

DISCOVERIES AT RPS AND MINYARI DEPTH TARGET CONFIRMED IN LATEST BATCH OF EXPLORATION DRILLING RESULTS

New results include 32m at 1.5 g/t gold from just 77m below surface at RPS

MINYARI GOLD-COPPER PROJECT

Antipa Minerals Ltd (ASX: **AZY**) (**Antipa** or **the Company**) is pleased to report the seventh batch of assay results from CY2025 drilling at its 100%-owned 4,100km² Minyari Gold-Copper Project (**Minyari Project**), in Western Australia's world-class Paterson Province (see Figure 1). Results include high-grade intersections beneath the existing Minyari Dome Deposit, continued down dip extensions at Fiama, several thick gold-copper-silver intersections at RPS, and newly identified zones of mineralisation at Tim's Dome.

Highlights

- Deep Minyari Dome Deposit drilling returned 0.3m at 6.9 g/t gold, 2.9% copper and 4.3 g/t silver from 1,234m, and 0.7m at 5.1 g/t gold and 0.4% copper from 1,240m (25MYD0540), which is interpreted to have clipped the upper edge of a new high-impact target zone.
- **Fiama** step out drill hole returned **8m at 8.2 g/t gold and 0.99% copper** from 257m (25MYC0881), forming part of a **broader intersection exceeding 75 gold-gram-metres**.
- Discovery drilling at Reaper-Poblano-Serrano (RPS) returned multiple thick shallow intersections including 32m at 1.5 g/t gold, 0.18% copper and 1.2 g/t silver from 88m (25EPC0036), firming this target as a maiden resource opportunity.
- Air core drilling at Tim's Dome successfully extends mineralisation in multiple directions, with results that included 4m at 1.3 g/t gold, 0.13% copper from 20m (25TDA0180).
- Phase 2 CY2025 Exploration Drilling Programmes is complete, with Pre-Feasibility (PFS)
 sterilisation drilling ongoing across proposed infrastructure and waste rock sites.
- Assay results for a total of 50 holes for 3,868m remain outstanding (drilling ongoing).
- Available growth drilling results from the CY2025 programmes are to be **incorporated into** an **updated Mineral Resource Estimate** (MRE) on track for release prior to year end.

Antipa's Managing Director, Roger Mason, commented

"Batch seven has delivered another set of great results that continue to demonstrate the scale and quality of our Minyari Development Project and further support the upcoming MRE update.

High-grade intersections beneath the existing Minyari Dome Deposit have successfully clipped the top of an exciting new target system, confirming that the area remains wide open at depth. The Fiama discovery also continues to grow, with impressive down dip continuity returned in these results.

The emerging discovery at RPS, together with encouraging new intersections into mineralised zones at Tim's Dome further highlight the district scale opportunity across our commanding Paterson Province position."

Phase 1 and Phase 2 CY2025 Exploration Drilling Programme Outline

The CY2025 exploration programmes were designed to:

- Test greenfield targets to deliver new discoveries across the 4,100km² Minyari Project (**New Discovery Drilling**).
- Expand the existing Mineral Resource at multiple Minyari Dome deposits (Minyari Dome Deposit Growth Drilling).
- Advance Pre-feasibility Study Workstreams, including Mineral Resource definition, geotechnical, hydrological, and sterilisation drilling (PFS Programme).

CY2025 Batch Seven Drilling Results Detail

New Discovery Drilling

The Phase 2 CY2025 New Discovery Drilling Programme is now complete and comprised 301 holes for 26,076 metres, with assays received for 24,068 metres.

Minyari Deeps

Deep discovery drill hole 25MYD0540 intersected narrow but high-grade gold copper mineralisation approximately 500 metres below the existing Minyari Dome Deposit (1,150 metres below surface). This hole successfully located the prospective WACA host rocks coincident with depth extensions of the Minyari structural domain, clipping the upper edge of this highly prospective target zone (Figures 2, 3, 7 and 8).

Notable results include:

- 2m at 1.5 g/t gold from 1,187.0m (previously reported), including:
 - 1m at 2.8 g/t gold from 1,188.0m
- 1.1m at 1.1 g/t gold and 0.05% copper from 1225.9m
- 8.4m at 1.4 g/t gold and 0.25% copper from 1234.1m, including:
 - 0.3m at 6.9 g/t gold, 2.91% copper and 4.3 g/t silver from 1234.1m
 - 1.6m at 3.6 g/t gold and 0.33% copper from 1239.3m

RPS

A total of 26 broad spaced (100 by 80 meters) Phase 2 reverse circulation (**RC**) drill holes for 4,752 metres were completed at RPS to follow up previous shallow Phase 2 air core results across the Poblano and Serrano aeromagnetic high anomalies, beneath just 15 to 25 meters of cover.

Results returned from Poblano show significant ore grade gold-copper mineralisation with a reduced intrusion related mineral system signature that includes associated bismuth-tungsten±molybdenum across a 300 by 300 metre area. This mineralisation, which includes shallow to moderate southwest plunging high-grade zones, appears to be annular to the magnetic anomaly, suggesting possible Havieron deposit style affinities.

At Serrano ore grade gold-copper mineralisation has been extended to a strike length of 400 metres.

To date, assays have been returned from 19 holes, with the seven outstanding holes from Serrano having the potential to further extend the current limits of mineralisation (Figures 9 to 12).

Notable batch seven results include:

- 88m at 0.7 g/t gold and 0.09% copper from 52m in 25EPC0036, including:
 - 32m at 1.5 g/t gold, 0.18% copper and 1.2 g/t silver from 88m, also including:
 - 4m at 3.9 g/t gold, 0.22% copper and 1.0 g/t silver from 96m
- 24m at 0.6 g/t gold and 0.07% copper from 208m in 25EPC0037, including:
 - 8m at 1.1 g/t gold and 0.10% copper from 209m
 - 4m at 0.9 g/t gold from 128m
 - **8m at 1.6 g/t gold** from 80m
 - **4m at 0.9 g/t gold** from 108m
 - **20m at 0.7 g/t gold** from 136m, also including:
 - 4m at 1.6 g/t gold from 136m
 - **8m at 0.5 g/t gold** from 208m
- 15m at 0.5 g/t gold and 0.30% copper from 183m in 25EPC0057, including:
 - 4m at 1.4 g/t gold, 0.59% copper and 1.6 g/t silver from 193m

Results continue to point to a compelling new discovery with additional drilling planned for Q2 CY2026 to enable delineation of a maiden Mineral Resource Estimate (MRE).

Tim's Dome

A total of 74 Phase 2 reconnaissance air core drill holes for 7,013 metres have been completed at Tim's Dome (10km northwest along strike from Telfer), with all results now returned.

The geology at Tim's Dome is analogous to the Telfer mine host stratigraphy, set between surface and just nine metres of sand cover. The objective of this very broad spaced (250 by 100 metre) air core drill programme was to explore for Telfer style stratabound vein "Reef" and structurally controlled breccia "VSC" targets, with a limited number of holes also testing for strike growth.

Phase 2 results are highly encouraging, expanding the gold mineralisation to a strike length of 3.5 kilometres by between 300 and 600 metres across strike. Multiple new gold-targets have been identified on the eastern limb of Tim's Dome, which remain open in all directions (in part due to the broad spaced nature of drilling). Limited growth focussed drill holes also extended gold mineralisation 250 metres southeast and 200 metres northwest of the existing deposit, supporting further resource growth potential. Follow-up drilling is planned for Q2 CY2026 to test the continuity and extent of mineralisation (Figures 9, 13 and 14).

Notable results from this batch of drilling include:

- 20m at 0.3 g/t gold from 0m in 25TDA0184, including:
 - **8m at 0.6 g/t gold** from 4m
- 34m at 0.2 g/t gold and 0.14% copper from 92m in 25TDA0150, including:

- 4m at 0.5 g/t gold and 0.21% copper from 96m; and
- 4m at 1.1 g/t gold and 0.09% copper from 112m
- 4m at 1.3 g/t gold from 20m in 25TDA0180
- 4m at 0.6 g/t gold from 84m in 25TDA0145, including:
 - **1m at 1.0 g/t gold** from 87m
- **36m at 0.2 g/t gold** from 88m in 25TDA0147, including:
 - 4m at 0.4 g/t gold from 88m
 - 4m at 0.6 g/t gold from 112m
- 8m at 0.3 g/t gold from 0m in 25TDA0146, including:
 - 4m at 0.5 g/t gold from 4m
- 8m at 0.3 g/t gold from 64m in 25TDA0185, including:
 - 4m at 0.5 g/t gold and 0.06% copper from 64m
- 4m at 0.5 g/t gold from 4m in 25TDA0177

Plains Dome

A total of 74 Phase 2 reconnaissance air core drill holes for 2,820 metres were completed at Plains Dome designed to investigate a large, six by five-kilometre target area, where historic surface geochemistry was considered ineffective. All assays have been received with no significant results returned and follow up drilling not under consideration at this stage.

Minyari Dome Deposit Growth Drilling

CY2025 growth-focused drilling targeted the broader **GEO-01 Prospect Area**, including the Main Zone, **Fiama**, Minella and Central deposits, and Minyari South. Mineralisation across these deposits remains open down-dip, and in some cases, along strike. Results from this batch of assays are summarised below and in Table 1a and Table 2a.

This component of the CY2025 programme is now complete having comprised a total of 90 holes for 20,611 metres, with assays returned for 84 holes totalling 19,126 metres.

Fiama

Drilling at Fiama delivered further high-grade results extending mineralisation down dip and adding support the continued growth of the Minyari Dome Mineral Resource base. Notable batch seven results include (see Figures 2 to 5 and 8):

- 26m at 2.9 g/t gold and 0.38% copper from 248m in 25MYC0881, including:
 - 8m at 8.2 g/t gold, 0.99% copper and 1.8 g/t silver from 257m
- 13m at 1.2 g/t gold and 0.13% copper from 238m in 25MYC0875, including:
 - 4m at 2.7 g/t gold and 0.21% copper from 241m

GEO-01 Main Zone

Assay results returned in this batch included multiple significant intersections from the deep diamond core hole 25MYD0554, which extended high-grade gold-copper mineralisation 450 metres down dip. Steepening of the host rock dip with depth, meant 25MYD0554 entered the target zone substantially deeper than planned. Due to programme constraints, the hole was terminated in mineralisation prior to traversing the high-grade southern margin of the deposit.

The current plan for Q2 CY2026 drilling is to re-enter and extend 25MYD0554 and potentially complete one or more daughter-wedge holes to test the 450-metre vertical gap between holes.

Notable 25MYD0554 results include (see Figures 2 to 4, 6 and 8):

- **30m at 0.7 g/t gold** and 0.07% copper from 677m, including:
 - 3.2m at 3.9 g/t gold and 0.50% copper from 699m, also including:
 - 0.6m at 10.9 g/t gold, 1.04% copper and 1.1 g/t silver from 701m
- 24m at 1.1 g/t gold and 0.05% copper from 804m, including:
 - **3m at 2.8 g/t gold and 0.14% copper** from 810m
 - **0.8m at 9.1 g/t gold, 0.11% copper and 1.2 g/t silver** from 820.3m
- 12m at 0.8 g/t gold and 0.03% copper from 844m, including:
 - 1m at 5.4 g/t gold and 0.04% copper from 849m

Pre-feasibility Study Resource Definition Drilling (ResDef)

In parallel, PFS technical and non-technical workstreams have been substantially progressed to further de-risk and refine the development opportunity at Minyari Dome.

The ResDef component of the programme was recently completed, with results received for 71 of the 81 holes drilled (13,839 of 17,746 metres in total). Seven holes were included in the seventh batch of results, including two holes with partial results (refer to Table 1a and Table 2a and Figure 8).

Minyari

Drilling at Minyari continues to confirm strong continuity of gold-copper zones within the existing deposit. Notable results returned in this seventh batch of drilling include (Figures 2 and 3):

- 44.0m at 2.3 g/t gold and 0.16% copper from 489.0m in 25MYDG004, including:
 - 0.13m at 422.0 g/t gold, 13.40% copper, 39.8 g/t silver and 0.23% cobalt from 495.9m
 - 2.0m at 9.0 g/t gold, 0.36% copper and 2.4 g/t silver from 508.0m
 - 1.0m at 7.8 g/t gold, 2.70% copper, 6.5 g/t silver and 0.14% cobalt from 530.0m
- 3.3m at 5.0 g/t gold, 0.49% copper, 4.5 g/t silver and 0.21% cobalt from 555m in 25MYD0552W2, including:
 - 1.2m at 12.7 g/t gold, 0.93% copper, 11.0 g/t silver and 0.55% cobalt from 557.1m
- 9.2m at 2.7 g/t gold and 0.17% copper from 569.8m in 25MYD0552W2, including:
 - **0.8m at 26.9 g/t gold, 1.57% copper and 6.0 g/t silver** from 572.8m

- 64.5m at 0.5 g/t gold and 0.07% copper from 612m in 25MYD0552W2, including:
 - **25.1m at 1.1 g/t gold and 0.11% copper** from 619m, also including:
 - 3m at 3.8 g/t gold and 0.18% copper from 640m
- **26.3m at 1.1 g/t gold and 0.06% copper** from 652.7m in 25MYD0552W3, including:
 - **4m at 4.0 g/t gold and 0.16% copper** from 656m
 - 1m at 2.5 g/t gold and 0.02% copper from 675m
- **49.5m** at **0.8** g/t gold and **0.12%** copper from 233.0m in 25MYDG006, including:
 - **8.5m at 3.4 g/t gold and 0.22% copper** from 274.0m
- **46.4m at 0.6 g/t gold and 0.07% copper** from 424.0m in 25MYDG004, including:
 - 1.0m at 6.6 g/t gold, 1.14% copper and 1.3 g/t silver from 463.0m
- **2.1m at 2.4 g/t gold, 1.52% copper and 4.1 g/t silver** from 508m in 25MYD0552W4, including:
 - 1.1m at 4.2 g/t gold, 2.75% copper and 7.4 g/t silver from 509m
- **48.6m at 0.8 g/t gold and 0.10% copper** from 557.4m in 25MYD0552W4, including:
 - **1m at 1.7 g/t gold and 0.03% copper** from 568m
 - 2m at 4.0 g/t gold and 0.32% copper from 572m
 - 4m at 3.2 g/t gold, 0.29% copper and 1.7 g/t silver from 583m
 - 1m at 1.4 g/t gold and 0.29% copper from 602m

Fiama

At Fiama (Figures 2 to 5), notable ResDef drilling results returned in the seventh batch of drilling include:

- 14m at 3.8 g/t gold and 0.09% copper from 134m in 25MYC0882, including:
 - including 1m at 45.8 g/t gold and 0.29% copper from 143m
- 9m at 1.7 g/t gold and 0.37% copper from 136m in 25MYC0875, including:
 - 2m at 6.7 g/t gold, 1.07% copper and 2.2 g/t silver from 141m
- **11.0m at 1.0 g/t gold** and 0.08% copper from 124.1m in 25MYDG020
- **15m at 0.7 g/t gold** from 103m in 25MYC0882, including:
 - 2m at 1.8 g/t gold from 103m
 - 2m at 2.1 g/t gold and 0.14% copper from 114m

GEO-01 Main Zone

At GEO-01 Main Zone (Figures 2 to 4 and 6), notable ResDef drilling results returned in the seventh batch of drilling include:

- **3.3m at 5.0 g/t gold from 102.1m** in 25MYDG018, including:
 - **2.1m at 4.4 g/t gold** from 113.0m
 - **3.6m at 1.4 g/t gold** from 83.0m

Pre-feasibility Study Sterilisation Drilling¹

The PFS sterilisation drilling programme, designed to test proposed site infrastructure and waste dump locations, has been planned for a total of 79 RC holes for 7,386 metres. This programme is ongoing, with 48 holes completed for 4,686 metres to date, and assays received for 32 holes (3,438 metres) (refer to Tables 1a and 1b and Tables 2a and 2b and see Figures 2, 3 and 8).

This batch of sterilisation drilling has identified a **new zone of near surface gold-copper mineralisation approximately 600 metres west of the Minyari deposit**:

- 8m at 0.9 g/t gold and 0.31% copper from 4m in 25MYC0893, including:
 - 4m at 1.5 g/t gold and 0.41% copper from 4m

Project Advancement Plan and Forward Activity Schedule¹:

Further Phase 2 and PFS assay results are expected to be returned over the coming months, including the remaining outstanding ResDef holes.

An update to the existing MRE incorporating available CY2025 drill results is currently scheduled for completion Q4 CY2025.

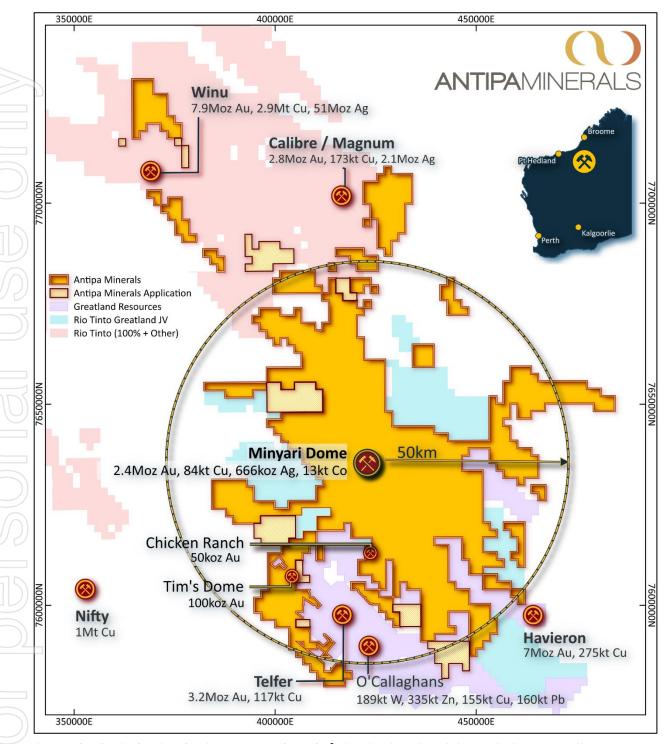
PFS workstreams continue to advance, focussed on refining and de-risking the development opportunity, including progressing permitting activities. A fulsome update on PFS-related workstreams will be provided in a subsequent announcement to be released this month.

Release authorised by

Roger Mason
Managing Director and CEO

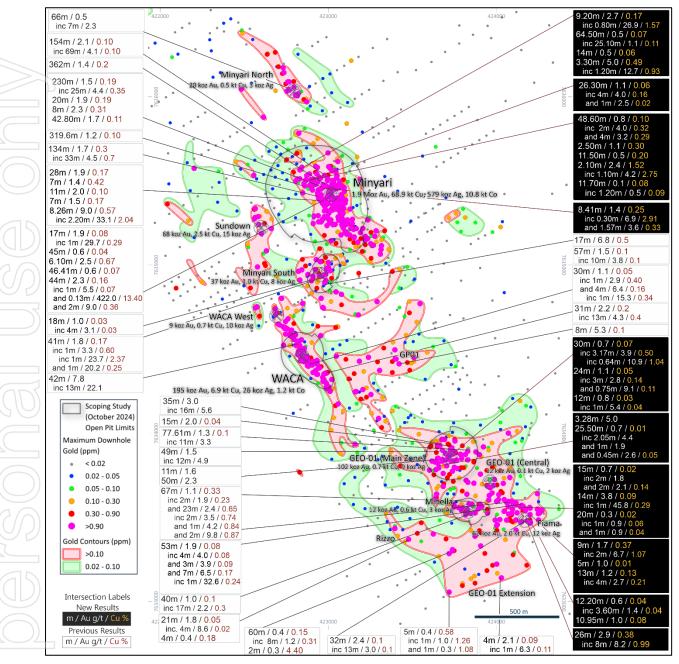
For further information, please visit or contact:

Mark Rodda Executive Chairperson Antipa Minerals Ltd

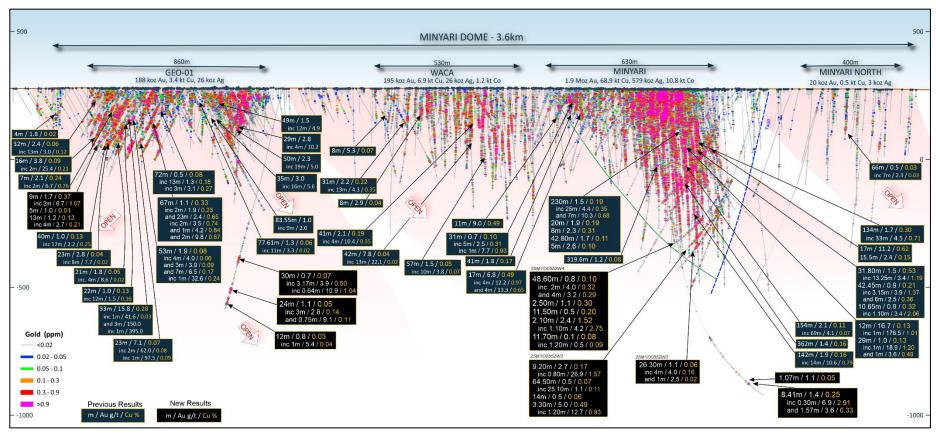

+61 (0)8 9481 1103

Managing Director and CEO Antipa Minerals Ltd +61 (0)8 9481 1103

Roger Mason


Michael Vaughan Media Relations Fivemark Partners +61 (0)422 602 720

¹ PFS programmes are subject to changes which may be made consequent upon results, field conditions and ongoing review.


Figure 1: Plan showing location of Antipas 100%-owned, 4,100km² Minyari Project: Plan includes Greatland Resources' Telfer Mine, Havieron development project and O'Callaghans deposit, Rio Tinto-Sumitomo's Winu deposit, Rio Tinto's Calibre-Magnum deposits, and Cyprium's Nifty Mine¹. Regional GDA2020 / MGA Zone 51 co-ordinates, 50km grid.

¹ Telfer and Havieron refer to Greatland Gold plc AIM release dated 18 March 2025, "2024 Group Mineral Resource Statement". Winu refer to Rio Tinto Ltd ASX release dated 22 February 2023, "Changes to Ore Reserves and Mineral Resources". O'Callaghans refer to Newmont Corporation ASX release dated 23 February 2024, "PR as issued - 2023 Reserves and Resources". Nifty refer to Cyprium Metals Ltd ASX release dated 14 March 2024, "Updated Nifty MRE Reaches 1M Tonnes Contained Copper". Calibre refer to Antipa release dated 26 August 2024, "Calibre Gold Resource Increases 19% to 2.5 Moz - Citadel JV". Magnum refer to Antipa release dated 23 February 2015, "Calibre and Magnum Deposit Mineral Resource JORC 2012 Updates".

Figure 2: Map showing southern region of the Minyari Dome: Includes contoured maximum down-hole gold drill results, resource locations, 2024 Scoping Study open pit design limits, and deposit/prospect locations (including Minyari South, GEO-01 Main Zone, Fiama, Minella and Rizzo). Note the gold-copper discovery intersections across a large area (700m by 500m) indicating that Rizzo and Fiama may be connected and extending mineralisation 500m to the south into an area which Antipa's access to was previously prevented by the Paterson IGO Farm-in Project (tenement) boundary. NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 1km grid.

Figure 3: Long Section from south of Fiama to Minyari North: Including the Minyari, WACA, Minyari South, Minyari Southeast and GEO-01 area (i.e. Main Zone, Fiama, Minella and Central) deposits and recently discovered southern extensions to GEO-01, showing gold drill intercepts. Highlights multiple zones of plunging gold-copper resources and mineralisation variously open down dip/plunge from depths below the surface as shallow as 40m to 650m. Note this highly prospective 3.6km trend extends to approximately 5.0km to the Judes copper-silver-gold deposit to the north. NB: 500m elevation (RL), looking toward Local Grid 270° (or 238° MGA Zone 51 Grid).

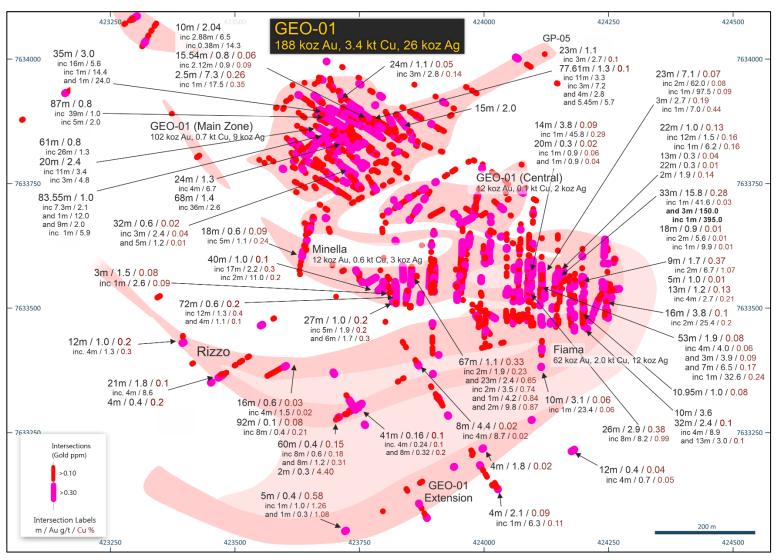
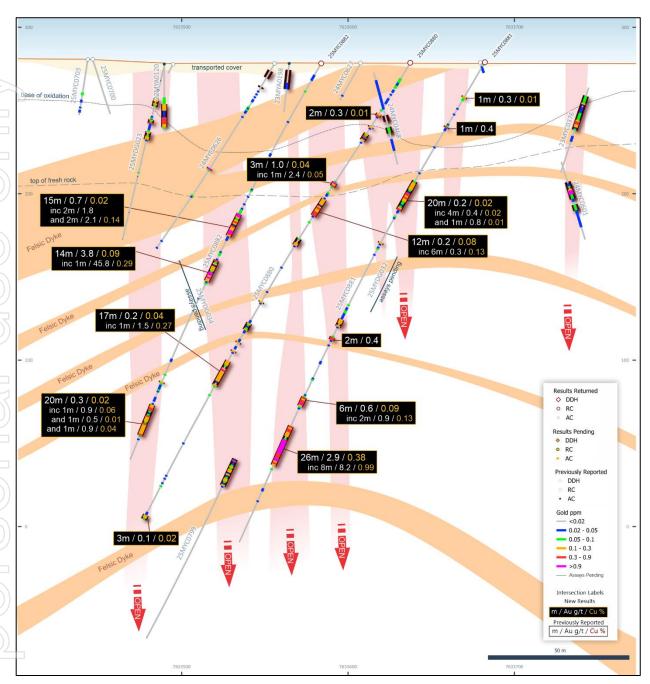
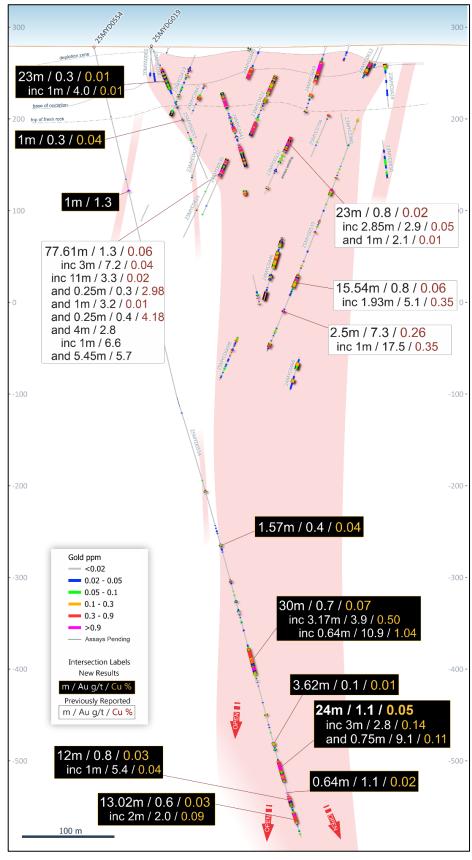




Figure 4: GEO-01 Main Zone, Fiama, Minella and GEO-01 Central deposits and southern Rizzo-Fiama South discovery extension region plan view showing gold ± copper drill annotation and intersections and interpreted mineralisation envelopes: Folded and faulted hard/brittle quartzite and mafic (dolerite) intrusives are preferentially mineralised. Multiple zones of mineralisation remain open, including high-grade, with highly prospective Fiama-Rizzo folded dolerite and meta-sediment strike length 500 to 800m, and an across-strike width of 120 to 160m. NB: Regional GDA2020 / MGA Zone 51 co-ordinates and 250m grid.

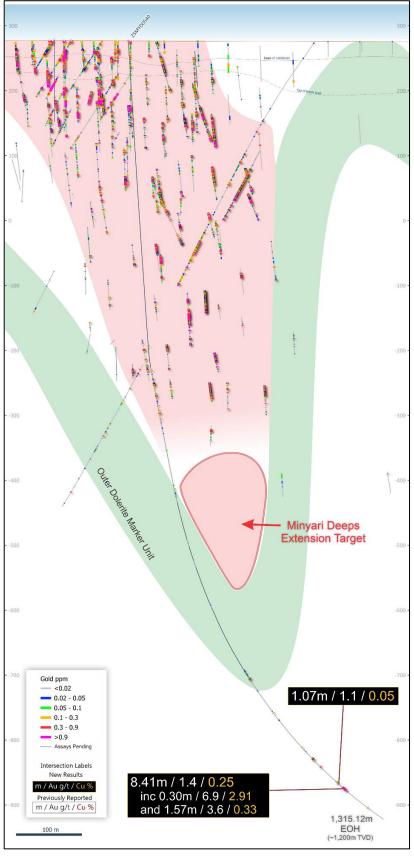


Figure 5: Fiama deposit GDA N-S cross-section 424,080 mE: Showing drill hole gold-copper drill intercepts including 25MYC0881 which extends high-grade gold mineralisation 110m down dip. The Fiama deposit remains open down dip for multiple zones of mineralisation. NB: Refer to Figures 2 to 4 and 8 for location information and 100m grid, looking toward 270° GDA2020 / MGA Zone 51 Grid.

Figure 6: GEO-01 Main Zone deposit GDA NW-SE cross-section: Showing drill hole gold±copper intercepts including deep diamond core drill hole 25MYD0554 which extended mineralisation 450m down dip. The GEO-01 Main Zone deposit remains open down dip and along strike for multiple zones of mineralisation, noting that 25MYD0554 ended in mineralisation. NB: Refer to Figures 2 to 4 and 8 for location information and 100m elevation (RL), looking toward 030° GDA2020 / MGA Zone 51 Grid.

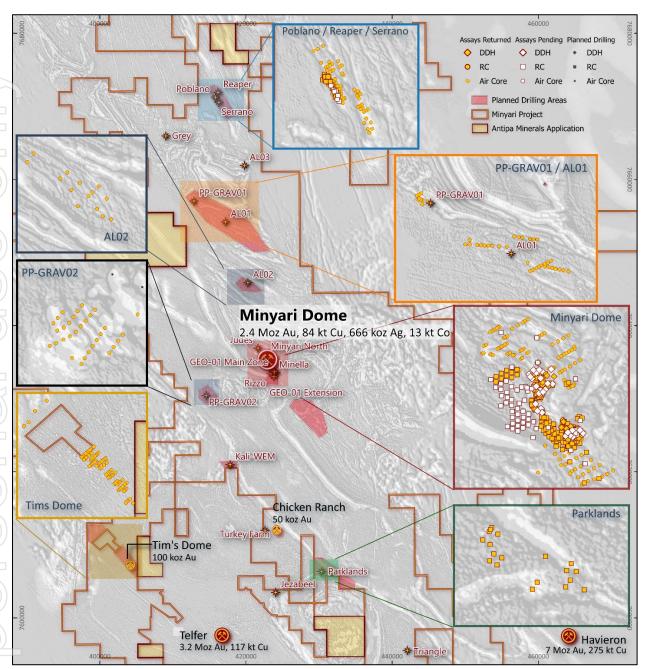


Figure 7: Minyari deposit drill hole 25MYD0540 GDA SW-NE section: Showing drill hole gold-copper drill intercepts including deep diamond core drill hole 25MYD0540 which successfully located the prospective WACA host rocks coincident with depth extensions of the Minyari structural domain, clipping the upper edge of this highly prospective target zone. NB: Refer to Figures 2, 3 and 8 for location information and 100m elevation (RL), looking toward 240° GDA2020 / MGA Zone 51 Grid.

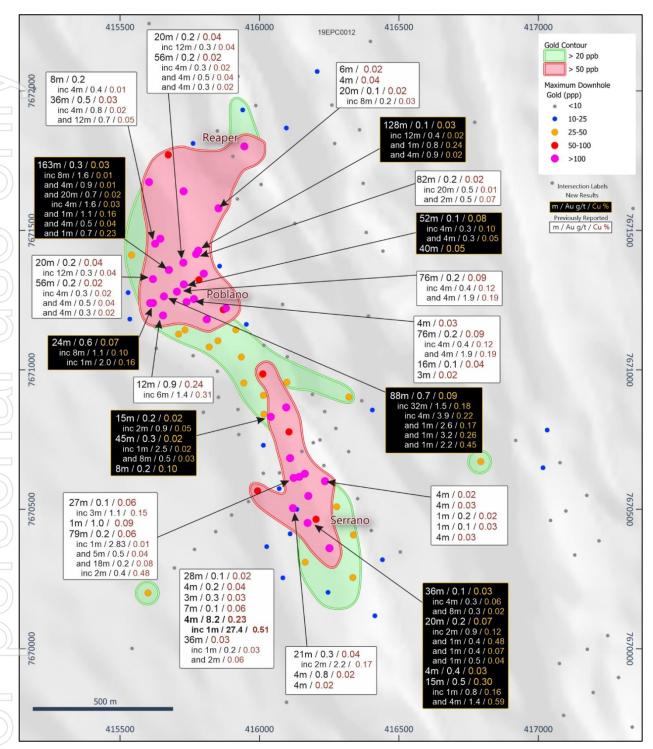


Figure 8: Map of the southern region of the Minyari Dome: Showing the 2024 Scoping Study open pit design limits, Mineral Resource locations, prospect locations and the CY2025 RC, air core and diamond core drill hole collar locations and assay status, over a grayscale aeromagnetic image. NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 1km grid.

Figure 9: Plan of the central region of Antipa's Minyari Project: Showing advanced gold ± copper greenfield targets and existing prospects, within a 65km corridor which extends approximately 35km northwest and 30km southeast of the Minyari Dome development opportunity, which have been evaluated during the CY2025 Phase 1 and Phase 2 air core ± RC drill programmes. Note the location of Reaper-Poblano-Serrano (**RPS**) and AL01 north of Minyari and Tim's Dome southwest of Minyari. This structural domain hosts Greatland Resources' Telfer Mine and Havieron development project¹, and along trend to the northwest (off this map) are Rio Tinto-Sumitomo's Winu development project and Rio Tinto's Calibre and Magnum deposits. NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 20km grid.

¹ Telfer and Havieron refer to Greatland Gold plc AIM release dated 18 March 2025, "2024 Group Mineral Resource Statement".

Figure 10: Map of Reaper-Poblano-Serrano (RPS): Showing contoured maximum down-hole gold (ppb) drill results and gold-copper-silver drill intercepts over grayscale aeromagnetic image. Note the 2km long by up to 250m wide Poblano-Serrano gold-copper-bismuth Phase 1 air core anomaly which remains open along strike. Mineralisation is hosted by siliceous metasediments with lesser meta-dolerite beneath shallow cover (15 to 20m). NB: Refer to Figure 9 for location information and GDA2020 / MGA Zone 51 co-ordinates, 1km grid.

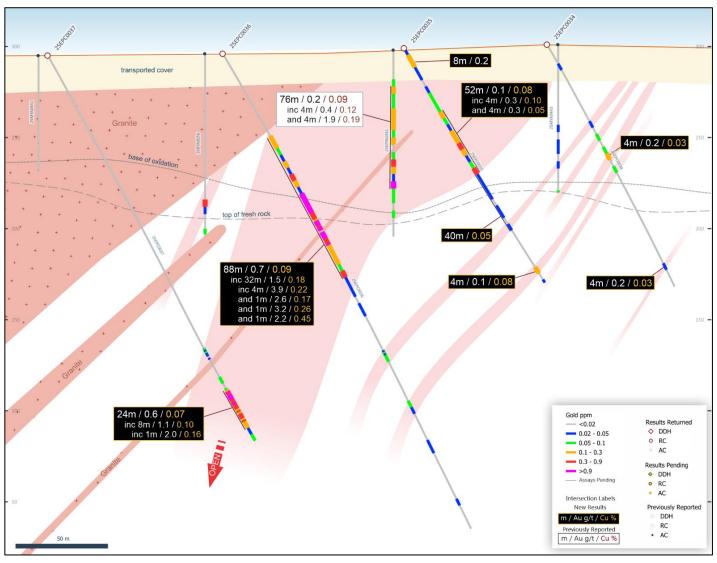
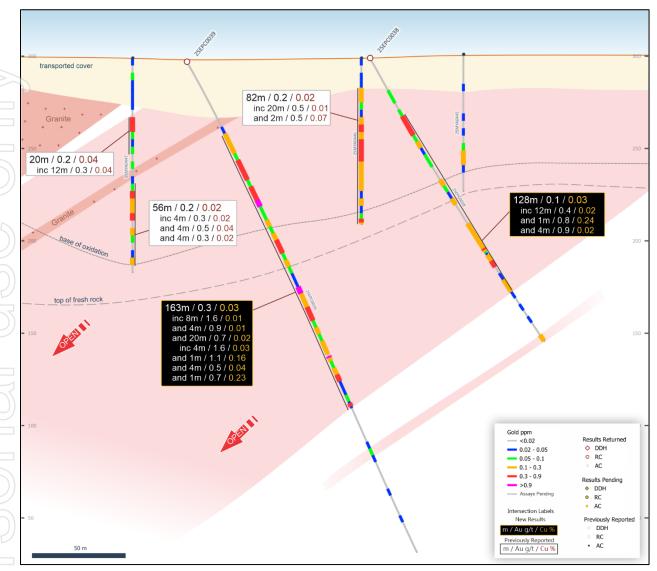



Figure 11: RPS (Poblano) deposit GDA SW-NE cross-section: Showing drill hole gold-copper drill intercepts including 25EPC0036. NB: Refer to Figures 9 and 10 for location information and 50m elevation (RL), looking toward 330° GDA2020 / MGA Zone 51 Grid.

Figure 12: RPS (Poblano) deposit GDA SW-NE cross-section: Showing drill hole gold-copper drill intercepts including 25EPC0039. NB: Refer to Figures 9 and 10 for location information and 50m elevation (RL), looking toward 330° GDA2020 / MGA Zone 51 Grid.

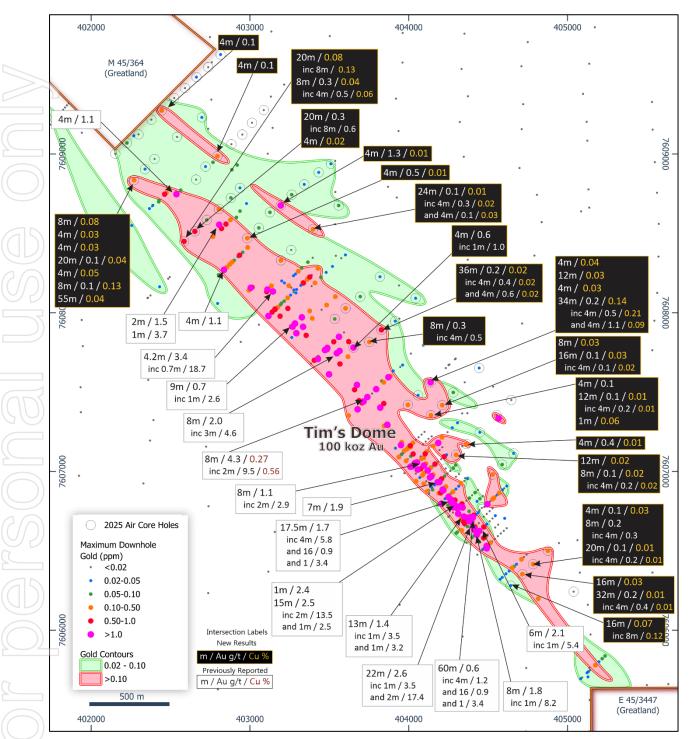


Figure 13: Map showing the Tim's Dome area, including Mineral Resource, and contoured maximum down-hole gold drill results. NB: Refer to Figure 9 for location information and GDA2020 / MGA Zone 51 co-ordinates, 1km grid.

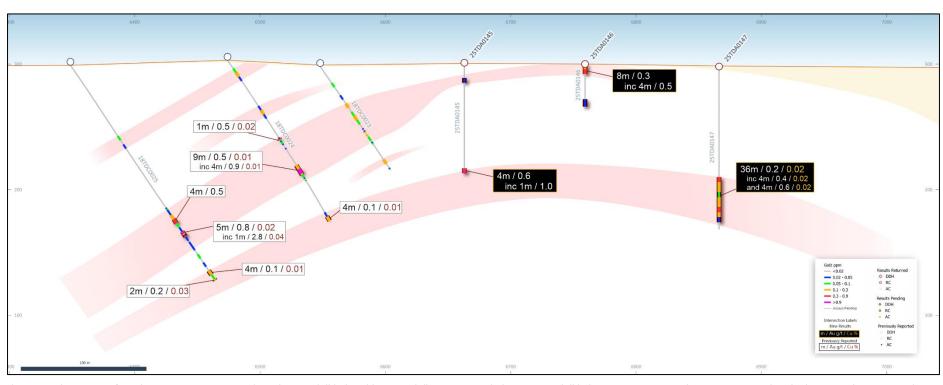
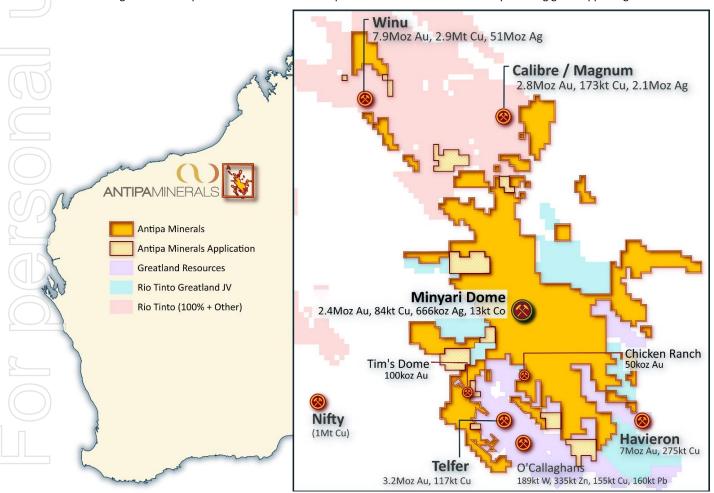


Figure 14: Tim's Dome deposit GDA SW-NE cross-section: Showing drill hole gold-copper drill intercepts including air core drill hole 25TDA0147. NB: Refer to Figures 9 and 13 for location information and 50m elevation (RL), looking toward 330° GDA2020 / MGA Zone 51 Grid.


About Antipa Minerals Ltd

Antipa Minerals Ltd (ASX: AZY) (Antipa or the Company) is a leading mineral exploration company with a proven track record of discovering world-class gold-copper deposits in the highly prospective Paterson Province of Western Australia. The Company remains focussed on advancing its exploration and development programmes to unlock the full potential of this richly endowed region, which offers substantial opportunities for profitable mining operations. Antipa's tenement holding, known as the Minyari Project, covers over 4,100km² and host total 100%-owned Mineral Resources of 2.5 million ounces (Moz) of gold, 84,000 tonnes (t) of copper, 666 thousand ounces (koz) of silver and 13,000 tonnes of cobalt, situated in a region home to Greatland Resources' Telfer mine and 22Mtpa processing facility, as well as recent large gold-copper discoveries including Rio Tinto-Sumitomo's Winu and Greatland's Havieron.

Antipa's exploration success at Minyari includes the discovery of several significant mineral deposits at its flagship Minyari Dome Gold-Copper precinct. Minyari Dome currently hosts a 2.4Moz gold Mineral Resource at 1.5 grams per tonne (g/t) plus copper, silver, and cobalt (2025 MRE). A 2024 Updated Scoping Study for Minyari Dome indicated the potential for a substantial standalone development opportunity with further upside potential. This year's Minyari Dome drilling programmes are aimed at further rapid and substantial growth of the existing gold-copper resources at Minyari Dome and have been designed to enhance the value of the current development opportunity while also targeting new significant gold-copper discoveries.

At a regional level, Minyari provides access to further tier one gold-copper discovery opportunities. Significant discovery and resource growth drill programmes are envisaged to test a host of exciting high-potential gold ± copper prospects and greenfield targets primed for follow-up or initial drill testing.

Antipa is well-positioned to continue its resource growth and project development trajectory targeting significant value creation for its shareholders through focussed exploration and sensible development in one of the world's most promising gold-copper regions.

Forward-Looking Statements: This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Antipa Mineral Ltd's planned exploration programme and other statements that are not historical facts. When used in this document, words such as "could," "plan," "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward-looking statements. Although Antipa Minerals Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties, and no assurance can be given that actual results will be consistent with these forward-looking statements.

Telfer and Havieron refer to Greatland Gold plc AIM release dated 18 March 2025, "2024 Group Mineral Resource Statement". Winu refer to Rio Tinto Ltd ASX release dated 22 February 2023, "Changes to Ore Reserves and Mineral Resources". O'Callaghans refer to Newmont Corporation ASX release dated 23 February 2024, "PR as issued - 2023 Reserves and Resources". Nifty refer to Cyprium Metals Ltd ASX release dated 14 March 2024, "Updated Nifty MRE Reaches 1M Tonnes Contained Copper". Calibre refer to Antipa release dated 26 August 2024, "Calibre Gold Resource Increases 19% to 2.5 Moz - Citadel JV". Magnum refer to Antipa release dated 23 February 2015, "Calibre and Magnum Deposit Mineral Resource JORC 2012 Updates".

Table 1a: Minyari Project - CY2025 Reverse Circulation and Diamond Core Drill Results

Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Cobalt (ppm)
25MYC0875	Fiama	89.0	102.0	13.0	0.22	390	0.06	36
	Including	89.0	90.0	1.0	0.38	177	0.04	32
	Including	92.0	93.0	1.0	0.71	143	0.06	35
	Including	98.0	100.0	2.0	0.39	643	0.10	41
25MYC0875	Fiama	114.0	115.0	1.0	0.04	474	0.06	57
25MYC0875	Fiama	115.0	117.0	2.0	0.28	453	0.21	63
	Including	115.0	116.0	1.0	0.41	595	0.37	70
25MYC0875	Fiama	119.0	121.0	2.0	0.11	305	0.05	42
25MYC0875	Fiama	136.0	145.0	9.0	1.72	3,695	0.71	33
	Including	141.0	143.0	2.0	6.65	10,670	2.24	62
25MYC0875	Fiama	160.0	163.0	3.0	0.10	134	0.03	98
25MYC0875	Fiama	190.0	195.0	5.0	0.97	122	0.05	10
25MYC0875	Fiama	218.0	220.0	2.0	0.70	63	0.03	6
	Including 	218.0	219.0	1.0	1.28	86	0.05	6
25MYC0875	Fiama	238.0	251.0	13.0	1.17	1,308	0.19	79
25147/00075	Including	241.0	245.0	4.0	2.73	2,080	0.27	116
25MYC0875	Fiama	252.0	253.0	1.0	0.10	267	0.03	41
25MYC0875	Fiama	264.0	282.0	18.0	0.22	349	0.04	28
	Including	267.0	268.0	1.0	0.44	612	0.08	35
_	Including	272.0	273.0	1.0	0.38	836	0.07	67
25MYC0876	Including Fiama	277.0 83.0	278.0 115.0	1.0 32.0	0.72	159	0.02	16 50
2510110076	Including	101.0	104.0	3.0	0.38 1.48	430 999	0.08	83
25MYC0876	Fiama	139.0	144.0	5.0	0.35	1,207	0.25	24
2510110070	Including	140.0	141.0	1.0	0.65	1,040	0.23	13
	Including	143.0	144.0	1.0	0.46	2,470	0.48	41
25MYC0876	Fiama	168.0	171.0	3.0	0.20	14	0.48	19
25MYC0876	Fiama	202.0	203.0	1.0	0.20	399	0.01	6
25MYC0876	Fiama	209.0	210.0	1.0	0.13	27	0.02	4
25MYC0876	Fiama	215.0	218.0	3.0	0.03	960	0.10	19
25MYC0880	Fiama	6.0	13.0	7.0	0.03	395	0.02	161
25MYC0880	Fiama	21.0	22.0	1.0	0.01	438	0.03	45
25MYC0880	Fiama	36.0	38.0	2.0	0.34	111	0.03	43
25MYC0880	Fiama	45.0	46.0	1.0	0.23	36	0.02	20
25MYC0880	Fiama	50.0	55.0	5.0	0.15	48	0.02	21
25MYC0880	Fiama	85.0	88.0	3.0	1.04	383	0.06	37
)	Including	85.0	86.0	1.0	2.40	541	0.08	44
25MYC0880	Fiama	97.0	109.0	12.0	0.23	760	0.15	25
	Including	103.0	109.0	6.0	0.31	1,305	0.26	31
25MYC0880	Fiama	109.0	110.0	1.0	0.04	561	0.11	12
25MYC0880	Fiama	125.0	130.0	5.0	0.10	206	0.05	14
25MYC0880	Fiama	143.0	144.0	1.0	0.01	560	0.07	100
25MYC0880	Fiama	169.0	170.0	1.0	0.14	214	0.02	24
25MYC0880	Fiama	184.0	189.0	5.0	0.11	107	0.03	7
25MYC0880	Fiama	197.0	198.0	1.0	0.19	94	0.04	9
25MYC0880	Fiama	203.0	204.0	1.0	0.12	109	0.02	10
25MYC0880	Fiama	210.0	227.0	17.0	0.23	446	0.11	11
	Including	216.0	217.0	1.0	1.45	2,690	0.51	30
25MYC0880	Fiama	293.0	294.0	1.0	0.04	422	0.07	23
25MYC0880	Fiama	315.0	318.0	3.0	0.13	184	0.03	19
25MYC0881	Fiama	24.0	25.0	1.0	0.27	51	0.01	22
25MYC0881	Fiama	45.0	46.0	1.0	0.39	38	0.01	11
25MYC0881	Fiama	83.0	103.0	20.0	0.20	197	0.01	31
	Including	91.0	95.0	4.0	0.36	213	0.02	22
	Including	102.0	103.0	1.0	0.84	112	0.01	29
25MYC0881	Fiama	125.0	126.0	1.0	0.12	11	0.01	18

Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Cobal (ppm
25MYC0881	Fiama	177.0	182.0	5.0	0.13	300	0.08	39
25MYC0881	Fiama	189.0	191.0	2.0	0.38	289	0.10	38
25MYC0881	Fiama	227.0	229.0	2.0	0.06	390	0.07	24
25MYC0881	Fiama	229.0	235.0	6.0	0.55	880	0.18	28
	Including	232.0	234.0	2.0	0.93	1,340	0.23	33
25MYC0881	Fiama	248.0	274.0	26.0	2.91	3,810	0.69	92
	Including	257.0	265.0	8.0	8.24	9,871	1.81	230
25MYC0881	Fiama	290.0	291.0	1.0	0.03	550	0.05	46
25MYC0882	Fiama	5.0	6.0	1.0	0.02	528	0.01	50
25MYC0882	Fiama	103.0	118.0	15.0	0.66	234	0.09	6
	Including	103.0	105.0	2.0	1.77	13	0.02	5
	Including	114.0	116.0	2.0	2.11	1,406	0.53	15
25MYC0882	Fiama	134.0	148.0	14.0	3.78	859	0.20	24
251111 C0002	Including	143.0	144.0	1.0	45.80	2,900	0.96	83
25MYC0882	Fiama	214.0	215.0	1.0	0.12	317	0.08	28
25MYC0882	Fiama	229.0	249.0	20.0	0.12	243	0.03	21
23W11C0882	Including	231.0	232.0	1.0	0.27	565	0.10	27
		236.0	237.0	1.0	0.54	135	0.10	14
	Including Including	248.0	249.0	1.0	0.34	358	0.03	26
25MYDG020			92.2	12.2	0.56			20
251011100020	Fiama - Geotech	80.0				354	0.08	
25141/06222	Including	83.0	86.6	3.6	1.39	414	0.09	19
25MYDG020	Fiama - Geotech	124.1	135.0	11.0	1.03	812	0.18	27
25MYDG020	Fiama - Geotech	174.4	175.4	1.0	0.03	453	0.09	13
25MYDG020	Fiama - Geotech	175.4	176.4	1.0	0.10	1,230	0.20	78
25MYDG020	Fiama - Geotech	178.3	181.3	3.0	0.55	228	0.04	2,66
	Including	179.3	180.3	1.0	1.32	532	0.08	7,870
25MYDG020	Fiama - Geotech	186.5	189.5	3.0	0.10	62	0.01	3
25MYDG020	Fiama - Geotech	195.9	196.5	0.7	0.13	30	0.01	2
25MYDG020	Fiama - Geotech	227.0	230.5	3.5	0.82	659	0.11	42
/	Including	228.0	230.0	2.0	1.09	786	0.11	41
25MYDG020	Fiama - Geotech	236.0	245.0	9.0	0.31	364	0.05	31
	Including	238.0	239.0	1.0	0.75	332	0.09	40
25MYDG020	Fiama - Geotech	248.0	249.0	1.0	0.19	117	0.02	28
25MYDG020	Fiama - Geotech	266.0	268.0	2.0	0.25	58	0.07	23
25MYDG023	Fiama - Geotech	0.0	4.0	4.0	0.01	35	4.60	7
25MYDG023	Fiama - Geotech	23.5	25.0	1.5	0.04	471	0.06	26
25MYDG023	Fiama - Geotech	25.0	30.0	5.0	0.12	212	0.06	21
25MYDG023	Fiama - Geotech	38.3	41.0	2.7	0.21	229	0.07	20
	Including	40.0	41.0	1.0	0.38	309	0.06	19
25MYDG023	Fiama - Geotech	46.0	51.0	5.0	0.12	674	0.15	31
25MYDG023	Fiama - Geotech	71.6	72.3	0.7	0.06	1,211	0.48	31
25MYD0554	GEO-01 Main Zone	0.0	2.0	2.0	0.01	48	3.52	22
25MYD0554	GEO-01 Main Zone	23.0	26.0	3.0	0.01	54	2.03	55
25MYD0554	GEO-01 Main Zone	32.0	33.0	1.0	0.01	8	1.65	27
25MYD0554	GEO-01 Main Zone	93.0	94.3	1.3	0.01	361	0.03	30
25MYD0554	GEO-01 Main Zone	105.0	106.0	1.0	0.01	373	0.07	35
25MYD0554	GEO-01 Main Zone	161.0	162.0	1.0	1.25	1	0.02	13
25MYD0554	GEO-01 Main Zone	264.9	265.4	0.4	0.01	16	9.81	3
25MYD0554	GEO-01 Main Zone	499.0	500.8	1.8	0.10	52	0.04	6
25MYD0554	GEO-01 Main Zone	533.0	534.0	1.0	0.02	351	0.02	<u></u> 57
25MYD0554	GEO-01 Main Zone	538.0	538.7	0.7	0.05	329	0.02	29
25MYD0554	GEO-01 Main Zone	560.0	562.0	2.0	0.03	189	0.03	19
25MYD0554	GEO-01 Main Zone	601.0	602.6	1.6	0.11	390	0.03	35
	GEO-01 Main Zone	624.0	625.1	1.1	0.09	96	0.03	9
75MVD055/		625.1	626.0					
25MYD0554	(-L() ()1 N/1319 /093	0/7	020.0	0.9	0.04	502	0.10	28
25MYD0554	GEO-01 Main Zone			1.0	0.10	72	0.00	0
25MYD0554 25MYD0554	GEO-01 Main Zone	635.0	636.0	1.0	0.10	73	0.08	8
25MYD0554				1.0 0.7 0.9	0.10 0.13 0.07	73 836 334	0.08 0.22 0.07	8 14 34

Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Cobal [·] (ppm)
	Including	699.0	702.2	3.2	3.93	5,013	0.60	(5 511)
	also including	701.0	701.6	0.6	10.85	10,350	1.10	63
25MYD0554	GEO-01 Main Zone	713.5	714.0	0.5	0.12	53	0.03	6
25MYD0554	GEO-01 Main Zone	751.1	753.0	1.9	0.10	46	0.03	6
25MYD0554	GEO-01 Main Zone	783.4	787.0	3.6	0.13	116	0.05	6
25MYD0554	GEO-01 Main Zone	791.0	792.1	1.1	0.10	114	0.02	9
25MYD0554	GEO-01 Main Zone	802.0	802.4	0.4	0.07	720	0.11	36
25MYD0554	GEO-01 Main Zone	804.0	828.0	24.0	1.07	531	0.16	16
231111111111111111111111111111111111111	Including	810.0	813.0	3.0	2.83	1,442	0.33	19
	Including	820.3	821.0	0.8	9.12	1,115	1.16	42
25MYD0554	GEO-01 Main Zone	840.0	840.6	0.6	1.05	188	0.07	35
25MYD0554	GEO-01 Main Zone	844.0	856.0	12.0	0.76	312	0.19	16
231411100334		849.0	850.0	1.0	5.38	390	0.19	36
2FN4VD0FF4	Including				0.62			
25MYD0554	GEO-01 Main Zone	862.0	875.0	13.0		350	0.11	17
25147/20554	Including	865.0	867.0	2.0	2.00	851	0.25	50
25MYD0554	GEO-01 Main Zone	887.1	888.3	1.2	0.09	446	0.10	11
25MYDG018	GEO-01 MZ - Geotech	24.3	46.7	22.4	0.29	107	0.06	13
	Including	24.3	32.0	7.7	0.50	41	0.05	12
25MYDG018	GEO-01 MZ - Geotech	83.0	84.0	1.0	1.55	83	0.40	6
25MYDG018	GEO-01 MZ - Geotech	100.7	101.4	0.7	0.21	50	0.03	4
25MYDG018	GEO-01 MZ - Geotech	102.1	105.4	3.3	4.99	36	0.16	11
25MYDG018	GEO-01 MZ - Geotech	113.0	138.5	25.5	0.67	106	0.05	8
1	Including	113.0	115.0	2.1	4.36	39	0.08	4
	Including	122.0	123.0	1.0	1.90	44	0.12	2
<u>/</u>	Including	138.0	138.5	0.5	2.62	541	0.13	26
25MYDG018	GEO-01 MZ - Geotech	150.0	151.0	1.0	0.16	402	0.08	44
25MYDG019	GEO-01 MZ - Geotech	0.0	1.8	1.8	0.01	66	0.92	34
25MYDG019	GEO-01 MZ - Geotech	9.0	10.0	1.0	0.02	708	0.10	248
25MYDG019	GEO-01 MZ - Geotech	26.0	49.0	23.0	0.26	112	0.13	42
	Including	29.0	30.0	1.0	4.03	84	0.07	30
25MYDG019	GEO-01 MZ - Geotech	49.2	51.0	1.8	0.12	217	0.10	57
25MYDG019	GEO-01 MZ - Geotech	66.0	68.0	2.0	0.05	810	0.11	108
25MYDG019	GEO-01 MZ - Geotech	72.0	73.0	1.0	0.32	436	0.09	54
25MYDG019	GEO-01 MZ - Geotech	87.0	88.0	1.0	0.13	254	0.03	33
25MYDG019	GEO-01 MZ - Geotech	105.0	106.0	1.0	0.01	648	0.10	55
25MYD0540	Minyari Deeps	1225.9	1227.0	1.1	1.08	522	0.08	47
25MYD0540	Minyari Deeps	1233.5	1234.1	0.6	0.02	322	0.05	13
25MYD0540	Minyari Deeps	1234.1	1242.5	8.4	1.41	2,484	0.43	76
\	Including	1234.1	1234.4	0.3	6.86	29,100	4.34	141
	Including	1239.3	1240.8	1.6	3.62	3,335	0.72	58
25MYD0540	Minyari Deeps	1251.0	1252.0	1.0	0.02	527	0.03	70
25MYD0540	Minyari Deeps	1284.0	1285.0	1.0	0.14	58	0.06	9
25MYD0552	Minyari	372.0	374.6	2.6	0.03	610	0.07	59
25MYD0552	Minyari	374.6	384.4	9.9	0.34	677	0.09	70
25.11.120332	Including	374.6	376.3	1.7	1.15	1,214	0.16	152
25MYD0552	Minyari	396.6	397.1	0.4	0.01	954	0.09	39
25MYD0552	Minyari	444.5	445.0	0.4	0.30	265	0.09	64
25MYD0552	•	457.3	460.5	3.2	0.30	500	0.02	53
	Minyari							
25MYD0552	Minyari	460.5	461.0	0.5	0.02	779	0.06	79
25MYD0552	Minyari	463.0	464.0	1.0	0.06	400	0.05	52
25MYD0552	Minyari	467.0	483.0	16.0	0.11	372	0.04	46
25MYD0552	Minyari	485.0	487.0	2.0	0.13	493	0.06	74
25MYD0552	Minyari	487.0	491.8	4.8	0.04	310	0.04	54
25MYD0552	Minyari	491.8	493.3	1.5	0.46	749	0.06	50
25MYD0552	Minyari	498.0	499.0	1.0	0.10	497	0.03	33
	Minyari	514.0	518.0	4.0	0.18	827	0.12	50
25MYD0552							0.00	11
25MYD0552 25MYD0552	Minyari	518.0	519.0	1.0	0.04	632	0.06	41
	Minyari Minyari	518.0 525.0	519.0 526.0	1.0	0.04	436	0.06	41

Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Coba (ppm
	Including	528.0	530.0	2.0	0.93	625	0.10	53
25MYD0552	Minyari	538.5	541.7	3.2	0.33	712	0.07	59
251.0/02==2	Minyari	540.0	541.7	1.7	0.53	722	0.07	68
25MYD0552	Minyari	541.7	547.0	5.3	0.05	386	0.04	46
25MYD0552	Minyari	548.0	549.0	1.0	0.12	342	0.07	39
25MYD0552	Minyari	552.0	558.0	6.0	0.21	499	0.06	41
251.0/50552	Including	552.0	553.2	1.2	0.58	367	0.05	35
25MYD0552	Minyari	566.0	569.0	3.0	0.06	416	0.03	39
25MYD0552	Minyari	569.0	582.0	13.0	0.14	533	0.05	47
251 0/50553142	Including	578.0	579.0	1.0	0.40	859	0.07	65
25MYD0552W2	Minyari	378.0	380.0	2.0	0.10	271	0.04	38
25MYD0552W2	Minyari	382.0	385.0	3.0	0.04	349	0.05	42
25MYD0552W2	Minyari	388.0	390.0	2.0	0.46	401	0.07	50
/	Including	388.0	389.0	1.0	0.81	604	0.09	71
25MYD0552W2	Minyari	390.0	391.0	1.0	0.01	568	0.04	46
25MYD0552W2	Minyari	394.0	396.0	2.0	0.01	1,207	0.10	49
25MYD0552W2	Minyari	399.0	400.0	1.0	0.08	417	0.04	44
25MYD0552W2	Minyari	414.0	416.0	2.0	0.01	553	0.04	65
25MYD0552W2	Minyari	448.0	449.0	1.0	0.09	442	0.05	40
25MYD0552W2	Minyari	453.0	454.0	1.0	0.10	68	0.03	38
25MYD0552W2	Minyari	455.0	463.0	8.0	0.04	378	0.05	43
25MYD0552W2	Minyari	463.0	472.0	9.0	0.13	779	0.06	74
25MYD0552W2	Minyari	488.0	489.0	1.0	0.07	406	0.04	37
25MYD0552W2	Minyari	490.0	491.2	1.2	0.10	459	0.03	53
25MYD0552W2	Minyari	494.0	495.0	1.0	2.78	2,120	0.21	154
25MYD0552W2	Minyari	497.0	501.0	4.0	0.10	452	0.04	45
25MYD0552W2	Minyari	503.0	517.0	14.0	0.51	618	0.05	56
	Including	507.0	508.0	1.0	1.32	376	0.05	62
\	Including	515.0	516.0	1.0	2.04	591	0.06	84
25MYD0552W2	Minyari	520.0	521.0	1.0	0.03	433	0.07	49
25MYD0552W2	Minyari	529.9	531.0	1.1	0.25	2	0.01	23
25MYD0552W2	Minyari	555.0	558.3	3.3	5.00	4,856	4.46	2,05
	Including	557.1	558.3	1.2	12.65	9,250	10.95	5,45
25MYD0552W2	Minyari	561.0	562.0	1.0	0.13	218	0.09	71
25MYD0552W2	Minyari	569.8	579.0	9.2	2.70	1,661	0.68	53
	Including	572.8	573.6	0.8	26.90	15,700	6.01	353
25MYD0552W2	Minyari	580.0	581.0	1.0	0.08	427	0.26	11
25MYD0552W2	Minyari	584.0	585.0	1.0	0.11	221	0.15	14
25MYD0552W2	Minyari	591.0	592.0	1.0	0.21	961	0.39	16
25MYD0552W2	Minyari	595.0	597.0	2.0	0.11	98	0.02	18
25MYD0552W2	Minyari	612.0	676.5	64.5	0.51	660	0.21	42
	Including	619.0	644.1	25.1	1.05	1,090	0.33	48
	also including	640.0	643.0	3.0	3.76	1,795	0.54	60
25MYD0552W2	Minyari	725.0	726.0	1.0	0.32	87	0.02	12
	, , , , , , , , , , , , , , , , , , ,					83	0.02	3
25MYD0552W2	Minyari	729.1	730.1	1.0	0.22			22
			730.1 630.0	1.0 3.0	0.22	330	0.13	22
25MYD0552W3	Minyari	729.1					0.13	
25MYD0552W3 25MYD0552W3	Minyari Minyari	729.1 627.0	630.0	3.0	0.22	330		12
25MYD0552W3 25MYD0552W3 25MYD0552W3	Minyari Minyari Minyari	729.1 627.0 641.0	630.0 643.0	3.0 2.0	0.22 0.13	330 142	0.05	12 11
25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3	Minyari Minyari Minyari Minyari	729.1 627.0 641.0 645.0	630.0 643.0 647.1	3.0 2.0 2.1	0.22 0.13 0.17	330 142 201	0.05 0.06	12 11 33
25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3	Minyari Minyari Minyari Minyari Minyari	729.1 627.0 641.0 645.0 647.1	630.0 643.0 647.1 649.3	3.0 2.0 2.1 2.2	0.22 0.13 0.17 0.02	330 142 201 716	0.05 0.06 0.16	12 11 33 21
25MYD0552W2 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3	Minyari Minyari Minyari Minyari Minyari Minyari	729.1 627.0 641.0 645.0 647.1 651.5	630.0 643.0 647.1 649.3 652.7	3.0 2.0 2.1 2.2 1.2	0.22 0.13 0.17 0.02 0.04	330 142 201 716 413 591	0.05 0.06 0.16 0.04	12 11 33 21 29
25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3	Minyari Minyari Minyari Minyari Minyari Minyari Minyari Including	729.1 627.0 641.0 645.0 647.1 651.5 652.7 656.0	630.0 643.0 647.1 649.3 652.7 679.0 660.0	3.0 2.0 2.1 2.2 1.2 26.3 4.0	0.22 0.13 0.17 0.02 0.04 1.09 4.04	330 142 201 716 413 591 1,552	0.05 0.06 0.16 0.04 0.16	12 11 33 21 29 33
25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3	Minyari Minyari Minyari Minyari Minyari Minyari Minyari Including Including	729.1 627.0 641.0 645.0 647.1 651.5 652.7 656.0 675.0	630.0 643.0 647.1 649.3 652.7 679.0 660.0	3.0 2.0 2.1 2.2 1.2 26.3 4.0	0.22 0.13 0.17 0.02 0.04 1.09 4.04 2.47	330 142 201 716 413 591 1,552 171	0.05 0.06 0.16 0.04 0.16 0.14 0.10	12 11 33 21 29 33 11
25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3	Minyari Minyari Minyari Minyari Minyari Minyari Minyari Including Including Minyari	729.1 627.0 641.0 645.0 647.1 651.5 652.7 656.0 675.0 681.0	630.0 643.0 647.1 649.3 652.7 679.0 660.0 676.0	3.0 2.0 2.1 2.2 1.2 26.3 4.0 1.0	0.22 0.13 0.17 0.02 0.04 1.09 4.04 2.47 0.80	330 142 201 716 413 591 1,552 171 445	0.05 0.06 0.16 0.04 0.16 0.14 0.10 0.08	12 11 33 21 29 33 11
25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3	Minyari Minyari Minyari Minyari Minyari Minyari Minyari Including Including Minyari Minyari Minyari Minyari Minyari	729.1 627.0 641.0 645.0 647.1 651.5 652.7 656.0 675.0 681.0	630.0 643.0 647.1 649.3 652.7 679.0 660.0 676.0 682.0 683.0	3.0 2.0 2.1 2.2 1.2 26.3 4.0 1.0 1.0	0.22 0.13 0.17 0.02 0.04 1.09 4.04 2.47 0.80 0.06	330 142 201 716 413 591 1,552 171 445 515	0.05 0.06 0.16 0.04 0.16 0.14 0.10 0.08 0.08	12 11 33 21 29 33 11 54
25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3	Minyari Minyari Minyari Minyari Minyari Minyari Minyari Including Including Minyari Minyari Minyari Minyari Minyari	729.1 627.0 641.0 645.0 647.1 651.5 652.7 656.0 675.0 681.0 682.0 688.0	630.0 643.0 647.1 649.3 652.7 679.0 660.0 676.0 682.0 683.0 689.0	3.0 2.0 2.1 2.2 1.2 26.3 4.0 1.0 1.0	0.22 0.13 0.17 0.02 0.04 1.09 4.04 2.47 0.80 0.06 0.10	330 142 201 716 413 591 1,552 171 445 515	0.05 0.06 0.16 0.04 0.16 0.14 0.10 0.08 0.08 0.04	12 11 33 21 29 33 11 54 28 5
25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3 25MYD0552W3	Minyari Minyari Minyari Minyari Minyari Minyari Minyari Including Including Minyari Minyari Minyari Minyari Minyari	729.1 627.0 641.0 645.0 647.1 651.5 652.7 656.0 675.0 681.0	630.0 643.0 647.1 649.3 652.7 679.0 660.0 676.0 682.0 683.0	3.0 2.0 2.1 2.2 1.2 26.3 4.0 1.0 1.0	0.22 0.13 0.17 0.02 0.04 1.09 4.04 2.47 0.80 0.06	330 142 201 716 413 591 1,552 171 445 515	0.05 0.06 0.16 0.04 0.16 0.14 0.10 0.08 0.08	12 11 33 21 29 33 11 54

Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Coba (ppm
25MYD0552W3	Minyari	741.0	(iii) 742.0	1.0	(g/t) 0.32	(ppm) 158	(g/t) 0.05	(ppin 19
25MYD0552W4	Minyari	373.0	374.0	1.0	0.12	1,800	0.05	267
25MYD0552W4	Minyari	380.0	386.0	6.0	0.12	390	0.06	54
25MYD0552W4	Minyari	396.0	398.0	2.0	0.13	741	0.08	53
25MYD0552W4	Minyari	399.0	410.7	11.7	0.02	830	0.08	166
231011100332004	Including	409.5	410.7	1.2	0.14	947	0.10	71
2514700552744								
25MYD0552W4	Minyari	410.7	413.0	2.3	0.05	638	0.07	68
25MYD0552W4	Minyari	467.0	468.0	1.0	0.04	440	0.06	76
25MYD0552W4	Minyari	474.0	475.0	1.0	0.13	166	0.02	55
25MYD0552W4	Minyari	485.0	485.6	0.6	0.20	115	0.06	34
25MYD0552W4	Minyari	508.0	510.1	2.1	2.41	15,150	4.14	269
	Including	509.0	510.1	1.1	4.15	27,523	7.39	455
25MYD0552W4	Minyari	513.0	514.0	1.0	0.04	1,125	0.34	21
25MYD0552W4	Minyari	521.0	522.0	1.0	0.10	103	0.07	11
25MYD0552W4	Minyari	525.0	526.0	1.0	0.26	76	0.05	10
25MYD0552W4	Minyari	536.0	537.0	1.0	0.32	179	0.09	7
25MYD0552W4	Minyari	549.0	550.0	1.0	1.46	925	0.36	54
25MYD0552W4	Minyari	557.4	606.0	48.6	0.75	963	0.38	129
	Including	568.0	569.0	1.0	1.65	332	0.05	37
	Including	572.0	574.0	2.0	4.03	3,183	0.78	81
	Including	576.8	577.8	1.0	1.03	27	0.03	3
	Including	580.0	581.0	1.0	1.14	731	0.24	55
1	Including	583.0	587.0	4.0	3.24	2,899	1.66	149
	Including	602.0	603.0	1.0	1.35	2,910	0.67	415
25MYD0552W4	Minyari	606.0	608.0	2.0	0.05	357	0.08	536
25MYD0552W4	•	614.0	615.0	1.0	0.51	1,310	0.31	666
	Minyari		621.0	2.0	1.30	•	0.51	124
25MYD0552W4	Minyari	619.0				1,225		
25MYD0552W4	Minyari	625.0	625.5	0.5	0.02	1,240	0.25	46
25MYD0552W4	Minyari	625.5	628.0	2.5	1.12	3,010	0.60	217
25MYD0552W4	Minyari	628.0	629.0	1.0	0.05	923	0.20	65
25MYD0552W4	Minyari	631.5	632.5	1.0	0.05	2,405	0.59	77
25MYD0552W4	Minyari	632.5	644.0	11.5	0.47	2,017	0.46	445
/	Including	633.0	634.0	1.0	2.19	14,850	3.32	163
	Including	639.5	640.0	0.5	2.78	169	0.15	4,10
25MYD0552W4	Minyari	650.0	651.0	1.0	0.10	506	0.10	58
25MYD0552W4	Minyari	652.5	653.0	0.5	0.87	543	0.18	43
25MYD0552W4	Minyari	659.0	659.6	0.6	0.01	450	0.07	60
25MYD0552W4	Minyari	661.0	662.0	1.0	0.40	14	0.02	8
25MYD0552W4	Minyari	677.0	678.0	1.0	0.10	359	0.09	19
25MYD0552W4	Minyari	692.0	695.0	3.0	0.15	90	0.03	21
25MYD0552W4	Minyari	700.0	701.0	1.0	0.40	109	0.05	12
25MYD0552W4	Minyari	707.2	708.0	0.9	0.15	302	0.11	12
25MYC0883	PFS Sterilisation	16.0	20.0	4.0	0.01	285	0.01	468
25MYC0884	PFS Sterilisation	80.0	84.0	4.0	0.07	163	0.09	283
25MYC0893	PFS Sterilisation	0.0	4.0	4.0	0.01	1,070	0.07	42
25MYC0893	PFS Sterilisation	4.0	12.0	8.0	0.91	3,100	0.23	529
20100033	Including	4.0	8.0	4.0	1.46	4,050	0.30	524
25MYC0893	PFS Sterilisation	12.0	16.0	4.0	0.03	425	0.09	90
25MYC0893	PFS Sterilisation	20.0	24.0	4.0	0.03	453	0.03	113
25MYC0894	PFS Sterilisation	16.0	20.0	4.0	0.03	408	0.06	59
25EPC0034	RPS	28.0	60.0	32.0	0.02	404	0.22	12
25EPC0034	RPS	68.0	72.0	4.0	0.21	330	0.14	17
25EPC0034	RPS	80.0	84.0	4.0	0.02	357	0.14	16
25EPC0034	RPS	100.0	104.0	4.0	0.02	322	0.13	15
25EPC0034	RPS	136.0	140.0	4.0	0.05	700	0.38	17
25EPC0035	RPS	4.0	12.0	8.0	0.16	18	0.01	1
25EPC0035	RPS	20.0	28.0	8.0	0.03	456	0.05	12
25EPC0035	RPS	28.0	80.0	52.0	0.13	824	0.41	12

Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Coba (ppm
	Including	76.0	80.0	4.0	0.32	494	0.19	36
25EPC0035	RPS	80.0	120.0	40.0	0.03	480	0.14	17
25EPC0035	RPS	140.0	144.0	4.0	0.11	771	0.23	17
25EPC0035	RPS	148.0	150.0	2.0	0.05	405	0.14	15
25EPC0036	RPS	52.0	140.0	88.0	0.66	887	0.53	24
	Including	88.0	120.0	32.0	1.50	1,814	1.17	45
	also including	96.0	100.0	4.0	3.86	2,160	1.04	72
	also including	105.0	106.0	1.0	2.56	1,710	0.61	49
\	also including	109.0	110.0	1.0	3.21	2,580	0.94	84
	also including	114.0	115.0	1.0	2.19	4,520	5.74	75
25EPC0036	RPS	140.0	168.0	28.0	0.03	418	0.12	15
25EPC0036	RPS	180.0	192.0	12.0	0.04	392	0.22	12
25EPC0036	RPS	216.0	220.0	4.0	0.04	573	0.28	16
25EPC0036	RPS	240.0	244.0	4.0	0.04	403	0.25	15
	RPS					417		19
25EPC0036		272.0	280.0	8.0	0.04		0.14	
25EPC0037	RPS	182.0	185.0	3.0	0.07	318	0.19	22
25EPC0037	RPS	188.0	190.0	2.0	0.02	383	0.33	20
25EPC0037	RPS	208.0	232.0	24.0	0.60	724	0.25	19
	Including	209.0	217.0	8.0	1.13	1,021	0.33	27
	also including	212.0	213.0	1.0	1.99	1,605	0.50	41
25EPC0037	RPS	236.0	240.0	4.0	0.06	368	0.06	6
25EPC0038	RPS	20.0	148.0	128.0	0.14	320	0.19	15
1	Including	36.0	48.0	12.0	0.40	231	0.47	2
	Including	120.0	121.0	1.0	0.77	2,390	0.97	168
	Including	128.0	132.0	4.0	0.87	225	0.17	9
25EPC0039	RPS	36.0	44.0	8.0	0.03	350	0.20	8
25EPC0039	RPS	44.0	207.0	163.0	0.32	313	0.22	18
	Including	80.0	88.0	8.0	1.58	70	0.42	54
\	Including	108.0	112.0	4.0	0.87	105	0.16	10
	Including	136.0	156.0	20.0	0.67	237	0.15	13
	also including	136.0	140.0	4.0	1.62	340	0.29	17
	Including	177.0	178.0	1.0	1.10	1,550	0.53	25
	Including	188.0	192.0	4.0	0.46	377	0.18	11
	Including	205.0	206.0	1.0	0.70	2,290	0.46	64
25EPC0039	RPS	248.0	260.0	12.0	0.02	475	0.12	16
25EPC0041	RPS	40.0	68.0	28.0	0.01	351	0.26	22
25EPC0041	RPS	96.0	100.0	4.0	0.02	1,420	0.60	28
25EPC0041	RPS	112.0	136.0	24.0	0.02	377	0.23	12
25EPC0041	RPS	136.0	140.0	4.0	0.02	233	0.28	15
25EPC0041	RPS	140.0	148.0	8.0	0.10	424	0.20	14
25EFC0041		146.0	147.0	1.0	0.02	1,140	0.20	17
25EPC0041	Including RPS	155.0	156.0	1.0	0.02	352	0.42	17
								9
25EPC0042	RPS	20.0	56.0	36.0	0.01	340	0.15	
25EPC0042	RPS	92.0	96.0	4.0	0.06	122	0.72	17
25EPC0042	RPS	112.0	118.0	6.0	0.01	350	0.13	13
25EPC0042	RPS	119.0	120.0	1.0	0.11	395	0.15	18
25EPC0042	RPS	124.0	128.0	4.0	0.01	355	0.13	12
25EPC0042	RPS	149.0	155.0	6.0	0.11	2,128	1.18	34
25EPC0042	RPS	164.0	165.0	1.0	0.10	2,410	1.10	14
25EPC0042	RPS	165.0	166.0	1.0	0.02	949	0.35	13
25EPC0043	RPS	100.0	128.0	28.0	0.01	377	0.20	15
25EPC0043	RPS	140.0	164.0	24.0	0.02	682	0.20	15
25EPC0044	RPS	16.0	24.0	8.0	0.01	307	0.13	5
25EPC0044	RPS	100.0	115.0	15.0	0.01	373	0.13	11
25EPC0044	RPS	128.0	132.0	4.0	0.01	389	0.17	11
25EPC0044	RPS	134.0	136.0	2.0	0.02	1,713	1.02	12
25EPC0045	RPS	60.0	96.0	36.0	0.02	300	0.26	18
25EPC0045	RPS	108.0	120.0	12.0	0.02	423	0.38	15

Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (g/t)	Copper (ppm)	Silver (g/t)	Cobalt (ppm)
25EPC0045	RPS	172.0	209.0	37.0	0.01	378	0.26	13
25EPC0046	RPS	16.0	64.0	48.0	0.01	373	0.15	13
25EPC0046	RPS	76.0	127.0	51.0	0.02	473	0.27	15
	Including	80.0	84.0	4.0	0.02	1,055	0.62	14
	Including	94.0	95.0	1.0	0.02	1,140	0.56	12
	Including	102.0	104.0	2.0	0.05	2,025	0.88	17
25EPC0047	RPS	40.0	48.0	8.0	0.11	43	0.06	20
25EPC0047	RPS	130.0	132.0	2.0	0.01	304	0.13	9
25EPC0048	RPS	52.0	64.0	12.0	0.10	224	0.06	15
25EPC0048	RPS	76.0	118.0	42.0	0.12	739	0.47	23
	Including	92.0	94.0	2.0	0.58	352	0.14	21
	Including	113.0	115.0	2.0	0.66	9,702	7.23	117
\	also including	114.0	115.0	1.0	1.00	19,100	14.25	223
25EPC0048	RPS	122.0	156.0	34.0	0.05	313	0.12	16
25EPC0048	RPS	176.0	210.0	34.0	0.11	208	0.08	22
	Including	196.0	200.0	4.0	0.27	262	0.10	16
25EPC0052	RPS	121.0	122.0	1.0	0.04	482	1.02	79
25EPC0052	RPS	144.0	159.0	15.0	0.17	178	0.14	22
	Including	155.0	157.0	2.0	0.90	542	0.46	34
25EPC0052	RPS	169.0	170.0	1.0	0.04	312	0.13	33
25EPC0052	RPS	171.0	216.0	45.0	0.32	178	0.08	15
1	Including	171.0	172.0	1.0	2.48	190	0.22	21
1	Including	208.0	216.0	8.0	0.54	279	0.15	16
25EPC0052	RPS	232.0	240.0	8.0	0.16	1,022	0.31	28
25EPC0057	RPS	48.0	60.0	12.0	0.01	537	0.13	15
25EPC0057	RPS	60.0	96.0	36.0	0.13	338	0.22	19
	Including	60.0	64.0	4.0	0.32	640	0.41	9
	Including	88.0	96.0	8.0	0.27	244	0.28	18
25EPC0057	RPS	96.0	100.0	4.0	0.06	338	0.13	13
25EPC0057	RPS	112.0	120.0	8.0	0.03	318	0.15	11
25EPC0057	RPS	120.0	140.0	20.0	0.21	682	0.21	25
	Including	122.0	124.0	2.0	0.89	1,195	0.42	25
	Including	130.0	131.0	1.0	0.43	4,830	0.91	23
	Including	132.0	133.0	1.0	0.39	671	0.20	37
	Including	134.0	135.0	1.0	0.50	438	0.19	17
25EPC0057	RPS	144.0	148.0	4.0	0.09	568	0.22	16
25EPC0057	RPS	152.0	156.0	4.0	0.36	316	0.15	13
25EPC0057	RPS	176.0	183.0	7.0	0.03	683	0.19	20
25EPC0057	RPS	183.0	198.0	15.0	0.53	2,964	0.79	49
	Including	183.0	184.0	1.0	0.81	1,555	0.46	45
	Including	193.0	197.0	4.0	1.43	5,938	1.61	76
25EPC0057	RPS	228.0	232.0	4.0	0.01	326	0.24	11
25EPC0057	RPS	248.0	252.0	4.0	0.40	46	0.27	10

Table 1a Notes

IF DEFENDA IISE ON IV

*Drill holes with partial assay results received / further assays pending.

Geotechnical samples from the following drillholes are currently undergoing analytical laboratory analysis and are not yet reported:

- 25MYDG018: 9 samples for a total of 5.59m.
- 25MYDG019: 2 samples for a total of 1.10m.
- 25MYDG020: 8 samples for a total of 3.77m.
- 25MYDG023: 4 samples for a total of 2.03m.

Table intersections are length-weighted assay intervals reported using the following criteria:

 $Intersection\ Interval = Nominal\ cut-off\ grade\ scenarios:$

- ≥ 0.10 ppm (g/t) gold; and/or
- ≥ 300 ppm (0.03%) copper (Discovery drilling) or ≥ 400 ppm (0.04%) copper (PFS / Growth drilling); and/or
- ≥ 0.70 ppm (g/t) silver; and/or
- ≥ 400 ppm (0.04%) cobalt.
- No top-cutting has been applied to these individual assay intervals.
- Intersections are down hole lengths, true widths not known with certainty, refer to JORC Table 1 Section 2.
- To convert ppm to percent (%) divide ppm by 10,000.

Table 1b: Minyari Project - CY2025 Air Core Drill Results

 $(\ge 1.0 \text{m})$ with gold $\ge 30 \text{ppb}$ and/or copper $\ge 200 \text{ppm}$ and/or silver $\ge 0.5 \text{ppm}$ and/or cobalt $\ge 100 \text{ppm}$)

Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (ppb)	Copper (ppm)	Silver (g/t)	Cobalt (ppm)
25TDA0145	Tim's Dome	12.0	16.0	4.0	35	23	0.01	4
25TDA0145	Tim's Dome	84.0	88.0	4.0	555	28	0.07	2
	Including	87.0	88.0	1.0	1,020	20	0.12	2
25TDA0146	Tim's Dome	0.0	8.0	8.0	288	38	0.72	8
	Including	4.0	8.0	4.0	456	29	0.45	4
5TDA0146	Tim's Dome	28.0	34.0	6.0	31	28	1.38	27
25TDA0147	Tim's Dome	88.0	124.0	36.0	224	185	0.07	24
	Including	88.0	92.0	4.0	363	245	0.07	33
	Including	112.0	116.0	4.0	607	188	0.15	22
25TDA0148	Tim's Dome	142.0	143.0	1.0	39	71	0.03	9
25TDA0149	Tim's Dome	40.0	44.0	4.0	38	7	0.02	2
25TDA0150	Tim's Dome	0.0	4.0	4.0	2	360	0.05	3
25TDA0150	Tim's Dome	12.0	24.0	12.0	9	254	0.02	13
25TDA0150	Tim's Dome	24.0	28.0	4.0	32	349	0.03	23
25TDA0150	Tim's Dome	32.0	36.0	4.0	13	244	0.03	17
25TDA0150	Tim's Dome	92.0	126.0	34.0	229	1,426	0.28	127
.51DA0150	Including	96.0	100.0	4.0	453	2,090	0.40	20
						•		
NETD 40454	Including	112.0	116.0	4.0	1,110	859	0.35	52
25TDA0151	Tim's Dome	28.0	32.0	4.0	10	292	0.01	14
25TDA0151	Tim's Dome	92.0	100.0	8.0	8	280	0.16	13
25TDA0152	Tim's Dome	76.0	80.0	4.0	46	58	0.03	4
25TDA0152	Tim's Dome	96.0	97.0	1.0	123	427	0.30	790
25TDA0153	Tim's Dome	36.0	40.0	4.0	1	14	0.60	14
25TDA0153	Tim's Dome	144.0	148.0	4.0	5	237	0.03	7
25TDA0154	Tim's Dome	40.0	52.0	12.0	50	51	0.02	17
25TDA0155	Tim's Dome	0.0	4.0	4.0	34	30	0.01	8
25TDA0155	Tim's Dome	20.0	24.0	4.0	38	56	0.01	10
25TDA0155	Tim's Dome	32.0	40.0	8.0	18	296	0.01	14
25TDA0155	Tim's Dome	40.0	56.0	16.0	73	283	0.01	14
	Including	48.0	52.0	4.0	107	226	0.01	14
25TDA0155	Tim's Dome	56.0	60.0	4.0	21	207	0.01	16
25TDA0155	Tim's Dome	60.0	64.0	4.0	30	91	0.01	12
25TDA0156	Tim's Dome	0.0	4.0	4.0	29	20	0.61	6
25TDA0156	Tim's Dome	4.0	8.0	4.0	126	44	1.40	86
25TDA0156	Tim's Dome	28.0	32.0	4.0	5	97	31.30	797
25TDA0156	Tim's Dome	28.0	32.0	4.0	5	97	31.30	797
25TDA0156	Tim's Dome	32.0	44.0	12.0	83	96	0.73	9
.51DA0150	Including	32.0	36.0	4.0	162	71	1.16	7
25TDA0156	Tim's Dome	60.0	64.0	4.0	31	116	0.04	20
25TDA0156	Tim's Dome	115.0	116.0	1.0	8	601	0.04	30
	Tim's Dome	24.0	36.0	12.0	1	35	2.00	2
25TDA0157 25TDA0158								
	Tim's Dome	12.0	16.0	4.0	3	33	0.92	9
25TDA0158	Tim's Dome	80.0	84.0	4.0	358	85	0.04	11
25TDA0158	Tim's Dome	92.0	96.0	4.0	31	210	0.11	8
25TDA0158	Tim's Dome	104.0	108.0	4.0	51	101	0.03	8
25TDA0158	Tim's Dome	136.0	140.0	4.0	48	16	0.01	7
25TDA0158	Tim's Dome	196.0	201.0	5.0	48	173	0.13	11
25TDA0159	Tim's Dome	0.0	4.0	4.0	2	11	0.72	2
25TDA0159	Tim's Dome	68.0	72.0	4.0	16	211	0.01	16
25TDA0159	Tim's Dome	72.0	84.0	12.0	9	154	1.79	9
25TDA0159	Tim's Dome	84.0	92.0	8.0	116	181	0.09	10
	Including	84.0	88.0	4.0	194	174	0.04	9
25TDA0159	Tim's Dome	92.0	96.0	4.0	8	354	0.04	11
-0.1-7.10-00				4.0	27	229	0.00	15
25TDA0159	Tim's Dome	100.0	104.0	4.0	27	229	0.08	13
	Tim's Dome Tim's Dome	116.0	104.0	4.0	33	159	0.08	23

	Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (ppb)	Copper (ppm)	Silver (g/t)	Cobal (ppm)
	25TDA0159	Tim's Dome	179.0	180.0	1.0	27	260	0.13	24
	25TDA0161	Tim's Dome	12.0	16.0	4.0	0	5	0.52	4
	25TDA0161	Tim's Dome	68.0	72.0	4.0	38	57	0.04	8
	25TDA0162	Tim's Dome	4.0	8.0	4.0	5	36	38.40	719
- 1	25TDA0162	Tim's Dome	4.0	8.0	4.0	5	36	38.40	719
$=$ \lfloor	25TDA0162	Tim's Dome	24.0	28.0	4.0	56	89	0.22	17
[25TDA0162	Tim's Dome	56.0	60.0	4.0	25	215	0.01	9
_'	25TDA0162	Tim's Dome	84.0	88.0	4.0	35	61	0.29	7
2) [25TDA0162	Tim's Dome	88.0	92.0	4.0	6	112	0.12	1,860
-//[25TDA0163	Tim's Dome	0.0	4.0	4.0	3	14	0.93	4
	25TDA0163	Tim's Dome	36.0	40.0	4.0	6	327	0.15	33
	25TDA0163	Tim's Dome	64.0	72.0	8.0	106	167	0.03	8
5	25TDA0163	Tim's Dome	92.0	96.0	4.0	69	78	0.08	6
$\cup \cap$	25TDA0163	Tim's Dome	143.0	144.0	1.0	6	602	0.06	56
≤ 1	25TDA0164	Tim's Dome	0.0	4.0	4.0	1	10	0.82	1
\cap) L	25TDA0164	Tim's Dome	56.0	60.0	4.0	42	181	0.05	5
2	25TDA0164	Tim's Dome	60.0	64.0	4.0	12	244	0.04	7
7	25TDA0164	Tim's Dome	72.0	88.0	16.0	21	685	0.07	2
		Including	80.0	88.0	8.0	23	1,201	0.09	2
	25TDA0164	Tim's Dome	155.0	156.0	1.0	6	260	0.02	6
	25TDA0165	Tim's Dome	0.0	16.0	16.0	8	12	0.77	2
[25TDA0165	Tim's Dome	24.0	28.0	4.0	35	140	0.07	9
	25TDA0165	Tim's Dome	36.0	40.0	4.0	11	55	1.03	4
	25TDA0165	Tim's Dome	44.0	60.0	16.0	3	334	0.05	26
\cup	25TDA0165	Tim's Dome	64.0	96.0	32.0	155	109	0.06	5
		Including	76.0	80.0	4.0	443	51	0.04	2
	25TDA0165	Tim's Dome	100.0	104.0	4.0	54	39	0.02	2
	25TDA0166	Tim's Dome	32.0	36.0	4.0	34	44	0.12	3
-	25TDA0166	Tim's Dome	44.0	48.0	4.0	55	276	0.07	23
-))[25TDA0166	Tim's Dome	72.0	76.0	4.0	40	35	0.07	1
	25TDA0166	Tim's Dome	112.0	120.0	8.0	189	18	0.15	1
)) [Including	116.0	120.0	4.0	284	17	0.17	2
<i>IJ</i>	25TDA0166	Tim's Dome	148.0	168.0	20.0	83	66	0.18	123
		Including	164.0	168.0	4.0	178	51	0.13	4
_	25TDA0167	Tim's Dome	84.0	88.0	4.0	167	51	0.02	6
5	25TDA0167	Tim's Dome	128.0	132.0	4.0	37	110	0.09	10
<i>))</i> [25TDA0169	Tim's Dome	60.0	64.0	4.0	59	148	0.71	10
	25TDA0170	Tim's Dome	48.0	52.0	4.0	133	20	0.02	1
	25TDA0170	Tim's Dome	72.0	77.0	5.0	86	153	1.46	4
74	25TDA0171	Tim's Dome	16.0	20.0	4.0	2	17	0.51	10
	25TDA0171	Tim's Dome	56.0	64.0	8.0	15	254	0.09	28
	25TDA0171	Tim's Dome	92.0	96.0	4.0	14	314	0.08	13
	25TDA0171	Tim's Dome	100.0	111.0	11.0	43	91	0.70	3
_ [25TDA0172	Tim's Dome	0.0	20.0	20.0	1	7	0.76	2
2)	25TDA0172	Tim's Dome	148.0	149.0	1.0	33	77	0.03	16
71	25TDA0173	Tim's Dome	0.0	4.0	4.0	9	14	0.66	3
	25TDA0173	Tim's Dome	16.0	20.0	4.0	14	8	0.67	8
	25TDA0173	Tim's Dome	20.0	24.0	4.0	31	10	0.14	1
	25TDA0173	Tim's Dome	28.0	32.0	4.0	95	29	0.55	78
- 1	2012/102/0	Including	31.0	32.0	1.0	279	17	0.25	2
	25TDA0174	Tim's Dome	0.0	4.0	4.0	5	6	0.82	1
-	25TDA0174 25TDA0174	Tim's Dome	28.0	29.0	1.0	14	64	19.40	1,360
			76.0	100.0	24.0	89	128	0.17	6
		lim's lioma	, 0.0		4.0	275	227	0.17	4
	25TDA0175	Tim's Dome	22 A	4/11		413	441	U.U/	4
		Including	88.0 96.0	92.0					
-	25TDA0175	Including Including	96.0	100.0	4.0	124	295	0.66	19
	25TDA0175 25TDA0175	Including Including Tim's Dome	96.0 100.0	100.0 104.0	4.0 4.0	124 5	295 284	0.66 0.06	19 2
-	25TDA0175	Including Including	96.0	100.0	4.0	124	295	0.66	19

	Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (ppb)	Copper (ppm)	Silver (g/t)	Cobalt (ppm)
	25TDA0176	Tim's Dome	28.0	32.0	4.0	40	76	0.20	16
	25TDA0176	Tim's Dome	48.0	52.0	4.0	61	75	0.26	11
	25TDA0176	Tim's Dome	56.0	60.0	4.0	9	208	1.18	42
	25TDA0176	Tim's Dome	64.0	68.0	4.0	4	187	0.37	139
	25TDA0176	Tim's Dome	104.0	108.0	4.0	33	171	0.07	17
	25TDA0177	Tim's Dome	4.0	8.0	4.0	485	124	0.77	2
	25TDA0177	Tim's Dome	8.0	12.0	4.0	3	73	4.34	6
	25TDA0178	Tim's Dome	12.0	24.0	12.0	37	43	0.30	2
	25TDA0178	Tim's Dome	36.0	40.0	4.0	52	45	0.33	2
))	25TDA0178 25TDA0178	Tim's Dome	46.0	47.0	1.0	3	122	0.50	18
	25TDA0178	Tim's Dome	56.0	57.0	1.0	2	161	0.96	6
	25TDA0178	Tim's Dome	61.0	62.0	1.0	3	222	0.30	6
					3.0		364		29
	25TDA0178	Tim's Dome	66.0	69.0		6		2.49	
7		Including	66.0	67.0	1.0	7	907	5.76	70
	25TDA0178	Tim's Dome	71.0	77.0	6.0	4	288	0.12	16
	25TDA0179	Tim's Dome	24.0	36.0	12.0	5	34	2.34	7
	25TDA0179	Tim's Dome	48.0	52.0	4.0	1	35	0.69	2
	25TDA0179	Tim's Dome	52.0	56.0	4.0	88	40	0.13	2
	25TDA0179	Tim's Dome	80.0	84.0	4.0	58	92	2.88	7
	25TDA0180	Tim's Dome	0.0	8.0	8.0	4	32	1.02	3
	25TDA0180	Tim's Dome	16.0	20.0	4.0	29	11	2.49	4
- [25TDA0180	Tim's Dome	20.0	24.0	4.0	1,280	50	0.17	12
1	25TDA0180	Tim's Dome	28.0	32.0	4.0	8	23	0.61	3
	25TDA0180	Tim's Dome	77.0	84.0	7.0	5	47	0.53	11
П	25TDA0181	Tim's Dome	68.0	76.0	8.0	58	18	0.03	1
	25TDA0183	Tim's Dome	4.0	5.0	1.0	55	92	0.31	5
1	25TDA0183	Tim's Dome	5.0	6.0	1.0	17	41	3.30	44
	25TDA0183	Tim's Dome	9.0	11.0	2.0	4	34	0.70	4
ŀ	25TDA0183	Tim's Dome	36.0	44.0	8.0	76	113	0.06	9
	25TDA0183	Tim's Dome	48.0	57.0	9.0	46	182	0.10	14
ŀ						63	53	0.10	2
	25TDA0183	Tim's Dome	82.0	83.0	1.0				
	25TDA0183	Tim's Dome	83.0	84.0	1.0	3	230	0.03	9
	25TDA0183	Tim's Dome	87.0	92.0	5.0	13	796	0.13	19
	25TDA0184	Tim's Dome	0.0	20.0	20.0	260	37	1.09	3
		Including	4.0	12.0	8.0	548	37	1.81	2
	25TDA0184	Tim's Dome	20.0	24.0	4.0	29	183	32.60	575
	25TDA0184	Tim's Dome	32.0	36.0	4.0	36	13	0.30	1
	25TDA0184	Tim's Dome	36.0	37.0	1.0	28	115	0.65	3
) [25TDA0185	Tim's Dome	0.0	4.0	4.0	5	32	1.19	12
	25TDA0185	Tim's Dome	44.0	64.0	20.0	9	770	0.08	32
		Including	56.0	64.0	8.0	15	1,316	0.10	31
	25TDA0185	Tim's Dome	64.0	72.0	8.0	325	376	0.15	7
<u> </u>		Including	64.0	68.0	4.0	505	608	0.16	8
	25TDA0186	Tim's Dome	8.0	12.0	4.0	35	24	0.10	2
	25TDA0186	Tim's Dome	16.0	37.0	21.0	4	56	3.77	8
4	25TDA0187	Tim's Dome	0.0	4.0	4.0	64	38	0.59	3
ı	25TDA0187	Tim's Dome	8.0	20.0	12.0	8	27	4.80	8
	25TDA0187	Tim's Dome	28.0	32.0	4.0	40	44	1.18	13
- l	25TDA0187	Tim's Dome	40.0	56.0	16.0	9	108	2.06	19
ı	25TDA0188	Tim's Dome	0.0	8.0	8.0	102	23	0.58	2
ŀ	25TDA0188	Tim's Dome	28.0	42.0	14.0	3	30	4.28	146
		Tim's Dome	42.0	43.0	1.0		21	0.08	
ŀ	25TDA0188								1
	25TDA0189	Tim's Dome	20.0	23.0	3.0	10	22	2.53	4
-	25TDA0190	Tim's Dome	112.0	116.0	4.0	5	15	1.57	6
	25TDA0191	Tim's Dome	108.0	112.0	4.0	2	11	0.55	2
	25TDA0191	Tim's Dome	116.0	120.0	4.0	3	264	0.02	3
	25TDA0192	Tim's Dome	0.0	4.0	4.0	2	23	0.62	4
	25TDA0192	Tim's Dome	12.0	20.0	8.0	5	39	2.68	40
- 1	25TDA0193	Tim's Dome	0.0	48.0	48.0	3	37	0.92	5

	Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (ppb)	Copper (ppm)	Silver (g/t)	Cobalt (ppm)
	25TDA0194	Tim's Dome	0.0	8.0	8.0	7	22	0.72	2
	25TDA0194	Tim's Dome	16.0	20.0	4.0	118	9	0.47	1
	25TDA0194	Tim's Dome	20.0	56.0	36.0	2	19	0.85	12
I	25TDA0195	Tim's Dome	16.0	23.0	7.0	22	25	2.27	27
	25TDA0196	Tim's Dome	0.0	8.0	8.0	13	516	0.76	28
Г	25TDA0197	Tim's Dome	0.0	4.0	4.0	3	68	1.57	11
	25TDA0197	Tim's Dome	4.0	12.0	8.0	3	796	0.21	11
Г	25TDA0197	Tim's Dome	28.0	32.0	4.0	37	271	0.06	4
	25TDA0197	Tim's Dome	32.0	36.0	4.0	18	321	0.10	8
г	25TDA0197	Tim's Dome	36.0	56.0	20.0	62	378	0.07	32
	25TDA0197	Tim's Dome	56.0	60.0	4.0	17	470	0.12	20
F	25TDA0197	Tim's Dome	60.0	68.0	8.0	53	1,284	0.15	24
	25TDA0197	Tim's Dome	68.0	123.0	55.0	12	359	0.15	19
H									
H	25TDA0198	Tim's Dome	12.0	16.0	4.0	33	47	0.01	2
	25TDA0198	Tim's Dome	36.0	40.0	4.0	3	12	3.02	5
	25TDA0199	Tim's Dome	0.0	2.0	2.0	2	11	2.75	9
L	25TDA0200	Tim's Dome	0.0	8.0	8.0	7	81	7.41	223
	25TDA0201	Tim's Dome	76.0	80.0	4.0	7	32	1.01	5
	25TDA0201	Tim's Dome	84.0	92.0	8.0	35	21	9.62	243
	25TDA0201	Tim's Dome	92.0	94.0	2.0	3	20	2.91	4
	25TDA0202	Tim's Dome	4.0	8.0	4.0	2	38	0.57	3
Г	25TDA0202	Tim's Dome	36.0	40.0	4.0	3	76	0.59	2
	25TDA0203	Tim's Dome	8.0	12.0	4.0	2	22	0.85	6
Г	25TDA0203	Tim's Dome	20.0	32.0	12.0	2	27	17.62	354
	25TDA0203	Tim's Dome	52.0	56.0	4.0	1	21	0.82	8
Г	25TDA0203	Tim's Dome	60.0	64.0	4.0	32	11	0.03	3
h	25TDA0203	Tim's Dome	67.0	68.0	1.0	3	18	3.30	3
Г	25TDA0204	Tim's Dome	0.0	4.0	4.0	2	7	1.11	2
	25TDA0204	Tim's Dome	24.0	34.0	10.0	9	12	0.82	3
H	25TDA0204	Tim's Dome	0.0	4.0	4.0	135	7	0.82	2
H									
	25TDA0206	Tim's Dome	20.0	26.0	6.0	2	18	8.98	564
	25TDA0207	Tim's Dome	0.0	4.0	4.0	6	26	0.11	195
	25TDA0207	Tim's Dome	4.0	5.0	1.0	4	6	0.96	34
L	25TDA0208	Tim's Dome	0.0	4.0	4.0	1	19	1.46	10
	25TDA0209	Tim's Dome	0.0	12.0	12.0	8	231	0.48	6
L	25TDA0209	Tim's Dome	28.0	44.0	16.0	2	366	0.20	12
	25TDA0209	Tim's Dome	44.0	48.0	4.0	69	733	0.16	15
	25TDA0209	Tim's Dome	48.0	60.0	12.0	15	529	0.20	12
	25TDA0209	Tim's Dome	60.0	64.0	4.0	30	631	0.18	8
	25TDA0209	Tim's Dome	64.0	76.0	12.0	11	252	0.14	4
	25TDA0209	Tim's Dome	76.0	80.0	4.0	31	655	0.04	12
Г	25TDA0210	Tim's Dome	8.0	12.0	4.0	5	500	0.02	25
	25TDA0211	Tim's Dome	32.0	36.0	4.0	23	45	0.55	7
Г	25TDA0212	Tim's Dome	4.0	8.0	4.0	2	10	0.79	2
	25TDA0213	Tim's Dome	0.0	4.0	4.0	4	23	0.93	21
Г	25TDA0214	Tim's Dome	94.0	95.0	1.0	1	36	2.92	16
	25TDA0215	Tim's Dome	76.0	80.0	4.0	3	60	1.35	11
F	25TDA0215	Tim's Dome	128.0	132.0	4.0	2	55	1.57	25
	25MYA0523	Judes	62.0	63.0	1.0	3	246	0.10	49
H		Judes	38.0			14	69		
Н	25MYA0525			39.0	1.0			1.59	7
H	25MYA0545	AEM13	65.0	66.0	1.0	6	94	2.48	17
Н	25MYA0550	Gonzo	47.0	48.0	1.0	13	74	1.90	23
	25MYA0553	Gonzo	24.0	33.0	9.0	61	108	0.24	19
	25MYA0555	Gonzo	46.0	47.0	1.0	38	86	0.02	31
	25MYA0573	Judes	26.0	27.0	1.0	38	84	0.05	47
L	25MYA0588	Rizzo	6.0	7.0	1.0	2	19	1.82	22
	25MYA0591	Rizzo	4.0	5.0	1.0	1	21	0.65	25
ſ	25MYA0597	Plains Dome	28.0	32.0	4.0	2	96	0.03	108
	25MYA0597	Plains Dome	56.0	58.0	2.0	1	68	0.62	28

Hole ID	Deposit/ Prospect	From (m)	To (m)	Interval (m)	Gold (ppb)	Copper (ppm)	Silver (g/t)	Cobalt (ppm)
25MYA0601	Plains Dome	32.0	36.0	4.0	5	35	0.83	14
25MYA0601	Plains Dome	44.0	47.0	3.0	3	56	1.07	115
25MYA0603	Plains Dome	0.0	4.0	4.0	1	24	1.16	14
25MYA0604	Plains Dome	36.0	40.0	4.0	3	22	15.35	392
25MYA0605	Plains Dome	0.0	4.0	4.0	1	15	0.52	9
25MYA0606	Plains Dome	20.0	24.0	4.0	1	8	0.59	9
25MYA0607	Plains Dome	12.0	16.0	4.0	1	10	0.73	9
25MYA0608	Plains Dome	4.0	7.0	3.0	1	7	1.41	9
25MYA0609	Plains Dome	40.0	44.0	4.0	1	10	1.07	10
25MYA0611	Plains Dome	0.0	8.0	8.0	1	12	0.88	6
25MYA0614	Plains Dome	72.0	74.0	2.0	12	62	3.97	14
25MYA0616	Plains Dome	0.0	4.0	4.0	5	55	0.15	279
25MYA0617	Plains Dome	16.0	17.0	1.0	1	7	0.64	13
25MYA0627	Plains Dome	48.0	52.0	4.0	1	20	0.76	32
25MYA0634	Plains Dome	0.0	4.0	4.0	2	134	1.32	8
25MYA0634	Plains Dome	4.0	9.0	5.0	6	405	0.17	37
25MYA0635	Plains Dome	28.0	30.0	2.0	3	140	1.11	45
25MYA0636	Plains Dome	0.0	4.0	4.0	5	26	0.69	9
25MYA0638	Plains Dome	76.0	78.0	2.0	3	44	0.74	23
25MYA0638	Plains Dome	78.0	79.0	1.0	3	49	28.70	1,170
25MYA0639	Plains Dome	20.0	24.0	4.0	1	14	1.83	11
25MYA0642	Plains Dome	40.0	52.0	12.0	0	238	0.04	15
25MYA0643	Plains Dome	24.0	28.0	4.0	0	106	0.04	101
25MYA0644	Plains Dome	4.0	8.0	4.0	1	8	0.57	9
25MYA0644	Plains Dome	47.0	48.0	1.0	1	17	0.60	119
25MYA0645	Plains Dome	8.0	10.0	2.0	1	8	1.42	19
25MYA0652	Plains Dome	7.0	8.0	1.0	5	61	60.10	1,175
25MYA0653	Plains Dome	37.0	38.0	1.0	2	35	0.96	55
25MYA0654	Plains Dome	36.0	43.0	7.0	1	53	13.51	290
25MYA0656	Plains Dome	8.0	12.0	4.0	4	52	41.50	730
25MYA0659	Plains Dome	17.0	18.0	1.0	3	137	2.21	99
25MYA0660	Plains Dome	37.0	38.0	1.0	5	30	3.53	92
25MYA0662	Plains Dome	67.0	68.0	1.0	1	34	0.54	12
25MYACBH06	Water Bore RPS	104.0	105.0	1.0	1	206	0.04	6
25MYACBH09	Water Bore RPS	83.0	84.0	1.0	2	44	1.18	14

Table 1b Notes:

Drill Hole Collar Table above - Refer to JORC Table 1 Section 1 for full drill hole information; including drill technique, sampling, and analytical technique/s.

Table 2a: Minyari Project – CY2025 Exploration and PFS Drilling Programmes
Reverse Circulation (RC) and Diamond Core (DD) Drill Hole Collar Locations (MGA Zone 51/GDA2020)

		•		• •			•	-		•
Hole ID	Programme	Target/Deposit	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
25MYC0875	PFS ResDef	Fiama	RC	7,633,639	424,261	280	240.0	178	-58	Received
25MYC0876	PFS ResDef	Fiama	RC	7,633,492	424,147	280	240.0	004	-64	Received
25MYC0880	PFS ResDef	Fiama	RC	7,633,576	424,048	281	264.0	181	-59	Received
25MYC0881	PFS ResDef	Fiama	RC	7,633,708	424,101	282	324.0	182	-61	Received
25MYC0882	PFS ResDef	Fiama	RC	7,633,582	424,075	282	264.0	180	-60	Received
25MYC0883	PFS Sterilisation	Minyari	RC	7,635,825	422,029	277	84.0	058	-55	Received
25MYC0884	PFS Sterilisation	Minyari	RC	7,635,721	421,862	273	84.0	058	-55	Received
25MYC0885	PFS Sterilisation	Minyari	RC	7,635,616	421,694	272	84.0	058	-53	Received
25MYC0886	PFS Sterilisation	Minyari	RC	7,635,506	421,525	271	84.0	060	-54	Received
25MYC0887	PFS Sterilisation	Minyari	RC	7,635,402	421,361	270	84.0	059	-54	Received
25MYC0888	PFS Sterilisation	Minyari	RC	7,635,751	422,196	275	84.0	058	-54	Received
25MYC0889	PFS Sterilisation	Minyari	RC	7,635,653	422,023	275	84.0	059	-56	Received
25MYC0890	PFS Sterilisation	Minyari	RC	7,635,536	421,862	273	84.0	059	-55	Received
25MYC0891	PFS Sterilisation	Minyari	RC	7,635,432	421,691	271	84.0	060	-56	Received
25MYC0892	PFS Sterilisation	Minyari	RC	7,635,324	421,520	271	84.0	061	-56	Received
25MYC0893	PFS Sterilisation	Minyari	RC	7,635,573	422,200	276	84.0	065	-56	Received
25MYC0894	PFS Sterilisation	Minyari	RC	7,635,470	422,029	274	84.0	062	-56	Received
25MYC0895	PFS Sterilisation	Minyari	RC	7,635,359	421,851	272	84.0	058	-55	Pending
25MYC0896	PFS Sterilisation	Minyari	RC	7,635,259	421,682	271	84.0	058	-55	Pending
25MYC0897	PFS Sterilisation	Minyari	RC	7,635,140	421,516	271	84.0	058	-55	Pending
25MYC0898	PFS Sterilisation	Minyari	RC	7,635,072	421,682	272	84.0	058	-55	Pending
25MYC0899	Growth	Chicane	RC	7,635,100	422,667	280	150	240	-61	Pending
25MYC0900	Growth	Chicane	RC	7,635,156	422,750	280	150	239	-60	Pending
25MYC0901	Growth	Chicane	RC	7,635,021	422,542	280	150	059	-60	Pending
25MYC0902	Growth	Chicane	RC	7,635,128	422,521	280	150	063	-71	Pending
25MYC0903	Growth	Chicane	RC	7,635,167	422,475	280	150	063	-60	Pending
25MYC0903	PFS Sterilisation	Minyari Dome	RC	7,635,167	422,475	280	150	063	-60	Pending
25MYC0904	PFS Sterilisation	Minyari Dome	RC	7,635,161	422,018	274	84	060	-57	Pending
25MYC0905	PFS Sterilisation	Minyari Dome	RC	7,634,967	421,871	269	84	000	-90	Pending
25MYC0906	PFS Sterilisation	Minyari Dome	RC	7,634,851	421,704	272	84	063	-55	Pending
25MYC0907	PFS Sterilisation	Minyari Dome	RC	7,635,153	422,345	279	84	059	-54	Pending
25MYC0908	PFS Sterilisation	Minyari Dome	RC	7,635,051	422,202	234	84	059	-54	Pending
25MYC0909	PFS Sterilisation	Minyari Dome	RC	7,634,716	422,023	275	84	059	-56	Pending
25MYC0910	PFS Sterilisation	Minyari Dome	RC	7,634,609	421,848	280	84	000	-90	Pending
25MYC0911	PFS Sterilisation	Minyari Dome	RC	7,634,504	421,685	272	84	066	-55	Pending
25MYC0912	PFS Sterilisation	Minyari Dome	RC	7,634,111	422,056	280	60	000	-90	Pending
25MYC0913	PFS Sterilisation	Minyari Dome	RC	7,633,754	422,395	280	60	000	-90	Pending
25MYC0914	PFS Sterilisation	Minyari Dome	RC	7,633,424	422,718	280	60	000	-90	Pending
25MYC0915	PFS Sterilisation	Minyari Dome	RC	7,600,002	400,001	280	60	000	-90	Pending
25EPC0034	Discovery	RPS	RC	7,671,330	415,774	301	150	060	-60	Received
25EPC0035	Discovery	RPS	RC	7,671,292	415,705	299	150	060	-60	Received

Hole ID	Programme	Target/Deposit	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
25EPC0036	Discovery	RPS	RC	7,671,242	415,619	296	294	060	-60	Received
25EPC0037	Discovery	RPS	RC	7,671,189	415,539	295	240	058	-61	Received
25EPC0038	Discovery	RPS	RC	7,671,394	415,728	299	180	059	-60	Received
25EPC0039	Discovery	RPS	RC	7,671,341	415,644	299	294	062	-60	Received
25EPC0040	Discovery	RPS	RC	7,671,456	415,623	299	66	060	-60	Pending
25EPC0040A	Discovery	RPS	RC	7,671,456	415,623	299	66	060	-60	Received
25EPC0041	Discovery	RPS	RC	7,671,183	415,816	295	210	059	-62	Received
25EPC0042	Discovery	RPS	RC	7,671,146	415,751	295	180	061	-61	Received
25EPC0043	Discovery	RPS	RC	7,671,111	415,683	297	180	059	-61	Received
25EPC0044	Discovery	RPS	RC	7,671,117	415,871	294	150	062	-61	Received
25EPC0045	Discovery	RPS	RC	7,671,067	415,788	297	222	062	-61	Received
25EPC0046	Discovery	RPS	RC	7,670,963	415,970	297	180	059	-61	Received
25EPC0047	Discovery	RPS	RC	7,670,618	416,145	297	150	063	-60	Received
25EPC0048	Discovery	RPS	RC	7,670,585	416,079	300	210	060	-60	Received*
25EPC0049	Discovery	RPS	RC	7,670,692	416,113	300	162	060	-60	Pending
25EPC0050	Discovery	RPS	RC	7,670,655	416,048	298	60	060	-60	Pending
25EPC0051	Discovery	RPS	RC	7,670,737	416,028	295	240	062	-60	Pending
25EPC0052	Discovery	RPS	RC	7,670,793	415,972	298	240	058	-59	Received
25EPC0052A	Discovery	RPS	RC	7,670,793	415,973	298	96	060	-60	Abandoned
25EPC0053	Discovery	RPS	RC	7,670,926	415,897	299	240	057	-60	Pending
25EPC0054	Discovery	RPS	RC	7,670,470	416,204	302	180	063	-60	Pending
25EPC0055	Discovery	RPS	RC	7,670,308	416,177	299	234	065	-60	Pending
25EPC0056	Discovery	RPS	RC	7,670,203	416,261	301	150	061	-60	Pending
25EPC0057	Discovery	RPS	RC	7,670,420	416,118	302	270	061	-70	Received
25EPCBH001	Water Bore	RPS	RC	7,672,588	414,413	54	280	000	-90	Received
25MYD0540	Discovery	Minyari Deeps	DD	7,635,377	423,028	275	1,315.1	312	-86	Received
25MYD0544	Growth	Minyari	DD	7,635,426	422,950	279	564.2	024	-65	Received
25MYD0544W1	Growth	Minyari	DD	-	-	-	690.2	041	-40	Pending
25MYD0551	PFS ResDef	Minyari	DD	7,635,638	422,812	277	108.0	142	-76	Pending
25MYD0552	PFS ResDef	Minyari	DD	7,635,680	422,786	277	832.6	145	-72	Received
25MYD0552W1	PFS ResDef	Minyari	DD	-	-		541.4	145	-60	Pending
25MYD0552W2	PFS ResDef	Minyari	DD	-	-	-	742.3	142	-50	Received
25MYD0552W3	PFS ResDef	Minyari	DD	_	_	_	787.8	145	-53	Received
25MYD0552W4	PFS ResDef	Minyari	DD	-	-	-	713.7	155	-50	Received
25MYD0553	Discovery	Minyari Offset Nth	DD	7,635,986	422,863	278	806.5	158	-74	Pending*
25MYD0554	Discovery	GEO-01 MZ	DD	7,634,023	423,674	280	403.6	166	-77	Received
25MYDG004	PFS Geotech	Minyari	DD	7,635,572	422,714	277	603.7	124	-57	Pending*
25MYDG005	PFS Geotech	Minyari	DD	7,635,547	423,157	278	179.3	240	-61	Pending*
25MYDG006	PFS Geotech	Minyari	DD	7,635,651	422,947	278	318.2	180	-64	Pending*
25MYDG000	PFS Geotech	Minyari South	DD	7,634,940	422,947	279	64.1	059	-53	Pending
25MYDG010 25MYDG011	PFS Geotech	WACA	DD	7,634,578	422,794	283	139.1	158	-73	Pending
25MYDG011 25MYDG018	PFS Geotech	GEO-01 MZ	DD	7,634,378	423,627	279	154.2	035	-64	Received*
25MYDG018 25MYDG019	PFS Geotech	GEO-01 MZ	DD			280	154.2	170		
231/11/10013	ri 3 deolecii	GLO-01 IVIZ	טט	7,633,972	423,690	200	137.1	1/0	-67	Received

Hole ID	Programme	Target/Deposit	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
25MYDG020	PFS Geotech	Fiama	DD	7,633,410	424,183	281	300.2	001	-56	Received*
25MYDG022	PFS Geotech	Minyari	DD	7,635,518	423,382	279	348	280	-62	Received
25MYDG023	PFS Geotech	Minyari	DD	7,633,490	424,089	281	117	228	-71	Received*
25MYDG028	PFS Geotech	Minyari	DD	7,635,588	422,585	273	241	096	-57	Pending
25MYDG030	PFS Geotech	Minyari	DD	7,635,743	422,907	277	331	178	-65	Pending
25MYDG032	PFS Geotech	Fiama	DD	7,633,676	423,977	278	233.3	120	-50	Pending
25MYDG033	PFS Geotech	Fiama	DD	7,633,687	424,222	280	173	224	-55	Pending
25MYDG034	PFS Geotech	Fiama	DD	7,633,454	423,996	277	215.2	054	-56	Pending

Received*/ Pending* = Partially received / Pending partial results.

Drill Hole Collar Table above - Refer to JORC Table 1 Section 1 for full drill hole information; including drill technique, sampling, and analytical technique/s.

- RC = Reverse Circulation;
- DD = Diamond Core; and
- ${\it DD Tail = Diamond\ Core\ depth\ extension\ of\ a\ pre-existing\ RC\ or\ DD\ drill\ hole.}$

Resource Growth-Focused Drill Programme = Growth.

Discovery-Focused Drill Programme = Discovery.

Pre-feasibility Study (PFS) Drill Programme = PFS.

Table 2b: Minyari Project - CY2025 Exploration Programme Air Core (AC) Drill Hole Collar Locations (MGA Zone 51/GDA2020)

1			lyari Project Il Hole Colla		•	•			
Hole ID	Target/Deposit	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
25MYA0523*	Judes	AC	7,636,413	422,339	272	63	000	-90	Receive
25MYA0525*	Judes	AC	7,636,464	422,420	273	39	000	-90	Receiv
25MYA0541	East Flank	AC	7,635,201	423,978	288	66	000	-90	Receiv
25MYA0542	East Flank	AC	7,635,180	423,933	287	48	000	-90	Receive
25MYA0543	East Flank	AC	7,635,160	423,893	285	24	000	-90	Receiv
25MYA0544	East Flank	AC	7,635,129	423,848	284	15	000	-90	Receiv
25MYA0545	East Flank	AC	7,635,258	424,036	290	66	000	-90	Receiv
25MYA0546	East Flank	AC	7,635,401	423,700	286	94	000	-90	Receiv
25MYA0547	Judes	AC	7,636,247	421,420	269	35	000	-90	Receiv
25MYA0548	Judes	AC	7,636,259	421,374	269	35	000	-90	Receiv
25MYA0549	Judes	AC	7,636,265	421,329	269	41	000	-90	Receiv
25MYA0550	Judes	AC	7,636,313	421,119	267	48	000	-90	Receiv
25MYA0551	Judes	AC	7,636,293	421,072	266	31	000	-90	Receiv
25MYA0552	Judes	AC	7,636,634	421,857	269	39	000	-90	Receiv
25MYA0553	Judes	AC	7,636,606	421,816	269	33	000	-90	Receiv
25MYA0555	Judes	AC	7,636,554	421,730	269	47	000	-90	Receiv
25MYA0556	Judes	AC	7,636,526	421,690	269	45	000	-90	Receiv
25MYA0557	Judes	AC	7,636,499	421,648	268	33	000	-90	Receiv
25MYA0558	Judes	AC	7,636,476	421,604	268	36	000	-90	Receiv
25MYA0559	Judes	AC	7,636,455	421,570	269	35	000	-90	Receiv
25MYA0560	Judes	AC	7,637,026	421,329	268	80	000	-90	Receiv
25MYA0561	Judes	AC	7,637,052	421,372	268	81	000	-90	Receiv
25MYA0573*	Judes	AC	7,636,117	422,315	273	27	000	-90	Receiv
25MYA0588*	Rizzo	AC	7,632,451	424,249	276	7	000	-90	Receiv

Hole ID	Target/Deposit	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
25MYA0591*	Rizzo	AC	7,632,514	423,771	274	5	000	-90	Received
25TDA0145	Tim's Dome	AC	7,607,781	403,652	301	88	000	-90	Received
25TDA0146	Tim's Dome	AC	7,607,816	403,752	300	35	000	-90	Received
25TDA0147	Tim's Dome	AC	7,607,892	403,828	298	129	000	-90	Received
25TDA0148	Tim's Dome	AC	7,607,947	403,915	297	143	000	-90	Received
25TDA0149	Tim's Dome	AC	7,608,091	404,044	296	175	000	-90	Received
25TDA0150	Tim's Dome	AC	7,607,562	404,138	292	126	000	-90	Received
25TDA0151	Tim's Dome	AC	7,607,480	404,059	295	103	000	-90	Received
25TDA0152	Tim's Dome	AC	7,607,420	403,995	291	97	000	-90	Received
25TDA0153	Tim's Dome	AC	7,607,652	404,444	292	171	000	-90	Received
25TDA0154	Tim's Dome	AC	7,607,498	404,281	290	95	000	-90	Received
25TDA0155	Tim's Dome	AC	7,607,418	404,211	293	106	000	-90	Received
25TDA0156	Tim's Dome	AC	7,607,354	404,140	293	116	000	-90	Received
25TDA0157	Tim's Dome	AC	7,607,247	404,448	289	93	000	-90	Received
25TDA0158	Tim's Dome	AC	7,607,173	404,364	292	201	000	-90	Received
25TDA0159	Tim's Dome	AC	7,607,105	404,298	295	180	000	-90	Received
25TDA0160	Tim's Dome	AC	7,607,019	404,233	293	99	000	-90	Received
25TDA0161	Tim's Dome	AC	7,607,114	404,661	291	151	000	-90	Received
25TDA0162	Tim's Dome	AC	7,607,044	404,589	294	98	000	-90	Received
25TDA0163	Tim's Dome	AC	7,606,981	404,529	292	144	000	-90	Received
25TDA0164	Tim's Dome	AC	7,606,281	404,642	293	156	000	-90	Received
25TDA0165	Tim's Dome	AC	7,606,353	404,716	294	169	000	-90	Received
25TDA0166	Tim's Dome	AC	7,606,416	404,784	296	183	000	-90	Received
25TDA0167	Tim's Dome	AC	7,606,501	404,877	294	180	000	-90	Received
25TDA0168	Tim's Dome	AC	7,606,243	405,039	294	162	000	-90	Received
25TDA0169	Tim's Dome	AC	7,607,961	403,534	304	78	000	-90	Received
25TDA0170	Tim's Dome	AC	7,608,028	403,602	300	77	000	-90	Received
25TDA0171	Tim's Dome	AC	7,608,102	403,695	298	111	000	-90	Received
25TDA0172	Tim's Dome	AC	7,608,227	403,819	294	150	000	-90	Received
25TDA0173	Tim's Dome	AC	7,608,330	403,195	301	32	000	-90	Received
25TDA0174	Tim's Dome	AC	7,608,396	403,260	302	29	000	-90	Received
25TDA0175	Tim's Dome	AC	7,608,526	403,397	297	111	000	-90	Received
25TDA0176	Tim's Dome	AC	7,608,676	403,559	293	111	000	-90	Received
25TDA0177	Tim's Dome	AC	7,608,470	402,983	307	14	000	-90	Received
25TDA0178	Tim's Dome	AC	7,608,535	403,056	302	78	000	-90	Received
25TDA0179	Tim's Dome	AC	7,608,633	403,126	300	85	000	-90	Received
25TDA0180	Tim's Dome	AC	7,608,676	403,194	297	114	000	-90	Received
25TDA0181	Tim's Dome	AC	7,608,744	403,263	294	117	000	-90	Received
25TDA0182	Tim's Dome	AC	7,608,809	403,342	295	165	000	-90	Received
25TDA0183	Tim's Dome	AC	7,608,585	402,728	310	93	000	-90	Received
25TDA0184	Tim's Dome	AC	7,608,513	402,653	308	37	000	-90	Received
25TDA0185	Tim's Dome	AC	7,608,450	402,585	303	90	000	-90	Received
25TDA0186	Tim's Dome	AC	7,608,787	402,937	280	38	000	-90	Received

Hole ID	Target/Deposit	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
25TDA0187	Tim's Dome	AC	7,608,724	402,880	280	57	000	-90	Received
25TDA0188	Tim's Dome	AC	7,608,653	402,804	280	43	000	-90	Received
25TDA0189	Tim's Dome	AC	7,608,839	402,661	280	24	000	-90	Received
25TDA0190	Tim's Dome	AC	7,609,277	403,087	280	148	000	-90	Received
25TDA0191	Tim's Dome	AC	7,609,197	403,013	280	123	000	-90	Received
25TDA0192	Tim's Dome	AC	7,609,123	402,952	280	41	000	-90	Received
25TDA0193	Tim's Dome	AC	7,609,062	402,883	280	52	000	-90	Received
25TDA0194	Tim's Dome	AC	7,608,987	402,795	280	56	000	-90	Received
25TDA0195	Tim's Dome	AC	7,608,921	402,720	280	24	000	-90	Received
25TDA0196	Tim's Dome	AC	7,608,905	402,339	280	11	000	-90	Received
25TDA0197	Tim's Dome	AC	7,608,836	402,270	280	123	000	-90	Received
25TDA0198	Tim's Dome	AC	7,609,231	402,697	280	42	000	-90	Received
25TDA0199	Tim's Dome	AC	7,609,108	402,541	280	3	000	-90	Received
25TDA0200	Tim's Dome	AC	7,608,969	402,399	280	12	000	-90	Received
25TDA0201	Tim's Dome	AC	7,609,627	402,815	280	94	000	-90	Received
25TDA0202	Tim's Dome	AC	7,609,547	402,737	280	122	000	-90	Received
25TDA0203	Tim's Dome	AC	7,609,485	402,663	280	68	000	-90	Received
25TDA0204	Tim's Dome	AC	7,609,416	402,591	280	35	000	-90	Received
25TDA0205	Tim's Dome	AC	7,609,353	402,523	280	32	000	-90	Received
25TDA0206	Tim's Dome	AC	7,609,275	402,445	280	27	000	-90	Received
25TDA0207	Tim's Dome	AC	7,609,217	402,379	280	5	000	-90	Received
25TDA0208	Tim's Dome	AC	7,609,124	402,298	280	9	000	-90	Received
25TDA0209	Tim's Dome	AC	7,609,070	402,225	280	82	000	-90	Received
25TDA0210	Tim's Dome	AC	7,609,002	402,152	280	18	000	-90	Received
25TDA0211	Tim's Dome	AC	7,608,885	403,433	293	129	000	-90	Received
25TDA0212	Tim's Dome	AC	7,608,939	403,510	293	159	000	-90	Received
25TDA0213	Tim's Dome	AC	7,607,385	404,577	290	164	223	-60	Received
25TDA0214	Tim's Dome	AC	7,607,476	404,668	290	95	223	-60	Received
25TDA0215	Tim's Dome	AC	7,611,079	399,149	280	166	000	-90	Received
25TDA0216	Tim's Dome	AC	7,611,765	399,500	280	94	000	-90	Received
25TDA0217	Tim's Dome	AC	7,612,371	400,160	280	96	000	-90	Received
25TDA0218	Tim's Dome	AC	7,610,836	398,897	280	130	000	-90	Received
25MYA0594	Plains Dome	AC	7,626,140	430,571	279	39	000	-90	Received
25MYA0595	Plains Dome	AC	7,626,254	430,712	279	45	000	-90	Received
25MYA0596	Plains Dome	AC	7,626,314	430,791	280	20	000	-90	Received
25MYA0597	Plains Dome	AC	7,626,459	430,927	282	59	000	-90	Received
25MYA0598	Plains Dome	AC	7,626,709	430,413	281	28	000	-90	Received
25MYA0599	Plains Dome	AC	7,626,776	430,486	280	29	000	-90	Received
25MYA0600	Plains Dome	AC	7,626,911	430,631	282	38	000	-90	Received
25MYA0601	Plains Dome	AC	7,627,042	430,776	278	48	000	-90	Received
25MYA0602	Plains Dome	AC	7,627,172	430,923	282	33	000	-90	Received
25MYA0603	Plains Dome	AC	7,626,752	429,399	275	52	000	-90	Received
25MYA0604	Plains Dome	AC	7,626,900	429,537	278	57	000	-90	Received

Hole ID	Target/Deposit	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
25MYA0605	Plains Dome	AC	7,627,040	429,681	279	28	000	-90	Received
25MYA0606	Plains Dome	AC	7,627,174	429,822	278	35	000	-90	Received
25MYA0607	Plains Dome	AC	7,627,315	429,974	279	32	000	-90	Received
25MYA0608	Plains Dome	AC	7,627,456	430,111	280	8	000	-90	Received
25MYA0609	Plains Dome	AC	7,627,591	430,253	281	45	000	-90	Received
25MYA0610	Plains Dome	AC	7,627,733	430,401	283	94	000	-90	Received
25MYA0611	Plains Dome	AC	7,627,874	430,544	281	30	000	-90	Received
25MYA0612	Plains Dome	AC	7,628,013	430,688	282	57	000	-90	Received
25MYA0613	Plains Dome	AC	7,628,148	430,835	286	51	000	-90	Received
25MYA0614	Plains Dome	AC	7,626,961	428,884	274	75	000	-90	Received
25MYA0615	Plains Dome	AC	7,627,105	429,028	277	49	000	-90	Received
25MYA0616	Plains Dome	AC	7,627,241	429,169	277	6	000	-90	Received
25MYA0617	Plains Dome	AC	7,627,390	429,308	277	18	000	-90	Received
25MYA0618	Plains Dome	AC	7,627,518	429,455	278	11	000	-90	Received
25MYA0619	Plains Dome	AC	7,627,655	429,601	280	11	000	-90	Received
25MYA0620	Plains Dome	AC	7,627,794	429,742	280	13	000	-90	Received
25MYA0621	Plains Dome	AC	7,627,941	429,885	282	72	000	-90	Received
25MYA0622	Plains Dome	AC	7,628,086	430,067	281	35	000	-90	Received
25MYA0623	Plains Dome	AC	7,628,219	430,176	283	32	000	-90	Received
25MYA0624	Plains Dome	AC	7,627,612	429,175	281	15	000	-90	Received
25MYA0625	Plains Dome	AC	7,627,753	429,318	280	9	000	-90	Received
25MYA0626	Plains Dome	AC	7,627,891	429,460	280	8	000	-90	Received
25MYA0627	Plains Dome	AC	7,625,633	429,287	278	54	000	-90	Received
25MYA0628	Plains Dome	AC	7,625,904	429,579	271	43	000	-90	Received
25MYA0629	Plains Dome	AC	7,625,371	429,764	279	59	000	-90	Received
25MYA0630	Plains Dome	AC	7,625,508	429,908	277	42	000	-90	Received
25MYA0631	Plains Dome	AC	7,625,640	430,060	276	39	000	-90	Received
25MYA0632	Plains Dome	AC	7,625,781	430,199	278	30	000	-90	Received
25MYA0633	Plains Dome	AC	7,625,166	430,248	277	14	000	-90	Received
25MYA0634	Plains Dome	AC	7,625,305	430,392	275	9	000	-90	Received
25MYA0635	Plains Dome	AC	7,625,465	430,564	276	31	000	-90	Received
25MYA0636	Plains Dome	AC	7,625,603	430,724	279	10	000	-90	Received
25MYA0637	Plains Dome	AC	7,626,253	429,923	274	82	000	-90	Received
25MYA0638	Plains Dome	AC	7,626,356	430,047	277	79	000	-90	Received
25MYA0639	Plains Dome	AC	7,626,336	429,316	273	24	000	-90	Received
25MYA0640	Plains Dome	AC	7,626,474	429,449	273	57	000	-90	Received
25MYA0641	Plains Dome	AC	7,628,960	426,082	282	108	000	-90	Received
25MYA0642	Plains Dome	AC	7,629,289	426,298	280	78	000	-90	Received
25MYA0643	Plains Dome	AC	7,629,627	426,510	282	84	000	-90	Received
25MYA0644	Plains Dome	AC	7,627,622	426,966	274	48	000	-90	Received
25MYA0645	Plains Dome	AC	7,627,961	427,171	276	11	000	-90	Received
25MYA0646	Plains Dome	AC	7,628,303	427,388	279	15	000	-90	Received
25MYA0647	Plains Dome	AC	7,629,420	428,085	283	6	000	-90	Received

Hole ID	Target/Deposit	Hole Type	Northing (m)	Easting (m)	RL (m)	Hole Depth (m)	Azimuth (°)	Dip (°)	Assay Status
25MYA0648	Plains Dome	AC	7,629,592	428,190	285	9	000	-90	Received
25MYA0649	Plains Dome	AC	7,626,797	429,779	278	57	000	-90	Received
25MYA0650	Plains Dome	AC	7,626,935	429,923	279	46	000	-90	Received
25MYA0651	Plains Dome	AC	7,627,218	430,208	294	13	000	-90	Received
25MYA0652	Plains Dome	AC	7,627,359	430,356	283	8	000	-90	Received
25MYA0653	Plains Dome	AC	7,627,914	430,929	282	38	000	-90	Received
25MYA0654	Plains Dome	AC	7,628,054	431,075	294	44	000	-90	Received
25MYA0655	Plains Dome	AC	7,628,425	431,125	294	72	000	-90	Received
25MYA0656	Plains Dome	AC	7,628,714	431,416	294	16	000	-90	Received
25MYA0657	Plains Dome	AC	7,628,855	431,555	294	32	000	-90	Received
25MYA0658	Plains Dome	AC	7,629,132	431,850	294	30	000	-90	Received
25MYA0659	Plains Dome	AC	7,625,856	430,266	294	18	000	-90	Received
25MYA0660	Plains Dome	AC	7,625,580	429,978	294	38	000	-90	Received
25MYA0661	Plains Dome	AC	7,625,709	430,131	294	32	000	-90	Received
25MYA0662	Plains Dome	AC	7,625,369	430,467	294	68	000	-90	Received
25MYA0663	Plains Dome	AC	7,625,533	430,639	294	17	000	-90	Received
25MYA0664	Plains Dome	AC	7,626,192	430,639	280	45	000	-90	Received
25MYA0665	Plains Dome	AC	7,626,395	430,858	282	51	000	-90	Received
25MYA0666	Plains Dome	AC	7,626,642	430,347	280	51	000	-90	Received
25MYA0667	Plains Dome	AC	7,626,837	430,556	279	28	000	-90	Received
25MYACBH01	PFS Hydro	AC	7,616,802	428,635	251	112	000	-90	Received
25MYACBH02	PFS Hydro	AC	7,616,327	428,395	251	102	000	-90	Received*
25MYACBH03	PFS Hydro	AC	7,616,888	427,547	248	108	000	-90	Received*
25MYACBH04	PFS Hydro	AC	7,617,270	426,583	250	114	000	-90	Received*
25MYACBH05	PFS Hydro	AC	7,616,813	426,341	252	165	000	-90	Received*
25MYACBH06	PFS Hydro	AC	7,624,371	420,515	248	105	000	-90	Received*
25MYACBH07	PFS Hydro	AC	7,624,861	421,023	250	93	000	-90	Received*
25MYACBH08	PFS Hydro	AC	7,625,173	419,845	246	93	000	-90	Received*
25MYACBH09	PFS Hydro	AC	7,625,790	418,459	243	84	000	-90	Received*
25MYACBH10	PFS Hydro	AC	7,636,983	416,394	256	99	000	-90	Received*
25MYACBH14	PFS Hydro	AC	7,637,960	416,101	259	70	000	-90	Received*

Table 2b Notes:

Drill Hole Collar Table above - Refer to JORC Table 1 Section 1 for full drill hole information; including drill technique, sampling, and analytical technique/s.

Drill Type:

• AC = Air Core

Hole ID * - bottom of hole sample received.

Received* = Partially received

Various information in this report which relates to Exploration Results have been extracted from the following announcements lodged on the ASX, where further details, including JORC Code reporting tables, can also be found:

ASX, w	here further details, including JORC Code reporting tables, can also be found:	
•	North Telfer Project Update on Former NCM Mining Leases	3 December 2015
•	High Grade Gold Mineralisation at Minyari Dome	8 February 2016
>•	Minyari Deposit Drilling to Commence May 2016	2 May 2016
•	Minyari Phase 1 Drilling Commences	2 June 2016
•	Further Historical High-grade Gold Intersections at Minyari	14 June 2016
•	Minyari Phase 1 Drilling Update No. 1	20 July 2016
	Completion of Phase 1 Minyari Deposit RC Drilling Programme	9 August 2016
	Minyari Drilling Update No. 3	17 August 2016
).	Minyari Drilling Update No. 4	29 September 2016
-	North Telfer and Citadel Exploration Programme Update	16 November 2016
•	Minyari Dome Drilling Update No. 1	16 December 2016
10	Minyari Dome and Citadel – Phase 2 Update	9 February 2017
	Minyari Dome Positive Metallurgical Test Work Results	13 June 2017
—	High-Grade Gold Intersected at North Telfer Project Revised	21 June 2017
	Drilling Extends High-Grade Gold Mineralisation at WACA	25 July 2017
12	High-Grade Gold Mineralisation Strike Extension at Minyari Deposit	4 August 2017
	Minyari Dome Phase 1 Final Assay Results	31 August 2017
	Air Core Programme Highlights Minyari and WACA Deposit	5 December 2017
•	Minyari Dome 2017 Air Core Drilling Results	29 January 2018
•	Minyari Dome – Initial Drill Results	1 August 2018
•	Thick High-grade Copper Mineralisation Intersected	2 October 2018
	Chicken Ranch and Minyari Dome Drilling Update	15 November 2018
	Chicken Ranch and Tims Dome Maiden Mineral Resources Boost Antipa 100% Resource to 827000 oz	12 May 2019
$\stackrel{\smile}{\longrightarrow}$	2019 exploration programme update - 100% Owned Paterson Province Tenure	22 August 2019
•	High-grade gold & multiple zones of copper-gold mineralisation identified at 100% owned ground	18 October 2019
•	Antipa delivers strong results from multiple prospects on 100% owned ground	22 November 2019
	Multiple New Gold-Copper Targets on 100% Owned Ground	23 December 2019
	Drilling of New Targets Deliver Significant Au Intersections	16 February 2021
_	Target Generation Air Core programme extends Poblano mineralised gold zone by 500 metres	5 March 2021
	Wilki JV Project Update – New Targets and 2020 Drill Results	11 March 2021
12	High-Grade Gold Intersected at Minyari & WACA Deposits	7 April 2021
	Discovery of Significant Zones of High-Grade Gold at Minyari	15 July 2021
10	Further High-Grade Gold Mineralisation at Minyari Deposit	20 July 2021
	Further High-Grade Gold Results at 100% Minyari Deposit	12 August 2021
IJ.	Outstanding Gold Intersections at 100% Owned Minyari Deposit	6 September 2021
	Further High-Grade Gold Results at 100% Minyari Deposit	5 October 2021
	Significant Gold-Copper Discovery at 100% Minyari Project	19 October 2021
•	Further Significant Gold-Copper Discoveries at Minyari	29 November 2021
•	Further High-Grade Gold Results at 100% Minyari Deposit	6 December 2021
	Wilki and Paterson Farm-in Projects Exploration Update	20 December 2021
_	Further Outstanding High-Grade Gold Results at Minyari	3 February 2022
).	Results Confirm High-Grade Gold-Copper at Depth at Minyari	3 March 2022
二.	High-Priority Soil and AC Gold-Copper Targets Identified	27 May 2022
•	Drill Results Confirm High-Grade Gold at Minyari North	, 21 July 2022
•	Minyari Drilling Identifies Resource Growth Opportunities	10 November 2022
•	Resource Drilling Increases Minyari Deposit Confidence	2 March 2023
•	Two New Discoveries at 100% Owned Minyari Dome Project	6 March 2023
•	Paterson Project and Citadel JV Exploration Results	11 May 2023
•	Paterson and Wilki Projects - FY2024 Exploration Programme Update	24 July 2023
•	Near-Surface High-Grade Gold Discovery at GEO-01 Target	2 August 2023
•	Final CY2023 Phase 1 Drill Results - Minyari Gold Project	15 August 2023
•	High-Grade Gold Zones at GEO-01 Discovery	12 October 2023
•	New gold target identified close to Telfer	20 December 2023
•	Minyari Project - Phase 2 2023 Exploration Drilling	21 December 2023
•	Minyari Dome Project – Final Assay Results from Phase 2 CY2023 Diamond Drilling	6 February 2024
•	Minyari Project - Results from CY2023 Air Core Drilling	8 March 2024
•	Large gold target identified close to Minyari	28 March 2024
	•	

•	High Grade Gold Intersections at GEO-01 – Minyari Dome Project	14 May 2024
•	GEO-01 Gold Mineralisation Strike Doubled – Minyari Dome Project	4 June 2024
•	GEO-01 Returns Near-Surface High-Grade Gold - Including 35m at 3.0 g/t Gold from 20m	10 July 2024
•	Gold Mineralisation Confirmed at Pacman	30 August 2024
>•	100% Owned Minyari Dome Project Grows by 573,000 Oz of Gold	17 September 2024
•	Minyari Scoping Study Update Confirms Development Potential	24 October 2024
•	GEO-01 South Returns Multiple New Zones of Near-Surface Gold, including 23m at 2.8 g/t gold from 77m	25 November 2024
•	Second surface geochemical gold target identified close to Telfer	13 December 2024
	Multiple New Zones of Near-Surface, High-Grade Gold Discovered – Minyari Dome Project	16 December 2024
•	Multiple High-Grade Gold and Copper Intersections at Minyari	29 January 2025
),	Antipa to Retain 100% Ownership of Wilki Project	4 March 2025
•	Antipa Retains 100% Ownership of Paterson Project (Amended)	9 April 2025
•	Resource Growth and Discovery Drilling Commences at Minyari	16 April 2025
59	Minyari Project Resource Grows by 100 Koz to 2.5 Moz of Gold	21 May 2025
١	Significant New Gold-Copper Discovery at Minyari Dome	30 June 2025
•	Expanded Gold-Copper Discovery and Extensions at Minyari	1 August 2025
•	Bonanza New Gold Intersections Returned from Fiama	25 August 2025
14	Exceptional Gold Intersections from the Minyari Deposit	30 September 2025
•	High-Grade gold results support Resource growth at Minyari	13 October 2025
J.J	Further High-Grade Gold Intersections at Fiama and Minyari	10 November 2025

- Competent Persons Statement Exploration Results: The information in this document that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Roger Mason, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Mason is a full-time employee of the Company. Mr Mason is the Managing Director of Antipa Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Mason has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mason consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements, all of which are available to view on www.asx.com.au. Mr Mason, whose details are set out above, was the Competent Person in respect of the Exploration Results in these original market announcements.
- Competent Persons Statement Mineral Resource Estimations for the Minyari Project Deposits: The information in this document that relates to the estimation and reporting of the GEO-01 Main Zone, Fiama, Minella, GEO-01 Central, Minyari South, Tim's Dome and Chicken Ranch Mineral Resource is extracted from the report entitled "Minyari Project Resource Grows by 100 Koz to 2.5 Moz of Gold" created on 21 May 2025 with Competent Person Victoria Lawns, which is available to view on www.antipaminerals.com.au and www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant original market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

The information in this document that relates to the estimation and reporting of the Minyari, Minyari North, Sundown, WACA and WACA West deposits Mineral Resources is extracted from the report entitled "100% Owned Minyari Dome Project Grows by 573,000 Oz of Gold" created on 17 September 2024 with Competent Persons Ian Glacken, Jane Levett, Susan Havlin and Victoria Lawns, which is available to view on www.antipaminerals.com.au and www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant original market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

• Scoping Study for Minyari Dome: The information in this document that relates to the Scoping Study for Minyari Dome is extracted from the report entitled "Minyari Scoping Study Update Confirms Development Potential" reported on 24 October 2024, which is available to view on www.antipaminerals.com.au and www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the study in the relevant original market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Minyari Project May 2025 Mineral Resource Estimate

Minyari Dome ^{2,3}										
Deposit	Classification	Tonnes	Au g/t	Au ounces	Ag g/t	Ag ounces	Cu %	Cu tonnes	Co %	Co tonnes
Minyari	Indicated	27,100,000	1.75	1,505,000	0.58	507,000	0.22	59,800	0.04	9,720
Minyari	Inferred	6,200,000	1.78	347,000	0.36	72,000	0.15	9,000	0.02	1,000
Total Minyari		33,300,000	1.73	1,852,000	0.54	579,000	0.21	68,900	0.03	10,800
WACA	Indicated	1,710,000	0.96	53,000	0.17	9,000	0.11	1,900	0.02	300
WACA	Inferred	3,454,000	1.27	143,000	0.16	17,000	0.14	5,000	0.02	900
Total WACA		5,164,000	1.18	195,000	0.16	26,000	0.13	6,900	0.02	1,200
WACA West	Inferred	403,000	0.73	9,400	0.77	10,010	0.19	750	0.03	101
Total WACA West		403,000	0.73	9,400	0.77	10,010	0.19	750	0.03	101
Minyari South	Inferred	481,000	2.4	37,000	0.55	8,000	0.21	1,000	0.03	130
Total Minyari South		481,000	2.4	37,000	0.55	8,000	0.21	1,000	0.03	130
Sundown	Indicated	442,000	1.31	19,000	0.55	8,000	0.27	1,200	0.03	100
Sundown	Inferred	828,000	1.84	49,000	0.27	7,000	0.16	1,300	0.06	500
Total Sundown		1,270,000	1.65	68,000	0.37	15,000	0.19	2,500	0.05	600
GEO-01	Indicated	3,121,000	0.89	89,000	0.1	10,250	0.03	1,060	0.002	75
GEO-01	Inferred	3,419,000	0.9	99,000	0.14	15,600	0.07	2,370	0.003	220
Total GEO-01		6,540,000	0.89	188,000	0.12	25,850	0.05	3,430	0.003	220
Minyari North	Inferred	587,000	1.07	20,000	0.15	3,000	0.09	500	0.01	60
Total Minyari North		587,000	1.07	20,000	0.15	3,000	0.09	500	0.01	60
Total Indicated		32,370,000	1.6	1,670,000	0.51	533,000	0.20	64,000	0.03	10,000
Total Inferred		15,370,000	1.42	704,000	0.27	133,000	0.13	20,000	0.01	3,000
Total Minyari Dor	ne	48,000,000	1.54	2,400,000	0.43	666,000	0.18	84,000	0.02	13,000
Satellite Deposits	5 ^{4,5}									
Chicken Ranch	Inferred	4,206,000	0.76	100,000						
Tims Dome	Inferred	1,158,000	1.34	50,000						
Total Satellite De	posits	5,360,000	0.87	150,000						
Total Indicated		32,370,000	1.6	1,670,000	0.51	533,000	0.20	64,000	0.03	10,000
Total Inferred		20,700,000	1.28	854,000	0.27	133,000	0.13	20,000	0.02	3,000
RESC	AL MINERAL DURCE + INFERRED	53,000,000	1.48	2,520,000	0.43	666,000	0.18	84,000	0.02	13,000

Notes to Minyari Project MRE table above:

- 1. Discrepancies in totals may exist due to rounding.
- 2. The Minyari Dome Mineral Resource has been reported at cut-off grades above 0.4 g/t and 1.5 g/t gold equivalent (Aueq); the calculation of the metal equivalent is documented below.
- The 0.4 g/t and 1.5 g/t Aueq cut-off grades assume open pit and underground mining, respectively.
- 4. The Satellite Deposit Mineral Resource has been reported at a cut-off grade above 0.4 g/t g/t gold (Au).
- 5. The 0.4 g/t Au cut-off assumes open pit mining.
- The Minyari Project and its Mineral Resource are 100% owned by Antipa Minerals.

Gold Metal Equivalent Information - Minyari Dome Mineral Resource Gold Equivalent reporting cut-off grade:

The 0.4 g/t and 1.5 g/t Aueq cut-off grades assume open pit and underground mining, respectively.

A gold equivalent grade (**Aueq**) has been calculated from individual gold, copper, silver, and cobalt grades. This equivalent grade has been calculated and declared in accordance with Clause 50 of the JORC Code (2012) that it is the Company's opinion that all metals included in this metal equivalent calculation have reasonable potential to be recovered and sold, using the following parameters:

- The metal prices used for the calculation are as follows:
 - US\$ 2,030 /oz gold
 - US\$ 4.06 / lb copper
 - US\$ 24.50 /oz silver
 - US\$ 49,701 per tonne cobalt
- An exchange rate (A\$:US\$) of 0.700 was assumed.
- Metallurgical recoveries for by-product metals, based upon Antipa test-work in 2017 and 2018, are assumed as follows:
 - Gold = 88.0% Copper = 85.0%, Silver = 85%, Cobalt = 68%
- The gold equivalent formula, based upon the above commodity prices, exchange rate and recoveries, is thus:
 - Aueq = (Au g/t) + (Ag g/t * 0.012) + (Cu % * 1.32) + (Co % * 5.88)

ANTIPA MINERALS LTD - MINYARI PROJECT

CY2025 Discovery, Growth and Pre-feasibility Study Drill Programmes – Reverse Circulation, Diamond Core and Air Core JORC Code 2012 Edition:

Table 1 - Section 1 Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Various prospects and targets were sampled for growth and discovery purposes by 176 RC holes for a total of 34,502 metres, with an average hole depth of 205m. Various deposits and additional areas were sampled for Pre-feasibility Study (PFS) purposes by 109 RC drill holes for a total of 14,873 metres, with an average hole depth of 13 metres. Of these, a total of 276 RC holes were drilled from surface for a total of 48,289 metres; and Nine CY2024 RC drill holes were depth extended during th CY2025 programme for a total of 1,086 metres. In total, assay results have now been fully received for 257 RC holes. RC Sampling was conducted under Antipa protocols and QAQC procedures as per industry best practice. All RC samples were drilled using a 140mm diameter face sampling hammer with samples taken on one metre intervals. Individual one metre (2 to 3 kg) samples or two to four metre composite samples (2 to 3 kg) were submitted for laboratory analysis. If warranted and based on anomalous laboratory assay results of (2 to 4m) composite samples, additional individual one metre samples may also be collected and submitted for laboratory analysis.

Criteria	JORC Code Explanation	Commentary
		Diamond Core Drill (DD) Sampling
		 10 diamond core drill holes were completed for growth and discovery purposes for a total of 6,191.5 metres. 47 diamond core holes were completed for PFS purposes for a total of 12,981.8 metres. Of these, 31 diamond core holes were drilled totaling 6,592.4 metres, primarily for geotechnical purposes which were spot sampled for assay purposes in areas not designated for geotechnical assessment. Additionally, one of these holes was utilised for metallurgical test-work with a total of 80 metres sampled. Three diamond core tails were completed for Resource Growth and Discovery purposes, one at Minyari, and one each at GEO-01 Main Zone and Fiama, for a total of 795.8 metres. One diamond core tail was completed at Minyari for PFS purposes for a total of 109.8 metres. Complete assay results have been received for 22 diamond core drill holes and four diamond core tails, for a total of 10,368.4 metres. Partial assay results have been received for eight additional diamond core holes for a total of 1,953.8 metres. Diamond core sampling was conducted under Antipa protocols and QAQC procedures as per industry best practice. All drill core was geologically, structurally, and geotechnically logged and photographed prior to cutting. Quarter core and half core samples were taken from diamond core holes using an automatic core saw. The drill core was sampled nominally as one metre samples with adjustments for major geological boundaries, with sample lengths ranging between 0.3m and 1.2m. Drill core samples are submitted to the lab for assay.

	Criteria	JORC Code Explanation	Commentary
			Air Core Sampling
			 A total of 449 air core drill holes were completed across two phases within Antipa's broader Minyari Project. Phase 1: 205 drill holes for a total of 13,332 metres, with an average hole depth of 65 metres. Phase 2: 244 drill holes for a total of 13,634 metres, with an average hole depth of 56 metres. Assays results have been received for all Phase 1 and Phase 2 holes. In addition, fourteen air core holes were drilled for a total of 1,474 metres and partially sampled for PFS Hydrological purposes. Assay results have been partially received for a total of 11m. Discovery focused air core drill holes were generally drilled on a range of hole spacings along line and across line, predominantly testing soil geochemical ± geophysical (GAIP ± AEM ± aeromagnetic) targets. Locations and orientations for these air core drill holes are tabulated in the body of this report. One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 15. Air core sample piles representing 1m intervals were spear sampled to accumulate 4m composite samples for analysis, with a total of 2 to 3 kg collected into pre-numbered calico bags. The final metre of each hole was spear sampled to collect a total of 2 to 3 kg of cuttings into a pre-numbered calico
Desi	Wing tochniques	Drill type (e.g. care reverse circulation open hele harmer	bag. All samples are pulverised at the laboratory to produce material for assay. BC Drilling
Dri	lling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	All RC drill holes were completed using 140mm RC face sampling hammer drill bit from surface to total drill hole depths of between 42 to 390 metres.

Criteria	JORC Code Explanation	Commentary
Criteria	JORC Code Explanation	Diamond Core Drilling All diamond core drill holes were completed with standard tube with a PQ diameter equipment at the start of hole to a designated depth depending on ground conditions and/or drill hole requirements. This is followed by HQ to a designated depth, then NQ to the end of hole. Total drill hole depth ranges from 80 metres (PFS metallurgical test-work hole) to 1,315.1 metres. Four diamond core tails were drilled in total. Two diamond core tails were completed to depths of 582.1m (203.1m of
		 DD) at GEO-01 Main Zone and 437.7m (251.7m of DD) at Fiama. Two diamond core tails were completed at Minyari, to depths of 804.2m (340.97m of DD) and 728.2m (109.8m of DD). All diamond core was orientated using a north-seeking gyro electronic orientation tool. Air Core Drilling All air core holes were drilled by a Mantis 300 rig equipped with a 600cfm/200psi compressor owned and operated by Wallis Drilling Pty Ltd. All drill holes were completed using an 85mm air core blade bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC and Air Core RC and air core sample recovery was recorded via visual estimation of sample volume, typically ranging from 90% to 100%, with only very occasional samples with less than 70% recovery. RC and air core sample recovery was maximized by endeavoring to maintain dry drilling conditions as much as practicable; the majority of RC samples were dry. All RC samples were split using the drill rig's mounted cone splitter. Adjustments were made to ensure representative 2 to 3 kg sample were collected. Relationships between recovery and grade are not evident and are not expected given the generally excellent and

Criteria	JORC Code Explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 consistently high sample recovery. Diamond Core Core recovery is recorded as a percentage. Overall core recoveries averaged over 99.5% and there are no core loss issues or significant sample recovery problems except for infrequent, very localised/limited regions. Drillers used appropriate measures to maximise diamond core sample recovery. There is no relationship between sample recovery and/or mineralisation grade as the diamond core recovery was consistently high. Geological logging of all RC, air core and DD intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining, and sulphides. Logging includes both qualitative and quantitative components. Logging was completed for 100% of all drill holes. All RC, air core and DD intervals were measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter. A total of 49,759 metres of RC drill chip samples from 1 -2 metre intervals were logged. A total of 20,079.4 metres of diamond core were logged. A total of 28,440 metres of air core drill chip samples from one metre intervals were logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for 	 RC samples RC samples for all drill holes were drilled using a 140mm diameter face sampling hammer. Samples were collected as 1m splits from the rig mounted cone splitter. Field duplicate samples were collected for all RC drill holes. The majority of the samples were dry. Individual (one) metre (2 to 3 kg) samples or two to four metre composite samples (2 to 3 kg) were submitted for laboratory analysis.

Criteria	JORC Code Explanation	Commentary
	 instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Core was either quarter core sampled in PQ diameter core, or half core sampled in HQ and NQ diameter core at a nominal 1.0m sample interval within unmineralised zones and on 0.3 to 1.2m intervals within the mineralised zones.
		 Air Core Samples One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 15. Compositing air core samples of between 2 to 4 m was undertaken via combining 'Spear' samples of the intervals to generate a 2 kg (average) sample.
		 Sample Preparation Each sample was pulverised at the laboratory to produce material for assay. Sample preparation was carried out at ALS using industry standard crush and/or pulverizing techniques. Preparation includes over drying and pulverizing of the entire sample using Essa LM5 grinding mill to a grid size of 85% passing 75 μm. The sample sizes are considered appropriate for the style of mineralisation across the Minyari Project.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 All drill samples were submitted to ALS in Perth for preparation and analysis. All samples were dried, crushed, pulverised, and split to produce a sub–sample for laboratory analysis. RC and Diamond Core Sample Analysis Each sub-sample is digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acids ("four acid digest"). This digest is considered to approach a total dissolution for most minerals. Analytical analysis is performed using a either ICP-AES or ICP-MS. Resource Definition suite (ICP-

AES): Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, and Zn. Targeted exploration suite (ICP-M Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Mg, M, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, I Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. • A lead collection fire assay on a 50 gm sa Absorption Spectroscopy was undertaked gold content with a detection limit of 0.0 Air Core Sample Analysis • Each composite sub—sample was digested parts hydrochloric acid and 1-part nitric as parts hydr	n, Sr, Te, Ti, Ti, V, W MS): Al, As, B, Ba, Be, e, Hf, Hg, In, K, La, Li, , Re, S, Sb, Sc, Se, Sn, r. sample with Atomic en to determine
Each composite sub—sample was digester	.01 ppm.
digest ',', suitable for weathered air core segia can digest many different mineral to most oxides, sulphides and carbonates be digest refractory or silicate minerals. And used were both ICP-AES and ICP-MS (AM Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, Ir Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr). End of hole sub-samples were analysed to Element Ultra Trace method combining a digestion with ICP-MS instrumentation. A is performed on 0.25g of sample to quant most geological materials. Analytical and with a combination of ICP-AES and ICP-M digestions quantitatively dissolve nearly: Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, FMn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Zn). A lead collection fire assay on a 50 gm sa AES finish was undertaken on end of hole determine gold content with a detection ppm.	acid ('aqua regia e samples. Aqua types including but will not totally nalytical methods au, Ag, Al, As, Ba, Be, In, K, La, Li, Mg, e, Sb, Sc, Se, Sn, Sr, using a Multi- ga four-acid A four-acid digest intitatively dissolve nalysis performed MS. Four acid y all minerals (Ag, Fe, K, La, Li, Mg, Te, Ti, Tl, V, W and

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 RC, Diamond Core and Air Core Samples Additional ore-grade analysis was performed as required for other elements reporting out of range. Field QC procedures involve the use of commercial certified reference material (CRM) for assay standards and blanks. Standards are inserted every 25 samples. The grade of the inserted standard is not revealed to the laboratory. Field duplicates/repeat QC samples was utilised during the drill programmes with nominally 1 in 30 duplicate samples submitted for laboratory assay for each drill hole, with additional duplicate samples submitted in mineralized zones. Inter laboratory cross-checks analysis programmes have not been conducted at this stage. In addition to Antipa supplied CRM's, ALS includes in each sample batch assayed certified reference materials, blanks and up to 10% replicates. If necessary, anomalous results are redigested to confirm results. Significant drill intersections have been visually verified by multiple members of the Antipa geology team, including the Exploration Manager. All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look-up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during upload to Antipa's master SQL database. No adjustments or calibrations have been made to any laboratory assay data collected.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 km = kilometre; m = metre; mm = millimetre. When possible, drill hole collar locations have been recorded using a differential GPS with a stated accuracy of +/- 0.5 metres. Otherwise drill hole collar locations are recorded using a standard handheld GPS which has a stated accuracy of +/- 5 to 10 metres.

Criteria	JORC Code Explanation	Commentary
		 The drilling co-ordinates are in GDA2020 MGA Zone 51 coordinates. The Company has adopted and referenced one specific local grid across the Minyari Dome region ("Minyari" Local Grid) which is defined below. References in the text and the Minyari deposit diagrams are all in this specific Minyari Local Grid. Minyari Local Grid 2-Point Transformation Data: Minyari Local Grid 47,400m east is 421,462.154m east in GDA94 / MGA Zone 51; Minyari Local Grid 99,000m north is 7,632,467.588 m north in GDA94 / MGA Zone 51; Minyari Local Grid 47,400m east is 414,078.609m east in GDA94 / MGA Zone 51; Minyari Local Grid 113,000m north is 7,644,356.108m north in GDA94 / MGA Zone 51; Minyari Local Grid North (360°) is equal to 328.2° in GDA94 / MGA Zone 51; Minyari Local Grid elevation is equal to GDA20 / MGA Zone 51. The topographic surface has been compiled using the drill hole collar coordinates and drone survey surface elevation values. Surveys were completed upon hole completion using a Reflex Gyro downhole survey instrument. Surveys were checked by the supervising Geologist for consistency. If required, readings were re-surveyed or smoothed in the database if unreliable azimuth readings were apparent. Survey details included drill hole dip (±0.25° accuracy) and drill hole azimuth (±0.35° accuracy), Total Magnetic field and temperature.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	Targeted exploration drill hole collar locations are typically drilled on a range of hole spacings testing geophysical targets (e.g. magnetic, induced polarisation, electromagnetic, gravity) and/or air core targets and/or surface sampling (soil) geochemical anomalies.

Criteria	JORC Code Explanation	Commentary
	Whether sample compositing has been applied.	 Mineral Resource definition and/or extension drill holes are typically drilled on a specified drill hole spacing to increase confidence appropriate to Mineral Resource classification. Across the Minyari Project deposits, these generally occur as either 25 metre or 50 metre grids. At Minyari, Minyari South, WACA and GEO-01 Area Deposits drill hole spacing of the RC ± diamond core drilling is sufficient to establish the geological and grade continuity suitable for Mineral Resource estimation. The current drill hole spacing at generated exploration targets, including the Rizzo Prospect, is not sufficient for Mineral Resource estimation. Reported intersections were aggregated using downhole length weighting of consecutive drill hole sample laboratory assay results.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The location and orientation of the Minyari Project drilling is appropriate given the strike, dip, and morphology of the mineralisation. No consistent and/or material sampling bias resulting from a structural orientation has been identified across the Minyari Project at this stage; however, folding, and multiple vein directions have been recorded via surface mapping and (orientated) diamond core.
Sample security	The measures taken to ensure sample security.	 Chain of sample custody is managed by Antipa to ensure appropriate levels of sample security. Samples are stored on site and delivered by Antipa or their representatives to Port Hedland and subsequently by Toll Ipec Transport from Port Hedland to the assay laboratory in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is all data. Consultants Snowden, during completion of the 2013 Calibre Mineral Resource estimate, undertook a desktop review of the Company's sampling techniques and data management and found them to be consistent with

Criteria	JORC Code Explanation	Commentary
		industry standards.

Table 1 - Section 2 - Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Drill holes completed in the CY2025 Discovery, Growth and PFS programme were drilled on the following tenements: E45/2526, E45/2527, E45/2528, E45/3917, E45/3918, E45/3919, E45/3925, E45/4565, E45/4618, E45/5135, E45/5153, E45/5154, E45/5157, E45/5158, E45/5458 and E45/5460, E45/5461 and E45/5462. Antipa Minerals Ltd's interests in the Exploration Licences detailed above are not subject to any third-party Farm-in or Joint Venture agreements. A 1.5% net smelter royalty is payable to Newcrest Operations Ltd (a wholly owned subsidiary of Greatland Resources Ltd) on the sale of all metals on Exploration Licences E45/4812, E45/5079, E45/5147, and E45/5148. A 1.0% net smelter royalty is payable to International Royalty Corporation on the sale of all metals (excluding uranium) on Exploration Licences E45/3918 and E45/3919. A Split Commodity Agreement exists with Paladin Energy Ltd's wholly owned subsidiary North Gascoyne Mining Pty Ltd whereby it owns the rights to uranium on Exploration Licences E45/3918 and E45/3919. The Minyari, WACA, GEO-01 Area, WACA West, Minyari South, Minyari North and Sundown Mineral Resources are located wholly within Exploration Licence E45/3919. The Tim's Dome Mineral Resource is located within Exploration Licences E45/4867. These tenements are contained completely within land where the Martu People have been determined to hold Native Title rights. To the Company's knowledge no historical or environmentally sensitive sites have been

Criteria	JORC Code explanation	Commentary
		 identified in the area being actively explored and reported herein. The tenements are in good standing, and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Minyari and WACA deposits were greenfield discoveries by the Western Mining Corporation Ltd during the early 1980's. Exploration of the Minyari Dome region has involved the following companies: Western Mining Corporation Ltd (1980 to 1983); Newmont Holdings Pty Ltd (1984 to 1990); MIM Exploration Pty Ltd (1990 to 1991); Newcrest Mining Limited (1991 to 2015); and Antipa Minerals Ltd (2016 onwards). Exploration across various regions within the remainder of the Minyari Project has been conducted by the following companies: Carr Boyd Minerals Ltd (1973 to 1975); Geopeko Limited (JV with Carr Boyd) (1978); Marathon Petroleum Australia Limited (1979); Western Mining Corporation Limited (WMC) (1980); Duval Mining (Australia) Limited (Carr Boyd JV with Picon Exploration Pty Ltd) (1984 to 1986); Newmont (1984 to 1989); Mount Burgess Gold Mining Company N.L. (1989 to 2001); Carpentaria - MIM JV with Mount Burgess (1990 to 1996); BHP Australia (1991 to 1998); Mount Isa Mines Exploration (1993 to 1998); Normandy - JV with Mount Burgess (1998 to 2000); MIM Exploration Pty Ltd (1990 to 1993); Newcrest (1987 to 2015); Quantum Resources Limited (2012 to 2016);

Criteria	JORC Code explanation	Commentary
		 IGO Ltd - former Farm-In JV with Antipa (July 2020 to April 2025); Newcrest Mining Ltd – Former Farm-In JV with Antipa (March 2020 to Nov 2023); and Newmont Corporation - Former Farm-In JV with Antipa (Nov 2023 – May 2025).
Geology	Deposit type, geological setting and style of mineralisation.	 The geological setting is Paterson Province Proterozoic aged meta-sediment and meta-mafic hosted hydrothermal shear, fault and strata/contact controlled precious and/or base metal mineralisation which is typically sulphide bearing. The Paterson Province is a low grade metamorphic terrane but local hydrothermal alteration and/or contact metamorphic mineral assemblages and styles are indicative of a moderate to high-temperature local environment. The mineralisation in the region is interpreted to be intrusion related. Typical mineralisation styles include reef, vein, stockwork, breccia and skarns.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A summary of all available information material to the understanding of the Minyari Project exploration results can be found in previous Western Australian (WA) Department of Local Government, Industry Regulation and Safety (LGIRS) publicly available reports. All the various technical Minyari Project exploration reports are publicly accessible via the LGIRS' online WAMEX system. The specific WAMEX and other reports related to the exploration information the subject of this public disclosure have been referenced in previous public reports.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of 	 Drill hole intersections consisting of more than one sample were aggregated using downhole length weighting of consecutive drill hole sample laboratory assay results. No top-cuts to gold, copper, silver, or cobalt have been applied (unless specified otherwise).

Ī	Criteria	JORC Code explanation		Commentary
9		 high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	•	A nominal 0.1 g/t gold, 300 ppm copper (Discovery focused) or 400 ppm copper (PFS or Growth focused), 0.7 g/t silver and 400 ppm cobalt lower cut-off grades have been applied during data aggregation of RC and DD results. For Air Core, a nominal 30ppb gold, 200 ppm copper, 0.5 g/t silver, 100 ppm cobalt lower cut-off grades have been applied during data aggregation methods. Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals. Metal equivalence has not been used in the reporting of these drill intersections.
<u> </u>	Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 		At this stage, the reported intersection lengths are down hole in nature and the true width, which will be dependent on the local mineralisation geometry/setting, is not always known. Mineralisation at the various deposits and greenfield prospects across the Minyari Project consist of metasediment hosted plus lesser mafic and felsic intrusion hosted intrusion related hydrothermal alteration, breccia, and vein style gold-copper-silver-cobalt mineralisation. For the Minyari Dome deposits, drill holes are designed to intersect the mineralisation orthogonally based on current mineralisation interpretations. Therefore, the reported downhole mineralisation intercepts for a number of these specific drill holes are considered to more reliably represent approximate true widths. Based on limited drilling information, mineralisation at the greenfields prospects is interpreted to be generally steeply dipping and striking between approximately 320° to 350°, with pre-mineralisation folding resulting in local variations in geometry.
	Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•	Appropriate plans and sections (cross-section/s and long section/s) (with scales) for any significant/material discovery, Mineral Resource extension or Mineral Resource definition results being reported and tabulations of intercepts are provided in the body of this report or have

Criteria	JORC Code explanation	Commentary
		previously been publicly reported or can sometimes be found in WA LGIRS WAMEX publicly available reports. Cross-sections are not provided for any drill hole/s which are not considered significant/material in relation to discoveries, Mineral Resource definition/extension, and/or where all analytical data is not currently available. All notable drill intersections are included in Table 1. Antipa Minerals Ltd publicly disclosed reports provide maps and sections (cross-sections and long section/s) (with scales) and tabulations of intercepts generated by the Company since 2011; these reports are all available to view on www.asx.com.au .
Balanced reporting	Where comprehensive reporting of all Exp not practicable, representative reporting of high grades and/or widths should be pract misleading reporting of Exploration Result	of both low and found in WA LGIRS WAMEX publicly available reports.
Other substantive exploration data	Other exploration data, if meaningful and be reported including (but not limited to): observations; geophysical survey results; bulk samples – size and method of metallurgical test results; bulk density, group geotechnical and rock characteristics; pote or contaminating substances.	 in the body of the text or can sometimes be found in WA LGIRS WAMEX publicly available reports. treatment; The details of the Minyari Dome region historic Induced Polarisation (IP) survey, including IP Chargeability and

Criteria	JORC Code explanation	Commentary
		 Downhole "logging" of a selection of Minyari deposit RC drill holes was undertaken as part of the 2016 and 2021 drill programs using an OBI40 Optical Televiewer which generated an oriented 360-degree image of the drill hole wall via a CCD camera recorded digital image. The OBI40 system utilised also included a North Seeking Gyro-scope to measure drill hole location/deviation, and the downhole survey also measured rock density, magnetic susceptibility, natural gamma and included a borehole caliper device for measuring drill hole diameter. The combined dataset collected via the OBI40 Optical Televiewer downhole survey data has multiple geological and geotechnical uses, including but not limited to the detection and determination of in-situ lithological, structural and mineralisation feature orientations (i.e. dip and strike), determination and orientation of fracture frequency, general ground conditions/stability, oxidation conditions, ground-water table, and clarity, etc. Information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material derived mainly from diamond drill core is stored in the Company's technical SQL database. No information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material were obtained from the WAMEX reports. Preliminary metallurgical test-work results are available for both the Minyari and WACA gold-copper-silver-cobalt deposits, these 13 June 2017 and 27 August 2018 metallurgical reports are available to view on www.antipaminerals.com.au/upload/documents/investors/asx-announcements/201129223150 2017-06-13-31.pdf and https://antipaminerals.com.au/upload/documents/investors/asx-announcements/201129233007 2018-08-271.pdf) and www.asx.com.au. This preliminary metallurgical test-work was completed at the Bureau Veritas Minerals Pty Ltd laboratories in Perth, Western Australia under the management of metallurgical

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	consultants Strategic Metallurgy Pty Ltd in conjunction with Bureau Veritas metallurgists and Antipa's Managing Director. • The 2017 metallurgical test-work demonstrated excellent gold recoveries for both oxide and primary mineralisation from the Minyari and WACA deposits, with the 2018 metallurgical test-work confirming the potential for the Minyari and WACA to produce copper-gold concentrate and cobalt-gold concentrate product with extremely favourable results. Optimisation of metallurgical performance is expected via additional test-work. • In addition, the following information in relation to metallurgy was obtained from WA LGIRS WAMEX reports: • Newmont Holdings Pty Ltd collected two bulk (8 tonnes each) metallurgical samples of oxide mineralisation in 1987 (i.e. WAMEX 1987 report A24464) from a 120m long costean across the Minyari deposit. The bulk samples were 8 tonnes grading 1.5 g/t gold and 8 tonnes grading 3.57 g/t gold from below shallow cover in the costean. However, it would appear the Newmont metallurgical test-work for these two bulk samples was never undertaken/competed as no results were subsequently reported to the WA LGIRS. • Newmont Holdings Pty Ltd also collected drill hole metallurgical samples for Minyari deposit oxide and primary mineralisation (i.e. WAMEX 1986 report A19770); however, subsequent reporting of any results to the WA LGIRS could not be located suggesting that the metallurgical test-work was never undertaken/competed.
		 Newcrest Mining Ltd describe the Minyari deposit gold- copper mineralisation as being typical of the Telfer gold-
		copper mineralisation as being typical of the refer gold- copper mineralisation. In 2004 and 2005 (WAMEX reports A71875 and A74417) Newcrest commenced metallurgical studies for the Telfer Mine and due to the similarities with the Minyari mineralisation a portion of this Telfer
		metallurgical test-work expenditure was apportioned to the

Criteria	JORC Code explanation	Commentary
		then Newcrest Minyari tenements. Whilst Telfer metallurgical results are not publicly available, the Telfer Mining operation (including ore processing facility) was materially expanded in the mid-2000's and continues to operate with viable metallurgical recoveries (for both oxide and primary mineralisation).
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional potential exploration activities are outlined in the body of this report. Appropriate plans and sections (cross-sections and long section/s) (with scales) and tabulations of intercepts are provided in the body of this report or have previously been publicly or previously reported by Antipa or can sometimes be found in WA LGIRS WAMEX publicly available reports.