

Comet Vale Gold Project, WA - Resource Update

Mineral Resource for Comet Vale Gold Project increases 900% to 0.86Moz at 3.7g/t Au

Pivotal MRE upgrade delivers significant increase in scale, as Gorilla's strategy of delineating high-grade ounces in Tier-1 mining locations gains momentum

- Updated Mineral Resource Estimate ('MRE') completed by Gorilla Gold for the Comet Vale Gold Project located 100km north of Kalgoorlie in Western Australia, comprising:
 - 7.3 Mt @ 3.7g/t Au for 0.86Moz of contained gold.
- This is an addition of 765 Koz and represents ~ 900% increase of previously estimated Resource ounces at the Comet Vale Project.
- Additional ounces delivered at a discovery cost of ~\$25/oz.
- Indicated component of the Comet Vale MRE totals 1.7 Mt @ 4.1g/t Au for 220 Koz.
- Group Resources for Western Australia now total **12.4 Mt @ 3.8 g/t Au for 1.5 Moz**, (indicated + inferred, see Table 2 for cut-off grade information).
- Total Group Resources now total **15.4 Mt @ 4.0 g/t Au for 2.0 Moz**, (indicated + inferred, see Table 3 for cut-off grade information).
- Gorilla has added 6.5 Mt @ 3.7 g/t Au for 1.3 Moz in 2025 across the Comet Vale, Mulwarrie and Vivien Projects, in what has been a highly successful year of exploration and Resource growth.
- Studies and development activities are underway at Comet Vale, as well as at the Mulwarrie and Vivien projects.
- There is clear potential to further significantly increase the Resource base at Comet Vale, with drilling underway utilising three drill rigs.
- Drilling at the Mulwarrie Project is ongoing, with two drill rigs targeting extensions to the existing resource.

Gorilla Gold Mines Ltd ('Gorilla', 'GG8' or 'the Company'), is pleased to announce an updated MRE for its 100%-owned Comet Vale Gold Project, located 100km north of Kalgoorlie in Western Australia's Goldfields.

Gorilla Gold +61 8 6149 1573 292 Barker Road, Subiaco, Western Australia 6008

PO Box: PO Box 1473, Subiaco WA 6904

admin@gg8.com.au gorillagold8.com

1

Charles Hughes, Chief Executive Officer of Gorilla Gold, commented:

"The Comet Vale Project is rapidly emerging as a camp-scale gold development project, with this Resource update incorporating the three new, high-grade discoveries that Gorilla has made within the project area over the past year.

"The updated MRE includes a 9-fold increase in contained ounces, with 220koz classified within the higher confidence Indicated Resource category. Importantly, the additional ounces have been delivered at a discovery cost of just \$25 per Resource ounce.

"This update to the Comet Vale Resource comes hard on the heels of the delivery of a maiden Mineral Resource for the Vivien Project in April 2025 and an updated Resource for Mulwarrie in August 2025, capping off what has been an exceptionally busy year of drilling for the Company.

"As a result of this upgrade, Gorilla now collectively holds 1.5 million ounces of high-grade gold in Resources across three key projects in prime Goldfields locations in Western Australia.

"This shows that our aggressive strategy of drilling and exploration is delivering results and creating substantial value for our shareholders as we rapidly build a high-grade resource inventory.

"We are now forging ahead with development studies for all three Western Australian projects, while also continuing drilling programs to deliver further Resource growth."

	C	omet Vale Mineral Re	source est	imate		
			Cut-off	Cut-off Au		
		Resource category	grade	Tonnes	Grade	Au
			(Au g/t)	(kt)	(Au g/t)	(koz)
		Indicated		1,300	4.3	180
	OP	Inferred	0.5	2,400	2.3	180
		Sub Total		3,700	3.0	350
		Measured				
	UG	Indicated	1.1	400	3.7	47
All	00	Inferred	1.1	3,200	4.5	460
		Sub Total		3,600	4.4	510
		Measured				
	ALI	Indicated		1,700	4.1	220
	ALL	Inferred		5,600	3.5	640
		Total Resource		7,300	3.7	860

Notes:

- Open Pit (OP) resources are constrained within optimised pit shells based on A\$4,000 per ounce gold price and reported at 0.5 g/t Au cut-off grade.
- Underground (UG) resources are evaluated below the optimised pit shell and constrained within mineable shapes designed at 1.1g/t gold cut-off grade and reported within the mineralised domains
- All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding.

 Table 1 Comet Vale Project MRE table (see Table 3 for detailed breakdown by prospect)

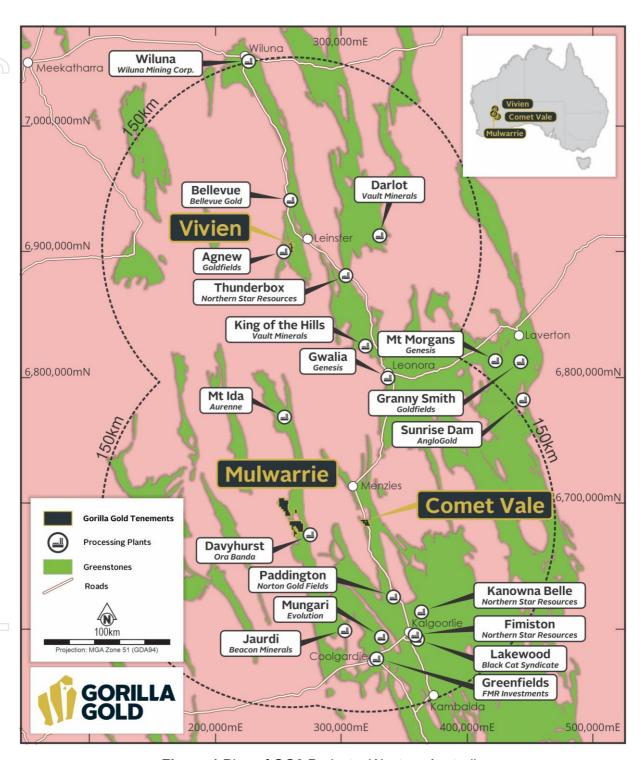


Figure 1 Plan of GG8 Projects, Western Australia

			Indicated			Inferred			Total			
Catego	ory	Tonnage (Mt)	Au Grade (g/t)	Au Moz	Tonnage (Mt)	Au Grade (g/t)	Au Moz	Tonnage (Mt)	Au Grade (g/t)	Au Moz		
Come [*] Vale	t	1.7	4.1	0.22	5.6	3.5	0.64	7.3	3.7	0.86		
Mulwo	ırrie	1.3	2.8	0.11	1.8	4.2	0.24	3.0	3.6	0.35		
Vivien		0.2	4.9	0.03	2.0	4.1	0.25	2.1	4.1	0.28		
WA Tot	al	3.2	3.5	0.4 Moz	9.4	3.8	1.1 Moz	12.4	3.8	1.5 Moz		
Labyrir	nth	-	-	-	3.0	5.0	0.5	3.0	5.0	0.5Moz		
Total		3.2	3.5	0.4 Moz	12.4	4.0	1.6 Moz	15.4	4.0	2.0 Moz		

Table 2 Consolidated MRE for Western Australia and Canada (All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding. Refer to appendices for cut off data)

Comet Vale Mineral Resource Estimate

The Comet Vale Project has seen historical gold production of >200koz @ >20g/t Au, with underground operations occurring as recently as 2020. The bulk of historical production comes from the Sovereign Prospect, which had a historical MRE of 96koz @ 4.8g/t Au.

Gorilla made a significant high-grade gold discovery at the **Lakeview Prospect** in February 2025, with new extensional lodes also discovered at Cheer and Sovereign in January 2025. The project lies within granted Mining Leases, adjacent to the Goldfields Highway, in a region with multiple operational gold mills within a 100km radius. The Company has now identified more than 10 mineralised parallel east-west structures at Comet Vale, extending over a strike length of more than 1km each with either historical mining workings or anomalous geochemistry and/or rock chips on these structures.

Figure 2 Location of Comet Vale Project

Gold mineralisation occurs in all stratigraphies at Comet Vale and is associated with shear zones, quartz veining, biotite-amphibole-chlorite alteration, pyrrhotite-chalcopyrite sulphide development and an Au-Ag-Bi-Cu-Pb-Zn signature. Minor bismuthinite, galena, sphalerite, jamesonite are observed associated with mineralisation.

An updated MRE has been undertaken by Snowden Optiro using historical data and GG8 data (Table 4), the update is based on 50,130 m of new drilling, drilled and assayed by GG8 between October 2024 and October 2025.

			Cut-off	A	ıu	
		Resource category	grade	Tonnes	Grade	
			(Au g/t)	(kt)	(Au g/t)	(1
		Measured	(**************************************	(333)	(**************************************	(-
		Indicated		120	2.5	
	OP	Inferred	0.5	410	2.3	
		Sub Total		540	2.3	
		Measured				
		Indicated		12	2.4	
Cheer	UG	Inferred	1.1	420	2.4	
		Sub Total		430	2.4	
		Measured				
		Indicated		130	2.5	
	ALL	Inferred		830	2.3	
		Total Resource		970	2.3	
		Measured				
		Indicated	_	370	5.0	
	OP	Inferred	0.5	1,500	2.3	
		Sub Total		1,900	2.9	
		Measured				
		Indicated	1	140	2.3	
Lakeview	UG	Inferred	1.1	1,300	4.4	
		Sub Total		1,400	4.2	
		Measured		-		
		Indicated	1	570	4.3	
	ALL	Inferred	1	2,800	3.3	
		Total Resource		3,300	3.5	
	O.D.	Measured				
		Indicated	0.5	730	4.2	
	OP	Inferred	0.5	520	2.2	
		Sub Total		1,200	3.4	
		Measured				
		Indicated		250	4.5	
Sovereign	UG	Inferred	1.1	1,500	5.2	
		Sub Total		1,700	5.1	
		Measured				
	A1.1	Indicated		980	4.3	
	ALL	Inferred		2,000	4.4	
		Total Resource		3,000	4.3	
		Measured				
	OB	Indicated	0.5	1,300	4.3	
	OP	Inferred	0.5	2,400	2.3	
		Sub Total		3,700	3.0	
		Measured				
AU	UG	Indicated] ,,	400	3.7	
All		Inferred	1.1	3,200	4.5	
		Sub Total		3,600	4.4	
		Measured				
	ALL	Indicated		1,700	4.1	
	ALL	Inferred		5,600	3.5	
		Total Resource		7,300	3.7	

Notes:

- Open Pit (OP) resources are constrained within optimised pit shells based on A\$4,000 per ounce gold price and reported at 0.5 g/t Au cut-off grade.
- Underground (UG) resources are evaluated below the optimised pit shell and constrained within mineable shapes designed at 1.1g/t gold cut-off grade and reported within the mineralised domains
- All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding.

Table 3 Comet Vale MRE by prospect

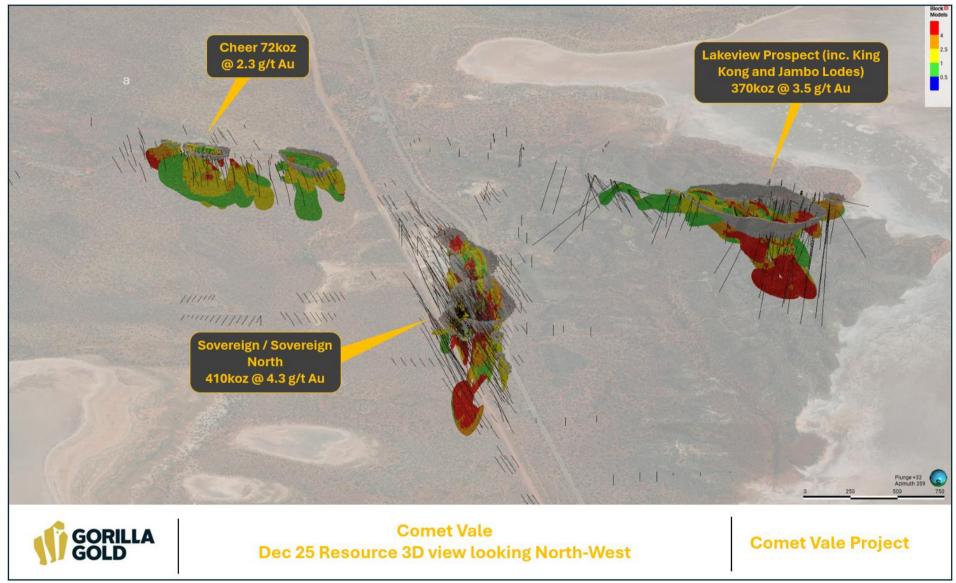


Figure 3 3D image showing location of Resources at Comet Vale Project

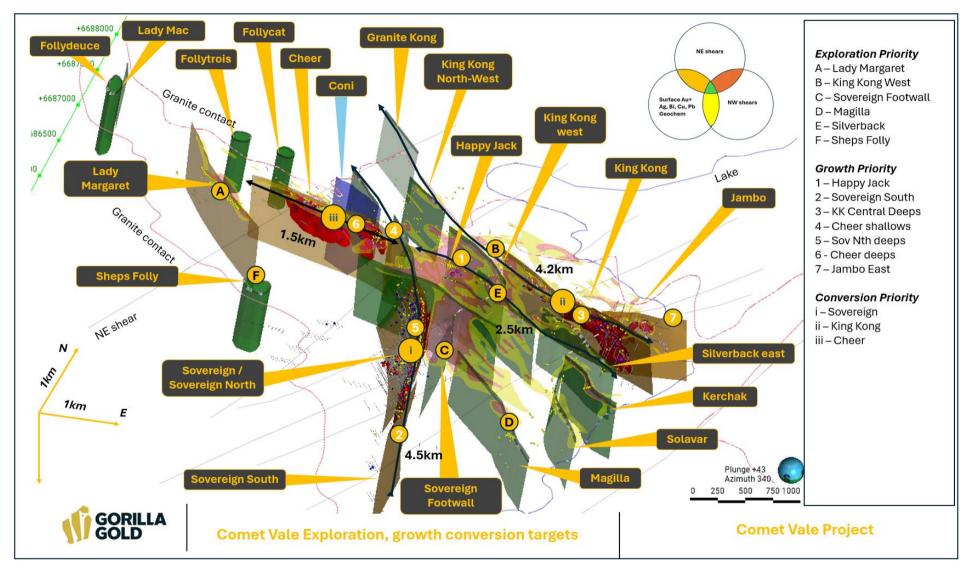


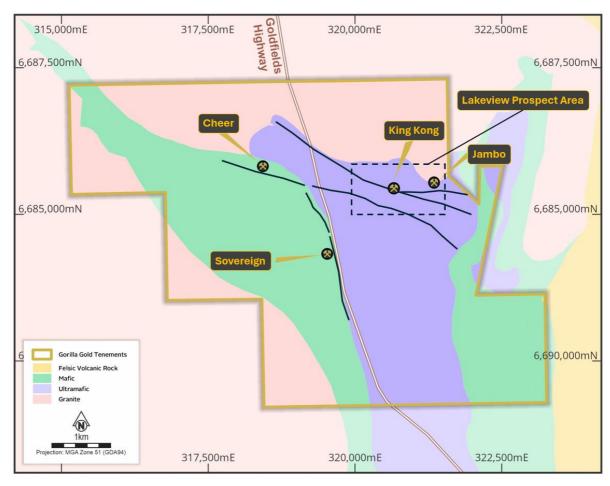
Figure 4 3D image showing location of Exploration, Growth and Conversion targets at Comet Vale Project

Summary of Material Information (as per ASX LR 5.8.1):

The following Material Information Summary for the Comet Vale Mineral Resource estimates is provided in accordance with ASX Listing Rule 5.8.1 requirements. Further details are provided in the JORC Code Table 1 (Appendix 1).

Geology and Geological Interpretation:

The Comet Vale Project is located within the Kalgoorlie Terrane - a component of the mineral rich Eastern Goldfields Superterrane, host to world class orogenic gold deposits including the Super Pit and Gwalia Underground, comprising metamorphosed mafic volcanics, mafic and ultramafic intrusives and subordinate felsic dykes, flows and volcaniclastics.


Regionally, the greenstone belt hosting Comet Vale lies on the eastern flank of the regional-scale Goongarrie-Mount Pleasant Anticline and the same stratigraphy that hosts Paddington goldfield to the South and Menzies goldfield to the North. Most of the lithologies within this greenstone belt are steeply dipping and well foliated along a NNW/SSE trend. Major north-trending, east-dipping, mantle-tapping faults of the Bardoc fault zone traverse just east the project area.

Locally, the Comet Vale Project area covers a sequence of northwest trending, foliated Archean greenstones flanked by multiple granitic intrusions. The metamorphosed mafic-ultramafic sequence can be divided into three distinct stratigraphic units: The Missouri basalt, which in places contains pillow structures and hosts medium to coarse grained dolerites in places; the Walter Williams Formation, which comprises cumulate ultramafic stratigraphies; The Siberia Komatiite which comprises extrusive ultramafic stratigraphies and associated sediments. All three stratigraphic units are intruded by felsic-intermediate porphyries. Shearing appears to be associated with the presence of porphyries (Figure 5).

Gold mineralisation occurs in all stratigraphies at Comet Vale and is associated with shear zones, quartz veining, biotite-amphibole-chlorite alteration, pyrrhotite-chalcopyrite sulphide development and a Au-Ag-Bi-Cu-Pb-Zn signature. Minor bismuthinite, galena, sphalerite, jamesonite are observed associated with mineralisation.

At each of Lakeview, Sovereign and Cheer; multiple planar, sub-parallel, gold mineralised domains are defined using a 0.5g/t gold cut-off grade within broader contiguous zones (Figure 3). Individual steeply dipping domains range from less than a metre to multiple metres wide, extending from near surface up to 600m vertical depth. Higher grade zones appear to plunge 30-45 degrees to the southeast.

Figure 5 Map showing simplified geological groups and location of Resources at Comet Vale Project

Drilling Techniques:

Sovereign

A total of 790 drillholes for 83,808 metres, comprising surface Reverse Circulation ('RC') (654 holes for 45,865 m), surface Diamond Drilling ('DD') (47 holes for 11,725 m), and surface RC_DD (RC precollar with DD tail) (89 holes for 26,218 m) are used in the estimation of the Mineral Resource. Diamond drilling used HQ/NQ core, with orientation tools in targeted areas. RC drilling employed face-sampling hammers with cone splitters (1 m samples), including 4m composites and with 1m resplits on anomalous results. Diamond core was sampled to geological boundaries (0.3–1.5 m) and drilled at high angles to the mineralisation to minimise directional bias. Diamond core and RC chips provided lithological and structural data for lode definition.

Cheer

The final drillhole database used for estimation includes 139 RC drillholes (15,599 m) and 13 DD (1,421 m), totalling 152 holes for 17,020 m. Diamond drilling used HQ/NQ core, with orientation tools in targeted areas. RC drilling employed face-sampling hammers with cone splitters (1 m samples), including 4m composites and with 1m re-splits on anomalous results. Diamond core was sampled to geological boundaries (0.3–1.5 m) and drilled at high angles to the mineralisation to minimise directional bias. Diamond core and RC chips provided lithological and structural data for lode definition.

Lakeview

The final drillhole database used for estimation includes 112 RC drillholes (25,668 m) and 40 DD (15,894 m), totalling 152 holes for 41,894 m. Diamond drilling used HQ/NQ core, with orientation tools in targeted areas. RC drilling employed face-sampling hammers with cone splitters (1 m samples), including 4m composites and with 1m re-splits on anomalous results. Diamond core was sampled to geological boundaries (0.3–1.5 m) and drilled at high angles to the mineralisation to minimise directional bias. Diamond core and RC chips provided lithological and structural data for lode definition.

A total of 213 drillholes for 50,130.58m have been completed and added to the drilling database since the previous Mineral Resource was reported (ASX Announcement 11 April 2023 – Labyrinth Resources Ltd), and this is comprised of 170 RC (32,646m), 22 DD (8,280m), and 21 RC_DD (9,204m).

Sampling techniques:

Sampling has been conducted using industry-standard methods appropriate for orogenic gold deposits and suitable for resource estimation. The sampling procedures aim to ensure representativity, reliability, and quality control across all drilling types.

Historic RC drilling was sampled as 1m downhole intervals via a cone splitter. DD samples were collected at nominated intervals on interpreted mineralisation, alteration and lithological contacts.

GG8 RC samples are collected as 4m composites. In areas where interesting lithology, alteration, mineralisation or veining was encountered, 1m samples were taken. Initial composite samples are collected from samples piles. 1m splits are taken for every metre from the cyclone with duplicate samples taken at the instruction of the field geologist from the second chute on the cone.

DD samples are collected as half core intervals between 0.3-1.0m based on lithology and alteration.

Sample Preparation and Assay

Samples collected by GG8 field crew are submitted to ALS Laboratory in Kalgoorlie, WA. The samples were analysed using the photon assay method which uses a 0.5kg sample. The samples are riffle split at the lab and crushed to 80% passing 2mm to ensure homogeneity.

Historical drilling programs used 30 g fire assay with AAS finish, from accredited assay laboratories. All samples for fire assay were crushed to 75 μ m.

All samples and assays are considered to be representative for the manner in which they are used.

Classification:

The Mineral Resource has been classified in accordance with the guidelines of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves, 2012 edition (JORC Code). Classification into Indicated and Inferred categories is based on the level of confidence in geological and grade continuity, supported by the quality of drilling, sampling and assay data, and the reliability of the grade estimation.

Indicated Mineral Resources are defined in areas where drilling is spaced at less than 20 to 30 metres, where there is a high degree of confidence in both geological and grade continuity and where there is QAQC data. Inferred Mineral Resources are reported in zones with moderate geological confidence and continuity, typically where drill spacing exceeds 30 metres.

Estimation Methodology:

Resource estimation was undertaken using Datamine Studio RM, with geostatistical analysis completed in Snowden Supervisor. Mineralisation interpretation was carried out by Gorilla personnel using Leapfrog software. Gold grades were estimated using a three-pass Ordinary Kriging (OK) approach with dynamic anisotropy, supported by an Inverse Distance squared (ID²) estimate for validation purposes.

Estimates were generated within a block model using parent block dimensions of 5 m (E) x 20 m (N) x 10 m (RL) for Sovereign, 20 m (E) x 5 m (N) x 10 m (RL) for Cheer and Lakeview. These block sizes were determined through kriging neighbourhood analysis and reflect the spatial variability supported by current drill spacing. Sub-celling was applied down to 1 mE by 1 mN by 1 mRL for Sovereign, 2.5 mE by 0.625 mN by 1.25 mRL for Cheer, 1 mE by 1 mN by 1 mRL for Lakeview to ensure accurate volumetric representation. Top cuts were applied where grade outliers were identified within specific domains.

Variography was performed on composited data to assess spatial continuity, and dynamic anisotropy was used to control the orientation of search ellipses. A three-pass estimation strategy was implemented, incorporating increasing search radii and reduced sample numbers. Hard boundaries were applied between grade estimation domains, with soft boundaries used across different weathering profiles.

Model validation included visual inspection, swath plot analysis, statistical comparisons between input composites and estimated blocks, and domain-based volume checks. Bulk density values were assigned according to the degree of weathering.

Cut-off Grade:

Cut-off grades were selected based on mining and processing assumptions, including recoveries, costs, and a gold price of A\$4,000. The open pit was reported above a grade of 0.5 g/t gold cut-off and reported within a Whittle-optimised shell. The underground was reported above a 1.1 g/t gold cut-off grade and reported within MSO-generated stope shapes. These values reflect similar peer operations and are consistent with the project's development stage.

Reasonable Prospects for Eventual Economic Extraction

The Mineral Resources for Comet Vale have been assessed for reasonable prospects of eventual economic extraction ('RPEEE') in accordance with the JORC Code. Comet Vale has been reported as open pit resources with portions reported as underground resources.

 Open Pit resources are constrained within an optimised pit shell generated using A\$4,000/oz gold price. Assumed processing cost \$50/t, recovery ~95%, mining method is conventional open pit with 10% dilution. Mineralisation is near surface, in a well-established mining region, and supported by nearby infrastructure.

 Underground Mineral resources are constrained within MSOs, generated using a A\$4,000/oz gold price, minimum mining width of 1.5 m and cut-off grade of 1.1 g/t gold. The mineralised portion within the MSO shapes has been reported.

Metallurgical Factors or Assumptions

The Comet Vale Project has been mined as recently as 2020 with ore from the Sovereign resource area being treated at the Greenfields and Lakewood Mills, with recoveries averaging 92%. Metallurgical testwork on RC samples from the Lakeview Prospect has returned strong gold recoveries, confirming the non-refractory nature of both ore types. Bottle roll cyanidation tests achieved 98% recovery from a composite sample of the Lakeview mineralisation.

This announcement has been authorised and approved for release by the Board.

Investor Enquiries

Charles Hughes
Chief Executive Officer
admin@gg8.com.au

Media Inquiries

Read Corporate - Nicholas Read Mobile: (0419 929 046)

nicholas@readcorporate.com.au

Competent Person Statement

The information in this announcement relates to exploration results for the Comet Vale Project which Mr. Charles Hughes has reviewed and approves. Mr. Hughes, who is an employee of Gorilla Gold Mines Ltd, a professional geoscientist and a Member of the Australian Institute of Geoscientists. Mr. Hughes has sufficient experience relevant to the style of mineralisation and type of deposits under consideration, and to the activities which have been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration results, Mineral Resources and Ore Reserves. Mr. Hughes consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

The information in this report which relates to Mineral Resources for the Comet Vale Gold project was prepared by Ms Susan Havlin and reviewed by Ms Jane Levett, both employees of Snowden Optiro. Ms Havlin and Ms Levett are both Members and Chartered Professionals of the Australasian Institute of Mining and Metallurgy and they have sufficient experience relevant to the style of mineralisation, the type of deposit under consideration and to the activity undertaken to qualify as Competent Persons as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Havlin consent to the inclusion of the information in the release in the form and context in which it appears.

Specific exploration results referred to in this announcement were originally reported in the following Company announcements in accordance with ASX Listing Rule 5.7:

Title	Date
Comet Vale Drill Results and MRE Timing Update	11 November 2025
High Priority Surface Geochem Targets - Comet Vale/Mulwarrie	17 October 2025
Key Leadership Appointments Drive Growth & Comet Vale Update	9 October 2025
Camp Scale Gold System Emerges at Comet Vale	8 September 2025
High Grade Discovery at Happy Jack	21 August 2025
Bonanza Grades from Sovereign	19 August 2025
Comet Vale Drilling Update	14 August 2025
Results from Initial Metallurgy Testwork at Lakeview	5 August 2025
Lakeview Drilling update	7 July 2025
Update for Comet Vale and Mulwarrie	2 July 2025
Lakeview Update	6 June 2025
Parallel Structure Discovered at Lakeview	19 May 2025
Lakeview Update	8 May 2025
Lakeview Extended 125m Along Strike	17 April 2025
Further Intercepts from Lakeview Prospect	21 March 2025
Further High-Grade Hits from Lakeview & Sovereign Prospects	17 March 2025
Lakeview High-Grade Intercepts Grow Mineralisation	28 February 2025
Gold Intercepts from New Prospects at Comet Vale and Vivien	24 February 2025
Maiden Gold Drilling Results at Cheer	6 November 2024
LRL Set to Acquire Vivien Project and 100% of Comet Vale	17 July 2024
Comet Vale Mineral Resource Estimate	11 April 2023

Mulwarri	Mulwarrie MRE Summary (0.5g/t cut-off Open pit, 1.1 g/t Underground)									
Category	Tonnage (Mt)	Au Grade (g/t)	Au Ounces							
Indicated	1.3	2.8	110,000							
Inferred	1.8	4.2	240,000							
Total	3	3.6	350,000							

The Company is not aware of any new information or data that materially affects the information as previously released on 4 August 2025 and all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

Competent Person's Statement

The information in this report which relates to Mineral Resources for the Mulwarrie Project was prepared by Ms Susan Havlin and reviewed by Ms Jane Levett, both employees of Snowden Optiro. Ms Havlin and Ms Levett are both Members and Chartered Professionals of the Australasian Institute of Mining and Metallurgy and they have sufficient experience relevant to the style of mineralisation, the type of deposit under consideration and to the activity undertaken to qualify as Competent Persons as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Havlin has consented to the inclusion of the information pertaining to the Mulwarrie Mineral Resource Estimate in the Annual report in the form and context in which it appears.

Vivien MRE Summary Au>=0.5g/t (OP) and Au>=1.5g/t (UG)								
Category	Tonnage (Mt)	Au Grade (g/t)	Au Ounces					
Indicated	0.15	4.9	24,000					
inferred	1.95	4.1	254,000					
Total	2.1	4.1	278,000					

The Company is not aware of any new information or data that materially affects the information as previously released on 15 April 2025 and all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

Competent Person's Statement

The information in this report which relates to Mineral Resources for the Vivien Project (Vivien, Vivien Gem and Rik) was prepared by Ms Jane Levett and Ms Susan Havlin and reviewed by Ms Susan Havlin, both employees of Snowden Optiro. Ms Havlin and Ms Levett are both Members and Chartered Professionals of the Australasian Institute of Mining and Metallurgy and they have sufficient experience relevant to the style of mineralisation, the type of deposit under consideration and to the activity undertaken to qualify as Competent Persons as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Havlin and Ms Levett have consented to the inclusion of information pertaining to the Vivien Project Mineral Resource Estimate in the Annual Report in the form and context in which it appears.

La	abyrinth Project Mir	neral Resource Esti	mate Summary Tab	le
	Lode	Tonnes (Mt)	Au (g/t)	Au (oz)
	Boucher	1	5.7	190,000
	McDowell	1	4.5	150,000
Inferred	Talus	0.7	5.3	110,000
inierred	Front West	0.2	2.7	20,000
	Shaft	0.1	5.5	30,000
	Total	3	5.0	500,000

Notes:

- 1. Reported at a 3g/t.m accumulation (grade x vein thickness) cut-off and depleted for historical mining.
- 2. The Mineral Resource is classified in accordance with the JORC Code (2012).
- 3. The effective date of the Mineral Resource estimate is 25 August 2022.
- 4. Estimates are rounded to reflect the level of confidence in the Mineral Resource at present. All resource tonnages have been rounded to the first significant figure. Differences may occur in totals due to rounding.
- 5. Mineral Resource is reported as a global resource.

The Company is not aware of any new information or data that materially affects the information as previously released on 27 September 2022 and all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

Competent Person's Statement

The information in this report that relates to Mineral Resources is based on information and supporting documentation compiled under the supervision of Mr Rene Sterk, a Competent Person, who is a Fellow and Chartered Professional of The Australasian Institute of Mining and Metallurgy (AusIMM). Mr Sterk is Managing Director of RSC, independent resource development consultants. The full nature of the relationship between Mr Sterk and Labyrinth Resources Limited, including any issue that could be perceived by investors as a conflict of interest, has been disclosed. Mr Sterk has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sterk has consented to the inclusion of information pertaining to the Labyrinth Mineral Resource Estimation in the Annual Report in the form and context in which it appears.

APPENDIX 1 TABLE SHOWING COLLAR DETAILS OF NEW HOLES USED IN THE MINERAL RESOURCE ESTIMATE

	Prospect	Hole ID	Depth	Grid	Easting	Northing	RL	Dip	Azi
	Cheer	CVEX002	84	GDA94z51	318105.655	6685762.098	381.0588	-60	15
\	Cheer	CVEX003	120	GDA94z52	318102.617	6685736.441	379.6911	-60	15
/	Cheer	CVEX004	150	GDA94z53	318142.488	6685725.879	379.0053	-75	25
	Cheer	CVEX005	120	GDA94z54	318141.858	6685725.726	378.9656	-60	20
) -	Cheer	CVEX006	84	GDA94z55	318195.085	6685745.439	378.6573	-60	15
1	Cheer	CVEX009	72	GDA94z56	318227.86	6685741.925	378.0373	-60	15
)									
	Cheer	CVEX010	120	GDA94z57	318222.145	6685715.336	378.0037	-60	15
5	Cheer	CVEX016	120	GDA94z58	318379.75	6685677.66	376.0109	-55	15
-	Cheer	CVEX017	156	GDA94z59	318379.437	6685676.538	376.0128	-70	15
,	Cheer	CVEX018	152	GDA94z60	318304.499	6685685.518	377.0217	-60	15
1 -	Cheer	CVEX019	54	GDA94z61	318078.74	6685802.019	383.4438	-60	15
) -	Cheer	CVEX020	78	GDA94z62	318071.105	6685780.344	382.3138	-60	15
-	Cheer	CVEX021	114	GDA94z63	318064.26	6685752.256	380.8011	-65	15
	Cheer	CVEX022	156	GDA94z64	318059.742	6685721.413	379.9453	-65	15
	Cheer	CVEX026	114	GDA94z65	318002.038	6685781.561	381.5985	-60	15
	Cheer	CVEX027	60	GDA94z66	318149.392	6685778.738	381.0298	-50	20
)	Cheer	CVEX028	96	GDA94z67	318148.581	6685776.605	381.0093	-80	20
	Cheer	CVEX031	141	GDA94z68	318437.057	6685682.206	375.3142	-70	15
	Cheer	CVEX037	102	GDA94z69	317988.221	6685744.76	380.3834	-60	15
	Cheer	CVEX044	117.4	GDA94z70	318125.7021	6685751.858	380.184	-60	13
	Cheer	CVEX045	256	GDA94z71	318090.079	6685612.496	380.7737	-60	15
\	Cheer	CVEX046	140	GDA94z72	318813.812	6685537.001	370.3418	-60	30
	Cheer	CVEX047	100	GDA94z73	318828.1973	6685562.016	370.3864	-60	30
	Cheer	CVEX048	80	GDA94z74	318841.3453	6685589.179	370.4385	-60	30
	Cheer	CVEX049	102	GDA94z75	318803.5673	6685582.011	370.7622	-60	30
	Cheer	CVEX050	80	GDA94z76	318814.6369	6685603.99	370.7485	-60	30
	Cheer	CVEX053	84	GDA94z77	318787.1042	6685617.766	370.861	-60	30
	Cheer	CVEX057	173	GDA94z78	318561.0804	6685695.024	373.434	-60	10
	Cheer	CVEX059	268	GDA94z79	318165.1123	6685606.551	379.877	-60	15
	Cheer	CVEX061	310	GDA94z80	318207.5706	6685600.086	379.3276	-60	15
Ī	Cheer	CVEX063	180	GDA94z81	318029.5341	6685765.069	381.1763	-70	15
f	Cheer	CVEX064	200	GDA94z82	318213.2499	6685646.486	379.037	-60	15
f	Cheer	CVEX067	160	GDA94z83	318215.0937	6685674.267	378.5218	-60	15
f	Cheer	CVEX068	134	GDA94z84	318548	6685675	373.7948	-60	20

ı					1				
	Cheer	CVEX069	250	GDA94z85	318127.4442	6685601.577	380.5067	-60	15
	Cheer	CVEX070	264	GDA94z86	318424.7862	6685582.841	375.2752	-60	15
	Cheer	CVEX071	192	GDA94z87	318099.2966	6685661.638	379.9237	-60	15
	Cheer	CVEX072	210	GDA94z88	318418.869	6685630.186	375.6522	-60	15
	Cheer	CVEX073	196	GDA94z89	318167.513	6685651.437	379.8493	-60	15
)	Cheer	CVEX074	250	GDA94z90	318362.988	6685582.88	375.4572	-60	15
	Cheer	CVEX077	250	GDA94z91	318304.8131	6685588.676	376.5601	-60	15
	Cheer	CVEX080	200	GDA94z92	318367.0376	6685628.775	375.5631	-60	15
	Cheer	CVEX082	160	GDA94z93	318375.126	6685655.447	376.2019	-60	15
	Cheer	CVEX081	76.2	GDA94z94	318088.3325	6685776.561	381.9011	-60	13
	Cheer	CVEX083	124.6	GDA94z95	318084.1283	6685760.483	381.2125	-60	13
	Cheer	CVEX086	135.6	GDA94z96	318081.0634	6685728.603	379.7894	-60	13
	Cheer	CVEX087	172	GDA94z97	317872.771	6685779.939	382.3806	-60	17
	Cheer	CVEX091	77	GDA94z98	318053	6685786	382.5965	-60	13
	Cheer	CVEX098	162	GDA94z99	317949	6685760	380.95	-60	17
)	Cheer	CVEX099	162	GDA94z100	317935	6685724	380.5688	-72	17
	Cheer	CVEX097	129.8	GDA94z101	318045	6685746	380.515	-60	13
	Cheer	CVEX100	300	GDA94z102	318655	6685507	370.3031	-60	18
	Cheer	CVEX101	202	GDA94z103	318678	6685585	370.88	-60	18
)	Cheer	CVEX102	108	GDA94z104	318702	6685657	370.73	-60	18
١	Cheer	CVEX104	228	GDA94z105	318600	6685602	372.49	-60	18
	Lakeview	LVEX035	312	GDA94z106	321202.5385	6685360.507	371.0378	-59	195
	Lakeview	LVEX036	282	GDA94z107	321114.9269	6685346.527	374	-77.88923948	171.982639
	Lakeview	LVEX037	246	GDA94z108	320978.1675	6685247.144	379.4349	-74.16873735	30.16211029
	Lakeview	LVEX038	200	GDA94z109	320882.5868	6685301.37	386.0491	-79.37340018	1.884042842
	Lakeview	LVEX039	350	GDA94z110	320948.2712	6685219.068	382.2434	-65	0
	Lakeview	LVEX041	150	GDA94z111	321149.2194	6685318.822	375.8201	-55	200
	Lakeview	LVEX046	300	GDA94z112	321409.9507	6685433.763	364.1967	-55	193
	Lakeview	LVEX047	294	GDA94z113	321332.4824	6685437.626	366.6259	-69	193
	Lakeview	LVEX048	138	GDA94z114	320814.5869	6685359.95	401.9231	-69.44598476	26.09
	Lakeview	LVEX051	300	GDA94z115	320982.0475	6685213.812	382.0815	-60	45
	Lakeview	LVEX056	312	GDA94z116	321390.5594	6685326.296	364.9176	-65	213
	Lakeview	LVEX058	330	GDA94z117	321390.1564	6685325.702	365.0299	-55	213
	Lakeview	LVEX059	359	GDA94z118	320412.6591	6685388.26	392.6542	-62	39.86075639
	Lakeview	LVEX061	299	GDA94z119	320338.9571	6685500.441	381.335	-66.22675147	36.36528969
	Lakeview	LVEX063	350	GDA94z120	320338.0437	6685499.107	381.2912	-70.30838631	36.25664559
	Lakeview	LVEX065	174	GDA94z121	321251.1082	6685294.692	374.3084	-55.9726157	208.4492082
	Lakeview	LVEX066	443	GDA94z122	321334.4612	6685435.78	366.6189	-57.00710377	206.7159117

г		ı							
L	Lakeview	LVEX067	138	GDA94z123	321223.9638	6685294.777	375.1078	-55.06397466	201.9449406
	Lakeview	LVEX069	360	GDA94z124	321175.0129	6685419.476	375.4784	-65.5	190
	Lakeview	LVEX070	300	GDA94z125	321242.8021	6685349.734	370.4892	-66.75	202
	Lakeview	LVEX071	222	GDA94z126	321242.5241	6685348.966	370.6259	-55	202
	Lakeview	LVEX074	150	GDA94z127	321356.1732	6685242.134	369.5954	-60	197
	Lakeview	LVEX075	150	GDA94z128	321358.9903	6685264.5	368.1934	-60	197
	Lakeview	LVEX077	150	GDA94z129	321384.4187	6685295.739	366.3646	-60	197
L	Lakeview	LVEX078	345.6	GDA94z130	321110.6944	6685344.856	373.6524	-60	157
	Lakeview	LVEX081	190.1	GDA94z131	321278.3601	6685330.551	371.9839	-44.39618522	200.1389848
	Lakeview	LVEX082	216	GDA94z132	321357.1901	6685262.652	368.3525	-61	221
	Lakeview	LVEX087	222.5	GDA94z133	321209.1312	6685359.778	371.0179	-40.85991211	193.2847148
L	Lakeview	LVEX088	342	GDA94z134	320233.972	6685569.946	372.1453	-56	48
	Lakeview	LVEX095	132	GDA94z135	321488.09	6685436.997	361.994	-58	188
	Lakeview	LVEX097	150	GDA94z136	320801.9909	6685309.08	404.6852	-70	8
L	Lakeview	LVEX099	203	GDA94z137	320638.0162	6685376.829	389.802	-75	209
	Lakeview	LVEX101	130	GDA94z138	320697.6011	6685352.848	398.1127	-75	204
	Lakeview	LVEX104	100	GDA94z139	320882.0753	6685304.129	386.4753	-55	350
	Lakeview	LVEX107	360	GDA94z140	320234.0348	6685571.497	372.1911	-64	42.76526833
	Lakeview	LVEX114	234	GDA94z141	320232.0835	6685568.546	372.1809	-55	218.6598513
	Lakeview	LVEX108	291.35	GDA94z142	320495.2993	6685307.88	393.8595	-45	28
	Lakeview	LVEX121	336	GDA94z143	320760.9639	6685295.481	408.3177	-64.75	33.06652765
Ĺ	Lakeview	LVEX122	300	GDA94z144	320636.4576	6685378.604	389.5795	-60	209
L	Lakeview	LVEX124	470.1	GDA94z145	321166.7474	6685551.966	365.3285	-47	193
ļ	Lakeview	LVEX125	352	GDA94z146	320195.8343	6685588.21	370.6515	-55	5.928015348
L	Lakeview	LVEX119	300	GDA94z147	321343.529	6685340.652	368.515	-55	210
	Lakeview	LVEX120	550.3	GDA94z148	320333.6722	6685491.693	381.2227	-30	241.0720123
	Lakeview	LVEX128	753.5	GDA94z149	321229.3751	6685559.07	363.6522	-60	194
ļ	Lakeview	LVEX129	719.7	GDA94z150	321433.2606	6685435.284	363.6555	-65	193
ļ	Lakeview	LVEX131	645.6	GDA94z151	321229.0982	6685558.181	363.6583	-55	194
	Lakeview	LVEX134	561.5	GDA94z152	321228.7519	6685557.196	363.7013	-50	194
-	Lakeview	LVEX135	495.6	GDA94z153	321433.1961	6685433.994	363.6724	-52.9279378	193
ļ	Lakeview	LVEX139	629.4	GDA94z154	321334.6258	6685439.355	366.5481	-63	197
ļ	Lakeview	LVEX141	208	GDA94z155	320798.5907	6685296.983	406.0315	-30	196
	Lakeview	LVEX143 A	669.9	GDA94z156	321340	6685439	366.62	-67	197
Ī	Lakeview	LVEX001	220	GDA94z157	320333.722	6685497.501	381.0813	-55	0
Ī	Lakeview	LVEX002	300	GDA94z158	320412.829	6685390.471	392.4544	-60	30
Ī	Lakeview	LVEX024	120	GDA94z159	320884.68	6685301.399	386.4337	-55	40
	Lakeview	LVEX025	200	GDA94z160	320961.829	6685269.042	379.509	-55	350

ı		1							1
	Lakeview	LVEX004	150	GDA94z161	320800.171	6685306.833	404.9879	-60	30
	Lakeview	LVEX005	150	GDA94z162	320797.5	6685303.396	405.3561	-55	350
	Lakeview	LVEX006	193	GDA94z163	320957.945	6685267.058	379.5992	-75	350
	Lakeview	LVEX007	180	GDA94z164	320956.531	6685264.607	379.5597	-65	320
	Lakeview	LVEX008	200	GDA94z165	320983.503	6685255.38	378.8898	-66	10
)	Lakeview	LVEX009	160	GDA94z166	320983.518	6685256.812	378.8272	-55	10
	Lakeview	LVEX010	150	GDA94z167	321065.739	6685326.131	376.1422	-75	200
	Lakeview	LVEX011	300	GDA94z168	321277.836	6685332.123	371.7487	-55	200
)	Lakeview	LVEX012	246	GDA94z169	321107.976	6685346.262	374.5089	-60	180
	Lakeview	LVEX013	162	GDA94z170	321089.704	6685325.652	377.6489	-55	190
)	Lakeview	LVEX014	150	GDA94z171	320984.613	6685254.42	378.96	-55	40
	Lakeview	LVEX016	174	GDA94z172	321091.633	6685323.883	377.9159	-62	200
/	Lakeview	LVEX017	264	GDA94z173	321109.787	6685346.042	374.5014	-55	160
	Lakeview	LVEX018	162	GDA94z174	320880.747	6685297.272	386.3916	-75	0
	Lakeview	LVEX019	180	GDA94z175	320813.051	6685361.604	401.9693	-55	25
)	Lakeview	LVEX020	180	GDA94z176	320690.845	6685363.863	396.3858	-70	10
	Lakeview	LVEX022	250	GDA94z177	320339.796	6685496.656	381.6528	-60	30
	Lakeview	LVEX026	200	GDA94z178	320985.8164	6685253.105	379.0748	-70	350
	Lakeview	LVEX027	264	GDA94z179	321119.4229	6685345.355	374.4148	-70	160
)	Lakeview	LVEX028	250	GDA94z180	320978.9302	6685244.677	379.6947	-70	40
\	Lakeview	LVEX029	150	GDA94z181	320998.7082	6685280.078	378.2093	-55	40
/	Lakeview	LVEX030	252	GDA94z182	320984.7534	6685239.698	380.0923	-55	50
	Lakeview	LVEX031	280	GDA94z183	321121.5281	6685340.936	374.858	-80	160
)	Lakeview	LVEX032	240	GDA94z184	321123.7644	6685339.538	374.8977	-55	150
/	Lakeview	LVEX033	366	GDA94z185	321203.5278	6685361.607	370.9556	-68	191.33
)	Lakeview	LVEX034	300	GDA94z186	321280.8561	6685330.539	371.8614	-68	196
	Sovereign	STEX003	138	GDA94z187	319284.608	6685062.043	375.5662	-60	60
	Sovereign	STEX004	220	GDA94z188	319217.016	6685045.669	373.6104	-60	60
	Sovereign	STEX005	130	GDA94z189	319215.442	6685044.77	373.5539	-90	0
)	Sovereign	STEX006	130	GDA94z190	319201.486	6685105.893	373.4791	-90	0
	Sovereign	STEX007	168	GDA94z191	319202.809	6685107.061	373.5179	-60	60
	Sovereign	STEX008	138	GDA94z192	319390.096	6684934.598	376.8959	-60	65
	Sovereign	STEX012	120	GDA94z193	319301.244	6684926.336	374.914	-90	70
	Sovereign	STEX014	60	GDA94z194	319488.562	6684909.341	381.2102	-60	55
	Sovereign	STEX018	270.2	GDA94z195	319363.783	6684862.471	378.4434	-50	70
	Sovereign	STEX019	200	GDA94z196	319493.009	6684758.541	379.4334	-60	60
	Sovereign	STEX020	180	GDA94z197	319543.969	6684772.355	381.9998	-60	90
	Sovereign	STEX021	60	GDA94z198	319586.681	6684758.753	382.4683	-60	90

1		I							T
	Sovereign	STEX022	199.1	GDA94z199	319283.807	6685059.646	375.5341	-65	100
	Sovereign	STEX024	176	GDA94z200	319666.403	6683761.004	373.3076	-60	90
	Sovereign	STEX025	126	GDA94z201	319751.51	6683582.777	372.0652	-60	90
	Sovereign	STEX026	114	GDA94z202	319774.689	6683490.105	370.5139	-60	90
	Sovereign	STEX028	108	GDA94z203	319804.628	6683307.777	368.7048	-60	90
)	Sovereign	STEX030	216	GDA94z204	319717.292	6683392.792	367.6956	-60	90
	Sovereign	STEX032	208	GDA94z205	319685.512	6683572.038	369.3152	-60	90
	Sovereign	STEX034	252	GDA94z206	319664.078	6683983.442	374.5617	-65	80
)	Sovereign	STEX035	264	GDA94z207	319618.748	6683965.016	372.3764	-60	90
	Sovereign	STEX036	415	GDA94z208	319390.148	6684447.879	372.9976	-60	90
)	Sovereign	STEX037	667.5	GDA94z209	319321.677	6684293.474	370.1131	-60	90
1	Sovereign	STEX038	741.3	GDA94z210	319304.472	6684364.114	370.106	-60	90
	Sovereign	STEX041	150	GDA94z211	319231.893	6684581.174	370.0139	-60	60
	Sovereign	STEX043	727.2	GDA94z212	319334.003	6684021.848	367.5512	-60	90
1	Sovereign	STEX044	672.9	GDA94z213	319392.103	6684022.512	368.6245	-60	90
)	Sovereign	STEX046	625	GDA94z214	319375.379	6684163.789	370.0179	-60	90
1	Sovereign	STEX047	72	GDA94z215	319473.666	6684940.487	381.0147	-50	70
	Sovereign	STEX048	96	GDA94z216	319467.645	6684911.73	380.2322	-60	70
	Sovereign	STEX049	90	GDA94z217	319482.744	6684891.18	380.8465	-70	60
)	Sovereign	STEX050	90	GDA94z218	319509.469	6684872.342	382.0655	-60	70
\	Sovereign	STEX051	102	GDA94z219	319490.338	6684846.181	381.3345	-60	70
	Sovereign	STEX053	90	GDA94z220	319540.701	6684726.698	380.8121	-55	70
1	Sovereign	STEX054	144	GDA94z221	319506.519	6684729.866	379.3634	-60	70
)	Sovereign	STEX055	186	GDA94z222	319471.113	6684729.78	380.2831	-58	80
/	Sovereign	STEX056	266	GDA94z223	319452.892	6684724.534	379.2239	-65	60
)	Sovereign	STEX057	156	GDA94z224	319521.861	6684700.927	380.7634	-60	70
	Sovereign	STEX058	180	GDA94z225	319501.5	6684683.488	380.0192	-60	70
	Sovereign	STEX059	240	GDA94z226	319453.307	6684697.064	379.4995	-60	70
	Sovereign	STEX060	168	GDA94z227	319513.04	6684651.881	380.2993	-50	65
)	Sovereign	STEX061	185	GDA94z228	319519.184	6684654.356	380.5371	-60	70
	Sovereign	STEX062	138	GDA94z229	319536.276	6684630.665	380.8087	-50	70
	Sovereign	STEX063	176	GDA94z230	319528.212	6684628.932	380.5348	-61	80
	Sovereign	STEX064	330.7	GDA94z231	319482.405	6684656.042	379.2072	-63	85
	Sovereign	STEX065	492.9	GDA94z232	319323.578	6684736.449	373.6693	-55	70
	Sovereign	STEX066	120	GDA94z233	319395.214	6684662.092	375.9726	-60	70
	Sovereign	STEX067	378.9	GDA94z234	319472.128	6684582.543	377.9357	-65	55
	Sovereign	STEX068	186	GDA94z235	319426.035	6684831.662	379.3729	-62	70
	Sovereign	STEX069	240	GDA94z236	319410.207	6684773.589	379.1981	-60	70

Sovereign	STEX071	192	GDA94z237	319460.287	6684792.153	382.0456	-65	72
Sovereign	STEX072	138	GDA94z238	319481.735	6684786.392	381.5341	-60	70
Sovereign	STEX073	505	GDA94z239	319279.03	6684864.805	377.5794	-60	65
Sovereign	STEX074	491.13	GDA94z240	319303.668	6684785.952	377.0604	-60	55
Sovereign	STEX075	258	GDA94z241	319609.965	6684012.944	373.5416	-60	90
Sovereign	STEX076	150	GDA94z242	319549.066	6684056.688	372.4613	-61	85
Sovereign	STEX077	228	GDA94z243	319424.189	6684831.256	379.381	-75	80
Sovereign	STEX078	120	GDA94z244	319434.934	6684852.731	378.9969	-55	70
Sovereign	STEX079	116	GDA94z245	319431.152	6684879.49	377.4167	-55	68
Sovereign	STEX080	80	GDA94z246	319522.318	6684796.071	384.65	-55	80
Sovereign	STEX081	180	GDA94z247	319465.052	6684772.206	381.814	-50	95
Sovereign	STEX082	78	GDA94z248	319520.129	6684855.291	382.4677	-55	135
Sovereign	STEX083	210	GDA94z249	319573.351	6684818.067	383.3697	-50	110
Sovereign	STEX084	475	GDA94z250	319396.597	6684396.035	372.7966	-67	75
Sovereign	STEX085	423.6	GDA94z251	319463.313	6684187.708	372.0464	-64	93
Sovereign	STEX086	366.9	GDA94z252	319475.795	6684155.963	371.6869	-55	89
Sovereign	STEX087	381	GDA94z253	319476.765	6684123.38	369.9666	-60	90
Sovereign	STEX088	457.1	GDA94z254	319352.351	6684520.496	373.3113	-59	90
Sovereign	STEX090	463	GDA94z255	319506.254	6684037.368	371.0166	-66	87
Sovereign	STEX092	554.3	GDA94z256	319387.8576	6684088.536	369.0972	-60	90
Sovereign	STEX095	423.4	GDA94z257	319465.3432	6684300.695	373.21	-70	90
Sovereign	STEX100	150	GDA94z258	319466.3764	6684929.263	380.6599	-60	70
Sovereign	STEX101	200	GDA94z259	319459.3207	6684923.22	380.0751	-64	68
Sovereign	STEX104	162	GDA94z260	319458.0245	6684986.665	380.9454	-60	70
Sovereign	STEX105	175	GDA94z261	319412.1446	6684970.393	378.7831	-60	70
Sovereign	STEX111 A	150	GDA94z262	319401.0443	6685030.892	379.058	-60	70
Sovereign	STEX096	462.7	GDA94z263	319355.6242	6684238.375	370.3961	-57	93

APPENDIX 2 TABLE SHOWING SIGNIFICANT INTERCEPTS ABOVE 0.5G/T AU OF NEW HOLES USED IN THE MINERAL RESOURCE ESTIMATE

holeid	from	to	Au_ppm	true_length	linear_grade
CVEX001	15.0	17.0	1.1	2.0	2.2
CVEX001	20.0	22.0	2.8	2.0	5.6
CVEX001	23.0	24.0	0.5	1.0	0.5
CVEX002	49.0	50.0	1.5	1.0	1.5
CVEX002	52.0	54.0	1.1	2.0	2.3
CVEX002	56.0	62.0	1.5	6.0	8.8
CVEX003	85.0	86.0	1.9	1.0	1.9

CVEX003	88.0	89.0	0.9	1.0	0.9
CVEX003	91.0	92.0	0.6	1.0	0.6
CVEX004	87.0	88.0	1.6	1.0	1.6
CVEX004	119.0	125.0	2.0	6.0	11.9
CVEX005	78.0	81.0	2.4	3.0	7.2
CVEX006	51.0	54.0	26.8	3.0	80.3
CVEX009	43.0	45.0	9.1	2.0	18.1
CVEX010	88.0	89.0	1.4	1.0	1.4
CVEX010	95.0	96.0	1.2	1.0	1.2
CVEX016	104.0	105.0	1.1	1.0	1.1
CVEX016	108.0	112.0	18.8	4.0	75.4
CVEX017	134.0	135.0	3.6	1.0	3.6
CVEX017	150.0	151.0	1.3	1.0	1.3
CVEX018	112.0	116.0	1.0	4.0	3.8
CVEX018	150.0	151.0	2.3	1.0	2.3
CVEX019	11.0	13.0	8.5	2.0	16.9
CVEX019	19.0	20.0	0.5	1.0	0.5
CVEX019	23.0	24.0	0.6	1.0	0.6
CVEX019	29.0	31.0	1.7	2.0	3.5
CVEX020	38.0	39.0	1.3	1.0	1.3
CVEX020	42.0	45.0	1.7	3.0	5.1
CVEX020	49.0	50.0	0.7	1.0	0.7
CVEX021	81.0	82.0	1.3	1.0	1.3
CVEX021	84.0	85.0	3.9	1.0	3.9
CVEX021	86.0	88.0	0.7	2.0	1.4
CVEX022	136.0	137.0	0.7	1.0	0.7
CVEX026	49.0	50.0	1.7	1.0	1.7
CVEX027	16.0	17.0	2.1	1.0	2.1
CVEX027	18.0	20.0	2.4	2.0	4.9
CVEX027	23.0	25.0	2.1	2.0	4.2
CVEX028	32.0	34.0	4.3	2.0	8.6
CVEX028	35.0	36.0	4.0	1.0	4.0
CVEX028	37.0	46.0	6.2	9.0	55.7
CVEX031	74.0	76.0	5.3	2.0	10.7
CVEX031	83.0	84.0	0.9	1.0	0.9
CVEX037	60.0	61.0	0.9	1.0	0.9
LVEX001	132.0	136.0	0.6	4.0	2.4
LVEX002	201.0	204.0	1.8	3.0	5.3
LVEX002	207.0	208.0	3.5	1.0	3.5
LVEX024	35.0	36.0	0.5	1.0	0.5
LVEX024	63.0	64.0	0.7	1.0	0.7
LVEX025	77.0	78.0	3.5	1.0	3.5
LVEX025	126.0	127.0	0.5	1.0	0.5

LVEX004	89.0	90.0	1.9	1.0	1.9
LVEX005	81.0	82.0	0.9	1.0	0.9
LVEX006	110.0	111.0	0.9	1.0	0.9
LVEX006	112.0	114.0	0.7	2.0	1.4
LVEX006	152.0	153.0	14.9	1.0	14.9
LVEX006	180.0	182.0	3.6	2.0	7.1
LVEX007	137.0	139.0	1.7	2.0	3.4
LVEX008	123.0	127.0	30.6	4.0	122.5
LVEX008	128.0	136.0	1.0	8.0	8.2
LVEX008	142.0	145.0	2.5	3.0	7.4
LVEX009	124.0	128.0	0.7	4.0	2.8
LVEX010	82.0	90.0	0.9	8.0	7.5
LVEX010	96.0	97.0	0.7	1.0	0.7
LVEX010	105.0	106.0	0.6	1.0	0.6
LVEX010	109.0	123.0	1.5	14.0	20.5
LVEX011	96.0	100.0	3.5	4.0	14.0
LVEX011	176.0	188.0	1.6	12.0	19.3
LVEX012	90.0	92.0	1.0	2.0	2.0
LVEX012	101.0	102.0	0.9	1.0	0.9
LVEX012	122.0	133.0	8.9	11.0	98.4
LVEX012	135.0	136.0	13.5	1.0	13.5
LVEX012	148.0	149.0	0.9	1.0	0.9
LVEX012	154.0	155.0	2.8	1.0	2.8
LVEX013	58.0	59.0	0.6	1.0	0.6
LVEX014	117.0	118.0	0.7	1.0	0.7
LVEX014	124.0	127.0	3.9	3.0	11.7
LVEX014	131.0	138.0	4.7	7.0	32.9
LVEX014	146.0	150.0	0.5	4.0	2.0
LVEX016	105.0	106.0	6.0	1.0	6.0
LVEX017	145.0	146.0	30.2	1.0	30.2
LVEX017	147.0	152.0	33.7	5.0	168.3
LVEX017	155.0	156.0	19.5	1.0	19.5
LVEX017	161.0	162.0	2.0	1.0	2.0
LVEX017	168.0	169.0	0.6	1.0	0.6
LVEX018	80.0	82.0	1.0	2.0	2.0
LVEX018	83.0	84.0	0.9	1.0	0.9
LVEX018	88.0	92.0	82.7	4.0	330.7
LVEX018	93.0	94.0	1.0	1.0	1.0
LVEX018	95.0	97.0	2.0	2.0	4.0
LVEX018	98.0	99.0	3.4	1.0	3.4
LVEX019	8.0	9.0	1.1	1.0	1.1
LVEX019	24.0	27.0	0.7	3.0	2.2
LVEX019	28.0	30.0	5.3	2.0	10.6

	/EX020 /EX022 /EX026 /EX026 /EX027	29.0 24.0 126.0 130.0 103.0 125.0 128.0 153.0 156.0 168.0 176.0	30.0 27.0 129.0 131.0 104.0 126.0 130.0 139.0 154.0 167.0 173.0	0.8 1.9 0.9 0.7 0.6 0.7 4.7 1.0 0.7 9.2	1.0 3.0 3.0 1.0 1.0 2.0 5.0 1.0	0.8 5.8 2.6 0.7 0.6 0.7 9.3 4.8
	/EX026 /EX026 /EX027	126.0 130.0 103.0 125.0 128.0 134.0 153.0 168.0 176.0	129.0 131.0 104.0 126.0 130.0 139.0 154.0 167.0	0.9 0.7 0.6 0.7 4.7 1.0 0.7 9.2	3.0 1.0 1.0 2.0 5.0 1.0	2.6 0.7 0.6 0.7 9.3 4.8
	/EX026 /EX027	130.0 103.0 125.0 128.0 134.0 153.0 156.0 168.0	131.0 104.0 126.0 130.0 139.0 154.0 167.0	0.7 0.6 0.7 4.7 1.0 0.7 9.2	1.0 1.0 1.0 2.0 5.0 1.0	0.7 0.6 0.7 9.3 4.8
	/EX027 /EX027 /EX027 /EX027 /EX027 /EX027 /EX027 /EX027 /EX027	103.0 125.0 128.0 134.0 153.0 156.0 168.0	104.0 126.0 130.0 139.0 154.0 167.0	0.6 0.7 4.7 1.0 0.7 9.2	1.0 1.0 2.0 5.0 1.0	0.6 0.7 9.3 4.8
	/EX027 /EX027 /EX027 /EX027 /EX027 /EX027 /EX027 /EX027	125.0 128.0 134.0 153.0 156.0 168.0	126.0 130.0 139.0 154.0 167.0	0.7 4.7 1.0 0.7 9.2	1.0 2.0 5.0 1.0	9.3 4.8
	/EX027 /EX027 /EX027 /EX027 /EX027 /EX027 /EX027	128.0 134.0 153.0 156.0 168.0 176.0	130.0 139.0 154.0 167.0 173.0	4.7 1.0 0.7 9.2	2.0 5.0 1.0 11.0	9.3 4.8
	/EX027 /EX027 /EX027 /EX027 /EX027 /EX027	134.0 153.0 156.0 168.0 176.0	139.0 154.0 167.0 173.0	1.0 0.7 9.2	5.0 1.0 11.0	4.8
	/EX027 /EX027 /EX027 /EX027 /EX027 /EX027	153.0 156.0 168.0 176.0	154.0 167.0 173.0	9.2	1.0	
	/EX027 /EX027 /EX027 /EX027 /EX027	156.0 168.0 176.0	167.0 173.0	9.2	11.0	0.7
	/EX027 /EX027 /EX027 /EX027	168.0 176.0	173.0			
L\ L\	/EX027 /EX027 /EX027	176.0		3.7	E 0	101.2
L\	/EX027 /EX027		178.0		5.0	18.6
L۱	/EX027	179.0		4.4	2.0	8.8
			180.0	0.9	1.0	0.9
L١	/EX027	186.0	187.0	0.8	1.0	0.8
		189.0	191.0	0.6	2.0	1.2
L۱	/EX027	192.0	194.0	6.0	2.0	12.0
L۱	/EX027	195.0	196.0	0.6	1.0	0.6
L۱	/EX027	212.0	216.0	3.6	4.0	14.5
L۱	/EX028	156.0	159.0	2.2	3.0	6.7
L۱	/EX028	160.0	163.0	1.1	3.0	3.4
L۱	/EX029	49.0	50.0	3.5	1.0	3.5
L۱	/EX029	51.0	52.0	1.4	1.0	1.4
L۱	/EX029	86.0	90.0	4.4	4.0	17.5
L۱	/EX029	92.0	94.0	5.2	2.0	10.4
L١	/EX029	95.0	96.0	1.3	1.0	1.3
L۱	/EX030	138.0	144.0	8.2	6.0	49.2
L۱	/EX030	145.0	146.0	0.8	1.0	0.8
L۱	/EX030	148.0	159.0	4.1	11.0	45.6
L۱	/EX030	162.0	163.0	0.7	1.0	0.7
L۱	/EX030	166.0	168.0	0.8	2.0	1.6
L١	/EX030	199.0	201.0	4.8	2.0	9.6
L۱	/EX030	202.0	203.0	0.6	1.0	0.6
L۱	/EX031	72.0	75.0	1.5	3.0	4.6
L۱	/EX031	131.0	132.0	2.7	1.0	2.7
L۱	/EX031	137.0	138.0	0.8	1.0	0.8
L۱	/EX031	141.0	142.0	0.5	1.0	0.5
L۱	/EX031	146.0	154.0	6.3	8.0	50.3
L۱	/EX031	164.0	169.0	4.6	5.0	22.8
L١	/EX031	212.0	213.0	0.7	1.0	0.7
L۱	/EX032	56.0	57.0	1.0	1.0	1.0
L۱	/EX032	125.0	126.0	4.8	1.0	4.8
L۱	/EX033	140.0	141.0	2.8	1.0	2.8
L۱	/EX033	187.0	190.0	1.9	3.0	5.7

LVEX033	0.7 0.5 63.9 1.1 1.8 61.8
LVEX034 190.0 191.0 0.5 1.0 LVEX034 201.0 203.0 32.0 2.0 LVEX034 204.0 205.0 1.1 1.0 LVEX034 206.0 207.0 1.8 1.0 LVEX034 212.0 224.0 5.2 12.0 LVEX035 167.0 168.0 13.6 1.0 LVEX036 15.0 16.0 0.6 1.0 LVEX036 155.0 163.0 2.9 8.0 LVEX036 155.0 163.0 2.9 8.0 LVEX036 182.0 183.0 0.6 1.0 LVEX037 76.0 78.0 2.8 2.0 LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 173.0	0.5 63.9 1.1 1.8 61.8
LVEX034 201.0 203.0 32.0 2.0 LVEX034 204.0 205.0 1.1 1.0 LVEX034 206.0 207.0 1.8 1.0 LVEX034 212.0 224.0 5.2 12.0 LVEX035 167.0 168.0 13.6 1.0 LVEX036 15.0 16.0 0.6 1.0 LVEX036 155.0 163.0 2.9 8.0 LVEX036 185.0 163.0 2.9 8.0 LVEX036 182.0 183.0 0.6 1.0 LVEX037 76.0 78.0 2.8 2.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 7	63.9 1.1 1.8 61.8
LVEX034 204.0 205.0 1.1 1.0 LVEX034 206.0 207.0 1.8 1.0 LVEX034 212.0 224.0 5.2 12.0 LVEX035 167.0 168.0 13.6 1.0 LVEX036 15.0 16.0 0.6 1.0 LVEX036 155.0 152.0 0.7 1.0 LVEX036 155.0 163.0 2.9 8.0 LVEX036 182.0 183.0 0.6 1.0 LVEX037 76.0 78.0 2.8 2.0 LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73	1.1 1.8 61.8
LVEX034 206.0 207.0 1.8 1.0 LVEX034 212.0 224.0 5.2 12.0 LVEX035 167.0 168.0 13.6 1.0 LVEX036 15.0 16.0 0.6 1.0 LVEX036 151.0 152.0 0.7 1.0 LVEX036 155.0 163.0 2.9 8.0 LVEX036 182.0 183.0 0.6 1.0 LVEX037 76.0 78.0 2.8 2.0 LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0<	1.8
LVEX034 212.0 224.0 5.2 12.0 LVEX035 167.0 168.0 13.6 1.0 LVEX036 15.0 16.0 0.6 1.0 LVEX036 151.0 152.0 0.7 1.0 LVEX036 155.0 163.0 2.9 8.0 LVEX036 182.0 183.0 0.6 1.0 LVEX037 76.0 78.0 2.8 2.0 LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0<	61.8
LVEX035 167.0 168.0 13.6 1.0 LVEX036 15.0 16.0 0.6 1.0 LVEX036 151.0 152.0 0.7 1.0 LVEX036 155.0 163.0 2.9 8.0 LVEX036 182.0 183.0 0.6 1.0 LVEX037 76.0 78.0 2.8 2.0 LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX044 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0	
LVEX036 15.0 16.0 0.6 1.0 LVEX036 151.0 152.0 0.7 1.0 LVEX036 155.0 163.0 2.9 8.0 LVEX036 182.0 183.0 0.6 1.0 LVEX037 76.0 78.0 2.8 2.0 LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX044 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX048 11.0 15.0	13.6
LVEX036 151.0 152.0 0.7 1.0 LVEX036 155.0 163.0 2.9 8.0 LVEX036 182.0 183.0 0.6 1.0 LVEX037 76.0 78.0 2.8 2.0 LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX044 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX048 11.0 15.0	
LVEX036 155.0 163.0 2.9 8.0 LVEX036 182.0 183.0 0.6 1.0 LVEX037 76.0 78.0 2.8 2.0 LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX041 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX048 11.0 15.0	0.6
LVEX036 182.0 183.0 0.6 1.0 LVEX037 76.0 78.0 2.8 2.0 LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX044 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0	0.7
LVEX037 76.0 78.0 2.8 2.0 LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX044 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 223.0 225.0	23.0
LVEX037 161.0 164.0 1.1 3.0 LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0	0.6
LVEX038 86.0 89.0 1.1 3.0 LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 233.0 234.0 0.5 <	5.6
LVEX038 91.0 94.0 1.2 3.0 LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX044 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 32.0 36.0 1.3 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 226.0 230.0	3.3
LVEX038 194.0 195.0 0.6 1.0 LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	3.2
LVEX039 36.0 37.0 1.2 1.0 LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	3.7
LVEX039 173.0 175.0 7.8 2.0 LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	0.6
LVEX041 70.0 73.0 10.6 3.0 LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	1.2
LVEX041 74.0 75.0 2.6 1.0 LVEX041 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	15.7
LVEX041 90.0 92.0 1.2 2.0 LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	31.8
LVEX046 61.0 64.0 17.0 3.0 LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	2.6
LVEX046 70.0 71.0 2.7 1.0 LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	2.4
LVEX047 248.0 249.0 0.8 1.0 LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	50.9
LVEX048 11.0 15.0 7.6 4.0 LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	2.7
LVEX048 32.0 36.0 1.3 4.0 LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	0.8
LVEX051 184.0 187.0 2.4 3.0 LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	30.3
LVEX051 216.0 219.0 3.3 3.0 LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	5.3
LVEX051 223.0 225.0 0.9 2.0 LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	7.1
LVEX051 226.0 230.0 12.6 4.0 LVEX051 233.0 234.0 0.5 1.0	10.0
LVEX051 233.0 234.0 0.5 1.0	1.8
	50.4
LVEX056 299.0 300.0 3.2 1.0	0.5
	3.2
LVEX056 301.0 304.0 1.9 3.0	5.8
LVEX058 242.0 244.0 0.6 2.0	1.3
LVEX059 138.0 140.0 0.7 2.0	1.4
LVEX061 22.0 23.0 0.5 1.0	0.5
LVEX063 26.0 28.0 1.6 2.0	3.2
LVEX063 212.0 213.0 0.9 1.0	0.9
LVEX065 82.0 83.0 0.6 1.0	0.6
LVEX065 84.0 86.0 4.8 2.0	9.6
LVEX065 97.0 99.0 1.2 2.0	2.5
LVEX066 166.5 168.0 4.0 1.5	6.0

LVEX069 302.0 303.0 0.9 1.0	Г	ī				T
LVEX069 302.0 303.0 0.9 1.0	LVEX067	68.0	69.0	3.5	1.0	3.5
LVEXO70	LVEX069	280.0	296.0	2.7	16.0	43.2
LVEX071	LVEX069	302.0	303.0	0.9	1.0	0.9
LVEX074	LVEX070	213.0	218.0	4.9	5.0	24.4
LVEXO74 86.0 87.0 0.7 1.0 LVEXO75 44.0 46.0 4.7 2.0 LVEXO77 110.0 111.0 11.7 1.0 1 LVEXO78 144.0 146.8 6.5 2.8 1 LVEXO81 124.0 125.5 2.0 1.5 LVEXO81 131.0 132.0 13.0 1.0 1 LVEXO82 49.0 50.0 0.6 1.0 LVEXO82 51.0 52.0 0.9 1.0 LVEXO82 55.0 54.0 0.6 1.0 LVEXO82 151.0 154.0 1.8 3.0 STEXO03 84.0 85.0 0.8 1.0 STEXO04 89.0 90.0 0.6 1.0 STEXO05 121.0 122.0 1.8 1.0 STEXO06 66.0 67.0 0.6 1.0 STEXO06 66.0 67.0 0.6 1.0 STEXO07 33.0 34.0 0.5 1.0 STEXO08 82.0 83.0 1.6 1.0 STEXO08 106.0 107.0 11.8 1.0 1 STEXO12 43.0 44.0 1.3 1.0 STEXO12 43.0 44.0 1.3 1.0 STEXO12 43.0 39.0 10.8 3.0 3 STEXO14 36.0 39.0 10.8 3.0 3 STEXO14 36.0 39.0 10.8 3.0 3 STEXO19 0.0 1.0 0.8 1.0 STEXO10 39.0 40.0 2.4 1.0 STEXO10 39.0 40.0 2.4 1.0 STEXO20 39.0 40.0 2.4 1.0 STEXO21 59.0 50.0 5.0 1.0 STEXO22 101.0 102.0 3.7 1.0 STEXO24 83.0 84.0 10.6 1.0 STEXO24 83.0 84.0 10.6 1.0 STEXO25 85.0 86.0 1.8 1.0 STEXO26 10.0 10.0 10.0 1.0 STEXO21 59.0 60.0 2.5 1.0 STEXO22 101.0 102.0 3.7 1.0 STEXO24 83.0 84.0 10.6 1.0 1.0 STEXO25 85.0 86.0 1.8 1.0 STEXO26 37.0 38.0 2.7 1.0 STEXO28 37.0 38.0 2.7 1.0 STEXO28 55.0 59.0 0.5 1.0	LVEX071	159.0	163.0	2.6	4.0	10.4
LVEX075	LVEX074	82.0	85.0	3.7	3.0	11.1
LVEX077	LVEX074	86.0	87.0	0.7	1.0	0.7
LVEX078	LVEX075	44.0	46.0	4.7	2.0	9.4
LVEX081 124,0 125,5 2.0 1.5 LVEX081 131.0 132.0 13.0 1.0 1 LVEX082 49.0 50.0 0.6 1.0 1 LVEX082 51.0 52.0 0.9 1.0 1 LVEX082 53.0 54.0 0.6 1.0 1 LVEX082 151.0 154.0 1.8 3.0	LVEX077	110.0	111.0	11.7	1.0	11.7
LVEX081 131.0 132.0 13.0 1.0 1 LVEX082 49.0 50.0 0.6 1.0 LVEX082 51.0 52.0 0.9 1.0 LVEX082 53.0 54.0 0.6 1.0 LVEX082 151.0 154.0 1.8 3.0 STEX003 84.0 85.0 0.8 1.0 STEX004 89.0 90.0 0.6 1.0 STEX006 66.0 67.0 0.6 1.0 STEX007 33.0 34.0 0.5 1.0 STEX008 82.0 83.0 1.6 1.0 STEX008 82.0 83.0 1.6 1.0 STEX012 43.0 44.0 1.3 1.0 STEX012 43.0 44.0 1.3 1.0 STEX012 90.0 91.0 1.9 1.0 STEX012 103.0 104.0 0.8 1.0 STEX014 36.0 39.0 10.8 3.0 3 STEX014 36.0 39.0 10.8 3.0 3 STEX019 0.0 1.0 0.8 1.0 STEX019 0.0 1.0 0.8 1.0 STEX020 39.0 40.0 2.4 1.0 STEX021 59.0 60.0 2.5 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 STEX024 83.0 84.0 10.6 1.0 STEX025 85.0 86.0 1.8 1.0 STEX028 37.0 38.0 2.7 1.0 STEX028 58.0 59.0 0.5 1.0 STEX028 58.0 59.0 0.5 1.0	LVEX078	144.0	146.8	6.5	2.8	18.2
LVEX082	LVEX081	124.0	125.5	2.0	1.5	3.1
LVEX082 51.0 52.0 0.9 1.0 LVEX082 53.0 54.0 0.6 1.0 LVEX082 151.0 154.0 1.8 3.0 STEX003 84.0 85.0 0.8 1.0 STEX004 89.0 90.0 0.6 1.0 STEX005 121.0 122.0 1.8 1.0 STEX006 66.0 67.0 0.6 1.0 STEX007 33.0 34.0 0.5 1.0 STEX008 82.0 83.0 1.6 1.0 STEX008 106.0 107.0 11.8 1.0 STEX012 43.0 44.0 1.3 1.0 STEX012 90.0 91.0 1.9 1.0 STEX012 103.0 104.0 0.8 1.0 STEX014 36.0 39.0 10.8 3.0 3 STEX018 1.0 5.0 0.6 4.0 STEX019 0.0 1.0 0.8 1.0 STEX020 39.0 40.0 2.4 1.0 STEX020 41.0 43.0 1.3 2.0 STEX021 59.0 60.0 2.5 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 STEX025 85.0 86.0 1.8 1.0 STEX026 104.0 105.0 10.6 1.0 1.0 STEX027 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	LVEX081	131.0	132.0	13.0	1.0	13.0
LVEX082	LVEX082	49.0	50.0	0.6	1.0	0.6
LVEX082	LVEX082	51.0	52.0	0.9	1.0	0.9
STEX003 84.0 85.0 0.8 1.0 STEX004 89.0 90.0 0.6 1.0 STEX005 121.0 122.0 1.8 1.0 STEX006 66.0 67.0 0.6 1.0 STEX007 33.0 34.0 0.5 1.0 STEX008 82.0 83.0 1.6 1.0 STEX008 106.0 107.0 11.8 1.0 STEX012 43.0 44.0 1.3 1.0 STEX012 90.0 91.0 1.9 1.0 STEX012 103.0 104.0 0.8 1.0 STEX012 103.0 104.0 0.8 1.0 STEX014 36.0 39.0 10.8 3.0 3 STEX018 1.0 5.0 0.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	LVEX082	53.0	54.0	0.6	1.0	0.6
STEX004 89.0 90.0 0.6 1.0 STEX005 121.0 122.0 1.8 1.0 STEX006 66.0 67.0 0.6 1.0 STEX007 33.0 34.0 0.5 1.0 STEX008 82.0 83.0 1.6 1.0 STEX008 106.0 107.0 11.8 1.0 1 STEX012 43.0 44.0 1.3 1.0 1 STEX012 90.0 91.0 1.9 1.0 1.0 1 1.0 1.0 1 1.0 1 1.0 <td< td=""><td>LVEX082</td><td>151.0</td><td>154.0</td><td>1.8</td><td>3.0</td><td>5.3</td></td<>	LVEX082	151.0	154.0	1.8	3.0	5.3
STEX005 121.0 122.0 1.8 1.0 STEX006 66.0 67.0 0.6 1.0 STEX007 33.0 34.0 0.5 1.0 STEX008 82.0 83.0 1.6 1.0 STEX008 106.0 107.0 11.8 1.0 1 STEX012 43.0 44.0 1.3 1.0 1 STEX012 90.0 91.0 1.9 1.0 <	STEX003	84.0	85.0	0.8	1.0	0.8
STEX006 66.0 67.0 0.6 1.0 STEX007 33.0 34.0 0.5 1.0 STEX008 82.0 83.0 1.6 1.0 STEX008 106.0 107.0 11.8 1.0 1 STEX012 43.0 44.0 1.3 1.0 1 STEX012 90.0 91.0 1.9 1.0	STEX004	89.0	90.0	0.6	1.0	0.6
STEX007 33.0 34.0 0.5 1.0 STEX008 82.0 83.0 1.6 1.0 STEX008 106.0 107.0 11.8 1.0 1 STEX012 43.0 44.0 1.3 1.0 STEX012 90.0 91.0 1.9 1.0 STEX012 103.0 104.0 0.8 1.0 STEX012 103.0 104.0 0.8 1.0 STEX014 36.0 39.0 10.8 3.0 3 STEX018 1.0 5.0 0.6 4.0 4.0 4.0 5.0 5.0 4.0 4.0 5.0 5.0 4.0 5.0 5.0 4.0 5.0	STEX005	121.0	122.0	1.8	1.0	1.8
STEX008 82.0 83.0 1.6 1.0 STEX008 106.0 107.0 11.8 1.0 1 STEX012 43.0 44.0 1.3 1.0 STEX012 90.0 91.0 1.9 1.0 STEX012 103.0 104.0 0.8 1.0 STEX014 36.0 39.0 10.8 3.0 3 STEX018 1.0 5.0 0.6 4.0 4.0 4.0 5.0 6.6 4.0 4.0 4.0 5.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0 4.0 4.0 4.0 5.0 4.0 4.0 5.0 4.0 4.0 4.0 5.0 4.0 4.0 5.0 4.0 <t< td=""><td>STEX006</td><td>66.0</td><td>67.0</td><td>0.6</td><td>1.0</td><td>0.6</td></t<>	STEX006	66.0	67.0	0.6	1.0	0.6
STEX008 106.0 107.0 11.8 1.0 1 STEX012 43.0 44.0 1.3 1.0 STEX012 90.0 91.0 1.9 1.0 STEX012 103.0 104.0 0.8 1.0 STEX014 36.0 39.0 10.8 3.0 3 STEX018 1.0 5.0 0.6 4.0 STEX019 0.0 1.0 0.8 1.0 STEX020 39.0 40.0 2.4 1.0 STEX020 39.0 40.0 2.4 1.0 STEX020 41.0 43.0 1.3 2.0 STEX021 29.0 31.0 0.6 2.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 1	STEX007	33.0	34.0	0.5	1.0	0.5
STEX012 43.0 44.0 1.3 1.0 STEX012 90.0 91.0 1.9 1.0 STEX012 103.0 104.0 0.8 1.0 STEX014 36.0 39.0 10.8 3.0 3 STEX018 1.0 5.0 0.6 4.0 STEX019 0.0 1.0 0.8 1.0 STEX020 39.0 40.0 2.4 1.0 STEX021 29.0 31.0 0.6 2.0 STEX021 29.0 31.0 0.6 2.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX025 85.0 86.0 1.8 1.0 1 STEX028 37.0 38.0 2.7 1.0 1 <td>STEX008</td> <td>82.0</td> <td>83.0</td> <td>1.6</td> <td>1.0</td> <td>1.6</td>	STEX008	82.0	83.0	1.6	1.0	1.6
STEX012 90.0 91.0 1.9 1.0 STEX012 103.0 104.0 0.8 1.0 STEX014 36.0 39.0 10.8 3.0 3 STEX018 1.0 5.0 0.6 4.0 STEX019 0.0 1.0 0.8 1.0 STEX020 39.0 40.0 2.4 1.0 STEX020 41.0 43.0 1.3 2.0 STEX021 29.0 31.0 0.6 2.0 STEX021 50.0 51.0 5.0 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX025 85.0 86.0 1.8 1.0 1 STEX028 37.0 38.0 2.7 1.0	STEX008	106.0	107.0	11.8	1.0	11.8
STEX012 103.0 104.0 0.8 1.0 STEX014 36.0 39.0 10.8 3.0 3 STEX018 1.0 5.0 0.6 4.0 STEX019 0.0 1.0 0.8 1.0 STEX020 39.0 40.0 2.4 1.0 STEX020 41.0 43.0 1.3 2.0 STEX021 29.0 31.0 0.6 2.0 STEX021 50.0 51.0 5.0 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX025 85.0 86.0 1.8 1.0 1 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0	STEX012	43.0	44.0	1.3	1.0	1.3
STEX014 36.0 39.0 10.8 3.0 3 STEX018 1.0 5.0 0.6 4.0 STEX019 0.0 1.0 0.8 1.0 STEX020 39.0 40.0 2.4 1.0 STEX020 41.0 43.0 1.3 2.0 STEX021 29.0 31.0 0.6 2.0 STEX021 50.0 51.0 5.0 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX025 85.0 86.0 1.8 1.0 1 STEX028 37.0 38.0 2.7 1.0 1 STEX028 49.0 52.0 2.8 <td< td=""><td>STEX012</td><td>90.0</td><td>91.0</td><td>1.9</td><td>1.0</td><td>1.9</td></td<>	STEX012	90.0	91.0	1.9	1.0	1.9
STEX018 1.0 5.0 0.6 4.0 STEX019 0.0 1.0 0.8 1.0 STEX020 39.0 40.0 2.4 1.0 STEX020 41.0 43.0 1.3 2.0 STEX021 29.0 31.0 0.6 2.0 STEX021 50.0 51.0 5.0 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX025 85.0 86.0 1.8 1.0 1 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 58.0 59.0 0.5 1.0 <td>STEX012</td> <td>103.0</td> <td>104.0</td> <td>0.8</td> <td>1.0</td> <td>0.8</td>	STEX012	103.0	104.0	0.8	1.0	0.8
STEX019 0.0 1.0 0.8 1.0 STEX020 39.0 40.0 2.4 1.0 STEX020 41.0 43.0 1.3 2.0 STEX021 29.0 31.0 0.6 2.0 STEX021 50.0 51.0 5.0 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX025 85.0 86.0 1.8 1.0 1 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX014	36.0	39.0	10.8	3.0	32.3
STEX020 39.0 40.0 2.4 1.0 STEX020 41.0 43.0 1.3 2.0 STEX021 29.0 31.0 0.6 2.0 STEX021 50.0 51.0 5.0 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX025 85.0 86.0 1.8 1.0 1 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX018	1.0	5.0	0.6	4.0	2.5
STEX020 41.0 43.0 1.3 2.0 STEX021 29.0 31.0 0.6 2.0 STEX021 50.0 51.0 5.0 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX025 85.0 86.0 1.8 1.0 1 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX019	0.0	1.0	0.8	1.0	0.8
STEX021 29.0 31.0 0.6 2.0 STEX021 50.0 51.0 5.0 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 1 STEX025 85.0 86.0 1.8 1.0 1 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX020	39.0	40.0	2.4	1.0	2.4
STEX021 50.0 51.0 5.0 1.0 STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 STEX025 85.0 86.0 1.8 1.0 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX020	41.0	43.0	1.3	2.0	2.6
STEX021 59.0 60.0 2.5 1.0 STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 STEX025 85.0 86.0 1.8 1.0 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX021	29.0	31.0	0.6	2.0	1.2
STEX022 101.0 102.0 3.7 1.0 STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 STEX025 85.0 86.0 1.8 1.0 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX021	50.0	51.0	5.0	1.0	5.0
STEX024 83.0 84.0 10.6 1.0 1 STEX024 91.0 93.0 1.0 2.0 STEX025 85.0 86.0 1.8 1.0 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX021	59.0	60.0	2.5	1.0	2.5
STEX024 91.0 93.0 1.0 2.0 STEX025 85.0 86.0 1.8 1.0 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX022	101.0	102.0	3.7	1.0	3.7
STEX025 85.0 86.0 1.8 1.0 STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX024	83.0	84.0	10.6	1.0	10.6
STEX026 104.0 105.0 10.6 1.0 1 STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX024	91.0	93.0	1.0	2.0	2.0
STEX028 37.0 38.0 2.7 1.0 STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX025	85.0	86.0	1.8	1.0	1.8
STEX028 49.0 52.0 2.8 3.0 STEX028 58.0 59.0 0.5 1.0	STEX026	104.0	105.0	10.6	1.0	10.6
STEX028 58.0 59.0 0.5 1.0	STEX028	37.0	38.0	2.7	1.0	2.7
	STEX028	49.0	52.0	2.8	3.0	8.3
CTEV020 152.0 152.0 0.5 1.0	STEX028	58.0	59.0	0.5	1.0	0.5
STEAUSU 152.0 153.0 0.5 1.0	STEX030	152.0	153.0	0.5	1.0	0.5

STEX032	140.0	141.0	0.7	1.0	0.7
STEX034	175.0	178.0	2.7	3.0	8.2
STEX035	199.0	200.0	0.6	1.0	0.6
STEX035	243.0	244.0	0.6	1.0	0.6
STEX036	52.0	53.0	0.5	1.0	0.5
STEX037	643.0	644.0	9.2	1.0	9.2
STEX038	655.6	657.0	1.0	1.5	1.4
STEX041	0.0	1.0	0.8	1.0	0.8
STEX043	643.0	644.0	4.5	1.0	4.5
STEX044	599.0	600.0	0.6	1.0	0.6
STEX046	381.0	382.0	0.7	1.0	0.7
STEX046	568.0	570.0	0.8	2.0	1.7
STEX047	0.0	1.0	1.0	1.0	1.0
STEX048	49.0	56.0	19.3	7.0	135.2
STEX049	55.0	60.0	11.6	5.0	58.2
STEX050	0.0	1.0	1.0	1.0	1.0
STEX050	27.0	31.0	10.1	4.0	40.5
STEX051	0.0	1.0	2.9	1.0	2.9
STEX051	66.0	67.0	0.7	1.0	0.7
STEX051	68.0	69.0	0.9	1.0	0.9
STEX053	0.0	4.0	0.5	4.0	2.1
STEX053	17.0	18.0	1.1	1.0	1.1
STEX053	74.0	76.0	1.5	2.0	3.0
STEX054	0.0	1.0	2.3	1.0	2.3
STEX054	102.0	103.0	0.8	1.0	0.8
STEX055	95.0	96.0	0.5	1.0	0.5
STEX056	216.0	219.0	5.1	3.0	15.2
STEX057	0.0	1.0	1.6	1.0	1.6
STEX057	151.0	155.0	1.2	4.0	4.9
STEX058	0.0	1.0	4.7	1.0	4.7
STEX058	169.0	170.0	10.3	1.0	10.3
STEX059	0.0	4.0	1.3	4.0	5.4
STEX059	216.0	223.0	8.2	7.0	57.5
STEX060	44.0	46.0	3.6	2.0	7.2
STEX060	155.0	158.0	11.7	3.0	35.2
STEX060	159.0	160.0	1.7	1.0	1.7
STEX061	0.0	4.0	0.8	4.0	3.1
STEX061	40.0	42.0	12.4	2.0	24.9
STEX061	162.0	163.0	0.6	1.0	0.6
STEX061	176.0	177.0	1.4	1.0	1.4
STEX062	0.0	1.0	2.3	1.0	2.3
STEX062	70.0	76.0	22.0	6.0	132.1
STEX062	105.0	109.0	5.4	4.0	21.6

		1				
	STEX062	111.0	112.0	5.0	1.0	5.0
	STEX063	152.0	160.0	1.0	8.0	8.1
	STEX063	163.0	165.0	1.2	2.0	2.4
	STEX064	0.0	1.0	1.1	1.0	1.1
	STEX064	89.0	90.0	1.9	1.0	1.9
	STEX064	100.0	105.0	0.8	5.0	4.0
	STEX064	228.0	230.0	1.7	2.0	3.4
	STEX065	0.0	2.0	0.7	2.0	1.3
	STEX065	43.0	44.0	2.3	1.0	2.3
)	STEX065	244.0	245.0	0.9	1.0	0.9
	STEX066	0.0	2.0	0.7	2.0	1.4
	STEX067	277.3	279.1	6.1	1.8	10.8
	STEX068	166.0	167.0	6.2	1.0	6.2
)	STEX069	219.0	222.0	3.3	3.0	9.9
	STEX071	0.0	5.0	1.0	5.0	4.8
	STEX071	136.0	137.0	0.9	1.0	0.9
	STEX071	168.0	172.0	5.5	4.0	22.0
	STEX071	173.0	174.0	0.8	1.0	0.8
	STEX072	0.0	2.0	1.3	2.0	2.5
	STEX072	115.0	117.0	0.9	2.0	1.7
	STEX073	0.0	3.0	0.7	3.0	2.0
	STEX073	102.0	103.0	1.2	1.0	1.2
	STEX074	1.0	3.0	0.5	2.0	1.1
	STEX074	17.0	18.0	0.7	1.0	0.7
	STEX074	21.0	23.0	0.7	2.0	1.3
	STEX074	141.0	142.0	5.3	1.0	5.3
	STEX075	220.0	224.0	2.0	4.0	7.9
	STEX075	240.0	241.0	3.2	1.0	3.2
	STEX075	244.0	248.0	3.2	4.0	12.6
	STEX076	8.0	12.0	1.6	4.0	6.4
	STEX077	0.0	2.0	0.6	2.0	1.3
	STEX077	191.0	194.0	3.3	3.0	9.9
	STEX077	198.0	204.0	9.1	6.0	54.4
)	STEX078	1.0	2.0	0.8	1.0	0.8
	STEX078	114.0	115.0	0.6	1.0	0.6
	STEX079	0.0	1.0	0.6	1.0	0.6
	STEX079	104.0	105.0	5.4	1.0	5.4
	STEX079	106.0	107.0	2.0	1.0	2.0
	STEX080	54.0	55.0	0.5	1.0	0.5
	STEX081	1.0	4.0	1.0	3.0	3.0
	STEX082	0.0	2.0	3.3	2.0	6.6
	STEX082	32.0	33.0	0.6	1.0	0.6
	STEX082	34.0	40.0	1.5	6.0	9.0

STEX082	41.0	42.0	0.7	1.0	0.7
STEX083	20.0	21.0	0.8	1.0	0.8
STEX084	368.0	369.0	0.9	1.0	0.9
STEX084	401.0	403.5	81.6	2.5	207.3
STEX085	371.4	373.0	2.3	1.6	3.7
STEX085	376.3	378.0	49.5	1.7	84.2
STEX086	49.0	51.0	4.8	2.0	9.6
STEX087	51.0	56.0	3.1	5.0	15.5
STEX087	298.5	299.6	1.9	1.1	2.0
STEX088	0.0	1.0	2.4	1.0	2.4
STEX088	375.0	376.0	2.8	1.0	2.8
STEX090	37.0	38.0	0.6	1.0	0.6
STEX090	41.0	42.0	0.5	1.0	0.5
STEX090	58.0	59.0	1.1	1.0	1.1
STEX092	95.0	96.0	2.9	1.0	2.9
STEX092	107.0	109.0	4.0	2.0	7.9
STEX095	339.0	340.0	0.5	1.0	0.5
STEX100	46.0	47.0	5.6	1.0	5.6
STEX100	116.0	117.0	1.0	1.0	1.0
STEX101	58.0	61.0	2.5	3.0	7.5
STEX101	65.0	67.0	1.4	2.0	2.7
STEX104	63.0	64.0	6.4	1.0	6.4
STEX105	152.0	156.0	0.9	4.0	3.7
STEX111A	80.0	88.0	5.1	8.0	40.5
LVEX087	129.9	131.9	10.0	2.0	19.5
LVEX088	59.0	60.0	1.3	1.0	1.3
LVEX095	101.0	102.0	1.6	1.0	1.6
LVEX097	71.0	72.0	2.2	1.0	2.2
LVEX097	97.0	99.0	2.9	2.0	5.8
LVEX099	52.0	53.0	0.7	1.0	0.7
LVEX101	99.0	100.0	3.9	1.0	3.9
LVEX104	48.0	49.0	1.1	1.0	1.1
LVEX104	52.0	53.0	1.5	1.0	1.5
LVEX104	61.0	62.0	0.7	1.0	0.7
LVEX104	63.0	64.0	1.4	1.0	1.4
LVEX107	166.0	169.0	1.1	3.0	3.4
LVEX107	170.0	171.0	1.7	1.0	1.7
LVEX114	55.0	56.0	1.0	1.0	1.0
CVEX044	59.5	61.0	4.3	1.5	6.5
CVEX044	63.0	64.0	3.7	1.0	3.7
CVEX044	64.5	67.0	3.9	2.5	9.8
LVEX108	161.0	162.0	0.9	1.0	0.9
LVEX121	73.0	74.0	0.8	1.0	0.8

	LVEX122 LVEX124 LVEX124 LVEX124 LVEX125 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119	12.0 366.0 368.5 374.2 383.5 75.0 166.0 189.0	16.0 367.0 369.7 377.0 384.8 76.0 168.0	1.4 4.0 7.0 16.8 18.2 0.7	4.0 1.0 1.2 2.8 1.3 1.0	5.7 4.0 8.3 47.0 23.6
	LVEX124 LVEX124 LVEX125 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119	368.5 374.2 383.5 75.0 166.0 189.0	369.7 377.0 384.8 76.0 168.0	7.0 16.8 18.2 0.7	1.2 2.8 1.3	8.3 47.0
	LVEX124 LVEX124 LVEX125 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119	374.2 383.5 75.0 166.0 189.0	377.0 384.8 76.0 168.0	16.8 18.2 0.7	2.8	47.0
	LVEX124 LVEX125 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119	383.5 75.0 166.0 189.0 197.0	384.8 76.0 168.0	18.2	1.3	
	LVEX125 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119	75.0 166.0 189.0 197.0	76.0 168.0	0.7		23.6
	LVEX119 LVEX119 LVEX119 LVEX119 LVEX119 LVEX119	166.0 189.0 197.0	168.0		1.0	
	LVEX119 LVEX119 LVEX119 LVEX119 LVEX119	189.0 197.0		1.9		0.7
	LVEX119 LVEX119 LVEX119 LVEX119	197.0	190.0	1.0	2.0	3.8
	LVEX119 LVEX119 LVEX119			1.6	1.0	1.6
	LVEX119 LVEX119		200.0	1.9	3.0	5.8
	LVEX119	201.0	206.0	0.8	5.0	3.8
		210.0	211.0	0.7	1.0	0.7
	LVEX119	246.0	252.0	10.3	6.0	61.8
		277.0	280.0	3.8	3.0	11.3
	LVEX119	281.0	282.0	1.7	1.0	1.7
	CVEX045	198.0	199.0	0.9	1.0	0.9
(CVEX046	72.0	76.0	1.4	4.0	5.4
	CVEX046	90.0	91.0	0.7	1.0	0.7
	CVEX046	133.0	135.0	0.6	2.0	1.3
_	CVEX047	89.0	91.0	4.8	2.0	9.5
	CVEX048	75.0	76.0	1.1	1.0	1.1
	CVEX049	93.0	95.0	0.6	2.0	1.2
	CVEX050	56.0	60.0	0.6	4.0	2.6
L	CVEX053	73.0	74.0	0.8	1.0	0.8
	CVEX053	79.0	81.0	0.9	2.0	1.7
	HJEX001	88.0	92.0	0.7	4.0	3.0
ı	HJEX002	54.0	58.0	0.6	4.0	2.5
	LVEX120	63.0	64.0	4.5	1.0	4.5
	HJEX003	57.0	58.0	0.7	1.0	0.7
1	HJEX003	90.0	91.0	0.8	1.0	0.8
Ц	HJEX003	96.0	97.0	0.6	1.0	0.6
L	HJEX005	31.0	40.0	26.7	9.0	240.1
	HJEX005	47.0	48.0	0.6	1.0	0.6
	HJEX007	8.0	14.0	0.8	6.0	4.7
	HJEX007	18.0	22.0	0.5	4.0	2.1
	HJEX009	0.0	12.0	1.1	12.0	13.0
ı	HJEX009	74.0	79.0	4.6	5.0	23.0
	CVEX057	101.0	102.0	2.1	1.0	2.1
L	CVEX059	199.0	200.0	0.5	1.0	0.5
L	CVEX059	204.0	205.0	1.1	1.0	1.1
L	CVEX059	206.0	208.0	0.7	2.0	1.4
_ (CVEX059	217.0	219.0	1.9	2.0	3.9
L	CVEX059	220.0	221.0	0.7	1.0	0.7
		249.0	252.0	0.8	3.0	2.5

CVEVOEO	256.0	257.0	0.5	1.0	0.5
CVEX059	256.0	257.0	0.5	1.0	0.5
CVEX061	194.0	195.0	0.6	1.0	0.6
CVEX061	235.0	236.0	0.9	1.0	0.9
CVEX061	239.0	240.0	0.7	1.0	0.7
CVEX061	269.0	271.0	2.0	2.0	3.9
CVEX061	301.0	304.0	2.5	3.0	7.6
LVEX128	568.5	570.5	8.3	2.0	16.5
LVEX129	489.3	490.5	2.4	1.2	2.7
LVEX129	506.0	515.0	1.4	9.0	12.5
CVEX063	33.0	34.0	0.6	1.0	0.6
CVEX063	88.0	93.0	2.2	5.0	11.0
CVEX064	185.0	186.0	1.8	1.0	1.8
CVEX067	136.0	140.0	2.2	4.0	8.7
CVEX068	118.0	119.0	0.7	1.0	0.7
CVEX069	204.0	206.0	1.0	2.0	2.0
CVEX070	256.0	257.0	0.9	1.0	0.9
CVEX071	150.0	151.0	0.6	1.0	0.6
CVEX071	170.0	172.0	4.4	2.0	8.8
CVEX071	174.0	175.0	0.6	1.0	0.6
CVEX071	176.0	178.0	2.4	2.0	4.7
CVEX072	92.0	93.0	7.2	1.0	7.2
CVEX072	142.0	144.0	1.1	2.0	2.2
CVEX072	146.0	147.0	0.8	1.0	0.8
CVEX072	198.0	199.0	1.2	1.0	1.2
CVEX073	143.0	146.0	9.9	3.0	29.7
CVEX074	219.0	221.0	0.9	2.0	1.8
CVEX077	182.0	183.0	0.9	1.0	0.9
CVEX077	234.0	238.0	1.1	4.0	4.2
LVEX131	465.0	466.2	6.4	1.2	7.7
STEX096	428.0	429.9	18.9	1.9	36.1
LVEX134	438.0	439.9	0.9	1.9	1.6
LVEX135	45.4	46.4	2.4	1.0	2.4
LVEX139	465.5	466.5	1.4	1.0	1.4
CVEX080	198.0	199.0	0.6	1.0	0.6
CVEX082	121.0	122.0	0.6	1.0	0.6
CVEX082	126.0	127.0	3.1	1.0	3.1
CVEX081	37.1	38.1	0.8	1.0	0.8
CVEX081	40.0	42.5	3.8	2.5	9.4
CVEX081	43.5	45.3	1.2	1.8	2.2
CVEX081	46.4	47.8	2.6	1.4	3.5
CVEX083	54.9	56.0	3.0	1.2	3.4
CVEX086	98.0	99.0	1.7	1.0	1.7
CVEX087	121.0	122.0	0.9	1.0	0.9

CVEX091	41.5	43.5	1.6	2.0	3.1
CVEX098	109.0	110.0	13.5	1.0	13.5
CVEX098	111.0	114.0	1.1	3.0	3.3
CVEX099	143.0	147.0	0.6	4.0	2.2
LVEX141	82.0	83.0	1.2	1.0	1.2
LVEX143A	307.0	308.0	1.5	1.0	1.5
LVEX143A	416.9	418.0	1.2	1.1	1.3
LVEX143A	432.0	433.0	5.2	1.0	5.2
LVEX143A	443.5	445.1	19.0	1.6	30.4
LVEX143A	521.0	522.0	0.9	1.0	0.9
LVEX143A	522.7	524.5	2.3	1.8	4.2
LVEX143A	529.0	530.0	0.6	1.0	0.6
CVEX097	97.1	98.1	2.1	1.1	2.2
CVEX100	283.0	285.0	0.5	2.0	1.0
CVEX101	199.0	200.0	1.6	1.0	1.6
CVEX102	93.0	94.0	0.7	1.0	0.7
CVEX102	96.0	101.0	11.8	5.0	59.0
CVEX102	102.0	108.0	0.9	6.0	5.2
CVEX104	142.0	144.0	1.3	2.0	2.5
CVEX104	191.0	194.0	1.4	3.0	4.3
CVEX104	205.0	206.0	2.7	1.0	2.7

APPENDIX 1 JORC TABLES

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Comments
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	RC drilling - samples collected as 4m composites and in areas where interesting lithology, alteration, mineralisation or veining was encountered, 1m splits were taken. Composite samples are collected from samples piles, 1m splits are taken for every metre from the cyclone with duplicate samples taken at the instruction of the field geologist from the second chute on the cone splitter. DD drilling has samples collected as half core in intervals between 0.3-1m based on lithology.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Samples collected by GG8 field crew and submitted to ALS Laboratory in Kalgoorlie, WA. All samples are considered to be representative for the manner in which they are used.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). 	The samples were analysed using the photon assay method which uses a 0.5kg sample and requires minimal handling. The samples are riffle split at the lab and were crushed to 80% passing 2mm and more recently 90% passing 3mm to ensure homogeneity as uniform sample distribution is important to a quality analysis.
	 In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling was completed by several contractors using multiple modern RC rigs capable of significant drill depths. DD drilling was completed by contractors using multiple modern DD rigs. All drill rigs utilised by GG8 are industry standard.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	RC sample recovery was qualitatively assessed by the field geologists. Good recoveries were had. DD recovery measured actual core length between drillers blocks to the nearest cm. Sample weights are recorded by the laboratory and average 3kg.
	 Measures taken to maximise sample recovery and ensure representative nature of the samples 	Sample depths were cross-checked regularly. The cyclone was regularly cleaned to ensure no material build up and sample material was checked for any potential downhole contamination. The drilling sample recoveries/quality are acceptable and are appropriately representative for the style of mineralisation.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No obvious sample recovery biases or biases related to loss or gain of fines have been identified.

Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation,	Logged for geology on the 1m intervals with chips washed and stored in chip trays by the geologist. Logging was inputted directly into the onsite laptops using the Company logging system. DD core stored in trays with the entire hole logged.	
	 mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Logging is of a qualitative nature. RC chips and DD were logged for lithology, colour, weathering, texture and minerals present. Structural measurements and geotechnical data were recorded	
	The total length and percentage of the relevant intersections logged.	on DD core N/A	
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all cores taken.	Core is sawn with half cores taken for assay and quarter taken for duplicates.	
sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	RC drilling single 1 metre splits were automatically taken at the time of drilling by a cone splitter attached to the cyclone. 4m composite samples were taken from sample piles. Samples have been dry. Samples are then riffle split at the lab into 0.5kg samples and were crushed to 2mm and more recently 3mm prior to photon assay with a particle size distribution test to ensure 80% passing the 2mm o 90% passing the 3mm threshold.	
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	The technique was appropriate for the work undertaken. During RC logging samples that showed mineralisation, veining or alteration had 1m split samples collected. 1m split samples are later taken from where 4m composites show >0.2g/t gold anomalism. During DD logging any sulphide veining or alteration were sampled.	
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 QAQC reference samples, blanks and duplicates were submitted by GG8. In house standards and blanks were also inserted by ALS. 	
	 Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. 	1m samples are automatically bagged from the cyclone, field duplicates are taken from a second chute off the splitter. DD duplicates are taken by collecting sawn quarter.	
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All RC samples are collected to approximately 1-5 kg. The sample sizes taken are appropriate relative to the style of mineralisation and analytical methods undertaken. DD sample size is appropriate 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 All samples were sent to ALS laboratory in Kalgoorlie. Photon Assay method has shown to provide quick turnaround times and high accuracy. 	
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	All analytical results listed are from an accredited laboratory using photon assay method with fire assay as a check method.	
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified Reference Materials (CRMs) are included in each batch to ensure the reliability of the assay. These CRMs, such as OREAS254C, OREAS230, and OREAS241, are specifically chosen for photon assay to maintain quality standards and were evaluated against published certificates. The standard deviation was minimal for samples. Selected photon assays over a range of grades and from different parts of orebodies are umpire checked with Fire Assays and so far shows no material difference in reported grades.	

Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes 	 External verification has not been carried out, but values were checked against logging and photographs to ensure the intersected Au values are in line with logged alteration, mineralisation or veining. Significant intercepts have been verified by the Exploration Manager, the CEO and Principal consulting geologist. No twinned holes at this stage 		
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Data was captured directly into geological logging software. Assay files have been sent directly from the lab to the database manager to avoid operator errors. All physical sampling sheets are filed and scanned electronically and submissions to the lab checked to ensure that no samples are missing or incorrect IDs. 		
)	Discuss any adjustment to assay data.	No adjustments were made to the assay data.		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Drill collars were initially located using handheld Garmin GPS, the GPS is accurate within 3-5m. Final survey pick-ups were completed by a licensed surveyor using Leica RTK GNSS with base station setup with an accuracy of 0.03m E, N and RL.		
)	Specification of the grid system used.	 All collar locations and maps quoted in this Report are using the GDA1994 MGA, Zone 51 coordinate system. 		
	 Quality and adequacy of topographic control. 	Topography based on detailed topographic surveys.		
Data spacing and distribution	 Data spacing for reporting of Exploration Results. 	Data spacing is varied		
	 Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	- N/A		
	 Whether sample compositing has been applied. 	 Intercepts are aggregated based upon 0.5g/t Au cut-off grade and 3m of dilution material. 		
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias. Most holes have been drilled perpendicular to the main orientation of the interpreted mineralised zone.		
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No drilling orientation related sampling bias has been identified at the Project. Some orientation changes were made to historic holes, and the main structure was intersected at the interpreted depth. 		
Sample security	The measures taken to ensure sample security.	Samples were transported from the field to the lab by GG8 personnel or reputable freight contractors.		
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	GG8 undertakes continuous audits and reviews of all its field processes.		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	Criteria	J	DRC Code explanation	Commentary
	Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	COMET VALE The project is 100% owned by a Wholly owned subsidiary of Gorilla Gold Mines Ltd. An overriding royalty by Reed Resources is maintained for 1% of the gold mined at Comet Vale. Kakara Part A has just been granted Native Title over the project area. The Company has an agreement in place with Kakara for exploration and Heritage surveys. M29/197, M29/198, M29/199, M29/200, M29/201, M29/232, M29/235, M29/233, M29/185, M29/270, M29/52, M29/35, M29/186, M29/321
1		•	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 No known impediments exist with respect to the exploration or development of the tenements.
)	Explorati on done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	 See previous announcements. In particular ASX announcement, 13 September 2024, Review of Historical Vivien and Comet Vale Databases.
)	Geology	•	Deposit type, geological setting and style of mineralisation.	COMET VALE Archean orogenic gold mineralisation associated with major structures and mafic-ultramafic stratigraphy with intermediate intrusives adjacent to intracratonic monzogranites, gold mineralisation is associated with quartz veining, pyrrhotite chalcopyrite, galena, sphalerite, and actinolite-biotite-chlorite alteration
)	Drill hole Informati on	•	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	Tables reported in the announcement.

	•	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	•	No information material to the understanding of the exploration results has been excluded.
Data aggregati on methods	•	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	:	Assay results reported here have been length weighted. No metal equivalent calculations were applied.
	•	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	•	All samples were 1m or 4m samples were reported as returned.
	•	The assumptions used for any reporting of metal equivalent values should be clearly stated.	•	No weighting used.
Relations hip between mineralis	•	These relationships are particularly important in the reporting of Exploration Results.		All samples reported are downhole width.
ation widths and intercept lengths	•	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	•	Mineralization is generally perpendicular to drilling orientation.
	•	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	•	All intercepts are down hole lengths, true widths not yet determined.
Diagrams	•	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•	Plans and sections are located in the body of the announcement.
Balanced reporting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	•	All samples were reported for Au and their context discussed.

	Other substanti ve explorati on data	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All other relevant data has been included within this report.
)	Further work	•	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	COMET VALE Drilling is ongoing, refer to end of text for more comprehensive update.
1)		•	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Maps plans and sections are all found in the body of the text.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	Explanation	Commentary
 Database ntegrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Snowden Optiro received the final drillhole database from Gorilla Gold (GG8) on 3 rd November 2025. A series of CSV files was exported from the GG8 managed MS Access database, with the data extracted 1 November 2025.
	Data validation procedures used.	 All deposits Prior to undertaking resource estimation, a high-level data review and referential checks were conducted, including topo to collar checks, overlapping and duplicate records. All other data was found to be appropriate for Mineral Resource estimation (MRE). The drillholes and all data used in the MRE is in MGA grid. Collars in MGA appear to be measured with a high level of accuracy and have decimal places. Rotary air blast and air core holes were excluded from the estimation process based on quality of the drilling technique. Snowden Optiro is of the opinion that the drillhole data is suitable for resource estimation for all of the deposits, given the level of classification applied.
		Sovereign The MPE database includes data collected across multiple
		 The MRE database includes data collected across multiple drilling campaigns, from 1985 to 2025. The final drillhole database used for estimation includes 654 reverse circulation (RC) drillholes (45,865 m), 47 surface diamond (DD) drillholes (11,725 m) and 89 RC holes with

Criteria	Explanation	Commentary
		diamond tails (RC_DDT) drillholes (26,218 m), totalling 790 holes for 83,808 m. All underground samples (back, face samples, rise, stope, wall etc) were excluded from the estimation process based on quality of the sampling techniques. Bias between different drill types – DD, RC_DDT and RC were investigated with minimal bias noted. Cheer The Mineral Resource Estimate (MRE) database includes data collected across multiple drilling campaigns, from 1985 to 2025. The final drillhole database used for estimation includes 139 RC drillholes (15,599 m) and 13 DD (1,421 m), totalling 152 holes for 17,020 m. Bias between different drill types - surface diamond and RC were investigated. Minimal bias was noted, and all drill types were used in the estimation Lakeview The MRE database includes data collected from drilling campaigns, from 2007 to 2025. The final drillhole database used for estimation includes 112 RC drillholes (25,668 m) and 40 DD (15,894 m), totalling 152 holes for 41,894 m. Bias between different drill types – DD and RC were
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	 investigated with minimal bias noted. All deposits The GG8 CP, responsible for the data and geological interpretation has visited the site and observed collars, drill pads and general site layout including previous mining operations. The Snowden Optiro CP visited site on 17 and 18 March 2025, observed the general site layout as well as the Sovereign Pit
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The Sovereign deposit comprises steeply dipping, structurally controlled gold mineralisation associated with quartz-sulphide veining and shear zone development within mafic-ultramafic stratigraphy of the Comet Vale Project. The mineralisation is hosted along multiple lodes over a strike length in excess of 2 km and drilled to depths approaching 600 m below surface. Gold mineralisation is typically associated with biotite alteration and fine sulphide within quartz veins, occurring proximal to contacts between doleritic, ultramafic and intermediate porphyritic lithologies. Cheer The Cheer deposit consists of narrow, structurally controlled quartz—sulphide veins developed within a discrete west southwest-striking shear zone. Veins typically range from 0.5 to 3.5 m in true width and dip at approximately 65°. Mineralisation is hosted within sheared basaltic to mafic volcanic units, with quartz veining, sericite—carbonate alteration and variable sulphide (pyrite—arsenopyrite) content. The geological interpretation is supported by drillhole logging and assays and is constrained by the consistent structural geometry of the west southwest-striking shear zone and its clear parallels with adjacent lodes along the Comet Vale trend. Lakeview

	Criteria	Explanation	Commentary
			The mineralisation encountered is associated with quartz veining, pyrrhotite and chalcopyrite sulphide development within quartz-carbonate veins and surrounding biotite-chlorite-actinolite altered and strongly deformed ultramafic units associated with the Lakeview fault structure.
			All deposits
			The confidence in the geological interpretation is reflected by the assigned Mineral Resource classification.
		Nature of the data used and of any	All deposits
75		assumptions made.	Both assay and geological data were used for the mineralisation interpretation.
			Sovereign
			 Mineralisation was modelled at a nominal 0.5g/t gold with a minimum downhole intercept of 2 samples. The interpreted trend was influenced by historical mining and previous interpretations.
			 Geological and mineralisation continuity between drillholes and sections is good for well drilled areas. Some of the domains are supported by limited drill data, with some domains having very few data points. The modelling of these domains assumes reasonable continuity, however, these require additional drilling to confirm.
$\langle (\bigcup) \rangle$			Cheer
			Mineralisation was modelled at a nominal 0.5 g/t gold cut off grade.
			 Geological and mineralisation continuity between drillholes and sections is reasonable. The smaller lode is supported by limited drill data, with very few data points. The modelling of these domains assumes reasonable continuity, however, these require additional drilling to confirm.
<i>][[]</i>			Lakeview
			 Mineralisation was modelled at a nominal 0.5/t gold with a minimum downhole intercept of 2 samples. Geological and mineralisation continuity between drillholes and sections is reasonable. The smaller lode is supported by limited drill data, with very few data points. The modelling of these domains assumes reasonable continuity, however, these require additional drilling to confirm.
\preceq		The effect, if any, of alternative	Sovereign
		interpretations on Mineral Resource estimation.	Alternative interpretations were not considered as there is significant evidence to support this interpretation, with data gathered over the long history of mining of this deposit. Cheer
			 Alternative interpretations have not been considered at this stage given the limited drilling, however, alternative interpretations may be possible with additional drilling.
			Lakeview
			 Alternative interpretations have not been considered at this stage given the limited drilling, however, alternative interpretations may be possible with additional drilling.
		The use of geology in guiding and	Sovereign
		controlling Mineral Resource estimation.	 Known associations with the contacts between porphyries and mafic units and ultramafic units. Modelled shear systems using structural data.
			Cheer

Criteria	Explanation	Commentary
)		Used available structural data to model out shear systems and veining zones. Porphyries were modelled out at Cheer.
		Lakeview
		 Used available structural data to model out shear zones, chlorite amphibole altered lodes and porphyries were modelled out.
	The factors affecting continuity both of	All deposits
	grade and geology.	 All geological observations were used to guide the interpretation and further control the mineralisation trends for the Mineral Resource estimate.
		The confidence in the grade and geological continuity is reflected by the assigned Mineral Resource classification.
		Sovereign
		The mineralisation is bound to the north and south along strike by current drilling and remains open at depth.
		Cheer
		The mineralisation is truncated along strike to the west by current drilling and remains open to the east and at depth.
		Lakeview
		 The mineralisation is bound to the northwest along strike by current drilling and remains open at depth and to the south west.
Dimensions	The extent and variability of the Mineral	Sovereign
	Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource	 Mineralised lodes stike north-northwest (350°), dip at 85-90 to the west and are constrained to a corridor approximately 400 m wide. Average lode with is approximately 3.5 m, mostly ranging between 0.5-12 m. Established strike length of 1,500 m and down-dip extent of 700 m.
		Cheer
		 Mineralised lodes strike west southwest (100°), dip at 65° to the east and are constrained to a corridor approximately 200 m wide. Average lode width is approximately 1.8 m ranging between 0.5 and 3.5 m. Established strike length of 1,070 m and down-dip extent of 300 m.
		Lakeview
		Mineralised lodes strike west southwest (100°), dip at 65° to the east and are constrained to a corridor approximately 300 m wide. Average lode width is approximately 1.8 m ranging between 0.5 and 3.5 m. Established strike length of 1,350 m and down-dip extent of 600 m.
Estimation and	The nature and appropriateness of the	All deposits
modelling techniques	estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Software used: Leapfrog Geo – wireframe modelling of geological units Snowden Supervisor - geostatistics, variography, kriging neighbourhood analysis (KNA) and block model validation. Datamine Studio RM – drillhole validation, compositing block modelling, grade estimation, classification and reporting.
		Sovereign
		The Mineral Resource estimates were completed employing ordinary block kriged (OK) grade estimation of 1 m length, to cut composites and also inverse distance cubed (ID3) as a check estimate. The mineralised interpretations defined zone of mineralised material as defined by assay data.

	Criteria	Explanation	Commentary
			 Au Block grades were estimated using ordinary kriging (OK). No other analytes were estimated. OK is considered the most appropriate method with respect to the observed continuity of mineralisation, spatial analysis (variography) and dimensions of the domains that had sufficient data. For domains with blocks that did not estimate, the average domain grade was applied to the unestimated blocks. For all estimates, dynamic anisotropy was utilised to account for the undulating nature of the mineralised veins. One metre downhole composited, top-cut data were estimated into parent blocks using OK. Top cuts were applied to select domains to reduce the impact of outlier values Normal scores variogram analysis was undertaken on combined mineralised domains to determine the kriging estimation parameters used for OK estimation of gold. Domains with a similar orientation and dip were combined for more robust variograms. Continuity was interpreted from variogram analyses to have a main direction range of 80 to 100 m, a semi-major range of 15 to 50 m and a minor range of 10 m, with a nugget of 43 to 51%. The number of samples used for block grade estimation was determined by Kriging Neighbourhood analysis (KNA). Three estimation passes were used for the estimate. The first search was 2 times the initial search and the third search had reduced sample numbers required for estimation. First and second pass had a minimum of 8 samples and maximum of 24 samples; the third pass had a minimum of 2 and maximum of 20 samples. For some domains a more localised estimate was required, and the minimum samples was dropped 5 and a maximum of 16 for the first two searches and then the minimum was dropped to 2 for the third search. A maximum composites per drillhole constraint of three or four samples was applied. Hard boundaries were applied between the different domains. Boundary conditions for the weathering boundaries are soft.
)	a		The Mineral Resource estimates were completed employing ordinary block kriged (OK) grade estimation of 1 m length, top cut composites. The mineralised interpretations defined zones of mineralised material as defined by assay data.
			Block model and estimation parameters:
			 Au Block grades were estimated using ordinary kriging (OK). No other analytes were estimated. OK is considered the most appropriate method with respect to the observed continuity of mineralisation, spatial analysis (variography) and dimensions of the domains that had sufficient data. For domains with blocks that did not estimate, the average domain grade was applied to the unestimated blocks. For all estimates, dynamic anisotropy was utilised to account for the undulating nature of the mineralised veins. One metre downhole composited, top-cut data were estimated into parent blocks using OK. Top cuts were applied to select domains to reduce the impact of outlier values

Criteria	Explanation	Commentary
		 Normal scores variogram analysis was undertaken on combined mineralised domains to determine the kriging estimation parameters used for OK estimation of gold. Continuity was interpreted from variogram analyses to have a main direction range of 50 m and a semi-major range of 45 m, with a nugget of 48%. The number of samples used for block grade estimation was determined by Kriging Neighbourhood analysis (KNA). Three estimation passes were used for the estimate. The first search was based upon the variogram ranges; the second search was 2 times the initial search and the third search was 3 times the initial search. The third search had reduced sample numbers required for estimation. First and second pass had a minimum of 8 samples and maximum of 24 samples; the third pass had a minimum of 2 and maximum of 20 samples. A maximum composites per drillhole constraint of four samples was applied. Hard boundaries were applied between the different domains. Boundary conditions for the weathering boundaries are soft.
		Lakeview
		The Mineral Resource estimates were completed employing ordinary block kriged (OK) grade estimation of 1 m length, top cut composites and also inverse distance cubed (ID3) as a check estimate. The mineralised interpretations defined zones of mineralised material as defined by assay data.
		Block model and estimation parameters:
		Au Block grades were estimated using ordinary kriging (OK). No other analytes were estimated. OK is considered the most appropriate method with respect to the observed continuity of mineralisation, spatial analysis (variography) and dimensions of the domains that had sufficient data. For domains with blocks that did not estimate, the average domain grade was applied to the unestimated blocks. For all estimates, dynamic anisotropy was utilised to account for the undulating nature of the mineralised veins.
		One metre downhole composited, top-cut data were estimated into parent blocks using OK.
		Top cuts were applied to select domains to reduce the impact of outlier values Normal scores variogram analysis was undertaken on
		 combined mineralised domains to determine the kriging estimation parameters used for OK estimation of gold. Domains with a similar orientation and dip were combined for more robust variograms. Continuity was interpreted from variogram analyses to have a main direction range of 85 m, a semi-major range of 75 m and a minor range of 20 m, with a nugget of 39%. The number of samples used for block grade estimation was determined by Kriging Neighbourhood analysis (KNA). Three estimation passes were used for the estimate. The first search was based upon the variogram ranges; the second search was 2 times the initial search and the third search was 3 times the initial search. The third search had reduced sample numbers required for estimation. First and second pass had a minimum of 8 samples and maximum of 18 samples; the third pass had a minimum of 2 and maximum of 20 samples. For some domains a more localised estimate was required, and the minimum samples was dropped 5 and a

Criteria	Explanation	Commentary
		 maximum of 12 for the first two searches and then the minimum was dropped to 2 for the third search. A maximum composites per drillhole constraint of three or four samples was applied. Hard boundaries were applied between the different domains. Boundary conditions for the weathering boundaries are soft.
	Description of how the geological interpretation was used to control the resource estimates.	All deposits The modelled mineralisation lodes were used to control the search ellipse direction and the major controls on the distribution of grade.
	Discussion of basis for using or not using	All deposits
	grade cutting or capping.	The coded and composited sample data was used to assess whether the grade distribution required top-cutting to mitigate the impact of outlier grades.
		The grade distribution was assessed for each individual domain reviewing histograms, log probability plots, statistics and CVs. Top cuts were applied to four domains as required to reduce the influence of high-grade outliers.
	The availability of check estimates,	Sovereign
	previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such	All domains were estimated using OK and DA and a check estimate using ID3.
	data.	This estimate was compared to the most recent Right Solutions Australia (RSA) estimate in 2023. There has been an additional 21,000 m of extensional drilling which accounts for the significant increase in tonnes and ounces.
		Cheer
		All domains were estimated using OK with DA.
		No check estimates were undertaken.
		No previous MRE has been undertaken at Cheer.
		No production has occurred at Cheer.
		Lakeview
		All domains were estimated using OK and DA and a check estimate using ID3.
		No previous MRE has been undertaken at Lakeview.
		No production has occurred at Lakeview
	The assumptions made regarding	All deposits
	recovery of by-products.	 No assumptions have been applied for the recovery of by- products.
	Estimation of deleterious elements or other	All deposits
	non-grade variables of economic significance (e.g., sulphur for acid mine drainage characterisation).	 Only gold was estimated, no other elements were estimated, and no deleterious elements are noted.
	In the case of block model interpolation,	Sovereign
	the block size in relation to the average sample spacing and the search employed.	Grade estimation was into parent block size is 5 mE by 20 mN by 10 mRL in line with the strike of the mineralisation.
		The nominal spacing of the drillholes is approximately 40 m by 50 m with some spacing increasing in places.
		Sub-cells to a minimum dimension of 1 mE by 1 mN by 1 mRL were used to represent volume.
		Cheer
		Grade estimation was into parent block size is 20 mE by 5 mN by 10 mRL in line with the strike of the mineralisation (in the local grid).

Criteria	Explanation	Commentary
		The nominal spacing of the drillholes is approximately 60 m by 50 m with some spacing increasing in places.
		Sub-cells to a minimum dimension of 2.5 mE by 0.625 mN b 1.25 mRL were used to represent volume.
		Lakeview
		Grade estimation was into parent block size is 20 mE by 5 mN by 10 mRL in line with the strike of the mineralisation.
		The nominal spacing of the drillholes is approximately 40 m by 50 m with some spacing increasing in places.
		Sub-cells to a minimum dimension of 1 mE by 1 mN by 1 mR were used to represent volume.
	Any assumptions behind modelling of	All deposits
	selective mining units.	Selective mining units were not modelled.
	Any assumptions about correlation	All deposits
	between variables.	No correlated variables have been investigated or estimated
	The process of validation, the checking	All deposits
	process used, the comparison of model data to drillhole data, and use of reconciliation data if available.	Validation checks of the estimate occurred by way of glob and local statistical comparison, comparison of volumes wireframe versus the volume of the block model, compariso of the model average grade (and general statistics) and the declustered sample grade by domain, swath plots by northing easting and elevation, visual check of drill data versus modedata and comparison of global statistics for check estimates.
		Sovereign
		Although recent production has taken place, no reconciliation data was available for review.
		Cheer
		No production has taken place and thus no reconciliation datis available.
		Lakeview
		No production has taken place and thus no reconciliation da is available.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All deposits
		The tonnage was estimated on a dry basis.
Cut-off	The basis of the adopted cut-off grade(s) or quality parameters applied	All deposits
parameters		Grade and tonnes have been reported within A\$4,000/oz go pit shells for open pit.
		The cut-off grade has been selected by GG8 in consultatic with Snowden Optiro based on current experience and in-lir with cut-off grades applied for reporting of Mineral Resource elsewhere in Australia. Given the stage of the Project ar classification applied to the Mineral Resource, and the curre gold price, the cut-off grade is considered reasonable.
		The Mineral Resource has been reported with consideration of RPEEE for both open pit and underground portions.
		The Mineral Resource has been reported above a cut-of-grade of 0.5 g/t gold for Open Pit resources. For undergroun MSOs were generated at a cut-off grade of 1.1 g/t gold.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if	All deposits

Criteria	Explanation	Commentary
	applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 The deposits are located within a well-established mining district with existing infrastructure and a history of successful underground gold mining operations. No detailed mine designs have been completed at this stage; however, the geometry, continuity and grade distribution of the mineralisation are consistent with selective underground mining methods. On this basis, no material mining factors have been identified that would be expected to materially affect the assumption that the deposit has reasonable prospects for eventual economic extraction. The Mineral Resources have been reported using a cut-off grade of 0.5 g/t gold, which is considered a reasonable cut-off grade for reporting potential open pit. A cut off grade of 1.1 g/t gold was used to generate the underground MSO shapes. All mineralised domain material is reported inside the MSO, for reporting potential underground Mineral Resources. Sovereign Mineralisation at Sovereign is predominantly developed at depth and has historically been mined by open pit and underground methods and is therefore considered amenable to potential underground mining. Cheer Mineralisation at Cheer extends from surface and is considered to be amenable to potential open pit mining, subject to appropriate mining studies. Lakeview Mineralisation at Lakeview extends from near surface to moderate depths and is considered to have potential for both open pit and underground mining, subject to future mining studies.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Historical metallurgical testwork and prior production at the Sovereign deposit demonstrate that the mineralisation is amenable to conventional gravity and cyanide leach processing, with historically high gold recoveries achieved. Sovereign and Sovereign North display consistent quartz—sulphide vein-hosted mineralisation, and historical recovery performance has been applied as a reasonable basis for metallurgical assumptions for the purposes of RPEEE. Cheer No deposit-specific metallurgical testwork is known to have been completed on mineralisation from the Cheer deposit to date. Cheer exhibits similar quartz—sulphide vein-hosted mineralisation and sulphide assemblages to other deposits within the Comet Vale Project. It is therefore assumed that the metallurgical response will be similar, and recovery parameters derived from analogous Comet Vale deposits (e.g. Sovereign and/or Lakeview) have been applied for the purposes of RPEEE. Lakeview Preliminary metallurgical testwork has been completed on mineralisation from the Lakeview deposit, indicating strong gravity recoveries and high overall gold extraction via conventional cyanide leach processing. The metallurgical response observed at Lakeview is considered representative of the broader Comet Vale style of

	Criteria	Explanation	Commentary
			mineralisation and supports the application of conventional gravity and CIL processing assumptions for the purposes of RPEEE.
	Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made	All deposits The Comet Vale Project is located on granted mining leases with existing approvals in place to support exploration and drilling activities. Environmental baseline and permitting studies to support potential future mining development are ongoing, and no material environmental or permitting constraints have been identified that are expected to materially impact the reporting of Mineral Resources. Environmental baseline studies at the Comet Vale Project are at an early stage and are primarily focused on supporting ongoing exploration and future permitting. No material environmental factors have been identified to date that are expected to materially affect the reported Mineral Resources. The Comet Vale deposits are located within a district that has historically supported both small-scale and larger-scale gold mining operations.
	Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	All deposits A total of 2,878 bulk density measurements were collected from core samples using the Archimedean immersion method. The majority of measurements were from fresh material, with 54 samples from the transitional zone and only 15 from the oxide material. For the fresh domain, values ranged from 2.20 to 3.67 t/m³, with an average of 2.90 t/m³ applied. Transitional values ranged from 2.65 to 3.03 t/m³, with 2.70 t/m³ assigned. 2.50 t/m³ was applied to the oxide zone as due to the small sample population.
		The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	All deposits Dry bulk density values were measured using the Archimedean immersion method, which accounts for moisture content and internal voids within the rock mass. The method is appropriate for the range of lithologies and alteration styles encountered in the deposit, and is consistent with industry standards
		Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Bulk density has been assigned to the block model by weathering profile. Assigned values are summarised in table below.
			Weathering Assigned value
			Oxide 2.5
			Transitional 2.7
			Fresh 2.9
	Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The Sovereign Mineral Resource has been classified as Indicated and Inferred based on drillhole spacing, drill data quality, geological continuity and estimation quality parameters.
			 Indicated Mineral Resources were defined where there was a moderate level of geological confidence in geometry and the lodes were supported by drill spacing less than 20-30 m and where there was QAQC data.

Criteria	Explanation	Commentary
)		Inferred Mineral Resources were defined where there was a moderate level of geological confidence in geometry and where either the drill spacing was greater than 30 m or where there was a lack of QAQC.
		The Cheer Mineral Resource has been classified as Indicated and Inferred based on drillhole spacing, drill data quality,
		 geological continuity and estimation quality parameters. Indicated Mineral Resources were defined where there was a moderate level of geological confidence in geometry and the lodes were supported by drill spacing less than 20-30 m and where there was QAQC (2024-2025) data.
		Inferred Mineral Resources were defined where there was a moderate level of geological confidence in geometry and where either the drill spacing was greater than 30 m or where there was a lack of QAQC.
		 Unclassified material captures blocks that were unestimated and sit on the peripheries of wireframes where they were extended beyond the average drillhole spacing.
		Lakeview
		The Lakeview Mineral Resource has been classified as Indicated and Inferred based on drillhole spacing, drill data quality, geological continuity and estimation quality parameters.
		Indicated Mineral Resources were defined where there was a moderate level of geological confidence in geometry and the lodes were supported by drill spacing less than 20-30 m.
		Inferred Mineral Resources were defined where there was a moderate level of geological confidence in geometry and where either the drill spacing was greater than 30 m.
	Whether appropriate account has	All deposits
	been taken of all relevant factors (i.e., relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data).	 The Mineral Resource has been classified on the basis of confidence in geological and grade continuity and taking into account the quality of the sampling and assay data, the lack of data density and QAQC and confidence in estimation of gold (from the kriging metrics).
	Whether the result appropriately	All deposits
1	reflects the Competent Person's view of the deposit.	The assigned classification of Indicated and Inferred reflects the Competent Persons' assessment of the accuracy and confidence levels in the Mineral Resource estimate.
Audits or reviews	The results of any audits or reviews	All deposits
GAIGM2	of Mineral Resource estimates.	No external audits have been conducted on the Mineral Resource estimates.
		 Snowden Optiro undertakes rigorous internal peer reviews during the compilation of the Mineral Resource model and reporting.
	Where appropriate a statement of	All deposits
	the relative accuracy and confidence level in the Mineral Resource estimate using an approach or	The assigned classification of Indicate and Inferred reflects the Competent Persons' assessment of the accuracy and confidence levels in the Mineral Resource estimate.
	procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if	It is the Competent Persons' view that this Mineral Resource estimate is appropriate to the type of deposit and proposed mining style.

Criteria	Explanation	Commentary
	such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate	
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used	All deposits The Mineral Resource classification is appropriate at the global scale.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available	No production data was available for review.