ASX MARKET ANNOUNCEMENT

Wednesday 26 November 2025

ASX:ALR

17km of New Target Zones Identified at Greater Oko

New large-scale geochemical anomalies identified at South Oko and North Peters, alongside three new regional targets

- BLEG and stream sediments data defines new high-grade anomalies in unexplored terrain at both North Peters and South Oko prospects.
- At North Peters, multiple new anomalous zones identified, expanding the prospective target zone over 6km, with new geochemical anomalies located over 2km from historic drilling area:
 - 4,370 ppb Au (Stream Sediment Sample 3017);
 - 4,300 ppb Au (Stream Sediment Sample 1738);
 - > 767 ppb Au (Stream Sediment Sample 0954);
 - 644 ppb Au (Stream Sediment Sample 3133);
 - > 553 ppb Au (Stream Sediment Sample 3015);
 - 380 ppb Au (Stream Sediment Sample 1743);
 - 359 ppb Au (Stream Sediment Sample 0955);
 - 1,070 ppb Au (BLEG Sample 3017);
 - > 399 ppb Au (BLEG Sample 3015).
- At South Oko, a standout stream sediment anomaly defined spanning 5km. Coinciding exactly with the structural direction of the previous open soil anomaly and validates South Oko's extension potential. The highly anomalous and high-grade values sit directly adjacent to the Oko Shear on the same geological formation as Oko West and OMZ & Ghanie deposits:
 - 2,140 ppb Au (Stream Sediment Sample 7215);
 - > 1,510 ppb Au (Stream Sediment Sample 1754);
 - 649 ppb Au (Stream Sediment Sample 7209);
 - > 576 ppb Au (Stream Sediment Sample 7244);
 - 434 ppb Au (Stream Sediment Sample 7246);
 - 420 ppb Au (Stream Sediment Sample 7216);
 - 388 ppb Au (Stream Sediment Sample 7214);
 - 333 ppb Au (Stream Sediment Sample 7234);
 - 329 ppb Au (Stream Sediment Sample 7212);
 - > 314 ppb Au (Stream Sediment Sample 7272);
 - 655 ppb Au (BLEG Sample 7215);
 - 465 ppb Au (BLEG Sample 7244);
 - > 430 ppb Au (BLEG Sample 7212);
 - > **315 ppb Au** (BLEG Sample 7233).

- These anomalies represent over 10x background levels of gold in both stream sediment and BLEG samples, defining highly prospective and prominent targets and multi-folding the potential target scale for both North Peters and South Oko.
- In addition, three new priority regional targets identified, proximal to South Oko and North Peters:
 - > West Puruni (1km Strike): ~12km west of the 6Moz Au Oko West deposit¹. A total of four stream sediment samples taken, all returning highly anomalous gold values indicative of a potential proximal source deposit:
 - 1,300 ppb Au (Sample 1731);
 - 476 ppb Au (Sample 1729);
 - **325 ppb Au** (Sample 1730);
 - **287 ppb Au** (Sample 1728).
 - Mara-Mara (3km Strike): ~5km North of the historic drilling at North Peters¹³, with a total of two stream sediment samples taken, both returning highly anomalous gold values:
 - 978 ppb Au (Sample 2770).
 - 476 ppb Au (Sample 2773).
 - **West Peters (2km Strike):** Situated on the contact between diorite and greenstone, ~20km southwest of the historic drilling at North Peters¹³, with a total of two stream sediment samples taken, both returning highly anomalous gold values:
 - 808ppb Au (Sample 958)
 - **314ppb Au** (Sample 957)
- Stream Sediment and BLEG dataset has been acquired from the Guyana Geology and Mines Commission (GGMC) in their endeavours to identify areas of commercial precious metals deposits, from surveying fieldwork conducted by the GGMC between 2000 and 2016.
- A third exploration team has joined the South Oko ground-work campaign, to expedite the trenching program while augers and soil sampling continues.
- First batch of extensional soil samples from South Oko have been received by the Lab with assays pending.
- Due to the fragmentation of exploration permits of 1 5km² per block in Guyana, the Greater Oko Project represents an irreplicable deal and landmark consolidation of one of the most prospective, untested greenstone belts globally.

	Altair (\$120M MC)	GMIN (\$1B Takeover of Reunion)	G2 Goldfields (\$1.5B MC)
Project	Greater Oko Project	Oko West Project	Oko Gold Project
Area	590km²	71km²	47km²
Oko Shear Strike Coverage	~16km	~6km	~9km
Oko Shear Discoveries	High-Impact Drilling TBA	• Oko West: 5.9Moz @ 2.2g/t Au	• OMZ: 1.3Moz @ 6.7g/t Au • Ghanie: 1.7Moz @ 2.4g/t Au

Table 1: Comparison of Projects for the only three public companies in history who have systematically explored the Oko Shear in Guyana. Altair market cap based on share price of \$0.02 on 25/11/25 and all current Altair fully paid ordinary shares on issue^{1,2,3,4}

CAUTIONARY STATEMENTS - FOREIGN RESOURCE ESTIMATE & PROXIMITY STATEMENT

The Foreign Estimate of mineralisation included in this announcement is not compliant with the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves (2012 JORC Code) and is a "Foreign Estimate". A competent person has not done sufficient work to classify the Mineral Resources in accordance with the JORC Code 2012, and it is uncertain that following evaluation and/or further exploration work that the estimate will be able to be reported as a Mineral Resource or Ore Reserve in accordance with the JORC Code 2012. Any reference to The Greater Oko Project in terms of "Resource", "Estimate", "Historic Resource" within this announcement, is a reference to a Foreign Resource Estimate as described above, please refer to original announcement 5th August 2025 for supporting information in accordance with Listing Rule 5.12, which continues to apply to this announcement and has not materially changed.

This announcement contains references to exploration results derived by other parties either nearby or proximate to The Greater Oko Project and includes references to topographical or geological similarities to that of the ALR Project. It is important to note that such discoveries or geological similarities do not in any way guarantee that the Company will have any success or similar successes in delineating a JORC compliant Mineral Resource on the Greater Oko Project, if at all.

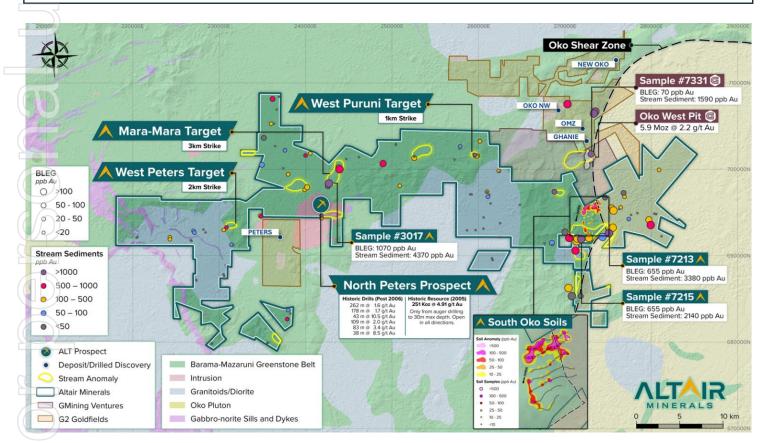


Figure 1: Simplified geology plan view of the Greater Oko Project, with all stream sediments and BLEG assay data, which has been reported in Appendices and discussed within this announcement. Note: "Historic Resource" on Figure 1, refers to a 2005 Foreign Resource Estimate (NI-43-101, inferred category) and is not JORC-Compliant, please see Appendix A: Listing Rule 5.12 in ASX:ALR announcement dated 5th August 2025. For clarity, both G2 and GMIN resources are located outside of Altair's Greater Oko Project. It is uncertain that following evaluation and/or further exploration work that the Foreign Estimate will be able to be reported as mineral resources or ore reserves in accordance with the JORC Code. See proximity and cautionary statement. Coordinates in UTM Zone 21N. 1,23,4,79,10,11,12,13

Altair Minerals Limited CEO, Faheem Ahmed, commented:

"This dataset has been a critical first step in validating and evaluating the expansion target potential at South Oko and North Peters. Most intriguingly, the stream sediments and BLEG anomalies at South Oko are precisely within the structural corridor of mineralisation we expect and reaffirms the potential target extensions for soil geochemical anomalies.

At North Peters, there is an anomalous zone spanning 3km directly south of the historic drilling area. Furthermore, two large and high-grade anomalous zones to the northeast and northwest of the historic drilling area, respectively.

South Oko, remarkably, shows the best and most consistent set of stream sediment anomalies than anywhere else on the map. There is a major anomalous zone spanning ~5km wide and ~4km long, underpinned by multiple samples returning over 10 times the background gold levels in BLEG/stream sediments. The anomaly sits within the structural corridor of the Oko Shear and also directly below the direction of the open soil anomaly at South Oko.

In conjunction, three new regional targets have also been defined, all stream samples taken from these targets had a 100% strike rate of returning over 5 times the background level of gold and one sample returning a highly anomalous 1,300ppb Au value at the West Puruni Target.

With the recent cornerstone placement completed earlier this month, we continue to expand our teams and progress through groundwork efficiently. The first batch of assays from extensional soil sampling has been delivered to the lab, with a second batch to be dispatched soon. Altair would like to thank shareholders for their ongoing support and look forward to updating the market with results and progression at the Greater Oko Project in the near future."

Altair Minerals Limited (ASX: ALR) ('Altair or 'the Company') is pleased to announce it has acquired a stream sampling database from the Guyana Geology and Mines Commission (GGMC) for stream sediment and BLEG results across the Greater Oko Project.

Stream Sediment and BLEG Database

The historic database was based on multiple government run sampling programs from 2000 to 2016 across the Greater Oko Project, with the goal of identifying areas to host prospective commercial precious metal deposits. A total of 114 samples points were identified and mapped on the Greater Oko Project.

The fieldwork was led by 5 geologists and a geotechnical staff from the GGMC, with assay reports, analysis, examination, mapping and GIS database formed. Industry standard QA/QC practices were adopted through the period of this sampling program.

Discussion of Results

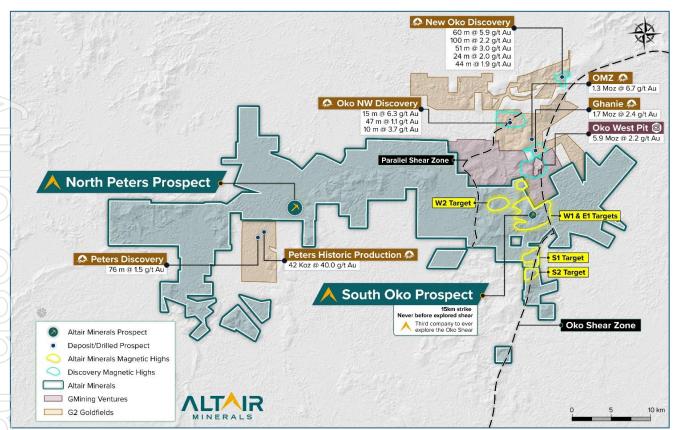
This database acquired has now identified ~17km of additional strike targets at Greater Oko, with a 5km gold anomalous zone sitting directly below the open soil anomaly defined to date at South Oko, which is currently undergoing extensional sampling.

At South Oko's W1 and E1 Target, defined by soil anomalies, remains open to the south and southwest. With three of the most south westerly samples of the W1 Target all returning >150ppb Au and a strong indication for the continuation of the soil anomaly. In combination with the stream sampling results, it's now evident, a highly anomalous zone sits further south of the W1 Target. The W1 Target already represents the largest >100ppb Au soil contour along the Oko Shear, currently sitting at 2km strike and open, with the stream sediments now validating the potential for the geochemical footprint to continue increasing in size.^{5,8}

The new geochemical anomaly defined at South Oko from this database is positioned precisely adjacent to the Oko Shear, which has delineated 9Moz Au of resources in the last 5-years from drilling out a 5km strike and sits below the same structural direction which the W1 is interpreted to extend towards. The new South Oko stream sediment an omaly is situated on the exact same geological formation and greenstone which has defined multi-million ounces directly to the north at the neighbouring billion-dollar assets. 1,2,3,4

For context, the stream sediment sample which sits directly above the 6Moz Au Oko West Deposit returned 1,590ppb Au with a BLEG result of 70ppb Au. At South Oko, the newly acquired data has identified multiple anomalous values of:

- 2,140 ppb Au (Stream Sediment Sample 7215);
- 1,510 ppb Au (Stream Sediment Sample 1754);
- 655 ppb Au (BLEG Sample 7215);
- 465 ppb Au (BLEG Sample 7244);
- 430 ppb Au (BLEG Sample 7212);
- > 315 ppb Au (BLEG Sample 7233).


In conjunction, the data has defined numerous extensional prospective zones at North Peters, with standout stream sediment results of **4,370 ppb Au** (#3017), **4,300ppb Au** (#1738) and a BLEG result of **1,070ppb Au** (#3017).

Under 1km away from the historic North Peters drilling area, two stream sediment samples were also taken which resulted in highly anomalous 361ppb Au (#2781) and 195ppb Au (#909), in comparison to the < 50 ppb Au background levels of gold in the district. Furthermore, ~2km from the historic drilling area two stream sediment samples returned the highest values seen on the Greater Oko Project within the database, both returning >4,000ppb Au and the highest BLEG gold assay within the database (1,070ppb Au), indicating the potential for a larger system to be found proximal to North Peters. These anomalies define immediate follow-up target zones for expansion to the mineralisation at North Peters.

The database has also identified three new regional targets, which all samples have had a 100% strike rate of showing highly anomalous levels of gold, greater than 5 times of background levels:

- West Puruni (1km Strike): Situated adjacent to a contact between metasediment and metavolcanic greenstones, ~12km west of the 6Moz Au Oko West deposit. A total of four stream sediment samples taken, all returning highly anomalous gold values indicative of a potential proximal source deposit:
 - 1,300 ppb Au (Sample 1731);
 - **476 ppb Au** (Sample 1729);
 - **325 ppb Au** (Sample 1730);
 - **287 ppb Au** (Sample 1728).
- Mara-Mara (3km Strike): ~5km North of the historic drilling at North Peters, with a total of two stream sediment samples taken, both returning highly anomalous gold values:
 - 978 ppb Au (Sample 2770).
 - 476 ppb Au (Sample 2773).
- West Peters (2km Strike): Situated on the contact between diorite and greenstone, ~20km southwest of the historic drilling at North Peters, with a total of two stream sediment samples taken, both returning highly anomalous gold values:
 - 808ppb Au (Sample 958);
 - 314ppb Au (Sample 957).

Although the regional targets are currently lower priority, they represent the tremendous endowment and multi-discovery potential at Greater Oko over the largest gold exploration project in Guyana's history. These regional targets will be systematically followed up after exploration programs commence at South Oko and North Peters, developing a strong pipeline of multiple targets for Altair, with the goal of developing Greater Oko to become a multi-deposit project.

Figure 2: Plan view of the Greater Oko Region, Altair's project size in comparison to its two predecessors, G2 Goldfields (\$1.5 Billion Market Cap) and GMining Ventures (\$1B takeover of Oko West from Reunion Gold). Coordinates in UTM Zone 21N. 1.2,3,4,7,9,10,11,12,13

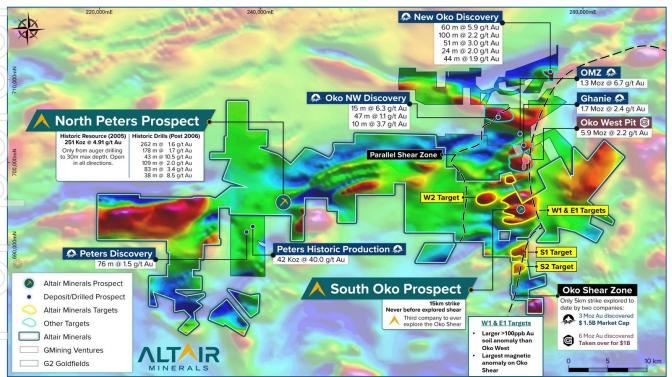
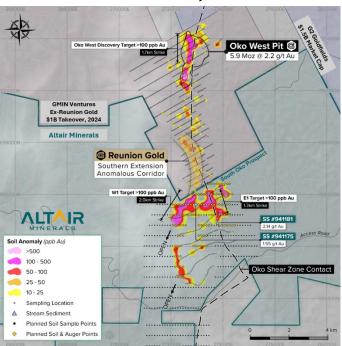



Figure 3: Plan view of the Residual Magnetic Field overlaid onto the Greater Oko Region. Note: "Historic Resource" on Figure 3, refers to a 2005 Foreign Resource Estimate (NI-43-101, inferred category) and is not JORC-Compliant, please see Appendix A: Listing Rule 5.12 in ASX:ALR announcement dated 5th August 2025. For clarity, both G2 and GMIN resources are located outside of Altair's Greater Oko Project. It is uncertain that following evaluation and/or further exploration work that the Foreign Estimate will be able to be reported as mineral resources or ore reserves in accordance with the JORC Code. See proximity and cautionary statement^{1,2,3,4,7,9,10,11,12,13}

South Oko

The South Oko Prospect, located at the eastern side of Greater Oko and is situated in one of the most prospective emerging greenstone shear zones. Only two companies have historically conducted exploration on the first 5km of the Oko Shear and have collectively delineated over 9Moz Au in the past 3-years, which prior to that had no reported discoveries or deposits.^{1,3}

The South Oko Prospect is situated directly along strike and the adjoining permit, 1.5km away from the 5.9Moz @ 2.2g/t Au Oko West Deposit, which GMining Ventures purchased the asset for \$1Billion through an acquisition of Reunion Gold in 2024^{1,2}. South Oko shares an extension of the same system and shear zone which hosts the recently discovered 5.9Moz Au Oko West deposit.

Figure 4: Soil and auger Phase I program, specific to northern portion of South Oko. Overlaid with South Oko soil data as per Altair announcement on 26th August 2025, with direct scale and soil anomaly comparison which was used by GMining Ventures (Ex. Reunion Gold). Note the Stream Sediment samples within this image were collected in 2022 and is separate to the results within this announcement. Coordinates in UTM Zone 21N. 1,2,4,5,6,8

Guyana

Guyana has rapidly emerged as a premier gold jurisdiction, drawing increasing attention from major players in the gold exploration space. As the last truly pro-mining and politically stable country within the Guiana Shield, it hosts an extension to West African geology, consisting of the same Birimian Greenstone that has underpinned world-class gold discoveries across West Africa — including in Ghana, Ivory Coast, and Burkina Faso. However, unlike its African counterparts, Guyana remains significantly underexplored.

The 590km² contiguous landholding itself within Greater Oko not only represents an irreplicable deal but is also positioned within one of the most prominent and emerging greenstone belts globally, and 1.5km away from a 5.9Moz discovery, which is expected to go into production over the next 18 months. Recent exploration success by groups such as G2 Goldfields (\$1.2B Market Capitalisation) and Reunion Gold (GMIN took over for \$1Billion in 2024) has already validated the region's untapped potential, establishing multiple Tier-1 discoveries made from grassroot exploration campaigns. 1,2,4

Current public companies actively drilling across the Guiana Shield include:

- G2 Goldfields: \$1.5Billion Market Capitalization⁴
- Reunion Gold: \$1Billion Takeover by GMining Ventures²
- Greenheart Gold: \$145M Market Capitalization¹⁶
- Founders Metals: \$490M Market Capitalization¹⁷
- > OMAI Gold Mines: \$890M Market Capitalization¹⁸

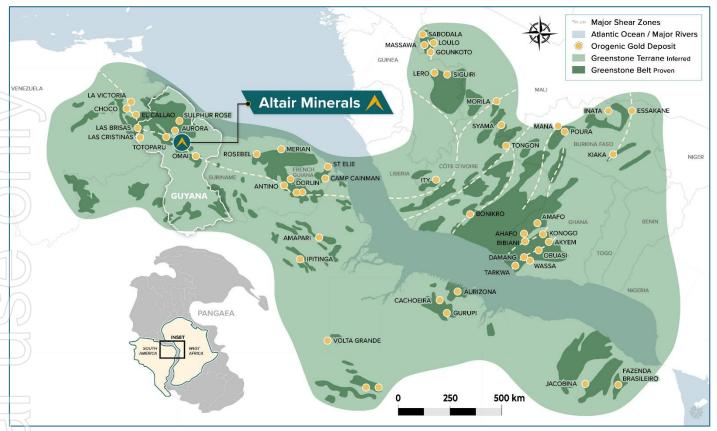


Figure 5: Map of the West African Birimian Shield and extension to Guiana Shield with location of major deposits and projects.

For and on behalf of the board:

Faheem Ahmed - CEO

This announcement has been approved for release by the Board of ALR.

About Altair Minerals

Altair Minerals Limited is listed on the Australian Securities Exchange (ASX) with the primary focus of investing in the resource sector through direct tenement acquisition, joint ventures, farm in arrangements and new project generation. The Company has projects located in South Australia, Western Australia and Queensland with a key focus on its Olympic Domain tenements located in South Australia. The shares of the company trade on the Australian Securities Exchange under the ticker symbol ALR.

Streamline Statement

Altair confirms that it is not aware of any new information or data which affects the exploration results and information which has been previously disclosed and cross-referenced and included within this announcement.

Competent Persons Statement

The exploration drill results referenced in this release has been prepared with information compiled by Mr Robert Wason BSc (Hons) Geology, MSc (Mining Geology), a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Wason is an employee of Mining Insights. Mr Wason has sufficient experience relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Wason consents to the inclusion of these exploration results based upon the information in the form and context in which it appears.

Proximity Statement

This announcement contains references to exploration results derived by other parties either nearby or proximate to The Greater Oko Project and includes references to topographical or geological similarities to that of the ALR Project. It is important to note that such discoveries or geological similarities do not in any way guarantee that the Company will have any success or similar successes in delineating a JORC compliant Mineral Resource on the Greater Oko Project, if at all.

Forward Looking Statement

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

References

- Feasibility Study NI 43-101 Technical Report Oko West Project, Prepared for GMining Ventures, GMining Services Inc., 06th June 2025
- https://www.miningweekly.com/article/g-mining-buys-reunions-guyana-project-2024-04-23
- 3. NI 43-101 Technical Report for the 2025 Updated Mineral Resource Estimate for the Oko Gold Property, Prepared for G2 Goldfields Inc., Mincon International, 24th April 2025
- TSE: GTWO, Market Capitalization based on diluted 279,781,035 Shares on Issue (SOI) and Share Price of \$4.87 as of date 24th November 2025 and CAD to AUD conversion rate of 1.10.
- 5. ALR Announcement dated 26th August 2025, "South Oko Geochemistry Confirms Oko West Look-Alike Target"
- 6. Reunion Gold Corp. announcement dated 12th August 2021
- 7. ALR Announcement dated 03rd September 2025, "Ex-Reunion Gold Team Joins & New Targets Defined"
- 8. ALR Announcement dated 22nd September 2025, "Largest Geochemical Program on Oko Shear Zone Commences"
- 9. G2 Goldfields (TSX: GTWO) announcement dated 15th July 2025
- 10. G2 Goldfields (TSX: GTWO) announcement dated 13th May 2025
- 11. G2 Goldfields (TSX: GTWO) announcement dated 9th June 2025
- 12. G2 Goldfields (TSX: GTWO) announcement dated 8th September 2025
- 13. ALR Announcement dated 05th August 2025, "Acquisition of Transformational Gold Project"
- 14. G2 Goldfields (TSX: GTWO) announcement dated 20th November 2019
- 15. Reunion Gold: Investment Case, Valpal, 20th February 2024
- 16. TSX-V: GHRT, Market Capitalization based on 154M SOI and closing price of \$0.86 on 24th November 2025, with a CAD:AUD rate of 1.10
- TSX-V: FDR, Market Capitalization based on 102M SOI and closing price of \$4.34 on 24th November 2025, with a CAD:AUD rate of 1.10
- 18. TSX-V: OMG, Market Capitalization based on 636M SOI and closing price of \$1.28 on 24th November 2025, with a CAD:AUD rate of 1.10

APPENDIX A: STREAM SEDIMENT ASSAY RESULTS

Sample No	Year	Туре	Zone	Easting	Northing	Au ppb
740	2000	Stream Sediment	21N	229,196	679,809	1
741	2000	Stream Sediment	21N	229,069	679,847	1
747	2000	Stream Sediment	21N	230,493	687,850	10
748	2000	Stream Sediment	21N	230,586	687,639	1
749	2000	Stream Sediment	21N	230,586	687,358	1
906	2000	Stream Sediment	21N	241,429	695,253	11
907	2000	Stream Sediment	21N	237,405	700,119	1
908	2000	Stream Sediment	21N	237,984	699,424	307
909	2000	Stream Sediment	21N	239,881	697,627	195
957	2000	Stream Sediment	21N	230,523	692,982	314
958	2016	Stream Sediment	21N	230,845	693,283	808
959	2000	Stream Sediment	21N	231,422	691,277	62
960	2000	Stream Sediment	21N	231,638	691,214	8
963	2000	Stream Sediment	21N	227,029	692,880	97
964	2000	Stream Sediment	21N	227,125	692,683	62
965	2000	Stream Sediment	21N	228,427	692,690	12
966	2000	Stream Sediment	21N	228,172	693,031	4
967	2000	Stream Sediment	21N	224,288	692,144	109
968	2000	Stream Sediment	21N	224,300	691,900	273
969	2000	Stream Sediment	21N	226,700	691,800	30
970	2000	Stream Sediment	21N	226,800	691,700	10
971	2000	Stream Sediment	21N	220,540	692,162	4
972	2000	Stream Sediment	21N	220,420	692,086	1
986	2000	Stream Sediment	21N	227,350	687,175	1
987	2000	Stream Sediment	21N	227,335	687,197	1
1296	2002	Stream Sediment	21N	261,567	689,695	29
1297	2002	Stream Sediment	21N	261,645	689,499	15
1370	2002	Stream Sediment	21N	260,581	693,127	3
1371	2002	Stream Sediment	21N	259,668	692,966	6
1372	2002	Stream Sediment	21N	258,688	692,939	3
1483	2002	Stream Sediment	21N	262,511	692,159	1
1484	2002	Stream Sediment	21N	262,517	693,759	1
1485	2002	Stream Sediment	21N	264,805	695,901	19
1711	2002	Stream Sediment	21N	260,988	697,398	34
1712	2002	Stream Sediment	21N	260,978	697,423	200
1713	2002	Stream Sediment	21N	261,097	696,824	55
1714	2002	Stream Sediment	21N	261,266	697,078	36
1715	2002	Stream Sediment	21N	262,447	699,712	9
1716	2002	Stream Sediment	21N	262,360	699,815	120
1727	2002	Stream Sediment	21N	260,179	703,253	231
1728	2002	Stream Sediment	21N	259,830	701,496	287
1729	2002	Stream Sediment	21N	259,924	701,584	400
1730	2002	Stream Sediment	21N	259,608	701,563	325
1731	2002	Stream Sediment	21N	259,613	701,672	1,300

1732	2002	Stream Sediment	21N	257,225	701,141	11
1733	2002	Stream Sediment	21N	257,827	702,400	5
1734	2002	Stream Sediment	21N	257,896	702,646	62
1737	2002	Stream Sediment	21N	237,986	683,719	94
1738	2002	Stream Sediment	21N	241,836	694,645	4,300
1739	2002	Stream Sediment	21N	238,250	683,304	21
1740	2002	Stream Sediment	21N	237,877	682,665	949
1746	2002	Stream Sediment	21N	248,822	694,253	1
1749	2002	Stream Sediment	21N	250,900	698,100	306
1754	2002	Stream Sediment	21N	268,798	697,408	1,510
1777	2002	Stream Sediment	21N	261,407	696,053	13
1778	2002	Stream Sediment	21N	260,609	694,432	33
1789	2002	Stream Sediment	21N	235,578	679,908	1
1790	2002	Stream Sediment	21N	235,664	679,934	1
1796	2002	Stream Sediment	21N	259,226	697,096	3
1797	2002	Stream Sediment	21N	259,045	697,111	5
2566	2003	Stream Sediment	21N	235,161	703,648	34
2567	2003	Stream Sediment	21N	236,470	702,683	22
2568	2003	Stream Sediment	21N	236,648	706,925	10
2569	2003	Stream Sediment	21N	236,340	705,295	3
2684	2003	Stream Sediment	21N	236,012	705,277	139
2687	2016	Stream Sediment	21N	236,176	708,147	585
2769	2003	Stream Sediment	21N	237,612	702,203	75
2770	2003	Stream Sediment	21N	239,992	701,607	978
2772	2003	Stream Sediment	21N	234,939	700,525	68
2773	2003	Stream Sediment	21N	240,543	701,850	476
2781	2003	Stream Sediment	21N	240,180	697,929	361
2782	2003	Stream Sediment	21N	241,722	696,485	58
3001	2003	Stream Sediment	21N	252,576	701,461	13
3002	2003	Stream Sediment	21N	252,577	701,308	122
3003	2003	Stream Sediment	21N	250,447	702,920	1
3004	2003	Stream Sediment	21N	250,435	702,827	13
3012	2003	Stream Sediment	21N	246,169	701,402	26
3013	2003	Stream Sediment	21N	244,704	701,194	1
3014	2003	Stream Sediment	21N	243,798	700,256	195
3015	2003	Stream Sediment	21N	243,921	700,014	553
3016	2003	Stream Sediment	21N	242,582	698,051	20
3017	2003	Stream Sediment	21N	242,702	698,375	4,370
3021	2003	Stream Sediment	21N	236,912	708,411	46
3133	2003	Stream Sediment	21N	248,971	700,666	644
7187	2016	Stream Sediment	21N	281,190	692,252	36
7199	2016	Stream Sediment	21N	280,562	694,821	2
7200	2016	Stream Sediment	21N	280,578	694,821	5
7201	2016	Stream Sediment	21N	268,570	691,235	27
7202	2016	Stream Sediment	21N	270,028	692,737	22
7203	2000	Stream Sediment	21N	279,945	693,557	790
7204	2016	Stream Sediment	21N	279,731	694,166	121

	İ	i	l	1	i i	i
7205	2016	Stream Sediment	21N	280,349	694,877	1
7211	2016	Stream Sediment	21N	271,455	691,989	171
7212	2016	Stream Sediment	21N	271,374	691,678	329
7214	2016	Stream Sediment	21N	275,543	693,251	388
7215	2016	Stream Sediment	21N	271,899	691,929	2,140
7216	2016	Stream Sediment	21N	272,811	692,068	420
7236	2016	Stream Sediment	21N	271,849	685,325	35
7242	2016	Stream Sediment	21N	267,660	691,427	1
7243	2016	Stream Sediment	21N	268,500	691,485	90
7244	2016	Stream Sediment	21N	271,234	690,595	576
7246	2016	Stream Sediment	21N	275,629	695,233	434
7248	2016	Stream Sediment	21N	277,401	694,246	51
7270	2016	Stream Sediment	21N	274,856	696,820	48
7271	2016	Stream Sediment	21N	274,657	696,733	3
7272	2016	Stream Sediment	21N	275,398	695,540	314
7273	2016	Stream Sediment	21N	275,453	695,218	89
7276	2016	Stream Sediment	21N	276,307	695,400	5
7277	2016	Stream Sediment	21N	276,475	695,594	130
7278	2016	Stream Sediment	21N	276,793	697,280	1
7279	2016	Stream Sediment	21N	276,907	696,834	347
7280	2016	Stream Sediment	21N	277,675	694,723	4
7281	2016	Stream Sediment	21N	278,404	694,929	27
7332	2016	Stream Sediment	21N	280,912	699,934	151

 Table 2:
 Stream sediment gold assay values, ppb = parts per billion. Coordinates in UTM Zone 21N.

APPENDIX B: STREAM SEDIMENT BLEG ASSAY RESULTS

Sample No	Year	Туре	Zone	Easting	Northing	Au ppb
740	2000	BLEG	21N	229,196	679,809	0
741	2000	BLEG	21N	229,069	679,847	0
747	2000	BLEG	21N	230,493	687,850	0
748	2000	BLEG	21N	230,586	687,639	0
749	2000	BLEG	21N	230,586	687,358	0
906	2000	BLEG	21N	241,429	695,253	0
907	2000	BLEG	21N	237,405	700,119	0
908	2000	BLEG	21N	237,984	699,424	3
909	2000	BLEG	21N	239,881	697,627	2
957	2000	BLEG	21N	230,523	692,982	2
958	2016	BLEG	21N	230,845	693,283	9
959	2000	BLEG	21N	231,422	691,277	0
960	2000	BLEG	21N	231,638	691,214	2
963	2000	BLEG	21N	227,029	692,880	3
964	2000	BLEG	21N	227,125	692,683	2
965	2000	BLEG	21N	228,427	692,690	0
966	2000	BLEG	21N	228,172	693,031	0
967	2000	BLEG	21N	224,288	692,144	5
968	2000	BLEG	21N	224,300	691,900	1
969	2000	BLEG	21N	226,700	691,800	0
970	2000	BLEG	21N	226,800	691,700	0
971	2000	BLEG	21N	220,540	692,162	0
972	2000	BLEG	21N	220,420	692,086	0
986	2000	BLEG	21N	227,350	687,175	0
987	2000	BLEG	21N	227,335	687,197	0
1296	2002	BLEG	21N	261,567	689,695	0
1297	2002	BLEG	21N	261,645	689,499	0
1370	2002	BLEG	21N	260,581	693,127	0
1371	2002	BLEG	21N	259,668	692,966	0
1372	2002	BLEG	21N	258,688	692,939	0
1483	2002	BLEG	21N	262,511	692,159	0
1484	2002	BLEG	21N	262,517	693,759	0
1485	2002	BLEG	21N	264,805	695,901	0
1711	2002	BLEG	21N	260,988	697,398	0
1712	2002	BLEG	21N	260,978	697,423	0
1713	2002	BLEG	21N	261,097	696,824	0
1714	2002	BLEG	21N	261,266	697,078	0
1715	2002	BLEG	21N	262,447	699,712	0
1716	2002	BLEG	21N	262,360	699,815	0
1727	2002	BLEG	21N	260,179	703,253	0
1728	2002	BLEG	21N	259,830	701,496	0
1729	2002	BLEG	21N	259,924	701,584	0
1730	2002	BLEG	21N	259,608	701,563	0
1731	2002	BLEG	21N	259,613	701,672	0

1732	2002	BLEG	21N	257,225	701,141	0
1733	2002	BLEG	21N	257,827	702,400	0
1734	2002	BLEG	21N	257,896	702,646	0
1737	2002	BLEG	21N	237,986	683,719	0
1738	2002	BLEG	21N	241,836	694,645	7
1739	2002	BLEG	21N	238,250	683,304	6
1740	2002	BLEG	21N	237,877	682,665	10
1746	2002	BLEG	21N	248,822	694,253	0
1749	2002	BLEG	21N	250,900	698,100	7
1754	2002	BLEG	21N	268,798	697,408	24
1777	2002	BLEG	21N	261,407	696,053	0
1778	2002	BLEG	21N	260,609	694,432	0
1789	2002	BLEG	21N	235,578	679,908	0
1790	2002	BLEG	21N	235,664	679,934	0
1796	2002	BLEG	21N	259,226	697,096	0
1797	2002	BLEG	21N	259,045	697,111	0
2566	2003	BLEG	21N	235,161	703,648	28
2567	2003	BLEG	21N	236,470	702,683	18
2568	2003	BLEG	21N	236,648	706,925	12
2569	2003	BLEG	21N	236,340	705,295	5
2684	2003	BLEG	21N	236,012	705,277	17
2687	2016	BLEG	21N	236,176	708,147	36
2769	2003	BLEG	21N	237,612	702,203	12
2770	2003	BLEG	21N	239,992	701,607	7
2772	2003	BLEG	21N	234,939	700,525	21
2773	2003	BLEG	21N	240,543	701,850	18
2781	2003	BLEG	21N	240,180	697,929	33
2782	2003	BLEG	21N	241,722	696,485	2
3001	2003	BLEG	21N	252,576	701,461	8
3002	2003	BLEG	21N	252,577	701,308	37
3003	2003	BLEG	21N	250,447	702,920	7
3004	2003	BLEG	21N	250,435	702,827	6
3012	2003	BLEG	21N	246,169	701,402	9
3013	2003	BLEG	21N	244,704	701,194	4
3014	2003	BLEG	21N	243,798	700,256	25
3015	2003	BLEG	21N	243,921	700,014	399
3016	2003	BLEG	21N	242,582	698,051	33
3017	2003	BLEG	21N	242,702	698,375	1,070
3021	2003	BLEG	21N	236,912	708,411	18
3133	2003	BLEG	21N	248,971	700,666	60
7187	2016	BLEG	21N	281,190	692,252	11
7199	2016	BLEG	21N	280,562	694,821	5
7200	2016	BLEG	21N	280,578	694,821	7
7201	2016	BLEG	21N	268,570	691,235	
7202 7203	2016	BLEG BLEG	21N 21N	270,028 279,945	692,737 693,557	62 210
7204	2016	BLEG	21N	279,731	694,166	69

7205	2016	BLEG	21N	280,349	694,877	0
7211	2016	BLEG	21N	271,455	691,989	160
7212	2016	BLEG	21N	271,374	691,678	430
7214	2016	BLEG	21N	275,543	693,251	304
7215	2016	BLEG	21N	271,899	691,929	655
7216	2016	BLEG	21N	272,811	692,068	173
7236	2016	BLEG	21N	271,849	685,325	21
7242	2016	BLEG	21N	267,660	691,427	2
7243	2016	BLEG	21N	268,500	691,485	46
7244	2016	BLEG	21N	271,234	690,595	465
7246	2016	BLEG	21N	275,629	695,233	227
7248	2016	BLEG	21N	277,401	694,246	11
7270	2016	BLEG	21N	274,856	696,820	14
7271	2016	BLEG	21N	274,657	696,733	22
7272	2016	BLEG	21N	275,398	695,540	73
7273	2016	BLEG	21N	275,453	695,218	20
7276	2016	BLEG	21N	276,307	695,400	17
7277	2016	BLEG	21N	276,475	695,594	7
7278	2016	BLEG	21N	276,793	697,280	21
7279	2016	BLEG	21N	276,907	696,834	16
7280	2016	BLEG	21N	277,675	694,723	12
7281	2016	BLEG	21N	278,404	694,929	10
7332	2016	BLEG	21N	280,912	699,934	9

Table 3: Stream samples BLEG gold assay values, ppb = parts per billion. Coordinates in UTM Zone 21N.

APPENDIX C: JORC TABLE

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 A total of 114 stream samples and 114 BLEG samples were collected during the program. Information reviewed suggested that the industry standard for sample collection and representative was followed and that no sampling bias was introduced to the process.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling results are reported in this release.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling results are reported in this release.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 No drilling results are reported in this release. Surface geochemistry samples were qualitatively described and recorded in a geospatial database.

 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 Approximately 5kg of sand and fine silt was collected from active stream sediment by wet sieving at 30 Mesh (~600um). Sample was re-sieved at 30 Mesh to remove organic material such as leaves. These collected samples were subsequently bagged, tagged and submitted to Activation laboratory, Canada for analysis. After drying, disaggregated and homogenised 2kg sample was split for Bulk Leach Extractable Gold (BLEG). This method involves leaching with cyanide, separating the gold and other soluble metals using an organic solvent, and then assaying by conventional ICP-MS techniques. BLEG samples were assayed for Au, Ag, Cu, Pd and Pt. The remainder of the sample was sieved by 80 mesh (180 um) and then assayed for 'Au+48' elements by INAA and 4 acid digestion ICP. The collected samples were assayed at the Activation laboratory, which is an ISO 9001 Certified assay laboratory operating in Canada. All chain of custody and assay laboratory procedures follow strict guidelines. Laboratory QA/QC involves the use of internal lab standards using certified reference
 assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations 	 The collected samples were assayed at the Activation laboratory, which is an ISO 9001 Certified assay laboratory operating in Canada. All chain of custody and assay laboratory procedures follow strict guidelines. Laboratory QA/QC involves the use of internal
 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	material, blanks, splits and replicates as part of the in-house procedures. QC results (blanks, duplicates, standards) were in line with commercial procedures, reproducibility and accuracy.
 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches mine workings and other locations used. 	 No umpire analysis has been performed. N/A - No drilling reported. Field data was captured in field notebooks by hand along with a digital copy to ensure a backup of information. Location for the sample points was determined by handheld GPS.
 trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation 	 Location for all sampling data is based on WGS84, Zone 21 North UTM datum. Surface geochemistry sampling will not be used in resource estimation. Data spacing is sufficient for preliminary exploration work designed to assess the mineral prospectivity potential of the project
	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	No drilling results are reported in this release
Sample security	The measures taken to ensure sample security.	 The samples were placed into bags and sealed and then put into larger sacks which are then sealed and tagged. An appropriately documented chain of custody to the Actlabs laboratory in Canada was available and sighted.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits or reviews are incorporated into this report.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status Exploration done by other parties	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties. 	 Altair has the right to earn up to 70% of the Greater Oko Project. There are no other material issues affecting the tenements. All tenements are currently in good standing and have been legally validated by local lawyer specialising in the field. Historic exploration including surface geochemistry and drilling has been previously announced on 5th August 2025 and 26th August 2025. This announcement covers the historic
Geology	Deposit type, geological setting and style of mineralisation.	 surface geochemistry results. The project area is underlain by Precambrian rocks of the Barama-Mazaruni Group with the bedrock belonging to the Cuyuni Formation. The Cuyuni Formation, sedimentary and volcanic rocks, were compressed and metamorphosed during the Akawaian Episode and Trans-Amazonian Orogeny to form part of a greenstone belt. Previous exploration has demonstrated the presence of a NNW-SSE trending weathered, saprolitized shear zone with high-grade gold mineralization.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No data aggregation methods were used. No metal equivalent values are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	N/A — No drilling reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and sections (with scales) are included in the main body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Reporting is considered to be balanced. All relevant and material exploration data for the target areas has been reported or referenced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All relevant exploration data related to the current sampling has been included in this release.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out	Detailed geochemistry should be carried out to determine and validate trends of known mineralised zones and to delineate high grade trends within the identified mineralised

JORC Code explanation	Commentary
 drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 zones. Further drilling is recommended to test stepout and depth extensions to the currently known mineralisation, and to infill some areas of the known body to increase the confidence in support of a resource estimate. Any further exploration activity will depend on assessment of current and historical results.