

9th December 2025

Maverick Springs Resource increased by 59Moz AgEq to 539Moz AgEq at 71g/t AgEq

Strategic exploration, including re-assays and 2025 extensional drilling, has expanded the Maverick Springs Resource, increasing ounces and grade.

Highlights:

- Maverick Springs Resource increased by 59Moz AgEq to 539Moz AgEq at 71g/t AgEq (347.2Moz Ag at 45.5g/t Ag and 2.25Moz Au at 0.30g/t Au), driven by the 2025 drill campaign and extensive historical re-assay program.
- Silver-only Resource increased to 347.2Moz at 45.5g/t, an increase in both ounces and grade.
- Sun Silver has now delivered three Mineral Resource upgrades in under two years, demonstrating strong technical momentum and continuous value creation.
- The Maverick Springs system remains open in all directions, with 2024–2025 extensional drilling delivering some of the widest intercepts on the Mineral Resource boundary, paving the way for further significant growth.
- Silver was recently added to the 2025 U.S. Department of the Interior Critical Minerals List, enhancing U.S. and Australian government interest in Maverick Springs.
- China's new silver export controls and tax changes signal a shift toward resource sovereignty, further elevating the strategic importance of large-scale U.S. silver projects like Maverick Springs.

Sun Silver Limited (ASX: SS1) ("Sun Silver" or "the Company") is pleased to report an updated Mineral Resource estimate for its Maverick Springs Silver-Gold Project in Nevada, USA ("Maverick Springs" or "the Project"), with the total Inferred Mineral Resource increasing by 59Moz to 539Moz silver equivalent.

Sun Silver Managing Director, Andrew Dornan, said:

"Delivering our third Mineral Resource upgrade in under two years highlights Maverick Springs' emergence as one of the most strategically important undeveloped silver assets in the United States. Our 2025 drill program and extensive re-assay work have added a further 59Moz AgEq, increasing the Resource to 539Moz AgEq at a higher grade of 71g/t AgEq, an 85% increase to the size of the Mineral Resource since listing. With silver now on the U.S. Critical Minerals List and China moving to restrict exports, the need for secure Western supply has never been clearer. Maverick Springs is exceptionally positioned to support domestic U.S. supply as we continue to expand and increase confidence in a system that remains open to the north and south."

Table 1 - Maverick Springs JORC Resource Upgrade

Classif	fication	Cut-off (g/t AgEq)	Tonnes (Mt)	AgEq (Moz)	AgEq (g/t)	Ag (Moz)	Ag (g/t)	Au (Moz)	Au (g/t)
Infe	rred	30	237.3	539	71	347.2	45.5	2.25	0.30

Cadre Geology and Mining was engaged by the Company for the completion and verification of the Mineral Resource upgrade.

Sun Silver's third Mineral Resource upgrade in under two years since listing continues to reinforce Maverick Springs' emergence as a strategically significant U.S. silver asset. The Project's scale, jurisdiction, and rapid growth trajectory position it at the centre of an increasingly important North American supply chain story.

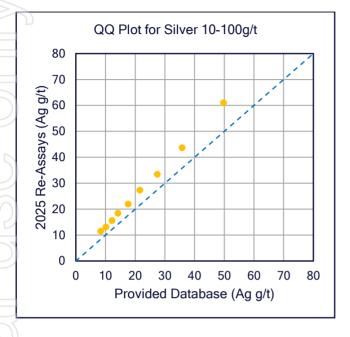
The recent inclusion of silver on the 2025 U.S. Department of the Interior Critical Minerals List further elevates its strategic relevance, drawing heightened interest from both Australian federal agencies and U.S. government stakeholders. This designation underscores the essential role domestic silver supply will play in supporting clean energy technologies, electronics, defence applications, and economic security.

At the same time, China has introduced export controls on silver, removed key tax offsets, and tightened oversight on precious-metal exports. These actions mark a clear strategic pivot away from open commodity trade toward resource sovereignty and supply-chain leverage mirroring the pattern seen in prior rare earth restrictions. As global markets adjust to this shift, Maverick Springs stands out as a large-scale, U.S. based growth project capable of contributing meaningfully to Western supply-chain resilience.

The updated Mineral Resource estimate incorporates data from Sun Silver's 2025 extensional and infill drill holes and results from the multi-element re-assay program for silver and gold only (antimony not included in the Mineral Resource upgrade). Further infill drilling results remain outstanding and will be released as they are received in the coming months.

Multi-Element Re-Assay Program

As part of Sun Silver's broader strategy to unlock the full multi-commodity potential of the Maverick Springs Project, the Company has completed an extensive re-assay campaign. The program targeted historical pulp samples held in storage, and where unavailable, remaining drill core and coarse rejects. These materials, previously analysed for silver and gold only, underwent comprehensive multi-element testing via four acid digest methods at American Assay Laboratories ("AAL").


Over 65 historical holes and 5,000 pulps were submitted to AAL for multi-element assay along with 200 pulps from 4 historical holes to ALS for additional third-party checks which validated the findings. Grade distribution plots (see Figure 1) were produced comparing multiple grade ranges and isolating drill sample types, and similar grade differences were noticed across the board. Mean comparisons were over 20% higher silver grades. Assays performed at ALS showed good agreement with AAL results and a similar uplift over the original regression data.

The pulp re-assays were performed using a four-acid digest method, with gravimetric fire assay applied to samples exceeding 100 g/t silver. Results have been benchmarked against the existing database values,

3

originally derived from Pre-2002 assays (1 assay ton (30g) fire assay) which were additionally subject to the regression calculation detailed in previous resource reports¹.

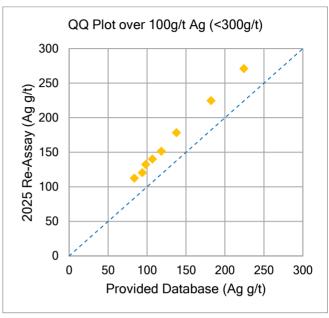


Figure 1: QQ Grade Distribution Plots for silver mineralisation with four acid digest (left) and gravimetric fire assay (right) in reanalysed pulps (Y) compared to the supplied database with regression calculation (X).

Four-acid digest, which is widely regarded as a near-total digestion method suitable for silver and associated multi-element analysis, has been used by Sun Silver to reflect industry standards and recommendations by HMO in their recent metallurgical review of the Project². Compared to the previously used two-acid digest (2002 to 2008 drilling), the four-acid method provides a more complete breakdown of minerals, leading to improved recovery and more accurate silver grade reporting. While fire assay (used at the project for pre-2002 assay analysis) remains the industry standard for precious metal determination, particularly at high grades, four-acid digest is commonly used in silver-dominant deposits due to its balance of accuracy across mineralisation styles, grade ranges, cost-effectiveness, and compatibility with large-scale resource work. The Company uses 4 acid digest for silver analysis with gravimetric fire assay for high grade (+100g/t Ag) as a current best-fit for the Project.

Analysis of the results initially look to be a consequence of a difference in analysis method (4 acid digest compared to fire assay), but when comparing the over limit +100g/t Ag results, which also undergo fire assay there is still a +20% uplift, which suggests a variation across the historic data set implying redundant application of a silver regression. The Pre-2002 drilling accounts for 136 of the 221 drilled holes (not including 2025 drilling) at the Project and includes diamond and reverse circulation ("RC") drilling.

Through the resource modelling process, a cut-off grade of 30g/t AgEq was applied, broadly reflecting the economic viability of Nevada assets at lower grades due to their large-scale, bulk-tonnage nature, which supports cost-effective open-pit mining and efficient processing.

¹ Refer to Company Replacement Prospectus released 13 May 2024 and ASX announcement dated 26 March 2025.
² Refer to the Company's ASX announcement 6 May 2025 Metallurgical review highlights strong recovery potential.

As with previous Mineral Resource updates, Maverick Springs retains the flexibility to increase cut-off grades while maintaining its position as the largest pre-production primary silver asset³ on the ASX and within the United States, as shown in Table 2, with full cut-off grade details provided in Table 3.

Table 2 - Maverick Springs JORC Resource at Various Cut-off Grades

Cut-off (g/t AgEq)	Million Tonnes	AgEq (g/t)	AgEq (Moz)	Ag (g/t)	Ag (Moz)	Au (g/t)	Au (Moz)
30	237.3	71	539	45.5	347.2	0.30	2.25
55	134.6	92	399	63.0	272.8	0.34	1.48
65	104.6	101	341	70.9	238.4	0.36	1.21

Highlighted drill holes from the 2025 drill campaign included within this Mineral Resource upgrade, include:

- MR25-211 70m at 160g/t AgEq (144.5g/t Ag, 0.179g/t Au), including 22.4m at 460g/t AgEq (440.5g/t Ag, 0.226g/t Au)⁴
- MR25-212 54.1m at 137g/t AgEq (116.7g/t Ag, 0.23g/t Au), including 6.3m at 506g/t AgEq (484.8g/t Ag, 0.25g/t Au)⁵

References to metal equivalents (**AgEq**) are based on an equivalency ratio of 85, which is derived from a gold price of USD\$2,433 and a silver price of USD\$28.50 per ounce, being derived from the average monthly metal pricing for the past three years, and average metallurgical recovery. Therefore:

AgEq = Silver grade + (Gold Grade x ((Gold Price * Gold Recovery) / (Silver Price * Silver Recovery))) or,

AgEq (g/t) = Ag (g/t) + (Au (g/t) x ((2,433 x 0.85) / (28.50 x 0.85)))

Metallurgical recoveries of 85% have been assumed for both silver and gold. Preliminary metallurgical recoveries were disclosed in the Company's prospectus dated 17 April 2024, which included a review of metallurgical test work completed by the prior owners of Maverick Springs. Metallurgical recoveries for both gold and silver were recorded in similar ranges, with maximum metallurgical recoveries of up to 97.5% in preliminary historical metallurgical testing in respect of silver and up to 95.8% in respect of gold. Gold recoveries were commonly recorded in the range of 80% - 90%, and the midpoint of this range has been adopted at present in respect of both silver and gold. It is the Company's view that both elements referenced in the silver and gold equivalent calculations have a reasonable potential of being recovered and sold.

Two long sections (Figure 2 and Figure 3) below highlight continuation of mineralisation along the hinge and mineralised intercepts above and below the current resource model.

³ "largest" refers to ounces of silver contained in a mineral resource estimate reported in accordance with JORC or another recognised industry code. 'primary silver asset' is defined as silver being the primary commodity contained within the resource and makes up the majority percentage of the silver equivalent resource.

For previously reported drillhole intercept see the Company's ASX announcement dated 2 July 2025
 For previously reported drillhole intercept see the Company's ASX announcement dated 3 September 2025

5

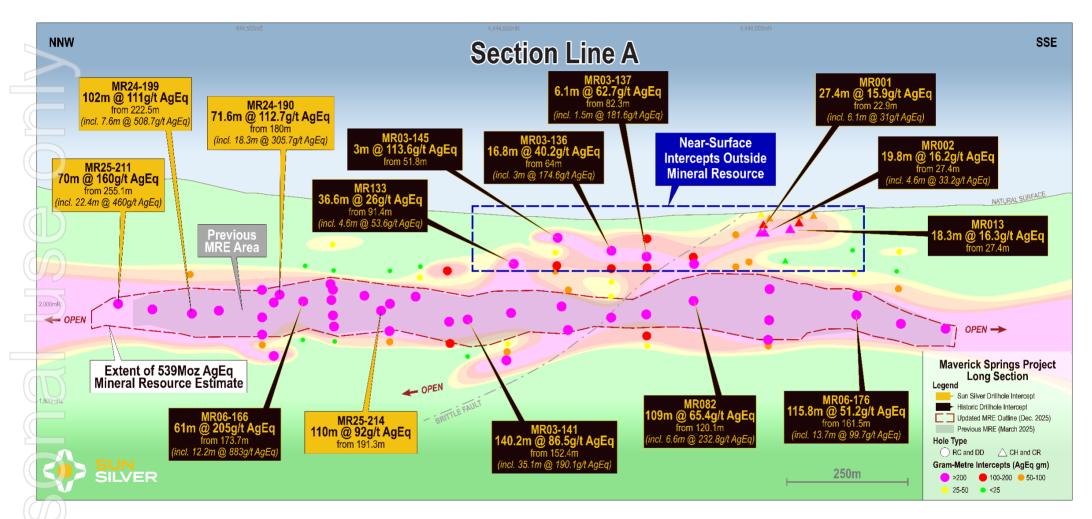


Figure 2 – Oblique Long Section Line A showing the Mineral Resource extent, near-surface mineralisation not included in this Mineral Resource upgrade (NAD83)⁶

(

For previously reported drillhole intercepts see the Company's ASX announcements dated 24 September 2024 (MR24-190), 14 January 2025 (MR24-199), 26 March 2025 (Historic Drillhole Intercepts), 2 July 2025 (MR25-211) and 15 October 2025 (MR25-214).

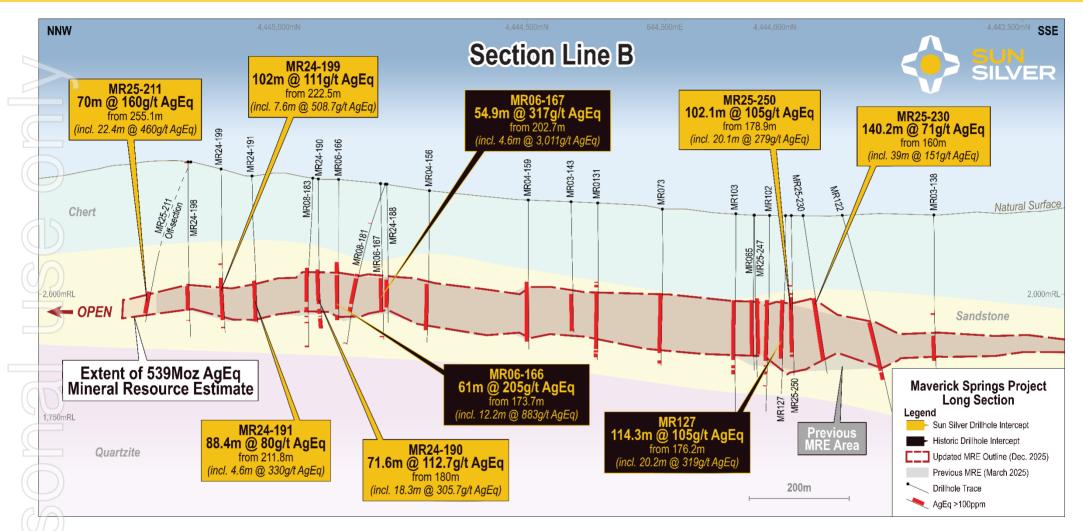


Figure 3 – Oblique Long Section Line B showing the Mineral Resource extensions, near-surface mineralisation not included in this Mineral Resource upgrade (NAD83)⁷

For previously reported drillhole intercepts see the Company's ASX announcements dated 12 September 2024 (MR24-191), 26 March 2025 (Historic Drillhole Intercepts), 20 November 2025 (MR25-250) and 26 November 2025 (MR25-230).

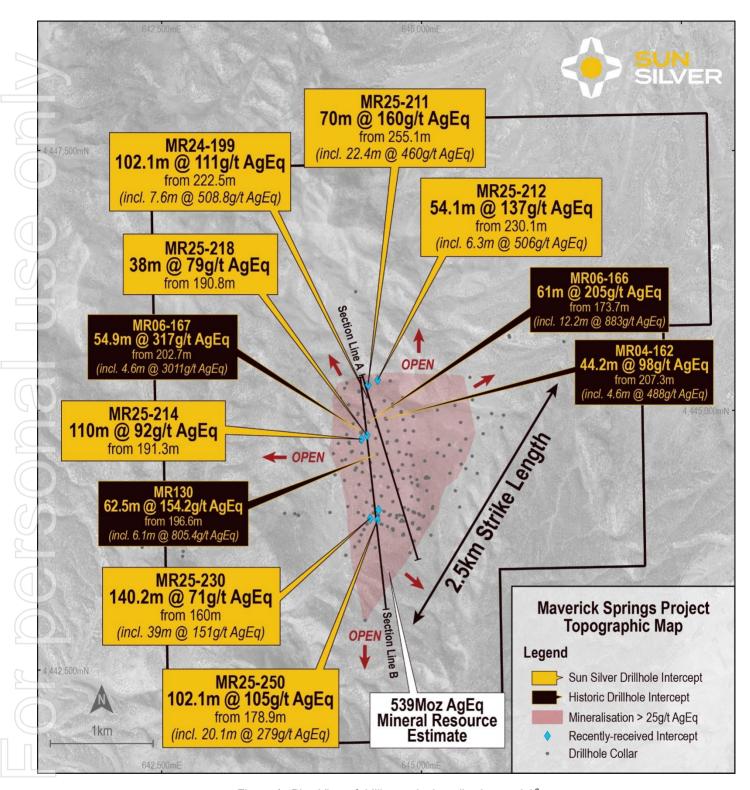


Figure 4 - Plan View of drilling and mineralisation model.8

⁸ For previously reported drillhole intercepts see the Company's ASX announcements dated 26 March 2025 (Historic Drillhole Intercepts), 3 September 2025 (MR25-212) and 15 October 2025 (MR25-218).

The Maverick Springs Project offers significant potential for further resource growth, with the mineralisation remaining open in all directions. The high-grade results detailed above and recorded within the north-west corner of the current Mineral Resource are significant. Not only do these results indicate a continuation of wide zones of mineralisation in that direction, but they also indicate grades that are higher than the current resource average and the thickness of the Mineral Resource continues along the hinge. This highlights the potential both to further expand the size of the Mineral Resource and to further increase the grade in the north-west section of the property.

Maverick Springs is located proximal to the Carlin Trend and displays characteristics similar to Carlin Style Deposits (refer to the Geology and geological interpretation below which outlines the basis of Maverick Springs geological interpretation). These proximal Carlin Style deposits and Maverick Springs are characterised by their fine dissemination of microscopic silver/gold particles within sedimentary rock formations. The mineralisation is typically hosted within carbonate rocks, such as limestone or dolomite, and associated with certain minerals like pyrite, arsenopyrite, and other sulfides.

The significance of Carlin-type geology lies in its potential for profitable low-grade mining, for the following key reasons:

- 1. Large-Scale Deposits: Carlin-type deposits tend to occur in clusters, containing multiple deposits in close proximity. These deposits can extend over significant areas, allowing for large-scale mining operations.
- 2. Low-Grade Ore: The softer host rocks and sheer volume of mineralisation often makes these deposits economically viable at a lower-grade compared to traditional vein deposits, although viability is not guaranteed.
- 3. Cost-Effective Mining: Due to their bulk-tonnage nature, Carlin-type deposits can be mined using openpit methods, which are generally less expensive than underground mining. Additionally, advancements in processing techniques, such as heap leaching and cyanide extraction, have further lowered operating costs.
- 4. Stable Production: Carlin-type deposits typically have relatively consistent grades over large areas, providing stable production profiles for mining companies once production begins.

Overall, Carlin-type geology offers the opportunity for sustainable and profitable mining operations, even at lower ore grades, due to the large-scale, soft host rocks and consistent nature of these deposits, coupled with advancements in mining and extraction technologies.

Summary of Resource Estimate and Reporting Criteria

Pursuant to ASX Listing Rule 5.8 and the 2012 JORC reporting guidelines, a summary of material information used to estimate the Mineral Resource is detailed below. For additional details, please refer to JORC Table 1, Sections 1 to 3 annexed to this announcement.

Geology and Geological Interpretation

The Maverick Springs Project is located in northeast Nevada and sits just off the south-eastern extension of the world-renowned Carlin Trend. Previous Technical Reports have identified the Maverick Springs mineralisation as a Carlin-type or sediment/carbonate-hosted disseminated silver-gold deposit. Recent reviews by SGS in 2022 are of the opinion that the deposit has more affinity with a low-sulphidation, epithermal Au-Ag deposit. Recent fieldwork notes similarities to a Carbonate Replacement Deposit (CRD). Regardless, the geological setting remains the same. The mineralisation is hosted in Permian sediments (limestones, dolomites). The sediments have been intruded locally by Cretaceous acidic to intermediate igneous rocks and overlain by Tertiary volcanics, tuffs and sediments and underlain by Paleozoic sediments.

Mineralisation in the silty limestones and calcareous clastic sediments is characterised by pervasive decalcification, weak to intense silicification and weak alunitic argillisation alteration, dominated by micron sized silver and gold with related pyrite, stibiconite, stibnite, acanthite, and arsenic sulphides associated with intense fracturing and brecciation. Theories of mineralising events propose early-stage gold and silver coincident with decalcification and silicification of host rock, producing conditions for later stage brittle fracturing and vein-controlled silver mineralisation resulting in localised high-grade zones. Transitional zones with sulphides are intercalated with oxidised zones, and often overprinted by silicification, closer to the fresh rock interface which is generally 300m below surface with local variations.

The mineralisation body has been modelled as a large, continuous, sub-horizontal gently folded antiform from 120m below surface which dips more steeply towards the east to over 500m below surface. The thicker hinge runs approximately north-south. Separate modelling of the silver and gold mineralisation were undertaken for interpretation and targeting but are considered to occur together. The silver is interpreted as two closely stacked bodies, while the gold model appears broader and more uniform with some areas of internal dilution. The resource model is based on the silver equivalent grade to encompass both metals. Shallow mineralised strings were constructed during the earlier modelling process in 2025 revealing low grade material but are not included in the resource model. These are not considered reliable enough for resource modelling (CH and CR drill holes) but warrant additional exploration or validation by RC and diamond drilling.

Drilling techniques

Numerous operators have spent time drilling the Maverick Springs Project throughout its history with records showing shallow conventional rotary and hammer drilling from 1987. This was eventually replaced by RC drilling in 1988-1989, with the addition of diamond core drilling (often with RC precollars) up to 1991. Additional RC drilling continued in 1998 sporadically through to 2008. Pre-2024, a total 195 holes were drilled at the Project for approximately 57,530m. Historic records are patchy in detail, especially prior to 2002 which are grouped as the Pre-2002 drilling category and are described as following industry standards at the time. Diamond drilling is recorded as HQ and NQ and RC drilling is expected to be by a face-sampling bit utilising wet drilling, but this is assumed and not specifically stated for Pre-2002 drilling. Post 2002 shows more

records, and includes standard 5-5.5" drill bits, the use of tricone bits, hammer bits and crossover subs, water injection, cyclones and splitters on track-mounted RC rigs.

The 2024 RC drill program was completed by Alford Drilling out of Elko, Nevada, using a track mounted rig drilling 5" holes. Drilling of the first two holes tested centre face sampling, vs traditional hammer, vs tricone bit above mineralisation depths for recovery and sample quality, with drilling since then and all mineralised intervals sampled via a traditional hammer setup (2ft lead between the bit interface and the sample return) which has shown the most reliable recovery of sample throughout the drill holes. Water injection is used to maximise sample recovery due to ground conditions and is typical to the area. Wet drilling has the potential to introduce sampling grade bias but this has not been observed yet and field duplicates have shown good reconciliation.

Drilling in 2025 continued with RC and diamond drilling by Alford and Wayfinder Drilling and typically involved RC precollars with diamond tails. RC drilling followed 2024 methods, while diamond drilling (triple tube HQ, and minor NQ) was considered to follow industry standards. Two PQ holes were drilled to supply material for metallurgical test work. Diamond core was cut longitudinally down its axis for sample intervals from 0.12 to 2m length, with sampling around intervals of core loss. Core was photographed wet and dry prior to sampling along with logging of RQDs, recoveries, SG, and geology.

The majority of the Pre-2002 drill holes were not surveyed down hole and have been given nominal dip and azimuth readings, while later 2002-2008 drilling (115 of the 195) used gyroscopic tools surveying on average every 50ft. The 2024 and 2025 drilling utilised downhole gyros during drilling with little movement noticed in vertical drill holes. Rare cases where the drill string deviated early were abandoned and re-drilled. Two angled extensional holes showed a drop in dip with depth and resulted in perpendicular interception with the mineralised body. Collars between 2002 and 2008 were surveyed via a handheld Magellan Meridian Platinum GPS with a reported accuracy of about 2ft (0.6m), while prior surveys methods are not known apart from coordinates in the provided database. 2024 collars and locatable historic collars were picked up by DGPS early in 2025 with some discrepancies noticed in the historic data coordinates. These changes have not had a material effect on resource modelling due to current drill spacing. The Mineral Resource incorporates drill results up to 5 December 2025. It does not include the more recently drilled 2025 drill collars. All coordinates are recorded or converted to be in NAD 83 UTM, Zone 11 for the resource estimation in metric units.

Sampling and sub-sampling techniques

Historic database records show RC sampling was done almost exclusively at standard 5ft intervals (1.52m), while diamond sampling varied in length up to 10ft (~3.05m) and samples split longitudinally via manual percussion splitter in historic core sampling. The historic drilling database does not record individual sample recoveries and issues of low recovery in fractured ground have been raised in previous drilling. Some paper logs have been found recording recovery which are being compiled digitally by Sun Silver for reconciliation checks. From 2002 onwards attempts to improve sample recovery in broken ground and minimise loss of fines in RC drilling were made by implementing the use of wet drilling and collection through a cyclone and rotary wet splitter often with an added flocculent.

2024 and 2025 RC drill samples were recovered via a rotary wet splitter collecting wet samples at 5ft intervals. Drilling utilised a traditional hammer setup (2ft lead between the bit interface and the sample return) which reduced blockages. RC sample recoveries are estimated qualitatively. Diamond core sampling is up to 2m in length and sawn in half for assay. 2025 drill recoveries are measured quantitively from the recovered drill core along with RQD measurements.

A regression calculation was applied to gold and silver values for all Pre-2002 drill holes based on pulp analysis of 1,174 samples in 2002. The original assays were analysed by 1 assay tonne fire assay, and the pulp re-analysis investigation is assumed to have used the same method. The conclusion was the original Angst assays were over-estimating silver and gold. Sun Silver has shown that the regression applied is underestimating silver grades compared to four acid digest analysis of the pulps. During 2025, Sun Silver analysed over 5,000 pulps from Angst drilling at AAL, with 200 check samples sent to ALS. Grade distribution and statistical analysis showed consistent underestimation in the historic silver data of over 20% compared to the new pulp re-assays across all grade ranges and led to the final decision to remove the 15% regression that had been applied to the silver grades in the database. The gold regression remains in place.

The 2002 to 2008 drilling by Vista and Silver Standard implemented consistent QAQC protocols including insertion of standards, blanks and duplicates in the field, and check analysis at other laboratories. These eras utilise 2 acid digest for silver analysis which appears to show lower silver grades compared to 2024 twin RC drilling utilising 4 acid digest methods. The gold by fire assays is comparable. Further investigation into this is warranted but as the grades are lower in the 2002-2008 results there doesn't appear to be risk of overestimation.

2024 and 2025 RC and diamond drilling included the insertion of blanks, standards and duplicates into the assay stream at a rate of approximately 1 in 20 and showed acceptable results. Rare, failed blanks had surrounding pulps reanalysed and were rectified with acceptable results. All standards were within three standard deviations from the mean, with majority within two. Duplicates showed good repeatability from RC and Diamond sampling for gold and silver.

Pre-2002 analysis underwent standard 1 assay ton fire assay with AA finish for gold and silver, and later Post 2002 drilling included aqua regia leach with AA finish for silver. Any silver value over 100ppm was re-run by 1 assay ton fire assay with a gravimetric finish. Only the 2008 drilling analysed by ALS had an additional 33 multi element ICP-AES analysis whereby silver was analysed by fire assay if detection was over 100ppm.

2024 and 2025 drill assay analysis included standard preparation circuit of dry, crush, split, and pulverise. Analysis of silver and multi-elements was by 4 acid digest with ICP-MS/OES finish, over limit silver (+100g/t) was analysed by gravimetric fire assay and gold was analysed by 50g fire assay with ICP-OES finish at AAL.

Estimation Methodology

Since the Mineral Resource estimate reported on 26 March 2025, drilling in 2025 has added 29 holes to the Mineral Resource including two extensional holes, two metallurgical holes and multiple infill and pre-collared preparation holes awaiting diamond tail (with no assays). Estimation was via Inverse Distance Squared and using the block modelling function in Surpac. Variography was not deemed sufficient for geostatistical analysis. Estimation was carried out in metric units as per the updated database. Estimation was done on 1.52m (5-foot) composites, created digitally in Surpac, to represent drill sample intervals. Top cutting was employed on silver and gold composites to reduce the effect of high-grade assay outliers and their spatial influence. The empty block model was filled by ID² estimation restricted to the mineralisation domain in the block model separately for both silver and gold cut composite grades utilising search ellipses. AgEq was calculated in the block model from the ID² estimate for each metal using the equation AgEq = Ag + Au*85.

Parent block size for the estimation was at $120 \times 120 \times 60 \text{m}$ in X, Y, Z dimensions. Sub blocking was allowed to $7.5 \times 7.5 \times 3.75 \text{m}$ for volume resolution. One continuous wireframe was modelled on a section-by-section

basis with the silver and gold grades primarily driving the shape of the wireframe. Broad geological units were taken into consideration with mineralisation restricted to the Rib Hill Formation and not extending into the overlying tertiary cover.

Bulk Density assignment has been updated with field measurements taken on drill core in 2025. In total, 192 samples from 7 core (HQ) holes have been measured via water immersion utilising wet and dry weights. The core was classified by oxidation logged and averages produced from oxide, transitional, and fresh material. The drilling is restricted to the south-central part of the deposit, but the data is considered more comprehensive than the previous value derived from nine pycnometric measurements. The average readings produced a density of 2.48g/cm³ for Oxide, 2.47g/cm³ for Transitional material, and 2.33g/cm³ for Fresh material. As the Transitional and Oxide material showed similar values and their spatial distinction is not clear cut at this stage, the lower value of 2.47g/cm³ has been used for all material in the mineralisation model above fresh rock. This is ~5% increase for material above fresh rock, and a 0.85% decrease for fresh material compared to the previous estimate which used a blanket 2.35g/cm³ for all material. The value is still conservative compared to the density reported historically of 2.58g/cm³ and will be refined with further sampling. No assumptions regarding recovery of bi-products and no estimation of deleterious elements have been made.

Mineral Resource Classification

The Mineral Resource remains classified as Inferred in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC,2012). Determining classification involved consideration of multiple factors, with key factors including confidence in the geological interpretation and the historical data, the current drill hole coverage and previous estimates. Recommendations to increase drill density, verification of historic data and undertake additional metallurgical testwork remain a priority for future confidence upgrades.

Cut-off grades and modifying factors

The Mineral Resource Estimate is reported at a cut-off grade of 30g/t AgEq. Table 3 demonstrates the sensitivity at various cut-off grades. The database has been updated with 2025 drilling up to 5 December 2025, replacement of silver and addition of multi-element analysis for ~5,000 pulps from Pre 2002 drilling, and the removal of the silver regression on original Pre-2002 drilling assays. Additionally, the new SG values have resulted in an increase in tonnes compared to previous estimates. SG has been modelled broadly from oxidation type, but measurements have been assessed for oxidation state, lithology and alteration type, and require more data points for refined modelling. The reporting of the global resource is under the assumption that deeper mineralisation could be amenable to underground mining methods in the future once an open pit mine has been completed and mining infrastructure established, and would be favoured by future, higher commodity prices. A grade tonnage curve is presented below to visually represent the details in Table 3 Swath plot analysis showed general smoothing of block grades and removal of outliers compared to composite grades, and only minor overestimation in the south where there is limited sampling, and only limited tonnes affected.

Investigations of metallurgy were undertaken at the Project in 2002, 2004 and 2006 and are still at the preliminary stages. Recoveries for gold and silver vary depending on grind size, reagent consumption and leaching retention time. Flotation tests did not appear to have a positive impact, while grind size and leach

time were the main factors affecting recoveries but are yet to be optimised. Early 2002 work on 15 composites samples tested showed recoveries between 28% and 65% for gold and 5% and 52% for silver. The 2004 study showed maximum recoveries from 63-97% for Silver and 35.7-97.1%, but more commonly in the 80-90%, range for gold. 2006 recoveries showed the best recoveries on ground material and ranged from 34-96% for gold, averaging 83% and 18-90% for silver, averaging 72%. The test work from 2002 stated preg-robbing from carbon was not a factor. A recovery of 85% is currently assumed for both gold and silver in respect of the Mineral Resource. Material collected in 2025 will undergo metallurgical tests to further investigate silver and gold recovery across different material and oxidation states which will influence future resource updates.

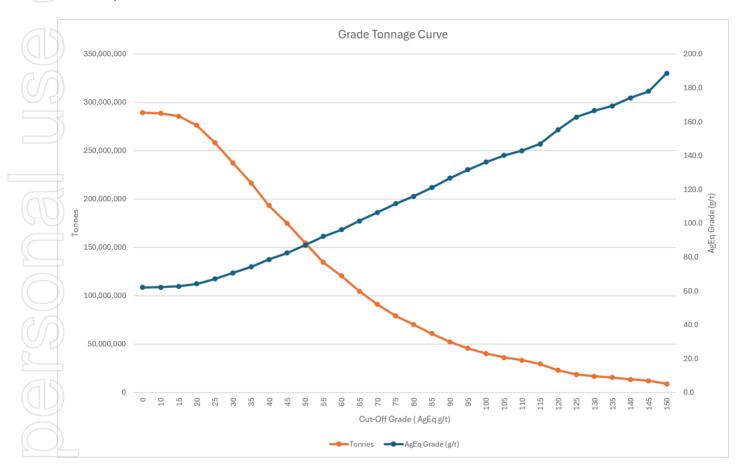


Figure 5 - Grade Tonnage Curve of Maverick Springs 2025 Mineral Resource Upgrade <150g/t AgEq cutoff (ID2 Estimate)

Table 3 - Maverick Springs JORC Resource at Various Cut off Grades

Cut-off (g/t AgEq)	Million Tonnes	AgEq (g/t)	AgEq (Moz)	Ag (g/t)	Ag (Moz)	Au (g/t)	Au (Moz)
20	276.2	64	570	40.9	363.1	0.27	2.44
22.5	267.4	66	564	41.8	359.7	0.28	2.41
25	258.3	67	557	42.9	356.5	0.28	2.36
27.5	247.3	69	548	44.3	352	0.29	2.30
30	237.3	71	539	45.5	347.2	0.30	2.25
32.5	228.9	72	530	46.5	342.5	0.30	2.21
35	216.6	74	517	48.2	335.6	0.31	2.13
37.5	205.2	76	504	49.8	328.5	0.31	2.06
40	193.4	79	489	51.7	321.6	0.32	1.97
42.5	184.4	80	477	53.2	315.2	0.32	1.90
45	174.8	82	464	54.8	308.2	0.33	1.83
47.5	164.4	85	448	56.7	299.9	0.33	1.74
50	154.7	87	433	58.5	290.8	0.34	1.67
52.5	144.4	90	416	60.8	282.3	0.34	1.57
55	134.6	92	399	63.0	272.8	0.34	1.48
57.5	128.4	94	388	64.7	266.9	0.34	1.42
60	120.7	96	373	66.5	257.9	0.35	1.36
62.5	113.4	98	359	68.4	249.6	0.35	1.29
(5) 65	104.6	101	341	70.9	238.4	0.36	1.21
67.5	97.6	104	326	73.0	228.9	0.36	1.14
70	91.1	106	311	74.9	219.3	0.37	1.08
72.5	83.3	110	294	77.8	208.4	0.37	1.00
75	79.2	112	284	79.3	201.8	0.38	0.96
77.5	75.4	113	275	80.8	196	0.38	0.93
80	70.2	116	262	83.1	187.7	0.38	0.87
82.5	64.0	119	245	86.3	177.6	0.39	0.80
85	60.9	121	237	87.8	171.9	0.39	0.76
87.5	55.2	125	221	90.8	161.2	0.40	0.71
90	52.3	127	213	92.0	154.7	0.41	0.69
92.5	49.1	129	203	94.0	148.3	0.41	0.65
95	45.5	132	193	95.9	140.4	0.42	0.62
97.5	42.9	134	185	97.9	134.9	0.42	0.58
100	40.3	136	176	99.7	129.2	0.43	0.56

Maverick Springs Project

Sun Silver's cornerstone asset, the Maverick Springs Project, is located 85km from the fully serviced mining town of Elko in Nevada and is surrounded by several world-class gold and silver mining operations including Barrick's Carlin Mine.

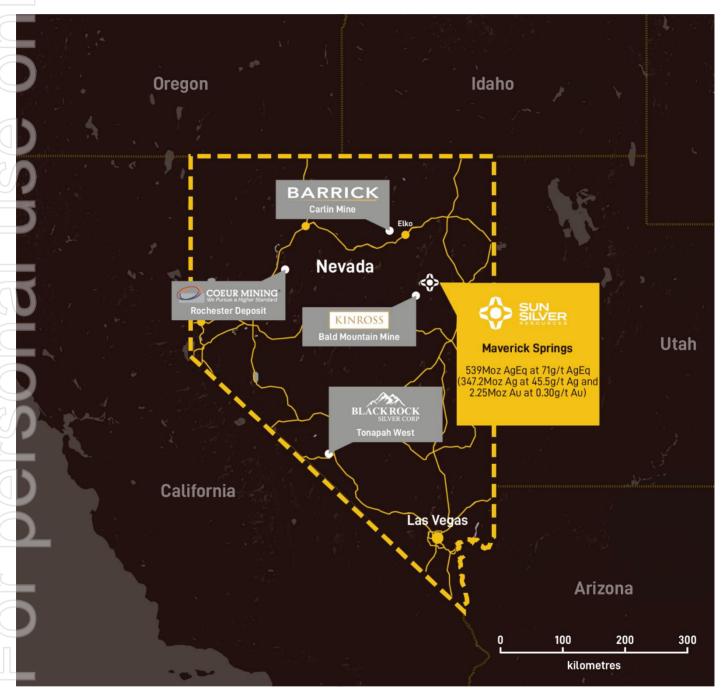


Figure 6 – Sun Silver's Maverick Springs asset location and surrounding operators.

Nevada is a globally recognised mining jurisdiction which was rated as the Number 1 mining jurisdiction in the world by the Fraser Institute in 2022.

The Project, which is proximal to the prolific Carlin Trend, hosts a JORC Inferred Mineral Resource of approximately 237.3Mt grading 45.5g/t Ag and 0.3g/t Au for 347.2Moz of contained silver and 2.3Moz of contained gold (539Moz of contained silver equivalent).

The deposit itself remains open along strike and at depth, with multiple mineralised intercepts located outside of the current resource constrained model.

This announcement is authorised for release by the Board of Sun Silver Limited.

ENDS

For more information:

Investors:
Andrew Dornan
Managing Director
Sun Silver
info@sunsilver.com.au

Media:

Nicholas Read Read Corporate P: +61 419 929 046

E: nicholas@readcorporate.com.au

Forward-looking statements

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates or projections in relation to future matters (Forward Statements) that involve risks and uncertainties, and which are provided as a general guide only. Forward Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimate", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and include, but are not limited to, indications of, or guidance or outlook on, future earnings or financial position or performance of the Company. The Company can give no assurance that these expectations will prove to be correct. You are cautioned not to place undue reliance on any forward-looking statements. None of the Company, its directors, employees, agents or advisers represent or warrant that such Forward Statements will be achieved or prove to be correct or gives any warranty, express or implied, as to the accuracy, completeness, likelihood of achievement or reasonableness of any Forward Statement contained in this announcement. Actual results may differ materially from those anticipated in these forward-looking statements due to many important factors, risks and uncertainties. The Company does not undertake any obligation to release publicly any revisions to any "forward-looking statement" to reflect events or circumstances after the date of this announcement, except as may be required under applicable laws.

Competent Person Statement

The information in this announcement that relates to exploration results or estimates of mineral resources at the Maverick Springs Project are based on, and fairly represent, information and supporting documentation reviewed, and approved by Mr Brodie Box, MAIG. Mr Box is a geologist at Cadre Geology and Mining Ltd and has adequate professional experience with the exploration and geology of the style of mineralisation and types of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Box consents to the form and context in which the results are presented in this announcement.

The information in this announcement that relates to previously reported exploration results at the Maverick Springs Project is extracted from the Company's Replacement Prospectus dated 17 April 2024 (**Prospectus**) and ASX announcements dated 12 September 2024, 24 September 2024, 14 January 2025, 26 March 2025, 6 May 2025, 2 July 2025, 3 September 2025, 15 October 2025, 20 November 2025 and 26 November 2025 (**Original Announcements**). The Company confirms that it is not aware of any new information or data that materially affects the relevant information contained in the Prospectus and Original Announcements.

Appendix A - Drill Collar Database

	DHID	DEPTH (m)	EAST (m)	NORTH (m)	ELEV (m)	AZM	DIP
	HP-1	129.54	644,777	4,444,421	2,185	0	-90
	HP-2	116.74	644,282	4,445,261	2,289	0	-90
	MR001	74.68	644,762	4,443,989	2,188	0	-90
	MR002	91.44	644,791	4,443,991	2,195	0	-90
	MR003	54.86	644,822	4,443,988	2,202	0	-90
	MR004	92.96	643,782	4,444,005	2,208	0	-90
	MR005	27.43	643,814	4,443,992	2,206	0	-90
	MR006	9.14	644,914	4,443,909	2,215	0	-90
	MR007	56.39	644,915	4,443,916	2,214	0	-90
	MR008	99.06	644,983	4,443,864	2,225	0	-90
\bigcap	MR009	99.06	644,974	4,443,859	2,226	0	-90
	MR010	103.63	644,975	4,443,861	2,225	0	-90
	MR011	42.67	644,915	4,443,918	2,216	0	-90
2/	MR012	99.06	644,828	4,443,931	2,201	0	-90
\cup	MR013	68.58	644,800	4,443,930	2,195	0	-90
	MR014	88.39	644,690	4,443,986	2,177	0	-90
ŀ	MR015	156.97	644,907	4,444,303	2,233	0	-90
	MR016	167.64	644,957	4,444,333	2,239	0	-90
	MR017	91.44	644,963	4,444,283	2,232	0	-90
	MR018	48.77	644,894	4,444,360	2,222	0	-90
	MR019	109.73	644,974	4,444,005	2,219	0	-90
	MR020	7.62	644,873	4,444,005	2,213	0	-90
71	MR021	15.24	,	, ,	2,213	0	
	MR022	60.96	644,969	4,444,139	2,233	0	-90 -90
			644,907	4,444,170		_	
_	MR023	24.38	644,919	4,444,024	2,218	0	-90 -90
	MR024	18.29	644,931	4,444,018	2,217	0	
	MR025	80.77	645,025	4,443,984	2,218	0	-90
	MR026	35.05	645,037	4,444,350	2,202	0	-90
21	MR027	27.43	645,070	4,444,350	2,197	0	-90
\cup	MR028	30.48	645,160	4,444,721	2,165	0	-90
7	MR029	67.06	645,377	4,444,613	2,150	0	-90
	MR030	25.91	645,269	4,444,667	2,156	0	-90
	MR031	27.43	645,154	4,444,590	2,165	0	-90
	MR032	48.77	645,383	4,444,482	2,165	0	-90
	MR033	115.82	642,985	4,445,065	2,166	0	-90
	MR034	59.44	643,028	4,444,992	2,169	0	-90
	MR035	117.35	642,701	4,443,710	2,093	0	-90
	MR036	111.25	642,706	4,443,642	2,108	0	-90
	MR037	38.1	642,702	4,443,595	2,113	0	-90
	MR038	128.02	645,843	4,445,719	2,130	0	-90
	MR039	103.63	646,787	4,446,253	2,067	0	-90
	MR040	182.88	645,676	4,444,969	2,137	0	-90
	MR041	141.73	644,811	4,443,947	2,200	0	-90
	MR042	164.59	644,700	4,443,997	2,178	0	-90
	MR043	195.07	644,985	4,443,993	2,220	0	-90
_	MR044	85.34	645,018	4,443,975	2,218	0	-90
l	MR045	188.98	644,973	4,443,866	2,226	0	-90
	MR046	175.26	644,585	4,444,055	2,165	0	-90
ľ	MR047	64.01	644,928	4,444,020	2,217	0	-90
ľ	MR048	115.82	644,616	4,444,175	2,169	0	-90
İ	MR049	171.6	644,935	4,444,015	2,218	0	-90
	MR050	213.66	644,503	4,443,960	2,160	0	-90
ı	111111000	210.00	0 1 1,000				00

DHID	DEPTH (m)	EAST (m)	NORTH (m)	ELEV (m)	AZM	DIP
MR052	51.82	644,821	4,443,799	2,197	0	-90
MR053	201.17	645,092	4,443,799	2,207	0	-90
MR054	162.15	644,727	4,443,846	2,181	0	-90
MR055	201.17	644,930	4,443,742	2,211	0	-90
MR056	195.07	644,829	4,443,801	2,197	0	-90
MR057	140.36	644,725	4,444,122	2,182	0	-90
MR058	393.19	645,848	4,445,704	2,131	0	-90
MR059	502.16	644,498	4,443,963	2,160	91	-90
MR060	387.71	644,391	4,444,017	2,171	196	-90
MR061	609.6	644,458	4,442,980	2,195	0	-90
MR062	358.75	644,369	4,444,165	2,186	258	-90
MR063	312.42	644,471	4,444,115	2,171	259	-89
MR064	557.78	645,377	4,444,614	2,151	239	-90
MR065	316.99	644,593	4,444,051	2,166	274	-90
MR066	609.6	645,157	4,444,722	2,165	190	-90
MR067	286.51	645,105	4,444,054	2,195	0	-90
MR068	487.68	645,216	4,444,561	2,160	137	-90
MR069	324.22	644,723	4,443,860	2,182	8	-90
MR070	388.62	644,399	4,444,286	2,188	260	-90
MR071	396.24	645,273	4,444,394	2,162	0	-90
MR072	304.5	644,619	4,443,903	2,175	24	-90
MR073	324.22	644,512	4,444,229	2,176	246	-90
MR074	374.23	644,291	4,444,074	2,178	345	-90
MR075	330.71	645,050	4,444,361	2,178	317	-90
MR076	332.54	644,613	4,444,177	2,169	40	-90
MR077	329.18	645,051	4,444,177	2,109	214	-90
MR078	518.16	645,326	4,444,227	2,179	68	-90
MR079	548.64	645,378	4,444,884	2,179	20	-90
MR080	607.47	645,427	4,444,439	2,168	301	-90
MR081	516.64	645,322	4,445,047	2,158	349	-90
MR082	281.03	644,725	4,444,121	2,184	172	-90
MR083	615.7	645,545	4,444,930	2,152	291	-90
MR084	603.5	645,491	4,445,101	2,156	349	-90
MR085	145.3	645,110	4,444,074	2,195	0	-90
MR086	349	645,368	4,444,074	2,193	28	-90
		645,772			_	
MR087 MR088	617.22 542.54	645,466	4,444,835	2,143 2,156	347 185	-90 -90
MR089	322.78	645,052	4,445,317 4,444,349	2,156		-90 -90
MR090	518.16	645,052	4,444,349	2,199	5 228	-90 -90
MR090 MR091	296.88	644,836	4,444,065	2,174	352	-90 -89
MR091 MR092	402.34					
	576.07	644,966	4,443,857	2,225	306	-90
MR093		645,427	4,444,724	2,147	177	-90 00
MR094	569.98	645,488	4,444,560	2,156	8	-90
MR095	365.15	644,826	4,444,343	2,203	0	-90
MR096	640.08	645,593	4,444,775	2,141	79	-90
MR097	308.46	644,890	4,443,628	2,204	0	-90
MR098	458.66	644,478	4,443,907	2,160	2	-89
MR099	443.18	644,475	4,443,906	2,158	311	-89
MR100	738.23	643,817	4,443,989	2,206	260	-90
MR101	492.86	644,419	4,443,801	2,155	280	-89
MR102	401.73	644,538	4,444,012	2,162	335	-89
MR103	419.16	644,533	4,444,081	2,165	200	-89
MR104	426.57	644,446	4,443,990	2,164	340	-89
MR105	396.36	644,928	4,444,018	2,218	242	-89
MR106	603.5	644,260	4,444,326	2,196	241	-90

DHID	DEPTH (m)	EAST (m)	NORTH (m)	ELEV (m)	AZM	DIP
MR107	412.7	644,402	4,443,740	2,153	304	-88
MR108	633.98	643,683	4,444,009	2,224	340	-89
MR109	609.6	642,936	4,444,163	2,119	57	-88
MR110	505.97	642,744	4,443,716	2,095	280	-90
MR111	981.46	642,976	4,445,046	2,164	230	-89
MR112	609.6	646,370	4,445,662	2,091	35	-87
MR113	926.59	642,926	4,445,355	2,179	270	-89
MR114	589.79	645,790	4,444,954	2,131	266	-89
MR115	609.6	646,790	4,446,254	2,067	3	-89
MR116	356.77	644,965	4,444,274	2,232	169	-88
MR117	822.96	642,906	4,443,424	2,117	39	-89
MR118	387.1	644,448	4,443,852	2,156	116	-45
MR119	755.9	642,312	4,443,683	2,074	197	-89
MR120	655.32	643,547	4,442,960	2,099	123	-89
MR121	357.53	644,640	4,444,027	2,173	249	-90
MR122	421.39	644,447	4,443,852	2,173	118	-90
MR123	609.6	644,120		2,167	261	-90
			4,444,017		_	
MR124	351.13	644,673	4,443,882	2,179	121	-89
MR125	391.06	645,153	4,445,003	2,177	276	-89
MR126	314.55	644,760	4,443,967	2,187	45	-88
MR127	370.64	644,587	4,443,986	2,168	351	-89
MR128	405.32	644,446	4,443,854	2,156	294	-69
MR129	304.8	644,680	4,444,799	2,206	274	-89
MR130	304.8	644,572	4,444,578	2,196	186	-89
MR131	310.9	644,546	4,444,364	2,181	245	-89
MR132	304.8	644,610	4,444,362	2,179	284	-89
MR133	304.8	644,633	4,444,484	2,184	181	-89
MR134	304.8	644,785	4,444,598	2,190	0	-90
MR135	304.8	644,842	4,444,806	2,202	0	-90
MR03-136	298.7	644,681	4,444,261	2,175	11	-89
MR03-137	152.4	644,772	4,444,237	2,191	0	-90
MR03-137A	286.51	644,771	4,444,241	2,191	83	-89
MR03-138	365.76	644,555	4,443,679	2,168	344	-89
MR03-139	335.28	644,700	4,445,284	2,208	289	-89
MR03-140	181.36	644,569	4,444,848	2,217	0	-90
MR03-140A	304.8	644,569	4,444,848	2,217	241	-89
MR03-141	304.8	644,666	4,444,582	2,194	57	-89
MR03-142	286.51	644,509	4,444,497	2,194	172	-88
MR03-143	265.18	644,432	4,444,405	2,196	109	-89
MR03-144	304.8	644,817	4,444,477	2,193	27	-89
MR03-145	231.65	644,722	4,444,406	2,180	27	-89
MR03-146	210.31	644,902	4,444,565	2,194	0	-90
MR03-147	256.03	644,760	4,444,706	2,198	224	-89
MR03-148	297.18	644,880	4,444,686	2,192	147	-89
MR03-149	190.5	644,669	4,444,685	2,201	0	-90
MR04-150	304.8	644,823	4,444,910	2,213	164	-88
MR04-151	304.8	644,559	4,444,731	2,204	164	-89
MR04-152	304.8	644,671	4,444,696	2,202	60	-89
MR04-153	304.8	644,766	4,444,709	2,198	241	-89
MR04-154	304.8	644,897	4,444,571	2,189	175	-89
MR04-155	304.8	644,427	4,444,571	2,169	283	-89
MR04-156	310.9			2,215	203	-89
		644,425	4,444,707	· ·		
MR04-157	304.8	644,822	4,445,123	2,190	209	-89
MR04-158	304.8	644,326	4,444,600	2,214	272	-89
MR04-159	304.8	644,429	4,444,493	2,196	327	-89

DHID	DEPTH (m)	EAST (m)	NORTH (m)	ELEV (m)	AZM	DIP
MR04-160	304.8	645,033	4,444,512	2,184	148	-89
MR04-161	304.8	644,923	4,444,800	2,202	0	-89
MR04-162	304.8	644,655	4,444,923	2,219	356	-89
MR06-163	304.8	644,920	4,444,940	2,226	60	-89
MR06-164	304.8	644,723	4,445,062	2,225	79	-89
MR06-165	304.8	644,804	4,444,989	2,218	332	-89
MR06-166	335.28	644,492	4,444,885	2,225	263	-89
MR06-167	316.99	644,419	4,444,792	2,223	50	-89
MR06-168	335.28	644,303	4,444,693	2,221	198	-89
MR06-169	280.42	644,272	4,443,605	2,147	0	-90
MR06-170	286.51	644,273	4,443,605	2,147	125	-69
MR06-171	316.99	644,270	4,444,526	2,214	34	-89
MR06-172	304.8	644,372	4,444,448	2,201	314	-89
MR06-173	260.6	644,922	4,444,473	2,205	134	-89
MR06-174	304.8	644,357	4,443,686	2,151	97	-89
MR06-175	310.9	644,930	4,443,744	2,213	185	-89
MR06-176	304.8	644,826	4,443,812	2,199	288	-89
MR06-177	158.5	642,980	4,445,373	2,187	18	-89
MR06-178	152.4	642,887	4,445,422	2,184	0	-90
MR06-179	152.4	642,960	4,445,305	2,178	0	-90
MR06-180	152.4	642,881	4,445,325	2,184	0	-90
MR08-181	341.38	644,417	4,444,782	2,226	338	-70
MR08-182	335.28	644,417	4,444,794	2,223	291	-70 -70
	341.38	· · · · · · · · · · · · · · · · · · ·		2,234	31	-89
MR08-183 MR08-184	350.52	644,450	4,444,936	2,234	303	-69 -89
		644,390	4,444,972	•		
MR08-185	256.03	644,555	4,445,004	2,233	90	-89
MR24-186	294.13	644,343	4,444,871	2,245		-90
MR24-187	178.31	644,424	4,444,783	2,226	120	-70
MR24-188	268.22	644,425	4,444,787	2,226	0	-90
MR24-189	68.58	644,298	4,445,054	2,252	0	-90
MR24-189A	320.04	644,301	4,445,054	2,256	0	-90
MR24-190	304.8	644,452	4,444,925	2,235	0	-90
MR24-191	301.75	644,448	4,445,059	2,243	0	-90
MR24-192	326.14	644,280	4,444,767	2,240	0	-90
MR24-193	350.52	644,152	4,444,583	2,227	0	-90
MR24-194	320.04	644,335	4,444,606	2,214	0	-90
MR24-195	304.8	644,306	4,444,680	2,223	0	-90
MR24-196	295.66	644,200	4,444,681	2,240	0	-90
MR24-197	304.8	644,413	4,444,703	2,217	0	-90
MR24-198	352.04	644,400	4,445,185	2,268	0	-90
MR24-199	338.33	644,479	4,445,126	2,259	0	-90
MR24-200	304.8	644,643	4,445,092	2,242	0	-90
MR24-201	304.8	644,722	4,445,038	2,226	0	-90
MR24-202	320.04	644,806	4,444,980	2,219	0	-90
MR24-203	365.76	644,260	4,445,213	2,285	0	-90
MR24-204	335.28	644,219	4,445,119	2,270	0	-90
MR24-205	210.31	644,422	4,444,785	2,224	120	-70
MR24-206	326.14	644,387	4,444,959	2,245	0	-90
MR24-207	335.28	644,235	4,444,516	2,213	0	-90
MR24-208	320.04	644,552	4,444,991	2,235	0	-90
MR24-209	320.04	644,662	4,444,913	2,218	0	-90
MR24-210	252.98	644,567	4,444,845	2,217	0	-90
MR25-211	360.27	644,400	4,445,179	2,265	30	-60
MDOE 040	257.52	·				60
MR25-212	357.53	644,481	4,445,137	2,257	30	-60

MR25-214 354.18 644,412 4,444,707 2,214 0 -90 MR25-215 201.17 644,794 4,445,151 2,195 30 -70 MR25-216 249.94 644,272 4,444,768 2,240 0 -90 MR25-217 219.46 644,335 4,444,868 2,243 300 -65 MR25-218 308.15 644,422 4,444,794 2,224 120 -70 MR25-219 274.32 644,194 4,444,678 2,240 0 -90 MR25-220 188.98 644,447 4,445,065 2,244 0 -90 MR25-221 360.27 644,259 4,445,218 2,289 30 -60 MR25-227 342.9 644,532 4,443,869 2,165 0 -90 MR25-228 152.4 644,485 4,443,900 2,160 300 -86 MR25-229 340.46 644,425 4,443,916 2,163 0 -89	DHID	DEPTH (m)	EAST (m)	NORTH (m)	ELEV (m)	AZM	DIP
MR25-216 249.94 644,272 4,444,768 2,240 0 -90 MR25-217 219.46 644,335 4,444,868 2,243 300 -65 MR25-218 308.15 644,422 4,444,794 2,224 120 -70 MR25-219 274.32 644,194 4,445,065 2,240 0 -90 MR25-220 188.98 644,447 4,445,065 2,244 0 -90 MR25-221 360.27 644,259 4,445,218 2,289 30 -60 MR25-227 342.9 644,532 4,443,869 2,165 0 -90 MR25-228 152.4 644,485 4,443,900 2,160 300 -86 MR25-229 340.46 644,255 4,443,916 2,163 110.3 -75.3 MR25-231 166.73 644,844 4,444,034 2,164 0 -90 MR25-232 140.21 644,795 4,443,979 2,196 300 -82 <tr< td=""><td></td><td></td><td>` '</td><td></td><td>. ,</td><td>0</td><td>-90</td></tr<>			` '		. ,	0	-90
MR25-216 249.94 644,272 4,444,768 2,240 0 -90 MR25-217 219.46 644,335 4,444,868 2,243 300 -65 MR25-218 308.15 644,422 4,444,794 2,224 120 -70 MR25-219 274.32 644,194 4,444,678 2,240 0 -90 MR25-220 188.98 644,447 4,445,065 2,244 0 -90 MR25-221 360.27 644,259 4,445,218 2,289 30 -60 MR25-228 152.4 644,532 4,443,869 2,165 0 -90 MR25-229 340.46 644,485 4,443,900 2,160 300 -86 MR25-230 335.28 644,511 4,443,936 2,163 110.3 -75.3 MR25-231 166.73 644,844 4,444,034 2,164 0 -90 MR25-232 140.21 644,795 4,443,979 2,196 300 -82 <t< td=""><td>MR25-215</td><td>201.17</td><td>644,794</td><td></td><td>2,195</td><td>30</td><td></td></t<>	MR25-215	201.17	644,794		2,195	30	
MR25-217 219.46 644,335 4,444,868 2,243 300 -65 MR25-218 308.15 644,422 4,444,794 2,224 120 -70 MR25-219 274.32 644,194 4,444,678 2,240 0 -90 MR25-220 188.98 644,447 4,445,665 2,244 0 -90 MR25-221 360.27 644,539 4,445,218 2,289 30 -60 MR25-227 342.9 644,532 4,443,869 2,165 0 -90 MR25-228 152.4 644,485 4,443,900 2,160 300 -86 MR25-229 340.46 644,425 4,443,916 2,163 0 -89 MR25-230 335.28 644,511 4,443,936 2,163 110.3 -75.38 MR25-231 166.73 644,484 4,444,034 2,164 0 -90 MR25-232 140.21 644,538 4,441,134 2,169 0 -90	MR25-216	249.94	644,272			0	-90
MR25-218 308.15 644,422 4,444,794 2,224 120 -70 MR25-219 274.32 644,194 4,444,678 2,240 0 -90 MR25-220 188.98 644,447 4,445,065 2,244 0 -90 MR25-221 360.27 644,259 4,445,218 2,289 30 -60 MR25-227 342.9 644,532 4,443,869 2,165 0 -90 MR25-228 152.4 644,485 4,443,900 2,160 300 -86 MR25-229 340.46 644,485 4,443,916 2,163 0 -89 MR25-230 335.28 644,511 4,443,936 2,163 110.3 -75.33 MR25-231 166.73 644,484 4,444,034 2,164 0 -90 MR25-233 152.4 644,538 4,441,134 2,169 0 -90 MR25-233 152.4 644,538 4,444,134 2,169 0 -90	MR25-217	219.46				300	-65
MR25-219 274.32 644,194 4,444,678 2,240 0 -90 MR25-220 188.98 644,447 4,445,065 2,244 0 -90 MR25-221 360.27 644,259 4,445,218 2,289 30 -60 MR25-227 342.9 644,532 4,443,869 2,165 0 -90 MR25-228 152.4 644,485 4,443,900 2,160 300 -86 MR25-229 340.46 644,425 4,443,916 2,163 0 -89 MR25-230 335.28 644,511 4,443,936 2,163 110.3 -75.3 MR25-231 166.73 644,484 4,444,034 2,164 0 -90 MR25-232 140.21 644,795 4,443,797 2,196 300 -82 MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-234 335.28 644,610 4,444,112 2,168 300 -86							
MR25-220 188.98 644,447 4,445,065 2,244 0 -90 MR25-221 360.27 644,259 4,445,218 2,289 30 -60 MR25-227 342.9 644,532 4,443,869 2,165 0 -90 MR25-228 152.4 644,485 4,443,900 2,160 300 -86 MR25-229 340.46 644,425 4,443,916 2,163 0 -89 MR25-230 335.28 644,511 4,443,936 2,163 110.3 -75.33 MR25-231 166.73 644,484 4,444,034 2,164 0 -90 MR25-232 140.21 644,795 4,443,797 2,196 300 -82 MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-234 335.28 644,610 4,444,112 2,168 300 -86 MR25-233 152.4 644,538 4,444,112 2,168 300 -86					· ·		-90
MR25-221 360.27 644,259 4,445,218 2,289 30 -60 MR25-227 342.9 644,532 4,443,869 2,165 0 -90 MR25-228 152.4 644,485 4,443,900 2,160 300 -86 MR25-229 340.46 644,425 4,443,916 2,163 0 -89 MR25-230 335.28 644,511 4,443,936 2,163 110.3 -75.38 MR25-231 166.73 644,484 4,444,034 2,164 0 -90 MR25-232 140.21 644,795 4,443,797 2,196 300 -82 MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-234 335.28 644,610 4,444,112 2,168 300 -86 MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-235 202.69 644,525 4,444,008 2,164 0 -90							-90
MR25-227 342.9 644,532 4,443,869 2,165 0 -90 MR25-228 152.4 644,485 4,443,900 2,160 300 -86 MR25-229 340.46 644,425 4,443,916 2,163 0 -89 MR25-230 335.28 644,511 4,443,936 2,163 110.3 -75.33 MR25-231 166.73 644,484 4,444,034 2,164 0 -90 MR25-232 140.21 644,795 4,443,797 2,196 300 -82 MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-234 335.28 644,610 4,444,112 2,168 300 -86 MR25-235 202.69 644,525 4,444,008 2,164 0 -90 MR25-237 246.28 644,701 4,443,985 2,177 0 -90 MR25-247 305.07 644,585 4,444,049 2,164 0 -90							
MR25-228 152.4 644,485 4,443,900 2,160 300 -86 MR25-229 340.46 644,425 4,443,916 2,163 0 -89 MR25-230 335.28 644,511 4,443,936 2,163 110.3 -75.33 MR25-231 166.73 644,484 4,444,034 2,164 0 -90 MR25-232 140.21 644,795 4,443,797 2,196 300 -82 MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-234 335.28 644,610 4,444,112 2,168 300 -86 MR25-235 202.69 644,525 4,444,008 2,164 0 -90 MR25-237 246.28 644,701 4,443,985 2,177 0 -90 MR25-247 305.07 644,585 4,444,049 2,164 0 -90 MR25-248 48.77 644,852 4,443,830 2,198 0 -90							
MR25-229 340.46 644,425 4,443,916 2,163 0 -89 MR25-230 335.28 644,511 4,443,936 2,163 110.3 -75.33 MR25-231 166.73 644,484 4,444,034 2,164 0 -90 MR25-232 140.21 644,795 4,443,797 2,196 300 -82 MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-234 335.28 644,610 4,444,112 2,168 300 -86 MR25-235 202.69 644,525 4,444,008 2,164 0 -90 MR25-237 246.28 644,701 4,443,985 2,177 0 -90 MR25-247 305.07 644,585 4,444,049 2,164 0 -90 MR25-248 48.77 644,852 4,443,830 2,198 0 -90 MR25-248a 134.11 644,852 4,443,825 2,202 0 -90			· ·		· '	300	
MR25-230 335.28 644,511 4,443,936 2,163 110.3 -75.33 MR25-231 166.73 644,484 4,444,034 2,164 0 -90 MR25-232 140.21 644,795 4,443,797 2,196 300 -82 MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-234 335.28 644,610 4,444,112 2,168 300 -86 MR25-235 202.69 644,525 4,444,008 2,164 0 -90 MR25-237 246.28 644,701 4,443,985 2,177 0 -90 MR25-247 305.07 644,585 4,444,049 2,164 0 -90 MR25-248 48.77 644,852 4,443,830 2,198 0 -90 MR25-248a 134.11 644,852 4,443,825 2,202 0 -90 MR25-249 164.59 644,903 4,443,892 2,210 300 -80							
MR25-231 166.73 644,484 4,444,034 2,164 0 -90 MR25-232 140.21 644,795 4,443,797 2,196 300 -82 MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-234 335.28 644,610 4,444,112 2,168 300 -86 MR25-235 202.69 644,525 4,444,008 2,164 0 -90 MR25-237 246.28 644,701 4,443,985 2,177 0 -90 MR25-247 305.07 644,585 4,444,049 2,164 0 -90 MR25-248 48.77 644,852 4,443,830 2,198 0 -90 MR25-248a 134.11 644,852 4,443,825 2,202 0 -90 MR25-249 164.59 644,903 4,443,892 2,210 300 -80 MR25-250 331.01 644,579 4,443,920 2,211 300 -85		335.28	· '			110.3	-75.35
MR25-232 140.21 644,795 4,443,797 2,196 300 -82 MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-234 335.28 644,610 4,444,112 2,168 300 -86 MR25-235 202.69 644,525 4,444,008 2,164 0 -90 MR25-237 246.28 644,701 4,443,985 2,177 0 -90 MR25-247 305.07 644,585 4,444,049 2,164 0 -90 MR25-248 48.77 644,852 4,443,830 2,198 0 -90 MR25-248a 134.11 644,852 4,443,825 2,202 0 -90 MR25-249 164.59 644,903 4,443,892 2,210 300 -80 MR25-250 331.01 644,579 4,443,973 2,170 0 -90 MR25-253 59.44 644,913 4,443,920 2,211 300 -85			· '				
MR25-233 152.4 644,538 4,444,134 2,169 0 -90 MR25-234 335.28 644,610 4,444,112 2,168 300 -86 MR25-235 202.69 644,525 4,444,008 2,164 0 -90 MR25-237 246.28 644,701 4,443,985 2,177 0 -90 MR25-247 305.07 644,585 4,444,049 2,164 0 -90 MR25-248 48.77 644,852 4,443,830 2,198 0 -90 MR25-248a 134.11 644,852 4,443,825 2,202 0 -90 MR25-249 164.59 644,903 4,443,892 2,210 300 -80 MR25-250 331.01 644,579 4,443,973 2,170 0 -90 MR25-253 59.44 644,913 4,443,920 2,211 300 -85 MR25-253a 152.4 644,914 4,443,920 2,218 300 -85			,		· ·	300	
MR25-234 335.28 644,610 4,444,112 2,168 300 -86 MR25-235 202.69 644,525 4,444,008 2,164 0 -90 MR25-237 246.28 644,701 4,443,985 2,177 0 -90 MR25-247 305.07 644,585 4,444,049 2,164 0 -90 MR25-248 48.77 644,852 4,443,830 2,198 0 -90 MR25-248a 134.11 644,852 4,443,825 2,202 0 -90 MR25-249 164.59 644,903 4,443,892 2,210 300 -80 MR25-250 331.01 644,579 4,443,973 2,170 0 -90 MR25-253 59.44 644,913 4,443,920 2,211 300 -85 MR25-253a 152.4 644,914 4,443,920 2,218 300 -85			· ·				
MR25-235 202.69 644,525 4,444,008 2,164 0 -90 MR25-237 246.28 644,701 4,443,985 2,177 0 -90 MR25-247 305.07 644,585 4,444,049 2,164 0 -90 MR25-248 48.77 644,852 4,443,830 2,198 0 -90 MR25-248a 134.11 644,852 4,443,825 2,202 0 -90 MR25-249 164.59 644,903 4,443,892 2,210 300 -80 MR25-250 331.01 644,579 4,443,973 2,170 0 -90 MR25-253 59.44 644,913 4,443,920 2,211 300 -85 MR25-253a 152.4 644,914 4,443,920 2,218 300 -85					· ·	_	
MR25-237 246.28 644,701 4,443,985 2,177 0 -90 MR25-247 305.07 644,585 4,444,049 2,164 0 -90 MR25-248 48.77 644,852 4,443,830 2,198 0 -90 MR25-248a 134.11 644,852 4,443,825 2,202 0 -90 MR25-249 164.59 644,903 4,443,892 2,210 300 -80 MR25-250 331.01 644,579 4,443,973 2,170 0 -90 MR25-253 59.44 644,913 4,443,920 2,211 300 -85 MR25-253a 152.4 644,914 4,443,920 2,218 300 -85			· '	, ,			
MR25-247 305.07 644,585 4,444,049 2,164 0 -90 MR25-248 48.77 644,852 4,443,830 2,198 0 -90 MR25-248a 134.11 644,852 4,443,825 2,202 0 -90 MR25-249 164.59 644,903 4,443,892 2,210 300 -80 MR25-250 331.01 644,579 4,443,973 2,170 0 -90 MR25-253 59.44 644,913 4,443,920 2,211 300 -85 MR25-253a 152.4 644,914 4,443,920 2,218 300 -85			· ·	, ,			
MR25-248 48.77 644,852 4,443,830 2,198 0 -90 MR25-248a 134.11 644,852 4,443,825 2,202 0 -90 MR25-249 164.59 644,903 4,443,892 2,210 300 -80 MR25-250 331.01 644,579 4,443,973 2,170 0 -90 MR25-253 59.44 644,913 4,443,920 2,211 300 -85 MR25-253a 152.4 644,914 4,443,920 2,218 300 -85	<u> </u>		· ·		· ·		
MR25-248a 134.11 644,852 4,443,825 2,202 0 -90 MR25-249 164.59 644,903 4,443,892 2,210 300 -80 MR25-250 331.01 644,579 4,443,973 2,170 0 -90 MR25-253 59.44 644,913 4,443,920 2,211 300 -85 MR25-253a 152.4 644,914 4,443,920 2,218 300 -85			· ·				
MR25-249 164.59 644,903 4,443,892 2,210 300 -80 MR25-250 331.01 644,579 4,443,973 2,170 0 -90 MR25-253 59.44 644,913 4,443,920 2,211 300 -85 MR25-253a 152.4 644,914 4,443,920 2,218 300 -85			· · · · · · · · · · · · · · · · · · ·				
MR25-250 331.01 644,579 4,443,973 2,170 0 -90 MR25-253 59.44 644,913 4,443,920 2,211 300 -85 MR25-253a 152.4 644,914 4,443,920 2,218 300 -85			,				
MR25-253 59.44 644,913 4,443,920 2,211 300 -85 MR25-253a 152.4 644,914 4,443,920 2,218 300 -85			- ,				
MR25-253a 152.4 644,914 4,443,920 2,218 300 -85			· ·			_	
104.11 044,014 4,440,020 2,210 000 00			· '	, ,			

Appendix B - Resource Estimation Material Intercepts

Hole ID	Interval (m)	Ag FA (g/t)	Au FA (g/t)	From (m)	To (m)
MS005	13.72	58.9	0.59	236.22	249.94
MR042	18.29	16.1	0.24	132.59	150.88
MR043	3.05	17.2	0.21	190.5	193.55
MR046	7.62	376.9	0.12	167.64	175.26
MR050	28.49	38.5	0.72	185.17	213.66
MR051	1.52	9.2	0.3	204.83	206.35
MR054	33.22	8.5	0.29	128.93	162.15
MR056	30.48	45.6	0.25	164.59	195.07
MR057	17.37	29.4	0.23	120.7	138.07
MR059	152.7	32.6	0.49	186.69	339.39
MR060	44.19	31.8	0.49	278.89	323.08
MR061	12.19	11.7	0.5	379.48	391.67
MR062	11.73	5.8	0.55	276	287.73
MR063	76.53	40.4	0.35	204.37	280.9
MR064	22.86	13.4	0.23	374.9	397.76
MR065	112.78	33.4	0.14	172.82	285.6
MR066	54.86	43.5	0.27	263.65	318.51
MR067	51.81	9.8	0.29	234.7	286.51
MR068	42.67		0.23		
		45.2	0.34	309.37 128.63	352.04
MR069	119.02	26.6	0.17	277.22	247.65
MR070	12.19	41.6			289.41
MR071	42.68	29.3	0.16	291.08	333.76
MR072	61.84	53.8	0.36	202.54	264.38
MR073	113.77	34.2	0.44	178.16	291.93
MR075	97.53	47.1	0.16	173.74	271.27
MR076	121.67	23.9	0.24	171.3	292.97
MR077	65.54	24.4	0.21	199.64	265.18
MR079	30.48	92.1	0.17	434.34	464.82
MR080	22.86	63.5	0.04	431.29	454.15
MR081	53.34	28.9	0.16	399.29	452.63
MR082	107.6	50.4	0.28	120.09	227.69
MR083	45.72	41.2	0.48	524.26	569.98
MR084	59.43	37.2	0.07	544.07	603.5
MR088	10.66	180.1	0.42	531.88	542.54
MR089	86.72	54.6	0.29	178.43	265.15
MR091	128.01	43.2	0.19	133.2	261.21
MR092	54.86	25.8	0.24	222.5	277.36
MR093	3.05	27.5	0	434.34	437.39
MR093	1.52	17.8	0	440.44	441.96
MR093	123.44	99.6	0.07	452.63	576.07
MR094	1.53	6.9	0.22	496.82	498.35
MR094	10.67	155.5	0	507.49	518.16
MR095	103.02	37.6	0.16	134.42	237.44
MR096	33.52	24.5	0.29	524.26	557.78
MR097	42.68	12	0.34	245.36	288.04
MR098	104.76	35.1	0.44	214.88	319.64
MR099	104.24	34.6	0.3	216.1	320.34
MR101	70.11	49.5	0.38	230.73	300.84
MR102	115.79	27.3	0.36	175.17	290.96
MR103	104.02	30.8	0.34	173.74	277.76
MR103	6.4	2.6	0.21	286.18	292.58
MR104	25.57	59.2	1.35	248.11	273.68
MR104	7.98	5.4	0.15	279.23	287.21

Hole ID	Interval (m)	Ag FA (g/t)	Au FA (g/t)	From (m)	To (m)
MR105	107.2	16.9	0.28	167.64	274.84
MR106	7.62	0	0.36	284.99	292.61
MR107	62.79	15.9	0.5	236.52	299.31
MR116	59.93	34.8	0.13	209.73	269.66
MR118	35.84	36.5	0.39	260.91	296.75
MR121	6.34	4.3	0.21	163.37	169.71
MR121	73.31	52.3	0.25	181.72	255.03
MR122	94.67	34	0.38	239.39	334.06
MR124	117.9	45.4	0.23	135.85	253.75
MR125	21.33	25.5	0.08	368.81	390.14
MR126	136.67	35.4	0.14	125.58	262.25
MR127	117.28	88.3	0.37	176.24	293.52
MR128	21.19	40.6	0.5	296.11	317.3
MR129	79.24	48.8	0.3	211.84	291.08
MR130	62.48	132.7	0.27	196.6	259.08
MR131	115.83	15.7	0.41	172.21	288.04
MR132	99.06	17.7	0.37	182.88	281.94
MR133	94.49	34.8	0.26	156.97	251.46
MR134	67.06	24.3	0.26	179.83	246.89
MR135	36.58	97.8	0.89	210.31	246.89
MR03-136	44.19	41	0.32	178.31	222.5
MR03-137A	76.2	10.3	0.13	160.02	236.22
MR03-138	48.77	60.5	0.38	248.41	297.18
MR03-139	36.57	63.3	0.07	227.08	263.65
MR03-140A	123.44	15	0.27	158.5	281.94
MR03-141	124.97	66	0.35	164.59	289.56
MR03-142	118.87	25.6	0.38	167.64	286.51
MR03-143	67.06	61.6	0.38	198.12	265.18
MR03-144	103.64	31.1	0.38	161.54	265.18
MR03-145	79.25	23.5	0.26	140.21	219.46
MR03-146	27.43	73.6	0.54	182.88	210.31
MR03-147	74.68	42.1	0.56	169.16	243.84
MR03-148	32.01	35	0.36	222.5	254.51
MR03-149	30.48	6.3	0.26	156.97	187.45
MR04-150	41.14	15.5	0.35	188.98	230.12
MR04-151	76.2	19.6	0.27	167.64	243.84
MR04-152	117.34	27.4	0.22	158.5	275.84
MR04-153	123.44	19.6	0.25	178.31	301.75
MR04-154	47.25	106.4	0.56	207.26	254.51
MR04-155	102.11	20.2	0.35	193.55	295.66
MR04-156	92.96	23.8	0.29	190.5	283.46
MR04-157	35.05	49	0.08	219.46	254.51
MR04-158	54.86	20.1	0.24	249.94	304.8
MR04-159	85.34	45.6	0.32	198.12	283.46
MR04-160	39.62	43.8	0.32	190.12	230.12
MR04-160	39.02	36.8	0.25	262.13	294.13
MR04-161	44.2	71.3	0.49	202.13	251.46
MR06-163	44.19	71.3	0.31	242.32	286.51
MR06-163	44.19	19.1	0.46	242.32	
		66			271.27
MR06-165	19.82		0.49	222.5	242.32
MR06-166	108.2	112.3	0.16	173.74	281.94
MR06-167	59.44	272.7	0.24	198.12	257.56
MR06-168	36.58	29	0.25	260.6	297.18
MR06-170	3.05	4.4	0.43	283.46	286.51
MR06-171	42.68	0.3	0.05	252.98	295.66

Hole ID	Interval (m)	Ag FA (g/t)	Au FA (g/t)	From (m)	To (m)
MR06-172	50.3	24.3	0.3	237.74	288.04
MR06-173	44.2	18.1	0.22	175.26	219.46
MR06-174	32.01	8.1	0.3	256.03	288.04
MR06-175	86.87	10	0.44	213.36	300.23
MR06-176	91.43	32	0.35	163.07	254.5
MR08-181	56.39	70.25	0.21	198.12	254.51
MR08-182	54.87	278.41	0.29	227.07	281.94
MR08-183	68.57	45.36	0.43	176.79	245.36
MR08-184	29.03	57.85	0.28	217.86	246.89
MR08-185	27.45	54.77	0.3	199.64	227.09
MR24-186	41.15	112.3	0.17	231.65	272.8
MR24-188	54.86	63.9	0.23	193.55	248.41
MR24-189A	12.19	72	0.29	281.94	294.13
MR24-190	120.4	47.2	0.33	179.83	300.23
MR24-191	88.39	61.7	0.21	211.84	300.23
MR24-192	48.77	24.1	0.15	274.32	323.09
MR24-193	30.48	11.6	0.39	303.28	333.76
MR24-194	48.77	23.8	0.17	248.41	297.18
MR24-195	41.15	27.9	0.22	259.08	300.23
MR24-197	91.44	82	0.36	193.55	284.99
MR24-198	50.29	43.9	0.31	248.41	298.7
MR24-199	99.06	86.9	0.32	224.03	323.09
MR24-200	42.68	58.9	0.21	245.36	288.04
MR24-201	65.53	17.3	0.09	208.79	274.32
MR24-202	21.33	111.2	0.4	219.46	240.79
MR24-203	30.48	83.1	0.2	310.9	341.38
MR24-204	15.24	3.9	0.13	320.04	335.28
MR24-205	16.76	465.9	0.33	193.55	210.31
MR24-206	59.44	74.2	0.26	214.88	274.32
MR24-207	50.29	8	0.23	265.18	315.47
MR24-208	100.58	46.8	0.2	204.22	304.8
MR24-209	33.53	57.2	0.57	213.36	246.89
MR24-210	94.48	24.9	0.29	158.5	252.98
MR25-211	65.44	137.2	0.18	258.78	324.22
MR25-212	93.88	74.7	0.17	230.12	324
MR25-214	91.29	56.4	0.36	191.26	282.55
MR25-218	89.61	29.1	0.18	191.72	281.33
MR25-230	125.79	28.5	0.57	174.44	300.23
MR25-247	115.73	31	0.3	169.01	284.74
MR25-250	112.19	66.5	0.36	178.92	291.11

Appendix C – New Pulp Re-assays

Hole ID	From (m)	To (m)	Sample	Туре	Ag (ppm)	Sb (ppm)
MR092	0	1.52	Pulps	RC	0.15	126
MR092	1.52	3.05	Pulps	RC	0.15	70
MR092	3.05	4.57	Pulps	RC	0.15	37
MR092	4.57	6.1	Pulps	RC	2.6	41
MR092	6.1	7.62	Pulps	RC	0.6	95
MR092	7.62	9.14	Pulps	RC	6.5	65
MR092	9.14	10.67	Pulps	RC	2	60
MR092	10.67	12.19	Pulps	RC	0.15	41
MR092	12.19	13.72	Pulps	RC	2.2	49
MR092	13.72	15.24	Pulps	RC	0.3	58
MR092	15.24	16.76	Pulps	RC	1.6	103

Hole ID	From (m)	To (m)	Sample	Туре	Ag (ppm)	Sb (ppm)
MR092	16.76	18.29	Pulps	RC	0.5	61
MR092	18.29	19.81	Pulps	RC	0.8	57
MR092	19.81	21.34	Pulps	RC	0.4	60
MR092	21.34	22.86	Pulps	RC	1.5	59
MR092	22.86	24.38	Pulps	RC	0.3	57
MR092	24.38	25.91	Pulps	RC	0.7	75
MR092	25.91	27.43	Pulps	RC	0.15	154
MR092	27.43	28.96	Pulps	RC	0.6	129
MR092	28.96	30.48	Pulps	RC	0.15	200
MR092	30.48	32	Pulps	RC	1	142
MR092	32	33.53	Pulps	RC	0.4	80

	Hole ID	From (m)	To (m)	Sample	Type	Ag (ppm)	Sb (ppm)
	MR092	33.53	35.05	Pulps	RC	0.8	90
	MR092	35.05	36.58	Pulps	RC	0.3	69
	MR092	36.58	38.1	Pulps	RC	0.8	106
	MR092	38.1	39.62	Pulps	RC	0.5	118
	MR092	39.62	41.15	Pulps	RC	0.4	144
	MR092	41.15	42.67	Pulps	RC	0.15	172
	MR092	42.67	44.2	Pulps	RC	0.4	219
	MR092	44.2	45.72	Pulps	RC	0.5	159
	MR092	45.72	47.24	Pulps	RC	0.5	199
	MR092	47.24	48.77	Pulps	RC	0.15	317
	MR092	48.77	50.29	Pulps	RC	0.4	352
	MR092	50.29	51.82	Pulps	RC	0.5	377
	MR092	51.82	53.34	Pulps	RC	0.4	213
	MR092	53.34	54.86	Pulps	RC	0.15	153
	MR092	54.86	56.39	Pulps	RC	0.15	101
	MR092	56.39	57.91	Pulps	RC	0.15	58
	MR092	57.91	59.44	Pulps	RC	0.15	125
	MR092	59.44	60.96	Pulps	RC	0.4	188
	MR092	60.96	62.48	Pulps	RC	0.5	179
	MR092	62.48	64.01	Pulps	RC	0.4	181
	MR092	64.01	65.53	Pulps	RC	0.3	193
	MR092	65.53	67.06	Pulps	RC	0.6	238
	MR092	67.06	68.58	Pulps	RC	0.8	362
	MR092	68.58	70.1	Pulps	RC	0.6	134
	MR092	70.1	71.63	Pulps	RC	0.6	180
	MR092	71.63	73.15	Pulps	RC	0.8	235
	MR092	73.15	74.68	Pulps	RC	0.9	149
	MR092	74.68	76.2	Pulps	RC	1.2	243
	MR092	76.2	77.72	Pulps	RC	0.7	291
	MR092	77.72	79.25	Pulps	RC	0.9	193
	MR092	79.25	80.77	Pulps	RC	0.8	244
	MR092	80.77	82.3	Pulps	RC	1.4	209
	MR092	82.3	83.82	Pulps	RC	2.4	185
	MR092	83.82	85.34	Pulps	RC	2.7	120
	MR092	85.34	86.87	Pulps	RC	2.7	97
	MR092	86.87	88.39	Pulps	RC	1.2	103
	MR092	88.39	89.92	Pulps	RC	2.3	80
	MR092	89.92	91.44	Pulps	RC	3.1	85
	MR092	91.44	92.96	Pulps	RC	2.4	87
	MR092	92.96	94.49	Pulps	RC	1.2	89
2	MR092	94.49	96.01	Pulps	RC	1.7	141
	MR092	96.01	97.54	Pulps	RC	1.3	107
	MR092	97.54	99.06	Pulps	RC	0.9	66
	MR092	99.06	100.58	Pulps	RC	0.6	63
	MR092	100.58	102.11	Pulps	RC	0.5	93
	MR092	102.11	103.63	Pulps	RC	0.4	85
	MR092	103.63	105.16	Pulps	RC	0.15	113
	MR092	105.16	106.68	Pulps	RC	0.3	124
	MR092	106.68	108.2	Pulps	RC	0.4	168
	MR092	108.2	109.73	Pulps	RC	0.4	157
	MR092	109.73	111.25	Pulps	RC	0.4	138
	MR092	111.25	112.78	Pulps	RC	0.5	152
	MR092	112.78	114.3	Pulps	RC	0.4	158
	MR092	114.3	115.82	Pulps	RC	0.4	150
	WITTOUL	117.0	110.02	i aipa		0.0	100

	From	To			Ag	Sb
Hole ID	(m)	(m)	Sample	Type	(ppm)	(ppm)
MR092	115.82	117.35	Pulps	RC	0.4	162
MR092	117.35	118.87	Pulps	RC	0.6	137
MR092	118.87	120.4	Pulps	RC	0.5	202
MR092	120.4	121.92	Pulps	RC	0.6	84
MR092	121.92	123.44	Pulps	RC	0.4	81
MR092	123.44	124.97	Pulps	RC	0.6	90
MR092	124.97	126.49	Pulps	RC	0.5	90
MR092	126.49	128.02	Pulps	RC	0.7	167
MR092	128.02	129.54	Pulps	RC	0.6	139
MR092	129.54	131.06	Pulps	RC	0.5	130
MR092	131.06	132.59	Pulps	RC	0.6	163
MR092	132.59	134.11	Pulps	RC	0.6	308
MR092	134.11	135.64	Pulps	RC	0.5	207
MR092	135.64	137.16	Pulps	RC	8.0	186
MR092	137.16	138.68	Pulps	RC	0.5	166
MR092	138.68	140.21	Pulps	RC	8.0	90
MR092	140.21	141.73	Pulps	RC	0.5	122
MR092	141.73	143.26	Pulps	RC	0.5	106
MR092	143.26	144.78	Pulps	RC	0.5	79
MR092	144.78	146.3	Pulps	RC	0.8	70
MR092	146.3	147.83	Pulps	RC	0.9	61
MR092	147.83	149.35	Pulps	RC	1	72
MR092	149.35	150.88	Pulps	RC	0.6	81
MR092	150.88	152.4	Pulps	RC	0.6	136
MR092	152.4	153.92	Pulps	RC	0.7	202
MR092	153.92	155.45	Pulps	RC	0.6	217
MR092	155.45	156.97	Pulps	RC	1 -	394
MR092	156.97	158.5	Pulps	RC	1.5	471
MR092	158.5	160.02	Pulps	RC	1.2	152
MR092	160.02	161.54	Pulps	RC	1	209
MR092	161.54	163.07	Pulps	RC	0.8	215
MR092	163.07	164.59	Pulps	RC	0.5	243
MR092	164.59	166.12	Pulps	RC	0.7	88
MR092	166.12	167.64	Pulps	RC	0.5	125
MR092	167.64 169.16	169.16 170.69	Pulps	RC	0.4	99
MR092 MR092	170.69	170.09	Pulps Pulps	RC	0.7 0.5	160 138
MR092	170.09	173.74	Pulps	RC	0.8	109
MR092	173.74	175.74	Pulps	RC	0.8	72
MR092	175.74	176.78	Pulps	RC	1	59
MR095	1.83	2.9	Pulps	DD	0.15	51
MR095	2.9	4.42	Pulps	DD	0.15	48
MR095	4.42	5.64	Pulps	DD	0.15	46
MR095	5.64	6.86	Pulps	DD	0.15	49
MR095	6.86	7.47	Pulps	DD	0.15	79
MR095	8.63	9.75	Pulps	DD	0.15	118
MR095	9.75	10.82	Pulps	DD	0.3	95
MR095	10.82	12.04	Pulps	DD	0.3	96
MR095	12.04	13.56	Pulps	DD	0.4	58
MR095	13.56	14.02	Pulps	DD	0.5	64
MR095	14.02	14.94	Pulps	DD	0.7	69
MR095	14.94	15.54	Pulps	DD	0.8	41
MR095	15.54	16.61	Pulps	DD	1.1	70
MR095	16.61	18.29	Pulps	DD	0.15	60

	Hole ID	From (m)	To (m)	Sample	Туре	Ag (ppm)	Sb (ppm)
	MR095	18.29	19.35	Pulps	DD	0.15	67
	MR095	19.35	20.88	Pulps	DD	0.15	100
	MR095	20.88	21.18	Pulps	DD	0.15	84
	MR095	21.18	22.25	Pulps	DD	0.15	84
	MR095	22.25	23.32	Pulps	DD	0.15	59
	MR095	23.32	24.84	Pulps	DD	0.5	58
	MR095	24.84	25.91	Pulps	DD	0.6	68
	MR095	25.91	27.43	Pulps	DD	1	81
	MR095	27.43	28.96	Pulps	DD	1.1	40
	MR095	28.96	29.87	Pulps	DD	0.6	32
	MR095	29.87	30.63	Pulps	DD	0.7	29
7	MR095	30.63	31.85	Pulps	DD	0.5	32
l	MR095	31.85	32.77	Pulps	DD	0.7	43
_	MR095	32.77	34.14	Pulps	DD	0.3	18
/	MR095	34.14	35.36	Pulps	DD	0.15	12
\int	MR095	35.36	35.97	Pulps	DD	0.7	35
	MR095	35.97	36.58	Pulps	DD	0.8	36
	MR095	36.58	38.1	Pulps	DD	0.4	30
	MR095	38.1	39.78	Pulps	DD	0.15	50
	MR095	39.78	40.08	Pulps	DD	0.4	33
	MR095	40.08	41.06	Pulps	DD	0.15	62
	MR095	41.06	42.06	Pulps	DD	0.4	44
1	MR095	42.21	43.74	Pulps	DD	0.6	44
\	MR095	43.74	45.42	Pulps	DD	0.4	34
	MR095	45.42	46.94	Pulps	DD	0.5	43
	MR095	46.94	48.16	Pulps	DD	0.7	44
	MR095	48.16	49.07	Pulps	DD	1	113
	MR095	49.07	49.83	Pulps	DD	0.7	42
	MR095	49.83	50.9	Pulps	DD	0.6	48
7	MR095	50.9	51.51	Pulps	DD	0.3	91
/	MR095	51.51	52.12	Pulps	DD	0.4	82
	MR095	52.12	52.88	Pulps	DD	0.6	73
	MR095	53.8	55.32	Pulps	DD	0.6	63
-	MR095	55.32	57	Pulps	DD	1.8	47
ı	MR095	57	58.52	Pulps	DD	1	83
_	MR095	58.52	60.05	Pulps	DD	0.15	48
	MR095	60.05	61.57	Pulps	DD	0.3	46
	MR095	61.57	62.64	Pulps	DD	0.15	18
	MR095	62.64	63.86	Pulps	DD	0.15	12
	MR095	64.89	65.53	Pulps	DD	0.15	37
	MR095	65.53	67.21	Pulps	DD	1.7	133
	MR095	67.21	68.73	Pulps	DD	0.6	276
	MR095	70.41	71.93	Pulps	DD	0.6	102
_	MR095	71.93	73.46	Pulps	DD	1.9	68
	MR095	73.46	74.98	Pulps	DD	4.6	66
	MR095	76.66	78.18	Pulps	DD	0.8	118
_	MR095	78.18	79.71	Pulps	DD	0.7	93
	MR095	79.71	81.38	Pulps	DD	0.4	37
	MR095	81.38	82.91	Pulps	DD	0.8	58
	MR095	82.91	84.43	Pulps	DD	0.9	59
	MR095	84.43	85.95	Pulps	DD	0.15	69
	MR095	85.95	87.48	Pulps	DD	0.15	18
	MR095	87.48	89.15	Pulps	DD	0.5	102

	From	То			Ag	Sb
Hole ID	(m)	(m)	Sample	Type	(ppm)	(ppm)
MR095	90.68	92.35	Pulps	DD	0.6	69
MR095	92.35	93.57	Pulps	DD	2.8	64
MR095	93.57	95.1	Pulps	DD	1	45
MR095	95.1	96.62	Pulps	DD	0.9	81
MR095	96.62	98.15	Pulps	DD	2.1	130
MR095	98.15	99.67	Pulps	DD	1.7	44
MR095	99.67	100.74	Pulps	DD	0.7	32
MR095	100.74	102.26	Pulps	DD	1	53
MR095	102.26	103.78	Pulps	DD	0.6	32
MR095	103.78	105.31	Pulps	DD	0.6	60
MR095	105.31	106.83	Pulps	DD	0.9	47
MR095	106.83	108.36	Pulps	DD	0.7	19
MR095	108.36	109.88	Pulps	DD	0.5	40
MR095	109.88	111.4	Pulps	DD	0.6	42
MR095	111.4	112.93	Pulps	DD	1	68
MR095	112.93	114.45	Pulps	DD	1	56
MR095	114.45	115.98	Pulps	DD	0.8	35
MR095	115.98	117.35	Pulps	DD	2.2	56
MR095	117.35	119.02	Pulps	DD	1.5	37
MR095	119.02	120.4	Pulps	DD	1.3	36
MR095	120.4	122.07	Pulps	DD	1.4	44
MR095	122.07	123.44	Pulps	DD	1.1	38
MR095	123.44	125.12	Pulps	DD	2	51
MR095	125.12	126.49	Pulps	DD	0.9	56
MR095	126.49	128.17	Pulps	DD	1.3	49
MR095	128.17	129.84	Pulps	DD	1.1	45
MR095	129.84	131.37	Pulps	DD DD	0.8 2	34
MR095 MR095	131.37 132.89	132.89 134.42	Pulps Pulps	DD	1.3	34 34
MR095	134.42	135.94	Pulps	DD	32.7	610
MR095	135.94	137.46	Pulps	DD	64.7	100
MR095	137.46	138.99	Pulps	DD	38.2	69
MR095	138.99	140.51	Pulps	DD	8.4	63
MR095	140.51	141.73	Pulps	DD	19.5	197
MR095	141.73	143.71	Pulps	DD	15.5	625
MR095	143.71	144.38	Pulps	DD	1084	2118
MR095	144.38	145.02	Pulps	DD	288	819
MR095	145.02	145.97	Pulps	DD	126	674
MR095	145.97	146	Pulps	DD	19.3	131
MR095	146	147.37	Pulps	DD	3.3	95
MR095	149.05	150.48	Pulps	DD	5.7	63
MR095	150.48	151.49	Pulps	DD	6.6	320
MR095	151.49	151.64	Pulps	DD	1.9	137
MR095	151.64	152.25	Pulps	DD	2.6	72
MR095	152.25	153.77	Pulps	DD	5.2	53
MR095	153.77	155.14	Pulps	DD	2.8	53
MR095	155.14	156.67	Pulps	DD	2.3	82
MR095	156.67	158.19	Pulps	DD	2.5	56
MR095	158.19	159.11	Pulps	DD	1.9	97
MR095	159.11	160.48	Pulps	DD	3	207
MR095	160.48	162.15	Pulps	DD	2.6	62
MR095	162.15	163.53	Pulps	DD	4.8	50
MR095	163.53	165.05	Pulps	DD	8.9	66
MR095	165.05	166.73	Pulps	DD	6.2	56

MR095		Hole ID	From (m)	To (m)	Sample	Туре	Ag (ppm)	Sb (ppm)
MR095		MR095	` '	` '	Pulns	חם		
MR095 169.93 171.3 Pulps DD 13.3 121								
MR095								
MR095								
MR095								
MR095 176.02 177.39 Pulps DD 31.9 158 MR095 177.39 178.61 Pulps DD 57.6 141 MR095 178.92 180.14 Pulps DD 28.8 122 MR095 181.66 183.18 Pulps DD 24.5 166 MR095 183.18 184.4 Pulps DD 24.4 108 MR095 186.23 187.3 Pulps DD 24.4 108 MR095 187.3 188.52 Pulps DD 21.6 108 MR095 186.23 187.7 Pulps DD 11.6 252 MR095 191.57 194.77 Pulps DD 11.6 252 MR095 194.77 195.38 Pulps DD 14.3 406 MR095 196.75 197.66 Pulps DD 14.2 426 MR095 196.75 197.66 Pulps <								
MR095 177.39 178.61 Pulps DD 57.6 14.1 MR095 178.92 180.14 Pulps DD 28.8 124 MR095 181.66 183.18 Pulps DD 24.5 165 MR095 181.66 183.18 Pulps DD 24.5 165 MR095 183.18 184.4 Pulps DD 24.4 108 MR095 186.23 187.3 Pulps DD 24.4 108 MR095 187.3 188.52 Pulps DD 21.4 108 MR095 189.73 191.57 Pulps DD 11.6 252 MR095 191.57 194.77 Pulps DD 14.3 406 MR095 196.75 197.66 Pulps DD 14.5 223 MR095 197.66 198.73 Pulps DD 14.5 223 MR095 201.02 202.54 203.91								159
MR095								141
MR095 180.14 181.66 Pulps DD 28.6 132 MR095 181.66 183.18 Pulps DD 24.5 168 MR095 183.18 184.4 Pulps DD 33.6 175 MR095 186.23 187.3 Pulps DD 24.4 108 MR095 187.3 188.52 Pulps DD 21.6 24.4 108 MR095 189.89 191.57 Pulps DD 23.8 240 MR095 191.57 194.77 Pulps DD 18.4 413 MR095 194.77 195.38 Pulps DD 14.3 406 MR095 196.75 197.66 Pulps DD 16.2 320 MR095 197.66 198.73 Pulps DD 16.2 320 MR095 204.1 201.02 202.54 Pulps DD 15.7 52 MR095 204.52 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>124</td></td<>								124
MR095 181.66 183.18 Pulps DD 24.5 166 MR095 183.18 184.4 Pulps DD 33.6 175 MR095 184.4 186.23 Pulps DD 24.4 108 MR095 187.3 188.52 Pulps DD 21.4 108 MR095 187.3 188.52 Pulps DD 21.4 108 MR095 189.89 191.57 Pulps DD 18.4 413 MR095 194.77 195.38 Pulps DD 14.3 406 MR095 196.75 197.66 Pulps DD 24.6 499 MR095 197.66 198.73 200.41 Pulps DD 15.2 223 MR095 197.69 191.92 DD 15.7 52 23 11.93 3 11.93 3 11.93 3 11.93 3 11.93 4 4 4 4 <td< td=""><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>132</td></td<>					•			132
MR095 183.18 184.4 Pulps DD 33.6 175 MR095 184.4 186.23 Pulps DD 44 417 MR095 186.23 187.3 Pulps DD 24.4 108 MR095 189.89 191.57 Pulps DD 21.6 240 MR095 191.57 195.38 Pulps DD 14.3 406 MR095 191.57 195.38 Pulps DD 14.3 406 MR095 196.75 197.66 Pulps DD 24.6 498 MR095 197.66 198.73 Pulps DD 4.5 223 MR095 197.66 198.73 Pulps DD 4.5 223 MR095 197.66 198.73 Pulps DD 4.5 223 MR095 200.41 201.02 Pulps DD 3.1 193 MR095 201.02 202.54 203.91 P								169
MR095 184.4 186.23 Pulps DD 44 417 MR095 186.23 187.3 Pulps DD 24.4 108 MR095 187.3 188.52 Pulps DD 21.4 108 MR095 187.3 188.52 Pulps DD 23.8 246 MR095 191.57 194.77 Pulps DD 18.4 413 MR095 194.77 195.38 Pulps DD 18.4 413 MR095 196.75 197.66 Pulps DD 16.2 320 MR095 197.66 198.73 Pulps DD 4.5 223 MR095 200.41 201.02 Pulps DD 3.1 193 MR095 201.02 202.54 Pulps DD 15.7 52 MR095 202.52 205.59 Pulps DD 15.7 52 MR095 204.52 205.59 Pulps DD<	6				i .			179
MR095 186.23 187.3 Pulps DD 24.4 108 MR095 187.3 188.52 Pulps DD 11.6 252 MR095 189.89 191.57 Pulps DD 23.8 240 MR095 191.57 194.77 Pulps DD 18.4 413 MR095 194.77 195.38 Pulps DD 14.3 406 MR095 196.75 197.66 Pulps DD 24.6 498 MR095 197.66 198.73 Pulps DD 4.5 223 MR095 198.73 200.41 Pulps DD 3.1 193 MR095 200.41 201.02 202.54 Pulps DD 9.9 266 MR095 201.02 202.54 Pulps DD 15.7 52 MR095 203.91 204.52 Pulps DD 17.1 53 MR095 205.59 206.81 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>417</td></td<>								417
MR095								
MR095 189.89 191.57 Pulps DD 23.8 240 MR095 191.57 194.77 Pulps DD 18.4 413 MR095 194.77 195.38 Pulps DD 14.3 408 MR095 196.75 197.66 Pulps DD 24.6 495 MR095 197.66 198.73 Pulps DD 16.2 320 MR095 198.73 200.41 Pulps DD 4.5 223 MR095 200.41 201.02 Pulps DD 3.1 193 MR095 201.02 202.54 Pulps DD 15.7 52 MR095 203.91 204.52 Pulps DD 17.1 53 MR095 204.52 205.59 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 36.3 90 MR095 207.72 209.25 Pulps <td< td=""><td>61</td><td></td><td></td><td></td><td>i .</td><td></td><td></td><td>252</td></td<>	61				i .			252
MR095 191.57 194.77 Pulps DD 18.4 413 MR095 194.77 195.38 Pulps DD 14.3 406 MR095 196.75 197.66 Pulps DD 24.6 495 MR095 197.66 198.73 Pulps DD 16.2 320 MR095 198.73 200.41 Pulps DD 4.5 223 MR095 204.41 201.02 Pulps DD 3.1 193 MR095 201.02 202.54 Pulps DD 9.9 265 MR095 202.54 203.91 Pulps DD 15.7 52 MR095 204.52 205.59 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 7.2 145 MR095 212.45 213.97 Pulps	U							
MR095 194.77 195.38 Pulps DD 14.3 406 MR095 196.75 197.66 Pulps DD 24.6 498 MR095 197.66 198.73 Pulps DD 16.2 320 MR095 198.73 200.41 Pulps DD 4.5 223 MR095 200.41 201.02 Pulps DD 3.1 193 MR095 201.02 202.54 Pulps DD 9.9 266 MR095 202.54 203.91 Pulps DD 15.7 52 MR095 203.91 204.52 Pulps DD 13.3 42 MR095 205.59 206.81 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 1.0 14.3 MR095 212.45 213.97 Pulps								
MR095 196.75 197.66 Pulps DD 24.6 498 MR095 197.66 198.73 Pulps DD 16.2 320 MR095 198.73 200.41 Pulps DD 4.5 223 MR095 200.41 201.02 Pulps DD 3.1 193 MR095 201.02 202.54 Pulps DD 9.9 265 MR095 202.54 203.91 Pulps DD 15.7 52 MR095 202.54 203.91 Pulps DD 13.3 42 MR095 204.52 205.59 Pulps DD 17.1 53 MR095 204.52 205.59 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 1.0 145 MR095 212.45 213.97 Pulps DD		- 11						
MR095 197.66 198.73 Pulps DD 16.2 320 MR095 198.73 200.41 Pulps DD 4.5 223 MR095 200.41 201.02 Pulps DD 3.1 193 MR095 201.02 202.54 Pulps DD 9.9 268 MR095 202.54 203.91 Pulps DD 15.7 52 MR095 203.91 204.52 Pulps DD 13.3 42 MR095 204.52 205.59 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 1.9 66 MR095 210.77 212.45 Pulps DD 3.1 60 MR095 212.45 213.97 Pulps DD 3.74 705 MR095 212.45 213.97 Pulps DD </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
MR095 198.73 200.41 Pulps DD 4.5 223 MR095 200.41 201.02 Pulps DD 3.1 193 MR095 201.02 202.54 Pulps DD 9.9 268 MR095 202.54 203.91 Pulps DD 15.7 52 MR095 203.91 204.52 Pulps DD 13.3 42 MR095 204.52 205.59 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 36.3 90 MR095 206.81 207.72 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 3.1 60 MR095 212.45 213.97 Pulps DD 3.1 60 MR095 212.45 213.97 Pulps DD 37.4 705 MR095 212.45 213.97 Pulps DD <td></td> <td></td> <td></td> <td></td> <td>i .</td> <td></td> <td></td> <td></td>					i .			
MR095 200.41 201.02 Pulps DD 3.1 193 MR095 201.02 202.54 Pulps DD 9.9 268 MR095 202.54 203.91 Pulps DD 15.7 52 MR095 203.91 204.52 Pulps DD 13.3 42 MR095 204.52 205.59 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 36.3 90 MR095 206.81 207.72 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 1.9 66 MR095 212.45 213.97 Pulps DD 3.1 60 MR095 213.97 215.65 Pulps DD 37.4 705 MR095 218.85 219.76 Pulps DD 30.9 226 MR095 222.35 222.66 Pulps DD </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
MR095 201.02 202.54 Pulps DD 9.9 266 MR095 202.54 203.91 Pulps DD 15.7 52 MR095 203.91 204.52 Pulps DD 13.3 42 MR095 204.52 205.59 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 36.3 90 MR095 206.81 207.72 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 1.9 66 MR095 210.77 212.45 Pulps DD 3.1 60 MR095 212.45 213.97 Pulps DD 3.1 60 MR095 213.97 215.65 Pulps DD 37.4 705 MR095 213.85 217.17 Pulps DD 30.9 226 MR095 2218.85 219.76 Pulps DD </td <td></td> <td></td> <td></td> <td></td> <td>i .</td> <td></td> <td></td> <td>193</td>					i .			193
MR095 202.54 203.91 Pulps DD 15.7 52 MR095 203.91 204.52 Pulps DD 13.3 42 MR095 204.52 205.59 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 36.3 90 MR095 206.81 207.72 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 1.9 66 MR095 210.77 212.45 Pulps DD 3.1 60 MR095 212.45 213.97 Pulps DD 2.8 45 MR095 213.97 215.65 Pulps DD 10.3 187 MR095 213.97 218.85 Pulps DD 37.4 705 MR095 218.85 219.76 Pulps DD 70.6 490 MR095 222.2 222.23 Pulps DD <td>(\cap)</td> <td>77</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(\cap)	77						
MR095 203.91 204.52 Pulps DD 13.3 42 MR095 204.52 205.59 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 36.3 90 MR095 206.81 207.72 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 1.9 66 MR095 210.77 212.45 Pulps DD 3.1 60 MR095 212.45 213.97 Pulps DD 2.8 45 MR095 213.97 215.65 Pulps DD 10.3 187 MR095 215.65 217.17 Pulps DD 30.9 226 MR095 218.85 219.76 Pulps DD 70.6 490 MR095 222.2 222.23 Pulps DD 179 102 MR095 222.35 222.66 Pulps DD <td>01</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	01							
MR095 204.52 205.59 Pulps DD 17.1 53 MR095 205.59 206.81 Pulps DD 36.3 90 MR095 206.81 207.72 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 1.9 66 MR095 210.77 212.45 Pulps DD 3.1 60 MR095 212.45 213.97 Pulps DD 2.8 45 MR095 213.97 215.65 Pulps DD 10.3 187 MR095 213.97 215.65 Pulps DD 37.4 705 MR095 215.65 217.17 Pulps DD 30.9 226 MR095 218.85 219.76 Pulps DD 170.6 490 MR095 222.2 222.35 Pulps DD 179 106 MR095 223.72 224.94 Pulps DD<								
MR095 205.59 206.81 Pulps DD 36.3 90 MR095 206.81 207.72 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 1.9 66 MR095 210.77 212.45 Pulps DD 3.1 60 MR095 213.97 215.65 Pulps DD 10.3 187 MR095 213.97 215.65 Pulps DD 10.3 187 MR095 215.65 217.17 Pulps DD 37.4 705 MR095 217.17 218.85 Pulps DD 30.9 226 MR095 218.85 219.76 Pulps DD 70.6 490 MR095 222.2 222.35 Pulps DD 179 106 MR095 222.35 222.66 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD	2							
MR095 206.81 207.72 Pulps DD 7.2 145 MR095 207.72 209.25 Pulps DD 1.9 66 MR095 210.77 212.45 Pulps DD 3.1 60 MR095 212.45 213.97 Pulps DD 2.8 45 MR095 213.97 215.65 Pulps DD 10.3 187 MR095 215.65 217.17 Pulps DD 37.4 705 MR095 215.65 217.17 Pulps DD 30.9 226 MR095 218.85 219.76 Pulps DD 70.6 490 MR095 2218.85 219.76 Pulps DD 179 105 MR095 222.22 222.35 Pulps DD 179 105 MR095 222.35 222.66 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD								
MR095 207.72 209.25 Pulps DD 1.9 66 MR095 210.77 212.45 Pulps DD 3.1 60 MR095 212.45 213.97 Pulps DD 2.8 45 MR095 213.97 215.65 Pulps DD 10.3 187 MR095 215.65 217.17 Pulps DD 37.4 705 MR095 215.65 217.17 Pulps DD 30.9 226 MR095 218.85 219.76 Pulps DD 70.6 490 MR095 2218.85 219.76 Pulps DD 70.6 490 MR095 222.2 222.35 Pulps DD 179 105 MR095 222.35 222.66 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD 15.5 110 MR095 224.94 227.99 Pulps D					i .			145
MR095 210.77 212.45 Pulps DD 3.1 60 MR095 212.45 213.97 Pulps DD 2.8 45 MR095 213.97 215.65 Pulps DD 10.3 187 MR095 215.65 217.17 Pulps DD 37.4 705 MR095 217.17 218.85 Pulps DD 30.9 226 MR095 218.85 219.76 Pulps DD 70.6 490 MR095 222.2 222.35 Pulps DD 70.6 490 MR095 222.2 222.35 Pulps DD 179 105 MR095 222.35 222.66 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD 15.5 110 MR095 223.72 224.94 Pulps DD 10.9 100 MR095 229.51 230.12 Pulps D		//						
MR095 212.45 213.97 Pulps DD 2.8 45 MR095 213.97 215.65 Pulps DD 10.3 187 MR095 215.65 217.17 Pulps DD 37.4 705 MR095 215.65 217.17 Pulps DD 30.9 226 MR095 218.85 219.76 Pulps DD 70.6 490 MR095 222.2 222.35 Pulps DD 179 109 MR095 222.35 222.66 Pulps DD 139 194 MR095 222.66 223.72 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD 32.2 54 MR095 223.72 224.94 Pulps DD 15.5 110 MR095 228.6 229.51 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD	01							
MR095 213.97 215.65 Pulps DD 10.3 187 MR095 215.65 217.17 Pulps DD 37.4 705 MR095 217.17 218.85 Pulps DD 30.9 226 MR095 218.85 219.76 Pulps DD 70.6 490 MR095 222.2 222.35 Pulps DD 179 109 MR095 222.35 222.66 Pulps DD 332.23 143 MR095 222.35 222.66 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD 32.2 54 MR095 224.94 227.99 Pulps DD 15.5 110 MR095 228.6 229.51 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps <t< td=""><td>(())</td><td></td><td></td><td></td><td>· · · · ·</td><td></td><td></td><td></td></t<>	(())				· · · · ·			
MR095 215.65 217.17 Pulps DD 37.4 705 MR095 217.17 218.85 Pulps DD 30.9 226 MR095 218.85 219.76 Pulps DD 70.6 490 MR095 222.2 222.35 Pulps DD 179 109 MR095 222.35 222.66 Pulps DD 332.23 143 MR095 222.66 223.72 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD 32.2 54 MR095 224.94 227.99 Pulps DD 15.5 110 MR095 228.6 229.51 Pulps DD 10.9 100 MR095 228.6 229.51 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>187</td></td<>								187
MR095 217.17 218.85 Pulps DD 30.9 226 MR095 218.85 219.76 Pulps DD 70.6 490 MR095 222.2 222.35 Pulps DD 179 109 MR095 222.35 222.66 Pulps DD 332.23 143 MR095 222.66 223.72 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD 32.2 54 MR095 224.94 227.99 Pulps DD 15.5 110 MR095 228.6 229.51 Pulps DD 10.9 100 MR095 229.51 230.12 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps <td< td=""><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td>705</td></td<>	2							705
MR095 218.85 219.76 Pulps DD 70.6 490 MR095 222.2 222.35 Pulps DD 179 108 MR095 222.35 222.66 Pulps DD 332.23 143 MR095 222.66 223.72 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD 32.2 54 MR095 224.94 227.99 Pulps DD 15.5 110 MR095 228.6 229.51 Pulps DD 10.9 100 MR095 229.51 230.12 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD								
MR095 222.2 222.35 Pulps DD 179 108 MR095 222.35 222.66 Pulps DD 332.23 143 MR095 222.66 223.72 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD 32.2 54 MR095 224.94 227.99 Pulps DD 15.5 110 MR095 228.6 229.51 Pulps DD 10.9 100 MR095 229.51 230.12 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps DD 560 437 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD </td <td>(()</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>490</td>	(()							490
MR095 222.35 222.66 Pulps DD 332.23 143 MR095 222.66 223.72 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD 32.2 54 MR095 224.94 227.99 Pulps DD 15.5 110 MR095 228.6 229.51 Pulps DD 10.9 100 MR095 229.51 230.12 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 231.04 232.71 Pulps DD 560 437 MR095 232.71 234.24 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD<	7							109
MR095 222.66 223.72 Pulps DD 139 194 MR095 223.72 224.94 Pulps DD 32.2 54 MR095 224.94 227.99 Pulps DD 15.5 110 MR095 228.6 229.51 Pulps DD 10.9 100 MR095 229.51 230.12 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps DD 560 437 MR095 234.24 235.92 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD			222.35	222.66		DD		143
MR095 223.72 224.94 Pulps DD 32.2 54 MR095 224.94 227.99 Pulps DD 15.5 110 MR095 228.6 229.51 Pulps DD 10.9 100 MR095 229.51 230.12 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps DD 560 437 MR095 234.24 235.92 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD	2							194
MR095 224.94 227.99 Pulps DD 15.5 110 MR095 228.6 229.51 Pulps DD 10.9 100 MR095 229.51 230.12 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps DD 560 437 MR095 234.24 235.92 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD								
MR095 228.6 229.51 Pulps DD 10.9 10.9 MR095 229.51 230.12 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps DD 560 437 MR095 234.24 235.92 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 0.9 15 MR095 238.96 240.18 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD	~							110
MR095 229.51 230.12 Pulps DD 15.1 77 MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps DD 560 437 MR095 234.24 235.92 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 3.4 24 MR095 238.96 240.18 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD 0.7 17	1					DD		100
MR095 231.04 232.71 Pulps DD 44.7 79 MR095 232.71 234.24 Pulps DD 560 437 MR095 234.24 235.92 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 3.4 24 MR095 238.96 240.18 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD 0.7 17								
MR095 232.71 234.24 Pulps DD 560 437 MR095 234.24 235.92 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 3.4 24 MR095 238.96 240.18 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD 0.7 17								
MR095 234.24 235.92 Pulps DD 61.4 64 MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 3.4 24 MR095 238.96 240.18 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD 0.7 17	(<i></i>						437
MR095 235.92 237.44 Pulps DD 30 45 MR095 237.44 238.96 Pulps DD 3.4 24 MR095 238.96 240.18 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD 0.7 17								
MR095 237.44 238.96 Pulps DD 3.4 24 MR095 238.96 240.18 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD 0.7 17								
MR095 238.96 240.18 Pulps DD 0.9 15 MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD 0.7 17								
MR095 241.86 243.54 Pulps DD 0.4 35 MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD 0.7 17					_ :			
MR095 243.54 245.06 Pulps DD 0.15 23 MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD 0.7 17					_ :			
MR095 245.06 246.58 Pulps DD 0.5 32 MR095 246.58 247.8 Pulps DD 0.7 17								
MR095 246.58 247.8 Pulps DD 0.7 17								
					_ :			
MR095 247.8 249.48 Pulps DD 0.8 44		MR095	247.8	249.48	_ :	DD		44
					_ :			13

	Гисия	т.			A	Ch
Hole ID	From (m)	To (m)	Sample	Type	Ag (ppm)	Sb (ppm)
MR095	250.55	252.07	Pulps	DD	0.6	16
MR095	252.07	253.59	Pulps	DD	1.2	26
MR095	253.59	255.12	Pulps	DD	4.1	87
MR095	255.12	256.64	Pulps	DD	94	436
MR095	256.64	258.17	Pulps	DD	41.6	117
MR095	258.17	259.69	Pulps	DD	50.9	79
MR095	259.69	261.06	Pulps	DD	31	44
MR095	261.06	262.74	Pulps	DD	6.2	47
MR095	262.74	264.41	Pulps	DD	0.9	23
MR095	264.41	265.94	Pulps	DD	1	66
MR095	265.94	267.46	Pulps	DD	1.2	49
MR095	267.46	268.99	Pulps	DD	2.9	86
MR095	268.99	270.51	Pulps	DD	3.2	66
MR095	270.51	272.03	Pulps	DD	4.8	173
MR095	272.03	273.1	Pulps	DD	5.5	162
MR095	273.1	274.62	Pulps	DD	7.4	56
MR095	276.3	277.83	Pulps	DD	85.3	89
MR095	277.83	279.5	Pulps	DD	35.7	74
MR095	279.5	281.18	Pulps	DD	16.6	52
MR095	281.18	282.7	Pulps	DD	7.1	49
MR095	282.7	284.38	Pulps	DD	2.3	48
MR095	284.38	285.9	Pulps	DD	2.3	45
MR095	285.9	287.58	Pulps	DD	7.7	41
MR095	287.58	289.1	Pulps	DD	9.1	103
MR095	289.1	289.41	Pulps	DD	6.6	113
MR095	289.41	291.24	Pulps	DD	2.8	48
MR095	291.24	293.52	Pulps	DD	1.1	36
MR095	293.52	294.59	Pulps	DD	1.6	31
MR095	294.59	296.42	Pulps	DD	1.3	51
MR095	296.42	297.64	Pulps	DD	0.5	18
MR095	297.64	300.53	Pulps	DD	0.5	39
MR095	300.53	301.45	Pulps	DD	2.4	51
MR095	301.45	302.51	Pulps	DD	10.2	44
MR095	302.51	304.19	Pulps	DD	0.15	54
MR095	304.19	305.71	Pulps	DD	0.4	23
MR095	305.71	307.24	Pulps	DD	0.15	23
MR095	307.24	308.76	Pulps	DD	0.3	3
MR095	308.76	310.44	Pulps	DD	0.7	12
MR095	310.44	312.12	Pulps	DD	2.4	32
MR095	312.12	313.64	Pulps	DD	7.3	56
MR095	313.64	315.16	Pulps	DD	2.9	36
MR095	315.16	316.23	Pulps	DD	0.15	15
MR095	316.23	317.75	Pulps	DD	0.15	13
MR095	317.75	319.28	Pulps	DD	0.15	14
MR095	319.28	320.34	Pulps	DD	0.3	44
MR095	320.34	321.87	Pulps	DD	0.15	22
MR095	321.87	323.39	Pulps	DD	0.15	13
MR095	323.39	325.07	Pulps	DD	0.15	11
MR095	325.07	326.59	Pulps	DD	0.15	19
MR095	326.59	327.36	Pulps	DD	0.15	19
MR095	327.36	328.88	Pulps	DD	0.15	12
MR095	328.88	330.56	Pulps	DD	3.1	16
MR095	330.56	330.71	Pulps	DD	0.6	21
MR097	153.92	155.45	Pulps	RC	0.6	67

	Hole ID	From (m)	To (m)	Sample	Type	Ag (ppm)	Sb (ppm)
	MR097	155.45	156.97	Pulps	RC	0.8	106
	MR097	156.97	158.5	Pulps	RC	0.6	64
	MR097	158.5	160.02	Pulps	RC	0.6	65
	MR097	161.54	163.07	Pulps	RC	0.4	197
	MR097	163.07	164.59	Pulps	RC	0.7	172
	MR097	164.59	166.12	Pulps	RC	0.5	83
	MR097	166.12	167.64	Pulps	RC	0.7	169
	MR097	169.16	170.69	Pulps	RC	0.8	107
	MR097	170.69	172.21	Pulps	RC	0.7	140
	MR097	172.21	173.74	Pulps	RC	0.6	98
	MR097	173.74	175.26	Pulps	RC	0.7	87
	MR097	176.78	178.31	Pulps	RC	0.9	65
	MR097	178.31	179.83	Pulps	RC	1.2	61
	MR097	179.83	181.36	Pulps	RC	1.2	45
	MR097	181.36	182.88	Pulps	RC	0.9	53
	MR097	184.4	185.93	Pulps	RC	1	58
	MR097	185.93	187.45	Pulps	RC	0.9	59
	MR097	187.45	188.98	Pulps	RC	1	73
	MR097	188.98	190.5	Pulps	RC	0.8	90
	MR097	192.02	193.55	Pulps	RC	1.3	65
	MR097	193.55	195.07	Pulps	RC	1.2	142
	MR097	195.07	196.6	Pulps	RC	6.4	285
	MR097	196.6	198.12	Pulps	RC	3.8	201
	MR097	199.64	201.17	Pulps	RC	5.8	539
	MR097	201.17	202.69	Pulps	RC	5.3	789
	MR097	202.69	204.22	Pulps	RC	5.3	299
	MR097	204.22	205.74	Pulps	RC	5.4	266
	MR097	207.26	208.79	Pulps	RC	5.1	417
	MR097	208.79	210.31	Pulps	RC	4	324
	MR097	210.31	211.84	Pulps	RC	5.3	298
	MR097	211.84	213.36	Pulps	RC	6	346
	MR097	214.88	216.41	Pulps	RC	5.8	220
	MR097	216.41	217.93	Pulps	RC	5.6	245
	MR097	217.93	219.46	Pulps	RC	6.5	383
	MR097	219.46	220.98	Pulps	RC	6.4	422
	MR097	222.5	224.03	Pulps	RC	9.4	448
	MR097	224.03	225.55	Pulps	RC	11.3	539
20	MR097	225.55	227.08	Pulps	RC	11.8	805
	MR097	227.08	228.6	Pulps	RC	9.3	1418
	MR097	228.6	230.12	Pulps	RC	8.5	1389
50	MR099	190.5	192.02	Pulps	DD	0.15	3
	MR099	192.02	193.55	Pulps	DD	0.15	9
	MR099	193.55	195.07	Pulps	DD	0.15	9
	MR099	195.07	196.6	Pulps	DD	0.15	41
	MR099	196.6	198.12	Pulps	DD	0.9	100
	MR099	198.12	199.64	Pulps	DD	1.3	115
	MR099	199.64	201.17	Pulps	DD	0.4	15
	MR099	201.78	202.87	Pulps	DD	0.5	40
	MR099	202.87	204.37	Pulps	DD	0.8	49
	MR099	204.37	205.5	Pulps	DD	1.1	64
	MR099	205.5	206.65	Pulps	DD	1	90
	MR099	206.65	208.24	Pulps	DD	0.9	234
	MR099	208.24	209.85	Pulps	DD	0.7	146
	MR099	209.85	211.32	Pulps	DD	1.4	83

Hole ID	From (m)	To (m)	Sample	Type	Ag (ppm)	Sb (ppm)
MR099	211.32	212.9	Pulps	DD	1.6	454
MR099	212.9	214.58	Pulps	DD	1.3	428
MR099	214.58	216.1	Pulps	DD	1.6	473
MR099	216.1	217.35	Pulps	DD	3.9	182
MR099	217.35	218.69	Pulps	DD	15.3	1953
MR099	218.69	220.07	Pulps	DD	5.3	540
MR099	220.07	221.74	Pulps	DD	5.5	165
MR099	221.74	223.11	Pulps	DD	6.6	238
MR099	223.11	224.79	Pulps	DD	7.8	495
MR099	224.79	226.37	Pulps	DD	11.9	432
MR099	226.37	227.99	Pulps	DD	11.9	584
MR099	227.99	229.42	Pulps	DD	18	482
MR099	229.42	230.89	Pulps	DD	15.6	678
MR099	230.89	232.41	Pulps	DD	19.4	833
MR099	232.41	233.93	Pulps	DD	37.6	757
MR099	233.93	235.61	Pulps	DD	37.8	842
MR099	235.61	237.13	Pulps	DD	13.9	376
MR099	237.13	238.2	Pulps	DD	16.2	365
MR099	238.2	239.73	Pulps	DD	13.5	276
MR099	239.73	241.25	Pulps	DD	8.8	292
MR099	241.25	242.62	Pulps	DD	6	270
MR099	242.62	243.99	Pulps	DD	98	567
MR099	243.99	245.27	Pulps	DD	11.8	457
MR099	245.27	247.04	Pulps	DD	18.2	274
MR099	247.04	248.47	Pulps	DD	15.7	215
MR099	248.47	249.94	Pulps	DD	18.4	251
MR099	249.94	251.28	Pulps	DD	4.4	322
MR099	251.28	252.98	Pulps	DD	18.9	216
MR099	252.98	253.14	Pulps	DD	5.7	111
MR099	253.14	254.2	Pulps	DD	0.15	1
MR099	254.2	255.73	Pulps	DD	9.5	119
MR099	255.73	257.25	Pulps	DD	12.8	127
MR099	257.25	258.93	Pulps	DD	8	162
MR099	258.93	260.6	Pulps	DD	4.5	146
MR099	260.6	263.19	Pulps	DD	0.15	1
MR099	263.19	264.72	Pulps	DD	5.1	119
MR099	264.72	266.09	Pulps	DD	8	491
MR099	266.09	267.61	Pulps	DD	12.1	368
MR099	267.61	268.83	Pulps	DD	15.9	1665
MR099	268.83	270.66	Pulps	DD	6.3	436
MR099	270.66	271.58	Pulps	DD	7.6	54
MR099	272.8	274.47	Pulps	DD	5.3	52
MR099	274.47	275.54	Pulps	DD	5.2	49
MR099	275.54	276.45	Pulps	DD	3.2	42
MR099	276.45	277.67	Pulps	DD	2.7	95
MR099	277.67	278.89	Pulps	DD	1.9	72
MR099	278.89	280.26	Pulps	DD	1.4	63
MR099	280.26	281.33	Pulps	DD	1	38
MR099	281.33	282.55	Pulps	DD	2.5	30
MR099	282.55	284.07	Pulps	DD	1	31
MR099	284.07	285.45	Pulps	DD	1.6	59
MR099	285.45	287.27	Pulps	DD	2.7	33
MR099	287.27	288.8	Pulps	DD	3	36
MR099	288.8	289.71	Pulps	DD	3.7	45

Hole ID	Fron		Sam	ple Ty	ре	Ag (ppm)	St (ppi
MR099	(m) 289.7	(m) '1 291.2	24 Pulp	ne F	D	(ppiii) 4.2	(pp i
MR099					D D	5.4	36
MR099					D D	4.9	45
							37
MR099					DD D	4.6	
MR099					D D	3.8	58
MR099					D D	4.1	78
MR099					D D	9.3	88
MR099					DD D	3.4	80
MR099					D D	10.5	68
MR099)D	653	91
MR099					<u>D</u>	33.1	38
MR099					<u>D</u>	42.2	50
MR099)D	4.6	3
MR099					D D	4.8	76
MR099)D	3	52
MR099					D D	2.9	38
MR099					D	43.8	48
MR099)D	46.1	82
MR099					D	9.2	10
MR099)D	1.5	76
MR099					D	3.1	15
MR099	325.2	28 326.5	69 Pulp	os D	D D	1.2	93
MR099	329.1	•			D	2	46
Append	·	•					
Append	lix D –	New Dr	ill Res	ults Au	DD .	Ag Ag	46 Sb
Append	From (m)	New Dr	Type	ults Au (ppm)) D	Ag (ppm)	Sb (ppm
Append	From (m) 128.63	New Dr To (m) 130.15	Type Core	Au (ppm)) (Ag (ppm) 0.15	Sb (ppm
Append Hole ID MR25-247 MR25-247	From (m) 128.63 130.15	To (m) 130.15 131.67	Type Core Core	Au (ppm) 0.005 0.003) I	Ag (ppm) 0.15 0.15	\$b (ppm 1 2
Hole ID MR25-247 MR25-247 MR25-247	From (m) 128.63 130.15 131.67	To (m) 130.15 131.67 133.2	Type Core Core Core	Au (ppm) 0.005 0.003) (Ag (ppm) 0.15 0.15 0.15	\$b (ppm 1 2 1
Hole ID MR25-247 MR25-247 MR25-247 MR25-247	From (m) 128.63 130.15 131.67 133.2	To (m) 130.15 131.67 133.2 134.72	Type Core Core Core Core	Au (ppm) 0.005 0.003 0.003 0.003) (Ag (ppm) 0.15 0.15 0.15 0.15	\$b (ppm 1 2 1 1 1
Hole ID MR25-247 MR25-247 MR25-247 MR25-247 MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72	To (m) 130.15 131.67 133.2 134.72 135.12	Type Core Core Core Core Core	Au (ppm) 0.005 0.003 0.003 0.004) (Ag (ppm) 0.15 0.15 0.15 0.15 0.15	Sb (ppm 1 2 1 1 1 1
Hole ID MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12	To (m) 130.15 131.67 133.2 134.72 135.12 136.25	Type Core Core Core Core Core Core	Au (ppm) 0.005 0.003 0.003 0.004 0.005) (Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15	\$b (ppm 1 2 1 1 1 1 1
Hole ID MR25-247 MR25-247 MR25-247 MR25-247 MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25	To (m) 130.15 131.67 133.2 134.72 135.12	Type Core Core Core Core Core	Au (ppm) 0.005 0.003 0.003 0.004) (Ag (ppm) 0.15 0.15 0.15 0.15 0.15	Sb (ppm 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hole ID MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12	To (m) 130.15 131.67 133.2 134.72 135.12 136.25	Type Core Core Core Core Core Core	Au (ppm) 0.005 0.003 0.003 0.004 0.005) (Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15	\$b (ppm 1 2 1 1 1 1 1
Hole ID MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77	Type Core Core Core Core Core Core Core Cor	Ults Au (ppm) 0.005 0.003 0.003 0.004 0.005 0.003) (Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	Sb (ppm 1 2 1 1 1 1 1 1 1 1
Hole ID MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25 137.77	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74	Type Core Core Core Core Core Core Core Cor	Au (ppm) 0.005 0.003 0.003 0.004 0.005 0.005 0.003) (Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	Sb (ppm 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hole ID MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247 MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6	Type Core Core Core Core Core Core Core Cor	0.003 0.003 0.003 0.004 0.005 0.004 0.004 0.004) (Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	Sb (ppm 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hole ID MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82	Type Core Core Core Core Core Core Core Cor	Au (ppm) 0.005 0.003 0.003 0.004 0.005 0.003 0.007 0.004 0.004) (Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	\$b (ppm 1 2 1 1 1 1 1 1 1 7 5
Hole ID MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04	Type Core Core Core Core Core Core Core Cor	0.003 0.003 0.003 0.004 0.005 0.004 0.004 0.004) (Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	Sb (ppm 1 2 1 1 1 1 1 1 1 1 7 5 10
Hole ID MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34	Type Core Core Core Core Core Core Core Cor	0.003 0.003 0.003 0.004 0.005 0.004 0.004 0.0015 0.014) (Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	Sb (ppm 1 2 1 1 1 1 1 1 1 7 5 10 68
Hole ID MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34 143.26	Type Core Core Core Core Core Core Core Cor	0.003 0.003 0.003 0.003 0.004 0.005 0.004 0.004 0.004 0.004 0.004) () () () () () () () () () () () () ()	Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	\$b (ppm 1 2 1 1 1 1 1 1 1 7 5 10 68 16
Hole ID MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34 143.26	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34 143.26 144.48	Type Core Core Core Core Core Core Core Cor	Ults Au (ppm) 0.005 0.003 0.004 0.005 0.004 0.004 0.001 0.004 0.001 0.004 0.003 0.001) () () () () () () () () () () () () ()	Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	Sb (ppm 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hole ID MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34 143.26 144.48	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34 143.26 144.48 145.39	Type Core Core Core Core Core Core Core Cor	0.003 0.003 0.003 0.003 0.004 0.005 0.004 0.004 0.0015 0.003 0.003 0.003) () () () () () () () () () () () () ()	Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	Sb (ppm 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hole ID MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34 143.26 144.48 145.39	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34 143.26 144.48 145.39 146.18	Type Core Core Core Core Core Core Core Cor	0.003 0.003 0.003 0.003 0.004 0.005 0.004 0.004 0.001 0.001 0.003 0.003 0.003) () () () () () () () () () () () () ()	Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	\$b (ppm 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hole ID MR25-247	From (m) 128.63 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34 143.26 144.48 145.39 146.18	To (m) 130.15 131.67 133.2 134.72 135.12 136.25 137.77 138.74 139.6 140.82 142.04 142.34 143.26 144.48 145.39 146.18 146.91	Type Core Core Core Core Core Core Core Cor	0.003 0.003 0.003 0.004 0.005 0.004 0.001 0.001 0.003 0.003) () () () () () () () () () () () () ()	Ag (ppm) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	\$b (ppm 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

		_	1		_	
Hole ID	From (m)	To (m)	Sample	Type	Ag (ppm)	Sb (ppm)
MR099	330.4	331.47	Pulps	DD	1.2	55
MR099	331.47	331.77	Pulps	DD	1.3	30
MR099	331.77	333.3	Pulps	DD	1.5	64
MR099	334.82	336.35	Pulps	DD	2	89
MR099	336.35	337.87	Pulps	DD	5	148
MR099	339.46	341.07	Pulps	DD	0.7	101
MR118	217.63	219.46	Pulps	DD	0.3	26
MR118	219.46	220.68	Pulps	DD	0.5	26
MR118	220.68	222.2	Pulps	DD	1.6	29
MR118	222.2	223.72	Pulps	DD	1.2	26
MR118	223.72	225.25	Pulps	DD	1.4	39
MR118	225.25	226.77	Pulps	DD	1.1	32
MR118	226.77	228.3	Pulps	DD	0.7	25
MR118	228.3	229.82	Pulps	DD	0.7	29
MR118	229.82	231.34	Pulps	DD	0.7	22
MR118	231.34	232.87	Pulps	DD	0.7	37
MR118	232.87	234.39	Pulps	DD	0.8	29
MR118	234.39	235.92	Pulps	DD	8.0	23
MR118	235.92	237.44	Pulps	DD	0.8	36
MR118	237.44	238.96	Pulps	DD	0.7	36
MR118	238.96	241.1	Pulps	DD	0.7	55
MR118	241.1	242.62	Pulps	DD	0.6	42
MR118	242.62	244.14	Pulps	DD	8.0	48

	From			Au	Ag	Sb
Hole ID	(m)	To (m)	Type	(ppm)	(ppm)	(ppm)
MR25-247	128.63	130.15	Core	0.005	0.15	1
MR25-247	130.15	131.67	Core	0.003	0.15	2
MR25-247	131.67	133.2	Core	0.003	0.15	1
MR25-247	133.2	134.72	Core	0.003	0.15	1
MR25-247	134.72	135.12	Core	0.004	0.15	1
MR25-247	135.12	136.25	Core	0.005	0.15	1
MR25-247	136.25	137.77	Core	0.003	0.15	1
MR25-247	137.77	138.74	Core	0.007	0.15	1
MR25-247	138.74	139.6	Core	0.004	0.15	17
MR25-247	139.6	140.82	Core	0.004	0.15	5
MR25-247	140.82	142.04	Core	0.0015	0.15	10
MR25-247	142.04	142.34	Core	0.014	1	68
MR25-247	142.34	143.26	Core	0.003	0.15	16
MR25-247	143.26	144.48	Core	0.003	0.4	17
MR25-247	144.48	145.39	Core	0.005	8.0	47
MR25-247	145.39	146.18	Core	0.011	1.4	68
MR25-247	146.18	146.91	NS	0	0	0
MR25-247	146.91	148.07	Core	0.02	2.3	63
MR25-247	148.07	148.44	NS	0	0	0
MR25-247	148.44	149.96	Core	0.022	1.3	57
MR25-247	149.96	151.33	Core	0.019	0.6	46
MR25-247	151.33	151.49	NS	0	0	0
MR25-247	151.49	153.01	Core	0.015	0.7	50
MR25-247	153.01	154.53	Core	0.01	0.4	40

	From			Au	Ag	Sb
Hole ID	(m)	To (m)	Type	(ppm)	(ppm)	(ppm)
MR25-247	154.53	156.06	Core	0.008	0.7	49
MR25-247	156.06	156.36	Core	0.005	2.1	74
MR25-247	156.36	156.79	Core	0.01	0.15	211
MR25-247	156.79	157.58	Core	0.008	0.5	31
MR25-247	157.58	158.28	Core	0.01	0.9	62
MR25-247	158.28	159.11	Core	0.017	1	691
MR25-247	159.11	160.32	Core	0.009	8.0	51
MR25-247	160.32	161.85	Core	0.003	1	23
MR25-247	161.85	162.76	Core	0.009	1.9	11
MR25-247	162.76	163.37	Core	0.015	1.1	40
MR25-247	163.37	163.8	Core	0.173	0.5	230
MR25-247	163.8	164.9	Core	0.092	2.2	65
MR25-247	164.9	165.2	Core	0.08	4.1	152
MR25-247	165.2	165.66	NS	0	0	0
MR25-247	165.66	167.03	Core	0.063	4.5	662
MR25-247	167.03	167.34	Core	0.065	2.7	228
MR25-247	167.34	168.71	Core	0.19	2.7	114
MR25-247	168.71	169.01	Core	0.05	1.6	190
MR25-247	169.01	170.38	Core	0.218	2.5	135
MR25-247	170.38	171.45	Core	0.378	3.1	412
MR25-247	171.45	172.52	Core	0.668	8.3	115
MR25-247	172.52	172.67	NS	0	0	0
MR25-247	172.67	173.34	Core	0.084	8.9	512
MR25-247	173.34	173.58	NS	0	0	0

	From			Au	Ag	Sb
Hole ID	(m)	To (m)	Type	(ppm)	(ppm)	(ppm)
MR25-247	173.58	174.35	Core	0.45	9.7	281
MR25-247	174.35	175.87	Core	0.308	9.8	179
MR25-247	175.87	176.78	Core	0.281	5.4	449
MR25-247	176.78	177.45	Core	0.176	7.2	852
MR25-247	177.45	178.31	Core	0.172	8	773
MR25-247	178.31	178.77	NS	0	0	0
MR25-247	178.77	179.22	Core	0.238	9.6	1539
MR25-247	179.22	180.14	Core	0.282	8.5	341
MR25-247	180.14	181.05	Core	0.116	6	822
MR25-247	181.05	182.42	Core	0.155	5.8	810
MR25-247	182.42	182.88	Core	0.066	7.1	955
MR25-247	182.88	183.64	Core	0.173	10.7	1306
MR25-247	183.64	183.76	NS	0	0	0
MR25-247	183.76	184.56	Core	0.218	40.1	752
MR25-247	184.56	185.62	Core	0.159	8.9	849
MR25-247	185.62	185.78	NS	0	0	0
MR25-247	185.78	186.63	Core	0.232	5.2	1271
MR25-247	186.63	187.03	Core	0.193	6.8	905
MR25-247	187.03	188.06	Core	0.261	38.1	7749
MR25-247	188.06	188.98	Core	0.291	54.7	1541
MR25-247	188.98	189.28	Core	0.229	20.5	2740
MR25-247	189.28	190.5	Core	0.556	45.7	820
MR25-247	190.5	190.62	NS	0	0	0
MR25-247	190.62	191.02	Core	0.447	18.7	699
MR25-247	191.02	191.17	NS	0	0	0
MR25-247	191.17	191.6	Core	0.716	38.3	841
MR25-247	191.6	191.99	Core	0.274	51.5	907
MR25-247	191.99	192.12	NS	0	0	0
MR25-247	192.12	192.66	Core	0.293	20.4	1368
MR25-247	192.66	193.03	NS	0	0	0
MR25-247	193.03	193.27	Core	0.322	35	659
MR25-247	193.27	193.4	NS	0	0	0
MR25-247	193.4	193.64	Core	0.486	98.6	1705
MR25-247	193.64	194.01	NS	0	0	0
MR25-247	194.01	194.77	Core	0.531	26.5	2136
MR25-247	194.77	195.65	Core	0.519	190	1476
MR25-247	195.65	195.99	Core	0.785	194	1227
MR25-247	195.99	196.6	Core	2.64	1552	2120
MR25-247	196.6	196.99	Core	1.22	303	2484
MR25-247	196.99	197.6	Core	1.81	85.4	2222
MR25-247	197.6	197.69	NS	0	0	0
MR25-247	197.69	198.61	Core	2.81	207	1546
MR25-247	198.61	198.73	NS	0	0	0
MR25-247	198.73	199.03	Core	1.42	405	2067
MR25-247	199.03	199.34	NS	0	0	0
MR25-247	199.34	199.83	Core	1.17	155	2957
MR25-247	199.83	200.01	NS	0	0	0
MR25-247	200.01	200.31	Core	0.349	113	13073
MR25-247	200.31	200.68	NS	0	0	0
MR25-247	200.68	201.23	Core	1.13	157	683
MR25-247	201.23	201.78	NS	0	0	0
MR25-247	201.78	202.08	Core	0.605	24.6	274
MR25-247	202.08	202.27	NS	0	0	0
MR25-247	202.27	203.03	Core	0.44	45.5	614

				1		1
Hole ID	From (m)	To (m)	Type	Au (ppm)	Ag (ppm)	Sb (ppm)
MR25-247	203.03	203.15	NS	0	0	0
MR25-247	203.15	203.61	Core	0.284	31	218
MR25-247	203.61	204	NS	0.204	0	0
MR25-247	204	204.49	Core	0.562	5.7	748
MR25-247	204.49	204.83	Core	0.34	70	451
MR25-247	204.49	204.83	NS	0.34	0	0
MR25-247	204.03	204.98	Core	0.461	7	246
MR25-247	205.13		NS	0.401	0	0
		205.4		0.233	21.4	317
MR25-247	205.4 205.62	205.62	Core NS	0.233	0	
MR25-247		206.65				0
MR25-247	206.65	206.81	Core	0.638	21.2	375
MR25-247	206.81	206.87	NS	0	0	0
MR25-247	206.87	207.02	Core	1.12	74.1	1388
MR25-247	207.02	207.17	Core	3	48.4	1860
MR25-247	207.17	207.32	Core	0.698	63.7	853
MR25-247	207.32	207.54	NS	0	0	0
MR25-247	207.54	207.78	Core	2.11	1253	993
MR25-247	207.78	207.87	NS	0	0	0
MR25-247	207.87	208.09	Core	2.44	161	2343
MR25-247	208.09	208.64	NS	0	0	0
MR25-247	208.64	208.85	Core	1.31	34.6	167
MR25-247	208.85	210.19	NS	0	0	0
MR25-247	210.19	210.37	Core	0.859	10.5	542
MR25-247	212.29	213.06	Core	0.983	16.4	283
MR25-247	213.66	214.09	Core	0.4	7.7	1115
MR25-247	215.34	215.43	NS	0	0	0
MR25-247	215.43	215.62	Core	0.302	43.4	332
MR25-247	218.75	219.21	NS	0	0	0
MR25-247	219.21	220.13	Core	0.123	9.7	412
MR25-247	225.25	225.4	Core	0.512	16.4	309
MR25-247	225.4	225.61	NS	0	0	0
MR25-247	225.61	225.8	Core	0.136	19.4	541
MR25-247	225.8	225.92	NS	0	0	0
MR25-247	226.8	227.02	Core	0.032	15.5	348
MR25-247	227.02	227.32	Core	0.35	51	620
MR25-247	227.99	228.54	Core	0.114	13.1	805
MR25-247	228.54	229.09	Core	0.168	138	1538
MR25-247	229.09	229.3	Core	0.119	45.9	1957
MR25-247	229.3	229.51	NS	0	0	0
MR25-247	229.51	230	Core	0.149	16.8	326
MR25-247	230	230.37	Core	2.09	38.1	1780
MR25-247	230.37	230.46	NS	0	0	0
MR25-247	230.46	230.98	Core	0.254	28.8	635
MR25-247	231.07	231.68	Core	0.252	18.2	271
MR25-247	231.68	232.14	NS	0	0	0
MR25-247	232.14	232.71	Core	0.313	15.5	1148
MR25-247	232.71	233.39	Core	0.168	9.9	3409
MR25-247	233.39	233.57	NS	0	0	0
MR25-247	233.57	233.81	Core	0.204	12.2	229
MR25-247	233.81	233.96	NS	0	0	0
MR25-247	233.96	234.12	Core	0.213	12.9	344
MR25-247	234.12	234.3	NS	0	0	0
MR25-247	234.3	234.45	Core	0.361	25.9	466
MR25-247	234.45	234.76	NS	0	0	0

	From			Au	Ag	Sb
Hole ID	(m)	To (m)	Type	(ppm)	(ppm)	(ppm)
MR25-247	234.76	235.12	Core	0.467	39.7	685
MR25-247	235.12	235.85	NS	0	0	0
MR25-247	235.85	237.2	Core	0.134	7	615
MR25-247	237.2	237.32	Core	0.132	39.4	663
MR25-247	237.32	237.74	NS	0	0	0
MR25-247	237.74	237.96	Core	0.202	83.5	212
MR25-247	237.96	238.05	NS	0	0	0
MR25-247	238.05	238.2	Core	0.24	64.8	134
MR25-247	238.2	238.35	NS	0	0	0
MR25-247	238.35	238.57	Core	0.136	8.5	589
MR25-247	238.57	238.96	NS	0	0	0
MR25-247	238.96	239.36	Core	0.217	19.1	1300
MR25-247	239.36	239.54	NS	0	0.15	3
MR25-247	239.54	239.73	Core	0.242	19.7	1940
MR25-247	239.73	239.82	NS	0	0	0
MR25-247	239.82	240.4	Core	0.156	10.3	875
MR25-247	240.4	241.13	Core	0	0	0
MR25-247	241.13	241.46	Core	0.392	12.5	965
MR25-247	241.46	241.71	NS	0	0	0
MR25-247	241.71	242.29	Core	0.095	9.8	834
MR25-247	242.47	242.83	Core	0.091	12.4	1646
MR25-247	242.83	243.08	NS	0	0	0
MR25-247	243.08	243.63	Core	0.163	14	329
MR25-247	243.63	244.14	NS	0	0	0
MR25-247	244.14	245.36	Core	0.094	9.2	595
MR25-247	245.36	245.61	NS	0	0	0
MR25-247	245.61	246.52	Core	0.079	7	552
MR25-247	246.52	246.83	NS	0	0	0
MR25-247	246.83	247.5	Core	0.082	4.8	823
MR25-247	247.5	247.83	Core	0.05	8.7	662
MR25-247	248.63	249.08	Core	0.114	11.8	414
MR25-247	249.08	249.39	NS	0	0	0
MR25-247	249.39	250.24	Core	0.439	10	1109
MR25-247	250.24	250.39	NS	0	0	0
MR25-247	250.39	250.73	Core	0.408	93.4	427
MR25-247	250.73	250.94	NS	0	0	0
MR25-247	250.94	251.8	Core	0.199	4.6	230
MR25-247	252.95	253.44	Core	0.193	5.9	152
MR25-247	253.44	253.9	NS	0	0	0
MR25-247	253.9	254.05	Core	0.639	42.2	199
MR25-247	255.06	255.27	Core	0.532	10.5	1129
MR25-247	255.27	255.79	NS	0	0	0
MR25-247	255.79	256.79	Core	0.651	12.6	378
MR25-247	257.07	257.22	Core	0.343	12.4	277
MR25-247	257.22	257.62	NS	0	0	0
MR25-247	257.62	258.14	Core	0.227	11.8	326
MR25-247	258.14	258.29	NS	0	0	0
MR25-247	258.29	258.99	Core	0.568	9.7	338
MR25-247	258.99	259.38	NS	0	0	0
MR25-247	259.38	259.81	Core	0.547	12.5	200
MR25-247	259.81	260.09	NS	0	0	0
MR25-247	260.09	260.42	Core	0.412	7.6	186
MR25-247	260.42	261.64	Core	0.461	8.1	222
MR25-247	261.64	263.07	Core	0.233	8	610

	Гисия			A	A	C h
Hole ID	From (m)	To (m)	Type	Au (ppm)	Ag (ppm)	Sb (ppm)
MR25-247	263.07	264.2	Core	0.176	13.2	53
MR25-247	264.2	264.51	Core	1.51	44.5	781
MR25-247	264.51	264.84	NS	0	0	0
MR25-247	264.84	265.82	Core	1.44	43.6	602
MR25-247	265.82	267	Core	0.757	30.6	409
MR25-247	267	267.49	Core	0.896	30.5	184
MR25-247	267.49	268.32	Core	0.447	9.9	103
MR25-247	268.32	269.23	Core	0.306	13.6	524
MR25-247	269.23	270.75	Core	0.387	13.1	561
MR25-247	270.75	271.27	Core	0.499	20.6	502
MR25-247	271.27	271.88	NS	0	0	0
MR25-247	271.88	272.37	Core	0.232	17.9	524
MR25-247	272.37	272.92	NS	0	0	0
MR25-247	272.92	273.07	Core	0.333	26.4	456
MR25-247	273.07	274.5	NS	0	0	0
MR25-247	274.5	274.66	Core	0.138	24.4	135
MR25-247	274.66	275.36	NS	0	0	0
MR25-247	275.36	275.75	Core	0.565	25.4	1086
MR25-247	275.75	277.92	NS	0	0	0
MR25-247	277.92	278.07	Core	0.264	33.6	395
MR25-247	278.07	279.29	NS	0.204	0	0
MR25-247	279.29	279.9	Core	0.34	12.1	969
MR25-247	279.9	280.11	NS	0	0	0
MR25-247	280.11	280.57	Core	0.183	28.1	782
MR25-247	280.57	282.49	NS	0.103	0	0
MR25-247	282.49	283.01	Core	0.319	10.7	106
MR25-247	283.01	283.56	Core	0.175	11.2	55
MR25-247	283.56	283.65	NS	0.173	0	0
MR25-247	283.65	284.2	Core	0.213	6.8	66
MR25-247	284.2	284.44	NS	0.210	0	0
MR25-247	284.44	284.74	Core	0.4	13.6	141
MR25-247	284.74	285.2	Core	0.168	3.5	62
MR25-247	285.2	285.38	NS	0	0	0
MR25-247	285.38	285.87	Core	0.14	2.9	65
MR25-247	285.87	286.51	NS	0	0	0
MR25-247	286.51	286.82	Core	0.191	3.5	42
MR25-247	286.82	286.91	NS	0	0	0
MR25-247	286.91	287.73	Core	0.175	4.6	63
MR25-247	288.55	289.77	NS	0	0	0
MR25-247	289.77	289.93	Core	0.052	6.2	35
MR25-247	289.93	290.66	NS	0	0	0
MR25-247	290.66	291.36	Core	0.06	3.8	44
MR25-247	291.36	292.09	NS	0	0	0
MR25-247	292.09	292.91	Core	0.01	0.15	16
MR25-247	292.91	294.01	Core	0.014	0.15	7
MR25-247	294.01	294.62	Core	0.024	0.15	3
MR25-247	294.62	294.74	NS	0	0	0
MR25-247	294.74	296.02	Core	0.003	0.15	4
MR25-247	296.02	296.17	NS	0	0	0
MR25-247	296.17	297.15	Core	0.003	0.15	8
MR25-247	297.15	298.4	Core	0.013	0.15	7
MR25-247	298.4	299.95	Core	0.004	1.3	14
MR25-247	299.95	300.75	Core	0.004	1.1	11
MR25-247	300.75	302.06	_			12
MR25-247	300.75	302.06	Core	0.003	2	12

Hole ID	From (m)	To (m)	Туре	Au (ppm)	Ag (ppm)	Sb (ppm)
MR25-247	302.06	303.28	Core	0.01	1	11
MR25-247	303.28	304.59	Core	0.004	0.6	10

Hole ID	(m)	To (m)	Type	Au (ppm)	Ag (ppm)	Sb (ppm)
MR25-247	304.59	305.07	NS	0	0	0

JORC Code, 2012 Edition - Table 1

SECTION 1 SAMPLING TECHNIQUES AND DATA (Criteria in this section apply to all succeeding sections.)

Criteria	JORC 2012 Explanation	Comment
Sampling techniques Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 The mineral resource was calculated using a database with a combination of samples from historic diamond drilling and RC drilling, 2024 RC drilling, 2025 RC and Diamond drilling and pulp reanalysis of historic drill pulps. Historic conventional rotary and hammer drilling also exists in the database but have not been included in resource estimation and are too shallow to intercept the main mineralisation body. Historic Samples have been assayed at various laboratories through the history of ownership. Pre 2002 NQ core and 'five feet' (1.5m) RC and percussion composite length samples from ~94 drill holes were analysed at Angst Resources' Goldbar Mine laboratory in Beatty, Nevada. Vista's 2002-2006 also utilised 1.5m samples, including wet samples (flocculent mix) and were assayed by AAL in Sparks, Nevada. 2008 RC drilling was analysed by ALS Chemex in Reno and Vancouver. Pre-2002 samples are reported to have been subject to 1 assay ton (AT) fire assay with AA finish for gold and silver, additional tests via cyanide soluble leach were not used in resource calculations. Approximately 5,000 pulps from this era have been re-analysed by four acid digest at AAL in 2025. 2002-2006 drill samples underwent similar analysis which record typical dry, crush, split, pulverise preparation work. Routine analyses at AAL included 1 assay ton fire with an AA finish for gold and 0.4-gram aqua regia leach with AA finish for silver. Any silver value of 100 parts per million (ppm) or greater was re-run by 1 assay ton fire with a gravimetric finish. Results were reported in ppm with detection limits of 0.005 ppm for gold and 0.05 ppm for silver. 2008 RC drilling utilised fire assay for gold and a 33 element ICP-AES analysis (4 acid digest) for silver and pathfinder elements. Silver was re-analysed by fire assay if over 100ppm. Assay certificates have not been provided for Pre 2002 drilling hence the pulp re-analysis program. 2002 to 2008 assay ce

Criteria	JORC 2012 Explanation	Comment
Drilling Techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling is via NQ, HQ and PQ diamond coring, RC drilling, conventional rotary and hammer drilling methods. Historic 2002-2003 RC drilling is recorded as via 5 1/8th-5 1/4" inch face sampling hammer and 2004 via 5.5". In some instances a tri-cone bit was used to aid sample recovery. Majority of the open-hole techniques are too shallow to be utilised in the resource estimate and no issues of contamination from these methods are expected. All core is believed to be NQ, with some RC and HQ precollars. Core orientation techniques or methods are currently unknown. 2024 and 2025 2024 RC drilling is using a 2013 Foremost MPD Explorer track mounted rig drilling 5" holes. RC sampled via a traditional hammer setup (2ft lead between the bit interface and the sample return) which has shown the most reliable recovery. Water injection is used to maximise sample recovery due to ground conditions and is typical to the area. Diamond drilling utilises triple tube for HQ or PQ size core drilling by a track mounted Longyear LF 90 drill rig or Hydrocore 4000. Diamond drilling is often as diamond tails with RC precollar depths varying based on mineralisation potential and overburden thickness. Core is not oriented due to ground conditions.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias 	9

Criteria	JORC 2012 Explanation	Comment
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) The total length and percentage of the relevant intersections logged. 	 The logging is qualitative in nature. From 234 drill holes and 69,750m of drilling, 50% of the total drill holes at the Project have been logged with a broad formation unit, 30% has detailed logging and 20% has not been logged. 100% of the 2024 and 2025 drilling has been logged to current industry standards.
Sub-sampling techniques and sampling prepara	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling Whether sample sizes are appropriate to the grain size of the material being sampled. 	 5ft (1.5m) composite samples were taken during percussion drilling (RC, rotary) and drill core was sampled as half core cut longitudinally down its axis at various interval lengths to mineralised/geological boundaries. Core assay intervals range from 0.1 foot (3cm) to 10.7 ft (3.26m). Historic RC drilling records are minimal, but reports detail splitting samples fed from a cyclone. Vista/SS 2002-2008 drilling details the use of RC tricone bits and hammers with a cross-over sub to improve recovery. They used wet sampling via 36" rotary wet splitter, mixed with a flocculent and collected into a sample bag before being allowed to dry. This produced ~5kg samples in an attempt to minimise loss of fines. Diamond drilling sampling protocols are not specifically known for Pre 2002 diamond holes, but no core loss exists in the sample database provided. Field duplicates are reported to have been used since the 2002 RC drilling but have not been provided and no records exist from prior drilling. 2008 drilling showed field duplicates, blanks and standards insert every ~20 samples. 2024 and 2025 5ft (1.52m) composite samples were taken during RC drilling. RC drilling utilises wet drilling with sampling via a rotary wet splitter. Large samples are taken in attempt to minimise loss of fines. Field duplicates are used to as checks for this method. Sample sizes are considered to reflect industry standards, be appropriate for the material being sampled and show attempts made to improve recovery. Diamond core is cut down the longitudinal axis with half core sampled. Sample lengths vary from 0.15m to 1.52m. Samples are made around intervals of core loss as to not carry grade through core loss. 2024 and 2025 drilling inserted standards, blanks, and duplicates into the sample stream at approximately 1 in 20 samples near mineralisation, and ~1 in 40 in overburden.
Quality of assay data laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	Historic QAQC protocols utilising Certified Reference Material (standards), blanks and duplicates have been reported in 2002-2008 drill programs under instruction from Snowden. Results from standards have been reviewed for some drilling but no blanks or duplicates have been. No issues were raised by Snowden, SRK or SGS in previous reports. There is no QC data on drilling prior to 2002. Subsequently this data underwent investigative checks via re-assaying pulps by independent laboratories in 2004 and has recently undergone more significant reanalysis testwork in 2025. Silver by fire assay is considered total but due to lack of QC there may be limitations to this.

Criteria	JORC 2012 Explanation	Comment
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 All samples from 2002-2006 were prepared and assayed by an independent commercial laboratory (AAL), and 2008 drilling by ALS Chemex whose instrumentation are regularly calibrated, utilising appropriate internal checks in QAQC. Silver underwent analysis by aqua-regia (2 acid digest) and may not be considered total digestion. Gold by fire assay for all historic test work is considered total. 2024 and 2025 Internal lab QAQC and field inserted blanks, standards and duplicates inserted into the 2024 sample stream show acceptable results. Rare cases of failed blanks have been rectified by re-analysis of pulps. All CRM is generally within 2 standard deviations with some outliers within 3 standard deviations from the expected. Laboratory procedures are considered total utilising fire assay for gold and four acid digest for silver and mutli-elements, overlimit samples are sent for re-assay (silver by gravimetric fire assay). Pulp reanalysis of historic pulps utilised internal lab QC of blanks, standards and repeats, and company inserted standards for validation checks with good performance.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historic Significant intercepts have not specifically been verified but Snowden reviewed and re-sampled select intervals from 2002, 2003 and 2006 and reported good correlation with original assays. Bulk historic assays have been re-assayed for verification checks detailed in the Snowden and SGS reports but raw data has not been provided. Primary data and data entry details are not provided for all drill campaigns which has been passed through several operators over the years, but all compiled data has been provided in csv(digital) format which is assumed to have been collected and transcribed accurately from prior operators. 2025 relogging and pulp reanalysis has utilised paper copies of logging and sampling of pulp records resulting in updating some intervals. Twin holes are not specifically reported but a small number of drill holes within 5-10m from each other can be observed in 3D space and show generally good correlation. The key adjustment to assay data are: Un-assayed intervals were given a composite value of 0.0034g/t Au and Ag for Pre 2002 drilling. Historic oz/ton has been converted to ppm if no raw lab file in ppm is available. For 2002-2008 drilling from AAL and ALS assay results for gold and silver were reported in parts per million (ppm). For samples that were assayed a second time, the mean of the two samples was used. A regression of silver and gold values for drilling prior to 2002 was implemented by SGS of: Gold = 0.806 * Au_original and Silver = 0.842 * Ag_original to account for overestimation in historic assays outlined in a pulp re-assay investigation by SRK in 2002. Original assay columns are still preserved in the database. Pulp reanalysis of over 5,000 pre-2002 pulps at AAL, with check analysis of ~200 samples at ALS, in 2025 indicated silver underestimation of over 20% in the regression silver via QQ plot and descri

Criteria	JORC 2012 Explanation	Comment
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Assay data below detection limit is reported as a negative from the lab, this has been converted to a number half the detection limit, so no negative values are in the database for future resource work. Eg0.05 is changed to 0.025. Assay intervals are converted between feet and metres (x0.3048). 2024 twin drilling of historic drill holes (2003-2008) showed a bias towards higher silver grades in the 2024 drilling (with adequate QAQC), but a similar grade distribution for gold. This may be due to 4 acid digest over 2 acid digest analysis and warrants further investigation. No adjustment has been made as historic data without QAQC appears conservative or lower grade than new data. 2025 twin drilling of historic Pre 2002 diamond core shows good spatial correlation with some variation in grade distribution. 2024 drilling and locatable historic collars have been surveyed by DGPS for accurate pickup (104 of 222 collars surveyed). 2025 drilling is located by a handheld GPS, with accuracy to within 2-5m. DGPS pickups of 2025 collars was not available at time of resource estimation. Downhole survey data appears to have been completed by gyroscopic tool, although this is only specifically stated for the 2002-2008 drilling. 2024 and 2025 drilling uses a north seeking gyro during drilling for down hole surveys for accurate drill string delineation. The grid system used for locating the historic collar positions of drillholes is NAD27 / UTM Zone 11N (ft). This has been converted to NAD83 UTM Zone 11 (m) for GIS and 3D work using the NCAT conversion tool. A three-dimensional (3D) DTM surface model representing topography to 0.5m, was supplied and used to validate the location of surface drill holes. This remains sufficient considering the depth of
Data spacing and distribution Orientation of data in relation to geological structure	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. Whether the orientation of sampling achieves 	 brilling has been completed on an approximately 120x120m grid with localised clustering and some infill drilling to 60m spacing. Data spacing and distribution is believed to be sufficient to establish the degree of geological and grade continuity appropriate for an Inferred Mineral Resource. A composite length of 5ft (1.52m) was chosen for resource estimation which reflects the length of majority of drill samples. The drilling is predominantly conducted at or close to vertical with an average dip of -85° in historic
	 which the orientation of sampling activates and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	drilling, -88° in 2024 drill holes and -87.5° in 2025 vertical drill holes. The dip is approximately perpendicular to the flat-lying mineralisation. The drill orientation is not expected to have introduced any sampling bias. 2025 angled extensional or infill drillholes appear to represent true width or +95% of it.

Criteria	JORC 2012 Explanation	Comment
Sample Security	The measures taken to ensure sample security.	 Historic samples sent from site to laboratory have no record of security protocols reported but are assumed to follow industry standards. Snowden, 2006 noted that Vistas protocols of sample securit were acceptable. 2024 and 2025 drill samples are prepared on site and collected by the laboratory's transport team of selected couriers.
Audits and Reviews	The results of any audits or reviews of sampling techniques and data.	 Issues with sample recovery in fractured ground may result in missing sample intervals, and recoveries are recorded on a sample-by-sample basis into the drill logging database. Twin drilling will be compared to historic drilling. Wet drilling of RC holes is industry standard for deep drilling in Nevada due to ground conditions and is not expected to introduce sample bias. Verification of 2024 and 2025 RC assay results against field blanks show good results. Comparison to twin drilling remains ongoing. 2025 diamond core sample intervals around core loss to minimise grade spread where core has not been recovered, this may differ from historic core sampling techniques. Reviews of sampling techniques, data and assays have been undertaken by Newmont in 2001, by Snowden in 2002, 2003, 2006, SRK in 2016, and by SGS in 2022. A 1174 sample pulp re-assay program circa 2002 concluded assays from the Goldbar Lab overestimated gold and silver promptin a grade regression calculation. The 2025 pulp re-assay program of over 5000 Pre 2002 pulps by fou acid digest showed consistent under-estimation of silver grades in historic data of around 20%. As a result, the regression calculation on silver has been removed, and only gold remains.

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC 2012 Explanation	Comment
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Maverick Springs property is in northeast Nevada, USA, ~85 km SE of the town of Elko, Nevada. The property currently consists of 327 Maverick, Willow and NMS unpatented lode mining claims registered with the US Department of the Interior Bureau of Land Management ("BLM") with a total area of approximately 6500 acres. The tenements are held in the name of Artemis Exploration Company ("AEC"). Sun Silver holds a 100% interest in the Maverick Springs Project. Gold and Silver Net Smelter Royalties (NSR) to tenement owner AEC of 5.9% which include ongoing advance royalty payments, and to Maverix Metals of 1.5% exists. AEC has additional NSR of 2.9% for all other metals. Archaeological surveys have been undertaken on certain areas of the Project to allow drilling activities. Cadre has not reviewed the land tenure situation in detail and has not independently verified the legal status or ownership of the properties or underlying option and/or joint venture agreement. SS1 has stated that all claims are in good standing and have been legally validated by a US based lawyer specialising in the field.
Exploration done by other parties.	Acknowledgment and appraisal of exploration by other parties.	 Gold exploration at the Project area has been carried out by three previous explorers - Angst, Inc from 1986-1992, Harrison Western Mining L.L.(Harrison) C in 1996, Newmont in 2001, Vista Gold Corp (Vista) and Silver Standard in 2002-2016. Angst undertook first stage exploration with geochemical surveys, mapping, and drilling 128 drill holes for 39,625m outlining initial mineralisation at the project. Harrison drilled 2 exploration holes in 1998 for 247m. Vista advanced the project significantly drilling 54, mostly deep, RC holes over several years until 2006 which equated to ~15,267m. Silver Standard completed 5 deep RC holes for 1,625m in 2008. Reviews of the historic exploration show it was carried out to industry standards to produce data sufficient for mineral resource calculations.
Geology	Deposit type, geological setting and style of mineralisation.	 Previous Technical Reports have identified the Maverick Springs mineralisation as a Carlin-type or sediment/carbonate-hosted disseminated silver-gold deposit. However, the 2022 review by SGS is of the opinion that the deposit has more affinity with a low-sulphidation, epithermal Au-Ag deposit. Recent fieldwork notes similarities to a Carbonate Replacement Deposit (CRD). Regardless, the geological setting remains the same. The mineralisation is hosted in Permian sediments (limestones, dolomites). The sediments have been intruded locally by Cretaceous acidic to intermediate igneous rocks and overlain by Tertiary volcanics, tuffs and sediments and underlain by Paleozoic sediments. Mineralisation in the silty limestones and calcareous clastic sediments is characterised by pervasive decalcification, weak to intense silicification and weak alunitic argillisation alteration, dominated by micron-sized silver and gold with related pyrite, stibnite, stibiconite and arsenic sulphides associated with intense fracturing and brecciation. Theories of mineralising events propose early-stage gold and silver coincident with decalcification and silicification of host rock, producing conditions for later stage brittle fracturing and vein-controlled silver mineralisation resulting in localised high-grade zones.

Criteria	JORC 2012 Explanation	Comment
		Transitional zones with sulphides are intermixed with oxidised zones and often overprinted by silicification. Fresh rock interface is generally 300m below surface with local variations. The mineralisation has formed a large sub-horizontal gently folded (antiformal) shaped zone with a shallow plunge to the south with the limbs of the arch dipping shallowly to moderately at 10-30° to the east and west from approximately 120m below surface to depths of over 500m below surface. Horst and Graben features including faults and offsets appear to be present at the Project with the effect on mineralisation yet to be fully understood.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix A - D of this report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Composites for silver and gold were generated within the mineralised wireframe to a nominal length of 5 ft (1.52 m). Composites were normalised in each interval to create equal length composites. Unassayed intervals in the database have a value of 0.0034g/t Au and Ag. Raw assays were not altered but composite assays had a top cut applied for resource estimation to both silver and gold based on reviewing descriptive statistics and disintegration curves. The Silver top cut of 931.03g/t affected 16 samples and 3.29g/t for gold affected 8 samples. Ag and Au metal equivalents have been used. Gold price of \$USD 2433/oz and Silver price of \$USD 28.5/oz for a ratio of 85 based on average monthly metal pricing for the last 3 years. Metallurgical recoveries are assumed at 85% for both Gold and Silver from historic test work and therefore negate each other in the equivalent calculations. The resource is reported as an AgEq grade where AgEq = Ag+Au*85.

Criteria	JORC 2012 Explanation	Comment
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Drill hole intersections may not always be true widths but generally thought to be close to based on the flat-lying mineralisation and near to vertical drill holes. Review of drill strings in 3D is used to verify this with downhole intercept lengths showing no material difference to true width lengths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Figures are included in the report. Material intercepts are tabulated in Appendix B.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Due to the large amount of drill results, only those pertinent to the resource estimate have been included in Appendix B. These represent downhole drill intercepts from the current mineralisation model. Drill holes or intervals outside of those reported are not significant enough to affect the mineralisation model unless otherwise stated.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Historic metallurgical test work from 2002,2004 and 2006 has shown variable recoveries experimenting with different processing scenarios. Maximum recoveries of 97.5% for Ag and 95.8% for Au have been recorded but show variation across material and test parameters (grind size, leach time etc). Further optimisation work is underway with 2025 drill core. Bulk density measurements have been taken during 2025 drilling via water immersion method of drill core on site. 192 measurements from 7 holes produced average values for Oxide and Transitional material of 2.47, and for Fresh material 2.33g/cm³. The higher density above fresh rock may be due to more iron, intense silicification, and/or mineralisation in samples compared to fresh rock. Further tests are recommended to refine values and further differentiate material. Shallow anomalous silver and antimony mineralisation has been intercepted in historic drilling realised from the pulp-reassay program. These provide exploration targets for material above the mineralised body subject to the resource estimate. The extent or economic value of this material remains unknown and to be investigated.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Potential exists for additional drilling to test extensions of the mineralisation model, which is open to the north and south along the hinge, and east and west as lateral extensions. Shallow drilling could test theories for up-dip mineralisation. Infill drilling could be used to increase confidence within the current model extents.

SECTION 3 ESTIMATION AND REPORTING OF MINERAL RESOURCES

(Criteria listed in section 1, and where relevant in section 2, also apply to this section).

C	riteria	JORC 2012 Explanation	Comment
Database integ	grity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Snowden (2002) did note that they feel confident that the core logging and geological mapping completed to date by the previous explorers on the property is of acceptable industry standards. Snowden (2004) noted that their review of the assay certificates found that the transfer to the digital database was performed accurately and that manipulations to the database were performed without error. SGS (2022) agreed that the data appears satisfactory. There is some level of uncertainty with the data due to lack of original copies available and therefore a heavy reliance is on prior operators and consultants. Sun Silver recovered digital records for 2002 to 2006 drilling from AAL and updated the database accordingly. The pulp re-assay program of over 5,000 samples from Pre-2002 drilling utilised database intervals, paper logs and pulp labels to update the database, with only a small amount of sample interval differences with the supplied data requiring updates. New pulps replaced historic data and where pulps were missing the historic data remained. It is the competent person's opinion that the data provided to perform the current mineral resource estimate is satisfactory. Successful plotting of drill holes without overlaps, and calculation of composites in the mining package ensures data validation by checking and reporting any errors. No errors were found.
Site visits		 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The Competent Person has not visited the site due to its location. Prior site visits have been carried out by Snowden (2003) and SGS (2021) professionals and photos from these trips have been reviewed. The competent person has had weekly meetings with field staff and reviewed 2024 and 2025 photos and videos of current field activities. Based on the depth of the resource and reliance on historical data, a field visit is not expected to change the author's opinion of the Project or resource estimate at this stage.
Geological inte	erpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Confidence in the mineral resource is reflected in the resource classification assigned. Historic (2002, 2004) mineral estimates have included both Indicated and Inferred estimates but would not comply with current JORC standards. 2022 estimate utilised a pit shell for constraints. These reports have been considered and referenced but do not directly affect current mineral resource estimation. All prior estimates interpret a large continuous mineralised body which has increased with new drilling. Broad geology has been established and is used as a guide with assay data the primary factor in the mineralisation modelling and estimation. A reasonably broad, uniform mineralisation model shows good continuity in assay grade and geology with no known factors disrupting this. Localised high grades are likely due to vein hosted mineralisation. Faulting may disrupt mineralisation and lithologies but requires further study. Some faults have been modelled by prior operators but raw data to validate these models have not been found.

Criteria	JORC 2012 Explanation	Comment
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The mineralised body is based on one large domain with a strike of ~2400m, width of up to 1350m and a thickness ranging between 30m on the margins up to 110m in the centre of the deposit. The deposit extends from approximately 120m below surface at its shallowest to depths of 590m below surface at its deepest.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Inverse Distance Squared (ID²) estimation has been used to interpolate grade within the block model. 5-foot (1.52m) composites were created digitally in Surpac software to reduce the variance of the input data (as opposed to 1m samples) One large continuous domain has been modelled in Surpac using a sectional approach, where strings were generated at regular intervals in line with the drill spacing across the deposit and joined together to create a three-dimensional wireframe. The wireframe was modelled based on the AgEq grade at a ratio of 85 and was then checked against the distribution of both silver and gold grades. Strings were generated using a ~20g/t AgEq cut-off grade. Lower grades were included if it honoured the overall continuity and shape of the interpreted mineralisation. Estimates were checked against prior resource estimates conducted by SGS 2022. No assumptions regarding recovery of bi-products and no estimation of deleterious compounds. Parent block size for estimation was 60 x 60 x 30m, with sub-blocking to 7.5 x 7.5 x 3.75m for x,y,z respectively. The block size was selected based on half the drill hole spacing which is ~120m. SMU selection is commensurate with envisaged open pit mining methods. Grades were interpolated in four passes for silver and gold with majority of blocks estimated within the firm and second pass. The first pass range of 120m in x and y, and 60m in z was doubled with each pass. The mineralisation wireframe controlled the extent of the domain estimate. Grade capping was used to mitigate the fact that high grade outliers have less spatial continuity than low grade composites do. A capping value of 931.03g/t for silver and 3.29g/t for gold were applied. Block grades were checked on a section-by-section basis against drill hole assay results in 3D software and via swath plot analysis. The total volume of the block model was compared with the volume o
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All calculations are done on a dry basis via a dry SG.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The resource was reported using a cut-off of 30g/t AgEq to indicate a potential mining cut-off grade. The grade-tonnage curve in the report highlights the sensitivity to these cut-off grades. Future studies and improvements on resource classification will refine these values.

Criteria	JORC 2012 Explanation	Comment
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Broad assumptions on open pit mining have been made based on prior reports and studies performed by SGS input parameters approx. 3 years old. The additional view that once open pit mining is complete, the remainder of the resource could be extracted via underground methods. It is not unreasonable to assume that future higher commodity prices would make this scenario feasible. Optimisation studies are recommended as the project progresses. Output Description:
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Investigations of metallurgy have been undertaken at the project in 2002, 2004 and 2006 and are still at preliminary stages. Recoveries for gold and silver vary depending on grind size, reagent consumption and leaching retention time. Flotation tests did not appear to have a positive impact, while grind size and leach time were the main factors affecting recoveries. Early 2002 work on 15 composites samples tested showed recoveries between 28% and 65% for gold and 5% and 52% for silver. The 2004 study showed maximum recoveries from 63-97% for Silver and 35.7-97.1%, but more commonly in the 80-90%, range for gold. 2006 recoveries showed the best recoveries on ground material and ranged from 34-96% for gold, averaging 83% and 18-90% for silver, averaging 72%. Reports indicate grind size and leach types and times can be further optimised. 2002 testing indicated that preg-robbing carbon is not a factor. The material is oxidised with some sulphides present. 2025 PQ Diamond drilling is being used for new metallurgical tests with analysis pending.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Minimal assumptions have been made in this regard, however, there are no known impediments to conventional waste disposal for this type of project that have been identified as roadblocks.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been 	 Bulk density assignment has been updated from field measurements. HQ drill core from 7 holes and 192 readings measured via water immersion method produced average density of 2.48g/cm³ from Oxide, 2.47g/cm³ Transitional material, and 2.33g/cm³ for Fresh material.

Criteria	JORC 2012 Explanation	Comment
	measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	 The density is an increase on the blanket value of 2.35 g/cm³ used in previous estimates from 9 pycnometric readings and is considered more accurate utilising the average of more data. It is still conservative compared to density values reported historically of 2.58g/cm³. The number will continually be refined with more drilling and further refinement of oxide, transitional and fresh layers across different lithologies and alteration types. As the Transitional and Oxide material showed similar values and their spatial distinction is not yet clear cut, the lower value of 2.47g/cm³ has been used for all material in the mineralisation model above fresh rock which accounts for majority of the deposit.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The classification of inferred is based on multiple factors and includes taking into account the prior resource estimates and reviews of the Project by Snowden, SRK and SGS consultants demonstrating the robust mineralisation model defined by various eras of drilling data. Factors that account for the inferred status include the inability to demonstrate data integrity and adequate QAQC for the data prior to 2002. SS1 made steps to rectify this with over 5,000 pulp samples from this drilling sent for multi-element analysis resulting in removal of the silver regression, and undertaking twin drilling on historic diamond holes for comparisons, but further work is required. DGPS collar pickups on historic holes was undertaken with a general agreement in the X plane, the Y plane showed ~7m average difference from the original supplied data after conversion to NAD83. This has minimal effect at the current drill spacing and will be checked against further surveys. Different analysis techniques used over time at the project appear to show variations in silver grade distribution which is being investigated with reanalysis and twin drilling. Geological continuity is established but controls on high-grade silver is not fully known. The current drill spacing of 120x120m with local clustering is sufficient to establish continuity of mineralisation but requires infill drilling to increase confidence in the model and refine local grade variations.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 The previous resource estimates by Snowden in 2002 and 2004 were reviewed in 2016 by SRK and agreed with the Indicated and Inferred estimates produced at the Project from that time. SGS has since reviewed, updated, and reported an Inferred-only resource to NI 43-101 standards with the provided data in 2022. Cadre has reviewed and confirmed the work done by SGS at the Project based on information provided is of industry standard and additional drilling and re-sampling by SS1 in 2024 and 2025 has improved the data set at the Project for use in mineral resource estimates. The current mineral resource estimate has not been audited but the CP has reviewed and updated the database with new results received in 2025 to improve the database integrity. Estimation techniques are similar to those used in the previous NI 43-101 estimate and subsequent JORC Conversion (2023) and resource updates (2024 and 2025).

Criteria	JORC 2012 Explanation	Comment
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 Mineral resources which are not mineral reserves have not demonstrated economic viability. An Inferred Mineral Resource has a lower level of confidence than that applying to a Measured and Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration, drilling and validation of historic work. The current inferred mineral resource has been calculated via Inferred Distance squared (ID²) reported at a cut-off grade to reflect potential mining grades and a grade-tonnage curve shows the resource sensitivity to various cut-off grades. Parameters of the estimate are outlined in the associated report. No production has taken place at the Project.