

▲ ASX ANNOUNCEMENT

RELEASED 25 NOVEMBER 2025

ASX: WCN; OTCQB: WCMLF

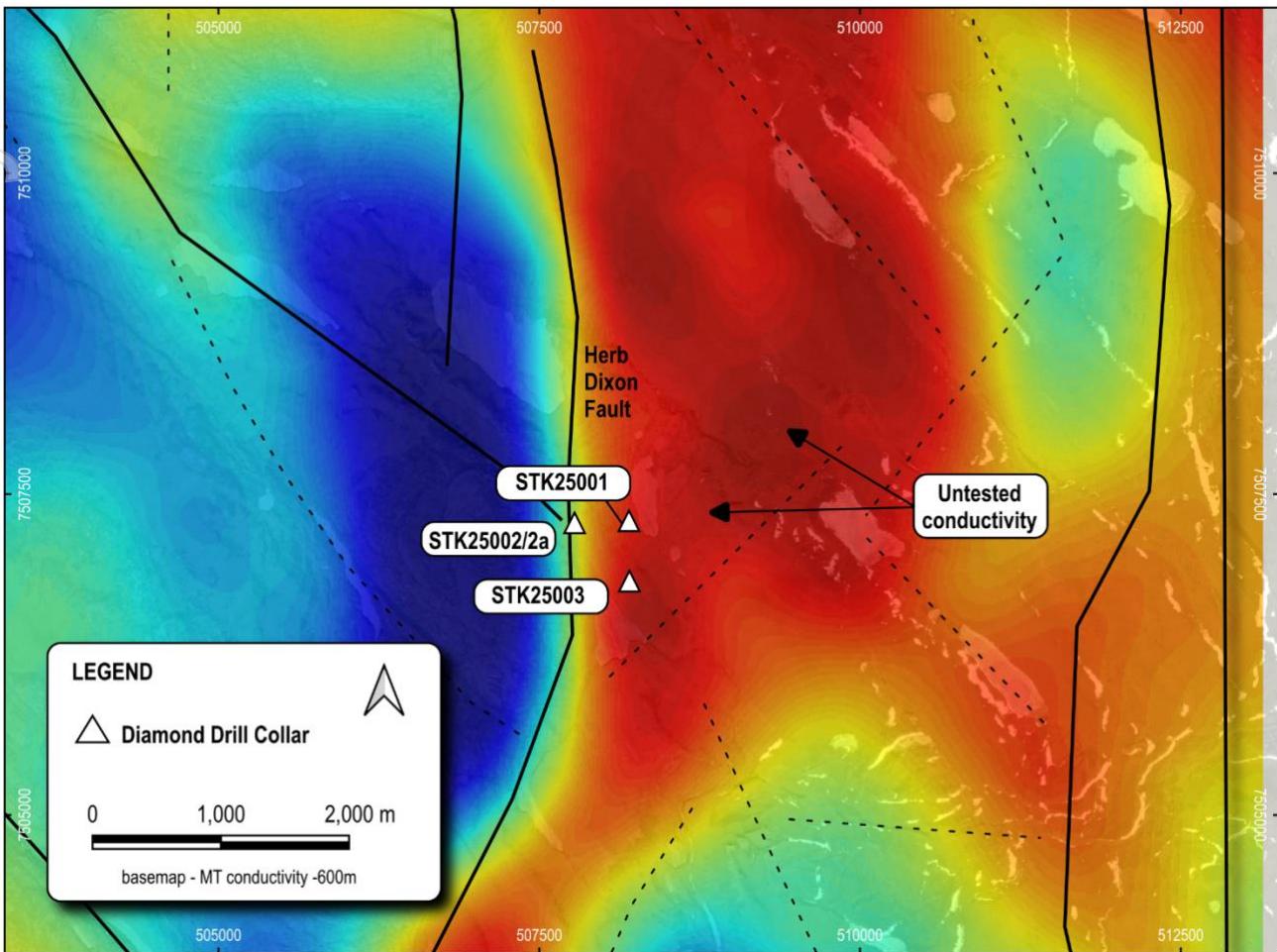
Mineralised structure at Stark expands with latest assay results

White Cliff Minerals Limited ("WCN" or the "Company") (ASX: WCN; OTCQB: WCMLF) is pleased to announce further assay results from the maiden diamond drilling campaign at the Stark and Hulk prospects at the Rae Copper Project, Nunavut, Canada.

Key Highlights

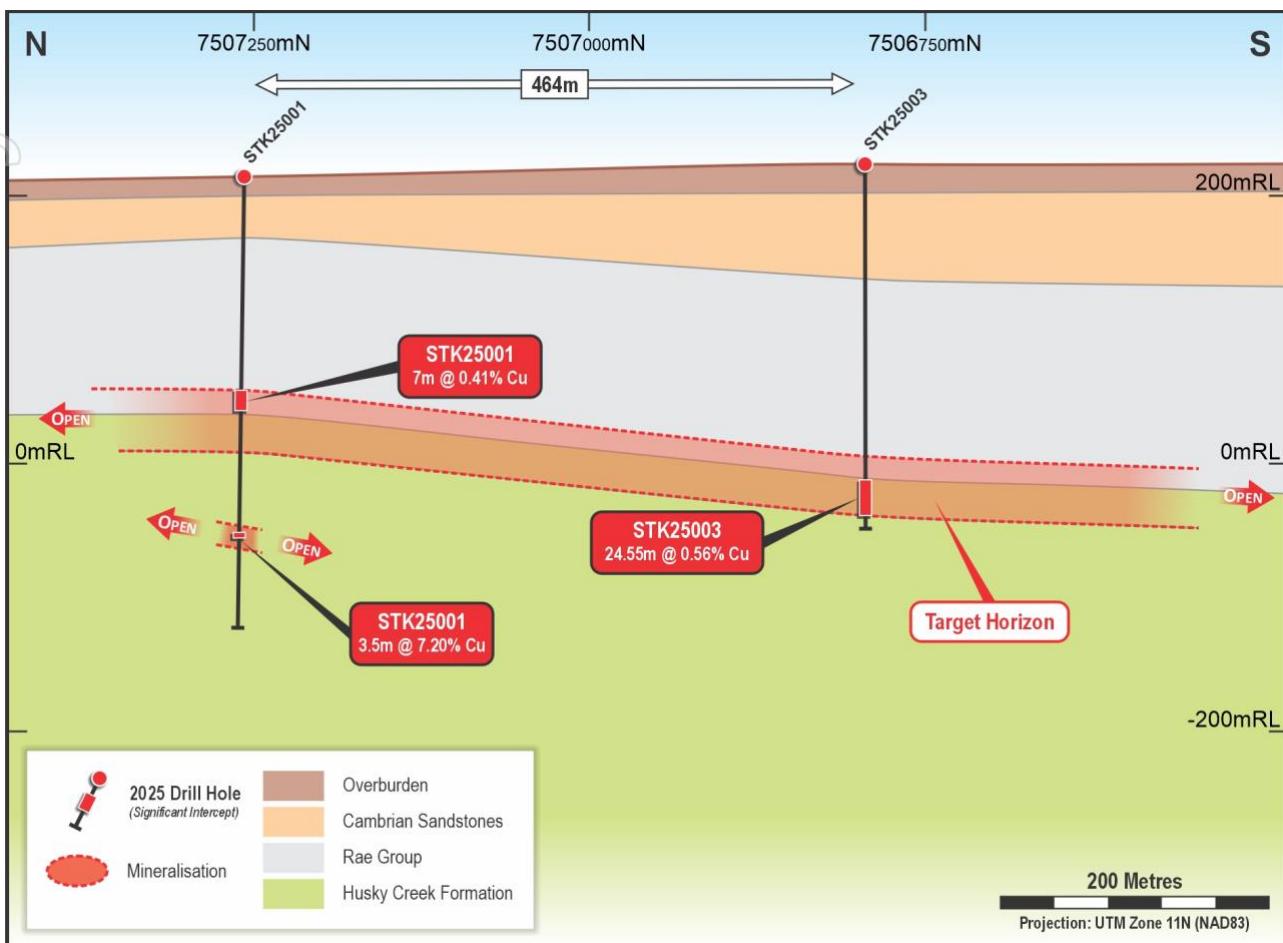
- STK25003 returned assays of 25m @ 0.6% Cu from 240m downhole including a high-grade core of 1m @ 5.7% Cu from 254m
- STK25003 **lies approximately 500m south** of STK25001 and intersected mineralisation below the targeted redox boundary
- Confirming the presence of this chemical gradient is important as it is this horizon that the company is targeting for sedimentary hosted copper control. This provides a further key vector to ore.
- STK25001 confirmed mineralisation above the redox boundary, returning 7m @ 0.4% Cu and 3.5m @ 7.2% Cu in the basement below
- Geological and geochemical results from both holes prove the existence of a highly fertile copper mineralising system (Figure 2)
- The area to the east and north of these holes remains untested and are immediate follow up targets
- An airborne survey, capturing electromagnetic data was undertaken across this prospective horizon, with the data currently being processed and interpreted
- After significant independent specialist contractor review the Company is extremely confident it has identified the mineralisation signatures from both geophysics and geochemistry and is planning Spring 2026 drilling programme accordingly

"The results from STK25003 continue to build the geological story at Stark, confirming that a significant copper system is developing along the unconformity between the Rae Group sediments and the underlying basement rocks. Importantly, these basement rocks display the same host characteristics and mineralisation style as those observed at Danvers, supporting a shared geological framework across the district.


Consistent copper mineralisation across wide intervals demonstrates that the system is functioning as modelled, with clear vectors towards higher grades. The target remains completely open to the east where the same favourable horizon continues."

Troy Whittaker - Managing Director

This announcement has been approved by the Board of White Cliff Minerals Limited


SEDIMENTARY HOSTED COPPER DEPOSITS & THE RAE PROJECT

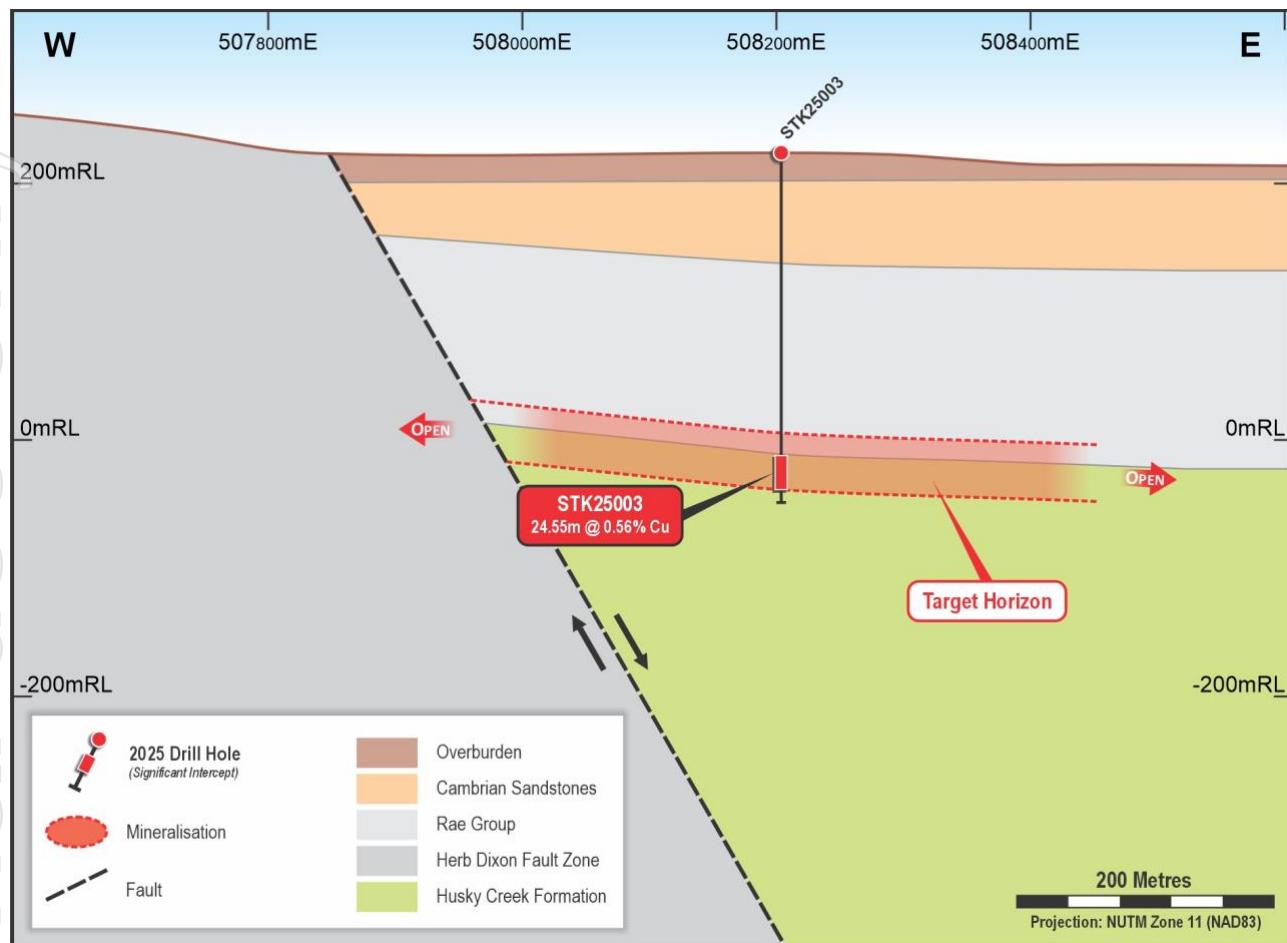

- The Stark target is positioned at an ideal 'chemical trap' - a redox boundary - located where the Rae Group sediments meet the underlying Husky Creek Formation. This type of setting is typical for forming stratiform copper deposits and is considered highly prospective.
- Sediment-hosted copper deposits are a major global copper source, supplying ~20% of world production and also contributing significantly to cobalt and silver.
- These deposits form at redox boundaries within large sedimentary basins, where metal-rich fluids interact with reduced sediments to precipitate copper sulphides. Deposits are sheet-like but thin vertically due to stratiform nature.
- They typically occur in later geological basins with large lateral extents, supporting scalable resource potential, though mineralised zones are usually thin and mined selectively.
- Data from USGS grade-tonnage models (based on >120 deposits) and case studies provide the following averages:
 - Average Grade - Reduced-facies Deposits: 1.4% Cu (e.g., White Pine: 1.14% Cu; Kupferschiefer: ~1.5–2% Cu).
 - Average Economic Thickness: 2 to 30 m (true vertical; often <5 m for high-grade zones).
- The Rae Copper Project is targeting both volcanic (which includes the Danvers 1 & 2 prospects) and sediment-hosted copper systems (including the Hulk and Stark prospects).
- Within the Rae Group, in the northern part of the projects - sediments offers significant prospectivity for reduced-facies sediment-hosted copper deposits.
- Drillhole STK25001 has confirmed copper mineralisation within the sedimentary horizon at the project - identifying chalcopyrite replacing diagenetic pyrite in reduced lower Rae Group sediments.
- The lower Rae Group contains reduced marine sediments sitting above volcanic units and red-bed sandstones of the Husky Creek Formation, creating an ideal chemical trap (redox boundary) for copper deposition.
- Drillhole STK25003 intersected this geological transition at the start of the Husky Creek Formation at 238m - with copper mineralisation beginning immediately below the redox boundary at 240m.
- Drilling results confirm a substantial copper system developed along this redox boundary, which remains completely untested to the east and northeast, away from the basin margin.
- The validated geological model highlights more than 70 km of prospective strike across the Rae Project Area, providing a large, open corridor for future exploration.
- Although several early holes did not intersect the target horizon due to initial drilling configuration issues, the Company has gained highly valuable geological information. These results enhance confidence in the evolving vertical geological model, with improved definition of the upper Rae Group stratigraphy expected to sharpen targeting of the redox horizon in upcoming drilling.
- Encouragingly, the rigs that completed the latter part of the program performed safely, efficiently, and to expectation, successfully reaching depths beyond 500 metres. This demonstrates the Company's capability to confidently target the redox/basement contact in future holes.
- Importantly, this high-performing rig has been secured on site at the Company's Hope Lake Camp. With prepayments now completed for the next phase of drilling, the Company is well positioned to recommence operations swiftly and maintain momentum into the next stage of exploration.

Figure 1 - Plan view of 2025 discovery drillholes into the Stark target. Basemap of conductivity from 2024 MT survey illustrating a zone of deep conductivity to the east/northeast of drillholes.

For personal use only

Figure 3 - Cross section, looking North. Geological interpretation of the main structures encountered in drilling at the Stark discovery, Rae Project. STK25003 confirms mineralisation just below the redox boundary target horizon with mineralisation zones being untested either side.

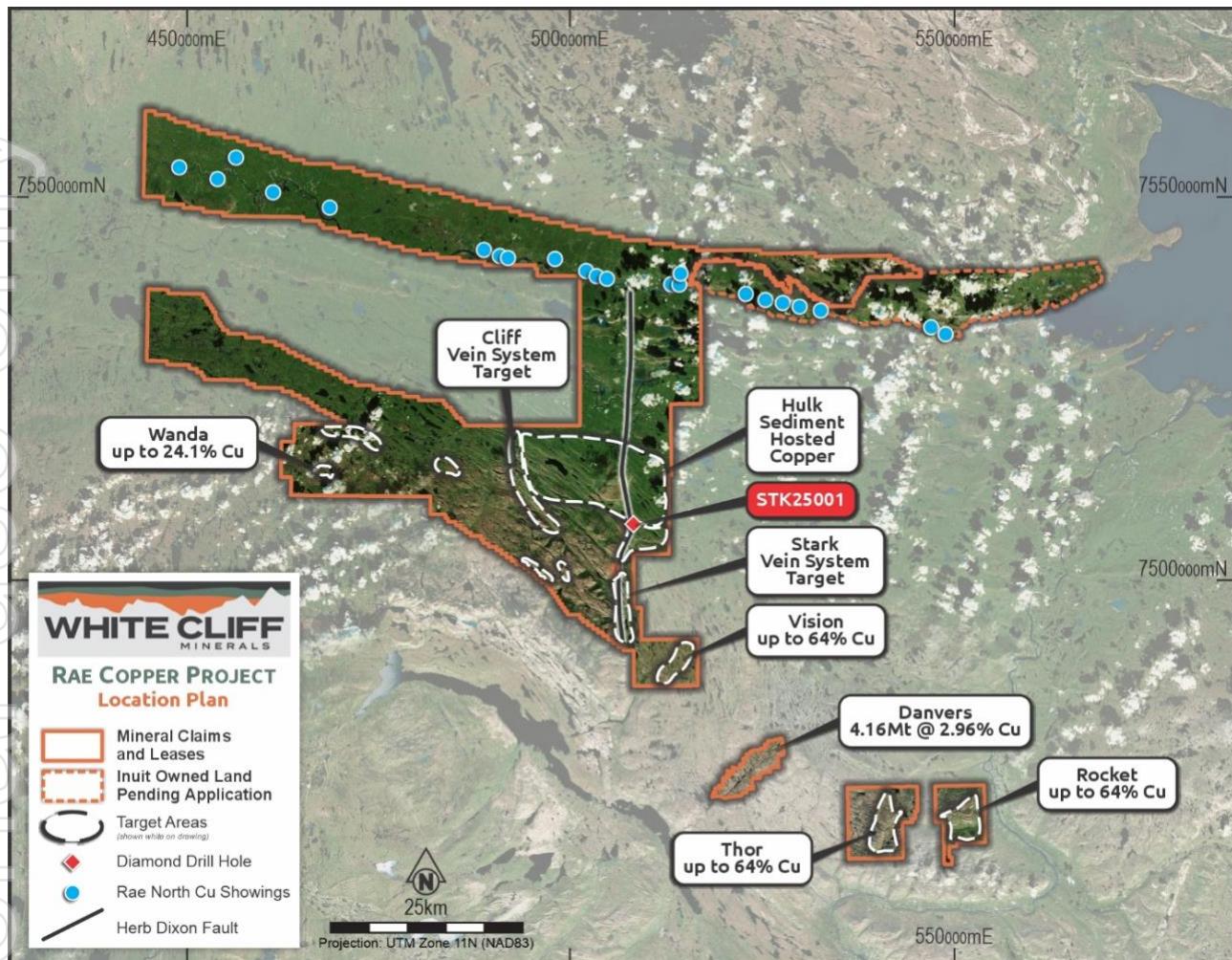


Figure 4 - White Cliff Minerals Rae Copper Project Area

ABOUT WHITE CLIFF MINERALS

The **Great Bear Lake** area is Identified as having Canada's highest probability for the hosting of iron-oxide-copper-gold uranium plus silver-style mineralisation in the Country. Results from the Company's maiden exploration include **42.6% Cu**, **39.5% Cu** and **38.2g/t Au** from the Phoenix prospect and the **highest-grade silver rock chip** assays in recent history **7.54% Ag** and **5.35% Ag** from Slider

The **Rae Cu-Ag project** contains numerous high grade Cu mineralisation occurrences and hosts all first-order controls for a sediment-hosted copper deposit and includes a historic resource estimate of **4.16 million tons at a grade of 2.96% Cu¹**. Highlights from the maiden drilling campaign include **175m @ 2.5% Cu & 8.66g/t Ag**, **90m @ 4% Cu & 7.5g/t Ag**, **58m @ 3.08% Cu & 13.3g/t Ag**, **105m @ 2.25% Cu**, **63m @ 2.23% Cu**, and **75m @ 2% Cu**.

The historic resource estimate at the Danvers Prospect, is a historic estimate and not in accordance with the JORC Code. The Company notes that the estimate and historic drilling results dated 1967 and 1968 are not reported in accordance with the NI 43-101 or JORC Code 2012. A competent person has not done sufficient work to disclose the estimate/results in accordance with the JORC Code 2012. It is possible that following further evaluation and/or exploration work that the confidence in the estimate and reported exploration results may be reduced when reported under the JORC Code 2012. The supporting information provided in the announcement dated 26 November 2024 continues to apply and has not materially changed.

For further information, please contact:

Troy Whittaker - Managing Director
E: info@wcminerals.com.au

White Cliff Minerals
T: +61 8 9486 4036

¹ See ASX Announcement dated 26 November 2024 "WCN Acquires Highly Prospective and Proven Copper Project"

COMPETENT PERSONS STATEMENT

The information in this report that relates to exploration results, mineral resources or ore reserves is based on information compiled by Roderick McIlree, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr McIlree is an employee of White Cliff Minerals. Mr McIlree has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr McIlree consents to the inclusion of this information in the form and context in which it appears in this report.

JORC COMPLIANCE STATEMENT

Where statement in this announcement refer to exploration results which previously been reported, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially modified from the original market announcements.

CAUTION REGARDING FORWARD-LOOKING STATEMENTS

This document may contain forward-looking statements concerning White Cliff Minerals. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements because of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information by White Cliff Minerals, or, on behalf of the Company.

Forward-looking statements in this document are based on White Cliff Minerals' beliefs, opinions and estimates of the Company as of the dates the forward-looking statements are made, and no obligation is assured to update forward-looking statements if these beliefs, opinions and estimates should change or to reflect future developments.

APPENDIX A.

The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results at the Rae Copper Project.

Table 1 - Collar information for diamond drillhole STK25003 and RC drillholes which did not reach target depth.

Hole ID	Datum/CRS	Easting	Northing	Elevation	Dip	Azimuth	Depth
STK25003	NAD83/UTM Zone 11N	508199	7506800	213	-90	000	273
HLK25001	NAD83/UTM Zone 11N	511543	7507865	185	-90	000	192.02
HLK25002	NAD83/UTM Zone 11N	508002	7510089	211	-90	000	117.35
HLK25005	NAD83/UTM Zone 11N	509611.7	7508951	200.709	-90	000	201.168
HLK25006	NAD83/UTM Zone 11N	508584.1	7512904	170.389	-90	000	201.168
HLK25007	NAD83/UTM Zone 11N	504178.1	7513369	199.464	-90	000	182.88
HLK25008	NAD83/UTM Zone 11N	512038.9	7505954	200.991	-90	000	211.836
HLK25009	NAD83/UTM Zone 11N	509983.1	7506616	211.072	-90	000	33.528

Table 2 - Rock chip information for samples included in Figure 4.

Sample ID	Easting	Northing	District	Ag (g/t)	Cu (%)
F005965	512291	7486880	Vision	152	64.02
F005950	552872	7466464	Rocket	14	54.12
F005921	541649	7468525	Thor	34	54.02
F005996	468678	7514161	Wanda	4	24.1

Table 3 – Assay results – diamond drillhole STK25003 and RC drillholes which did not reach target depth.

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
STK25003	24	26	2	0.006
STK25003	26	27	1	0.017
STK25003	27	28	1	0.002
STK25003	28	30	2	0.003
STK25003	30	31	1	0.008
STK25003	31	32	1	0.002
STK25003	32	33	1	0.000
STK25003	33	34	1	0.003
STK25003	34	35.85	1.85	0.003
STK25003	35.85	36.45	0.6	0.003
STK25003	36.45	38	1.55	0.011
STK25003	38	39	1	0.003
STK25003	39	40	1	0.013
STK25003	40	41.4	1.4	0.002
STK25003	41.4	43	1.6	0.006
STK25003	43	44.1	1.1	0.004
STK25003	44.1	45.55	1.45	0.007
STK25003	45.55	47	1.45	0.012
STK25003	47	49	2	0.005
STK25003	49	51	2	0.002
STK25003	51	53	2	0.011
STK25003	53	55	2	0.005
STK25003	55	57	2	0.006
STK25003	57	59	2	0.021
STK25003	59	61	2	0.019
STK25003	61	63	2	0.003
STK25003	63	65	2	0.023
STK25003	65	67	2	0.003
STK25003	67	69	2	0.002
STK25003	69	71	2	0.001
STK25003	71	73	2	0.001
STK25003	73	75	2	0.001
STK25003	75	77	2	0.001
STK25003	77	79	2	0.001
STK25003	79	81	2	0.001
STK25003	81	83	2	0.000
STK25003	83	85	2	0.001
STK25003	85	87	2	0.000
STK25003	87	88.9	1.9	0.000

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
STK25003	88.9	90.65	1.75	0.000
STK25003	90.65	92.5	1.85	0.001
STK25003	92.5	94	1.5	0.000
STK25003	94	95	1	0.001
STK25003	95	96	1	0.001
STK25003	96	98	2	0.001
STK25003	98	99	1	0.001
STK25003	99	101	2	0.001
STK25003	101	102	1	0.001
STK25003	102	104	2	0.001
STK25003	104	105	1	0.000
STK25003	105	107	2	0.000
STK25003	107	109	2	0.000
STK25003	109	110	1	0.001
STK25003	110	111	1	0.001
STK25003	111	112	1	0.001
STK25003	112	114	2	0.000
STK25003	114	115	1	0.001
STK25003	115	116	1	0.001
STK25003	116	118	2	0.001
STK25003	118	120	2	0.001
STK25003	120	121	1	0.001
STK25003	121	122	1	0.001
STK25003	122	124	2	0.001
STK25003	124	126	2	0.001
STK25003	126	127	1	0.001
STK25003	127	128	1	0.001
STK25003	128	130	2	0.000
STK25003	130	131	1	0.001
STK25003	131	132	1	0.001
STK25003	132	134	2	0.001
STK25003	134	136	2	0.000
STK25003	136	138	2	0.001
STK25003	138	139	1	0.001
STK25003	139	140	1	0.001
STK25003	140	141	1	0.001
STK25003	141	142	1	0.001
STK25003	142	144	2	0.001
STK25003	144	146	2	0.001
STK25003	146	148	2	0.000
STK25003	148	150	2	0.000

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
STK25003	150	151	1	0.001
STK25003	151	153	2	0.001
STK25003	153	154	1	0.001
STK25003	154	155	1	0.001
STK25003	155	156	1	0.001
STK25003	156	157	1	0.001
STK25003	157	159	2	0.001
STK25003	159	160	1	0.001
STK25003	160	162	2	0.001
STK25003	162	164	2	0.001
STK25003	164	165	1	0.001
STK25003	165	167	2	0.001
STK25003	167	169	2	0.002
STK25003	169	170	1	0.001
STK25003	170	171	1	0.001
STK25003	171	172	1	0.001
STK25003	172	174	2	0.001
STK25003	174	176	2	0.001
STK25003	176	177	1	0.001
STK25003	177	178	1	0.001
STK25003	178	179	1	0.002
STK25003	179	180	1	0.001
STK25003	180	182	2	0.001
STK25003	182	183	1	0.001
STK25003	183	184	1	0.001
STK25003	184	185	1	0.002
STK25003	185	186	1	0.001
STK25003	186	186.6	0.6	0.002
STK25003	186.6	187	0.4	0.019
STK25003	187	188	1	0.001
STK25003	188	190	2	0.001
STK25003	190	191	1	0.001
STK25003	191	192	1	0.001
STK25003	192	193	1	0.001
STK25003	193	195	2	0.001
STK25003	195	196	1	0.001
STK25003	196	197	1	0.001
STK25003	197	198	1	0.001
STK25003	198	199	1	0.002
STK25003	199	201	2	0.001
STK25003	201	202	1	0.001

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
STK25003	202	203	1	0.001
STK25003	203	204	1	0.001
STK25003	204	206	2	0.001
STK25003	206	208	2	0.012
STK25003	208	210	2	0.001
STK25003	210	211	1	0.001
STK25003	211	212	1	0.001
STK25003	212	213.9	1.9	0.001
STK25003	213.9	215	1.1	0.001
STK25003	215	217	2	0.008
STK25003	217	218.3	1.3	0.051
STK25003	218.3	219.15	0.85	0.002
STK25003	219.15	219.9	0.75	0.014
STK25003	219.9	221	1.1	0.002
STK25003	221	222	1	0.001
STK25003	222	223	2	0.001
STK25003	223	225	2	0.002
STK25003	225	227	1	0.001
STK25003	227	228	1	0.001
STK25003	228	229	0.85	0.001
STK25003	229	229.85	0.65	0.015
STK25003	229.85	230.5	0.4	0.018
STK25003	230.5	230.9	1.1	0.114
STK25003	230.9	232	1.1	0.002
STK25003	232	233.5	1.5	0.002
STK25003	233.5	234	0.5	0.001
STK25003	234	236	2	0.002
STK25003	236	237	1	0.002
STK25003	237	239	2	0.008
STK25003	239	240	1	0.040
STK25003	240	241.15	1.15	0.123
STK25003	241.15	241.85	0.7	0.447
STK25003	241.85	242.45	0.6	0.065
STK25003	242.45	243	0.55	0.034
STK25003	243	244	1	0.179
STK25003	244	245.6	1.6	0.011
STK25003	245.6	246.2	0.6	0.131
STK25003	246.2	247	0.8	0.074
STK25003	247	247.8	0.8	0.171
STK25003	247.8	249	1.2	0.233
STK25003	249	250.3	1.3	0.065

▲ ASX ANNOUNCEMENT

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
STK25003	250.3	251	0.7	0.673
STK25003	251	251.9	0.9	0.586
STK25003	251.9	253	1.1	1.110
STK25003	253	254	1	0.810
STK25003	254	254.85	0.85	5.680
STK25003	254.85	256	1.15	0.206
STK25003	256	257	1	0.009
STK25003	257	258.1	1.1	0.240
STK25003	258.1	259	0.9	0.491
STK25003	259	260	1	0.341
STK25003	260	262	2	0.413
STK25003	262	263	1	0.410
STK25003	263	264.55	1.55	1.250
STK25003	264.55	266	1.45	0.007
STK25003	266	267.55	1.55	0.007
STK25003	267.55	269.25	1.7	0.004
STK25003	269.25	271	1.75	0.005
STK25003	271	272	1	0.003
STK25003	272	273	1	0.001
HLK25001	0.00	1.52	1.52	0.009
HLK25001	1.52	3.05	1.52	0.008
HLK25001	3.05	4.57	1.52	0.008
HLK25001	4.57	6.10	1.52	0.012
HLK25001	6.10	7.62	1.52	0.009
HLK25001	7.62	9.14	1.52	0.010
HLK25001	9.14	10.67	1.52	0.008
HLK25001	10.67	12.19	1.52	0.005
HLK25001	12.19	13.72	1.52	0.007
HLK25001	13.72	15.24	1.52	0.006
HLK25001	15.24	16.76	1.52	0.006
HLK25001	16.76	18.29	1.52	0.004
HLK25001	18.29	19.81	1.52	0.005
HLK25001	19.81	21.34	1.52	0.006
HLK25001	21.34	22.86	1.52	0.006
HLK25001	22.86	24.38	1.52	0.006
HLK25001	24.38	25.91	1.52	0.006
HLK25001	25.91	27.43	1.52	0.005
HLK25001	27.43	28.96	1.52	0.002
HLK25001	28.96	30.48	1.52	0.001
HLK25001	30.48	32.00	1.52	0.001
HLK25001	32.00	33.53	1.52	0.015

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25001	33.53	35.05	1.52	0.020
HLK25001	35.05	36.58	1.52	0.018
HLK25001	36.58	38.10	1.52	0.020
HLK25001	38.10	39.62	1.52	0.018
HLK25001	39.62	41.15	1.52	0.016
HLK25001	41.15	42.67	1.52	0.020
HLK25001	42.67	44.20	1.52	0.022
HLK25001	44.20	45.72	1.52	0.020
HLK25001	45.72	47.24	1.52	0.020
HLK25001	47.24	48.77	1.52	0.021
HLK25001	48.77	50.29	1.52	0.021
HLK25001	50.29	51.82	1.52	0.020
HLK25001	51.82	53.34	1.52	0.019
HLK25001	53.34	54.86	1.52	0.020
HLK25001	54.86	56.39	1.52	0.021
HLK25001	56.39	57.91	1.52	0.020
HLK25001	57.91	59.44	1.52	0.021
HLK25001	59.44	60.96	1.52	0.023
HLK25001	60.96	62.48	1.52	0.008
HLK25001	62.48	64.01	1.52	0.001
HLK25001	64.01	65.53	1.52	0.001
HLK25001	65.53	67.06	1.52	0.001
HLK25001	67.06	68.58	1.52	0.001
HLK25001	68.58	70.10	1.52	0.002
HLK25001	70.10	71.63	1.52	0.002
HLK25001	71.63	73.15	1.52	0.002
HLK25001	73.15	74.68	1.52	0.002
HLK25001	74.68	76.20	1.52	0.003
HLK25001	76.20	77.72	1.52	0.003
HLK25001	77.72	79.25	1.52	0.002
HLK25001	79.25	80.77	1.52	0.001
HLK25001	80.77	82.30	1.52	0.001
HLK25001	82.30	83.82	1.52	0.001
HLK25001	83.82	85.34	1.52	0.001
HLK25001	85.34	86.87	1.52	0.008
HLK25001	86.87	88.39	1.52	0.006
HLK25001	88.39	89.92	1.52	0.006
HLK25001	89.92	91.44	1.52	0.005
HLK25001	91.44	92.96	1.52	0.006
HLK25001	92.96	94.49	1.52	0.003
HLK25001	94.49	96.01	1.52	0.001

▲ ASX ANNOUNCEMENT

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25001	96.01	97.54	1.52	0.001
HLK25001	97.54	99.06	1.52	0.003
HLK25001	99.06	100.58	1.52	0.001
HLK25001	100.58	102.11	1.52	0.002
HLK25001	102.11	103.63	1.52	0.001
HLK25001	103.63	105.16	1.52	0.001
HLK25001	105.16	106.68	1.52	0.002
HLK25001	106.68	108.20	1.52	0.001
HLK25001	108.20	109.73	1.52	0.001
HLK25001	109.73	111.25	1.52	0.001
HLK25001	111.25	112.78	1.52	0.012
HLK25001	112.78	114.30	1.52	0.003
HLK25001	114.30	115.82	1.52	0.017
HLK25001	115.82	117.35	1.52	0.007
HLK25001	117.35	118.87	1.52	0.009
HLK25001	118.87	120.40	1.52	0.005
HLK25001	120.40	121.92	1.52	0.001
HLK25001	121.92	123.44	1.52	0.001
HLK25001	123.44	124.97	1.52	0.001
HLK25001	124.97	126.49	1.52	0.002
HLK25001	126.49	128.02	1.52	0.001
HLK25001	128.02	129.54	1.52	0.004
HLK25001	129.54	131.06	1.52	0.001
HLK25001	131.06	132.59	1.52	0.004
HLK25001	132.59	134.11	1.52	0.004
HLK25001	134.11	135.64	1.52	0.017
HLK25001	135.64	137.16	1.52	0.001
HLK25001	137.16	138.68	1.52	0.003
HLK25001	138.68	140.21	1.52	0.008
HLK25001	140.21	141.73	1.52	0.006
HLK25001	141.73	143.26	1.52	0.002
HLK25001	143.26	144.78	1.52	0.003
HLK25001	144.78	146.30	1.52	0.004
HLK25001	146.30	147.83	1.52	0.002
HLK25001	147.83	149.35	1.52	0.003
HLK25001	149.35	150.88	1.52	0.001
HLK25001	150.88	152.40	1.52	0.001
HLK25001	152.40	153.92	1.52	0.005
HLK25001	153.92	155.45	1.52	0.003
HLK25001	155.45	156.97	1.52	0.002
HLK25001	156.97	158.50	1.52	0.002

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25001	158.50	160.02	1.52	0.003
HLK25001	160.02	161.54	1.52	0.004
HLK25001	161.54	163.07	1.52	0.007
HLK25001	163.07	164.59	1.52	0.005
HLK25001	164.59	166.12	1.52	0.002
HLK25001	166.12	167.64	1.52	0.003
HLK25001	167.64	169.16	1.52	0.004
HLK25001	169.16	170.69	1.52	0.001
HLK25001	170.69	172.21	1.52	0.001
HLK25001	172.21	173.74	1.52	0.003
HLK25001	173.74	175.26	1.52	0.002
HLK25001	175.26	176.78	1.52	0.001
HLK25001	176.78	178.31	1.52	0.001
HLK25001	178.31	179.83	1.52	0.001
HLK25001	179.83	181.36	1.52	0.001
HLK25001	181.36	182.88	1.52	0.008
HLK25001	182.88	184.40	1.52	0.007
HLK25001	184.40	185.93	1.52	0.003
HLK25001	185.93	187.45	1.52	0.002
HLK25001	187.45	188.98	1.52	0.005
HLK25001	188.98	190.50	1.52	0.001
HLK25001	190.50	192.02	1.52	0.002
HLK25002	0.00	1.52	1.52	0.008
HLK25002	1.52	3.05	1.52	0.008
HLK25002	3.05	4.57	1.52	0.006
HLK25002	4.57	6.10	1.52	0.007
HLK25002	6.10	7.62	1.52	0.007
HLK25002	7.62	9.14	1.52	0.005
HLK25002	9.14	10.67	1.52	0.006
HLK25002	10.67	12.19	1.52	0.006
HLK25002	12.19	13.72	1.52	0.005
HLK25002	13.72	15.24	1.52	0.005
HLK25002	15.24	16.76	1.52	0.006
HLK25002	16.76	18.29	1.52	0.003
HLK25002	18.29	19.81	1.52	0.004
HLK25002	19.81	21.34	1.52	0.004
HLK25002	21.34	22.86	1.52	0.004
HLK25002	22.86	24.38	1.52	0.004
HLK25002	24.38	25.91	1.52	0.004
HLK25002	25.91	27.43	1.52	0.004
HLK25002	27.43	28.96	1.52	0.004

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25002	28.96	30.48	1.52	0.004
HLK25002	30.48	32.00	1.52	0.004
HLK25002	32.00	33.53	1.52	0.004
HLK25002	33.53	35.05	1.52	0.004
HLK25002	35.05	36.58	1.52	0.005
HLK25002	36.58	38.10	1.52	0.004
HLK25002	38.10	39.62	1.52	0.004
HLK25002	39.62	41.15	1.52	0.003
HLK25002	41.15	42.67	1.52	0.004
HLK25002	42.67	44.20	1.52	0.004
HLK25002	44.20	45.72	1.52	0.005
HLK25002	45.72	47.24	1.52	0.005
HLK25002	47.24	48.77	1.52	0.005
HLK25002	48.77	50.29	1.52	0.005
HLK25002	50.29	51.82	1.52	0.005
HLK25002	51.82	53.34	1.52	0.004
HLK25002	53.34	54.86	1.52	0.006
HLK25002	54.86	56.39	1.52	0.005
HLK25002	56.39	57.91	1.52	0.005
HLK25002	57.91	59.44	1.52	0.005
HLK25002	59.44	60.96	1.52	0.003
HLK25002	60.96	62.48	1.52	0.001
HLK25002	62.48	64.01	1.52	0.001
HLK25002	64.01	65.53	1.52	0.001
HLK25002	65.53	67.06	1.52	0.001
HLK25002	67.06	68.58	1.52	0.001
HLK25002	68.58	70.10	1.52	0.004
HLK25002	70.10	71.63	1.52	0.006
HLK25002	71.63	73.15	1.52	0.003
HLK25002	73.15	74.68	1.52	0.001
HLK25002	74.68	76.20	1.52	0.009
HLK25002	76.20	77.72	1.52	0.009
HLK25002	77.72	79.25	1.52	0.003
HLK25002	79.25	80.77	1.52	0.004
HLK25002	80.77	82.30	1.52	0.016
HLK25002	82.30	83.82	1.52	0.015
HLK25002	83.82	85.34	1.52	0.002
HLK25002	85.34	86.87	1.52	0.004
HLK25002	86.87	88.39	1.52	0.004
HLK25002	88.39	89.92	1.52	0.005
HLK25002	89.92	91.44	1.52	0.004

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25002	91.44	92.96	1.52	0.003
HLK25002	92.96	94.49	1.52	0.001
HLK25002	94.49	96.01	1.52	0.001
HLK25002	96.01	97.54	1.52	0.001
HLK25002	97.54	99.06	1.52	0.001
HLK25002	99.06	100.58	1.52	0.001
HLK25002	100.58	102.11	1.52	0.005
HLK25002	102.11	103.63	1.52	0.003
HLK25002	103.63	105.16	1.52	0.007
HLK25002	105.16	106.68	1.52	0.004
HLK25002	106.68	108.20	1.52	0.006
HLK25002	108.20	109.73	1.52	0.003
HLK25002	109.73	111.25	1.52	0.001
HLK25002	111.25	112.78	1.52	0.001
HLK25002	112.78	114.30	1.52	0.003
HLK25002	114.30	115.82	1.52	0.003
HLK25002	115.82	117.35	1.52	0.008
HLK25005	0.00	1.52	1.52	0.008
HLK25005	1.52	3.05	1.52	0.012
HLK25005	3.05	4.57	1.52	0.008
HLK25005	4.57	6.10	1.52	0.010
HLK25005	6.10	7.62	1.52	0.009
HLK25005	7.62	9.14	1.52	0.009
HLK25005	9.14	10.67	1.52	0.006
HLK25005	10.67	12.19	1.52	0.005
HLK25005	12.19	13.72	1.52	0.004
HLK25005	13.72	15.24	1.52	0.005
HLK25005	15.24	16.76	1.52	0.004
HLK25005	16.76	18.29	1.52	0.005
HLK25005	18.29	19.81	1.52	0.003
HLK25005	19.81	21.34	1.52	0.003
HLK25005	21.34	22.86	1.52	0.011
HLK25005	22.86	24.38	1.52	0.008
HLK25005	24.38	25.91	1.52	0.016
HLK25005	25.91	27.43	1.52	0.006
HLK25005	27.43	28.96	1.52	0.008
HLK25005	28.96	30.48	1.52	0.007
HLK25005	30.48	32.00	1.52	0.005
HLK25005	32.00	33.53	1.52	0.005
HLK25005	33.53	35.05	1.52	0.006
HLK25005	35.05	36.58	1.52	0.004

▲ ASX ANNOUNCEMENT

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25005	36.58	38.10	1.52	0.005
HLK25005	38.10	39.62	1.52	0.005
HLK25005	39.62	41.15	1.52	0.007
HLK25005	41.15	42.67	1.52	0.007
HLK25005	42.67	44.20	1.52	0.005
HLK25005	44.20	45.72	1.52	0.005
HLK25005	45.72	47.24	1.52	0.006
HLK25005	47.24	48.77	1.52	0.005
HLK25005	48.77	50.29	1.52	0.002
HLK25005	50.29	51.82	1.52	0.002
HLK25005	51.82	53.34	1.52	0.002
HLK25005	53.34	54.86	1.52	0.001
HLK25005	54.86	56.39	1.52	0.001
HLK25005	56.39	57.91	1.52	0.001
HLK25005	57.91	59.44	1.52	0.001
HLK25005	59.44	60.96	1.52	0.000
HLK25005	60.96	62.48	1.52	0.000
HLK25005	62.48	64.01	1.52	0.001
HLK25005	64.01	65.53	1.52	0.000
HLK25005	65.53	67.06	1.52	0.000
HLK25005	67.06	68.58	1.52	0.001
HLK25005	68.58	70.10	1.52	0.000
HLK25005	70.10	71.63	1.52	0.000
HLK25005	71.63	73.15	1.52	0.000
HLK25005	73.15	74.68	1.52	0.000
HLK25005	74.68	76.20	1.52	0.000
HLK25005	76.20	77.72	1.52	0.000
HLK25005	77.72	79.25	1.52	0.000
HLK25005	79.25	80.77	1.52	0.000
HLK25005	80.77	82.30	1.52	0.000
HLK25005	82.30	83.82	1.52	0.002
HLK25005	83.82	85.34	1.52	0.010
HLK25005	85.34	86.87	1.52	0.025
HLK25005	86.87	88.39	1.52	0.008
HLK25005	88.39	89.92	1.52	0.010
HLK25005	89.92	91.44	1.52	0.009
HLK25005	91.44	92.96	1.52	0.003
HLK25005	92.96	94.49	1.52	0.002
HLK25005	94.49	96.01	1.52	0.002
HLK25005	96.01	97.54	1.52	0.002
HLK25005	97.54	99.06	1.52	0.004

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25005	99.06	100.58	1.52	0.003
HLK25005	100.58	102.11	1.52	0.003
HLK25005	102.11	103.63	1.52	0.003
HLK25005	103.63	105.16	1.52	0.002
HLK25005	105.16	106.68	1.52	0.002
HLK25005	106.68	108.20	1.52	0.005
HLK25005	108.20	109.73	1.52	0.002
HLK25005	109.73	111.25	1.52	0.003
HLK25005	111.25	112.78	1.52	0.006
HLK25005	112.78	114.30	1.52	0.003
HLK25005	114.30	115.82	1.52	0.002
HLK25005	115.82	117.35	1.52	0.002
HLK25005	117.35	118.87	1.52	0.003
HLK25005	118.87	120.40	1.52	0.002
HLK25005	120.40	121.92	1.52	0.001
HLK25005	121.92	123.44	1.52	0.001
HLK25005	123.44	124.97	1.52	0.002
HLK25005	124.97	126.49	1.52	0.001
HLK25005	126.49	128.02	1.52	0.004
HLK25005	128.02	129.54	1.52	0.006
HLK25005	129.54	131.06	1.52	0.006
HLK25005	131.06	132.59	1.52	0.010
HLK25005	132.59	134.11	1.52	0.004
HLK25005	134.11	135.64	1.52	0.001
HLK25005	135.64	137.16	1.52	0.001
HLK25005	137.16	138.68	1.52	0.002
HLK25005	138.68	140.21	1.52	0.004
HLK25005	140.21	141.73	1.52	0.001
HLK25005	141.73	143.26	1.52	0.003
HLK25005	143.26	144.78	1.52	0.001
HLK25005	144.78	146.30	1.52	0.004
HLK25005	146.30	147.83	1.52	0.001
HLK25005	147.83	149.35	1.52	0.001
HLK25005	149.35	150.88	1.52	0.001
HLK25005	150.88	152.40	1.52	0.001
HLK25005	152.40	153.92	1.52	0.001
HLK25005	153.92	155.45	1.52	0.001
HLK25005	155.45	156.97	1.52	0.001
HLK25005	156.97	158.50	1.52	0.001
HLK25005	158.50	160.02	1.52	0.001
HLK25005	160.02	161.54	1.52	0.001

▲ ASX ANNOUNCEMENT

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25005	161.54	163.07	1.52	0.001
HLK25005	163.07	164.59	1.52	0.001
HLK25005	164.59	166.12	1.52	0.001
HLK25005	166.12	167.64	1.52	0.001
HLK25005	167.64	169.16	1.52	0.001
HLK25005	169.16	170.69	1.52	0.004
HLK25005	170.69	172.21	1.52	0.007
HLK25005	172.21	173.74	1.52	0.001
HLK25005	173.74	175.26	1.52	0.003
HLK25005	175.26	176.78	1.52	0.019
HLK25005	176.78	178.31	1.52	0.014
HLK25005	178.31	179.83	1.52	0.001
HLK25005	179.83	181.36	1.52	0.002
HLK25005	181.36	182.88	1.52	0.005
HLK25005	182.88	184.40	1.52	0.007
HLK25005	184.40	185.93	1.52	0.001
HLK25005	185.93	187.45	1.52	0.005
HLK25005	187.45	188.98	1.52	0.002
HLK25005	188.98	190.50	1.52	0.003
HLK25005	190.50	192.02	1.52	0.003
HLK25005	192.02	193.55	1.52	0.001
HLK25005	193.55	195.07	1.52	0.005
HLK25005	195.07	196.60	1.52	0.001
HLK25005	196.60	198.12	1.52	0.002
HLK25005	198.12	199.64	1.52	0.004
HLK25005	199.64	201.17	1.52	0.002
HLK25006	0.00	1.52	1.52	0.009
HLK25006	1.52	3.05	1.52	0.017
HLK25006	3.05	4.57	1.52	0.004
HLK25006	4.57	6.10	1.52	0.017
HLK25006	6.10	7.62	1.52	0.009
HLK25006	7.62	9.14	1.52	0.009
HLK25006	9.14	10.67	1.52	0.008
HLK25006	10.67	12.19	1.52	0.009
HLK25006	12.19	13.72	1.52	0.009
HLK25006	13.72	15.24	1.52	0.003
HLK25006	15.24	16.76	1.52	0.004
HLK25006	16.76	18.29	1.52	0.004
HLK25006	18.29	19.81	1.52	0.006
HLK25006	19.81	21.34	1.52	0.006
HLK25006	21.34	22.86	1.52	0.008

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25006	22.86	24.38	1.52	0.007
HLK25006	24.38	25.91	1.52	0.007
HLK25006	25.91	27.43	1.52	0.006
HLK25006	27.43	28.96	1.52	0.003
HLK25006	28.96	30.48	1.52	0.005
HLK25006	30.48	32.00	1.52	0.019
HLK25006	32.00	33.53	1.52	0.003
HLK25006	33.53	35.05	1.52	0.009
HLK25006	35.05	36.58	1.52	0.011
HLK25006	36.58	38.10	1.52	0.008
HLK25006	38.10	39.62	1.52	0.002
HLK25006	39.62	41.15	1.52	0.005
HLK25006	41.15	42.67	1.52	0.007
HLK25006	42.67	44.20	1.52	0.004
HLK25006	44.20	45.72	1.52	0.004
HLK25006	45.72	47.24	1.52	0.006
HLK25006	47.24	48.77	1.52	0.004
HLK25006	48.77	50.29	1.52	0.005
HLK25006	50.29	51.82	1.52	0.016
HLK25006	51.82	53.34	1.52	0.033
HLK25006	53.34	54.86	1.52	0.012
HLK25006	54.86	56.39	1.52	0.031
HLK25006	56.39	57.91	1.52	0.020
HLK25006	57.91	59.44	1.52	0.021
HLK25006	59.44	60.96	1.52	0.021
HLK25006	60.96	62.48	1.52	0.021
HLK25006	62.48	64.01	1.52	0.021
HLK25006	64.01	65.53	1.52	0.022
HLK25006	65.53	67.06	1.52	0.023
HLK25006	67.06	68.58	1.52	0.023
HLK25006	68.58	70.10	1.52	0.010
HLK25006	70.10	71.63	1.52	0.017
HLK25006	71.63	73.15	1.52	0.024
HLK25006	73.15	74.68	1.52	0.028
HLK25006	74.68	76.20	1.52	0.033
HLK25006	76.20	77.72	1.52	0.055
HLK25006	77.72	79.25	1.52	0.043
HLK25006	79.25	80.77	1.52	0.042
HLK25006	80.77	82.30	1.52	0.032
HLK25006	82.30	83.82	1.52	0.042
HLK25006	83.82	85.34	1.52	0.041

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)	Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25006	85.34	86.87	1.52	0.025	HLK25006	147.83	149.35	1.52	0.019
HLK25006	86.87	88.39	1.52	0.033	HLK25006	149.35	150.88	1.52	0.020
HLK25006	88.39	89.92	1.52	0.052	HLK25006	150.88	152.40	1.52	0.019
HLK25006	89.92	91.44	1.52	0.053	HLK25006	152.40	153.92	1.52	0.016
HLK25006	91.44	92.96	1.52	0.053	HLK25006	153.92	155.45	1.52	0.018
HLK25006	92.96	94.49	1.52	0.039	HLK25006	155.45	156.97	1.52	0.021
HLK25006	94.49	96.01	1.52	0.046	HLK25006	156.97	158.50	1.52	0.018
HLK25006	96.01	97.54	1.52	0.053	HLK25006	158.50	160.02	1.52	0.017
HLK25006	97.54	99.06	1.52	0.057	HLK25006	160.02	161.54	1.52	0.021
HLK25006	99.06	100.58	1.52	0.077	HLK25006	161.54	163.07	1.52	0.021
HLK25006	100.58	102.11	1.52	0.066	HLK25006	163.07	164.59	1.52	0.021
HLK25006	102.11	103.63	1.52	0.066	HLK25006	164.59	166.12	1.52	0.022
HLK25006	103.63	105.16	1.52	0.074	HLK25006	166.12	167.64	1.52	0.021
HLK25006	105.16	106.68	1.52	0.078	HLK25006	167.64	169.16	1.52	0.021
HLK25006	106.68	108.20	1.52	0.074	HLK25006	169.16	170.69	1.52	0.021
HLK25006	108.20	109.73	1.52	0.045	HLK25006	170.69	172.21	1.52	0.022
HLK25006	109.73	111.25	1.52	0.025	HLK25006	172.21	173.74	1.52	0.024
HLK25006	111.25	112.78	1.52	0.027	HLK25006	173.74	175.26	1.52	0.022
HLK25006	112.78	114.30	1.52	0.022	HLK25006	175.26	176.78	1.52	0.022
HLK25006	114.30	115.82	1.52	0.021	HLK25006	176.78	178.31	1.52	0.022
HLK25006	115.82	117.35	1.52	0.022	HLK25006	178.31	179.83	1.52	0.021
HLK25006	117.35	118.87	1.52	0.023	HLK25006	179.83	181.36	1.52	0.022
HLK25006	118.87	120.40	1.52	0.022	HLK25006	181.36	182.88	1.52	0.021
HLK25006	120.40	121.92	1.52	0.020	HLK25006	182.88	184.40	1.52	0.022
HLK25006	121.92	123.44	1.52	0.020	HLK25006	184.40	185.93	1.52	0.022
HLK25006	123.44	124.97	1.52	0.017	HLK25006	185.93	187.45	1.52	0.021
HLK25006	124.97	126.49	1.52	0.015	HLK25006	187.45	188.98	1.52	0.023
HLK25006	126.49	128.02	1.52	0.019	HLK25006	188.98	190.50	1.52	0.021
HLK25006	128.02	129.54	1.52	0.019	HLK25006	190.50	192.02	1.52	0.017
HLK25006	129.54	131.06	1.52	0.020	HLK25006	192.02	193.55	1.52	0.010
HLK25006	131.06	132.59	1.52	0.019	HLK25006	193.55	195.07	1.52	0.001
HLK25006	132.59	134.11	1.52	0.021	HLK25006	195.07	196.60	1.52	0.001
HLK25006	134.11	135.64	1.52	0.020	HLK25006	196.60	198.12	1.52	0.002
HLK25006	135.64	137.16	1.52	0.022	HLK25006	198.12	199.64	1.52	0.002
HLK25006	137.16	138.68	1.52	0.014	HLK25006	199.64	201.17	1.52	0.009
HLK25006	138.68	140.21	1.52	0.022	HLK25007	0.00	1.52	1.52	0.010
HLK25006	140.21	141.73	1.52	0.024	HLK25007	1.52	3.05	1.52	0.009
HLK25006	141.73	143.26	1.52	0.023	HLK25007	3.05	4.57	1.52	0.011
HLK25006	143.26	144.78	1.52	0.020	HLK25007	4.57	6.10	1.52	0.011
HLK25006	144.78	146.30	1.52	0.020	HLK25007	6.10	7.62	1.52	0.011
HLK25006	146.30	147.83	1.52	0.022	HLK25007	7.62	9.14	1.52	0.010

▲ ASX ANNOUNCEMENT

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25007	9.14	10.67	1.52	0.010
HLK25007	10.67	12.19	1.52	0.003
HLK25007	12.19	13.72	1.52	0.007
HLK25007	13.72	15.24	1.52	0.004
HLK25007	15.24	16.76	1.52	0.003
HLK25007	16.76	18.29	1.52	0.004
HLK25007	18.29	19.81	1.52	0.008
HLK25007	19.81	21.34	1.52	0.009
HLK25007	21.34	22.86	1.52	0.003
HLK25007	22.86	24.38	1.52	0.003
HLK25007	24.38	25.91	1.52	0.002
HLK25007	25.91	27.43	1.52	0.004
HLK25007	27.43	28.96	1.52	0.002
HLK25007	28.96	30.48	1.52	0.002
HLK25007	30.48	32.00	1.52	0.002
HLK25007	32.00	33.53	1.52	0.003
HLK25007	33.53	35.05	1.52	0.032
HLK25007	35.05	36.58	1.52	0.004
HLK25007	36.58	38.10	1.52	0.003
HLK25007	38.10	39.62	1.52	0.002
HLK25007	39.62	41.15	1.52	0.004
HLK25007	41.15	42.67	1.52	0.003
HLK25007	42.67	44.20	1.52	0.005
HLK25007	44.20	45.72	1.52	0.017
HLK25007	45.72	47.24	1.52	0.021
HLK25007	47.24	48.77	1.52	0.020
HLK25007	48.77	50.29	1.52	0.008
HLK25007	50.29	51.82	1.52	0.004
HLK25007	51.82	53.34	1.52	0.005
HLK25007	53.34	54.86	1.52	0.004
HLK25007	54.86	56.39	1.52	0.002
HLK25007	56.39	57.91	1.52	0.004
HLK25007	57.91	59.44	1.52	0.002
HLK25007	59.44	60.96	1.52	0.001
HLK25007	60.96	62.48	1.52	0.003
HLK25007	62.48	64.01	1.52	0.001
HLK25007	64.01	65.53	1.52	0.004
HLK25007	65.53	67.06	1.52	0.004
HLK25007	67.06	68.58	1.52	0.003
HLK25007	68.58	70.10	1.52	0.001
HLK25007	70.10	71.63	1.52	0.001

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25007	71.63	73.15	1.52	0.001
HLK25007	73.15	74.68	1.52	0.003
HLK25007	74.68	76.20	1.52	0.003
HLK25007	76.20	77.72	1.52	0.001
HLK25007	77.72	79.25	1.52	0.002
HLK25007	79.25	80.77	1.52	0.004
HLK25007	80.77	82.30	1.52	0.001
HLK25007	82.30	83.82	1.52	0.002
HLK25007	83.82	85.34	1.52	0.001
HLK25007	85.34	86.87	1.52	0.002
HLK25007	86.87	88.39	1.52	0.002
HLK25007	88.39	89.92	1.52	0.010
HLK25007	89.92	91.44	1.52	0.001
HLK25007	91.44	92.96	1.52	0.001
HLK25007	92.96	94.49	1.52	0.001
HLK25007	94.49	96.01	1.52	0.001
HLK25007	96.01	97.54	1.52	0.003
HLK25007	97.54	99.06	1.52	0.002
HLK25007	99.06	100.58	1.52	0.001
HLK25007	100.58	102.11	1.52	0.001
HLK25007	102.11	103.63	1.52	0.002
HLK25007	103.63	105.16	1.52	0.001
HLK25007	105.16	106.68	1.52	0.001
HLK25007	106.68	108.20	1.52	0.001
HLK25007	108.20	109.73	1.52	0.003
HLK25007	109.73	111.25	1.52	0.006
HLK25007	111.25	112.78	1.52	0.004
HLK25007	112.78	114.30	1.52	0.004
HLK25007	114.30	115.82	1.52	0.005
HLK25007	115.82	117.35	1.52	0.004
HLK25007	117.35	118.87	1.52	0.005
HLK25007	118.87	120.40	1.52	0.005
HLK25007	120.40	121.92	1.52	0.006
HLK25007	121.92	123.44	1.52	0.005
HLK25007	123.44	124.97	1.52	0.003
HLK25007	124.97	126.49	1.52	0.003
HLK25007	126.49	128.02	1.52	0.002
HLK25007	128.02	129.54	1.52	0.003
HLK25007	129.54	131.06	1.52	0.004
HLK25007	131.06	132.59	1.52	0.003
HLK25007	132.59	134.11	1.52	0.003

▲ ASX ANNOUNCEMENT

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25007	134.11	135.64	1.52	0.004
HLK25007	135.64	137.16	1.52	0.004
HLK25007	137.16	138.68	1.52	0.003
HLK25007	138.68	140.21	1.52	0.002
HLK25007	140.21	141.73	1.52	0.002
HLK25007	141.73	143.26	1.52	0.002
HLK25007	143.26	144.78	1.52	0.003
HLK25007	144.78	146.30	1.52	0.001
HLK25007	146.30	147.83	1.52	0.002
HLK25007	147.83	149.35	1.52	0.002
HLK25007	149.35	150.88	1.52	0.003
HLK25007	150.88	152.40	1.52	0.004
HLK25007	152.40	153.92	1.52	0.005
HLK25007	153.92	155.45	1.52	0.005
HLK25007	155.45	156.97	1.52	0.003
HLK25007	156.97	158.50	1.52	0.003
HLK25007	158.50	160.02	1.52	0.003
HLK25007	160.02	161.54	1.52	0.004
HLK25007	161.54	163.07	1.52	0.004
HLK25007	163.07	164.59	1.52	0.004
HLK25007	164.59	166.12	1.52	0.008
HLK25007	166.12	167.64	1.52	0.018
HLK25007	167.64	169.16	1.52	0.012
HLK25007	169.16	170.69	1.52	0.020
HLK25007	170.69	172.21	1.52	0.022
HLK25007	172.21	173.74	1.52	0.038
HLK25007	173.74	175.26	1.52	0.110
HLK25007	175.26	176.78	1.52	0.030
HLK25007	175.26	178.31	3.05	0.016
HLK25007	178.31	179.83	1.52	0.026
HLK25007	179.83	181.36	1.52	0.015
HLK25007	181.36	182.88	1.52	0.014
HLK25008	0.00	1.52	1.52	0.006
HLK25008	1.52	3.05	1.52	0.006
HLK25008	3.05	4.57	1.52	0.006
HLK25008	4.57	6.10	1.52	0.008
HLK25008	6.10	7.62	1.52	0.009
HLK25008	7.62	9.14	1.52	0.010
HLK25008	9.14	10.67	1.52	0.011
HLK25008	10.67	12.19	1.52	0.015
HLK25008	12.19	13.72	1.52	0.011

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25008	13.72	15.24	1.52	0.011
HLK25008	15.24	16.76	1.52	0.010
HLK25008	16.76	18.29	1.52	0.014
HLK25008	18.29	19.81	1.52	0.011
HLK25008	19.81	21.34	1.52	0.017
HLK25008	21.34	22.86	1.52	0.009
HLK25008	22.86	24.38	1.52	0.011
HLK25008	24.38	25.91	1.52	0.007
HLK25008	25.91	27.43	1.52	0.003
HLK25008	27.43	28.96	1.52	0.003
HLK25008	28.96	30.48	1.52	0.015
HLK25008	30.48	32.00	1.52	0.020
HLK25008	32.00	33.53	1.52	0.002
HLK25008	33.53	35.05	1.52	0.002
HLK25008	35.05	36.58	1.52	0.002
HLK25008	36.58	38.10	1.52	0.002
HLK25008	38.10	39.62	1.52	0.003
HLK25008	39.62	41.15	1.52	0.001
HLK25008	41.15	42.67	1.52	0.001
HLK25008	42.67	44.20	1.52	0.001
HLK25008	44.20	45.72	1.52	0.001
HLK25008	45.72	47.24	1.52	0.001
HLK25008	47.24	48.77	1.52	0.001
HLK25008	48.77	50.29	1.52	0.005
HLK25008	50.29	51.82	1.52	0.001
HLK25008	51.82	53.34	1.52	0.001
HLK25008	53.34	54.86	1.52	0.000
HLK25008	54.86	56.39	1.52	0.000
HLK25008	56.39	57.91	1.52	0.001
HLK25008	57.91	59.44	1.52	0.001
HLK25008	59.44	60.96	1.52	0.001
HLK25008	60.96	62.48	1.52	0.001
HLK25008	62.48	64.01	1.52	0.001
HLK25008	64.01	65.53	1.52	0.001
HLK25008	65.53	67.06	1.52	0.001
HLK25008	67.06	68.58	1.52	0.001
HLK25008	68.58	70.10	1.52	0.001
HLK25008	70.10	71.63	1.52	0.001
HLK25008	71.63	73.15	1.52	0.001
HLK25008	73.15	74.68	1.52	0.001
HLK25008	74.68	76.20	1.52	0.001

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25008	76.20	77.72	1.52	0.001
HLK25008	77.72	79.25	1.52	0.001
HLK25008	79.25	80.77	1.52	0.001
HLK25008	80.77	82.30	1.52	0.015
HLK25008	82.30	83.82	1.52	0.008
HLK25008	83.82	85.34	1.52	0.011
HLK25008	85.34	86.87	1.52	0.021
HLK25008	86.87	88.39	1.52	0.008
HLK25008	88.39	89.92	1.52	0.001
HLK25008	89.92	91.44	1.52	0.001
HLK25008	91.44	92.96	1.52	0.001
HLK25008	92.96	94.49	1.52	0.001
HLK25008	94.49	96.01	1.52	0.001
HLK25008	96.01	97.54	1.52	0.002
HLK25008	97.54	99.06	1.52	0.002
HLK25008	99.06	100.58	1.52	0.001
HLK25008	100.58	102.11	1.52	0.006
HLK25008	102.11	103.63	1.52	0.002
HLK25008	103.63	105.16	1.52	0.001
HLK25008	105.16	106.68	1.52	0.002
HLK25008	106.68	108.20	1.52	0.001
HLK25008	108.20	109.73	1.52	0.001
HLK25008	109.73	111.25	1.52	0.031
HLK25008	111.25	112.78	1.52	0.012
HLK25008	112.78	114.30	1.52	0.016
HLK25008	114.30	115.82	1.52	0.013
HLK25008	115.82	117.35	1.52	0.001
HLK25008	117.35	118.87	1.52	0.001
HLK25008	118.87	120.40	1.52	0.001
HLK25008	120.40	121.92	1.52	0.001
HLK25008	121.92	123.44	1.52	0.001
HLK25008	123.44	124.97	1.52	0.001
HLK25008	124.97	126.49	1.52	0.015
HLK25008	126.49	128.02	1.52	0.018
HLK25008	128.02	129.54	1.52	0.013
HLK25008	129.54	131.06	1.52	0.009
HLK25008	131.06	132.59	1.52	0.012
HLK25008	132.59	134.11	1.52	0.005
HLK25008	134.11	135.64	1.52	0.009
HLK25008	135.64	137.16	1.52	0.013
HLK25008	137.16	138.68	1.52	0.020

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25008	138.68	140.21	1.52	0.006
HLK25008	140.21	141.73	1.52	0.002
HLK25008	141.73	143.26	1.52	0.018
HLK25008	143.26	144.78	1.52	0.015
HLK25008	144.78	146.30	1.52	0.006
HLK25008	146.30	147.83	1.52	0.005
HLK25008	147.83	149.35	1.52	0.004
HLK25008	149.35	150.88	1.52	0.007
HLK25008	150.88	152.40	1.52	0.006
HLK25008	152.40	153.92	1.52	0.009
HLK25008	153.92	155.45	1.52	0.007
HLK25008	155.45	156.97	1.52	0.022
HLK25008	156.97	158.50	1.52	0.005
HLK25008	158.50	160.02	1.52	0.005
HLK25008	160.02	161.54	1.52	0.014
HLK25008	161.54	163.07	1.52	0.004
HLK25008	163.07	164.59	1.52	0.003
HLK25008	164.59	166.12	1.52	0.002
HLK25008	166.12	167.64	1.52	0.009
HLK25008	167.64	169.16	1.52	0.003
HLK25008	169.16	170.69	1.52	0.001
HLK25008	170.69	172.21	1.52	0.007
HLK25008	172.21	173.74	1.52	0.020
HLK25008	173.74	175.26	1.52	0.020
HLK25008	175.26	176.78	1.52	0.011
HLK25008	176.78	178.31	1.52	0.008
HLK25008	178.31	179.83	1.52	0.008
HLK25008	179.83	181.36	1.52	0.007
HLK25008	181.36	182.88	1.52	0.006
HLK25008	182.88	184.40	1.52	0.006
HLK25008	184.40	185.93	1.52	0.005
HLK25008	185.93	187.45	1.52	0.001
HLK25008	187.45	188.98	1.52	0.002
HLK25008	188.98	190.50	1.52	0.002
HLK25008	190.50	192.02	1.52	0.003
HLK25008	192.02	193.55	1.52	0.004
HLK25008	193.55	195.07	1.52	0.004
HLK25008	195.07	196.60	1.52	0.003
HLK25008	196.60	198.12	1.52	0.003
HLK25008	198.12	199.64	1.52	0.004
HLK25008	199.64	201.17	1.52	0.003

Hole ID	From (m)	To (m)	Interval (m)	Cu (%)
HLK25008	201.17	202.69	1.52	0.002
HLK25008	202.69	204.22	1.52	0.003
HLK25008	204.22	205.74	1.52	0.003
HLK25008	205.74	207.26	1.52	0.004
HLK25008	207.26	208.79	1.52	0.002
HLK25008	208.79	210.31	1.52	0.002
HLK25008	210.31	211.84	1.52	0.004
HLK25009	0.00	1.52	1.52	0.006
HLK25009	1.52	3.05	1.52	0.007
HLK25009	3.05	4.57	1.52	0.007
HLK25009	4.57	6.10	1.52	0.006
HLK25009	6.10	7.62	1.52	0.005
HLK25009	7.62	9.14	1.52	0.006
HLK25009	9.14	10.67	1.52	0.008
HLK25009	10.67	12.19	1.52	0.008
HLK25009	12.19	13.72	1.52	0.010
HLK25009	13.72	15.24	1.52	0.005
HLK25009	15.24	16.76	1.52	0.004
HLK25009	16.76	18.29	1.52	0.006
HLK25009	18.29	19.81	1.52	0.005
HLK25009	19.81	21.34	1.52	0.005
HLK25009	21.34	22.86	1.52	0.010
HLK25009	22.86	24.38	1.52	0.005
HLK25009	24.38	25.91	1.52	0.005
HLK25009	25.91	27.43	1.52	0.009
HLK25009	27.43	28.96	1.52	0.007
HLK25009	28.96	30.48	1.52	0.005
HLK25009	30.48	32.00	1.52	0.005
HLK25009	32.00	33.53	1.52	0.004

APPENDIX B.

The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results at the Rae Copper Project.

SECTION 1: SAMPLING TECHNIQUES AND DATA

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> ▪ Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. ▪ Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. ▪ Aspects of the determination of mineralisation that are Material to the Public Report. ▪ In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	<ul style="list-style-type: none"> ▪ 2025 Reverse circulation (RC) drilling by White Cliff Minerals. Drilling completed by Northspan Explorations Ltd. The drillholes were sampled in their entirety on 5-foot (1.52m) intervals. Returned material was passed through a level 3-tier riffle splitter, producing a 12.5% sample split and a retention sample. Representative chips for logging were taken from the retention sample by sieving from the retention sample. Chips are washed at the camp location, prior to storage in chip trays. ▪ 2025 Reverse circulation (RC) drilling by White Cliff Minerals - Samples are sent to ALS Yellowknife for preparation under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Followed by multi-element ICP-MS analysis after 4-acid digestion (ME-MS61) and fire assay gold (Au-ICP21). ▪ 2025 diamond drilling (DD) by White Cliff Minerals. Drilling was completed by Northtech Drilling Ltd. Core was sampled after geological logging and sample interval markup by the logging geologist. A standard interval of 1.5m was employed with sample intervals breaking at changes in lithology, alteration or mineralisation. Half core or quarter core (duplicates) were produced for assay samples. ▪ 2025 diamond drilling (DD) by White Cliff Minerals – Samples are sent to ALS Yellowknife for preparation under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Followed by multi-element ICP-AES analysis after 4-acid digestion (ME-ICP61). ▪ 2024 rock chip samples from the Nunavut based Rae Copper Project were sent to Yellowknife via secure air freight, and received by an employee of Aurora Geosciences Ltd., who ensured sample security and maintained custody until delivered to ALS laboratories, Yellowknife for preparation. Samples are prepared under code PREP-31D and analysed by ME-ICPORE, an analysis package designed for massive sulphides. Overassay (>40% Cu) are undertaken by Cu-VOL61. Samples with visible native copper were analysed by Cu-SCR21. All samples from Danvers target area underwent gold analysis by 30g fire assay and ICP-AES under code Au-ICP21, samples from Hulk undergo the same process however, without Au-ICP21. Final assay results and certificates are sent by ALS directly to both the WCN senior geologist and country manager to undertake independent quality control before release of results. ▪ 2025 rock chip samples from the Nunavut based Rae Copper Project will be shipped to Yellowknife via secure air freight, and received by an employee of Aurora Geosciences Ltd., who ensures sample security and maintains custody until delivered to ALS laboratories, Yellowknife for preparation. Samples will be prepared under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85%

	<ul style="list-style-type: none"> ▪ Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is orientated and if so, by what method, etc.).
Drill sample recovery	<ul style="list-style-type: none"> ▪ Method of recording and assessing core and chip sample recoveries and results assessed. ▪ 2025 RC drilling by White Cliff Minerals changes sample recovery and sample condition at the rig site during drilling operation. An estimation (qualitative) of recovery was completed on the sample returned from the complete drill interval if loss is believed to have occurred. Reasons for loss discussed between rigsite geologist and driller. Wet samples have not been encountered. Sample bias is believed to be negligible due to a preferential loss of fine/coarse

	<ul style="list-style-type: none"> ▪ Measures taken to maximise sample recovery and ensure representative nature of the samples. ▪ Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> material. Riffle splitting of the returned material to generate a sample produces a homogenous sample for the interval, ensuring representative sampling. Field duplicate samples are taken by spearing the homogenised retention sample, post riffle splitting. ▪ 2025 diamond drilling (DD) by White Cliff Minerals – core recovery and rock quality designation (RQD) are measured by logging geologists and technicians of contractor Aurora Geosciences Ltd on a per drill run basis, of 3m. Recovery is calculated as the relationship between drilled interval and length of recovered core. No relationship between grade and recovery can be determined currently due to no assays received for 2025 diamond drilling. ▪ 2015 Kaizen Discovery Corp - Core recovery was calculated as the difference between drilled intervals between drillers core blocks and the length of recovered core. Representative core samples were taken by sampling half core, cutting the core along the long axis with an electric powered core saw. No relationship is observed between recovery and grade for drillhole CP15_DD009 which returned 99.5% core recovery. ▪ 2003/2005 diamond drilling completed by Coronation Minerals - No note of core recovery within source publication for Coronation Minerals' program. Representative half core samples were taken for assay. No relationship between grade and recovery can be commented on due to lack of recovery information. ▪ 1967/1968 diamond drilling completed by Coppermine River – No routine measurement of core recovery. Representative samples were taken by sampling half core, splitting core along long axis. No relationship between grade and sample recovery determined due to lack of recovery data.
Logging	<ul style="list-style-type: none"> ▪ Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. ▪ Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. ▪ The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> ▪ 2025 RC drilling by White Cliff Minerals - All intervals returned are logged for lithology and mineralisation at the camp location. ▪ 2025 diamond drilling (DD) by White Cliff Minerals – All recovered drillcore is logged for lithology, alteration and mineralisation at the camp location by an Aurora Geosciences contractor. All recovered core is photographed wet and dry. ▪ 2024 and 2025 rock chip sampling by White Cliff Minerals - sampling was undertaken on surface alongside lithologic, alteration and mineralisation logging. Data input presented in tabulated form alongside coordinates and sample numbers. ▪ High resolution photographs are available for RC chips and diamond drillcore from the 2025 program. ▪ 2015 Kaizen Discovery Corp – core was logged for lithology, alteration, mineralisation and structure. All recovered intervals were logged. ▪ 2015 Kaizen Discovery Corp – core photography is not available. Photographs of select intervals are available. ▪ 2003/2005 diamond drilling completed by Coronation Minerals - Core intervals were logged within a core shack at the Hope Lake Airstrip. Descriptive notes are recorded including note of rock type, alteration and mineralised intersections. No geotechnical logging is available. The level of detail would not be sufficient for inclusion in a Mineral Resource estimation to JORC standards. All recovered core was logged. No photographs of the drillcore are available.

Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> ■ If core, whether cut or sawn and whether quarter, half or all core taken. ■ If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. ■ For all sample types, the nature, quality and appropriateness of the sample preparation technique. ■ Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. ■ Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. ■ Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> ■ 1967/1968 diamond drilling completed by Coppermine River – All core intervals were logged at the Hope Lake Camp. Description of lithology, alteration and mineralisation are recorded along with depth intervals on paper format per drillhole. ■ 2025 RC drilling by White Cliff Minerals – Holes were sampled in full using 1.52m intervals as per the 5-foot rod lengths of the rig. Assay samples were collected as a 12.5% split from a 3-tier riffle splitter used to ensure a homogenous and representative sample of the drilled interval. ■ 2025 RC drilling by White Cliff Minerals – sample size is deemed appropriate to the base metal mineralisation which is hosted by fine to medium grained copper sulphides and their associated secondary minerals (malachite, azurite). ■ 2025 diamond drilling (DD) by White Cliff Minerals – Drillcore is sampled on a nominal 1.5m interval, breaking at lithology, alteration or mineralisation boundaries. Samples range from 0.34-1.7m length. Half core is sampled for standard sample intervals, cut by a Husqvarna target portasaw ts355g. Quarter core intervals are used for duplicate insertion. ■ 2024 and 2025 rock chip sampling by White Cliff Minerals - Rock chip sample sizes are deemed appropriate for the style of mineralisation targeted and able to quantify the precious and base metal content. A range of 0.56-1.96 kg of material was assayed with an average of 1.1kg for 2024 samples. ■ 2015 Kaizen Discovery Corp – Standard half core intervals were assayed. Quarter core duplicate samples were taken at specified intervals downhole as part of the quality assurance and control protocols. A total of 6 quarter core samples were taken within the reported drillhole. ■ 2003/2005 diamond drilling completed by Coronation Minerals - Half core samples taken, split by hand on site. The nature of sample preparation is deemed fit for purpose for the target mineralisation style. No note of field duplicates are recorded by Coronation Minerals. Loring Laboratories conducted lab duplicate analyses. Sampling of half core is deemed appropriate for the mineralization being targeted. ■ 1967/1968 diamond drilling completed by Coppermine River – Core was split longitudinally where mineralisation was visible to produce half core samples. Samples were typically 5ft lengths but intervals up to 10ft were taken on occasion. Sampling was extended at least 5 ft and, in most cases, 10ft on either side of the mineralised sections. No note of field duplicates.
	<ul style="list-style-type: none"> ■ The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. ■ For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. ■ Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external 	<ul style="list-style-type: none"> ■ 2025 RC drilling by White Cliff Minerals – Samples are sent to ALS Yellowknife for preparation under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Spring drilling (DAN25001-008) used multi-element ICP-MS analysis after 4-acid digestion (ME-MS61) and fire assay gold (Au-ICP21). Summer RC drilling (DAN25009-021) used ICP-AES after 4-acid digestion (ME-ICP61) with no gold analysis. 4-acid digestion is considered a near-total digestion except for barite, rare earth oxides, columbite-tantalite, and titanium, tin and tungsten minerals, which may not be fully digested. Overassay completed by OG-62 methods. ■ A schedule of quality control samples is inserted into the sample stream at a rate of 10%, including field duplicates, coarse blanks (OREAS C26e), and certified reference materials OREAS930 and OREAS922. Field duplicates were taken from the retention sample by spearing the homogenised chips after riffle splitting.

laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.

- 2025 diamond drilling (DD) by White Cliff Minerals - Samples are sent to ALS Yellowknife for preparation under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Followed by multi-element ICP-AES after 4-acid digestion (ME-ICP61). 4-acid digestion is considered a near-total digestion except for barite, rare earth oxides, columbite-tantalite, and titanium, tin and tungsten minerals, which may not be fully digested. Overassay completed by OG-62 methods. A schedule of quality control samples is inserted into the sample stream at a rate of 10%, including field duplicates, coarse blanks (OREAS C26e), and certified reference materials OREAS930 and OREAS922.
- Further to the inserted quality control samples ALS Laboratories conducts their own QC including reference materials during the analyses, matching the element concentrations to those observed in the analysis dataset, ensuring quality in reported assay results.
- 2025 rock chip sampling - will be shipped to Yellowknife via secure air freight, and received by an employee of Aurora Geosciences Ltd., who ensures sample security and maintains custody until delivered to ALS laboratories, Yellowknife for preparation. Samples will be prepared under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Followed by multi-element ICP-MS analysis after 4-acid digestion (ME-MS61) and fire assay gold (Au-ICP21).
- 2025 rock chip sampling by White Cliff Minerals – Blanks are inserted at a rate of 4% (OREAS C26e), no field duplicates of certified reference materials are inserted into the sample stream.
- 2024 rock chip sampling by White Cliff Minerals - Sent to Yellowknife via secure air freight, and received by an employee of Aurora Geosciences Ltd., who ensured sample security and maintained custody until delivered to ALS laboratories, Yellowknife for preparation. Samples are prepared under code PREP-31D and analysed by ME-ICPORE; an analysis package designed for massive sulphides. Overassay (>40% Cu) are undertaken by Cu-VOL61. Samples with visible native copper were analysed by Cu-SCR21. All samples underwent gold analysis by 30g fire assay and ICP-AES under code Au-ICP21.
- 2024 rock chip sampling by White Cliff Minerals - Blanks (BL-10 CDN Laboratories) were inserted at a rate of 4 %. No field duplicates or certified reference materials were inserted into the sample stream.
- 2015 Kaizen Discovery Corp – Samples were analysed by ALS laboratories Vancouver using prep code PREP-31B which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Analysis by ME-ICP61, a four-acid (near total) digestion followed by multi-element ICP-AES finish. A total of 6 quarter core samples were taken within the reported drillhole.
- 2003/2005 diamond drilling completed by Coronation Minerals -0.5 g was digested by HCl, HNO3 and HClO4 and analysed for copper and nickel by ICP. Silver was analysed after HNO3 and HCl digestion followed by atomic absorption, with samples greater than 30 ppm silver re-analysed with fire assay with gravimetric finish. Gold and PGMs were analysed by a 30 g split by fire assay followed by ICP analysis. Digestion for copper and nickel is noted to be a partial digestion. No geophysical tools were used. No note of insertion of quality control samples, including blanks, standards or duplicates were noted by Coronation Minerals. Loring Laboratories conducted lab duplicate analyses.
- 1967/1968 diamond drilling completed by Coppermine River – No details regarding assay techniques are available for the 1967/1968 drilling programs.

Verification of sampling and assaying	<ul style="list-style-type: none"> ■ The verification of significant intersections by either independent or alternative company personnel. ■ The use of twinned holes. ■ Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. ■ Discuss any adjustment to assay data. ■ 2025 RC and diamond drilling by White Cliff Minerals – Primary data collection is completed by White Cliff Minerals employees or contracting geologists from Aurora Geosciences Ltd. Data is entered into Excel logging templates and reviewed by White Cliff Minerals senior geologist. Data is then stored on a cloud server with 2-factor authorisation. All received results are reviewed by the senior geologist, country manager and designated competent person. ■ No independent review of the historic drilling (2003/2005) or 1967/1968 has been completed by personnel independent to White Cliff Minerals. Documentation of primary data in historic programs is unknown. ■ 2015 Kaizen Discovery Corp – Data was entered into Excel logging templates. No information regarding data verification and storage protocols are known. ■ No adjustment to assay data, reported intervals are calculated by weighted average accounting for sample length and reported concentration. 2025 RC drilling by White Cliff Minerals – drilled intervals are recorded on site in feet (Imperial) and later converted to metres (metric) as per 1 foot = 0.3048 metres. ■ No twin holes are reported.
Location of data points	<ul style="list-style-type: none"> ■ Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. ■ Specification of the grid system used. ■ Quality and adequacy of topographic control. ■ 2025 RC and diamond drilling by White Cliff Minerals – Collar locations were pegged out using a Garmin GPSMAP 66sr (Multiband) with foresight and backsight stakes demarcating the azimuth. Drill collars were then surveyed by a Juniper Systems Geode GNS2M after drilling. ■ 2024 and 2025 rock chip sampling by White Cliff Minerals - Locations of reported rock chip assay results are in NAD83 / UTM Zone 11 N. Positions of samples determined in the field by handheld Garmin GPSMAP 66sr or Garmin GPSMAP 65 units. ■ 2015 Kaizen Discovery Corp – No note of collar survey method or method of downhole surveying. ■ Coordinates of drillholes from the 2003/2005 Coronation Minerals program are presented in NAD83 UTM Zone 11N. Location of collars was determined by handheld GPS. ■ Coordinates of drillholes from the 1967/1968 drilling program are presented in NAD83 UTM Zone 11N. Location of collars were determined through georeferencing of historic drill location maps assisted by in-field measured GPS points taken with a Juniper Systems Geode GNS2M where historic collars with hole ids were located. ■ Topographic control is provided by a DTM created from the Canvec data series, an open-source dataset from the Government of Canada, Natural Resources. Data provided as ESRI shapefile with 10m contours.
Data spacing and distribution	<ul style="list-style-type: none"> ■ Data spacing for reporting of Exploration Results. ■ Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. ■ Whether sample compositing has been applied. ■ 2025 RC and diamond drilling by White Cliff Minerals – Maiden drilling program spacing of collars between 28 and 60 m at the Danvers target area. Drilling at the Hulk target is planned on a regional scale with kilometres between holes. Additional work will be required at all targets to establish continuity for inclusion in estimation to JORC standards. ■ 2024 and 2025 rock chip sampling by White Cliff Minerals - Reported rock chip results are spaced based on locations of prospective lithologies, alterations and visible mineralisation. ■ 2015 Kaizen Discovery Corp – Drillhole CP15_DD009 formed part of a regional drilling campaign, with drillhole CP15_DD008 located 10 km east. This drilling does not have sufficient data density to inform geological or grade continuity.

	<ul style="list-style-type: none"> ■ 2003/2005 diamond drilling completed by Coronation Minerals – drillholes cover 656 m NE/SW dimension with spacing of between 30 and 150m between adjacent drillholes. The drilling completed by Coronation Minerals is not sufficient for a mineral resource estimation to JORC standards. ■ 1967/1968 diamond drilling completed by Coppermine River – Average drillhole spacing was 100ft. Drillhole spacing within the 1967/1968 program is deemed acceptable for inclusion in the historic estimate, however cannot be reclassified as JORC compliant resources/ore reserves without significant evaluation or further exploration work. ■ No sample compositing applied.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> ■ Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. ■ If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.
Sample security	<ul style="list-style-type: none"> ■ The measures taken to ensure sample security. ■ 2025 RC drilling by White Cliff Minerals – Samples are bagged at the rig site with the corresponding sample tag placed inside the bag and secured by cable ties. Samples were placed into larger rice sacks, which were labelled and cable tied closed. Samples were stored at the sample farm in a remote field camp before transporting to Yellowknife by chartered flight where the samples are met by an employee of Aurora Geosciences Ltd and delivered directly to ALS preparation laboratory Yellowknife. ■ 2025 diamond drilling (DD) by White Cliff Minerals – Samples were bagged in the core cutting shack immediately after cutting by an employee of Aurora Geosciences Ltd. Samples were placed into rice sacks labelled with sample ids and cable tied closed. Samples are then stored in the sample farm of the remote field camp before transporting to

	<p>Yellowknife by chartered flight where the samples are met by an employee of Aurora Geosciences Ltd and delivered directly to ALS preparation laboratory Yellowknife.</p> <ul style="list-style-type: none"> ■ ALS Laboratory conduct checks to ensure the delivered samples match the list of samples sent for assay as per the submittal form and all are accounted for. ■ 2015 Kaizen Discovery Corp – No note of measures taken to ensure sample security. ■ 2003/2005 diamond drilling completed by Coronation Minerals - Samples were stored in self-locking, cable tied sample bags, before being batched into rice sacks, which were also cable tied. Transport from the remote field camp to the laboratory was completed by freighting services. ■ 1967/1968 diamond drilling completed by Coppermine River – unknown sample security protocols.
Audits or reviews	<ul style="list-style-type: none"> ■ The results of any audits or reviews of sampling techniques and data. ■ No independent site visit or audit/review of the procedures/assay results has been conducted.

SECTION 2: REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> ■ Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. ■ The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> ■ The Rae Copper Project is made up of 93 mineral claims in 3 blocks and 1 mineral lease in the Kitikmeot region of Nunavut, northern Canada. The claims and lease cover a total area of 1228 km². ■ All mineral claims are in good standing. ■ In November 2024 White Cliff Minerals acquired mineral lease L-2797 from Victoria Copper Inc. granting 100% ownership of the project. Victoria Copper Inc. retained a 1% net smelter royalty (NSR) over production from the lease. White Cliff Minerals can buy back 50% of the NSR for CAD \$1 million in cash and has right of first refusal with respect to the sale of the remaining 50% of the NSR (0.5% NSR). ■ White Cliff Minerals is in possession of a type B water license issued by the Nunavut Water Board and a Class A Land Use Permit granted by the Crown-Indigenous Relations and Northern Affairs Canada allowing the completion of exploration drilling and camp establishment. ■ White Cliff Minerals have obtained permission from the Kitikmeot Inuit Association to conduct exploration on this property.

Exploration done by other parties	<ul style="list-style-type: none"> ▪ Acknowledgment and appraisal of exploration by other parties. ▪ Tools and idols, made from native copper found in the Coppermine Region have been worked and traded by the local Inuit population going back centuries. ▪ The area first came to the attention of European and English explorers in the 17th century. In 1771 Samuel Hearne reported finding a four-pound native copper nugget at surface. ▪ The Coppermine River area was first staked in 1929 and continued slowly until 1966 when, due to the discovery of several high-grade surface deposits of copper. By late 1967 over 40,000 claims were lodged by more than 70 different companies (E.D. Kindle, 1972). In his report, Kindle locates and gives a brief description of over 80 high grade copper occurrences. ▪ The largest copper deposit in the area is called Area 47 or the DOT 47 Lode in a vertical, tabular body 1,500 feet long and 35 feet wide along one of the faults of the Teshierpi fault zone (Kindle, 1972). The DOT 47 deposit was estimated to host 4,162,000 tons grading 2.96 % copper remaining open at depth and to the southwest. The definition of this deposit by Coppermine River Limited marked the largest exploration effort to date. ▪ Mapping and exploration in the area were conducted over several campaigns by regional workers and individual companies until 1970, when the area was mapped in detail by W.A. Barager and J.A. Donaldson. During this time, Barager conducted a litho-geochemical study of the Coppermine River basalts. E.D. Kindle followed this work and produced the first major collaboration of mineralisation, geology, and geologic history in 1972. Following this, Ross and Kerans (1989) mapped Middle Proterozoic sediments of the Hornby Bay and Dismal Lake Groups to the south and west of the region. ▪ Exploration and development persisted sporadically between 1990 - 2010, when companies started to utilise geophysics at the Area 47 and Muskox Intrusion to the southeast of the project area, the latter of which witnessed drilling for several years. ▪ Mineral claims in the region continued to lapse because of depressed economic conditions, until most of the Coppermine area was free and available for staking. ▪ Exploration 2013-2015 was conducted by Tundra Copper Corporation, with work from 2013-2014 detailed in Assessment Report 086024. The work completed included geological mapping, rock chip sampling and later diamond drilling in 2015 consisting of 2060 m. ▪ Of importance is the result of a regional drilling program, testing the basal portion of the Rae Group Sediments. A series of 7 vertical drillholes tested the Rae Group – Coppermine River Group unconformity, targeting sediment-hosted copper deposits for a total of 1949 m. The final drillhole of the program, furthest to the west, drillhole CP15_DD009 intercepted 29 m at 0.57 % Cu from 197 m depth and noted a zonation of copper sulphides of chalcocite-bornite-chalcopyrite upwards from the unconformity. This interval and zonation of copper sulphides is a significant proof of concept for sediment hosted copper deposits within the Rae Group, possessing similarities with the Central African Copperbelt and Kupferschiefer districts.
Geology	<ul style="list-style-type: none"> ▪ Deposit type, geological setting and style of mineralisation. ▪ The Rae Copper Project is located within the north dipping Coppermine Homocline. It unconformably rests on the metamorphic and plutonic rocks of the ca. 1.88-1.84 Ga Wopmay Orogen (Barager et al, 1996). The Hornby Bay Group consists of continental sedimentary and volcanic strata overlain by transitional marine sedimentary rocks of the Dismal Lakes Group. The Coppermine River Group overlie

	<p>these older sedimentary groups and form a thick sequence of continental flood basalts capped by red bed sandstones. A further unconformity is present where the Rae Group, a sedimentary package sits above the Coppermine River Group, defining a return to marine conditions with a possible age of sedimentation onset of 1070 Ma (Rainbird et al, 2020). Crosscutting the Coppermine River Group and overlying Rae Group are the Coronation Sills, gabbroic composition and believed to have been emplaced at 723 +/- 4Ma (Heaman et al, 1992).</p> <ul style="list-style-type: none"> ■ Mineralisation in the Rae Copper Project comprises a variety of styles within both the Copper Creek Formation basalts and the overlying basal Rae Group sediments. Chalcocite dominant vein and breccia systems, flow top replacements and sedimentary hosted stratiform copper. Specifically, the reduced-facies sub type of sediment hosted copper deposits, akin to the Central African Copperbelt.
Drill hole Information	<ul style="list-style-type: none"> ■ A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> ■ easting and northing of the drill hole collar ■ elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar ■ dip and azimuth of the hole, down hole length and interception depth, hole length. ■ If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.
Data aggregation methods	<ul style="list-style-type: none"> ■ In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. ■ Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. ■ Reported copper intervals were calculated using a length weighted average. No cutting of high grades or cut off grades have been used in the reporting of drilled thickness intervals. ■ A cut off grade of 2% Cu was utilised for the historic estimate. ■ No data aggregation techniques have been applied. ■ No metal equivalent values are being used.

	<ul style="list-style-type: none"> The assumptions used for any reporting of metal equivalent values should be clearly stated.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Location maps and sections provided within the release with relevant exploration information contained.
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised avoiding misleading reporting of Exploration Results. All exploration results have been reported. The reporting of exploration results is considered balanced by the competent person.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful, should be reported including geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock 2,427 line-km of MobileMT airborne geophysics was completed during the 2024 field program at the Rae Copper Project. The survey was conducted by Expert Geophysics using an AS 350 B2 SD2 helicopter of Capital Helicopters. The survey lines were oriented E/W and spaced at 400m intervals, with tie lines running N/S and spaced 4000m apart. The average survey speed was 23m/s with a helicopter terrain clearance of 152m. The magnetometer was on average 81m above terrain and 62m for the EM sensor.

	<p>characteristics; potential deleterious or contaminating substances.</p>	<p>Data was controlled for quality, interpolated and underwent 2D inversion, completed by Expert Geophysics.</p> <ul style="list-style-type: none"> 2025 MobileMTd – A drone based mobile Magneto-Tellurics survey was completed across select parts of the Danvers mineral lease. Lines were oriented NW/SE, roughly perpendicular to the Teshierpi Fault Zone. A total of 177 line-km were flown with a line spacing of 100m over the main Danvers deposit and 200m outside this main zone. 2025 HeliTEM – A helicopter-borne electromagnetic/magnetic survey was flown by XCalibur Smart Mapping. Lines were NW/SE trending, oriented perpendicular to the Teshierpi Fault Zone which trends NE/SW. Lines were spaced 100m apart.
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Awaiting assay results from the summer 2025 drilling campaign and final data from the HTEM survey carried out over the Danvers lease and select lines over the Rae Group Sediments. Drilling data will be integrated with newly acquired geophysics to aid understanding of the subsurface and aid further exploration. Target generation for further sediment hosted copper and volcanic-hosted (Danvers-style) drilling.

SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	JORC Code explanation	Commentary
Database integrity	<ul style="list-style-type: none"> Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	<ul style="list-style-type: none"> No information is available regarding the transcription of data from data collection to estimation given the historic nature of the estimate. Certain drillhole locations, included in the historic estimate were verified by Coronation Minerals' personnel in 2003/2005.
Site visits	<ul style="list-style-type: none"> Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	<ul style="list-style-type: none"> The JORC Competent Person has not visited the site which hosts the historic estimation as the project has been recently acquired.

Geological interpretation	<ul style="list-style-type: none"> ■ Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. ■ Nature of the data used and of any assumptions made. ■ The effect, if any, of alternative interpretations on Mineral Resource estimation. ■ The use of geology in guiding and controlling Mineral Resource estimation. ■ The factors affecting continuity both of grade and geology. ■ The project is an epigenetic, fault breccia hosted copper-silver deposit. It also hosts intervals of replacement style mineralization within vesicular flow tops of basalt flows. The deposit style is well recognized within the Copper Creek Basalt Formation. ■ Due to the historic nature of the estimate and lack of review of drill core or other evidence an assumption is made that the assay and geological interpretation is fit for purpose within the historic estimate. ■ Alternative interpretations of the deposit style are not believed to have altering effects on the historic estimation. ■ The orientation of the main breccia body, in line with the major NE/SW trending Teshierpi Fault Zone guided the orientation of historic drilling which was used during the historic estimate. Knowledge of the shallow NE dipping basalt flows informed the drilling and estimation of the flow-top replacement style mineralization. ■ Continuity in the breccia and host structure depend on the intersection of major and minor faults and fracture zones. Continuity of grade within the flow top replacement bodies is dependent on the primary porosity of the basalt flow tops and their proximity to feeder structures/the main breccia zone.
Dimensions	<ul style="list-style-type: none"> ■ The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. ■ The historic estimate covers an average of 40 to 45 ft width with local swelling to over 100 ft. The top of the body appears to have a horizontal attitude along strike with the bottom of defined zones gently plunging to the southwest. The estimate covered 1528 ft strike length with a vertical depth of 600 ft.
Estimation and modelling techniques	<ul style="list-style-type: none"> ■ The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. ■ The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. ■ The assumptions made regarding recovery of by-products. ■ Estimation of deleterious elements or other non-grade variables of economic significance ■ The historic estimate did not use computer software and was completed using plan view and 2D sections along completed drill fences. The estimation technique is deemed appropriate for the historic nature of the estimate. ■ The areas within the outlined blocks were calculated by taking 3 measurements of each block with a planimeter and averaging the readings. ■ Drill-indicated reserves were computed from specific measurements based on the following: <ul style="list-style-type: none"> ■ a) The length of copper bearing diamond drill core intersections ■ b) The weighted average grade of the above intersections ■ c) The area of influence of diamond drill core intersections (see No. 5) ■ d) The horizontal projection of the area of influence (see No. 6) ■ e) A calculated tonnage factor (see No. 2) ■ f) A total of 30,337 feet of diamond drilling on the 47 Zone and its southwest extension with the holes on the average 100 feet apart on section ■ Inferred reserves were calculated in the same manner as indicated reserves but are based on evidence of continuity as suggested by diamond drilling and/or longitudinal projection

	<ul style="list-style-type: none"> ▪ (e.g. sulphur for acid mine drainage characterisation). ▪ In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. ▪ Any assumptions behind modelling of selective mining units. ▪ Any assumptions about correlation between variables. ▪ Description of how the geological interpretation was used to control the resource estimates. ▪ Discussion of basis for using or not using grade cutting or capping. ▪ The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	<ul style="list-style-type: none"> ▪ The area of grade influence of each diamond drill hole intersection on a particular section was extended one halfway to adjacent holes on the same section of 50 feet beyond the top and bottom hole unless geological evidence suggested that longer projections were justified ▪ The horizontal distance of grade and area projection was taken as half the distance to adjoining sections. The ore was projected beyond the last sections on each end of the deposit a distance equal to half the distance to the last adjoining section ▪ The grade for the inferred reserve blocks was calculated from the average grade or grades of the adjoining block or blocks ▪ The elevations to which reserves were projected on each section were determined from a longitudinal projection of the orebody ▪ On both plan and sections of copper bearing diamond drill holes straight wall ore limits are assumed to prevail between each drill intersection ▪ There are no available check estimates. ▪ The by-product silver was estimated for each 10% contained copper there is approximately 1 oz of silver. This was determined by metallurgical testwork on diamond drill core samples conducted by Lakefield Research, silver was not routinely assayed during drilling and thus not included in the estimate. ▪ The geological model, created in 2D sections along drill fences influenced the estimate through creation of blocks controlled by either the breccia zone or flow top replacement, which correlated to the drillhole intersections. These blocks were then combined per section. ▪ A 2% copper cut of grade was applied.
Moisture	<ul style="list-style-type: none"> ▪ Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	<ul style="list-style-type: none"> ▪ The moisture content for tonnage calculations is unknown. No note of dry basis estimation is recorded and given the historic nature of the estimate it is assumed a natural moisture basis was used.
Cut-off parameters	<ul style="list-style-type: none"> ▪ The basis of the adopted cut-off grade(s) or quality parameters applied. 	<ul style="list-style-type: none"> ▪ A 2 % copper cut-off grade was included in the estimate.
Mining factors or assumptions	<ul style="list-style-type: none"> ▪ Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources 	<ul style="list-style-type: none"> ▪ Mining parameters detailed in this section were taken from the report "A Preliminary Feasibility Report on the Hope Lake Copper Deposit, Mackenzie. Assessment Report INAC (Exploration Report), Bracken, J M; Seisor, R W; Neal, H E; Leslie, C A; Pullen, T C. April 1, 1968". The report defines a 1000 – 1500 ton per day plant size operating 350 days per year. The mining method is described as consisting of open stope for the vertical breccia body and room and pillar methods through the flow top replacement bodies. ▪ A dilution of 10% was accounted for in the historic estimate, adding in material calculated to be 0.6% Cu. ▪ A case for open pit mining was not pursued in any detail.

may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.

Metallurgical factors or assumptions

- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made
- The use of the term "ore" in the following section is not taken by White Cliff Minerals to imply economic extraction of metal contents, however, is used to describe the processing outlined in the referenced report. The completion of additional work and evaluation may not define JORC compliant resources/reserves. The report "A Preliminary Feasibility Report on the Hope Lake Copper Deposit, Mackenzie. Assessment Report INAC (Exploration Report), Bracken, J M; Seasor, R W; Neal, H E; Leslie, C A; Pullen, T C. April 1, 1968" defines a mining scenario of a 1500 ton per day mill. The report notes similarities of the "ore" with that treated at Roan Antelope in northern Rhodesia (operated since 1931 to date of 1968 report) with the successful operations at Mufulira and Roan Antelope adding support and confidence to the present preliminary design. Testwork completed by Lakefield Research and detailed in the 1968 Preliminary Feasibility Report conducted 43 bench scale grinding and flotation tests on 5 composites from 1967 drillcore totalling 2462 feet of material and found no other metals apart from copper and silver in significant quantities. Metallurgical testwork outlined 55-66% copper concentrates with copper recoveries of 85-95% depending on the grind and flowsheet. Silver content in the concentrate varies from 4.5 to 5.5 oz/t with recoveries in the range of 82 – 95% Ag. The concentrate is chiefly chalcocite with considerable bornite, minor chalcopyrite, covellite and pyrite. Very little to no pyrrhotite has been detected. An excerpt from the report states "The chalcocite and bornite are readily floated with preliminary indications that a coarse high-grade concentrate can be removed after the rod mill or ball mill. The very low pyrite and pyrrhotite content helps the flotation and does not require a depressant for these sulphides. Flotation time is considered normal to fast for this ore". A processing flowsheet is presented with the following components, conveying of ore to primary jaw crusher, followed by crushing to a fine ore storage unit, grinding of ore to 50% minus 325 mesh before flotation by ball/rod mills, with possibility of a coarse copper concentrate "scalp off", 2 banks of floatation equipment each consisting of 4 rougher and 5 scavenger cells before movement into thickening and filtering systems.

Environmental factors or assumptions

- Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfield project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered
- The historic estimate and associated pre-feasibility study notes the use of a tailings thickener, which will allow for recirculation of process water, limiting required extraction from nearby water sources. An area, to the north of the deposit was highlighted for use as a tailings area within a natural depression.
- The deposit is dominated by chalcocite and bornite, zoning outwards to chalcopyrite and pyrite sulphide assemblages. Given the acid generating potential of pyrite when exposed to the atmosphere this should be mitigated when designing waste storage (tailings) facilities.
- The arctic environment, and presence of well-established permafrost will also be accounted for in future studies.

this should be reported with an explanation of the environmental assumptions made.

Bulk density	<ul style="list-style-type: none"> ▪ Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. ▪ The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. ▪ Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. ▪ Bulk density measurements were conducted on historic drill core samples during metallurgical testwork completed by Lakefield Research. The number of drill core samples tested and their locations within the deposit or representativeness is unknown. ▪ A bulk density of 11 sq ft per ton was used. ▪ No details are available regarding the method of determination of the bulk density value. It is unknown if vugs, porosity or other void spaces were accounted for.
Classification	<ul style="list-style-type: none"> ▪ The basis for the classification of the Mineral Resources into varying confidence categories. ▪ Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). ▪ Whether the result appropriately reflects the Competent Person's view of the deposit ▪ The historic estimate was classified as ore reserves comprising indicated and inferred resources. These are non JORC compliant terms and White Cliff Minerals is not treating the estimate as a current JORC compliant resource estimate. ▪ The estimate is classified as historic, non JORC compliant.
Audits or reviews	<ul style="list-style-type: none"> ▪ The results of any audits or reviews of Mineral Resource estimates. ▪ No official/independent audits or reviews of the historic estimate have been completed. White Cliff Minerals has conducted proof reading and cross-referencing data where possible to minimize transcription errors when reporting details of the historic estimate.
Discussion of relative accuracy/ confidence	<ul style="list-style-type: none"> ▪ Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of ▪ The method of estimation is deemed appropriate for the historic nature of the estimate. ▪ The weighted averaging of copper in drillhole intersections is well established and the resulting estimation is constrained by the geology and mineralisation with both the breccia zone and flow top replacements. ▪ Given the historic nature of the exploration work which informed the historic estimate the drill core has not been viewed by the Competent Person and thus not been re-assayed or validated at this time.

the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.

- The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.
- These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.
- The assay procedures are also unknown, with details of the detection limits and digestion efficiency (partial or total digestion) unknown, which may influence the copper assay results. No standards, blanks or field duplicates are noted to have been included in the sample stream which generated the assays included in the estimate, however, check assays are noted to have been completed by a second laboratory.
- The historic nature of the estimate can only be deemed accurate through the re-drilling of previously reported holes. Further exploration work would include the industry standard diamond and/or reverse circulation methods with a robust quality control program of blanks, standards and duplicates inserted into the sample stream for assay. Initial work would aim to confirm the geological model outlined in historic sections and through twinned holes understand the difference in historically reported intercepts and modern assay results. Bulk density measurements would be taken during diamond drilling activities, covering both mineralisation and host rock/alteration domains for inclusion in possible future resource estimations. This would increase the confidence in the historic results which informed the historic estimate where a comparison of modern and historic data/results can be completed.
- Verification work is planned to commence in 2025, and White Cliff Minerals is in possession of the required funding to commence this work.