150.7	14.30	22.0	155.0	3.6	4.40
MSS0865	417,182	7,286,272	0.006	129.2	13.00	25.0	163.0	3.6	4.40
MSS0866	417,218	7,286,307	0.009	193.8	14.70	20.0	130.0	2.7	3.30
MSS0911	417,819	7,286,625	0.006	129.2	14.50	20.0	178.0	2.2	2.69
MSS0912	417,854	7,286,661	0.008	172.2	22.10	25.0	224.0	3.0	3.66
MSS0913	417,889	7,286,696	0.005	107.7	10.40	21.0	158.0	2.0	2.44
MSS0914	417,925	7,286,732	0.005	107.7	7.80	21.0	150.5	1.9	2.32
MSS0915	417,960	7,286,767	0.005	107.7	7.30	21.0	130.0	2.0	2.44
MSS0916	417,995	7,286,802	0.005	107.7	7.00	21.0	127.0	2.0	2.44
MSS0917	418,031	7,286,838	0.006	129.2	16.30	21.0	171.5	2.0	2.44
MSS0918	418,066	7,286,873	0.008	172.2	25.20	22.0	197.5	2.9	3.54
MSS0919	418,101	7,286,908	0.006	129.2	12.40	23.0	135.0	4.1	5.01
MSS0920	418,137	7,286,944	0.009	193.8	14.40	23.0	158.5	5.2	6.35
MSS0921	418,172	7,286,979	0.009	193.8	14.90	31.0	170.5	7.9	9.65
MSS0922	418,208	7,287,014	0.008	172.2	12.30	23.0	142.5	3.8	4.64
MSSO923	418,243	7,287,050	0.008	172.2	20.40	24.0	180.0	3.5	4.27
MSSO924	418,278	7,287,085	0.008	172.2	14.90	19.0	165.0	2.3	2.81
MSS0925	418,314	7,287,120	0.007	150.7	11.10	23.0	136.0	2.9	3.54
MSS0926	418,349	7,287,156	0.006	129.2	9.40	18.0	127.5	2.0	2.44
MSS0927	418,384	7,287,191	0.007	150.7	10.30	19.0	131.5	2.5	3.05
MSS0928	418,420	7,287,227	0.008	172.2	9.30	21.0	133.5	2.7	3.30
MSS0929	418,455	7,287,262	0.007	150.7	7.20	22.0	134.0	3.0	3.66
MSS0930	418,490	7,287,297	0.006	129.2	9.40	25.0	124.5	3.5	4.27
MSS0931	416,546	7,285,070	0.004	86.1	3.50	16.0	84.7	1.6	1.95
MSS0932	416,581	7,285,105	0.004	86.1	5.60	16.0	106.0	1.6	1.95
MSS0933	416,652	7,285,176	0.004	86.1	4.60	20.0	98.6	1.9	2.32
MSS0934	416,687	7,285,211	0.004	86.1	6.20	21.0	140.5	1.8	2.20
MSS0935	416,723	7,285,247	0.004	86.1	4.80	22.0	117.0	2.3	2.81
MSS0936	416,793	7,285,317	0.005	107.7	5.00	16.0	105.5	1.4	1.71
MSS0937	416,829	7,285,353	0.003	64.6	2.60	14.0	79.7	1.3	1.59
MSS0938	416,970	7,285,494	0.004	86.1	5.20	15.0	99.1	1.5	1.83
MSS0939	417,041	7,285,565	0.005	107.7	6.20	15.0	110.5	1.3	1.59
MSS0940	417,111	7,285,636	0.004	86.1	4.30	15.0	92.6	1.5	1.83
MSS0941	417,253	7,285,777	0.004	86.1	4.60	13.0	92.5	2.1	2.56
MSSO942	417,324	7,285,848	0.004	86.1	11.90	16.0	107.5	2.2	2.69
MSS0943	417,394	7,285,918	0.008	172.2	7.80	20.0	124.0	5.0	6.1

Sample Id	East	North	$\begin{gathered} \mathrm{Li} \\ (\%) \end{gathered}$	$\begin{aligned} & \mathrm{Li}_{2} \mathrm{O} \\ & (\text { ppm }) \end{aligned}$	$\begin{gathered} C s \\ (p p m) \end{gathered}$	$\begin{gathered} N b \\ (p p m) \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} T a \\ (p p m) \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (p p m) \end{aligned}$
MSSO944	417,465	7,285,989	0.007	150.7	9.10	19.0	146.5	3.0	3.66
MSS0945	417,536	7,286,060	0.005	107.7	8.30	19.0	135.5	2.2	2.69
MSS0946	417,606	7,286,131	0.006	129.2	7.90	23.0	156.5	3.2	3.91
MSS0947	417,677	7,286,201	0.011	236.8	15.90	26.0	166.5	2.6	3.17
MSS0948	417,783	7,286,307	0.007	150.7	11.80	27.0	168.5	3.7	4.52
MSS0950	417,819	7,286,343	0.006	129.2	10.30	30.0	141.0	2.3	2.81
MSS0951	417,854	7,286,378	0.007	150.7	12.50	28.0	188.0	2.7	3.30
MSS0952	417,925	7,286,449	0.007	150.7	18.00	25.0	188.0	2.7	3.30
MSS0953	417,960	7,286,484	0.008	172.2	12.50	23.0	168.0	2.1	2.56
MSSO954	417,995	7,286,519	0.007	150.7	15.70	22.0	180.5	2.3	2.81
MSS0955	418,066	7,286,590	0.010	215.3	11.90	23.0	179.0	2.3	2.81
MSS0956	418,101	7,286,625	0.008	172.2	7.30	23.0	140.5	2.3	2.81
MSS0957	418,137	7,286,661	0.008	172.2	15.00	23.0	156.0	3.4	4.15
MSS0958	418,208	7,286,732	0.005	107.7	12.20	21.0	141.0	2.0	2.44
MSS0959	418,243	7,286,767	0.006	129.2	13.10	21.0	156.5	1.8	2.20
MSS0960	418,278	7,286,802	0.010	215.3	23.70	20.0	184.5	3.0	3.66
MSS0961	418,349	7,286,873	0.008	172.2	10.60	21.0	155.0	3.2	3.91
MSS0962	418,384	7,286,908	0.007	150.7	10.00	22.0	133.0	3.6	4.40
MSS0963	418,420	7,286,944	0.007	150.7	8.40	24.0	129.5	4.9	5.98
MSS0964	418,490	7,287,014	0.006	129.2	7.30	21.0	132.0	2.6	3.17
MSS0965	418,526	7,287,050	0.007	150.7	9.60	18.0	119.0	1.5	1.83
MSS0966	418,561	7,287,085	0.006	129.2	10.00	21.0	160.5	3.0	3.66
MSS0967	418,632	7,287,156	0.007	150.7	14.00	22.0	211.0	3.0	3.66
MSS1058	417,076	7,284,186	0.003	64.6	2.60	16.0	89.1	1.3	1.59
MSS1059	417,147	7,284,257	0.004	86.1	3.00	15.0	91.2	1.7	2.08
MSS1060	417,218	7,284,327	0.004	86.1	3.10	18.0	87.9	1.6	1.95
MSS1061	417,288	7,284,398	0.005	107.7	5.20	22.0	109.5	2.6	3.17
MSS1062	417,359	7,284,469	0.005	107.7	6.30	21.0	121.5	2.4	2.93
MSS1063	417,430	7,284,540	0.006	129.2	18.80	22.0	142.0	2.4	2.93
MSS1064	417,500	7,284,610	0.004	86.1	4.70	20.0	95.5	2.0	2.44
MSS1065	417,571	7,284,681	0.004	86.1	3.70	16.0	95.1	1.4	1.71
MSS1066	417,642	7,284,752	0.003	64.6	1.90	19.0	74.3	1.7	2.08
MSS1140	417,606	7,283,019	0.003	64.6	2.80	18.0	89.0	2.3	2.81
MSS1141	417,677	7,283,090	0.004	86.1	4.60	21.0	119.0	2.2	2.69
MSS1142	417,748	7,283,161	0.003	64.6	2.60	19.0	86.5	1.6	1.95
MSS1143	417,819	7,283,231	0.003	64.6	2.40	17.0	85.1	1.6	1.95
MSS1144	417,889	7,283,302	0.003	64.6	2.70	17.0	88.4	1.4	1.71
MSS1145	417,960	7,283,373	0.003	64.6	2.20	18.0	70.8	2.1	2.56
MSS1146	418,031	7,283,444	0.003	64.6	2.70	17.0	87.4	1.9	2.32
MSS1147	418,101	7,283,514	0.003	64.6	2.60	17.0	76.0	2.0	2.44
MSS1148	418,172	7,283,585	0.003	64.6	3.40	17.0	89.6	1.4	1.71
MSS1149	418,243	7,283,656	0.003	64.6	2.40	17.0	82.3	1.5	1.83
MSS1150	418,314	7,283,726	0.003	64.6	2.70	15.0	96.0	1.3	1.59
MSS1151	418,384	7,283,797	0.004	86.1	3.80	15.0	106.5	1.3	1.59
MSS1152	418,455	7,283,868	0.006	129.2	6.40	18.0	137.5	3.1	3.79
MSS1154	418,526	7,283,938	0.004	86.1	5.70	20.0	112.5	2.1	2.56
MSS1155	418,596	7,284,009	0.005	107.7	6.80	21.0	116.0	2.1	2.56

Email info@pureminerals.com.au Website www.pureminerals.com.au

Sample Id	East	North	$\begin{gathered} \mathrm{Li} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Li}_{2} \mathrm{O} \\ (p p m) \end{gathered}$	$\begin{gathered} C s \\ (p p m) \end{gathered}$	$\begin{gathered} N b \\ (p p m) \end{gathered}$	$\begin{gathered} R b \\ (p p m) \end{gathered}$	$\begin{gathered} T a \\ (p p m) \end{gathered}$	$\begin{aligned} & \mathrm{Ta}_{2} \mathrm{O}_{5} \\ & (\text { ppm) } \end{aligned}$
MSS1156	418,667	7,284,080	0.005	107.7	5.90	20.0	125.0	3.0	3.66
MSS1157	418,738	7,284,151	0.004	86.1	9.20	21.0	133.5	2.3	2.81
MSS1158	418,809	7,284,221	0.004	86.1	5.20	22.0	117.0	1.9	2.32
MSS1159	418,879	7,284,292	0.004	86.1	7.60	18.0	158.0	1.6	1.95
MSS1160	418,950	7,284,363	0.003	64.6	3.00	17.0	99.0	1.3	1.59
MSS1161	419,021	7,284,433	0.004	86.1	3.10	18.0	88.6	1.5	1.83
MSS1162	419,091	7,284,504	0.003	64.6	1.80	15.0	69.0	1.6	1.95
MSS1163	419,162	7,284,575	0.004	86.1	3.30	14.0	98.5	1.2	1.47
MSS1164	417,995	7,282,842	0.005	107.7	5.50	16.0	92.1	1.8	2.20
MSS1165	418,066	7,282,913	0.005	107.7	4.80	19.0	101.5	1.7	2.08
MSS1166	418,137	7,282,984	0.003	64.6	2.90	18.0	81.5	1.7	2.08
MSS1167	418,208	7,283,055	0.005	107.7	5.90	20.0	130.0	2.2	2.69
MSS1168	418,278	7,283,125	0.003	64.6	2.40	17.0	79.8	1.7	2.08
MSS1169	418,349	7,283,196	0.004	86.1	3.20	18.0	97.4	1.6	1.95
MSS1170	418,420	7,283,267	0.004	86.1	3.50	18.0	96.7	1.5	1.83
MSS1171	418,490	7,283,337	0.004	86.1	3.80	17.0	107.5	1.9	2.32
MSS1172	418,561	7,283,408	0.003	64.6	1.90	17.0	71.7	1.6	1.95
MSS1173	418,632	7,283,479	0.008	172.2	4.50	15.0	91.9	1.6	1.95
MSS1174	418,702	7,283,550	0.004	86.1	2.50	18.0	71.2	2.5	3.05
MSS1175	418,773	7,283,620	0.004	86.1	2.60	19.0	71.6	2.0	2.44
MSS1176	418,844	7,283,691	0.005	107.7	4.00	23.0	74.8	2.6	3.17
MSS1177	418,915	7,283,762	0.003	64.6	2.80	16.0	74.7	2.1	2.56
MSS1178	418,985	7,283,832	0.004	86.1	3.80	16.0	89.7	1.7	2.08
MSS1179	419,056	7,283,903	0.004	86.1	5.60	18.0	96.2	2.1	2.56
MSS1180	419,127	7,283,974	0.005	107.7	7.50	17.0	117.5	2.7	3.30
MSS1181	419,197	7,284,045	0.004	86.1	3.40	19.0	79.3	2.6	3.17
MSS1182	419,268	7,284,115	0.004	86.1	2.20	16.0	62.8	1.6	1.95
MSS1247	415,627	7,284,151	0.007	150.7	8.80	23.0	145.5	2.5	3.05
MSS1248	415,697	7,284,221	0.007	150.7	7.60	22.0	127.0	2.1	2.56
MSS1249	415,768	7,284,292	0.007	150.7	7.40	25.0	131.0	2.9	3.54
MSS1250	415,839	7,284,363	0.006	129.2	7.30	27.0	124.5	3.4	4.15
MSS1251	415,909	7,284,433	0.007	150.7	4.50	19.0	88.1	2.1	2.56
MSS1262	415,627	7,283,019	0.006	129.2	5.30	24.0	112.0	2.8	3.42
MSS1263	415,697	7,283,090	0.006	129.2	6.10	25.0	131.0	3.0	3.66
MSS1264	415,768	7,283,161	0.007	150.7	7.60	25.0	144.0	2.1	2.56
MSS1265	415,839	7,283,231	0.007	150.7	6.60	26.0	127.0	2.2	2.69
MSS1266	415,909	7,283,302	0.006	129.2	4.60	24.0	115.5	2.3	2.81
MSS1267	415,980	7,283,373	0.006	129.2	7.00	25.0	136.0	2.8	3.42
MSS1268	416,051	7,283,444	0.005	107.7	4.60	22.0	102.0	2.6	3.17
MSS1269	416,122	7,283,514	0.005	107.7	5.50	22.0	113.5	2.0	2.44

Appendix B. The following tables are provided to ensure compliance with the JORC Code (2012) requirements for the reporting of Exploration Results for the Morrissey Hill Project.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	- Soil sampling was originally carried out at on a 800 mx 200 m spacing. Holes were dug below the surface and samples taken by sieving through a 2 mm sieve and retaining the fine (<2mm) fraction. Samples are believed to be as representative as is required at this early stage of exploration based on sample size collected and method utilised. - Infill and follow up soil sampling was carried out at on a $200 \mathrm{~m} \times 50 \mathrm{~m}$ spacing. Holes were dug below the surface and samples taken by sieving through an 80 mesh sieve and retaining the fine (<80 mesh) fraction. Samples are believed to be as representative as is required at this early stage of exploration based on sample size collected and method utilised. - Infill samples were analysed using a portable XRF analyser with areas of interest sent for further analysis, including lithium, that is not detected by the portable XRF analyser - Standard lab preparation and sub sampling techniques used.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	- No drilling was carried out at the Morrissey Hill Project.
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- No drilling was carried out at the Morrissey Hill Project.

Criteria	JORC Code explanation	Commentary
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.	- No drilling was carried out at the Morrissey Hill Project.
Subsampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	- Standard lab preparation and sub sampling techniques used. - Appropriate protocols used for reconnaissance sampling.
Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	- Quoted rockchip results and soil geochemistry (MSS0001MSS0133) are referred to in previously released announcements, more specifically the announcement dated October 2017 in reference to Morrissey Hill - For soils the samples were prepared and analysed by MS91-PKG at ALS Perth. - These assay methods are considered appropriate for the metals being investigated.
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	- No verification has been completed as only primary data used. - Data is compiled directly from laboratory certificates into datasheets compiled by the consultant geologists. Checks against field notes and spatially utilising GIS software are completed. - $\quad \mathrm{Li}(\%)$ was converted to Li 2 O (\%) by multiplying by 2.153 and then by multiplying by 10,000 to convert to $\mathrm{Li}_{2} \mathrm{O}$ (ppm)

Criteria	JORC Code explanation	Commentary
	- Discuss any adjustment to assay data.	- Ta (ppm) was converted to $\mathrm{Ta}_{2} \mathrm{O}_{5}$ (ppm) by multiplying by 1.221 - Equation for Z-Score, used in geochemistry: $Z=(X-\mu) / \sigma$ $Z=Z$ value, $\mathrm{X}=$ Sample value, $\mu=$ Mean of the dataset, $\sigma=$ standard deviation of the dataset - Equation of additive multivariate Z-Score: LCT_Z $=\mathbf{Z}(\mathrm{Li})+\mathbf{Z}(\mathrm{Cs})+\mathrm{Z}(\mathrm{Ta})+\mathrm{Z}(\mathrm{Rb})+\mathrm{Z}(\mathrm{Nb})$
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- All samples are located with a handheld GPS and an accuracy of $+/-5 \mathrm{~m}$. - Grid used for the samples is MGA94 Zone 50. - Topographic control is provided by publicly available data.
Data spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	- Data spacing used for soils samples ios closer spaced in order to delineate first pass drilling .
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- Soil sampling grid was oriented to the NE as pegmatites were observed in $\mathrm{E}-\mathrm{W}$ and $\mathrm{N}-\mathrm{S}$ orientations. This orientation was felt best to obtain an unbiased result. - Once the orientation of these pegmatites is ascertained in more detail then the orientation of future surveys as well as drilling may be refined.
Sample security	- The measures taken to ensure sample security.	- All samples were submitted directly to the lab
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- None completed to date.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	-Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures,• E09/2132, E09/2133 and E09/2136-1 are held by Mineral Developments Pty Ltd (MinDev). Pure has executed an agreement to acquire 80\% of MinDev.	

Criteria	JORC Code explanation	Commentary
	partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- All tenements are granted and Heritage Agreements are in place with the Thudgari, Wajarri and Gnulli Claimant Groups.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- Previous exploration was completed by the GSWA, Agip, Nord Resources, Kookynie Resources, Kalgoorlie South Gold Mines, Rare Resources, Helix Resources, and Encounter Resources.
Geology	- Deposit type, geological setting and style of mineralisation.	- All tenements are located within the Gascoyne province of WA, which is the deformed and high-grade metamorphic core of the early Proterozoic Capricorn Orogen which lies between the Pilbara Craton and the Yilgarn Block. Tectonic trends within the Gascoyne Province wrap around the margins of these relatively stable cratons. The Gascoyne Province comprises voluminous granitoid intrusions, mantled-gneiss domes, metamorphosed and partly melted sedimentary rocks and remobilised Archaean basement gneiss. While the Gascoyne Province is not as well endowed with operating mines when compared to the Yilgarn and Pilbara Cratons there is evidence for mineralised systems being active within the Capricorn Orogen and a number of recent exploration successes point to the potential of the Province. - Target mineralisation at the Morrissey Hill Project is pegmatite hosted U-Li-REE mineralisation (LCT model) and secondary calcrete U mineralisation.
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	- No drilling was carried out at the Morrissey Hill Project.
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques,	- Contoured geochemistry images were generated using a inverse distance with a factor of 2 contouring technique

Criteria	JORC Code explanation	Commentary
	maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	with no orientation being specified.
Relationship between mineralisatio n widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	- No drilling was carried out at the Morrissey Hill Project.
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	- Maps and appropriate plans are included in this announcement.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- All results are tabulated in Appendices A and shown on figures in this announcement.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- Substantial open file data including historical exploration reports by companies listed above, geophysical and ASTER data has been summarised in previous releases.
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological	- As detailed in the report.

Criteria	JORC Code explanation	Commentary
	interpretations and future drilling areas, provided this information is not commercially sensitive.	

