

Further Shallow Oxide Results Outside Existing Mineral Resource

Odyssey Gold Limited (ASX:ODY) ("Odyssey" or "Company") is pleased to advise further outstanding results from the recently completed reverse circulation ("RC") and diamond ("DD") drilling program at the Company's Tuckanarra Gold Project ("Tuckanarra" or "Project") in the Murchison Region of Western Australia.

- The final 9 holes of the shallow RC campaign, mostly west of the Cable structures, successfully intersected 23 intervals of mineralisation, typically associated with quartz veining or oxide enrichment of gold.
- RC drilling has extended the recently identified Cable West Hanging Wall structure, which sits outside the existing Mineral Resource, but within the A\$5,000/oz Cable Pit design. Significant results include:
 - **8m @ 3.4g/t Au** from 63m (CBRC0266)
 - **7m @ 2.8g/t Au** from 31m (CBRC0268)
 - **5m @ 3.7g/t Au** from 17m (CBRC0271)
 - **2m @ 6.3g/t Au** from 154m (CBRC0269)
 - **2m @ 5.6g/t Au** from 126m (CBRC0255)
- Tuckanarra has a predominantly open pit Indicated and Inferred Mineral Resource Estimate ("MRE") of 5.14Mt @ 2.5g/t Au and the Cable Deposit has an MRE of 1.69Mt @ 2.3g/t for 123kozⁱ.
- Additionally, a diamond tail hole extension below the Bolland Pit confirmed the strike extension of Cable East mineralisation 70m below the existing Resource, intersecting:
 - **2m @ 4.1g/t Au** from 326m (TCKRCD0095)

Executive Director of the Company, Matt Syme, commented: "Additional drilling at Cable has successfully extended the recently identified Cable West Hanging Wall structure. Interpreting the mineralisation in this area is complicated by diorite dykes but every result is additional mineralisation within the optimised open pit. Cable West and Cable West Hanging Wall both remain open to the south.

The drilling at Bolland extends the mineralisation well outside the existing resource envelope and again demonstrates the utility of EM surveying to identify blind mineralisation at Tuckanarra."

For further information, please contact:

Matt Syme

Executive Director: +61 8 9322 6322

info@odysseygold.com.au

For personal use only

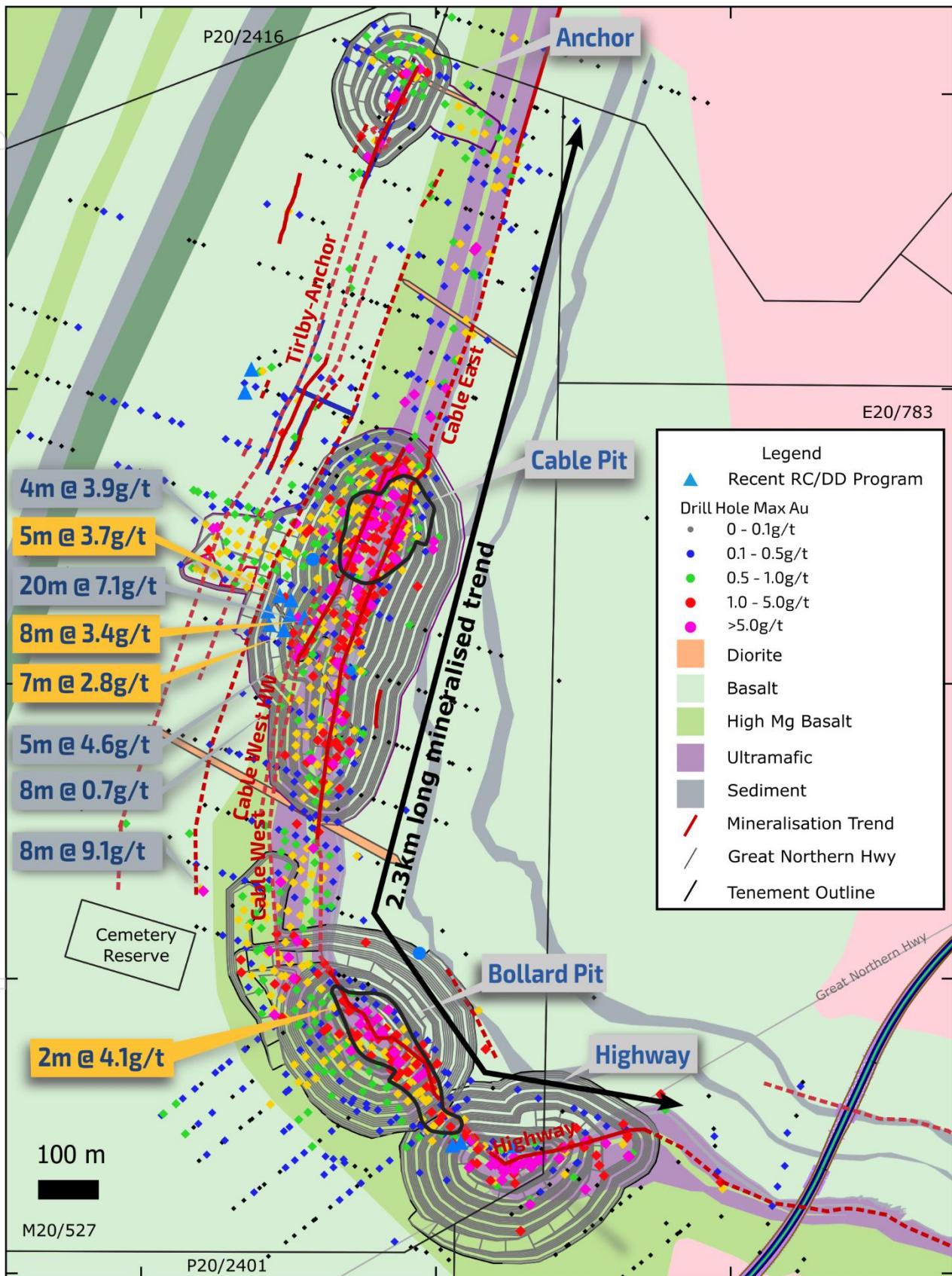


Figure 1 - The mineralised Cable-Bollard trend extends over 2.3km. Much of this falls within A\$5,000/oz optimised pits. Selected results from this announcement in yellow boxes.

Cable Deposit

The Cable Pit area currently has an Inferred and Indicated Resource of 0.69Mt @ 2.3g/t Au for 123kozⁱⁱ of gold. The area was mined in the mid-1990's and much of the resource was extensively drilled prior to this. Metana Minerals NL drilled the pit and areas proximal to the pit to 20 x 10m spacing with RC drilling. Areas outside the target laterite and oxide mineralisation were drilled to 80 x 20m spacing. In 2012 Phosphate Australia Ltd further drilled the laterite and some of the oxide to 20 x 20m spacing.

Odyssey's subsequent RC and diamond drilling has targeted fresh rock extensions to this mineralisation. This was initially targeted on a 120 x 40m spacing with selected infill. There are now 403 RC, 21 diamond, and 189 aircore holes drilled in the Cable resource area.

Several styles of gold mineralisation are observed at Cable including:

1. Quartz veining within or cross-cutting various lithological groups: mafic/ultramafic units, banded iron formation ("BIF"), and interflow sediments (Cable West, Cable West Hanging wall and Domain 23).
 - a. Located in ultramafic sitting above the footwall tholeiitic basalt.
 - b. Parallel to stratigraphy, typically steeply west dipping and locally overturned.
 - c. Typically, massive quartz veining with zones of thin frequent veining to wide veins of up to 20m downhole. Veins are most often massive though minor laminations and galena occasionally coincident with higher grade samples towards the base of veins.
 - d. Vein grades are nuggety with barren veins and extreme high-grades of over 100g/t. High grades are locally unpredictable. High-grade subdomains can average 5g/t or more.
2. Sulphide replacement of BIF where intercepted by faults/shears +-quartz veining. Predominantly pyrrhotite (>98%) with minor pyrite and trace chalcopyrite. Mineralisation is generally 0.3g/t – 3.5g/t with infrequent higher grades (Cable East).
3. Supergene oxide enrichment immediately above quartz vein mineralisation in ultramafic and high Mg basalts, and BIF hosted mineralisation. One or two laterally continuous horizons occasionally separated by a gold leached zone.
4. Like the oxide mineralisation, a mineralised laterite horizon occurs proximal to primary mineralisation at or near surface. The laterite mineralisation is typically 1-4m thick and extends as far as 150m laterally from primary mineralisation.
5. Cable East and Cable West mineralisation generally runs parallel, variably 30-60m apart, from North of the Cable Pit through the Bolland Pit and then east to the Highway deposit. Cable West Hanging Wall occurs ~30m in the hanging wall of the Cable West structure.

The Cable West Hanging Wall structure was identified in September 2025 with a result of 20m @ 7.1g/t Au. A program of 7 holes for ~1,040m has been completed at Cable drilling on a 30x40m spacing on sections immediately to the north and south. The depth of drilling is being guided by \$3,500-5,000/oz conceptual open pit optimisations (Figures 1, 2, 3 and 4). The Cable West structure was not modelled in the previous Mineral Resource Estimate.

At Cable West and Hangingwall the primary mineralisation is associated with quartz veining in high Mg basalts and ultramafic rocks. Quartz veins are often on the contacts of banded iron formation. Visible gold is typically observed in diamond drilling within the mineralisation. Galena is less common but is an indicator of higher-grade intervals. Quartz veins are massive and bucky with infrequent laminations towards the vein contacts.

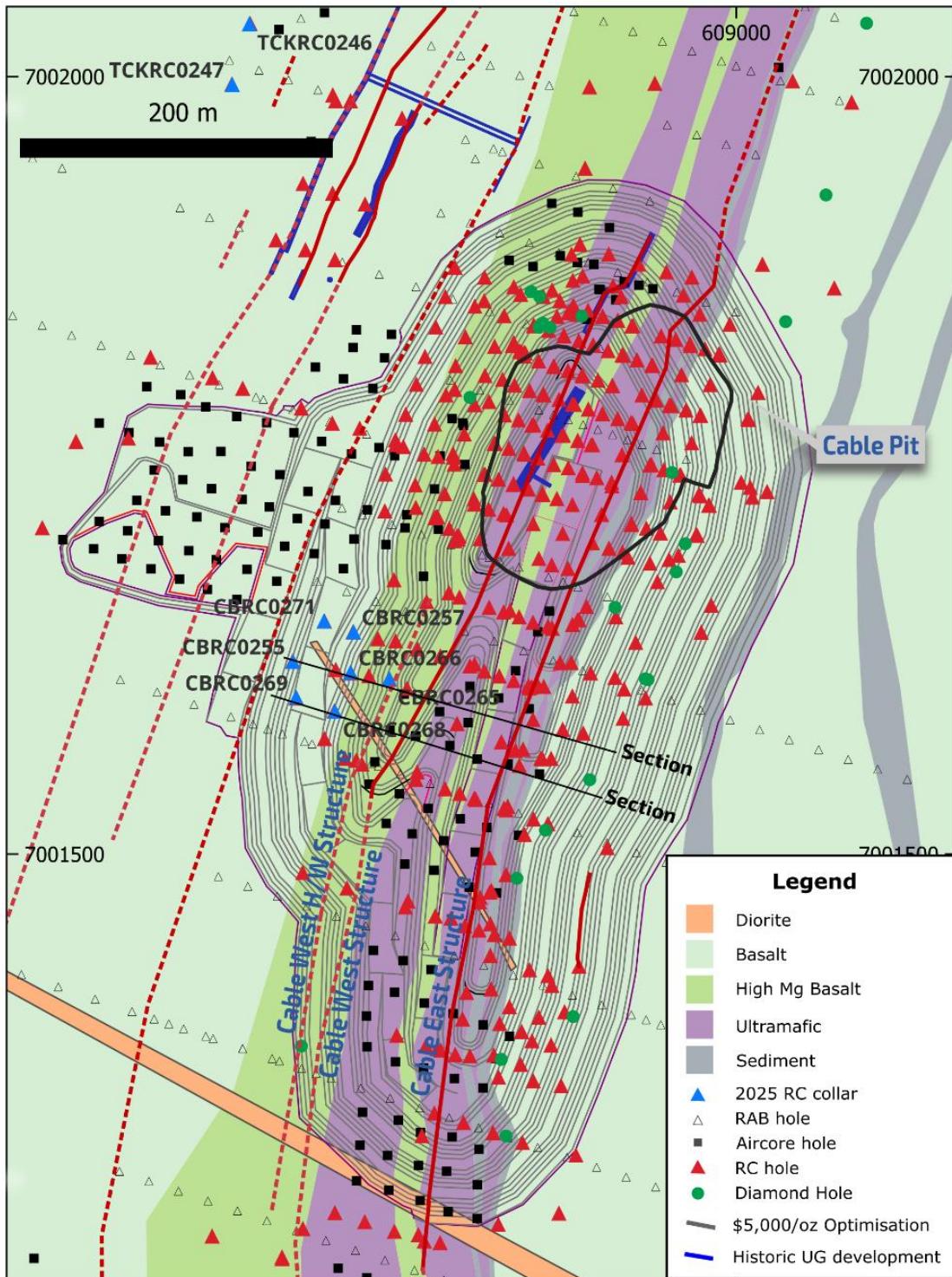


Figure 2 - Collar map for 2025 Cable Hanging Wall drilling with A\$5,000/oz pit optimisation

Cable Results

Drilling successfully intersected laterite, oxide, vein gold mineralisation associated with Cable West Hanging Wall, Cable West and Domain 23, with 23 intervals of mineralisation intersected from the 7 holes drilled. The structures are steeply west dipping of variable thickness. Veining tends to be better developed within or on the contacts of BIF sediments.

Laterite mineralisation is very consistent throughout the project. Results in pisolithic or ferruginous laterite include:

- **5m @ 3.7g/t Au** from 17m (CBRC0271)
- **6m @ 1.4g/t Au** from 13m (CBRC0266)
- **11m @ 0.6g/t Au** from 8m (CBRC0265)

The laterite result in hole CBRC0271 is outside the current Mineral Resource Estimate.

Veining associated with Cable West and Cable West Hanging wall are predictable though variable in width and grade.

Results from Cable West Hanging Wall include:

- **2m @ 5.6g/t Au** from 126m (CBRC0255)
- **7m @ 2.8g/t Au** from 31m (CBRC0268)
- **3m @ 1.0g/t Au** from 95m (CBRC0269)
- **5m @ 0.5g/t Au** from 33m (CBRC0266)
- **2m @ 1.7g/t Au** from 44m (CBRC0257)

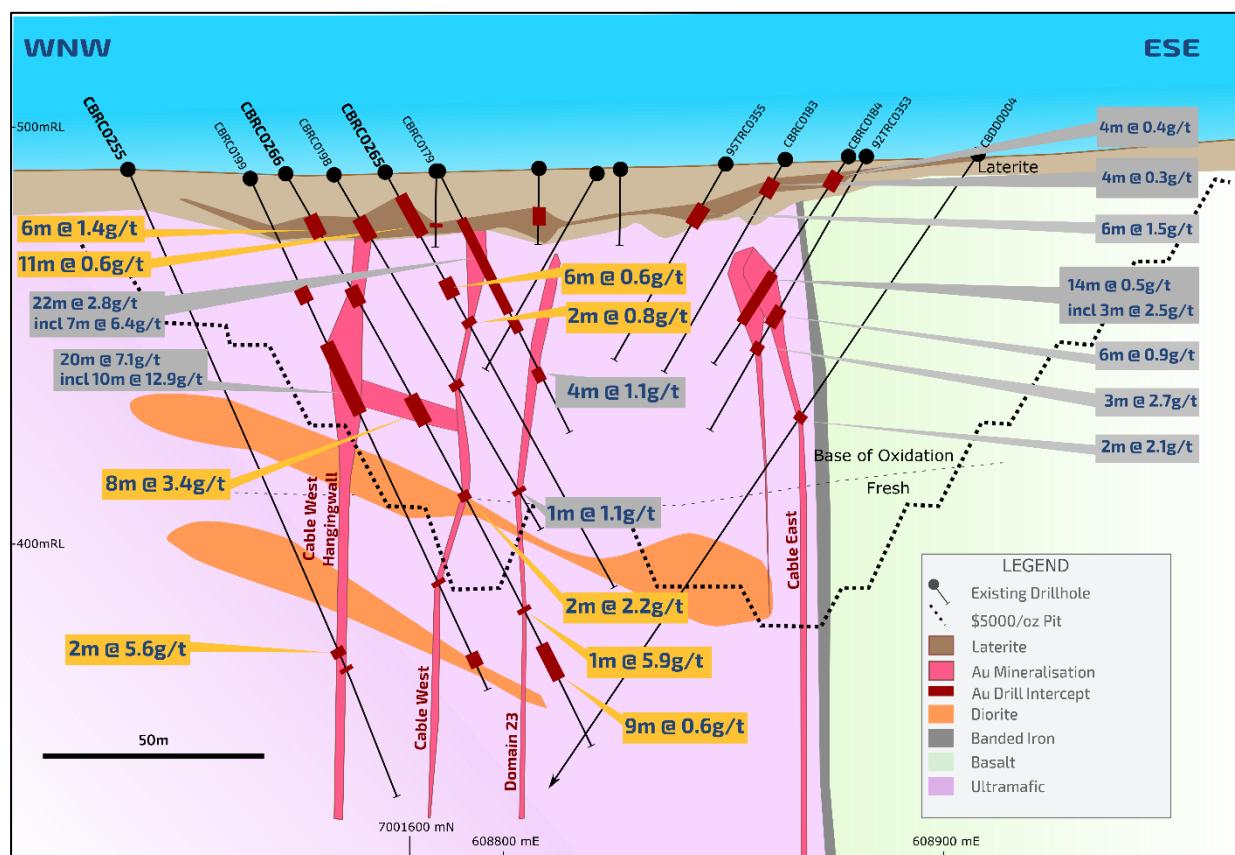
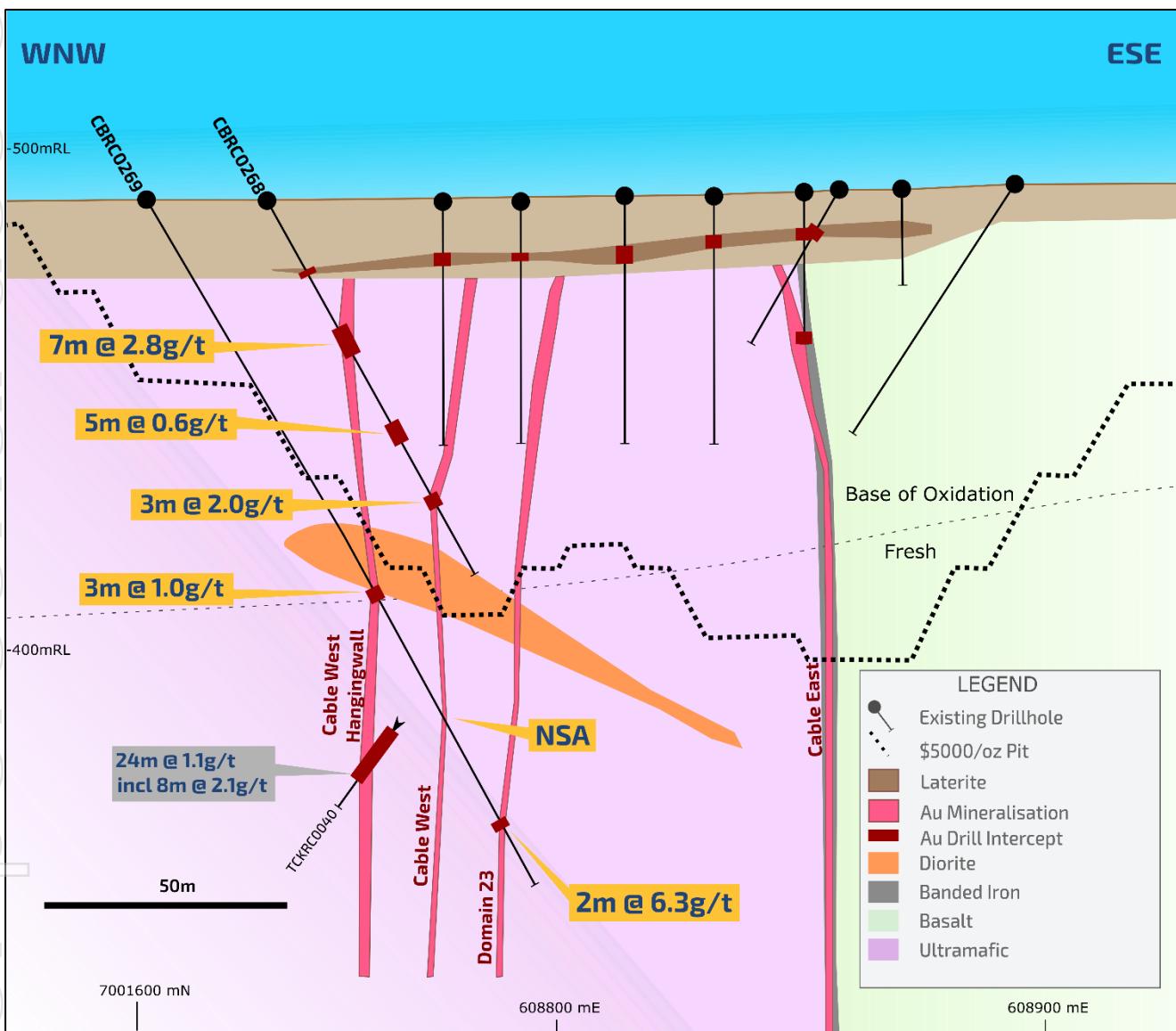



Figure 3 - Cross Section through CBRC0255, 265, and 266 south of the Cable Pit

Results from Cable West include:

- **2m @ 6.3g/t Au** from 154m (CBRC0269)
- **3m @ 2.0g/t Au** from 73m (CBRC0268)
- **2m @ 2.2g/t Au** from 90m (CBRC0266)

All holes in Cable West Hanging Wall are outside the current Mineral Resource Estimate.

A quartz vein with a broad mineralised interval was previously intersected in CBRC0199 of **20m @ 7.1g/t Au**. A hole drilled immediately to the east of this intersected **8m @ 3.4g/t Au** from 63m (CBRC0266). This is interpreted to be a steep east dipping structure on a north northeasterly strike or a small-scale link East-West crosslink (Figure 3) between Cable West and Cable West Hanging wall. Diorite dykes interpreted to be west-northwest striking were intersected in a number of holes. It is presumed these predate mineralisation, and the impact of these on mineralisation is unknown.

Higher grade mineralisation within the Cable veins plunges shallowly to the south with local steep southerly plunging high grade shoots. The Cable West and Cable West Hanging wall structure remains open to the South and down plunge. The Cable West Hangingwall structure is now defined with RC drilling for 150m of strike and is also intersected in historic aircore and RAB drilling a further 150m to the south (**5m @ 4.6g/t Au** from 49m in PAC165) and TPH0710 (**8m @ 0.7g/t Au** from 20m).

Additional parallel structures are known further to the West where they were mined underground at Anchor and Trilby and have been intersected in initial bedrock drilling by Odyssey. Results include **4m @ 3.9g/t Auⁱⁱⁱ** (Figure 5) 170m to the west of Cable.

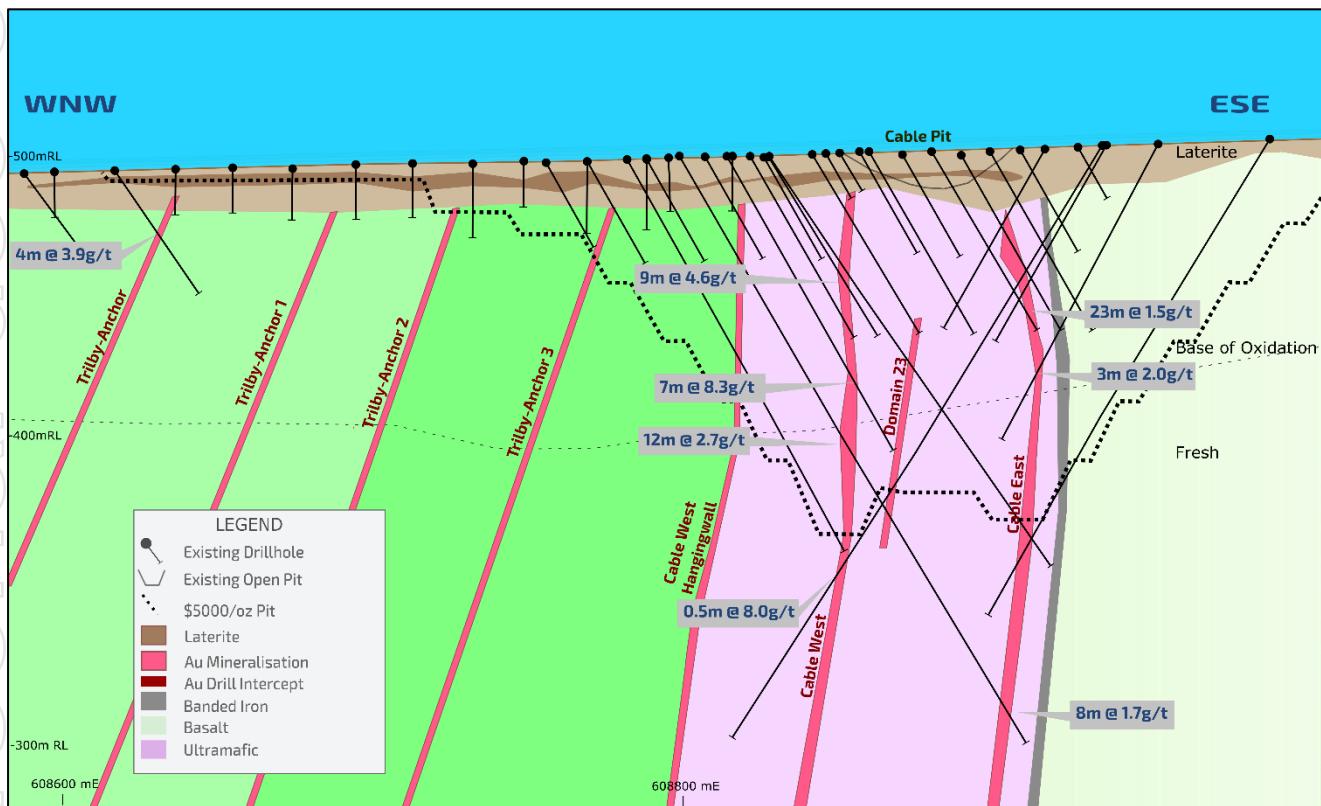


Figure 5 - Schematic cross section illustrating a number of additional structures interpreted to the west of the Cable Pit. The limited drilling below the laterite has previously successfully intersected quartz veining and gold mineralisation.

Bollard Deposit

The Bollard open pit ("Bollard Pit" or "Bollard") falls within mining lease M20/527. The deposit was previously mined in 1992-1993 with approximately 191kt @ 2.7g/t for 16.8koz mined from laterite and oxide to a depth of 30m.

Bollard currently has a shallow open pit indicated and inferred Mineral Resource Estimate of 0.68Mt @ 2.4g/t Au for 46koz (Table 1).

The gold mineralisation occurs in steeply west dipping structures. These are parallel to the boundary between high magnesium/ultramafic and tholeiitic basalt in the footwall. Bollard is one of several high-grade shoots along the 1.8km high grade trend that have a similar geological character.

Previous drilling into the plunge extension of the Bolland deposit intersected **7.65m @ 11.8g/t Au** (TCKRCD0096)^{iv} approximately 280m below surface. Downhole surveying of the hole defined an EM anomaly to the north interpreted to be the northern extension of the mineralisation. Gold mineralisation is often located above pyrrhotite replaced sediment which can be detected by EM surveys at Tuckanarra.

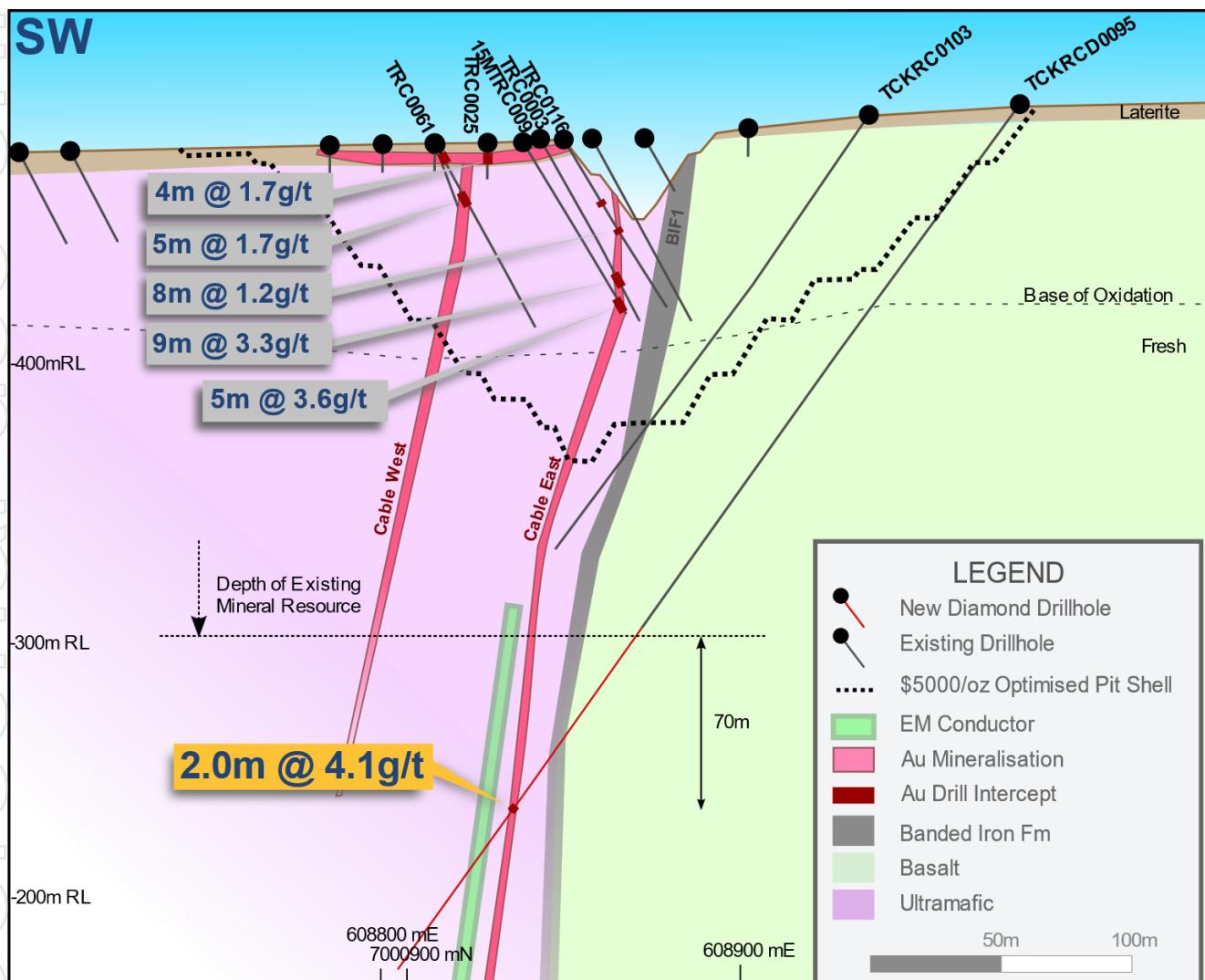


Figure 6 - Cross section through Bolland hole TCKRCD0095

Hole TCKRCD0095 was a second hole extended to drill the conductor and interpreted Cable East mineralisation. TCKRCD0095 was extended from the original 250m RC drill depth to 401.6m with diamond drilling. Pyrrhotite replaced banded iron formation was intersected at the target position with best result of:

- **2m @ 4.1g/t Au** from 326m (TCKRCD0095)

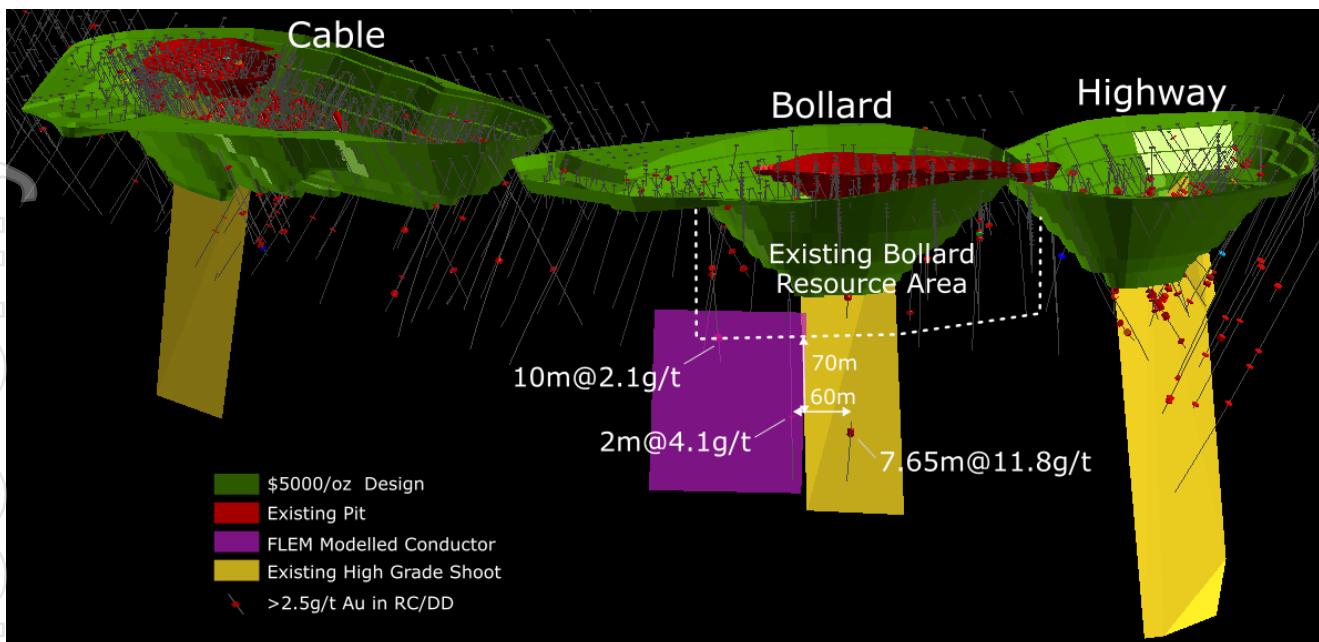


Figure 7 – Diamond drilling at Bollard has intersected mineralisation more than 70m below the existing Mineral Resource Estimate

This hole is approximately 60m to the north of TCKRCD0096 (7.65m @ 11.8g/t Au) and 70m below the 2023 Mineral Resource Estimate. An RC hole drilled mid 2025 intersected **10m @ 2.1g/t Au^v** 100m to the north of TCKRCD0095.

These three intersections fall outside the current Mineral Resource and extend the mineralisation significantly down dip and along strike. The mineralisation remains open down plunge. The absence of drillholes along strike leaves the shoot open to the north and south in fresh rock.

The success of this drilling demonstrates the effectiveness of EM to identify blind targets the potential to extend the Bollard mineralisation to the north towards Cable. Additional holes are planned to drill the northern extensions of mineralisation at Bollard and the fresh rock mineralisation between Bollard and Highway.

Trilby

The historical Trilby workings are located ~280m west of the Cable Pit. Two shallow RC holes were drilled below anomalous RAB and aircore holes. The first hole failed before the target depth due to water ingress. The second hole intersected 4m of quartz veining at the target depth with no significant gold mineralisation intersected. Additional analysis is required to understand the controls of gold mineralisation within the vein to aid targeting of future drilling.

Metallurgical Testwork

Two shallow diamond holes were also drilled to generate metallurgical samples reflecting mineralisation that would be mined during initial mining within the existing mining proposal area at the Cable Pit. Previous data demonstrates the oxide material had high recovery. Dedicated samples for metallurgical testing have been generated for specific processing water characteristics and to optimise grind size.

Future Work

- Metallurgical testwork is underway on mineralisation falling inside the current mining proposal.
- Geological interpretation is underway to contribute to an updated Mineral Resource Estimate.
- Planning of an RC drilling program is underway to drill potential extensions to the MRE as follows:
 - Cable West Hanging Wall structure to the south;
 - laterite to the west of the Cable; and
 - around previous high grade RC results 350m to the north of Cable Pit (TCKRC0116 with **7m @ 2.3g/t Au** from 33m at Cable East and **1m @ 19g/t Au** from 78m at Cable West and TCKRC0117 with **3m @ 5.4g/t Au** from 133m and **2m @ 3.5g/t Au^{vii}**).

Mineral Resources

The Project currently has Indicated and Inferred Mineral Resources of 5.14Mt @ 2.5g/t Au for 407koz of gold. This includes a high-grade subset of 2.25Mt @ 3.9g/t for 283koz of gold above a 2.0g/t Au cut off.

Table 1. Tuckanarra Project February 2024 Mineral Resource Estimate by Deposit^{vii}

Deposit	Category	Mining Method	Tonnes (Mt)	Gold (g/t)	Ounces (kOz)	CP	Tenure
Bottle Dump	Indicated	Pit	0.15	3.4	17	1	E20/783
	Inferred	Pit	0.76	2.2	54		
	Total		0.91	2.4	70		
Bollard	Indicated	Pit	0.15	1.9	9	2	M20/527
	Inferred	Pit	0.53	2.2	37		
	Total		0.68	2.1	46		
Cable	Indicated	Pit	0.40	2.3	29	2	M20/527
	Inferred	Pit	1.30	2.2	94		
	Total		1.69	2.3	123		
Highway Zone	Inferred	Pit	0.44	2.3	32	4	M20/527 ~50% E20/783 ~50%
	Inferred	UG	0.35	5.8	65		
	Total		0.79	3.8	97		
Kohinoor	Inferred	Pit	0.16	2.4	12	3	M51/908
	Inferred	UG	0.03	9.1	9		
	Total		0.19	3.5	22		
Lucknow	Inferred	Pit	0.22	1.3	9	2	M20/527
Maybelle	Indicated	Pit	0.09	2.3	7	2	M20/527
	Inferred	Pit	0.57	1.8	34		
	Total		0.66	1.9	41		
Grand Total			5.14	2.5	407	5	

1 - Ian Glacken - Snowden Optiro
2 - Brian Wolfe - International Resource Solutions
3 - Andrew Bewsher – BMGS
4 – Matthew Walker and Justine Tracey - Snowden Optiro
5 - Matt Briggs – Odyssey Gold

Totals may not add up due to rounding. Open pit resources are reported above 0.9g/t Au cut-off for material less than 140-180m below surface, except the Highway Zone which is reported above 0.9g/t Au cut-off for oxide and transitional material. Underground resources are reported above 2.0g/t Au cut-off for material more than 180m below surface or fresh rock. Resources are reported on a 100% project basis.

Forward Looking Statements

Statements regarding plans with respect to Odyssey's projects are forward-looking statements. There can be no assurance that the Company's plans for development of its projects will proceed as currently expected. These forward-looking statements are based on the Company's expectations and beliefs concerning future events. Forward looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of the Company, which could cause actual results to differ materially from such statements. The Company makes no undertaking to subsequently update or revise the forward-looking statements made in this announcement, to reflect the circumstances or events after the date of that announcement.

Competent Persons Statements

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information and supporting documentation that was compiled by Mr. Matt Briggs who is a Fellow of the AusIMM and an employee of the Company. Mr. Briggs, who is a shareholder and performance rights holder, has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Briggs consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to Mineral Resources is extracted from announcements dated 2 August 2023 and 15 February 2024 which are available to view at www.odysseygold.com.au and is based on, and fairly represents information compiled by the relevant Competent Person, Matthew Briggs. The Company confirms that: (a) it is not aware of any new information or data that materially affects the information included in the original announcements; (b) all material assumptions and technical parameters included in the original announcements continue to apply and have not materially changed; and (c) the form and context in which the relevant Competent Persons' findings are presented in this announcement have not been materially changed from the original announcements.

This ASX Announcement has been approved in accordance with the Company's published continuous disclosure policy and authorised for release by Matt Syme, Executive Director of the Company.

Table 2. 2025 Cable West RC Drilling Collar Table

BHID	Project	Hole Type	East	North	RL	Azimuth	Dip	EOH Depth	Tenement
CBRC0255	Cable West	RC	608715	7001624	489	106	-65	164	M20/527
CBRC0257	Cable West	RC	608754	7001643	490	107	-60	170	M20/527
CBRC0265	Cable West	RC	608777	7001613	490	108	-60	116	M20/527
CBRC0266	Cable West	RC	608752	7001617	490	108	-60	158	M20/527
CBRC0268	Cable West	RC	608742	7001592	490	108	-60	92	M20/527
CBRC0269	Cable West	RC	608717	7001601	489	108	-60	170	M20/527
CBRC0271	Cable West	RC	608735	7001650	490	109	-60	170	M20/527
TCKRCD0095	Bollard	RCD	608973	7001044	499	233	-56	401.6	M20/527
TCKRC0246	Trilby	RC	608688	7002034	487	109	-60	159	M20/527
TCKRC0247	Trilby	RC	608676	7001995	487	108	-60	182	M20/527
MET1	Cable	DD	608786	7001761	491	100	-60	16.4	M20/527
MET2	Cable	DD	608822	7001539	491	88	60	51.3	M20/527

Coordinates are MGA 54 Zone 50.

Table 3. Progress Results table for 2025 Cable

Hole ID	From (m)	Length (m)	True Width (m)	Grade (Au g/t)	Wet samples	Sample Recovery (%)	Zone	Comment
CBRC0255	126	2	1	5.6	No	100	CB HW	Sediment
CBRC0257	44	2	1.5	1.7	No	100	CB HW	Vein
CBRC0257	60	2	1.5	0.6	No	100		Vein
CBRC0257	93	1	0.7	2.6	No	100		
CBRC0257	107	1	0.7	2.4	No	100		Vein
CBRC0257	111	1	0.7	5.9	No	100	CB West	
CBRC0257	146	3	2.2	0.9	No	100		Sediment
CBRC0265	8	11	9	0.6	No	50		
CBRC0265	31	6	4.5	0.6	No	100		
CBRC0265	49	2	1.3	0.8	No	100		Vein
CBRC0266	13	6	5	1.4	No	92		Pisolites
CBRC0266	33	5	3.5	0.5	No	100	CB HW	
CBRC0266	63	8	6	3.4	No	100		Sediment
CBRC0266	90	2	1.3	2.2	No	100	CB West	Vein
CBRC0266	121	1	0.7	5.9	No	100	Domain 23	
CBRC0266	131	9	7	0.6	No	100		Vein
CBRC0268	31	7	6	2.8	No	100	CB HW	Vein
CBRC0268	55	5	3.6	0.6	No	100		
CBRC0268	73	3	2.1	2.0	No	100	CB West	Vein
CBRC0269	95	3	2.1	1.0	No	100	CB HW	Sediment
CBRC0269	154	2	1.4	6.3	No	100	Domain 23	Vein
CBRC0271	17	5	3.6	3.7	No	45	Laterite	
CBRC0271	83	2	1.5	1.8	No	100	CB HW	Diorite
TCKRCD0095	326	2	1.4	4.1	No	100	Cable East	

Hole ID	From (m)	Length (m)	True Width (m)	Grade (Au g/t)	Wet samples	Sample Recovery (%)	Zone	Comment
TCKRC0095	334.3	1.7	1.2	0.8	No	100		
TCKRC0246	29	2	2	0.6	No	100		Hole Failed
TCKRC0247	168	2	1.5	NSA	No	100	Trilby	

Results are reported for intervals of over 2m @ 0.5g/t Au or where geologically significant. No 4m composites are included in these results. No wet samples are reported in mineralised intervals.

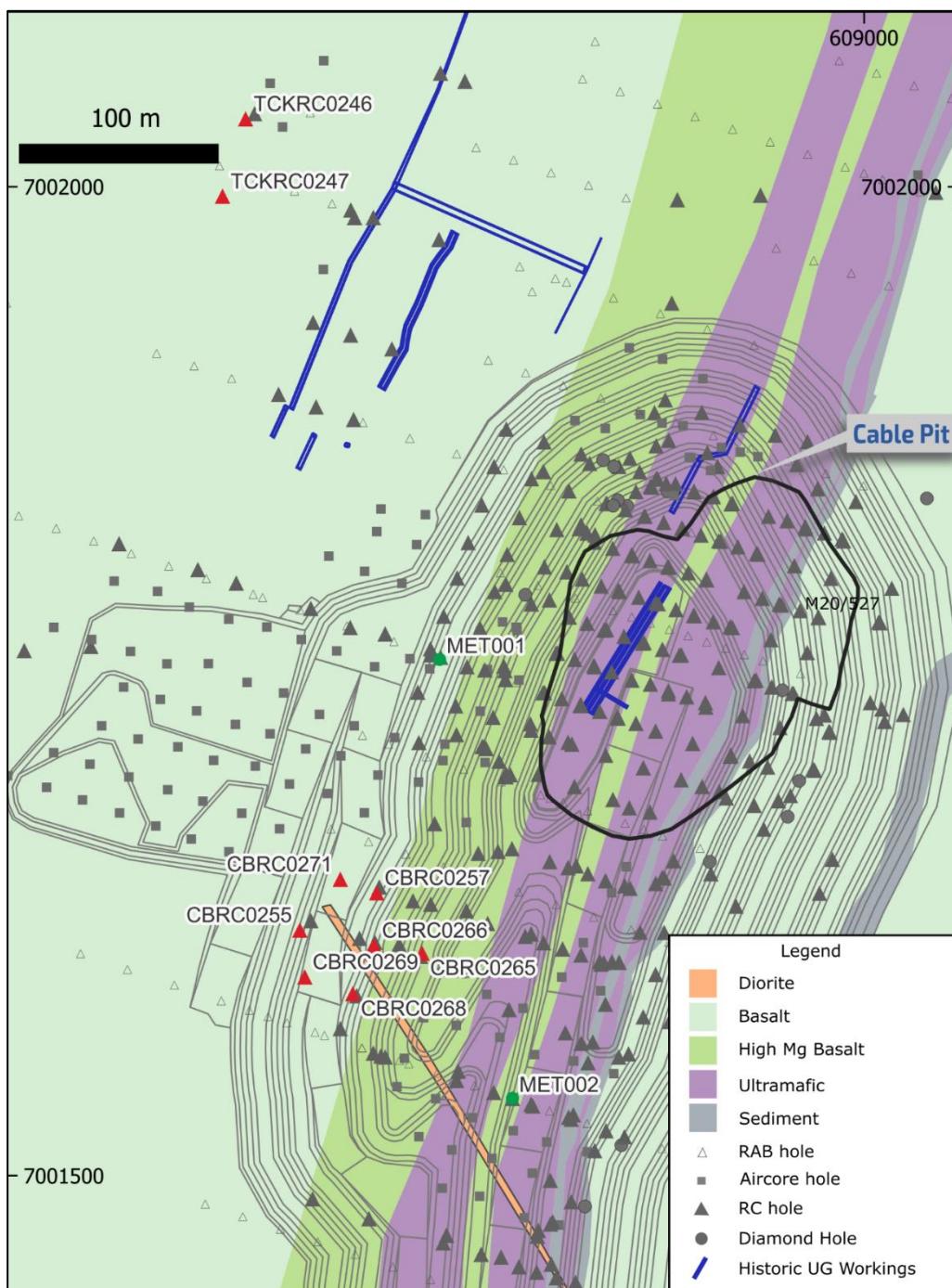


Figure 8 - Drill hole collar map

APPENDIX 1 - JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data - RC and Diamond Drilling

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i>	RC samples are split using a cone splitter into calico bags representing the 1m interval. RC hole diameter starting at 5 ¾ inch diameter reducing as the hole progresses. Individual samples weigh less than 5kg. The sample size is deemed appropriate for the grain size of the material being sampled. 1m intervals were selectively composited into 4m intervals as described below. 4m composites included in intersections are flagged in the results table. All samples are routinely scanned with a portable XRF. This is initially used to identify the footwall tholeiitic basalt. Diamond tails are NQ core. Metallurgical holes were drilled HQ triple-tube (HQ3).
	<i>Include reference to measures taken to ensure sample representation and the appropriate calibration of any measurement tools or systems used.</i>	Sampling was carried out under the ODY protocols and QAQC. See further details below. Sampling is supervised by a geologist and/or trained field technician. Rig inspections document chain markings of metre intervals, rig setup, splitter and cyclone cleanliness, consistency of sampling and adherence to company procedures. Sample recovery and moisture levels are estimated and recorded. Holes are terminated once two wet samples are generated to ensure sample quality. Certified standards and blanks were inserted into the assay batches. Sample recovery was impacted at surface as noted in the results table.
	<i>Aspects of the determination of mineralisation that are Material to the Public Report.</i>	Mineralisation is generally associated with foliation, quartz veining, galena and pyrrhotite in ultramafic rocks, and pyrrhotite and quartz veining in banded iron formation. The mineralisation in oxide is not visual unless associated with more iron rich clays or quartz veining. The presence of these indicators or gold assay grades above 0.5g/t are used to report mineralisation. To avoid including more than 2m of below 0.5g/t Au within an intersection the intervals of mineralisation are subdivided.
	<i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i>	Samples are sent to the NATA accredited ALS Laboratory in Canning Vale, Perth and analysed via Photon Assay technique (method code PAAU2) along with quality control samples. Individual samples are assayed for gold after drying and crushing to nominally 85% passing 2mm and 450-500g split taken for PhotonAssay. The PhotonAssay technique was developed by CSIRO and Chrysos Corporation and is a fast, chemical free non-destructive, alternative using high-energy X-rays to traditional fire assay and uses a significantly larger sample size (500g v's 50g for fire assay). This technique is accredited by the National Association of Testing Authorities (NATA). Repeat assays are routinely taken of elevated gold samples. Composites are analysed by 30g fire assay. 1m Samples within composite intervals of interest are subsequently replaced by photon assays of the 1m intervals. NQ core was geological logged and selected intervals half core sampled, cut lengthways with a brick saw.
Drilling techniques	<i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).</i>	RC drilling has been undertaken by Challenge Drilling with a truck mounted KW 380 RC rig with booster compressor. RC hole diameter starting at 5 ¾ inch diameter reducing as the hole progresses. Downhole surveys for RC drilling were recorded using an Axis Mining Technology, north seeking Champ Gyro. Terra Drilling re-entered previous RC hole TCKRC0095 and extended it with oriented NQ core as hole TCKRCD0095. Metallurgical holes are drilled HQ3 from surface and were not oriented.
Drill sample recovery	<i>Method of recording and assessing core and chip sample recoveries and results assessed.</i>	All samples for mineralised intervals were reported to be dry. Ground water ingress occurred in some holes at the rod change but overall, the holes were kept dry. Typically, drilling operators ensured water was lifted from the face of the hole at each rod change to ensure water did not interfere with drilling and to make sure samples were collected dry. Sample recoveries were acceptable. Samples are monitored for possible contamination during the drilling process by Company geologists.

Criteria	JORC Code explanation	Commentary
	<p>Measures taken to maximise sample recovery and ensure representative nature of the samples.</p> <p>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</p>	<p>Drilling is carried out orthogonal to the mineralisation to get representative samples of the mineralisation. Standard practices for RC and DD drilling are used.</p> <p>No relationship between recovery and grade have been identified. This is not seen to be a material risk with the drilling methods and approach to sampling being undertaken.</p>
Logging	<p>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</p> <p>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</p> <p>The total length and percentage of the relevant intersections logged</p>	<p>All RC chips and diamond core is logged onsite by geologists to a level of detail to support future mineral resource estimation and mining studies.</p> <p>Logging is qualitative and records lithology, grain size, texture, weathering, structure, alteration, veining and sulphides. Chips are digitally photographed. RC samples are routinely scanned with pXRF</p> <p>All holes are logged in full, including the reported intersections.</p>
Sub- sampling techniques and sample preparation	<p>If core, whether cut or sawn and whether quarter, half or all core taken.</p>	<p>Core is cut in half lengthways with a brick saw following logging. Metallurgical samples will be whole core crushed and blended to make composite samples. Met holes will not be used in resource estimation.</p>
	<p>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</p>	<p>1m RC samples are split using a cone splitter. Unmineralised intervals are composited by spear sampling from the reject sample pile on the ground combined into 4m composite samples. Samples are dry except where noted. Drilling of a hole is terminated if dry samples cannot be produced.</p>
	<p>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</p>	<p>1m RC samples were submitted to ALS Laboratory Perth where samples are coarse crushed and split a 450-500g sample was assayed by Photon Assay. 4m composites are milled to homogenise the sample and a 30g charge is fire assayed. These are subsequently replaced by fire assay prior to inclusion in resource estimates.</p> <p>The sample preparation procedures carried out are considered acceptable. All photon tubs and coarse rejects are retained at the laboratory.</p>
	<p>Quality control procedures adopted for all sub- sampling stages to maximise representation of samples.</p>	<p>Sampling is supervised by a geologist and sample recovery and moisture content noted. A checklist to ensure ongoing checking for sample quality and to avoid contamination has been implemented. The geologist monitors samples for contamination during drilling. Drill crews are required to routinely clean the cyclone, typically after each rod.</p>
	<p>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</p>	<p>Samples are inspected for contamination. The RC cyclone is routinely cleaned. RC field duplicates are collected on selected intervals that have been identified as geologically prospective by the field geologist at the time of drilling. The duplicate samples are collected directly from the second chute from the on-rig cone splitter.</p>
	<p>Whether sample sizes are appropriate to the grain size of the material being sampled.</p>	<p>Sample sizes are considered appropriate to give an indication of mineralisation. Once a meaningful population of samples is collected per sample domain an assessment will be made of the appropriate weight and number of samples to allow the classification of mineral resources.</p>
Quality of assay data and laboratory tests	<p>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</p>	<p>All samples were submitted to ALS Laboratory Perth where a 450-500g sample was assayed by Photon Assay for gold. The PhotonAssay technique was developed by CSIRO and Chrysos Corporation and is a fast, chemical free non-destructive, alternative using high-energy X-rays to traditional fire assay and uses a significantly larger sample size (500g v's 50g for fire assay). This technique is accredited by the National Association of Testing Authorities (NATA). Repeat assays are routinely taken of elevated gold samples. Photon is considered total. Composites are analysed through 30g fire assay. This is considered total.</p>
	<p>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</p>	<p>No geophysical surveys reported in this release.</p>

Criteria	JORC Code explanation	Commentary
	<i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i>	Certified reference material (CRM) samples sourced from Geostats and were inserted every 20 samples. External lab check assays have not been completed for the current program.
Verification of sampling and assaying	<i>The verification of significant intersections by either independent or alternative company personnel.</i>	All assays are reviewed by Odyssey Gold and significant intercepts are calculated as composites and reported using a nominal 0.5g/t Au cut-off grade; however, intercepts may be reported within sub-grade mineralisation if dictated by a geological domain. A maximum of 3m consecutive internal waste is nominally allowed in composites. All significant intercepts are checked by the Competent Person. Previous announced intersections may vary with a change in interpretation. A reannouncement of previous results will not occur unless the Competent Person decides the change is material. The competent person routinely inspects drilling, chips, and the geologists logging to ensure correlation with assay results.
	<i>The use of twinned holes.</i>	Dedicated twin holes have not been drilled. Drilling is aiming to confirm some historic holes therefore some partial twinning of holes occurs.
	<i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i>	All drill hole logging is completed on digital logging templates with built-in validation. Logging spreadsheets are uploaded and validated in a central MS Access database. All original logging spreadsheets are also kept in archive. Duplicated copies of the database and drillhole data is routinely backed up through cloud server backups. Logging of key intersections has been reviewed by the Competent Person.
	<i>Discuss any adjustment to assay data.</i>	No assay data was adjusted.
Location of data points	<i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i>	Drill hole collars are surveyed by a qualified contractor surveyor. Trimble R10, RTK GPS was used with expected accuracies +/- 20mm Horizontal and +/- 30mm vertical, relative to the survey control used. GPS Base receiver at SSM Cue 58 with redundancy check to SSM Cue 129.
	<i>Specification of the grid system used.</i>	Downhole surveys for both RC and DDH drilling are recorded using a True North seeking GYRO survey tool.
	<i>Quality and adequacy of topographic control.</i>	The site topographic surveys including the pit surveys match well with the drill hole collars. Detailed aerial photography over the region has aided on locating historic drillhole collars. An updated digital terrain model has been generated from a UAV drone survey to validate GPS RL surveys.
Data spacing and distribution	<i>Data spacing for reporting of Exploration Results.</i>	Drill hole spacing for the 2025 drill program is variable as most drilling to date is either first pass drilling of new exploration targets or infill resource drilling. In general, drill hole collar spacing for the reported drillholes is 100m spaced on exploration targets and 40x40m for infill drilling.
	<i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i>	Drilling at Cable is on a spacing which is sufficient to test the grade continuity of mineralisation for this style of mineralisation. The current data set is considered potentially appropriate for use in a future Mineral Resource.
	<i>Whether sample compositing has been applied.</i>	4m sample composites are used. Where reported intervals are composites this is disclosed in the announcement. All significant 4m composites are subsequently replaced with the assays from 1m samples. Intersections reported a length weighted averages. No composites are reported in this announcement.
Orientation of data in relation to geological structure	<i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i>	Drilling is designed to be perpendicular to the strike of mineralisation on a hole by hole or section by section basis. The current program has successfully achieved this.

Criteria	JORC Code explanation	Commentary
	<i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i>	The bulk of the intercepts appear to be orthogonal to the mineralisation +/- 25 degrees unless otherwise stated in the intercepts table. Assay intercepts are stated as down-hole lengths. Previous resource modelled work has highlighted grade bias in holes drilled down the mineralisation.
Sample security	<i>The measures taken to ensure sample security.</i>	RC and DD samples are collected in prenumbered calico bags. Samples are delivered to the lab directly by Odyssey personnel or freighted via an independent freight provider.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	All QAQC data is reviewed to ensure quality of assays; batches containing standards that report greater than 2 standard deviations from expected values are re-assayed. The competent person audited the laboratory in November 2024.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i>	Odyssey's subsidiary, Tuckanarra Resources Pty Ltd, owns an 80% interest in the Tuckanarra JV Project. A 1% royalty is payable to Monument mining on Odyssey's interest in the project. Bollard and Cable drilling undertaken was within M20/527. Native title is extinguished in M20/527 and some surrounding areas ^{viii} . A cemetery reserve falls within M20/527 but does not impact the resource area currently. Heritage clearances have been undertaken in all areas and sites identified do not impact resource areas or planned drilling. Mining on Exploration licences requires the grant of a mining lease and submission of a mining proposal and native vegetation clearing permit.
	<i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i>	The tenement package is understood to be in good standing with the WA DMIRS.
Exploration done by other parties	<i>Acknowledgment and appraisal of exploration by other parties.</i>	Refer to the body of the report and to previous announcements. Exploration History Gold was discovered at Tuckanarra in the late 1890s by prospectors searching further afield from Cue and Mt Magnet, with the first mine (Nemesis) discovered and developed in 1900. Subsequent exploration and development located additional deposits in the general area with the majority of deposits being developed as small underground mines exploiting narrow, highly mineralised quartz veins associated with Banded Iron Formation lithologies. In general, these historic gold mines were mined down to the water table, which is approximately 20m deep at Tuckanarra. 1980 to 1987: Tuckanarra Minerals By the mid-1980s Tuckanarra Minerals had completed in excess of 64 RAB holes, defining gold mineralisation at the Maybelle prospect and identifying numerous additional areas which were prospective for gold resources. They concluded that the area hosted excellent potential for the delineation of small-to-medium gold mines and noted that little drilling had been completed at depth. Following the 1987 stock market crash, Metana Minerals purchased the Tuckanarra group of tenements. 1988 to 1996: Metana Minerals (Gold Mines of Australia) Between 1988 and 1990 Metana Minerals (renamed Gold Mines of Australia ("GMA")) completed a systematic 200m x 40m soil geochemistry program over a large portion of their tenement holding, including Tuckanarra. Between 1990 and 1995 GMA undertook numerous drilling programs encompassing Rotary Air Blast ("RAB"), Reverse Circulation ("RC") and Diamond Drilling ("DD") over the defined gold anomalies and historic workings. This resulted in the delineation of gold mineral resources at the Maybelle, Bollard, Bottle Dump and Cable Prospects, which were mined between 1990-1994.

Criteria	JORC Code explanation	Commentary
		<p>1996 to 2003: St Barbara Mines Limited</p> <p>In 1996 St Barbara Gold Mines ("St Barbara") purchased the Reedys plant and tenements from GMA. Minimal exploration was undertaken until Anglo Gold Australia ("Anglo") became managing joint venture partner in late 2000. Anglo focused on the central Tuckanarra tenement area and completed detailed GIS compilation, soil sampling, rock chip sampling and the drilling of a total of 21 RC holes for 3512 metres and the drilling of 109 aircore and RAB holes for 5127 metres.</p> <p>2003 to 2006: Mercator Gold Pty Ltd</p> <p>Following the withdrawal of Anglo from the joint venture, St Barbara entered into a joint venture with Mercator Gold Australia Pty Ltd ("Mercator"). Mercator completed GIS compilation work, mapped the existing pits and completed a number of lines of geophysical induced polarisation to test for the presence of chargeable zones that may have a gold-sulphide association.</p> <p>2006 to 2011:</p> <p>No field work was carried out on the Tuckanarra gold project post 2006. The Tuckanarra tenement package was acquired by Phosphate Australia in late 2011. Phosphate Australia focused on drilling laterite and oxide resources on the Cable-Bolland Trend, and Anchor with aircore drilling before selling the project to Monument mining in 2015. Odyssey Gold acquired the project in late 2020.</p>
Geology	<p><i>Deposit type, geological setting and style of mineralisation.</i></p>	<p>The Project area is located within the Meekatharra-Wydgee Greenstone belt within the north-eastern Murchison Domain. The majority of greenstones within the Meekatharra-Wydgee belt have been stratigraphically placed within the Polelle Group and the Norie Group of the Murchison Supergroup.</p> <p>The Project area covers Archean basement rocks assigned to the 2815-2805 Ma basal Norie group of the Murchison Supergroup, which covers the eastern margin of the Meekatharra-Wydgee greenstone belt. The Norie group comprises a thick succession of pillowed and massive tholeiitic basalts of the Muroulli Basalt, and conformably overlying and mafic schist and felsic volcanoclastics with interbedded BIF and felsic volcanic rocks of the Yaloginda Formation (Van Kranendonk et al, 2013). These rocks are folded around the south- plunging Besley Anticline. Adjacent to these rocks are the mafic sequences of the Meekatharra Formation (Polelle Group).</p> <p>Granitoids in the Project area comprise of the Jungar Suite and Annean Supersuite to the east and the Munarra Monzogranite of the Tuckanarra Suite to the west. The Jungar Suite comprises of foliated to strongly sheared K-feldspar-porphyritic monzogranites. These rocks are characterized by strong shear fabrics that suggest they may have been emplaced during, or just before, shearing. The Annean Supersuite includes hornblende tonalite and monzogranitic rocks. The Tuckanarra Suite consists of strongly foliated and locally magmatically layered granodiorite to monzogranitic rocks.</p> <p>The Project is situated within the 'Meekatharra structural zone', a major regional, NE-trending shear dominated zone, about 50 to 60km wide, stretching from Meekatharra through the Cue region as far south as Mount Magnet. This major shear zone is dominated by north and northeast-trending folds and shears (e.g. Kohinoor shear). The Mt Magnet fault is the major east- bounding structure of the Meekatharra structural zone.</p> <p>The mineralised zones of the Project are located in the Tuckanarra greenstone belt comprising a series of mafic and inter-banded mafic and iron formations, with a variable component of clastic sediments, (greywackes and minor shales). The sequence is folded into a south-westerly plunging anticline with a well-developed axial plane cleavage and numerous fractures, bedding parallel faults and shears. The belt extends northwards to Stake Well and east towards the Reedys mining centre.</p> <p>The area has four small open pits, extensive minor gold workings, and prospecting pits principally associated with mafic lithologies and Altered Ferruginous Transitional (AFT) and Altered Ferruginous Fresh (AFF) material which were originally banded iron formations. The</p>

Criteria	JORC Code explanation	Commentary
		<p>magnetite content within the AFT/AFF's has been destroyed and predominantly altered to an assemblage of hematite with the relic structure of the banded iron intact.</p> <p>Where mineralised veins intersect major competency contrasts such as high magnesium basalt or AFT/AFF, veining becomes layer parallel resulting in larger deposits such as the Bolland and Cable deposits.</p> <p>A number of styles of gold mineralisation have been identified in the area including:</p> <ul style="list-style-type: none"> Mineralised AFT and AFF material ± quartz veining (Cable East, Cable Central); Quartz veins ± altered ultramafic and basalts (Cable West, Highway, Lucknow, Maybelle, Maybelle North, Miners' Dream); and Gold mineralisation within laterite (Anchor, Bolland, Drogue). <p>Below the base of complete oxidation (~40m) gold mineralisation is commonly seen associated with quartz-pyrrhotite veins and pyrrhotite replacement of the host rocks. Prospective models for the discovery of additional gold deposits in the area are related to the intersection of shear zones with prospective lithologies.</p>
Drill hole Information	<p><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i></p> <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. <p><i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i></p>	<p>Drill hole details are provided in Appendix 1. Results that are interpreted to be discontinuous, or outside the areas of interest may not be highlighted in the announcement. Incomplete results are being reported at the direction of the Executive Director.</p>
Data aggregation methods	<p><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i></p>	<p>Significant intercepts are reported as down-hole length-weighted averages of grades above a nominal 0.5 g/t Au; or according to geological/mineralised units in occasional cases where warranted. No top cuts have been applied to the reporting of the assay results.</p>
	<p><i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i></p>	<p>Higher grade intervals are included in the reported grade intervals; and have also been split out on a case-by-case basis where relevant.</p>
	<p><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i></p>	<p>No metal equivalent values are used.</p>
Relationship between mineralisation widths and intercept lengths	<p><i>These relationships are particularly important in the reporting of Exploration Results.</i></p> <p><i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i></p> <p><i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i></p>	<p>The bulk of the exploration drilling was conducted so that results would be close to orthogonal to the mineralisation as understood at the time; however, the true relationship to the mineralisation is not accurately determined. Due to restrictions of access, such as from historic open pits, the drill angle may be compromised. Cross sections are included in the announcement to illustrate the interpreted orientation of the drillhole to the mineralisation.</p> <p>True widths of intersections in this announcement are interpreted to be 70-100% of the downhole width.</p>

Criteria	JORC Code explanation	Commentary
Diagrams	<p><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i></p>	Refer to Figures in the body of this announcement and Appendix 1.
Balanced reporting	<p><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i></p>	<p>Balanced reporting has been used. The Executive Director required the release of incomplete results as per Section 674(2)(d). The exploration results should be considered indicative of mineralisation styles in the region. Exploration results illustrated may be highlights of the drilling and are not meant to represent prospect scale mineralisation. As the projects are brownfields exploration targets, and there are large numbers of holes drilled over the region, it is considered appropriate to illustrate mineralised and non-mineralised drill holes using diagrams, with reference to the table of significant intercepts.</p> <p>RC grade control holes are not displayed within the open pit and off section RC and RAB holes may not be displayed for clarity. Removing the off section holes does not materially change the interpretation from the that displayed. Results of assaying of metallurgical holes may not be reported where sample preparation and assaying is inconsistent with resource data.</p>
Other substantive exploration data	<p><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater; geotechnical and rock characteristics; potential deleterious or contaminating substances.</i></p>	No other meaningful data is required to be presented other than what has been presented in the body of this announcement. The reader is referred to the Independent Geologists Report in the Odyssey Gold Prospectus and subsequent announcements.
Further work	<p><i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i></p>	<p>Metallurgical testwork and mining technical studies are continuing. Additional drilling is planned to upgrade Inferred Resources to Indicated based on the outcome of the mining study. Similarly conventional testwork will be prioritised based on the mining study and will include SMC, bond abrasion Index determination, grind optimisation, gravity separation, and magnetic separation along with direct cyanidation with oxygenation.</p>

ⁱ Refer ASX announcement dated 15 February 2024

ⁱⁱ Refer ASX announcement dated 2 August 2024

ⁱⁱⁱ Refer ASX announcement dated 15 June 2022

^{iv} Refer ASX announcement dated 20 November 2024

^v Refer ASX announcement dated 1 September 2025

^{vi} Refer ASX announcement dated 20 January 2022

^{vii} Refer ASX announcement dated 15 February 2024

^{viii} Gilla on behalf of the Yugunga-Nya People v State of Western Australia (No 3) [2021] FCA 1338

Other referenced results can be found in ASX announcements dated 27 November 2020, 22 January 2022, 15 June 2022, 4 August 2022, 21 November 2022, 28 November 2022, 2 August 2023, and 15 February 2024 available on the Company website.