

Maiden Sampling Identifies District-Scale Critical Minerals System at Blue Lagoon - Greenland

Consistent High-Grade Zirconium, Hafnium, REE Mineralisation over ~2.7km strike

Highlights

- Maiden sampling program at the Blue Lagoon Project (Blue Lagoon) unlocks new **Zirconium (Zr)** and **Rare Earth Elements (REE)** potential district in Greenland.
- First sampling program at Blue Lagoon since 1979 has successfully returned elevated **Zr + REE mineralisation**. **All 113 samples returned anomalous values, across a ~2.7km strike** – indicating a highly prospective **new critical metals district in Greenland**.

Zirconium & Hafnium

- Exceptional high-grade **Zirconium Oxide (ZrO₂) and Hafnium Oxide (HfO₂)** surface samples include:
 - **4.42% ZrO₂ & 98ppm HfO₂** (Sediment Sample 26818D)
 - **4.09% ZrO₂ & 99ppm HfO₂** (Sediment Sample 26817D)
 - **3.82% ZrO₂ & 82ppm HfO₂** (Sediment Sample 26808D)
 - **3.58% ZrO₂ & 61ppm HfO₂** (Sediment Sample 26820D)
 - **3.13% ZrO₂ & 62ppm HfO₂** (Sediment Sample 26803D)
 - **2.85% ZrO₂ & 73ppm HfO₂** (Sediment Sample 26806D)
- **>2% ZrO₂ and >40ppm HfO₂ encountered in auger holes and sediment samples across the entire ~2.7km strike**, indicating a large-scale, broad and well mineralised target area.
- **Hafnium is a critical semiconductor metal, which has become vital for supercharging the next-generation microchips and semiconductors**, due to its high-K constant (dielectric constant) allowing Hafnium to store significantly more electrical charge than traditional SiO₂ based semiconductors.
- **HfO₂ has a K-constant approximately ~6x higher than SiO₂**, with one of the highest melting points of any compound, **resulting in >1000x reduction in electron leakage through transistors versus SiO₂** – underpinning the next generation of high-performing semiconductors¹.
- **HfO₂ (High Purity) indicative sale price currently at AU \$16,297/kg**, reflecting its advanced chemical properties, increasing demand in high-tech applications, and the scarcity of hafnium-bearing minerals².
 - Blue Lagoon sampling has confirmed a ~2.7km strike with >2% ZrO₂ and >40ppm HfO₂ at surface, with potential for Hafnium grades to concentrate further at depth, subject to drilling confirmation.

Rare Earths

- The Blue Lagoon Project has returned **high-grade REE results** with consistent elevated Magnet Rare Earth Oxides (**MREO**)¹³ encountered at surface, with Total Rare Earth Oxide (**TREO**)^{13,16} grades highlighted by:
 - **8,079 ppm TREO with 29% MREO** (Sediment Sample 26824D)
 - **6,491 ppm TREO with 27% MREO** (Sediment Sample 26801D)
 - **5,668 ppm TREO with 27% MREO** (Sediment Sample 26824C)
 - **5,654 ppm TREO with 27% MREO** (Sediment Sample 26823D)
 - **5,519 ppm TREO with 25% MREO** (Sediment Sample 26818D)
- Blue Lagoon has shown exceptional Heavy Rare Earth Oxides (**HREO**)^{14,15} enriched in Dysprosium (**Dy₂O₃**) and Terbium (**Tb₄O₇**) grades encountered at surface, unlocking a new completely untapped district in Greenland:
 - **886ppm HREO** (Sediment Sample 26824D)
 - **752ppm HREO** (Sediment Sample 26801D)
 - **742ppm HREO** (Sediment Sample 26823D)
 - **682ppm HREO** (Sediment Sample 26807D)
 - **654ppm HREO** (Sediment Sample 26806D)
 - **628ppm HREO** (Sediment Sample 26818D)
 - **615ppm HREO** (Sediment Sample 26808D)
 - **597ppm HREO** (Sediment Sample 26824C)
 - **596ppm HREO** (Sediment Sample 26817D)
 - **589ppm HREO** (Sediment Sample 26822D)
 - **559ppm HREO** (Sediment Sample 26820D)
- TREO grades and HREO grades have the strong potential to improve as Dalaroo continues to assess full district potential of the Blue Lagoon Project and drill test immediate targets to determine the scale of the mineralised system.
- **Importantly, sampling at Blue Lagoon has returned low Uranium levels**, with a maximum reading of 25ppm U₃O₈ which has the potential to simplify processing complexities and encouragingly falls below the 100ppm uranium threshold levels for permitting in Greenland
- **Placer & Liberated REE Potential:** These exceptional REE grades were encountered at surface, consistently over the **entire ~2.7km strike**. With the natural weathering having **enriched the REE into beach-like alluvial sediments** – indicating **potential for a proximal placer style REE deposit**, where REE grains have been freely-liberated and **has the potential to produce a REE concentrate through low CAPEX, simple physical separation methods**.

Multi-Element Critical Mineral Potential

- Maiden sampling of the Blue Lagoon Project has shown early potential for discovery of a new critical minerals district in Greenland for Zr, REE, Hf and **Gallium (Ga₂O₃)**, consisting similar geology as Tanbreez⁴⁻⁷:
 - Sample 26801D – 1.59% ZrO₂, 78ppm HfO₂, 71ppm Ga₂O₃, 6,491ppm TREO, 886ppm HREO
 - Sample 26818D – 4.42% ZrO₂, 98ppm HfO₂, 31ppm Ga₂O₃, 5,518ppm TREO, 628ppm HREO
 - Sample 26823D – 2.69% ZrO₂, 54ppm HfO₂, 39ppm Ga₂O₃, 5,654ppm TREO, 742ppm HREO

Strategic Significance

- Greenland continues to attract growing strategic interest from Western governments seeking secure, transparent, and conflict-free critical mineral supply chains. Its geopolitical position and resource endowment highlight Greenland's increasing importance as a stable source of critical minerals for Western markets.

Favourable Uranium and Thorium Assays

- Maiden assay results have returned low uranium levels in compliance with Greenland's uranium ban under Act No 20 (Uranium Act) passed December 2021¹⁰ in which uranium exploration and production is prohibited above a 100ppm threshold.

Upcoming Newsflows

- **Follow-up exploration and development work** is planned to commence immediately.
- **Upcoming catalysts may include:** desktop studies, geophysics analysis, ground geophysical programs (magnetics), radiometric and gravity surveys, 3D geological modelling, Phase 2 field program including drilling and exploration results; metallurgical testing; potential commercial collaborations; and ongoing engagement with the Government of Greenland and other relevant authorities, bodies and institutions.
- **Once Metallurgical work is completed Dalaroo will also be investigating; near term development and processing options for Blue Lagoon including gravity-separation mining and downstream processing of the Blue Lagoon Project.**

Fully Funded Following Recent Capital Raise

- Dalaroo is fully funded following its recent \$0.055 per share capital raising as announced on the 15 October 2025 – to conduct upcoming catalysts in Greenland on the Blue Lagoon Project and as well as drilling in Côte d'Ivoire.

Dalaroo CEO John Morgan commented:

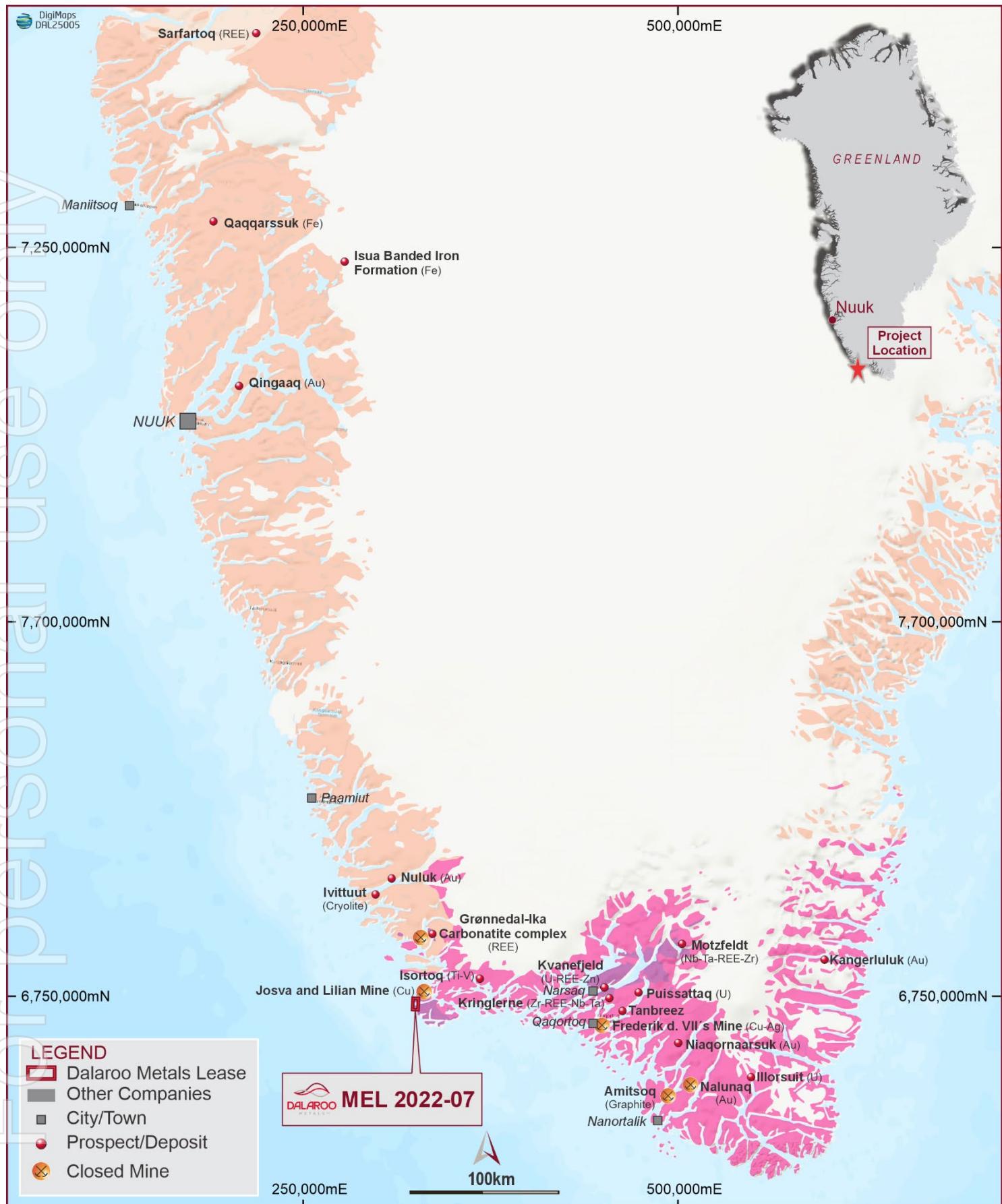
“These maiden results represent a highly encouraging start to modern exploration at the Blue Lagoon Project and provide strong validation of the historical Greenland and Denmark Geological Survey (GEUS) geochemical anomalies that originally attracted us to this area.

“The scale and consistency of rare earth, niobium and zirconium anomalism over a ~2.7-kilometre strike, combined with exceptionally low uranium and thorium levels, confirms we are dealing with a robust and regionally extensive critical minerals system.

“While these results are from first-pass surface sampling, they already demonstrate grades comparable with early-stage results from several globally recognised alkaline-hosted rare earth systems in Greenland. Importantly, this work confirms that the Project hosts a fertile mineral system with clear potential to grow through systematic follow-up exploration.”

Dalaroo Metals Limited (“**Dalaroo**” or the “**Company**”, **ASX:DAL**) is pleased to announce the results of its 2025 exploration program completed at the Company’s 100%-owned Blue Lagoon Project in Greenland (**Figure 1**).

The 2025 field program comprised a systematic, project-wide geochemical sampling campaign designed to evaluate the distribution, tenor and deportment of Rare Earth Elements (**REE**), including Light Rare Earth Elements (**LREE**) and Heavy Rare Earth Elements (**HREE**), together with niobium (**Nb**) and zirconium (**Zr**). Sampling focused on stream sediments, lagoon margin sediments and surficial materials, targeting both active and relict drainage systems, as well as beach and lagoon environments considered prospective for secondary enrichment and heavy mineral concentration.


At each sampling location, material was collected and separated into multiple grain-size fractions prior to laboratory analysis. This methodology was implemented to assess metal partitioning, identify preferential size fractions hosting mineralisation, and evaluate the potential for natural upgrading and future beneficiation pathways. The multi-fraction approach provides valuable insights into the behaviour of critical minerals within the weathering profile and sedimentary environment.

Analytical results confirm strong, coherent multi-element anomalism in Total Rare Earth Oxides (**TREO**), LREE, and Heavy Rare Earth Oxides (**HREO**), together with Nb and Zr, across broad areas of the Project. The spatial distribution and magnitude of these anomalies demonstrate a strong correlation with historical regional geochemical data generated by the Greenland and Denmark Geological Survey (**GEUS**) in 1979. Importantly, this historical dataset had not been systematically followed up using modern exploration techniques prior to Dalaroo’s maiden sampling program.

Validation of the GEUS dataset significantly de-risks the Project and provides independent confirmation of the regional prospectivity for critical minerals. The persistence of anomalism across multiple sample types and grain-size fractions suggests a robust mineralising system and supports Dalaroo’s exploration model, which targets near-surface, potentially low-complexity mineralisation styles associated with alkaline intrusive systems.

The presence of coherent TREO, LREE and HREO anomalism is consistent with geological models for alkaline-hosted and secondary enriched mineral systems, which globally host several significant critical mineral deposits. The enrichment in both light and heavy rare earth elements highlights the potential for a balanced REE assemblage, including magnet metals critical for clean energy and advanced technology applications.

The maiden program has successfully established a strong geochemical foundation for follow-up exploration. Results will be integrated with geological mapping, mineralogical studies and remote sensing data to refine priority target areas. Planned next steps include infill sampling, trenching and shallow drilling to test the source and geometry of the anomalous zones and to assess continuity and grade distribution.

Figure 1. Map of southern Greenland showing project location and other relevant deposits.

Jurisdictional Significance

The Blue Lagoon Project is closely aligned with Dalaroo's strategy to build exposure to high-value critical minerals within stable, premier jurisdictions. Greenland has become a focal point for governments and industry seeking conflict-free, secure, transparent and responsibly developed sources of rare earth elements, niobium and zirconium. Greenland's geological endowment, combined with supportive regulatory frameworks and strong geopolitical relevance, positions the region as an increasingly important contributor to Western supply chains.

Recent public statements from both the U.S. Administration and the European Union have reaffirmed Greenland's emerging role in global critical-minerals diversification efforts. These agencies continue to emphasise the importance of establishing resilient supply routes for the production of conflict-free rare earths and related strategic metals, particularly as Western economies work to reduce dependency on single-source suppliers and strengthen long-term industrial resilience.

Against this backdrop, Dalaroo's exploration success at Blue Lagoon provides timely exposure to a jurisdiction that is attracting heightened international interest. The initial field program has identified key geological features supportive of a potentially significant critical-minerals system. This positions the Company to meaningfully participate in the broader strategic shift underway, with Blue Lagoon offering an opportunity to advance a project that may contribute to future Western supply-chain security.

Exploration Work Completed

Two principal exploration work streams were completed at the Blue Lagoon Project during the 2025 field season, representing the first phase of systematic modern exploration across the Project area (**Figure 2**). The first completed work stream comprised hand-auger drilling targeting beach-like sedimentary deposits along the Blue Lagoon shoreline and surrounds. **Seven (7) auger** holes were completed to depths of approximately **0.4–0.9 m**, with average sample weights of **~2 kg**.

These surficial environments are interpreted as favourable for the development of weathered, fine-grained heavy mineral sand and residual concentrations. Such settings are considered prospective for secondary enrichment of niobium, zirconium and rare earth elements through prolonged weathering, sedimentary reworking and hydraulic sorting. Auger drilling provided a low-impact method to test near-surface stratigraphy and geochemical characteristics.

The second completed work stream comprised of a project-wide geochemical sampling and prospecting program across the broader tenement package (Figure 1). **Twenty-six (26) samples** were collected over **~2.5 km²**, equating to an average density of approximately one sample per **0.1 km²**, consistent with first-pass regional exploration. Sampling included systematic stream-sediment, soil and rock-chip sampling combined with geological reconnaissance. The program aimed to establish a geochemical framework, define background and anomalous distributions, and identify trends associated with potential alkaline-related mineralisation systems.

Samples were collected as **–2 mm** field material and dried and sieved into multiple grain-size fractions to assess metal deportment and upgrading potential. Size fractions analysed included:

- -2.0mm to +1.0mm
- -1.0mm to +0.5mm
- -0.5mm to +0.25mm
- -0.25 mm

All auger samples were analysed as a **–0.25 mm** fraction, consistent with JORC sampling protocols.

Following preparation and splitting, **113 samples** were submitted to **ALS Laboratories Ltd (Perth)** for multi-element analysis using fusion digestion and ICP-MS. All samples returned anomalous values above background across the **2.7 km** area sampled.

This continuous anomalous zone demonstrates strong geological continuity and indicates a laterally extensive mineralised system rather than isolated point anomalies, enhancing the scale potential of the target area.

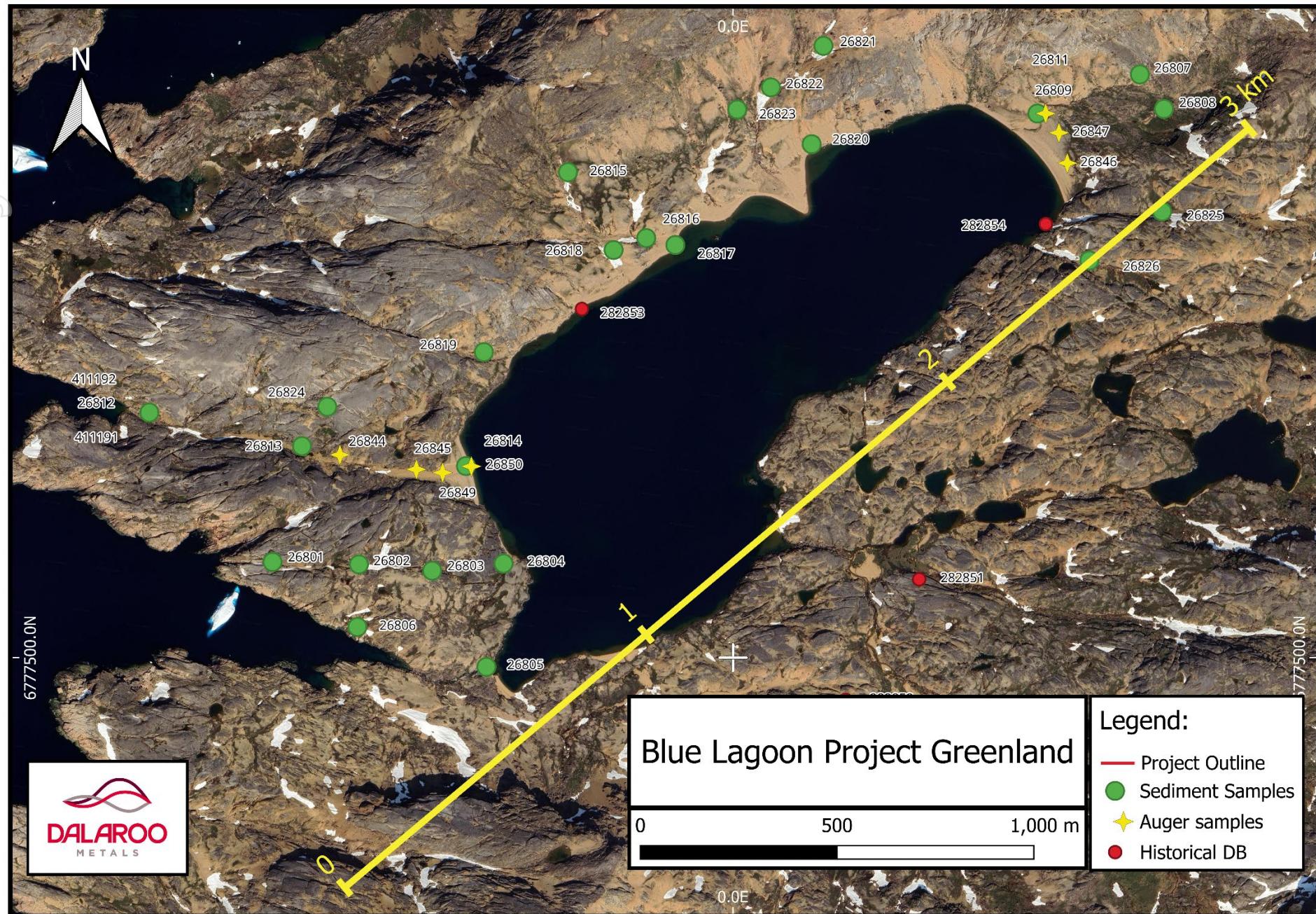


Figure 2. Shows location of samples taken during 2025 exploration season. **For clarity A to D suffixes have been removed. Samples with same suffix are duplicates at different grain size.

Blue Lagoon Exploration Results

Niobium (Nb)

Niobium results are highly anomalous across the project area:

- Typical values range between **400 and 1,000 ppm Nb**
- Peak value recorded of **~1,465 ppm Nb**
- Background crustal abundance is approximately 20 ppm

These results represent **20 to 70 times background levels**, confirming a highly prospective niobium system.

The anomalous is:

- Spatially coherent
- Repeatable across multiple sites
- Consistent across size fractions

This strongly suggests the presence of:

- Fertile alkaline or carbonatite-style intrusives
- Potential primary pyrochlore-style niobium mineralisation.

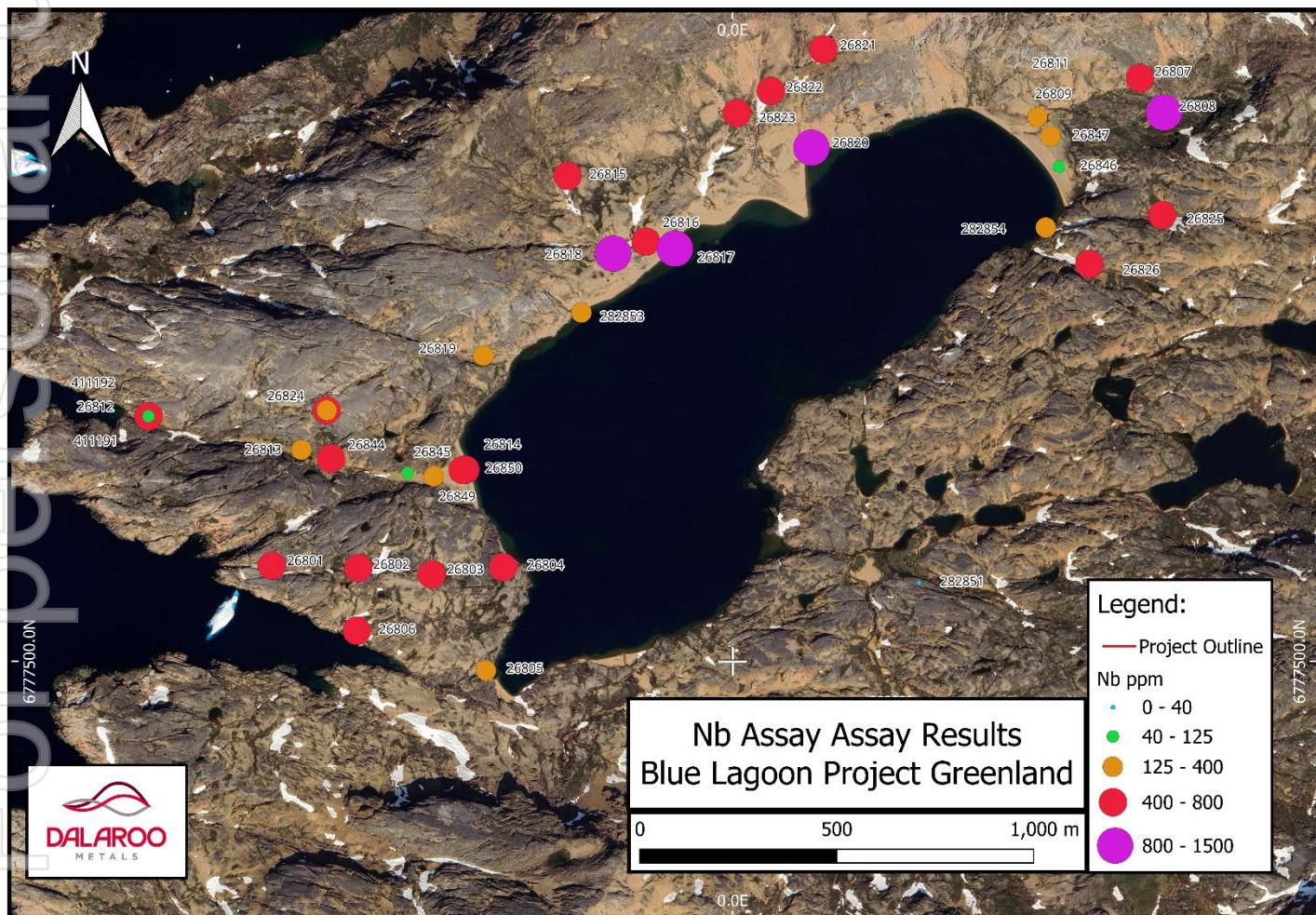
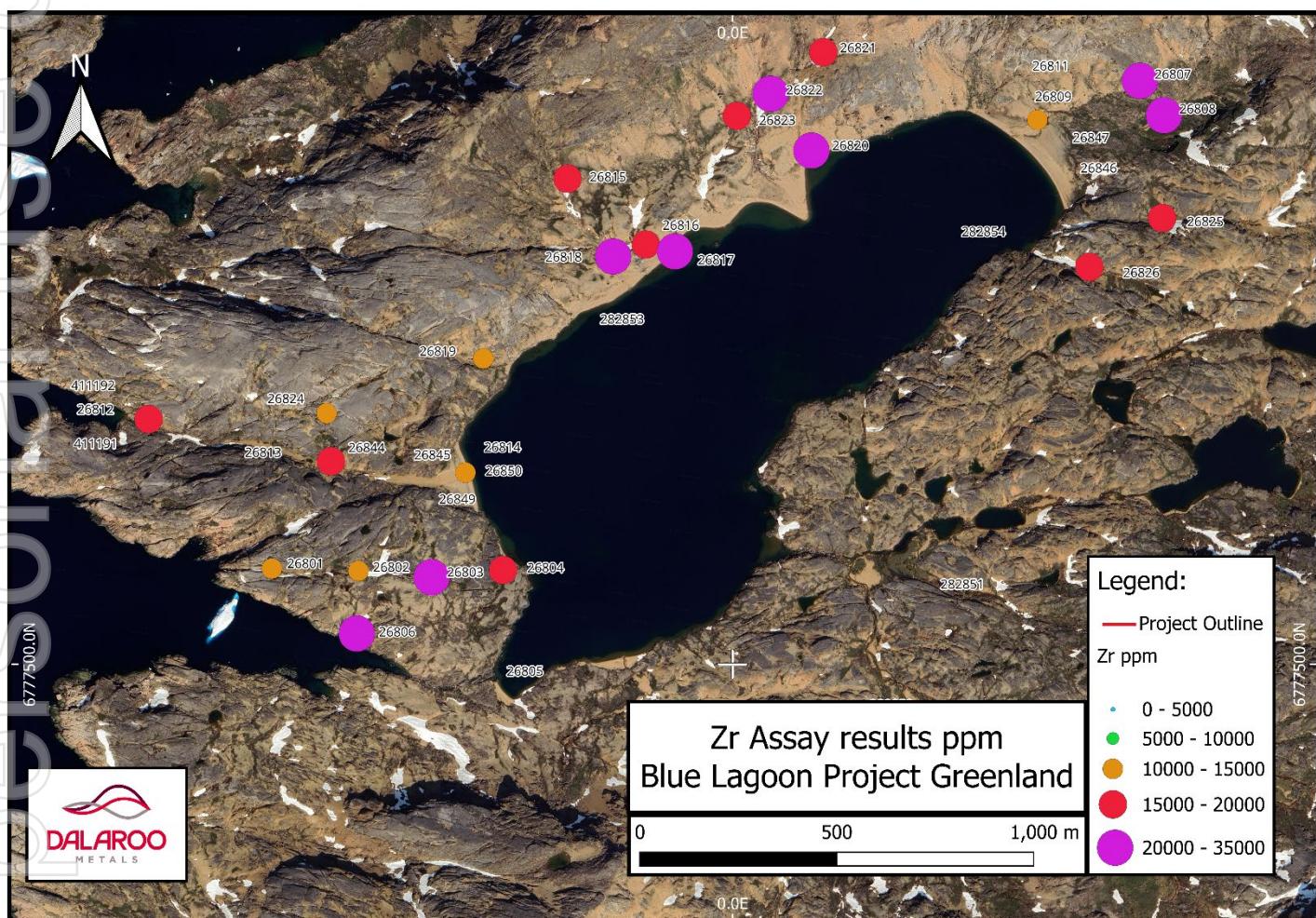


Figure 3. Nb Assay Results from Blue Lagoon Project.


Zirconium (Zr)

Zirconium values are outstanding across the dataset:

- Numerous samples exceeding **10,000 ppm Zr**
- Peak result of approximately **32,700 ppm Zr**

The consistency and magnitude of zirconium enrichment confirms:

- Abundant zircon-rich heavy mineral assemblages
- Strong provenance from alkaline intrusive source rocks
- Potential for both:
 - Secondary placer-style accumulations
 - Primary hard-rock zirconium sources

Figure 4. Zr Assay results from Blue Lagoon Project.

Hafnium (Hf)

Multiple sediment and auger samples returned **consistently elevated hafnium values across the entire 2.7 km strike**, with standout results including:

- 99 ppm Hf (Sample 26817D)
- 98 ppm Hf (Sample 26818D)
- 82 ppm Hf (Sample 26808D)
- 73 ppm Hf (Sample 26806D)
- 62 ppm Hf (Sample 26803D)
- 61 ppm Hf (Sample 26820D)

Importantly, **hafnium values exceeding 40 ppm were recorded continuously along strike**, demonstrating strong geological continuity and indicating a laterally extensive mineralised system rather than isolated point anomalies. Hafnium shows a strong spatial correlation with zirconium, consistent with **zircon-hosted hafnium mineralisation**, which is characteristic of alkaline intrusive systems. This relationship confirms a common magmatic source and supports the interpretation of a fertile alkaline system underlying the Project area.

Grain-size fractionation analysis demonstrates **systematic hafnium enrichment in finer fractions**, with peak values consistently occurring in the -0.25 mm size fraction. These results indicates:

- Hafnium is hosted within fine heavy mineral phases
- Natural upgrading through weathering and sedimentary sorting
- Potential for low-cost physical beneficiation via gravity separation

Strategic Significance of Hafnium

Hafnium is an emerging **critical semiconductor metal**, essential for next-generation microchips and advanced electronics. Hafnium oxide (HfO₂) is rapidly replacing silicon dioxide (SiO₂) in transistor gate dielectrics due to its:

- High dielectric constant (K-constant ~6x higher than SiO₂)
- Extremely low electron leakage
- Exceptional thermal stability and high melting point

These properties enable **higher performance, smaller and more energy-efficient semiconductors**, making hafnium a strategically important metal for global technology supply chains.

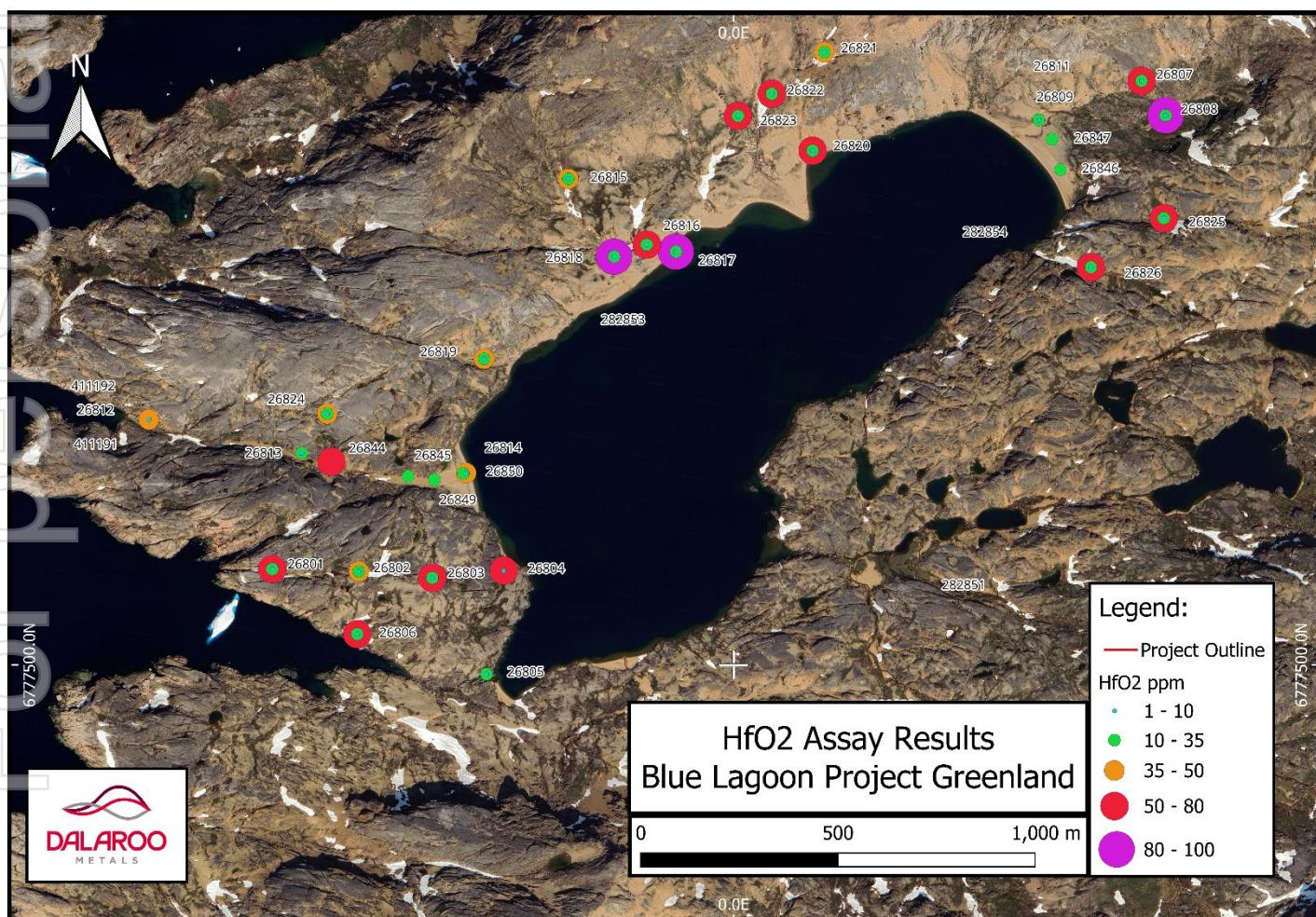


Figure 5. HfO₂ Assay results at Blue Lagoon Project.

TREO (Total Rare Earth Oxide) Results:

This program represents only the first phase of modern exploration for the Blue Lagoon Project. Dalaroo is now planning follow-up work to including detailed geochemistry, mineralogical studies and shallow drilling to better understand the scale, continuity and source of these anomalous systems.

Peak samples returned calculated TREO values of up to **~8,079 ppm (0.81% TREO)**, confirming a highly anomalous rare earth system at surface.

The scale of TREO anomalism observed at surface at Blue Lagoon is highly significant and aligns with — and in several cases exceeds — early-stage results reported from globally recognised alkaline-hosted REE systems in Greenland and other leading international jurisdictions.

Blue Lagoon has returned values of up to **~8,079 ppm TREO** from first-pass surface sampling, highlighting the strength of the system and supporting the Company's view that the Project hosts a highly prospective alkaline-related mineral system.

TREO values are calculated from individual rare earth element assays using standard oxide conversion factors and are indicative only (**Appendix D**). TREO values are indicative only and do not represent a Mineral Resource Estimate.

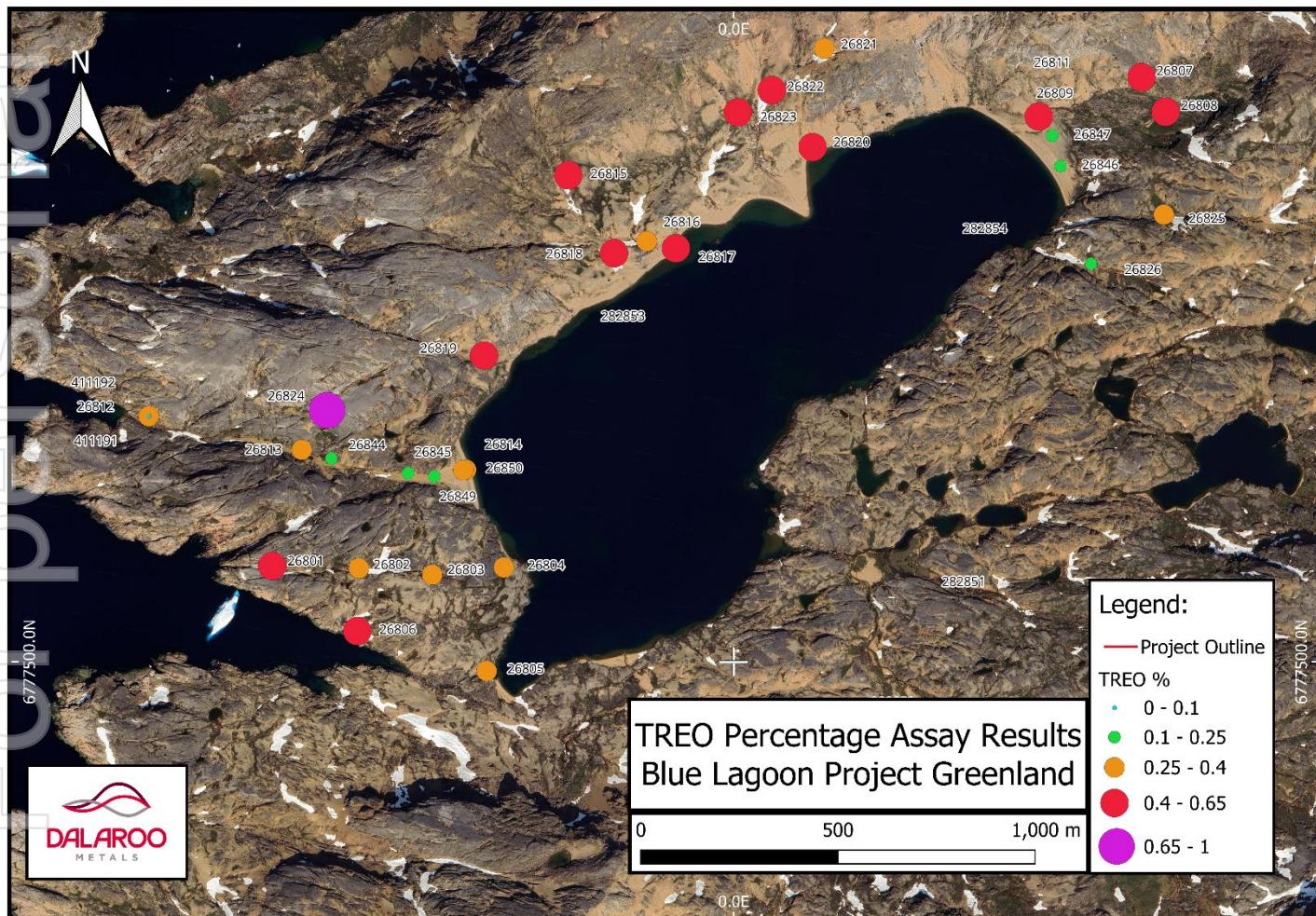


Figure 6. TREO Assay results in percentage at Blue Lagoon Project.

Light Rare Earth Elements (LREE)

The program returned **exceptionally strong LREE results**, confirming significant enrichment in economically important magnet and industrial elements. Peak values recorded include:

- **Cerium (Ce)> 2,000 ppm**
- **Lanthanum (La) > 1,200 ppm**
- **Neodymium (Nd) ~900 ppm**
- **Praseodymium (Pr) > 250ppm**
- **Samarium (Sm) ~ 150 ppm**

LREE enrichment shows strong spatial continuity across multiple sampling locations, demonstrating a coherent mineralised system rather than isolated anomalies. Grades consistently increase in finer fractions, indicating LREEs are hosted within fine-grained accessory minerals such as monazite and allanite.

The strong La–Ce–Pr–Nd association is diagnostic of alkaline intrusive-related REE systems, supporting the Company's geological model for the Project.

Heavy Rare Earth Oxides (HREO)

The program at the Blue Lagoon Project has returned **exceptionally strong Heavy Rare Earth Oxide (HREO) results**, with multiple samples reporting elevated concentrations of critical magnet metals including dysprosium (Dy_2O_3) and terbium (Tb_4O_7). These elements are essential for high-performance permanent magnets used in electric vehicles, wind turbines and advanced defence technologies.

Peak HREO values recorded from surface sampling include:

- **886 ppm HREO** (Sample 26824D)
- **752 ppm HREO** (Sample 26801D)
- **742 ppm HREO** (Sample 26823D)
- **682 ppm HREO** (Sample 26807D)
- **654 ppm HREO** (Sample 26806D)
- **628 ppm HREO** (Sample 26818D)
- **615 ppm HREO** (Sample 26808D)
- **597 ppm HREO** (Sample 26824C)

The consistent presence of elevated HREO values across multiple locations and grain-size fractions demonstrates a **robust and laterally continuous heavy rare earth system**. HREO enrichment is observed to systematically increase within the finest grain-size fractions (-0.25 mm), indicating preferential concentration within fine heavy mineral phases. This behaviour supports the Company's exploration model and suggests strong potential for natural **upgrading and simplified beneficiation** through low-cost physical separation techniques.

The presence of elevated HREO grades at surface, combined with extremely low uranium and thorium levels, positions Blue Lagoon as a **highly attractive emerging heavy rare earth district** with potential to contribute to secure Western supply chains.

Grain Size Fractionation

One of the most significant technical outcomes of the program is the **systematic increase in grade with decreasing grain size**. This relationship is observed consistently across:

- Rare earth elements
- Niobium
- Zirconium

The strongest enrichment occurs within the **finest fraction (-0.25 mm)**, indicating:

- Metals are hosted within fine heavy mineral phases
- Natural upgrading through weathering processes
- Potential for simplified beneficiation and processing using simple screening and gravity separation

Uranium and Thorium

Uranium and thorium results across the dataset are consistently **low and near background levels**, with no significant anomalism identified. This is an important and favourable characteristic of the Project, as it indicates that rare earth mineralisation is **not associated with elevated radioactive elements**.

The low U and Th values are consistent across all sample types and grain-size fractions, confirming that the REE system is **non-radioactive in nature**. This significantly reduces potential permitting, handling and transport constraints and is considered a **positive metallurgical and environmental attribute**.

The absence of elevated uranium and thorium distinguishes Blue Lagoon from several other Greenland REE projects and enhances its attractiveness as a **potential future development opportunity**.

Historical Exploration Work

A GEUS regional stream sediment sampling program took a total of 9 stream sediment samples from the current tenement area in 1979. These indicate the area as being anomalous in zirconium, niobium and REEs, particularly the magnetic rare earth neodymium. Significantly the samples returned background to very low-level uranium and thorium content, which is critical for shipping and permitting. There is no record of any exploration having been undertaken on the tenement area to follow-up the anomalous results. Historic sample details in **Appendix C**.

Geological Setting

The Project lies within the Paleoproterozoic rift province of South Greenland (**Figure 7**), which comprises sedimentary sequences intruded by a variety of alkaline volcanic and plutonic igneous rocks. This rift setting was subsequently intruded by Mesoproterozoic Gardar-age alkaline intrusive complexes, which are recognised globally for their association with critical mineral systems.

Blue Lagoon Mineral Exploration Licence - MEL 2022-07 is located within the Helene alkaline granite, forming the westernmost exposure of the Nunarsuit Complex. The Nunarsuit Complex is the largest, and among the youngest, of the Gardar-age intrusions in South Greenland and is comprised predominantly of alkaline syenitic and granitic units. The Project area is bounded to the east by extensive alkalic syenite, further reinforcing the prospectivity of the geological setting for zirconium, niobium and rare earth element enrichment.

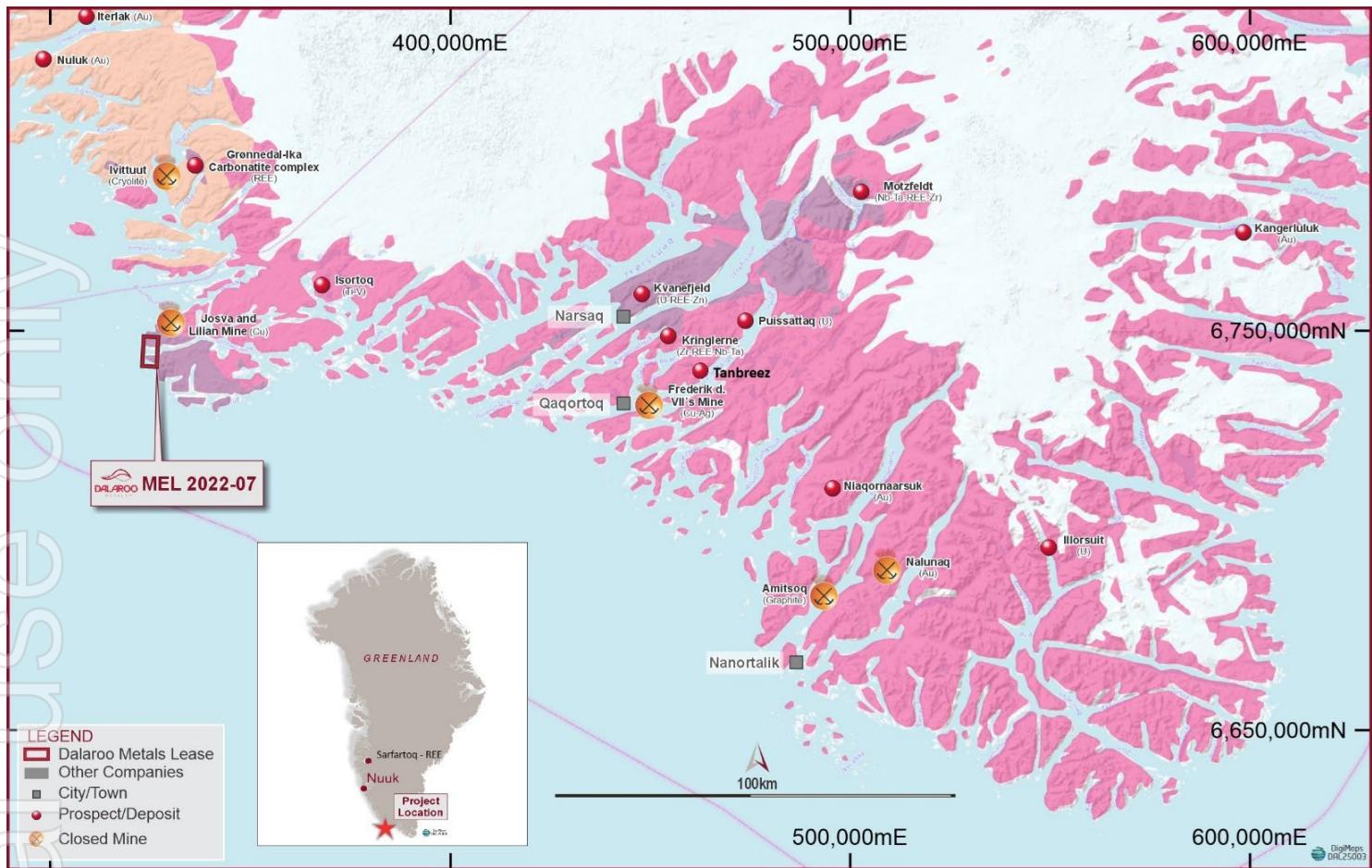


Figure 7. Location of the Blue Lagoon Project, South-West Greenland.

Follow up Exploration Activities

Planning for the 2026 exploration season is underway with **follow-up exploration and development work planned to commence immediately**, subject to permitting, weather conditions and logistical constraints. Dalaroo will undertake detailed interpretation of the 2025 exploration results to further refine its geological understanding of the Blue Lagoon Project and finalise planning for the upcoming field season. This work will integrate geochemical datasets with geological mapping, grain-size fraction analysis, mineralogical observations and remote sensing to prioritise target areas and refine the Company's exploration model.

Upcoming catalysts include:

- Desktop geological and geochemical studies integrating all historical and recent datasets.
- Topographic and ground geophysical programs, potentially including magnetic geophysical surveys to assist in refining geological and structural controls to prioritise targeting of prospective zones.
- A staged Phase 2 field program, including:
 - Ground Penetrating Radar (GPR) to map sediment thickness, internal stratigraphy and bedrock topography.
 - Follow-up auger and/or sonic drilling to test anomalies at depth and assess vertical grade continuity
 - Handheld XRF surveys for rapid, in-field geochemical screening and real-time targeting
 - Upslope and source-area sampling to identify potential primary bedrock sources
- Mineralogical and metallurgical studies to characterise REE, Nb and Zr host phases, assess liberation characteristics and evaluate physical beneficiation potential.
- Progressive reporting of exploration results to the market.

Strategic stakeholder engagement:

- Ongoing engagement will continue with the Government of Greenland and relevant Greenlandic authorities to support permitting, project development pathways and potential commercial collaborations.

Management Commentary

"Dalaroo's maiden exploration program at Blue Lagoon has delivered a strong technical foundation for the Project and confirms the presence of a coherent, large-scale critical minerals system. The results validate historical GEUS data and demonstrate that modern exploration techniques can unlock significant new opportunities within this under-explored region of Greenland.

"The consistent multi-element anomalous in rare earth elements, zirconium and niobium, combined with very low uranium and thorium levels, positions the Blue Lagoon Project as a highly compelling project within a favourable regulatory jurisdiction. Importantly, the enrichment of mineralisation within finer grain-size fractions highlights the potential for natural upgrading and supports the Company's focus on near-surface, potentially lower-complexity mineralisation styles.

"Following the Company's recent \$0.055 per share capital raising, Dalaroo is well funded to advance the next phase of exploration. Over the coming months, the technical team will complete detailed interpretation of the current dataset and integrate geochemistry, mapping and remote sensing to refine priority targets together with investigating near term processing and gravity separation mining options once an economical deposit has been defined.

These programs are designed to systematically de-risk the Project and assess the scale, continuity and economic potential of the mineralised system. The Company believes Blue Lagoon represents a significant growth opportunity and looks forward to providing the market with further updates the development of Blue Lagoon progresses."

ENDS

Authorised for release to the ASX by the Board of Dalaroo Metals Ltd.

For more information:

Please visit our website for more information: www.dalaroometals.com.au

John Morgan,
T: +61 410 774 319
E: jmorgan@dalaroometals.com.au

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on information compiled by John Morgan, a Member of the Australasian Institute of Mining and Metallurgy (AusIMM) and the CEO of Dalaroo Metals Ltd. Mr Morgan has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr Morgan consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

FORWARD-LOOKING STATEMENTS

This announcement contains forward-looking statements which are based on current expectations, assumptions, estimates and projections. Forward-looking statements are subject to known and unknown risks, uncertainties and other factors that may cause actual results, performance or achievements to differ materially from those expressed or implied. These risks include, but are not limited to, exploration success, geological interpretation, commodity price fluctuations, regulatory approvals, permitting timelines, operational risks and market conditions. Any statements regarding potential mineralisation, exploration targets, grades, scale or development concepts are conceptual in nature and based on early-stage surface sampling only. These statements do not constitute, and should not be construed as, a Mineral Resource or Ore Reserve estimate as defined under the JORC Code. References to peer projects, market pricing, strategic significance or potential future development pathways are provided for contextual purposes only and should not be interpreted as a forecast of future performance or valuation. Commodity pricing information is indicative only, subject to market volatility and should not be relied upon as a projection of future prices. Investors are cautioned not to place undue reliance on forward-looking statements. Dalaroo Metals Limited undertakes no obligation to update or revise any forward-looking statements, except as required by law.

The Company confirms it is not aware of any new information or data that materially affects the information included in this announcement.

References:

1. Southwick, Richard G. III, "An Investigation of Carrier Transport in Hafnium Oxide/Silicon Dioxide MOS Gate Dielectric Stacks from 5.6-400K" (2010). Boise State University Theses and Dissertations. 149. (<https://scholarworks.boisestate.edu/td/149>)
2. HfO₂ sale price of AU \$16,297/kg uses prices from website: <https://strategicmetalsinvest.com/hafnium-prices/> from the 9th of January and the exchange rate as of 12th January of \$1.49
3. Critical Metals Corp (NASDAQ:CRML), Critical Metals Corp Amends Agreement to Acquire a Controlling Interest in Tanbreez. announcement 29 September 2025,
4. Critical Metals Corp (NASDAQ:CRML), Critical Metals Corp. Unveils Exceptional Drilling Results Confirming Extensive Depth Potential at World-Class Tanbreez Rare Earth Project. announcement 17 March 2025.
5. Critical Metals Corp (NASDAQ:CRML), Critical Metals Corp Publishes Compelling Deep Diamond Drill Results from Tanbreez Greenland. Announcement May 9 2025
6. Critical Metals Corp (NASDAQ:CRML), Tanbreez Project <https://www.criticalmetalscorp.com/projects/project-tanbreez/>
7. Critical Metals Corp (NASDAQ:CRML), Independent Technical Assessment 12 March 2025. <https://www.criticalmetalscorp.com/wp-content/uploads/2025/11/S-K-1300-Technical-Report-Summary-Tanbreez-Project-FINAL-12-March-2025.pdf>
8. Greenland Minerals and Energy Ltd (ASX:GGG), Kvanefjeld Project – Mineral Resource Update: 143 Million Tonnes Defined In 'Measured' Category, Global Resources Over 1 Billion Tonnes . Announcement 12th February 2015.
9. <https://www.9news.com.au/world/donald-trump-greenland-takeover-threat-china-russia/9815c98e-11de-4c64-a9d3-681e2df422b6>
10. Danish Government Bill – Passed 1 December 2021. [https://govmin.gl/wp-content/uploads/2022/01/Uranlov-ENG.pdf?](https://govmin.gl/wp-content/uploads/2022/01/Uranlov-ENG.pdf)
11. Critical Metals Corp (NASDAQ:CRML), Critical Metals Corp Reports Extremely High-Grade Drilling Results From its 2024 Program: 103 PPM Gallium & rare earth elements of 27.0% HREO & TREO Range 0.48% to 0.55% & Zirconium Oxide of 1.99% From Tanbreez in Greenland. Announcement August 18 2025.
12. Rosa, Paulick H., " Rare Earth Element (REE) exploration potential and projects in Greenland", MiMa report 2015/2
13. MREO = Dy₂O₃, Gd₂O₃, Ho₂O₃, Nd₂O₃, Pr₆O₁₁, Sm₂O₃, Tb₄O₇
14. TREO = Lanthanide Series of Elements + Y₂O₃
15. HREO = Dy₂O₃, Gd₂O₃, Ho₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃, Y₂O₃
16. Metal grades are reported as oxides following standard stoichiometric conversion.

JORC Table 1 (Section 1 & 2)

Section 1: Sampling Techniques and Data

Sub-section	JORC Code Explanation	Disclosure
Sampling techniques	<p>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used.</p> <p>Aspects of the determination of mineralisation that are Material to the Public Report.</p> <p>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</p>	<p>Sediment sampling: Stream/lagoon margin and surficial sediment sampling undertaken to test for heavy mineral concentration and secondary enrichment in a lake/lagoon environment. Most sediment samples were field-sieved to -2 mm, with $\sim 2.5\text{--}3.0\text{ kg}$ collected per site. A total of 26 sediment sample sites were collected across $\sim 2.5\text{ km}^2$ ($\sim 1\text{ sample per }0.1\text{ km}^2$). Samples were dried and sieved into four size fractions ($-2+1\text{ mm}$; $-1+0.5\text{ mm}$; $-0.5+0.25\text{ mm}$; -0.25 mm) and each fraction analysed.</p> <p>Auger sampling: 7 hand-auger holes completed in beach and stream-valley sediment settings. Hole depth $0.4\text{--}0.9\text{ m}$. Samples dried and sieved to -0.25 mm for analysis. Sampling difficulty occurred in coarse beds; recovery was poorer below water table in some locations.</p> <p>Representativity: The multi-fraction approach was designed to assess element deportment by grain size and identify preferentially enriched fractions. Sediment sample mass and sieve fractions are considered appropriate for early-stage reconnaissance in unconsolidated material.</p>
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Hand-held auger (manual) to shallow depths ($0.4\text{--}0.9\text{ m}$). In some locations, shallow overburden was removed by spade to access the target sediment horizon.
Drill sample recovery	<p>Method of recording and assessing core and chip sample recoveries and results assessed.</p> <p>Measures taken to maximise sample recovery and ensure representative nature of the samples.</p> <p>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</p>	<p>Not applicable in the JORC sense (no core/chip drilling).</p> <p>For auger holes, recovery varied with sediment texture and groundwater; poorer recovery occurred below groundwater in some holes due to coarse beds and saturation. This may bias against coarser fractions; however, the analysed fraction for auger was -0.25 mm, reducing bias from preferential loss of coarse material.</p>

Sub-section	JORC Code Explanation	Disclosure
Logging	<p>Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</p> <p>Whether logging is qualitative or quantitative in nature. Core (or costean/trench, channel, etc) photography.</p> <p>The total length and percentage of the relevant intersections logged.</p>	No drill core/chip logging. Field observations were collected to support reconnaissance targeting; detailed geological logging is not considered appropriate at this stage.
Sub-sampling techniques / sample preparation	<p>If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</p> <p>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</p> <p>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</p> <p>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.</p>	<p>Field samples generally collected as -2 mm (sediments). Samples were dried and sieved into four grain-size fractions (-2+1 mm; -1+0.5 mm; -0.5+0.25 mm; -0.25 mm) and each fraction submitted for assay.</p> <p>Auger samples were dried and sieved to produce a -0.25 mm fraction for analysis.</p> <p>Sample sizes (2–3 kg for sediment sites; ~2 kg for auger) are considered appropriate for early-stage geochemical reconnaissance in unconsolidated materials.</p>
Quality of assay data and laboratory tests	<p>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</p> <p>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</p> <p>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</p>	<p>Sample sizes (2–3 kg for sediment sites; ~2 kg for auger) are considered appropriate for early-stage geochemical reconnaissance in unconsolidated materials.</p> <p>Results for REE were also reported and discussed as oxide equivalents (TREO/HREO/MREO) using standard stoichiometric conversion factors (e.g., La→La₂O₃; Ce→CeO₂; Pr→Pr₆O₁₁; Nd→Nd₂O₃; Y→Y₂O₃), checked against a publicly available JCU conversion table.</p> <p>No field standards, blanks or duplicates were inserted due to the reconnaissance nature and remote logistics of the program. The Company relied on ALS laboratory QA/QC checks. Field QA/QC insertion will be implemented in follow-up programs.</p>
Verification of sampling and assaying	<p>The verification of significant intersections by either independent or alternative company personnel.</p> <p>The use of twinned holes. The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data</p>	Assay results for rare earth elements have been converted to Total Rare Earth Oxides ('TREO') by applying standard stoichiometric conversion factors (e.g., La to La ₂ O ₃ , Ce to CeO ₂ , Pr to Pr ₆ O ₁₁ , Nd to Nd ₂ O ₃ , Y to Y ₂ O ₃) consistent with standard practice in geological surveys and industry reporting. Such oxide reporting is described in USGS publications and analytical reference materials and is widely adopted in Australian

Sub-section	JORC Code Explanation	Disclosure
		mineral exploration announcements. Conversion factors were checked by publicly available conversion table from James Cook University Australia.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used Quality and adequacy of topographic control	Sample locations recorded using handheld GPS . Coordinate system: WGS84 / UTM Zone 22N .
Data spacing and distribution	Data spacing for reporting of Exploration Results Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	Reconnaissance geochemical program covering ~2.5 km² with ~1 sample per 0.1 km² average density (sediment sites). This spacing is appropriate for early-stage target generation but is not sufficient for Mineral Resource estimation .
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Not applicable / not known at this stage due to reconnaissance sampling in surficial sediments. The program was designed to broadly test drainage and lagoon environments rather than structural intersections.
Sample security	The measures taken to ensure sample security	Samples were transported from site and stored in a secured facility in Copenhagen prior to onward freight to ALS Laboratories (Perth) . Chain-of-custody procedures were applied for delivery to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data	No external audits or reviews were completed for this early-stage program.

Section 2: Reporting of Exploration Results

Sub-section	JORC Code Explanation	Disclosure
Mineral tenement and land tenure status	<p>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</p> <p>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</p>	<p>Greenland Mineral Exploration Licence MEL 2022-07, issued to Ox Resources Pty Ltd (Greenland) and in transfer to Dalaroo Metals. All measures met; transfer processing with Greenland Government.</p>
Exploration done by other parties	<p>Acknowledgment and appraisal of exploration by other parties.</p>	<p>1979 GEUS regional stream sediment sampling identified anomalous Zr, Nb and REE with low U/Th; results are publicly available via the GEUS portal.</p> <p>2025 work completed on behalf of Dalaroo by experienced Greenland geologist Ole Christiansen (experience including Tanbreez).</p>
Geology	<p>Deposit type, geological setting and style of mineralisation.</p>	<p>Project lies within the Nunarsuit Complex / Gardar-age alkaline intrusive province; licence area within mapped Helene alkaline granite and adjacent alkalic syenite units. Deposit style interpreted as alkaline intrusive/pegmatite hosted REE and associated metals, based on stream geochemistry.</p>
Drill hole information	<p>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</p> <ul style="list-style-type: none"> · easting and northing of the drill hole collar · elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar · dip and azimuth of the hole · down hole length and interception depth · hole length · If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<p>No drilling completed. (Hand auger sampling only; not reported as drill holes for JORC drilling tables.)</p>

Sub-section	JORC Code Explanation	Disclosure
Data aggregation methods	<p>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</p> <p>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</p> <p>The assumptions used for any reporting of metal equivalent values should be clearly stated.</p>	Not applicable (no intercepts). Exploration results reported as individual sample assays and calculated oxide equivalents; no cut-offs or grade truncation applied. (Add if you apply any top-cuts later.)
Relationship between mineralisation widths and intercept lengths	<p>These relationships are particularly important in the reporting of Exploration Results.</p> <p>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</p>	Not applicable (no drilling).
Diagrams	<p>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported . These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views</p>	Plan maps and heat maps provided showing sample locations and spatial distribution of element concentrations.
Balanced reporting	<p>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.</p>	Results are reconnaissance in nature. Reporting includes representative information on the distribution and tenor of anomalous; no Mineral Resource is stated or implied. (Add this sentence explicitly to strengthen compliance.)
Other substantive exploration data	<p>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</p>	Reconnaissance results interpreted in context of historical GEUS regional data, confirming anomalous Zr–Nb–REE signatures with low U/Th.
Further work	<p>The nature and scale of planned further work (eg tests for lateral extensions or large-scale step out drilling).</p> <p>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</p>	<p>Exploration work for the 2026 exploration season is currently being planned in detail. Current exploration methods currently being assessed:</p> <ul style="list-style-type: none"> • Ground Penetrating Radar for thickness of sediment beds. • Sonic or auger drilling to test sediments at depth. • Upstream hard rock geochemical analysis. • On-site handheld XRF work.

Appendix A

2025 Assay results

Sample type	Hole ID	Sample ID	Split	TREO pct	Ce ppm	La ppm	Nd ppm	Pr ppm	Sm ppm	Dy ppm	Tb ppm	Yb ppm	Ho ppm	Er ppm	Tm ppm	Lu ppm	Gd ppm	Y ppm	Zr ppm	Nb ppm	Hf ppm	Ta ppm	U ppm	Th ppm
Sed Sam	26801A	411205	-2+1 mm	0.11%	328	147	155.5	42.1	28.5	24.3	3.63	12.45	4.77	13.7	1.94	1.64	23	112	125	123	4.84	7.67	8.04	23.9
Sed Sam	26801B	411206	-1+0,5 mm	0.17%	572	250	257	71.9	44.1	28.2	4.59	13.95	5.26	14.15	2.08	2.13	31.7	131.5	216	142.5	8.75	5.97	5.04	30.5
Sed Sam	26801C	411207	-0,5+0,25 mm	0.31%	1095	510	441	125.5	68.2	38.5	6.44	20.9	7.25	20.5	3	3.14	46.2	178	391	387	16.25	16.9	8.91	68.2
Sed Sam	26801D	411208	-0,25 mm	0.65%	2410	1060	898	254	150	77	12.25	39.7	13.65	40.5	5.75	6.24	93.1	333	11800	417	65.8	30.7	21.3	141.5
Sed Sam	26802A	411209	-2+1 mm	0.10%	332	152	140	38.9	25.1	16.15	2.67	6.81	2.97	8.34	1.075	0.98	18.05	73.2	119	64.2	3.51	2.87	2.84	17.1
Sed Sam	26802B	411210	-1+0,5 mm	0.19%	618	290	272	76.2	49.4	33.6	5.56	13.9	5.95	16.45	2.2	2.11	37.4	147.5	258	197.5	7.88	9.57	5.13	35.3
Sed Sam	26802C	411211	-0,5+0,25 mm	0.31%	1035	490	446	123.5	79.1	48.8	8.03	20.6	8.8	24.6	3.24	3.08	57.2	222	488	661	15.25	34.5	7.74	53.9
Sed Sam	26802D	411212	-0,25 mm	0.35%	1165	570	500	140	84.1	52.9	8.8	24	9.69	28	3.75	3.65	64.3	239	14900	418	35.4	21.8	12.6	70.2
Sed Sam	26803A	411213	-2+1 mm	0.05%	150	73.3	66.6	18.1	12.7	8.38	1.395	3.49	1.51	4.19	0.556	0.524	9.3	36.1	67.6	32	2.31	1.51	1.33	8.6
Sed Sam	26803B	411214	-1+0,5 mm	0.12%	378	183	170.5	47.7	30.3	18.75	3.17	8.55	3.42	9.72	1.305	1.27	21.5	85.8	159.5	120.5	5.22	5.35	2.7	21.3
Sed Sam	26803C	411215	-0,5+0,25 mm	0.30%	1045	520	425	120.5	72.1	41	6.9	18.05	7.26	20.4	2.69	2.72	48.6	182	4910	797	15.55	33.4	6.23	54.4
Sed Sam	26803D	411216	-0,25 mm	0.34%	1145	580	479	132.5	78.8	46.8	7.75	23.1	8.65	25.5	3.48	3.64	53.9	219	23200	645	52.9	30.3	10.25	60.9
Sed Sam	26804A	411217	-2+1 mm	0.02%	84.5	41.5	33.5	9.29	5.97	3.87	0.654	1.705	0.714	2.03	0.266	0.256	4.36	17.9	38	13.5	1.325	0.657	0.706	4.37
Sed Sam	26804B	411218	-1+0,5 mm	0.05%	172.5	85.7	74.7	20.4	13.95	9.23	1.54	4.17	1.665	4.82	0.632	0.647	10.2	41.7	69.9	31.4	2.29	1.4	1.285	8.8
Sed Sam	26804C	411219	-0,5+0,25 mm	0.19%	622	310	264	73.3	45	27.7	4.66	13.05	5.09	14.5	1.96	2.09	31.8	129	171	178.5	6.83	7.5	3.34	35.1
Sed Sam	26804D	411220	-0,25 mm	0.33%	1150	570	461	131	76.8	45.6	7.5	23	8.53	25	3.39	3.7	53.6	212	19650	547	48.9	26.2	8.9	59.9
Sed Sam	26805A	411225	-2+1 mm	0.06%	191	98.2	81.9	23.9	14.25	9.19	1.53	3.94	1.655	4.68	0.622	0.603	10.55	41.3	45.2	24.3	1.62	1.06	1.205	7.37
Sed Sam	26805B	411226	-1+0,5 mm	0.09%	265	135	128.5	35	22.4	15.4	2.47	6.71	2.79	7.89	1.04	1.015	16.75	73.4	72.2	41.8	2.73	1.715	1.76	9.97
Sed Sam	26805C	411227	-0,5+0,25 mm	0.17%	531	260	254	68.9	46.1	31.7	5.21	14.2	5.76	16.4	2.16	2.22	35.1	145.5	106.5	117.5	4.57	4.77	2.67	19.1
Sed Sam	26805D	411228	-0,25 mm	0.33%	1015	570	489	134	82.4	52.6	8.67	23.9	9.76	28	3.73	3.67	63.5	261	7240	210	20.6	9.4	6.27	37.8
Sed Sam	26806A	411229	-2+1 mm	0.07%	230	112.5	91	26.9	16.75	10.9	1.805	4.75	1.97	5.63	0.736	0.707	12.25	53.2	77	39.6	2.86	1.74	1.53	10.55
Sed Sam	26806B	411230	-1+0,5 mm	0.15%	507	240	216	59.8	38.4	25.6	4.17	11.3	4.6	13.15	1.735	1.725	28.6	120.5	173.5	132.5	6.39	5.8	3.29	24.4
Sed Sam	26806C	411231	-0,5+0,25 mm	0.33%	1095	560	456	128	78	49.3	8.31	21.4	8.89	24.9	3.33	3.29	60.7	221	403	582	15.85	28.5	6.76	54.7
Sed Sam	26806D	411232	-0,25 mm	0.43%	1440	770	587	171.5	98.8	66.3	10.7	30.5	11.75	34.1	4.61	4.68	78.1	298	21100	602	61.7	30.8	12.7	76.1
Sed Sam	26807A	411233	-2+1 mm	0.09%	325	143.5	134	37.3	23.7	15.4	2.6	6.68	2.8	8.03	1.055	1.01	17.15	70.1	158	44.7	4.68	1.81	3.04	12.55

Sample type	Hole ID	Sample ID	Split	TREO pct	Ce ppm	La ppm	Nd ppm	Pr ppm	Sm ppm	Dy ppm	Tb ppm	Yb ppm	Ho ppm	Er ppm	Tm ppm	Lu ppm	Gd ppm	Y ppm	Zr ppm	Nb ppm	Hf ppm	Ta ppm	U ppm	Th ppm
Sed Sam	26807B	411234	-1+0,5 mm	0.15%	510	230	207	58.9	36.6	24.6	4.2	10.65	4.51	12.7	1.69	1.595	28.2	115.5	179	116.5	5.64	5.12	3.51	21
Sed Sam	26807C	411235	-0,5+0,25 mm	0.37%	1260	610	516	147.5	84.4	51.6	8.82	22.3	9.54	26.9	3.49	3.28	64	239	357	486	11.6	23	7.34	53.2
Sed Sam	26807D	411236	-0,25 mm	0.48%	1635	830	672	191	109.5	67.8	10.7	29.7	12.05	35	4.61	4.55	76.1	320	20700	519	49.2	26.5	12.65	67.3
Sed Sam	26808A	411237	-2+1 mm	0.05%	178	86.7	70.2	19.5	12.4	8.53	1.35	3.76	1.53	4.41	0.587	0.559	9.02	39.5	73.2	25.6	2.56	1.15	1.58	7.61
Sed Sam	26808B	411238	-1+0,5 mm	0.12%	383	182.5	164.5	45.8	28.4	19	3.1	8.6	3.47	9.94	1.32	1.315	20.5	93.5	134	86.5	4.34	3.56	2.75	15
Sed Sam	26808C	411239	-0,5+0,25 mm	0.31%	1040	510	434	123	73.7	45.4	7.44	21.1	8.38	24.2	3.24	3.19	52.3	212	350	563	12.4	25	6.82	46.9
Sed Sam	26808S	411240	-0,25 mm	0.43%	1450	760	591	172	95.9	59.4	9.34	29	10.8	31.9	4.37	4.54	68.5	288	28300	876	69.2	35.5	13.1	65.8
Sed Sam	26809A	411241	-2+1 mm	0.02%	53.1	22.7	19.95	5.48	3.79	2.99	0.449	1.725	0.597	1.795	0.255	0.264	2.85	14.45	39.8	12.7	1.33	0.614	0.7	4
Sed Sam	26809B	411242	-1+0,5 mm	0.03%	94.7	44.9	42.5	11.4	8.48	6.83	1.05	3.68	1.27	3.76	0.523	0.596	6.61	31.1	75.6	31.3	2.41	1.365	1.065	6.78
Sed Sam	26809C	411243	-0,5+0,25 mm	0.09%	276	134	127.5	35.7	23	17.4	2.72	9.65	3.27	9.61	1.355	1.635	17.3	82.9	135	154	4.99	6.37	2.2	22
Sed Sam	26809D	411244	-0,25 mm	0.12%	386	170.5	166.5	48.8	30.3	22.9	3.56	13.45	4.37	13	1.88	2.1	23.6	111.5	6220	188	18.9	8.46	5.27	38.1
Sed Sam	26810A	411245	-2+1 mm	0.02%	71.7	28.7	27.3	8	5.46	4.01	0.625	1.99	0.745	2.15	0.307	0.288	4.06	18.25	41.3	14.05	1.455	0.669	1.02	6.19
Sed Sam	26810B	411246	-1+0,5 mm	0.05%	168.5	76.7	75.2	21.7	14.7	10.7	1.695	5.83	2.02	5.84	0.836	0.908	11.3	54.6	79.2	41.6	2.87	1.715	1.83	11.5
Sed Sam	26810C	411247	-0,5+0,25 mm	0.14%	444	220	199.5	57.6	34.5	23	3.66	11.8	4.32	12.3	1.725	1.8	25.4	114.5	111.5	131.5	4.73	5.61	3.48	31.1
Sed Sam	26810D	411248	-0,25 mm	0.15%	501	202	216	61.3	40.4	27.7	4.36	15.1	5.23	15.85	2.19	2.31	29.5	136	427	148.5	14.9	6.71	6.77	47.1
Sed Sam	26811A	411221	-2+1 mm	0.04%	145	72.2	67.8	18.6	10.6	4.37	0.754	1.995	0.815	2.45	0.313	0.285	6.09	19.75	36.3	12.6	1.25	0.634	1.155	5.25
Sed Sam	26811B	411222	-1+0,5 mm	0.17%	564	290	324	85.6	46.1	15.45	2.64	6.47	2.75	7.93	1.035	0.952	23.1	71	81.5	71.9	2.72	2.83	2.92	14.65
Sed Sam	26811C	411223	-0,5+0,25 mm	0.27%	873	460	498	132.5	73.4	27.4	4.65	12.2	4.94	14.35	1.95	1.85	38.6	122	177.5	213	6.17	8.96	5.84	37.5
Sed Sam	26811D	411224	-0,25 mm	0.36%	1210	540	605	162.5	95.1	41.1	6.92	20.4	7.66	22.7	3.08	3.12	55.4	188.5	8990	271	26.6	12.55	11.6	58
Sed Sam	26812A	26827	-2+1 mm	0.02%	83	41.3	34	9.5	5.85	3.81	0.621	1.91	0.689	1.985	0.278	0.28	4.28	18.65	43.5	17.8	1.53	0.88	0.667	4.17
Sed Sam	26812B	26828	-1+0,5 mm	0.03%	85.8	42.5	36.9	10.35	6.61	4.26	0.715	2.23	0.767	2.21	0.319	0.335	4.66	21.4	41.9	24.3	1.57	1.105	0.565	3.63
Sed Sam	26812C	26829	-0,5+0,25 mm	0.07%	253	129	100	30.2	16.3	9.23	1.56	5.11	1.725	4.95	0.707	0.781	10.8	47	123.5	135	4.53	5.83	1.275	9.61
Sed Sam	26812D	26830	-0,25 mm	0.31%	1150	570	410	122.5	57.7	27.5	4.71	15.65	4.98	14.7	2.17	2.48	34.5	139	17000	664	38.2	33.3	6.63	44.3
Sed Sam	26813A	26831	-2+1 mm	0.04%	146.5	67.2	54.5	15.85	9.44	5.57	0.936	2.84	0.997	2.89	0.415	0.411	6.34	27.6	54	29.8	2.01	1.345	1.025	6.81
Sed Sam	26813B	26832	-1+0,5 mm	0.07%	242	110.5	96.1	27.7	17.1	10.6	1.75	5.33	1.88	5.32	0.776	0.817	11.6	51	59.1	47.7	2.28	2.02	1.54	10.55
Sed Sam	26813C	26833	-0,5+0,25 mm	0.15%	537	250	204	59.3	32	17.65	2.97	9.25	3.15	9.19	1.3	1.4	20.7	90.3	118.5	154.5	4.55	6.6	2.47	22.8
Sed Sam	26813D	26834	-0,25 mm	0.34%	1280	640	459	137.5	66.1	31	5.37	16.1	5.6	16.15	2.31	2.47	40	157.5	393	214	14.5	10.15	5.47	51.3
Sed Sam	26814A	26835	-2+1 mm	0.02%	78	34.9	29.1	8.32	5.2	3.3	0.555	1.705	0.598	1.79	0.259	0.257	3.56	16.9	42.1	16.9	1.465	0.871	0.753	4.75

Sample type	Hole ID	Sample ID	Split	TREO pct	Ce ppm	La ppm	Nd ppm	Pr ppm	Sm ppm	Dy ppm	Tb ppm	Yb ppm	Ho ppm	Er ppm	Tm ppm	Lu ppm	Gd ppm	Y ppm	Zr ppm	Nb ppm	Hf ppm	Ta ppm	U ppm	Th ppm
Sed Sam	26814B	26836	-1+0,5 mm	0.04%	141	64.8	56.9	16	10.55	7.32	1.18	4.22	1.375	4.05	0.6	0.683	7.65	37.9	80.3	35	3.61	1.575	1.475	7.6
Sed Sam	26814C	26837	-0,5+0,25 mm	0.11%	370	172.5	148.5	42.9	25.6	16.45	2.68	9.64	3.06	9.09	1.345	1.525	17.8	87.5	165	156.5	6.19	6.94	2.39	20.4
Sed Sam	26814D	26838	-0,25 mm	0.29%	1055	500	379	113.5	57.4	31.8	5.27	19	5.82	17.65	2.6	3.06	36.7	163.5	13900	483	39.8	24.7	8.17	57.8
Sed Sam	26815A	26839	-2+1 mm	0.10%	353	152.5	123.5	36.4	21.2	12.85	2.15	6.27	2.33	6.72	0.917	0.905	14.75	67.5	86.9	54.3	2.99	2.38	2.12	11.4
Sed Sam	26815B	26841	-1+0,5 mm	0.15%	549	230	207	58.9	35.1	21.6	3.56	10.8	3.95	11.45	1.6	1.57	24.3	112.5	120.5	115.5	4.45	5.26	3.3	18.9
Sed Sam	26815C	26842	-0,5+0,25 mm	0.29%	1065	490	397	115.5	63	35.7	6.01	17.6	6.47	18.6	2.6	2.58	42.5	182	295	488	11.55	23.2	5.93	39.5
Sed Sam	26815D	26843	-0,25 mm	0.45%	1840	710	534	159	81.2	42.9	7.25	22.2	7.85	23	3.27	3.27	51.9	227	15500	459	36.6	23.3	10.35	59.5
Sed Sam	26816A	411151	-2+1 mm	0.07%	256	124.5	95.5	28.3	16.05	9.67	1.61	4.8	1.76	5.08	0.713	0.684	11.2	51.6	101	39.4	3.22	1.77	1.695	10.2
Sed Sam	26816B	411152	-1+0,5 mm	0.24%	808	430	328	96.4	52.2	30.8	5.1	16.35	5.67	16.6	2.35	2.33	35.5	169	304	453	11.6	21.8	4.84	33.7
Sed Sam	26816C	411153	-0,5+0,25 mm	0.11%	366	191	157.5	44.6	26.1	16.55	2.7	8.29	3.11	8.95	1.235	1.24	18.5	90.5	110.5	92.5	3.97	4.29	2.22	13.05
Sed Sam	26816D	411154	-0,25 mm	0.36%	1255	650	472	139	71.4	40.9	6.76	22.7	7.64	23	3.3	3.41	47.8	227	19100	559	47.6	26.7	10.25	55
Sed Sam	26817A	411155	-2+1 mm	0.05%	164.5	80.7	61.9	17.9	10.5	6.69	1.1	3.37	1.24	3.63	0.5	0.492	7.44	36	77.1	33.1	2.66	1.46	1.25	6.18
Sed Sam	26817B	411156	-1+0,5 mm	0.14%	434	202	194.5	54.3	34.5	23.6	3.82	12.9	4.34	12.85	1.83	1.94	25.1	123.5	137.5	155.5	5.66	7.06	2.98	16.95
Sed Sam	26817C	411157	-0,5+0,25 mm	0.33%	1160	560	445	129	71.7	45.8	7.49	25.6	8.34	24.6	3.54	3.97	51	225	405	753	17.8	34.3	7.06	52
Sed Sam	26817D	411158	-0,25 mm	0.47%	1705	840	607	183.5	93.6	55.1	9.05	32.8	10.25	31	4.58	5.05	65	278	30300	1465	84	73.3	14.35	72.9
Sed Sam	26818A	411159	-2+1 mm	0.10%	347	172.5	139.5	40.5	23.3	14.65	2.42	7.19	2.64	7.64	1.08	1.04	16.65	75.9	141	59.7	5.09	2.82	2.45	13.6
Sed Sam	26818B	411160	-1+0,5 mm	0.19%	631	310	268	76.4	45.8	29.5	4.83	15.2	5.36	15.7	2.2	2.25	32.3	153	226	199	8.96	9.44	4.55	26.8
Sed Sam	26818C	411161	-0,5+0,25 mm	0.39%	1360	720	514	151.5	80.7	46.5	7.76	24.2	8.55	25.3	3.58	3.52	54	245	5760	977	20.3	42.4	8.75	60.6
Sed Sam	26818D	411162	-0,25 mm	0.55%	2000	1020	725	218	106.5	55.9	9.31	30.9	10.3	30.9	4.47	4.52	70.6	299	32700	1025	82.9	50.9	16.2	85.1
Sed Sam	26819A	411163	-2+1 mm	0.05%	179.5	90.7	68.7	19.85	11.15	6.86	1.16	3.4	1.265	3.66	0.514	0.492	7.98	36.7	60	26.5	2.17	1.275	1.365	7.72
Sed Sam	26819B	411164	-1+0,5 mm	0.10%	336	170	150.5	43	25	15.35	2.54	7.49	2.97	8.01	1.17	1.085	17.75	80.9	95.3	69	3.27	2.78	2.14	13.15
Sed Sam	26819C	411165	-0,5+0,25 mm	0.24%	771	440	361	104.5	55.6	33.6	5.42	16.15	6.34	17.3	2.55	2.41	39.6	170.5	265	284	9.43	11.7	5.01	37.8
Sed Sam	26819D	411166	-0,25 mm	0.41%	1365	740	592	172.5	90.5	52.2	8.49	26.1	9.88	27.7	3.94	3.87	65.8	261	12250	367	34.3	16.45	10.2	62.6
Sed Sam	26820A	411167	-2+1 mm	0.04%	125	57.2	46.4	13.2	8.29	5.86	0.923	2.74	1.1	3.07	0.434	0.37	6.38	27.8	43	18.9	1.395	0.85	1.03	5.67
Sed Sam	26820B	411168	-1+0,5 mm	0.09%	287	137	116.5	33.9	19.9	13.75	2.17	6.52	2.63	7.16	1.015	0.955	15	66.2	80.1	78.2	2.61	3.11	1.825	12.4
Sed Sam	26820C	411169	-0,5+0,25 mm	0.28%	979	500	389	114	61.9	37.6	6.03	17.9	7.16	19.55	2.75	2.61	43.4	180.5	301	634	10.55	27.4	5.3	43.2
Sed Sam	26820D	411170	-0,25 mm	0.44%	1470	810	612	175	91.4	51.7	8.31	26.5	9.95	27.9	3.98	3.92	61.9	265	26500	852	52.1	33.9	10.8	60.8
Sed Sam	26821A	411171	-2+1 mm	0.06%	190.5	93.9	76.5	22.8	12.8	8.37	1.355	4.03	1.575	4.36	0.617	0.569	9.43	40.8	60.1	31.3	2.1	1.325	1.375	7.9

Sample type	Hole ID	Sample ID	Split	TREO pct	Ce ppm	La ppm	Nd ppm	Pr ppm	Sm ppm	Dy ppm	Tb ppm	Yb ppm	Ho ppm	Er ppm	Tm ppm	Lu ppm	Gd ppm	Y ppm	Zr ppm	Nb ppm	Hf ppm	Ta ppm	U ppm	Th ppm
Sed Sam	26821B	411172	-1+0,5 mm	0.10%	329	170.5	151	43.2	25	17.2	2.72	8.22	3.28	8.81	1.255	1.205	18.95	84	103	72.7	3.59	2.9	2.27	13.3
Sed Sam	26821C	411173	-0,5+0,25 mm	0.25%	809	430	354	101.5	56.5	34.8	5.67	16.85	6.65	18	2.48	2.5	41	174	277	328	10.4	14.15	4.53	34.2
Sed Sam	26821D	411174	-0,25 mm	0.39%	1290	710	554	163.5	84.8	50.2	8.17	25.4	9.67	26.6	3.82	3.79	63	249	15750	458	40.2	21.2	9.36	57
Sed Sam	26822A	411175	-2+1 mm	0.06%	190.5	95.6	78.6	22.8	13.6	9.03	1.445	4.34	1.765	4.77	0.672	0.63	9.98	45	62.4	34.9	2.47	1.465	1.53	8.16
Sed Sam	26822B	411176	-1+0,5 mm	0.12%	382	199.5	175	49.9	29.3	19.2	3.11	9.68	3.7	10.1	1.46	1.43	21.8	97.6	148	108.5	5.26	4.45	3.04	15.85
Sed Sam	26822C	411177	-0,5+0,25 mm	0.25%	797	440	352	102.5	56.8	36	5.66	17.85	6.91	18.9	2.7	2.61	40.3	180.5	261	466	9.88	19.35	5.34	36.4
Sed Sam	26822D	411178	-0,25 mm	0.43%	1450	790	613	178	93.3	56.4	8.88	28.5	10.75	29.9	4.19	4.22	68.4	273	20300	584	52.2	27.8	12.25	68.4
Sed Sam	26823A	411179	-2+1 mm	0.08%	266	121.5	99.7	30.4	17.3	11.4	1.85	5.42	2.19	5.87	0.824	0.789	12.85	57.1	84.1	42.3	2.71	1.675	1.835	9.95
Sed Sam	26823B	411180	-1+0,5 mm	0.18%	576	300	255	72.2	42.3	28	4.51	13.4	5.43	14.85	2.08	1.935	32	138	162	165.5	5.6	6.75	3.9	23
Sed Sam	26823C	411181	-0,5+0,25 mm	0.37%	1225	690	520	151	82.4	50.3	8.22	24.2	9.77	26.5	3.75	3.46	63.2	253	331	620	12	26.4	7.61	49.9
Sed Sam	26823D	411182	-0,25 mm	0.57%	1915	1030	791	232	123.5	69.5	11	32.5	13.1	35.9	5.03	4.78	86.1	351	19900	548	46.2	25.3	13.7	74.8
Sed Sam	26824A	411201	-2+1 mm	0.13%	454	198.5	188	51.9	32.5	20.5	3.4	9.45	3.7	9.94	1.415	1.32	23.7	89	136	75	4.82	3.16	3.38	18.15
Sed Sam	26824B	411202	-1+0,5 mm	0.26%	890	420	370	106	63.7	39.8	6.54	18.7	7.3	18.9	2.76	2.78	46.1	177	225	176.5	8.04	7.55	5.84	36.7
Sed Sam	26824C	411203	-0,5+0,25 mm	0.57%	2070	1000	796	234	120.5	62.6	10.45	29.9	11.2	29.9	4.3	4.45	85.4	255	389	416	14.15	18.6	10.2	81.1
Sed Sam	26824D	411204	-0,25 mm	0.81%	2930	1310	1200	337	210	92.8	16.05	43.5	17.2	45.7	6.69	6.18	130	373	10600	341	34.1	16.3	21.4	102
Sed Sam	26825A	411183	-2+1 mm	0.03%	101.5	46.6	38.3	11	6.8	5.08	0.783	2.94	1.02	2.85	0.416	0.387	5.23	27.2	65.6	25.9	2.38	1.16	1.195	5.6
Sed Sam	26825B	411184	-1+0,5 mm	0.07%	242	120.5	98.3	29.7	17.35	12.3	1.895	6.62	2.43	6.71	1	0.972	12.8	63.7	153	61	4.85	2.5	2.24	12.6
Sed Sam	26825C	411185	-0,5+0,25 mm	0.21%	706	380	286	84.9	43.4	27.2	4.27	14.85	5.28	14.65	2.2	2.25	30.1	137	386	309	13.4	12.5	6	48.9
Sed Sam	26825D	411186	-0,25 mm	0.27%	867	470	370	108.5	59.4	39.1	6.12	23.5	7.85	22.4	3.42	3.57	42.4	203	15650	490	48.8	22.4	9.91	56.5
Sed Sam	26826A	411187	-2+1 mm	0.03%	100.5	49	41.6	11.7	7.6	5.94	0.91	3.22	1.165	3.27	0.483	0.478	5.95	29.4	79	28.6	2.79	1.37	1.405	6.37
Sed Sam	26826B	411188	-1+0,5 mm	0.07%	225	111	94	27.9	17.1	12.9	1.945	7.36	2.52	7.39	1.07	1.13	13.05	66.5	247	93.5	7.94	3.96	2.71	13.8
Sed Sam	26826C	411189	-0,5+0,25 mm	0.17%	561	280	231	66.5	38.1	26.7	4.15	15.05	5.25	15.1	2.16	2.29	28.1	137	487	465	17.15	19.85	4.82	35.1
Sed Sam	26826D	411190	-0,25 mm	0.23%	770	400	306	88.1	50	35.7	5.47	21	7.18	20.6	3.07	3.33	36.8	187.5	19250	545	55.1	24.8	8.83	42.5
Rock sample	411191	411191	crushed	0.03%	79.4	36.1	45	10.4	9.42	7.24	1.165	3.07	1.38	3.6	0.494	0.421	8.53	36.4	294	37.6	6.91	2.17	1.04	2.96
Rock sample	411192	411192	crushed	0.04%	107.5	49.6	56	13.4	11.65	8.69	1.385	3.51	1.68	4.42	0.584	0.485	10.2	48.8	323	43.6	7.44	2.3	1.12	3.24
Auger sample	26844	26844	-0,25 mm	0.23%	823	390	323	93.6	51.3	29.3	4.81	18.8	5.5	16.8	2.55	3.03	32.9	152	18450	689	54.5	33.2	8.3	46.1
Auger sample	26845	26845	-0,25 mm	0.22%	988	270	249	69.5	42	26.6	4.3	14.6	4.96	14.75	2.15	2.08	29.3	131.5	337	118	11.4	5.85	7.24	44.7
Auger sample	26846	26846	-0,25 mm	0.10%	381	162	137.5	39.9	22.9	13.95	2.24	7.93	2.56	7.84	1.135	1.22	15.45	73.6	370	108.5	11.15	5.08	3.41	21.7

Sample type	Hole ID	Sample ID	Split	TREO pct	Ce ppm	La ppm	Nd ppm	Pr ppm	Sm ppm	Dy ppm	Tb ppm	Yb ppm	Ho ppm	Er ppm	Tm ppm	Lu ppm	Gd ppm	Y ppm	Zr ppm	Nb ppm	Hf ppm	Ta ppm	U ppm	Th ppm
Auger sample	26847	26847	-0,25 mm	0.11%	392	152.5	138.5	40.8	24.3	15.95	2.53	9.64	3.02	9.11	1.35	1.555	16.9	84.5	408	126	13.45	5.87	4.06	30.7
Auger sample	26848	26848	-0,25 mm	0.44%	1635	710	640	183	101	40.4	6.94	21.5	7.55	22.4	3.16	3.15	62.6	205	10400	332	28.1	16.05	10.35	61.1
Auger sample	26849	26849	-0,25 mm	0.20%	868	250	234	65.3	39.7	26.7	4.24	15.4	4.94	14.75	2.17	2.29	28.1	129	398	164	14.3	7.77	5.85	45
Auger sample	26850	26850	-0,25 mm	0.26%	939	450	343	103	54.9	31.6	5.23	18.95	5.83	17.6	2.59	3	36.1	164.5	9510	430	29.5	21.1	6.95	47.4

****Note:**

TREO (Total Rare Earth Oxide) = PPM assay results converted into Oxide state using Element-to-stoichiometric oxide conversion factors, then summing: $\text{CeO}_2 + \text{La}_2\text{O}_3 + \text{Pr}_6\text{O}_{11} + \text{Nd}_2\text{O}_3 + \text{Sm}_2\text{O}_3 + \text{Eu}_2\text{O}_3 + \text{GD}_2\text{O}_3 + \text{Tb}_4\text{O}_7 + \text{Dy}_2\text{O}_3 + \text{Ho}_2\text{O}_3 + \text{Er}_2\text{O}_3 + \text{Tm}_2\text{O}_3 + \text{Yb}_2\text{O}_3 + \text{Lu}_2\text{O}_3 + \text{Y}_2\text{O}_3$

Appendix B

2025 Samples collar points

Hole ID	Easting	Northing	Lat	Long	Zone	RL	Sample type	Split
26801A	650416	6745541	60.8167	-48.2343	UTM Zone 22V	33	Sediment sample	-2+1 mm
26801B	650416	6745541	60.8167	-48.2343	UTM Zone 22V	33	Sediment sample	-1+0,5 mm
26801C	650416	6745541	60.8167	-48.2343	UTM Zone 22V	33	Sediment sample	-0,5+0,25 mm
26801D	650416	6745541	60.8167	-48.2343	UTM Zone 22V	33	Sediment sample	-0,25 mm
26802A	650633	6745575	60.81692	-48.2303	UTM Zone 22V	29	Sediment sample	-2+1 mm
26802B	650633	6745575	60.81692	-48.2303	UTM Zone 22V	29	Sediment sample	-1+0,5 mm
26802C	650633	6745575	60.81692	-48.2303	UTM Zone 22V	29	Sediment sample	-0,5+0,25 mm
26802D	650633	6745575	60.81692	-48.2303	UTM Zone 22V	29	Sediment sample	-0,25 mm
26803A	650819	6745593	60.81701	-48.2269	UTM Zone 22V	25	Sediment sample	-2+1 mm
26803B	650819	6745593	60.81701	-48.2269	UTM Zone 22V	25	Sediment sample	-1+0,5 mm
26803C	650819	6745593	60.81701	-48.2269	UTM Zone 22V	25	Sediment sample	-0,5+0,25 mm
26803D	650819	6745593	60.81701	-48.2269	UTM Zone 22V	25	Sediment sample	-0,25 mm
26804A	650994	6745644	60.8174	-48.2236	UTM Zone 22V	10	Sediment sample	-2+1 mm
26804B	650994	6745644	60.8174	-48.2236	UTM Zone 22V	10	Sediment sample	-1+0,5 mm
26804C	650994	6745644	60.8174	-48.2236	UTM Zone 22V	10	Sediment sample	-0,5+0,25 mm
26804D	650994	6745644	60.8174	-48.2236	UTM Zone 22V	10	Sediment sample	-0,25 mm

Hole ID	Easting	Northing	Lat	Long	Zone	RL	Sample type	Split
26805A	650999	6745378	60.81502	-48.2237	UTM Zone 22V	9	Sediment sample	-2+1 mm
26805B	650999	6745378	60.81502	-48.2237	UTM Zone 22V	9	Sediment sample	-1+0,5 mm
26805C	650999	6745378	60.81502	-48.2237	UTM Zone 22V	9	Sediment sample	-0,5+0,25 mm
26805D	650999	6745378	60.81502	-48.2237	UTM Zone 22V	9	Sediment sample	-0,25 mm
26806A	650658	6745418	60.8155	-48.2299	UTM Zone 22V	3	Sediment sample	-2+1 mm
26806B	650658	6745418	60.8155	-48.2299	UTM Zone 22V	3	Sediment sample	-1+0,5 mm
26806C	650658	6745418	60.8155	-48.2299	UTM Zone 22V	3	Sediment sample	-0,5+0,25 mm
26806D	650658	6745418	60.8155	-48.2299	UTM Zone 22V	3	Sediment sample	-0,25 mm
26807A	652358	6747160	60.83048	-48.1974	UTM Zone 22V	38	Sediment sample	-2+1 mm
26807B	652358	6747160	60.83048	-48.1974	UTM Zone 22V	38	Sediment sample	-1+0,5 mm
26807C	652358	6747160	60.83048	-48.1974	UTM Zone 22V	38	Sediment sample	-0,5+0,25 mm
26807D	652358	6747160	60.83048	-48.1974	UTM Zone 22V	38	Sediment sample	-0,25 mm
26808A	652434	6747085	60.82978	-48.196	UTM Zone 22V	34	Sediment sample	-2+1 mm
26808B	652434	6747085	60.82978	-48.196	UTM Zone 22V	34	Sediment sample	-1+0,5 mm
26808C	652434	6747085	60.82978	-48.196	UTM Zone 22V	34	Sediment sample	-0,5+0,25 mm
26808D	652434	6747085	60.82978	-48.196	UTM Zone 22V	34	Sediment sample	-0,25 mm
26809A	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-2+1 mm
26809B	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-1+0,5 mm
26809C	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-0,5+0,25 mm
26809D	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-0,25 mm
26810A	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-2+1 mm
26810B	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-1+0,5 mm
26810C	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-0,5+0,25 mm
26810D	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-0,25 mm
26811A	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-2+1 mm
26811B	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-1+0,5 mm
26811C	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-0,5+0,25 mm
26811D	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Sediment sample	-0,25 mm
26812A	650039	6745857	60.81967	-48.241	UTM Zone 22V	3	Sediment sample	-2+1 mm
26812B	650039	6745857	60.81967	-48.241	UTM Zone 22V	3	Sediment sample	-1+0,5 mm
26812C	650039	6745857	60.81967	-48.241	UTM Zone 22V	3	Sediment sample	-0,5+0,25 mm

Hole ID	Easting	Northing	Lat	Long	Zone	RL	Sample type	Split
26812D	650039	6745857	60.81967	-48.241	UTM Zone 22V	3	Sediment sample	-0,25 mm
26813A	650436	6745844	60.81941	-48.2337	UTM Zone 22V	19	Sediment sample	-2+1 mm
26813B	650436	6745844	60.81941	-48.2337	UTM Zone 22V	19	Sediment sample	-1+0,5 mm
26813C	650436	6745844	60.81941	-48.2337	UTM Zone 22V	19	Sediment sample	-0,5+0,25 mm
26813D	650436	6745844	60.81941	-48.2337	UTM Zone 22V	19	Sediment sample	-0,25 mm
26814A	650855	6745870	60.81948	-48.226	UTM Zone 22V	8	Sediment sample	-2+1 mm
26814B	650855	6745870	60.81948	-48.226	UTM Zone 22V	8	Sediment sample	-1+0,5 mm
26814C	650855	6745870	60.81948	-48.226	UTM Zone 22V	8	Sediment sample	-0,5+0,25 mm
26814D	650855	6745870	60.81948	-48.226	UTM Zone 22V	8	Sediment sample	-0,25 mm
26815A	650974	6746651	60.82644	-48.2232	UTM Zone 22V	58	Sediment sample	-2+1 mm
26815B	650974	6746651	60.82644	-48.2232	UTM Zone 22V	58	Sediment sample	-1+0,5 mm
26815C	650974	6746651	60.82644	-48.2232	UTM Zone 22V	58	Sediment sample	-0,5+0,25 mm
26815D	650974	6746651	60.82644	-48.2232	UTM Zone 22V	58	Sediment sample	-0,25 mm
26816A	651200	6746523	60.82521	-48.2191	UTM Zone 22V	12	Sediment sample	-2+1 mm
26816B	651200	6746523	60.82521	-48.2191	UTM Zone 22V	12	Sediment sample	-1+0,5 mm
26816C	651200	6746523	60.82521	-48.2191	UTM Zone 22V	12	Sediment sample	-0,5+0,25 mm
26816D	651200	6746523	60.82521	-48.2191	UTM Zone 22V	12	Sediment sample	-0,25 mm
26817A	651276	6746519	60.82514	-48.2177	UTM Zone 22V	10	Sediment sample	-2+1 mm
26817B	651276	6746519	60.82514	-48.2177	UTM Zone 22V	10	Sediment sample	-1+0,5 mm
26817C	651276	6746519	60.82514	-48.2177	UTM Zone 22V	10	Sediment sample	-0,5+0,25 mm
26817D	651276	6746519	60.82514	-48.2177	UTM Zone 22V	10	Sediment sample	-0,25 mm
26818A	651124	6746478	60.82483	-48.2206	UTM Zone 22V	9	Sediment sample	-2+1 mm
26818B	651124	6746478	60.82483	-48.2206	UTM Zone 22V	9	Sediment sample	-1+0,5 mm
26818C	651124	6746478	60.82483	-48.2206	UTM Zone 22V	9	Sediment sample	-0,5+0,25 mm
26818D	651124	6746478	60.82483	-48.2206	UTM Zone 22V	9	Sediment sample	-0,25 mm
26819A	650847	6746163	60.82211	-48.2259	UTM Zone 22V	25	Sediment sample	-2+1 mm
26819B	650847	6746163	60.82211	-48.2259	UTM Zone 22V	25	Sediment sample	-1+0,5 mm
26819C	650847	6746163	60.82211	-48.2259	UTM Zone 22V	25	Sediment sample	-0,5+0,25 mm
26819D	650847	6746163	60.82211	-48.2259	UTM Zone 22V	25	Sediment sample	-0,25 mm
26820A	651570	6746834	60.82785	-48.2121	UTM Zone 22V	9	Sediment sample	-2+1 mm
26820B	651570	6746834	60.82785	-48.2121	UTM Zone 22V	9	Sediment sample	-1+0,5 mm

Hole ID	Easting	Northing	Lat	Long	Zone	RL	Sample type	Split
26820C	651570	6746834	60.82785	-48.2121	UTM Zone 22V	9	Sediment sample	-0,5+0,25 mm
26820D	651570	6746834	60.82785	-48.2121	UTM Zone 22V	9	Sediment sample	-0,25 mm
26821A	651554	6747085	60.83011	-48.2122	UTM Zone 22V	91	Sediment sample	-2+1 mm
26821B	651554	6747085	60.83011	-48.2122	UTM Zone 22V	91	Sediment sample	-1+0,5 mm
26821C	651554	6747085	60.83011	-48.2122	UTM Zone 22V	91	Sediment sample	-0,5+0,25 mm
26821D	651554	6747085	60.83011	-48.2122	UTM Zone 22V	91	Sediment sample	-0,25 mm
26822A	651442	6746957	60.82901	-48.2144	UTM Zone 22V	64	Sediment sample	-2+1 mm
26822B	651442	6746957	60.82901	-48.2144	UTM Zone 22V	64	Sediment sample	-1+0,5 mm
26822C	651442	6746957	60.82901	-48.2144	UTM Zone 22V	64	Sediment sample	-0,5+0,25 mm
26822D	651442	6746957	60.82901	-48.2144	UTM Zone 22V	64	Sediment sample	-0,25 mm
26823A	651368	6746886	60.8284	-48.2158	UTM Zone 22V	56	Sediment sample	-2+1 mm
26823B	651368	6746886	60.8284	-48.2158	UTM Zone 22V	56	Sediment sample	-1+0,5 mm
26823C	651368	6746886	60.8284	-48.2158	UTM Zone 22V	56	Sediment sample	-0,5+0,25 mm
26823D	651368	6746886	60.8284	-48.2158	UTM Zone 22V	56	Sediment sample	-0,25 mm
26824A	650481	6745954	60.82038	-48.2328	UTM Zone 22V	48	Sediment sample	-2+1 mm
26824B	650481	6745954	60.82038	-48.2328	UTM Zone 22V	48	Sediment sample	-1+0,5 mm
26824C	650481	6745954	60.82038	-48.2328	UTM Zone 22V	48	Sediment sample	-0,5+0,25 mm
26824D	650481	6745954	60.82038	-48.2328	UTM Zone 22V	48	Sediment sample	-0,25 mm
26825A	652477	6746828	60.82745	-48.1954	UTM Zone 22V	43	Sediment sample	-2+1 mm
26825B	652477	6746828	60.82745	-48.1954	UTM Zone 22V	43	Sediment sample	-1+0,5 mm
26825C	652477	6746828	60.82745	-48.1954	UTM Zone 22V	43	Sediment sample	-0,5+0,25 mm
26825D	652477	6746828	60.82745	-48.1954	UTM Zone 22V	43	Sediment sample	-0,25 mm
26826A	6522318	6746672	60.82612	-48.1985	UTM Zone 22V	36	Sediment sample	-2+1 mm
26826B	6522318	6746672	60.82612	-48.1985	UTM Zone 22V	36	Sediment sample	-1+0,5 mm
26826C	6522318	6746672	60.82612	-48.1985	UTM Zone 22V	36	Sediment sample	-0,5+0,25 mm
26826D	6522318	6746672	60.82612	-48.1985	UTM Zone 22V	36	Sediment sample	-0,25 mm
411191	650039	6745857	60.81967	-48.241	UTM Zone 22V	3	Rock sample	crushed
411192	650039	6745857	60.81967	-48.241	UTM Zone 22V	3	Rock sample	crushed
26844	650514	6745836	60.81931	-48.2323	UTM Zone 22V	13	Auger sample	-0,25 mm
26845	650712	6745835	60.81922	-48.2286	UTM Zone 22V	14	Auger sample	-0,25 mm
26846	652197	6746901	60.82822	-48.2005	UTM Zone 22V	13	Auger sample	-0,25 mm

Hole ID	Easting	Northing	Lat	Long	Zone	RL	Sample type	Split
26847	652162	6746973	60.82888	-48.2011	UTM Zone 22V	13	Auger sample	-0,25 mm
26848	652120	6747015	60.82927	-48.2019	UTM Zone 22V	12	Auger sample	-0,25 mm
26849	650779	6745839	60.81923	-48.2274	UTM Zone 22V	10	Auger sample	-0,25 mm
26850	650848	6745868	60.81947	-48.2261	UTM Zone 22V	9	Auger sample	-0,25 mm

Appendix C

Historic Sampling

Previously reported in ASX announcement 15th April 2025.

Sample_ID	REE											
	LREE				HREE							
	La (ppm)	Ce (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Tb (ppm)	Yb (ppm)	Lu (ppm)	Th (ppm)	U (ppm)	Nb (ppm)	Zr (ppm)
281028	270	410	200	35	2.8	4.7	14	1.3	21	5.6	129	2059
281030	600	870	360	65	4.7	11	39	5	51	18	294	1063
281031	590	990	410	65	4.2	11	31	3	61	14	279	5054
281032	220	290	160	28	2.7	4.4	18	2.4	22	7.1	193	3773
282850	710	1300	520	79	12	12	60	5.2	88	14	326	9360
282851	550	870	390	66	5	9.7	39	4.2	45	11	13	246
282852	NA	NA	118	3520								
282853	780	1800	500	80	5.9	11	44	4.7	64	10	126	3286
282854	660	1400	500	75	9.9	11	49	5.3	73	18	200	7240

Historic sampling information sourced from GEUS website (<https://eng.geus.dk>) for project area MEL 2022-07.

Appendix D

Stoichiometric Ratio - Element to Oxide conversion table

Element	Oxide	Factor		Element	Oxide	Factor
Ag	Ag ₂ O ₃	1.222		Sc	Sc ₂ O ₃	1.534
As	As ₂ O ₃	1.320		Sn	Sn ₂ O ₃	1.202
Ba	Ba ₂ O ₃	1.175		Sr	Sr ₂ O ₃	1.274
Be	Be ₂ O ₃	3.663		Ta	Ta ₂ O ₃	1.133
Bi	Bi ₂ O ₃	1.115		Th	Th ₂ O ₃	1.103
Cd	Cd ₂ O ₃	1.213		U	U ₂ O ₃	1.101
Ce	Ce ₂ O ₃	1.171		V	V ₂ O ₃	1.471
Co	Co ₂ O ₃	1.407		W	W ₂ O ₃	1.131
Cr	Cr ₂ O ₃	1.462		Y	Y ₂ O ₃	1.270
Cs	Cs ₂ O ₃	1.181		Zn	Zn ₂ O ₃	1.367
Cu	Cu ₂ O ₃	1.378		Zr	Zr ₂ O ₃	1.263
Ga	Ga ₂ O ₃	1.344		Dy	Dy ₂ O ₃	1.148
Ge	Ge ₂ O ₃	1.330		Er	Er ₂ O ₃	1.143
Hf	Hf ₂ O ₃	1.134		Eu	Eu ₂ O ₃	1.158
In	In ₂ O ₃	1.209		Gd	Gd ₂ O ₃	1.153
La	La ₂ O ₃	1.173		Ho	Ho ₂ O ₃	1.146
Mn	Mn ₂ O ₃	1.437		Lu	Lu ₂ O ₃	1.137
Mo	Mo ₂ O ₃	1.250		Nd	Nd ₂ O ₃	1.166
Nb	Nb ₂ O ₃	1.258		Pr	Pr ₂ O ₃	1.170
Ni	Ni ₂ O ₃	1.409		Sm	Sm ₂ O ₃	1.160
Pb	Pb ₂ O ₃	1.116		Tb	Tb ₂ O ₃	1.151
Rb	Rb ₂ O ₃	1.281		Tm	Tm ₂ O ₃	1.142
Sb	Sb ₂ O ₃	1.197		Yb	Yb ₂ O ₃	1.139