

Shallow High-Grade Gold Results at Treasure Creek

Felix Gold Limited (ASX: FXG) is pleased to report shallow high-grade gold assay results from its 2025 drilling program at our Treasure Creek Project in the Fairbanks Mining District, including 4.89 m @ 20.42 g/t Au. Gold mineralisation is related to a set of geological structures, some of which also contain previously reported high-grade antimony intersections at the NW Array prospect.

Highlights

High-Grade Gold Results

- 13.75m @ 7.69 g/t Au from 3.29m, including 4.89m @ 20.42 g/t Au (Hole 25TCDC001)
- 35.10m @ 1.82 g/t Au from 24.08m, including 7.98m @ 2.52 g/t Au, 8.40m @ 3.97 g/t Au (Hole 25TCDC010)
- 47.25m @ 1.08 g/t Au from 24.38m, including 3.04m @ 1.4 g/t Au, 1.53m @ 1.77 g/t Au, 1.52m @
 2.41 g/t Au and 4.57m @ 2.27 g/t Au (Hole 25TCRC034)
- 16.01m @ 1.71 g/t Au from 34.28m, including 8.14m @ 2.79 g/t Au (Hole 25TCDC021)

Geological Relationship

- Gold mineralisation is related to a set of geological structures, some of which also contain previously reported high-grade antimony, with gold forming a broader halo around antimony.
- High-grade antimony samples (>1% Sb) contain a range of gold grades from 0.24 g/t to 6.5 g/t.
- Very high grades in 25TCDC010 within highly weathered material near surface
- Mineralisation remains open along strike and at depth

Fairbanks Gold District Context

- Alaska's premier gold mining district with 16+ Moz historical production
- Felix is the largest landholder in the Fairbanks Mining District (see Fig. 1)
- Located 20 minutes from Kinross Gold's Fort Knox—a Tier 1 gold operation with established infrastructure including a heap leach facility and 40,000 tpd mill.

Join the conversation

For any questions regarding this announcement or to join in with the conversation, view this announcement on our <u>Investor Hub</u>.

Go to Investor Hub

Felix Gold's Executive Director, Joe Webb, commented:

"These results showcase exceptional gold grades in Alaska's premier Fairbanks Mining District with Fort Knox, a Tier 1 operation, located 20 minutes from our project.

The geology is particularly encouraging. We're seeing high-grade gold within the same structures that host our antimony mineralisation, with gold forming broader halos around these zones. The 13.75m @ 7.69 g/t intersection in hole 001, including 4.89m @ 20.42 g/t, demonstrates the grade potential within these weathered breccia structures.

For shareholders who joined us during the antimony story, these results highlight the significant gold opportunity at Treasure Creek. As the largest landholder in a district with over 16 million ounces of historical production, we're demonstrating the quality of our gold asset while systematically defining these mineralised structures—which remain open along strike and at depth."

A Premier Gold Mining District

Treasure Creek is located in the Fairbanks Gold Mining District, which has produced over 16 million ounces of gold historically. The district hosts Kinross Gold's Fort Knox mine, a Tier 1 operation, located just 20 minutes from Treasure Creek.

Felix is the largest landholder in the Fairbanks Gold Mining District, with our landholding illustrated in **Fig. 1** below. The district's existing infrastructure—such as power, roads, a skilled workforce, and proximity to processing facilities and the city of Fairbanks—offers a straightforward development route for gold projects.

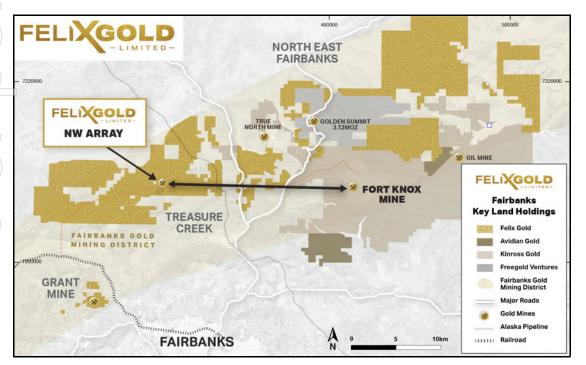


Fig 1. Location of reporting gold results from NW Array, shown within the Fairbanks Gold Mining District

Demonstrated Bulk-Tonnage Potential

While the 2025 program has successfully targeted high-grade structures (e.g., 13.75m @ 7.69 g/t Au in hole 25TCDC001), these results complement Felix Gold's previous discovery of thick, near-surface, bulk-tonnage mineralisation. The current high-grade intercepts often represent the "feeder" structures within these broader halos.

Significant historical intercepts from the NW Array and Treasure Creek prospect include:

Table 1: Select Historical Bulk-Tonnage Intercepts

Hole ID	From (m)	Interval (m)	Au (g/t)	Gram-Metres (GxM)	Year
22TCRC008	32.0	90.0	1.20	108	2022
22TCRC071	6.1	70.1	1.60	112	2022
23TCRC135	1.5	54.9	1.80	99	2023
23TCRC176	3.0	33.5	1.63	55	2023

Refer to ASX Announcements dated 22 June 2022, 01 August 2022, and 24 July 2023 for full details. The Company confirms it is not aware of any new information or data that materially affects the information included in the original announcements and all material assumptions continue to apply.

Drilling Results - NW Array 2025 Program

Program Overview

An extensive program of drilling at the NW Array gold-antimony prospect has recently been completed. To date a total of 56 RC holes for 3139.49 m (including 8 water monitoring bores) and 67 diamond holes for 5,826.5 m have been completed. Drilling is targeted at better defining the extents and grade of high-grade antimony and gold mineralisation intersected in previous drilling and trenching campaigns.

Samples from the drilling program have been submitted to MSA Laboratories in Vancouver for multi-element analysis with specialised methods for high grade antimony and PhotonAssay for gold. Gold assay results are pending for 62 diamond holes and 51 RC holes.

Results

Gold Photonassay results have been received for 10 drill holes, including 5 diamond core and 5 reverse circulation (RC) holes. Significant intersections (above a cut-off of 0.3 g/t Au) are summarised in Table 2, with drill hole details in Table 3. Locations of intersections with respect to other drill holes and interpreted structures are presented in plan view in Figure 2 and key cross sections are presented in Figures 3, 4 & 5. Figure 6 shows the area covered by intersections reported in this announcement with intersections from previous drilling shown for context.

Hole 25TCDC001 - Best intersection 13.75m @ 7.69 g/t Au including 4.89m @ 20.42 g/t Au

The high-grade intersection in hole 25TCDC001 occurs from 3.29 m to 17.04 m, with most gold within a shorter interval of 4.89 m from 12.15 m downhole. Mineralisation is related to a highly weathered breccia zone in schist with abundant clay gouge and/or alteration immediately beneath fractured and brecciated felsic porphyry. Low-grade gold mineralisation between 0.3 g/t and 1.4 g/t extends into schist in the footwall of this upper zone. Another high-grade gold mineralised structure occurs in schist lower in the drill hole, giving an intersection of 5.49m @ 2.31 g/t Au. There are no significant antimony results associated with gold mineralisation in this drill hole. The relationship between this high-grade gold but low antimony intersection and other nearby drillholes is unclear.

Hole 25TCDC010

The broad intersection of 35.1m @ 1.82 g/t Au occurs within fractured felsic porphyry and breccia above the contact with schist. The higher gold grades occur within breccia, which locally includes antimony up to a maximum of 6% within a narrower zone than gold.

Hole 25TCDC014

Gold mineralisation occurs within two main zones of brecciated/fractured felsic porphyry and schist. The highest grades are found near the contacts of the lithologies.

Hole 25TCDC015

The low-grade intersection in this drill hole is related to a zone of fracturing that also hosts antimony within felsic porphyry. Antimony assays reflect a zone of stibnite veining that is correlated with the mineralisation exposed in trench 25NWTR005.

Hole 25TCDC021

Gold mineralisation in this drill hole has a similar association to hole 25TCDC010, with fractured felsic porphyry above a fault breccia zone at the contact between porphyry and schist. As in hole 010, higher gold grades within breccia are within the same part of the structure that hosts antimony veining (up to 13.26% Sb), although there is not an exact correlation between high gold and high antimony grades. The longest downhole intersection in this hole of 16.01m is through a foliated fault and breccia zone with an estimated true width of approximately 8m.

Hole 25TCRC005, 25TCRC011

Narrow zones of gold mineralisation with grades less than 1 g/t occur within felsic porphyry. Unknown controls but possibly related to E-W trending fractures/fault zones that also locally host antimony mineralisation.

Hole 25TCRC027

Low-grade gold mineralisation corresponds with logged schist immediately below the contact with felsic porphyry. This zone appears to correlate with mineralised breccia elsewhere, but has no antimony mineralisation.

25th Nov 2025

Hole 25TCRC034

Best gold grades in this drill hole appear to relate to E-W trending fracture zones and mineralised breccia. High gold grades in the breccia correspond with antimony assays up to 11.8%.

Trench 25NWTR003

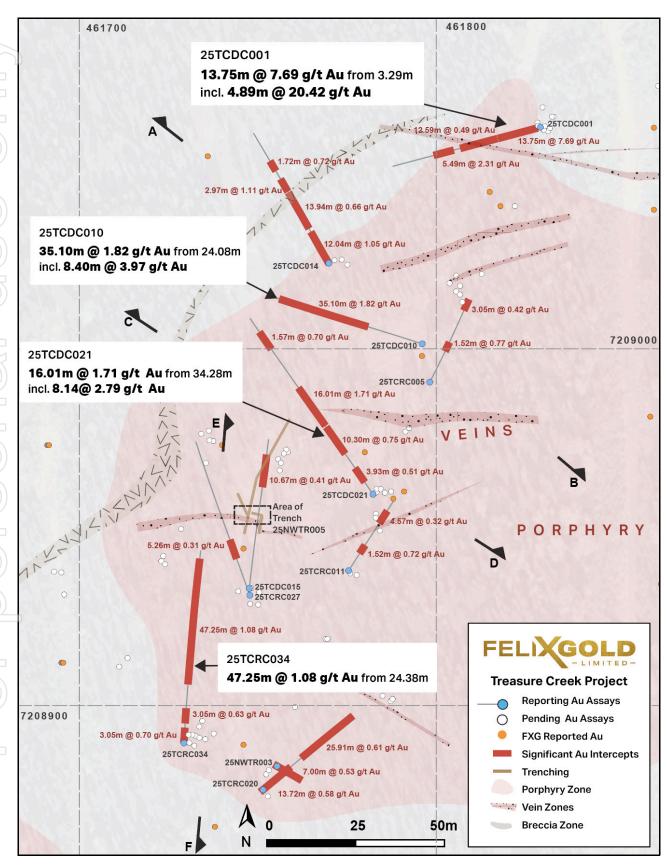
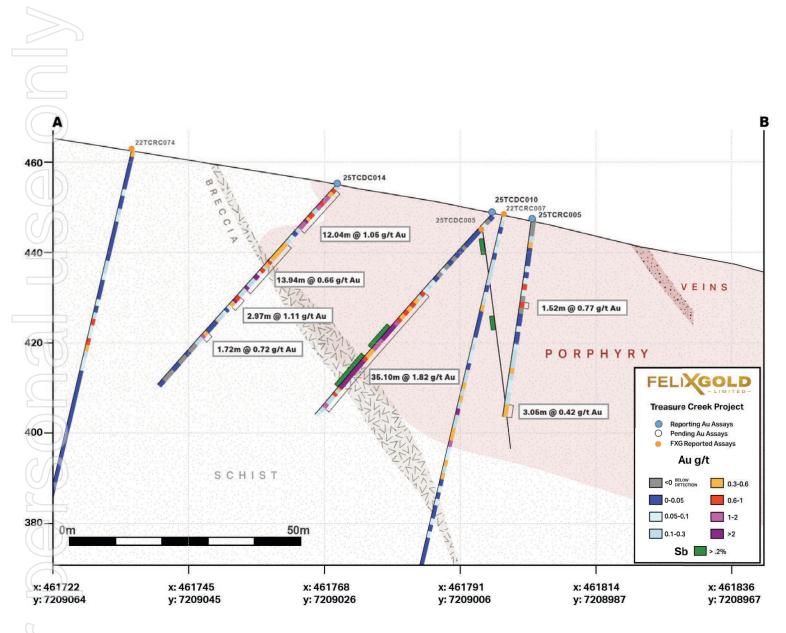
This short trench was excavated entirely within felsic porphyry over a small gravity anomaly. All samples contain low-grade (<1 g/t) gold mineralisation, possibly related to mapped fracturing in felsic intrusive rock. A single narrow stibnite vein was mapped in the first metre of the trench.

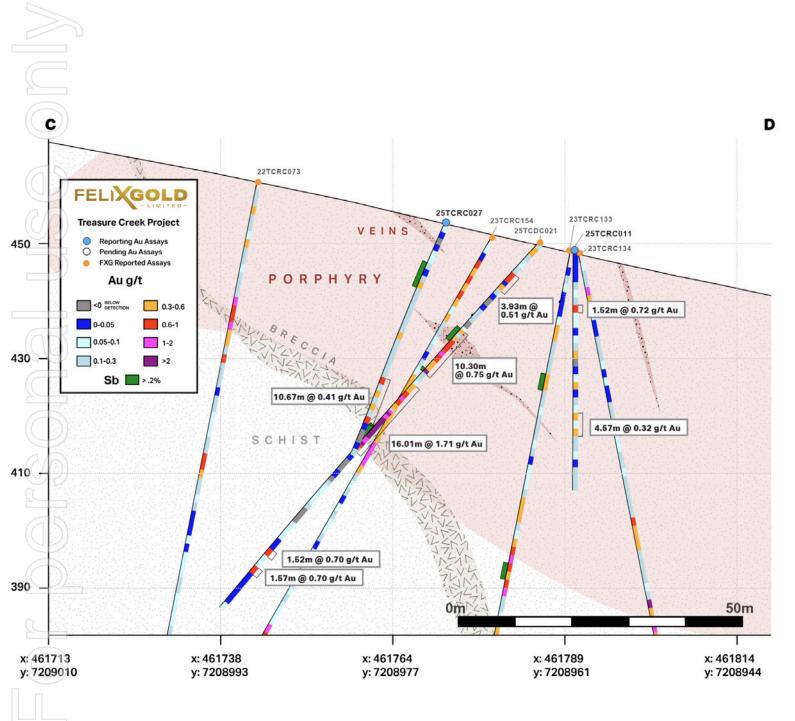
Relationship Between Gold and Antimony

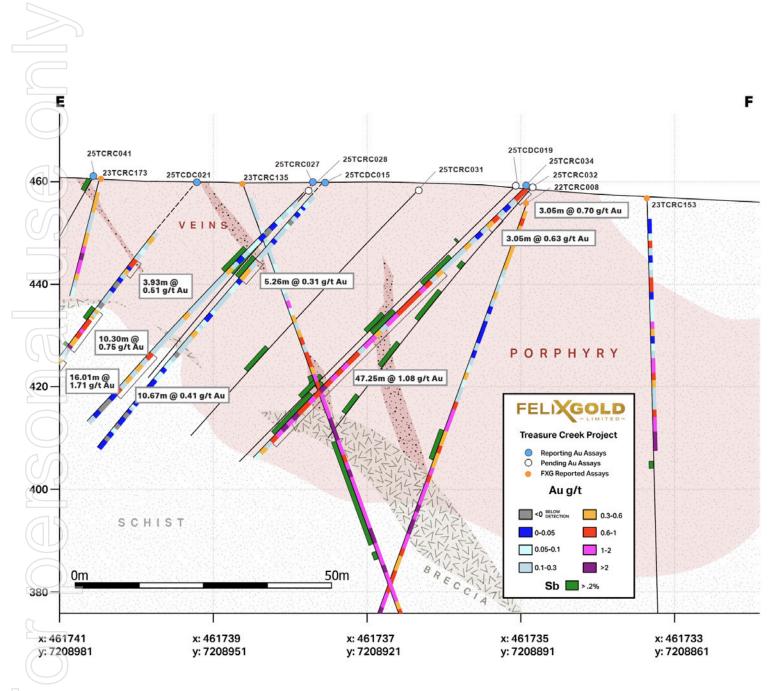
Gold and antimony at Treasure Creek occur within the same set of geological structures but as separate mineral phases. Gold generally forms a broader mineralisation halo within and around antimony-bearing structures, particularly in brecciated zones. The resulting distribution of gold and antimony produces some zones of antimony-dominant mineralisation, some of gold-dominant or gold-only mineralisation and some zones of mixed gold and antimony.

Cross-sections through key drill holes clearly show this relationship. For example, in Hole 25TCDC021, the highest gold grades occur roughly where antimony mineralisation is present, but gold extends into a broader halo beyond the antimony zones.

The 2025 drilling program has systematically tested both metals, providing comprehensive data on the relationship between gold and antimony at NW Array.


Fig. 2 Reported Gold Assays at NW Array Treasure Creek


Fig. 3 Section A – B showing gold intersections reported in this announcement and gold assay results from previously reported holes drilled during campaigns in 2022 and 2023.

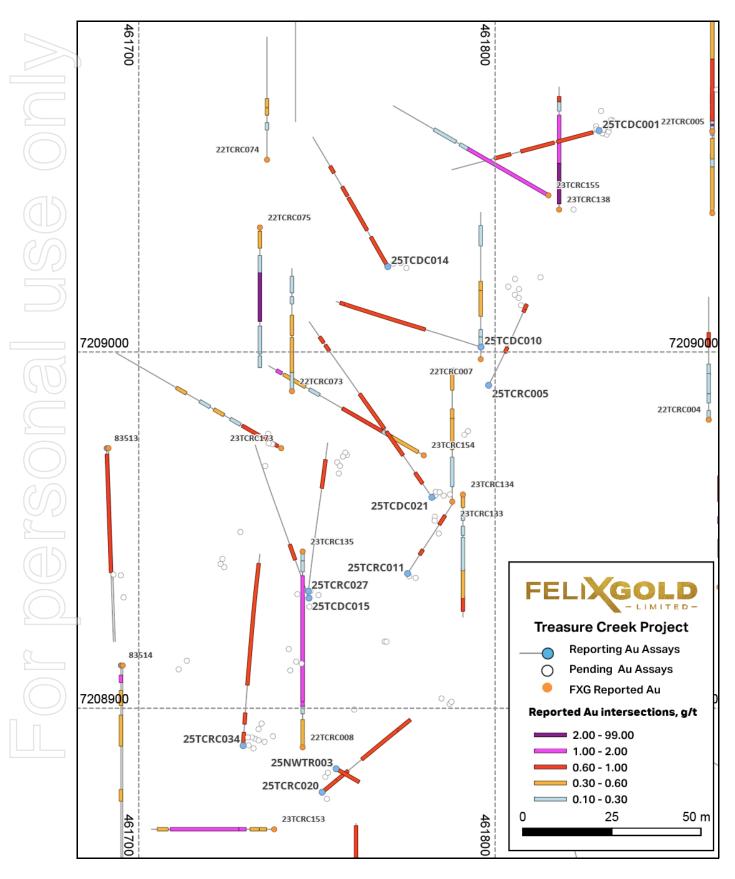

Fig. 4 Section C – D showing gold intersections reported in this announcement and gold assay results from previously reported holes drilled during campaigns in 2022 and 2023.

Fig. 5 Section E – F showing gold intersections reported in this announcement and gold assay results from previously reported holes drilled during campaigns in 2022 and 2023.

Fig. 6 Locations of gold intersections >0.3 g/t Au reported in this announcement and intersections from previous drilling campaigns in 2022 and 2023 previously reported using a cut-off of 0.1 g/t Au.

Antimony Context

The 2025 drilling program of NW Array prospo The 2025 drilling program at Treasure Creek was designed to test high-grade antimony mineralisation at the NW Array prospect. Results from this program, announced through October and November 2025, include:

- 3m @ 50.26% Sb (true width) at surface from trenching
- 17.78m @ 3.17% Sb including 6.7m @ 5.3% Sb from drilling
- **6.1m @ 7.86% Sb** from 39.62m in high-grade vein

In November 2025, metallurgical studies on antimony samples showed 89.2% of the raw ore to be antimony-bearing minerals before processing—a geological rarity. Multiple processing pathways were validated, including 74% Sb concentrate production (exceeding US military specification) and 98% extraction via direct alkaline leach.

The metallurgical program identified separate gold recovery from antimony concentrates and tailings as a priority for future testwork. Maximising gold payability via gravity separation or hydrometallurgical extraction prior to concentrate sale will be a key economic driver given the high gold grades observed.

Next Steps

Exploration

- Complete logging and sampling of all drill holes
- Structural geology studies to refine the understanding of mineralisation controls
- Surface mapping and sampling
- Both gold and antimony mineralisation remain open in multiple directions

Technical Studies

- Incorporate 2025 gold and antimony assays into resource database
- Refinement of 3D model of mineralised structures
- Metallurgical testwork on gold recovery (future phase)
- Engineering studies

Antimony Development Pathway

- Advance antimony bulk sampling program (Q4 2025-Q1 2026 target)*
- Multi-year operational permitting advancing (Q1 2026 submission target)*

^{*}Subject to completion of appropriate technical studies, permitting approvals, funding, and Board approval.

Table 2: Significant Gold Intersections (>0.3 g/t Au cut-off)

Hole ID		From (m)	To (m)	Interval (m)	Au g/t
25TCDC001		3.29	17.04	13.75	7.69
	including	12.15	17.04	4.89	20.42
	and	19.54	32.13	12.59	0.49
	and	37.8	43.29	5.49	2.31
	including	37.8	41.1	3.3	3.62
25TCDC010		24.08	59.18	35.1	1.82
	including	33.16	41.14	7.98	2.52
	and including	45.1	53.5	8.4	3.97
25TCDC014		1.1	13.14	12.04	1.05
	including	10.58	13.14	2.56	2.03
	and	17.64	31.58	13.94	0.66
	including	27.27	28.52	1.25	2.21
25TCDC014	and	33.7	36.67	2.97	1.11
25TCDC014	and	44.65	46.37	1.72	0.72
25TCDC021		7.32	11.25	3.93	0.51
25TCDC021	and	21.13	31.43	10.3	0.75
	and	34.28	50.29	16.01	1.71
	including	40.53	48.67	8.14	2.79
	and	73.49	75.01	1.52	0.7
	and	77.6	79.17	1.57	0.7
25TCRC005		21.34	22.86	1.52	0.77
	and	47.24	50.29	3.05	0.42
25TCRC011		13.72	15.24	1.52	0.72
25TCRC020		0	13.72	13.72	0.58
	and	22.86	48.77	25.91	0.61
	including	41.15	42.67	1.52	2.24
25TCRC027		42.67	53.34	10.67	0.41
25TCRC034		1.52	4.57	3.05	0.7
	and	9.14	12.19	3.05	0.63
	and	24.38	71.63	47.25	1.08
	including	36.58	39.62	3.04	1.4
	and including	50.29	51.82	1.53	1.77
	and including	56.39	57.91	1.52	2.41
	and including	64.01	68.58	4.57	2.27
25NWTR003		0	7	7	0.53

Table 3: Hole Locations Treasure Creek Tenement, NW Array Target Area

	UTM_NAD83_Zone 06N						
HoleID	Hole Type	East	North	RL (m)	EOH (m)	Azimuth (m)	Dip (m)
25TCDC001	DD	461829.2	7209062	440.723	61.78	254.5	-46.3
25TCDC010	DD	461796.1	7209001	446.852	61.57	287	-44.6
25TCDC014	DD	461769.9	7209024	453.108	60.96	328.7	-47.1
25TCDC015	DD	461747.8	7208931	457.138	67.06	341.4	-48.8
25TCDC021	DD	461782.3	7208959	448.801	87.42	325.4	-45.1
25TCRC005	RC	461798.2	7208991	447.253	50.29	26.3	-59.8
25TCRC011	RC	461775.5	7208938	450.859	50.29	31.7	-60.3
25TCRC020	RC	461751.5	7208876	452.21	48.77	49	-49.8
25TCRC027	RC	461747.6	7208933	457.334	60.96	5.9	-45.4
25TCRC034	RC	461729.3	7208889	459.73	76.2	2.6	-44.4
25NWTR003	Trench	461755.4	7208883	457.4	7	120	-13.6
Sb and multielem	ent results, no	gold					
25TCRC004	RC	461805.7	7209021	446.505	60.96	26	-59.6

Join the conversation

For any questions regarding this announcement or to join in with the conversation, view this announcement on our <u>Investor Hub</u>.

Go to Investor Hub

Enquiries

Joseph Webb View website: www.felixgold.com.au

Executive Director Get updates directly to your inbox: www.felixgold.com.au/auth/signup

Felix Gold Limited Ph: +61 422 955 411

E: joe.webb@felixgold.com.au

About Felix Gold

Felix Gold Limited (ASX: FXG) is an ASX-listed gold and critical minerals discovery business operating in the highly endowed Tintina Gold Province of Alaska in the United States.

Our flagship asset is a substantial landholding in the world-class Fairbanks Gold District, where historical gold production exceeds 16 million ounces. Felix is the largest landholder in the Fairbanks Mining District. Our tenements sit within one of the largest gold production centres in the entire Tintina belt and lie in close proximity to Kinross Gold's Tier 1 Fort Knox mine and Freegold Ventures' rapidly growing Golden Summit discovery.

The district also hosts significant historical antimony production, including grades up to 58% Sb from the Scrafford Mine at Treasure Creek, Alaska's second-largest historical antimony producer. This dual-commodity endowment positions Felix uniquely in a district with established mining infrastructure and proven geology.

Felix's key projects are located only 20 minutes from our operational base in Fairbanks City, Alaska. This proximity provides access to existing infrastructure, low-cost power, skilled workforce, and year-round exploration capability—delivering genuine development pathways for our assets.

Felix's value proposition is simple: we are striving to be the premier gold and critical minerals exploration business in the Tintina Province through the aggressive pursuit and realisation of Tier 1 gold discoveries.

Visit www.felixgold.com.au for more information.

Competent Person Statements

The information in this report that relates to Exploration Results is based on information compiled by Dr James Lally, a Competent Person who is a Member of The Australian Institute of Geoscientists. Dr Lally is an independent consultant to Felix Gold Limited and is a shareholder in the Company. Dr Lally has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Dr Lally consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

Various statements in this release constitute statements relating to intentions, future acts and events. Such statements are generally classified as "forward-looking statements" and involve known and unknown risks, uncertainties and other important factors that could cause those future acts, events and circumstances to differ materially from what is presented or implicitly portrayed herein. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates" and similar expressions are intended to identify forward-looking statements. Felix cautions shareholders and prospective shareholders not to place undue reliance on these forward-looking statements and references to what events have transpired for other

entities, which reflect the view of Felix only as of the date of this release. The forward-looking statements made in this release relate only to events as of the date on which the statements are made. Various statements in this release may also be based on the circumstances of other entities. Felix gives no assurance that the anticipated results, performance or achievements expressed or implied in those statements will be achieved. This release details some important factors and risks that could cause the actual results to differ from the forward-looking statements and circumstances of other entities in this release.

Previous Disclosure - 2012 JORC Code

The information in this release that relates to Exploration Results, Mineral Resources and Exploration Targets for Felix's Fairbanks Gold Projects was extracted from the following ASX Announcements:

23 Jan 2025 FXG: High-grade Antimony and Gold Results from Trenching

20 June 2024 FXG: Maiden NW Array Inferred Mineral Resource

16 May 2024 FXG: Felix Gold Secures Strategic Claims, Expanding Scale Potential of NW Array Gold Trend

10 Apr 2024 FXG: North West Array Bottle Roll Gold Recoveries Average 90%

19 Oct 2023 FXG: High Grade Antimony Assays up to 28% Sb

11 Aug 2023 FXG: Assay Results Unveiling Substantial Gold Zones with Continued High-Grade Antimony Enrichment

24 July 2023 FXG: Continuation of Broad Zones of Gold and High-Grade Stibnite from NW Array

17 July 2023 FXG: High-Grade Critical Mineral Discovery at NW Array

04 July 2023 FXG: NW Array Drilling Announcement

03 July 2023 FXG: NW Array Drilling Returns Broad Gold Intercepts

30 May 2023 FXG: Drilling Commenced at NW Array

14 Mar 2023 FXG: Exploration Target for NW Array

03 Feb 2023 FXG: Deeper Gold Mineralization and Prospective Feeder Zones Discovered

19 Jan 2023 FXG: New Gold Zones Identified in Reconnaissance Drilling

09 Dec 2022 FXG: Scrafford Shear Potential Grows and High-Grade Antimony Initiatives Commenced

01 Dec 2022 FXG: Near-Surface Gold Zones Extended into Northern Treasure Creek

18 Oct 2022 FXG: Significant Expansion of NW Array Gold Zone

05 Oct 2022 FXG: 400M Traverse of Thick Gold Mineralisation Open

01 Aug 2022 FXG: Multiple Thick, Near Surface Intercepts at Treasure Creek

22 Jun 2022 FXG: Step-out Drilling Success at Treasure Creek

28 Jan 2022 FXG: Felix Gold Prospectus

A copy of such announcements is available to view on the Felix Gold Limited website felixgold.com.au/announcements. These previous reports were issued in accordance with the 2012 Edition of the JORC Code. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX: JORC Code Table 1 Report

Section 1: Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation drilling was sampled on 1.52 m (5 feet) intervals from which 5-6kg was split and pulverised / crushed to produce samples for ICP multi-element analysis, high grade Sb analysis and gold analysis by PhotonAssay™ Diamond drill core was sampled over downhole lengths between 0.3m and 2.5m (average 1m) to produce samples for ICP multi-element analysis, high grade Sb analysis and gold analysis by PhotonAssay™ . Diamond drill-core sample intervals were adjusted based on changes in geology.

Criteria	Explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 Reverse Circulation (RC) holes were drilled with a 76mm (3 inch) face-sampling hammer with 73mm (2.875 inch) drill rods and 102mm (4 inch) casing. Diamond holes were wireline HQ (63.5mm diameter) holes. The diamond drill program reported here was undertaken by C-n-C Drilling LLC utilizing CS 14 skid mounted drill. Core was oriented wherever possible for collection of structural data using a Reflex ACTIII The core was reconstructed into continuous runs on a cradle for orientation marking before it was laid in the box at the drill.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC samples were visually assessed for recovery and were considered representative of bedrock intersected. Visual inspection of samples estimated no significant loss of sample from each 1.52m interval. No relationship between sample recovery and reported analyses has been established. Diamond core recovery was determined by measuring the total length of core in the barrel over the run length. Hole depths were checked against the drillers core blocks at the time of processing. Inconsistencies between the logging and the driller's depth measurement blocks were investigated. Diamond core samples are considered dry. The recovery and condition are recorded between every core block. Generally, recovery is 98-100% but on very rare occasions in weathered material or very broken material, recovery was down to 50%. For Diamond drilling, contractors adjust the rate of drilling and method of recovery issues arise No significant sample loss or bias has been noticed

Criteria	Explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Qualitative logging of RC chips and diamond core for lithology and alteration with semi-quantitative logs for oxide and sulphide mineralisation. RC and diamond holes were logged in for their entire lengths. Logging detail is sufficient to support geological modelling and mineral resource estimation. Representative RC chip samples from each 1.52m interval were placed in chip trays and photographed. All drill core was photographed wet using a digital camera and stored on the site server. Core logging included RQD and geotechnical measurements. Structural measurements of veins, fractures and foliation were taken from core using a strip protractor.

Criteria	Explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC intervals were sub-sampled using a 3-tier dry sample splitter attached to the drill rig cyclone. Two samples were taken from each 1.52 m interval, collecting ~12.5% each of the total sample, ranging in weight from 2-3 kg. One sample was retained for archival purposes while the other was sent to the analytical laboratory. Diamond core sampling intervals were determined by the logging geologist, with sampling breaks at major changes in lithology/alteration or mineralisation. Sub-samples were taken by sawing the HQ core in half along its axis using a Dewalt tile saw on-site. One half of the core was bagged for analysis and the other half retained in the core tray. Sample sizes for RC and core samples are considered appropriate for both gold and antimony mineralisation. Quality control procedures for ensuring sample representivity in RC sampling comprised the use of field duplicates and pulp duplicates at a rate of 1 in 20, alternating between the two duplicate types. Quality control procedures for ensuring sample representivity in core samples and pulp duplicate splits from half core samples and pulp duplicates at a rate of 1 in 20, alternating between the two duplicate types. Duplicate results show that for RC and diamond drilling sampling is representative for antimony, with variability in results linked to assay methods rather than sampling (see below).

25th Nov 2025

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation,
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

- All samples were submitted to MSA Laboratories in Vancouver, Canada for analysis.
- Gold was analysed using the PhotonAssay technique (MSA labs CPAu-1D method code). Two splits of approximately 500g of crushed material (70% passing 2mm) are taken from the sub-sample submitted to the laboratory using a riffle splitter. Both splits are subjected to high-intensity X-rays and the resulting gamma radiation emissions are detected and used to determine gold concentration in the sample.
- Analysis of split pair samples shows very good correlation with only three outlier values that have yet to be explained.
- PhotonAssay results include quality flags for some samples that were reviewed by the CP:
 - HB (High Background):
 Indicates elevated background
 radiation detected during
 measurement, primarily
 affecting samples <0.1 ppm Au.
 Multi-element data shows Ba,
 U, and Th levels are generally
 low.
 - HET (Heterogeneous):
 Indicates high within-sample variability based on multiple readings at different angles.
 Less than 0.1% of analyses (8 samples) were flagged with HET and of these only 3 samples showed a significant difference between duplicate pairs
 - 5% of samples submitted for PhotonAssay are being cross-checked by screen fire assay at the same laboratory. No results for screen fore assays are available as yet.
- 4 acid digest with ICP-MS finish was used to analyse for a full suite of trace elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr.

	Criteria	Explanation	Commentary
C			 4-Acid ICP-MS has an upper detection limit (UDL) of 1% for antimony. Suspected very high-grade (>10% Sb) samples were flagged in sample submission sheets and analysed using a wet titration method. Samples not flagged as high grade, but which returned above UDL assays for ICP were re-analysed using a peroxide fusion with ICP finish. The cut-off ICP Sb assay for re-analysis by peroxide fusion was changed to 3000ppm after results indicated that volatile loss and insoluble precipitate formation was causing some ICP results to severely under-call the Sb grade. Quality control procedures include the insertion of certified reference materials, coarse blanks (locally sourced sand) and field and pulp duplicates. Acceptable levels of accuracy and precision have been established, notwithstanding the issues with some Sb analyses described above
	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 A senior manager verifies all significant and anomalous intersections during the drill hole validation process. All primary data was collected in the field by Felix Gold contract staff and supplied in digital format to Felix Gold. No twinned holes were drilled for this data set. All data is stored and validated within a Plexer relational database managed by Gad Solutions in Brisbane, Australia. Data undergoes QA/QC validation prior to being accepted and loaded in the database. Assay results are merged when received electronically from the laboratory. A senior geologist reviews the dataset checking for the correct merging of results and that all data has been received and entered. Any adjustments to this data are recorded permanently in the database. Digital records of assays are stored electronically. No adjustments have been made to the final assay data reported by the laboratory

Criteria	Explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 RC and diamond hole collar locations are initially located by handheld GPS to an accuracy of 3m. After completion of drilling, all drill collars are located with a differential GPS system to an accuracy of 10 cm. Locations are given in NAD83/UTM Zone 6N projection. Diagrams and location table are provided in the report. Topographic control is by detailed airphoto, DTM file, and differential GPD Downhole surveys were conducted using an Axis Champ north-seeking gyro tool which collected data points approximately every 3 m downhole. True north azimuths supplied from the gyro were corrected to UTM grid north.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Variable drill hole spacings were used to adequately test targets and are determined from geochemical, geophysical and geological data with historical drilling information. Data spacing is sufficient to establish geological and grade continuity to a level appropriate for a future update of the current gold-only mineral resource estimate at NW Array with addition of antimony Reported intersections have been composited using a cut-off grade of 0.2% Sb.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are oriented at various angles to mineralised structures, in part due to access restrictions for drill pad locations and also due to the interpreted difference in strike and dip of the main mineralised structures. Although individual holes may not be oriented optimally for sampling some structures, there is no overall sampling bias introduced.

Criteria	Explanation	Commentary
Sample security	The measures taken to ensure sample security.	Samples were collected by company personnel on site, to the company logging and cutting office and delivered direct to the preparation laboratory via company personnel. A transport contractor takes the prepared samples to Vancouver.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been completed at this early stage of the drilling program.

Section 2: Reporting of Exploration Results

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The Treasure Creek Project is located in the Fairbanks Gold Mining District in central Alaska. The Treasure Creek Project area consists of 238 active Alaska State Mining Claims (MCs) and 2 Upland Mining Leases (UMLs) for a total of 11687.31 hectares. There are also 4 pending MCs for a total of 64.75 hectares. The Treasure Creek Project is a consolidation of mining claims and upland mining leases held by Oro Grande Mining Claims LLC (10 MCs and 1 UML), Goldstone Resources LLC (19 MCs and 1 UML), Wally Trudeau (5 MCs), and Felix Gold Ltd (204 MCs). Felix has acquired the mining claims or the exclusive rights to explore and an option to purchase the mining claims. Felix has acquired all requisite operating permits to conduct the current exploration program.

Criteria	Explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Gold was first discovered at Fairbanks in 1902, since then the wider area has been the subject of an enormous amount of exploration and placer mining by companies and individual prospectors. Since 1969, the Treasure Creek area has been explored by companies including Cantu Minerals, Mohawk Oil, Aalenian Resources/Silverado Mines, American Copper and Nickel Company (ACNC), Amax, Goldstone/Our Creek (OCMC), Canex Resources, Tri-Con Mining and BHP-Utah. Most of the work was focused on Au-Sb mines at and around Scrafford, and in the eastern third of Felix's current tenure. Several diamond holes were completed in the NW Array prospect area.
Geology	Deposit type, geological setting and style of mineralisation.	 Hard-rock gold mineralisation styles in Felix's Treasure Creek prospect are currently dominated by shear- and fault-vein hosted gold ± antimony deposits, including historic mines at Scrafford (Sb). Broad zones of disseminated and stockwork gold mineralisation are also found within Cretaceous age intrusive rocks, such as at Fort Knox (operated by Kinross) and Golden Summit (Freegold Ventures). Gold mineralisation is linked to a causative intrusion of Cretaceous-Tertiary felsic to intermediated composition. Proximity to the intrusion, structural setting and host rock all control the specific style of deposit produced. Antimony mineralisation is also associated with these felsic sill-like bodies. Post-mineralisation cover in the Fairbanks area comprises valley-fill gravels plus locally thick accumulations of wind-blown silt (loess).

Criteria	Explanation	Commentary
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer to the body of the text of the announcement for all drill hole information relating to this announcement. Details of any other drill holes referred to can be found in previous announcements listed under "Previous Disclosure - JORC 2012 Code". No material information has been excluded.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Significant Gold intercepts are regarded as those having minimum continuous mineralisation of at least 3.0m @ >0.3 g/t Au. Assays were aggregated by length-weighted averaging with no top-cutting applied. A maximum of 5m total of internal waste with 2.5m consecutive waste intervals was allowed during economic compositing. No metal equivalents have been reported.

Criteria	Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All intercepts quoted are downhole widths. The geometry of mineralisation with respect to the hole angle varies due to the wide range of drilling azimuths and variable strike and dip of mineralised zones. Modelling is ongoing to determine the true thickness of different gold mineralised zones. Where core drilling has intersected structures with discernable orientations the estimated true widths are indicated in Table Further drill results should verify the orientations of mineralisation as presented in this announcement.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Gold plus previously reported antimony and arsenic assays for all samples in the reported drill holes are included as an appendix to this announcement.

Criteria	Explanation	Commentary
Other substantive exploration data	Other • Other exploration data, if meaningful and material, should be reported	 Trenching completed earlier this year and in 2024 confirmed the presence of east-striking and south-dipping zones of complex stibnite veining that vary in width and tenor over short strike lengths. A maiden Mineral Resource estimate was reported on 20th June 2024 for gold mineralisation at NW Array (FXG announcement 20 June 2024). Antimony was not included in the estimate due to lack of assay data Metallurgical testwork on bulk samples was completed earlier in 2025 on bulk samples from trenching (FXG Announcement 29 May 2025). Testwork achieved 85% Sb recovery, producing 69% Sb grade concentrates via gravity and flotation processes. Bulk density has been determined by the water immersion method on drill core samples, giving a density for porphyry of 2.59 g/cm3 and schist of 2.7 g/cm3. Additional density measurements on drill core samples are being undertaken. Four water monitoring bore holes were drilled as part of the 2025 drilling program and data on groundwater levels has been collected over 2 quarters.
Further work	further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not	 The 2025 drill program at NW array is ongoing, mainly targeted at better definition of the known mineralised zones, in particular the high-grade "black breccia" The mineralised system remains open at depth and along strike to the north and south.

Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As pp
25TCDC001	4777001	3.29	4.45	0.789	0.021	1241
25TCDC001	4777002	4.45	6.03	0.936	0.042	598
25TCDC001	4777003	6.03	7.8	0.357	0.012	263.2
25TCDC001	4777004	7.8	9.26	0.301	0.009	243.
25TCDC001	4777005	9.26	10.97	0.768	0.016	306.8
25TCDC001	4777006	10.97	12.15	0.948	0.006	187.6
25TCDC001	4777007	12.15	13.9	21.372	0.03	1423
25TCDC001	4777008	13.9	15.76	16.908	0.069	1205
25TCDC001	4777010	15.76	17.04	24.23	0.016	1175
25TCDC001	4777011	17.04	18.03	0.191	0.011	763
25TCDC001	4777012	18.03	19.54	0.065	0.009	651
25TCDC001	4777014	19.54	22.1	0.336	0.005	420.
25TCDC001	4777015	22.1	22.7	0.076	0.005	211.8
25TCDC001	4777016	22.7	24.08	0.09	0.004	379.8
25TCDC001	4777017	24.08	25.36	1.446	0.01	637.
25TCDC001	4777019	25.36	26.94	0.221	0.004	408.0
25TCDC001	4777020	26.94	27.8	1.23	0.009	1453
25TCDC001	4777021	27.8	28.4	0.154	0.009	696.
25TCDC001	4777022	28.4	29.38	0.909	0.009	951.9
25TCDC001	4777023	29.38	30.52	0.354	0.012	1458
25TCDC001	4777025	30.52	32.13	0.304	0.037	965.
25TCDC001	4777026	32.13	33.04	0.154	0.011	449.2
25TCDC001	4777027	33.04	33.83	0.104	0.01	329.9
25TCDC001	4777028	33.83	34.87	0.046	0.003	97.1
25TCDC001	4777029	34.87	35.47	0.021	0.005	291.
25TCDC001	4777030	35.47	36.87	0.029	0.01	156
25TCDC001	4777031	36.87	37.8	0.104	0.017	329.
25TCDC001	4777033	37.8	39.32	1.311	0.022	3946
25TCDC001	4777034	39.32	40.11	8.132	0.069	1000
25TCDC001	4777035	40.11	40.74	4.723	0.119	1000
25TCDC001	4777036	40.74	41.1	1.5	0.258	4036
25TCDC001	4777037	41.1	42.34	0.337	0.028	1215
25TCDC001	4777038	42.34	43.29	0.363	0.073	1350
25TCDC001	4777039	43.29	43.92	0.097	0.027	499
25TCDC001	4777040	43.92	45.35	0.045	0.007	236.7
25TCDC001	4777041	45.35	46.88	-0.015	0.012	159.5
25TCDC001	4777042	46.88	48.01	0.036	0.007	100.

	Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
	25TCDC001	4777044	48.01	49.1	0.167	0.021	305
	25TCDC001	4777045	49.1	50.06	0.093	0.02	556.8
	25TCDC001	4777046	50.06	51.55	0.136	0.026	525.7
	25TCDC001	4777047	51.55	53.2	0.031	0.008	304.7
)	25TCDC001	4777048	53.2	54.44	0.102	0.003	107.1
	25TCDC001	4777050	54.44	55.65	0.069	0.005	286.4
	25TCDC001	4777051	55.65	56.88	0.034	0.003	176.1
	25TCDC001	4777052	56.88	58.31	-0.015	0.005	177.8
	25TCDC001	4777053	58.31	59.2	0.21	0.005	713
)	25TCDC001	4777054	59.2	60.66	0.041	0.006	110.2
	25TCDC001	4777055	60.66	61.78	-0.015	0.003	46.6
)	25TCDC010	4777622	0.53	1.71	0.042	0.012	261.3
	25TCDC010	4777623	1.71	2.94	-0.015	0.013	394.6
	25TCDC010	4777624	2.94	4.17	0.058	0.018	363.2
1	25TCDC010	4777625	4.17	4.99	-0.015	0.044	645.5
)	25TCDC010	4777626	4.99	6.3	0.033	0.03	379.1
1	25TCDC010	4777627	6.3	7.43	0.017	0.022	338.2
1	25TCDC010	4777628	7.43	8.69	0.039	0.039	533.8
	25TCDC010	4777629	8.69	9.91	0.03	0.024	459.1
)	25TCDC010	4777631	9.91	10.85	-0.015	0.024	405.5
\	25TCDC010	4777632	10.85	11.85	0.032	0.04	701.1
)	25TCDC010	4777633	11.85	13.17	0.038	0.015	157
1	25TCDC010	4777634	13.17	14.38	-0.015	0.019	162.2
	25TCDC010	4777635	14.38	15.64	0.036	0.019	174.2
)	25TCDC010	4777636	15.64	16.95	-0.015	0.015	135
	25TCDC010	4777637	16.95	18.12	0.059	0.025	346.9
)	25TCDC010	4777638	18.12	19.35	-0.015	0.015	188.7
	25TCDC010	4777639	19.35	20.57	0.033	0.014	314.1
	25TCDC010	4777641	20.57	21.85	0.061	0.017	451.6
	25TCDC010	4777642	21.85	22.8	0.121	0.016	755.9
)	25TCDC010	4777643	22.8	24.08	0.073	0.015	1042.4
	25TCDC010	4777644	24.08	25.23	0.644	0.036	707.9
	25TCDC010	4777645	25.23	26.15	0.184	0.029	1190.9
	25TCDC010	4777646	26.15	27.38	0.581	0.017	2096.6
	25TCDC010	4777648	27.38	28.56	0.645	0.016	2045.9
	25TCDC010	4777649	28.56	29.78	0.536	0.057	2397.6
	25TCDC010	4777650	29.78	31	0.7	0.033	922.1
	25TCDC010	4777651	31	32.22	0.363	0.008	830.5
	25TCDC010	4777652	32.22	33.16	0.833	0.016	1651.3
	25TCDC010	4777654	33.16	34.17	1.268	0.02	2751.2
	25TCDC010	4777655	34.17	35.16	2.426	0.048	2925.1

Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
25TCDC010	4777656	35.16	36.5	3.472	1.06	5868.4
25TCDC010	4777657	36.5	37.46	3.851	0.64	4348.5
25TCDC010	4777658	37.46	38.6	3.474	0.176	2605.7
25TCDC010	4777659	38.6	39.75	1.47	0.3	900.3
25TCDC010	4777660	39.75	40.21	1.791	0.14	2804
25TCDC010	4777661	40.21	41.14	1.727	0.04	1301.9
25TCDC010	4777662	41.14	41.75	1.206	0.71	1853.1
25TCDC010	4777663	41.75	42.65	0.399	0.13	1421.9
25TCDC010	4777664	42.65	43.35	0.539	0.18	385.9
25TCDC010	4777666	43.35	44.07	0.473	0.09	400.6
25TCDC010	4777667	44.07	45.1	0.667	1.6	883
25TCDC010	4777668	45.1	46.19	4.254	1.98	3850.1
25TCDC010	4777670	46.19	47.1	4.566	0.22	7580.7
25TCDC010	4777671	47.1	48	2.923	1.44	4085.8
25TCDC010	4777672	48	49.35	3.227	0.09	7371.5
25TCDC010	4777673	49.35	49.96	6.524	2.66	7717.8
25TCDC010	4777674	49.96	50.93	2.799	0.65	6766.7
25TCDC010	4777675	50.93	51.41	4.971	6.63	2793.1
25TCDC010	4777677	51.41	52.03	4.301	2.23	2396.5
25TCDC010	4777678	52.03	52.75	3.873	0.76	2819.5
25TCDC010	4777679	52.75	53.5	4.078	0.91	5199.3
25TCDC010	4777680	53.5	54.09	0.35	0.019	952.7
25TCDC010	4777681	54.09	54.88	0.161	0.019	1067.5
25TCDC010	4777682	54.88	55.66	0.81	0.009	1178.3
25TCDC010	4777683	55.66	57.09	0.237	0.012	1403.2
25TCDC010	4777684	57.09	58	0.135	0.014	1062.7
25TCDC010	4777685	58	59.18	1.014	0.017	1957.1
25TCDC010	4777686	59.18	60.32	0.122	0.006	529.5
25TCDC010	4777687	60.32	61.57	0.087	0.004	327.2
25TCDC014	4777922	0	1.1	0.16	0.028	1148
25TCDC014	4777923	1.1	2.06	0.609	0.29	1159.8
25TCDC014	4777924	2.06	2.77	0.528	0.058	1145.9
25TCDC014	4777925	2.77	3.19	0.348	0.073	1269.1
25TCDC014	4777926	3.19	3.87	1.033	0.094	1280.7
25TCDC014	4777928	3.87	5	1.017	0.043	1856.9
25TCDC014	4777929	5	6.06	0.654	0.043	1363.4
25TCDC014	4777930	6.06	7.2	1.983	0.018	1230.2
25TCDC014	4777931	7.2	8.46	0.165	0.015	1087.5
25TCDC014	4777932	8.46	9.27	0.774	0.021	2120.6
25TCDC014	4777933	9.27	9.8	0.618	0.036	1870.1
25TCDC014	4777934	9.8	10.58	0.42	0.036	1667.9

	Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
	25TCDC014	4777935	10.58	11.17	4.104	0.017	2902.7
١	25TCDC014	4777936	11.17	12.27	1.535	0.009	3054.8
	25TCDC014	4777937	12.27	13.14	1.256	0.067	3174.2
	25TCDC014	4777938	13.14	14.17	0.266	0.192	313.2
)	25TCDC014	4777940	14.17	15.24	0.042	0.025	204
	25TCDC014	4777941	15.24	16.45	0.084	0.036	328
	25TCDC014	4777942	16.45	17.64	0.27	0.13	203.2
)	25TCDC014	4777943	17.64	18.85	0.398	0.137	141.1
	25TCDC014	4777945	18.85	19.37	0.497	0.39	289.9
	25TCDC014	4777946	19.37	20.61	0.401	0.155	208.7
	25TCDC014	4777947	20.61	21.64	0.335	0.048	183.8
)	25TCDC014	4777948	21.64	22.59	0.303	0.009	421.3
	25TCDC014	4777949	22.59	23	0.177	0.009	195.9
	25TCDC014	4777950	23	23.73	0.79	0.014	1357.8
	25TCDC014	4777951	23.73	24.72	0.521	0.017	1350.2
)	25TCDC014	4777953	24.72	25.32	0.104	0.014	1771.5
	25TCDC014	4777954	25.32	26.35	0.719	0.004	1119.7
	25TCDC014	4777955	26.35	27.27	0.089	0.003	1762.7
	25TCDC014	4777956	27.27	28.52	2.213	0.002	371.4
	25TCDC014	4777957	28.52	29.65	0.2	0.006	1499.2
	25TCDC014	4777958	29.65	30.76	0.128	800.0	1386.8
	25TCDC014	4777959	30.76	31.58	2.584	800.0	1013.8
	25TCDC014	4777960	31.58	32.6	0.148	0.01	1291.1
	25TCDC014	4777961	32.6	33.7	0.259	0.005	447.5
	25TCDC014	4777962	33.7	34.86	0.703	0.006	696.8
	25TCDC014	4777963	34.86	35.5	3.22	0.049	4205
	25TCDC014	4777965	35.5	36.67	0.358	0.019	993.6
	25TCDC014	4777966	36.67	37.58	0.064	0.006	273.9
	25TCDC014	4777967	37.58	38.33	0.033	0.015	627.2
	25TCDC014	4777968	38.33	39.14	0.071	0.011	433.7
	25TCDC014	4777969	39.14	40.23	0.187	0.004	699.9
	25TCDC014	4777970	40.23	41.12	0.163	0.004	717.6
	25TCDC014	4777971	41.12	41.45	0.339	0.003	223.7
	25TCDC014	4777973	41.45	42.35	0.033	0.004	409.1
	25TCDC014	4777974	42.35	43.71	0.033	0.007	547.2
Į	25TCDC014	4777975	43.71	44.65	0.035	0.003	300.1
	25TCDC014	4777976	44.65	45.6	0.405	0.004	702.4
	25TCDC014	4777977	45.6	46.37	1.104	800.0	1440.4
	25TCDC014	4777978	46.37	46.97	0.297	0.004	980.7
	25TCDC014	4777979	46.97	48.4	0.159	0.003	327.2
	25TCDC014	4777981	48.4	49.4	-0.015	0.003	64

	Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
	25TCDC014	4777982	49.4	50.65	-0.015	0.004	58.7
	25TCDC014	4777983	50.65	51.84	0.023	0.005	22.3
	25TCDC014	4777984	51.84	52.95	-0.015	0.006	30.3
	25TCDC014	4777985	52.95	54.14	-0.015	0.002	107
)	25TCDC014	4777986	54.14	55.24	0.027	0.002	47.9
	25TCDC014	4777988	55.24	56.27	0.031	0.006	24.5
	25TCDC014	4777989	56.27	57.3	-0.015	0.002	41.1
)	25TCDC014	4777990	57.3	58.3	-0.015	0.003	129.2
	25TCDC014	4777991	58.3	59.4	-0.015	0.002	12.3
)	25TCDC014	4777992	59.4	60.26	0.017	0.001	11.4
	25TCDC014	4777993	60.26	60.96	0.029	0.002	9.3
)	25TCDC015	4777994	0	1.68	0.273	0.063	396.7
	25TCDC015	4777995	1.68	2.96	0.051	0.039	221.2
	25TCDC015	4777996	2.96	3.54	0.022	0.009	85.5
1	25TCDC015	4777997	3.54	4.5	0.092	0.045	463.8
) [25TCDC015	4777998	4.5	5.55	0.044	0.034	260.1
	25TCDC015	4777999	5.55	6.6	0.133	0.039	535.3
	25TCDC015	4778000	6.6	7.6	-0.015	0.02	140.4
	25TCDC015	5600002	7.6	8.69	0.096	0.069	647.4
)	25TCDC015	5600003	8.69	9.54	0.156	0.058	671.6
	25TCDC015	5600004	9.54	10.3	0.147	0.053	627.4
)	25TCDC015	5600005	10.3	11.13	0.167	0.062	554.7
	25TCDC015	5600006	11.13	11.73	0.148	0.066	592.3
	25TCDC015	5600007	11.73	12.69	0.036	0.015	405
	25TCDC015	5600009	12.69	13.72	0.116	0.014	675.2
	25TCDC015	5600010	13.72	15.02	0.148	0.006	461.5
)	25TCDC015	5600011	15.02	15.82	0.294	0.008	498.2
	25TCDC015	5600012	15.82	16.73	0.227	0.011	754.6
	25TCDC015	5600013	16.73	17.19	0.092	0.067	677.4
	25TCDC015	5600014	17.19	17.48	0.871	38.54	743.9
)	25TCDC015	5600016	17.48	18	0.233	0.72	256.5
	25TCDC015	5600017	18	18.83	0.133	0.133	1097.3
	25TCDC015	5600018	18.83	19.7	0.104	0.28	935.2
1	25TCDC015	5600019	19.7	20.5	0.36	0.098	1048.5
	25TCDC015	5600020	20.5	21.63	0.401	0.066	906.4
	25TCDC015	5600021	21.63	22.45	0.403	0.84	1297.4
	25TCDC015	5600022	22.45	23.53	0.046	0.093	677
	25TCDC015	5600024	23.53	24.65	0.056	0.015	475.5
	25TCDC015	5600025	24.65	25.95	0.068	0.03	997.8
	25TCDC015	5600026	25.95	26.78	0.224	0.047	1144.8
	25TCDC015	5600027	26.78	27.47	0.149	0.043	1435.8

	Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
	25TCDC015	5600028	27.47	28.73	0.131	0.041	996.3
	25TCDC015	5600030	28.73	29.57	0.104	0.089	1440.9
	25TCDC015	5600031	29.57	30.7	0.123	0.084	1306.4
	25TCDC015	5600032	30.7	31.65	0.071	0.103	1292.8
)	25TCDC015	5600033	31.65	32.41	0.018	0.013	274
	25TCDC015	5600034	32.41	33.44	0.026	0.041	881.1
	25TCDC015	5600035	33.44	34.69	0.075	0.018	958.8
)	25TCDC015	5600037	34.69	35.32	0.165	0.019	582
	25TCDC015	5600038	35.32	36.25	0.081	0.02	499.8
)	25TCDC015	5600039	36.25	37.78	0.565	0.035	359.1
	25TCDC015	5600040	37.78	38.97	0.145	0.012	307.4
)	25TCDC015	5600041	38.97	40.06	0.114	0.011	185.1
	25TCDC015	5600042	40.06	41.05	0.26	0.026	229.5
	25TCDC015	5600044	41.05	41.95	0.13	0.025	541.8
1	25TCDC015	5600045	41.95	43.05	-0.015	0.01	275.2
)	25TCDC015	5600046	43.05	44.16	0.104	0.012	401
	25TCDC015	5600047	44.16	45.14	0.069	0.01	388.5
	25TCDC015	5600048	45.14	46.12	0.091	0.008	370.6
	25TCDC015	5600049	46.12	47.18	0.018	0.006	252.3
)	25TCDC015	5600050	47.18	48.36	0.099	0.007	597.5
	25TCDC015	5600051	48.36	49.21	0.055	0.008	567.1
)	25TCDC015	5600053	49.21	50.41	0.038	0.004	515.1
	25TCDC015	5600054	50.41	52.69	0.042	0.009	756.8
	25TCDC015	5600055	52.69	53.67	-0.015	0.004	137.3
)	25TCDC015	5600056	53.67	54.47	-0.015	0.004	44.8
	25TCDC015	5600058	54.47	55.03	-0.015	0.007	123.3
)	25TCDC015	5600059	55.03	55.86	0.028	0.009	496.1
	25TCDC015	5600060	55.86	56.52	0.059	0.005	364.3
	25TCDC015	5600061	56.52	57.12	0.121	0.012	535.5
	25TCDC015	5600062	57.12	57.91	0.045	0.009	530.1
)	25TCDC015	5600064	57.91	59.09	-0.015	0.006	165
	25TCDC015	5600065	59.09	59.44	0.039	0.005	385.5
	25TCDC015	5600066	59.44	60.8	0.028	0.01	416.6
1	25TCDC015	5600067	60.8	61.91	-0.015	0.017	226.7
	25TCDC015	5600068	61.91	62.94	0.1	0.011	288.7
	25TCDC015	5600070	62.94	64.04	0.041	0.007	218.2
	25TCDC015	5600071	64.04	65.03	-0.015	0.005	51.8
	25TCDC015	5600072	65.03	66.2	0.022	0.006	143.4
	25TCDC015	5600073	66.2	67.06	0.039	0.01	417.4
	25TCDC021	5600532	0	1.15	0.282	0.075	632.6
	25TCDC021	5600533	1.15	2.89	0.306	0.013	1161.7

	Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
	25TCDC021	5600535	2.89	4.39	0.148	0.01	707
	25TCDC021	5600536	4.39	5.81	0.076	0.011	702.4
	25TCDC021	5600538	5.81	7.32	0.294	0.014	1795.7
	25TCDC021	5600539	7.32	7.93	0.657	0.009	2293.4
)	25TCDC021	5600540	7.93	9.37	0.815	0.013	2158.2
	25TCDC021	5600541	9.37	10.13	0.037	0.01	739.1
	25TCDC021	5600542	10.13	11.25	0.346	0.009	460.4
	25TCDC021	5600543	11.25	12.44	0.241	0.012	592.8
	25TCDC021	5600544	12.44	13.48	0.017	0.019	597.7
	25TCDC021	5600546	13.48	15.01	-0.015	0.008	89.5
1	25TCDC021	5600547	15.01	16.1	0.041	0.009	79.6
)	25TCDC021	5600548	16.1	17.56	0.102	0.018	651.9
	25TCDC021	5600549	17.56	19.11	0.125	0.031	611.7
1	25TCDC021	5600550	19.11	20.49	-0.015	0.045	218.1
1	25TCDC021	5600551	20.49	21.13	0.073	0.108	734.3
	25TCDC021	5600552	21.13	21.89	0.503	0.25	532.6
	25TCDC021	5600553	21.89	22.78	0.202	0.094	570.1
1	25TCDC021	5600554	22.78	23.3	0.317	0.176	247.6
	25TCDC021	5600555	23.3	23.71		20.6	1038.2
)	25TCDC021	5600557	23.71	24.17	0.694	0.24	717.5
\	25TCDC021	5600558	24.17	25.27	0.788	0.044	894.8
	25TCDC021	5600559	25.27	26.34	0.849	0.026	1380.3
1	25TCDC021	5600561	26.34	27.18	1.056	0.034	1631.8
	25TCDC021	5600562	27.18	28.63	0.946	0.08	1238.2
)	25TCDC021	5600563	28.63	29.6	0.502	0.017	439.4
	25TCDC021	5600564	29.6	30.7	0.454	0.019	295.6
)	25TCDC021	5600565	30.7	31.43	2.268	1.17	625.5
	25TCDC021	5600567	31.43	32.15	0.27	0.033	500.1
	25TCDC021	5600568	32.15	33.38	0.154	0.017	581.7
	25TCDC021	5600569	33.38	34.28	0.059	0.013	499.9
	25TCDC021	5600570	34.28	35.11	0.581	0.016	1033.9
	25TCDC021	5600571	35.11	36.06	0.323	0.009	600.6
	25TCDC021	5600572	36.06	37.26	0.62	0.013	990.4
	25TCDC021	5600573	37.26	37.98	1.027	0.067	1453.9
	25TCDC021	5600574	37.98	39.03	0.712	0.016	1372
	25TCDC021	5600575	39.03	40.13	0.455	0.02	1046.6
	25TCDC021	5600576	40.13	40.53	0.213	0.024	997.6
	25TCDC021	5600578	40.53	41	1.797	0.016	2030.3
	25TCDC021	5600579	41	41.55	4.528	0.03	6493.5
	25TCDC021	5600580	41.55	42.37	1.449	0.022	7014.2
	25TCDC021	5600581	42.37	43.25	3.877	0.026	9667.8

	Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
	25TCDC021	5600582	43.25	43.96	2.541	0.034	5576.3
	25TCDC021	5600583	43.96	44.54	4.091	0.122	6951.8
	25TCDC021	5600584	44.54	45.01	2.119	0.45	2556.3
	25TCDC021	5600585	45.01	45.63	2.497	0.41	2445.8
	25TCDC021	5600586	45.63	46.41	3.665	13.26	1262.3
	25TCDC021	5600588	46.41	47.02	3.221	2.28	3026.8
	25TCDC021	5600589	47.02	47.61	1.832	0.13	1550.5
)	25TCDC021	5600591	47.61	48.08	1.085	1.07	1104
	25TCDC021	5600593	48.08	48.67	2.841	0.194	1509.8
	25TCDC021	5600594	48.67	49.26	0.914	0.016	350.3
	25TCDC021	5600595	49.26	50.29	0.533	0.057	1700.5
	25TCDC021	5600596	50.29	51.18	0.058	0.038	1781
	25TCDC021	5600597	51.18	52.24	0.017	0.015	1134.1
	25TCDC021	5600598	52.24	53.48	-0.015	0.007	694.7
	25TCDC021	5600599	53.48	54.83	-0.015	0.024	1647.3
	25TCDC021	5600601	54.83	55.56	0.019	0.016	559.8
	25TCDC021	5600602	55.56	56.32	0.04	0.016	738
, I	25TCDC021	5600603	56.32	57.31	-0.015	0.008	331.9
	25TCDC021	5600604	57.31	58.25	0.133	0.028	1331.7
	25TCDC021	5600606	58.25	59.78	0.055	0.007	635.6
	25TCDC021	5600607	59.78	61.36	0.078	0.006	558.8
)	25TCDC021	5600608	61.36	62.8	0.085	0.007	659.9
Į	25TCDC021	5600609	62.8	63.89	0.233	0.01	524.6
	25TCDC021	5600610	63.89	65.79	-0.015	0.004	281.4
	25TCDC021	5600611	65.79	67.16	-0.015	0.005	364.5
	25TCDC021	5600612	67.16	69.68	0.053	0.005	432.2
)	25TCDC021	5600613	69.68	71.18	0.096	0.003	201.5
į	25TCDC021	5600614	71.18	72.62	0.033	0.004	366.2
	25TCDC021	5600615	72.62	73.49	0.019	0.005	493.8
	25TCDC021	5600617	73.49	75.01	0.704	0.004	722.8
)	25TCDC021	5600618	75.01	76.17	0.078	0.003	260.6
	25TCDC021	5600619	76.17	77.6	0.079	0.002	638.3
Į	25TCDC021	5600620	77.6	79.17	0.696	0.005	853.7
1	25TCDC021	5600621	79.17	80.18	0.031	0.005	146
	25TCDC021	5600622	80.18	81.79	0.023	0.008	126.4
Į	25TCDC021	5600623	81.79	82.9	0.05	0.014	246.4
	25TCDC021	5600624	82.9	84.47	0.043	0.005	96.4
Į	25TCDC021	5600626	84.47	86.08	0.04	0.011	103.2
Į	25TCDC021	5600627	86.08	87.42	0.06	0.003	184
Į	25TCRC005	PN0000883176	0	3.05	-0.015	0.035	898.2
	25TCRC005	PN0000883177	3.05	4.57	-0.015	0.039	819.9

Hole ID		Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
25TCRC0	05	PN0000883178	4.57	6.1	0.134	0.028	653.9
25TCRC0	05	PN0000883179	6.1	7.62	0.381	0.018	287.5
25TCRC0	05	PN0000883181	7.62	9.14	0.038	0.014	253
25TCRC0	05	PN0000883182	9.14	10.67	0.023	0.015	415.3
25TCRC0	05	PN0000883183	10.67	12.19	0.046	0.013	261.3
25TCRC0	05	PN0000883184	12.19	13.72	0.054	0.015	373.3
25TCRC0	05	PN0000883186	13.72	15.24	0.027	0.01	165.4
25TCRC0	05	PN0000883187	15.24	16.76	0.052	0.02	321.1
25TCRC0	05	PN0000883188	16.76	18.29	0.621	0.019	169.7
25TCRC0	05	PN0000883189	18.29	19.81	0.081	0.015	280.6
25TCRC0	05	PN0000883191	19.81	21.34	-0.015	0.014	168.1
25TCRC0	05	PN0000883192	21.34	22.86	0.772	0.014	144.3
25TCRC0	05	PN0000883193	22.86	24.38	-0.015	0.02	303
25TCRC0	05	PN0000883194	24.38	25.91	0.02	0.017	115.6
25TCRC0	05	PN0000883195	25.91	27.43	0.023	0.009	83.2
25TCRC0	05	PN0000883196	27.43	28.96	0.074	0.013	215.5
25TCRC0	05	PN0000883197	28.96	30.48	0.021	0.01	131.2
25TCRC0	05	PN0000883198	30.48	32	0.03	0.017	259.9
25TCRC0	05	PN0000883199	32	33.53	0.072	0.025	344.1
25TCRC0	05	PN0000883201	33.53	35.05	0.235	0.009	755.7
25TCRC0	05	PN0000883202	35.05	36.58	0.101	0.017	400.6
25TCRC0	05	PN0000883203	36.58	38.1	0.153	0.013	570
25TCRC0	05	PN0000883204	38.1	39.62	0.346	0.036	290.4
25TCRC0	05	PN0000883206	39.62	41.15	0.243	0.013	308.3
25TCRC0	05	PN0000883207	41.15	42.67	0.088	0.012	479.3
25TCRC0	05	PN0000883208	42.67	44.2	0.081	0.011	359.7
25TCRC0	05	PN0000883209	44.2	45.72	0.16	0.013	667.2
25TCRC0	05	PN0000883211	45.72	47.24	0.274	0.018	914.9
25TCRC0	05	PN0000883212	47.24	48.77	0.501	0.181	1075.5
25TCRC0	05	PN0000883213	48.77	50.29	0.329	0.08	750.6
25TCRC0	11	PN0000883442	0	1.52	0.323	0.051	475.7
25TCRC0	11	PN0000883443	1.52	3.05	0.079	0.043	687.8
25TCRC0	11	PN0000883444	3.05	4.57	0.026	0.03	434.6
25TCRC0	11	PN0000883446	4.57	6.1	0.047	0.026	380
25TCRC0	11	PN0000883447	6.1	7.62	0.021	0.019	165.8
25TCRC0	11	PN0000883448	7.62	9.14	0.029	0.021	174.1
25TCRC0	11	PN0000883449	9.14	10.67	0.124	0.035	650.4
25TCRC0	11	PN0000883451	10.67	12.19	0.081	0.068	663.8
25TCRC0	11	PN0000883452	12.19	13.72	0.117	0.029	578.3
25TCRC0	11	PN0000883453	13.72	15.24	0.724	0.058	536.5
25TCRC0	11	PN0000883454	15.24	16.76	0.091	0.064	541.7

Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
25TCRC011	PN0000883455	16.76	18.29	0.066	0.016	615.9
25TCRC011	PN0000883456	18.29	19.81	0.035	0.02	306.1
25TCRC011	PN0000883457	19.81	21.34	0.057	0.052	773.6
25TCRC011	PN0000883458	21.34	22.86	0.115	0.05	543.8
25TCRC011	PN0000883459	22.86	24.38	0.421	0.039	461.9
25TCRC011	PN0000883461	24.38	25.91	-0.015	0.007	122.4
25TCRC011	PN0000883462	25.91	27.43	0.049	0.011	261.7
25TCRC011	PN0000883463	27.43	28.96	0.099	0.009	260.9
25TCRC011	PN0000883464	28.96	30.48	0.305	0.026	517.7
25TCRC011	PN0000883466	30.48	32	0.018	0.013	285.6
25TCRC011	PN0000883467	32	33.53	0.193	0.017	661.4
25TCRC011	PN0000883468	33.53	35.05	0.078	0.02	466.3
25TCRC011	PN0000883469	35.05	36.58	0.357	0.108	732.6
25TCRC011	PN0000883471	36.58	38.1	0.056	0.019	238.9
25TCRC011	PN0000883472	38.1	39.62	0.554	0.018	805.8
25TCRC011	PN0000883473	39.62	41.15	0.23	0.033	845.8
25TCRC011	PN0000883474	41.15	42.67	0.199	0.009	736.8
25TCRC011	PN0000883475	42.67	44.2	0.078	0.023	605.1
25TCRC011	PN0000883476	44.2	45.72	0.032	0.038	606
25TCRC011	PN0000883477	45.72	47.24	0.103	0.022	488.4
25TCRC011	PN0000883478	47.24	48.77	0.121	0.025	361.3
25TCRC011	PN0000883479	48.77	50.29	0.106	0.022	679.8
25TCRC020	PN0000883823	0	1.52	0.852	0.083	2010.5
25TCRC020	PN0000883824	1.52	3.05	0.722	0.129	1110.8
25TCRC020	PN0000883826	3.05	4.57	0.579	0.046	1350.7
25TCRC020	PN0000883827	4.57	6.1	0.996	0.045	1422.4
25TCRC020	PN0000883828	6.1	7.62	0.304	0.078	1018.7
25TCRC020	PN0000883829	7.62	9.14	0.671	0.042	821.2
25TCRC020	PN0000883831	9.14	10.67	0.439	0.022	765.9
25TCRC020	PN0000883832	10.67	12.19	0.244	0.03	622.8
25TCRC020	PN0000883833	12.19	13.72	0.429	0.019	897.5
25TCRC020	PN0000883834	13.72	15.24	0.278	0.017	690.1
25TCRC020	PN0000883835	15.24	16.76	0.244	0.028	452.3
25TCRC020	PN0000883836	16.76	18.29	0.114	0.009	217.5
25TCRC020	PN0000883837	18.29	19.81	0.651	0.037	1054.3
25TCRC020	PN0000883838	19.81	21.34	0.266	0.018	338.9
25TCRC020	PN0000883839	21.34	22.86	0.222	0.059	944.3
25TCRC020	PN0000883841	22.86	24.38	0.481	0.033	758.5
25TCRC020	PN0000883842	24.38	25.91	0.444	0.049	1063.9
25TCRC020	PN0000883843	25.91	27.43	0.245	0.01	735.4
25TCRC020	PN0000883844	27.43	28.96	0.584	0.039	1331.5

Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
25TCRC020	PN0000883846	28.96	30.48	0.381	0.016	1100.6
25TCRC020	PN0000883847	30.48	32	0.377	0.014	907.6
25TCRC020	PN0000883848	32	33.53	0.436	0.223	613.6
25TCRC020	PN0000883849	33.53	35.05	0.568	0.041	1354.5
25TCRC020	PN0000883851	35.05	36.58	0.471	0.46	709.5
25TCRC020	PN0000883852	36.58	38.1	0.415	0.136	1457
25TCRC020	PN0000883853	38.1	39.62	0.328	0.126	1153.6
25TCRC020	PN0000883854	39.62	41.15	0.553	0.102	1328.3
25TCRC020	PN0000883855	41.15	42.67	2.241	0.24	1008.5
25TCRC020	PN0000883856	42.67	44.2	0.991	0.2	2058.7
25TCRC020	PN0000883857	44.2	45.72	0.775	0.069	1664.7
25TCRC020	PN0000883858	45.72	47.24	0.305	0.062	1238.3
25TCRC020	PN0000883859	47.24	48.77	0.705	0.32	1293.5
25NWTR003	PN0000884051	0	1	0.308	2.56	370.9
25NWTR003	PN0000884052	1	2	0.642	0.155	876.7
25NWTR003	PN0000884053	2	3	0.715	0.027	1504
25NWTR003	PN0000884054	3	4	0.438	0.053	1506.3
25NWTR003	PN0000884055	4	5	0.621	0.116	2050.2
25NWTR003	PN0000884056	5	6	0.112	0.043	805
25NWTR003	PN0000884057	6	7	0.907	0.256	980.6
25TCRC027	PN0000884415	0	1.52		0.045	440.5
25TCRC027	PN0000884416	1.52	3.05	0.14	0.03	371.9
25TCRC027	PN0000884417	3.05	4.57	0.062	0.023	359.8
25TCRC027	PN0000884418	4.57	6.1	0.165	0.038	494
25TCRC027	PN0000884419	6.1	7.62	0.067	0.018	414.6
25TCRC027	PN0000884421	7.62	9.14	0.048	0.025	393.6
25TCRC027	PN0000884422	9.14	10.67	-0.015	0.009	372.9
25TCRC027	PN0000884423	10.67	12.19	0.041	0.011	330.3
25TCRC027	PN0000884424	12.19	13.72	0.066	0.022	742.5
25TCRC027	PN0000884426	13.72	15.24	0.054	0.01	224.1
25TCRC027	PN0000884427	15.24	16.76	0.237	6.26	353.4
25TCRC027	PN0000884428	16.76	18.29	0.026	0.061	457.5
25TCRC027	PN0000884429	18.29	19.81	0.121	0.108	672.3
25TCRC027	PN0000884431	19.81	21.34	0.535	2.15	338.9
25TCRC027	PN0000884432	21.34	22.86	0.157	0.02	554
25TCRC027	PN0000884433	22.86	24.38	0.261	0.015	549.1
25TCRC027	PN0000884434	24.38	25.91	0.153	0.027	1169.1
25TCRC027	PN0000884435	25.91	27.43	0.191	0.024	1101.3
25TCRC027	PN0000884436	27.43	28.96	0.178	0.021	856.3
25TCRC027	PN0000884437	28.96	30.48	0.156	0.025	787
25TCRC027	PN0000884438	30.48	32	0.258	0.02	1006.3

Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
25TCRC027	PN0000884439	32	33.53	0.307	0.044	1699.8
25TCRC027	PN0000884441	33.53	35.05	0.25	0.016	1159.6
25TCRC027	PN0000884442	35.05	36.58	0.138	0.022	686.3
25TCRC027	PN0000884443	36.58	38.1	0.177	0.025	575.6
25TCRC027	PN0000884444	38.1	39.62	0.185	0.03	470.9
25TCRC027	PN0000884446	39.62	41.15	0.212	0.025	414
25TCRC027	PN0000884447	41.15	42.67	0.25	0.005	261.5
25TCRC027	PN0000884448	42.67	44.2	0.892	0.214	656.7
25TCRC027	PN0000884449	44.2	45.72	0.206	0.171	248.2
25TCRC027	PN0000884451	45.72	47.24	0.353	0.175	548.8
25TCRC027	PN0000884452	47.24	48.77	0.141	0.102	728.8
25TCRC027	PN0000884453	48.77	50.29	0.307	0.084	783.3
25TCRC027	PN0000884454	50.29	51.82	0.125	0.06	324.3
25TCRC027	PN0000884455	51.82	53.34	0.833	0.062	627
25TCRC027	PN0000884456	53.34	54.86	0.025	0.028	578.6
25TCRC027	PN0000884457	54.86	56.39	-0.015	0.012	394.1
25TCRC027	PN0000884458	56.39	57.91	-0.015	0.012	245.6
25TCRC027	PN0000884459	57.91	59.44	0.035	0.008	519.5
25TCRC027	PN0000884461	59.44	60.96	0.11	0.006	405.2
25TCRC034	PN0000884755	0	1.52		0.075	1285.7
25TCRC034	PN0000884756	1.52	3.05	0.786	0.059	1900
25TCRC034	PN0000884757	3.05	4.57	0.612	0.08	1608.4
25TCRC034	PN0000884758	4.57	6.1	0.259	0.05	944
25TCRC034	PN0000884759	6.1	7.62	0.019	0.033	436.8
25TCRC034	PN0000884761	7.62	9.14	0.28	0.051	784
25TCRC034	PN0000884762	9.14	10.67	0.823	0.026	1627.5
25TCRC034	PN0000884763	10.67	12.19	0.428	0.024	1159
25TCRC034	PN0000884764	12.19	13.72	0.18	0.067	479.9
25TCRC034	PN0000884766	13.72	15.24	0.033	0.015	361.2
25TCRC034	PN0000884767	15.24	16.76	0.272	0.011	414.5
25TCRC034	PN0000884768	16.76	18.29	0.346	0.035	354.7
25TCRC034	PN0000884769	18.29	19.81	0.221	0.057	517
25TCRC034	PN0000884771	19.81	21.34	0.226	0.04	671.5
25TCRC034	PN0000884772	21.34	22.86	0.144	0.224	785.2
25TCRC034	PN0000884773	22.86	24.38	0.255	0.61	503.5
25TCRC034	PN0000884774	24.38	25.91	0.415	1.07	720.6
25TCRC034	PN0000884775	25.91	27.43	0.189	0.043	686
25TCRC034	PN0000884776	27.43	28.96	0.999	0.35	1576.7
25TCRC034	PN0000884777	28.96	30.48	1.42	0.094	2657.7
25TCRC034	PN0000884778	30.48	32	0.639	0.192	1196.1
25TCRC034	PN0000884779	32	33.53	0.671	0.107	1017.9

/	Hole ID	Sample ID	Depth To (m)	Interval (m)	Au g/t	Sb %	As ppm
	25TCRC034	PN0000884781	33.53	35.05	0.705	0.194	1087.5
	25TCRC034	PN0000884782	35.05	36.58	0.741	0.033	1442.8
	25TCRC034	PN0000884783	36.58	38.1	1.312	1.5	772.8
	25TCRC034	PN0000884784	38.1	39.62	1.479	0.239	1772.3
	25TCRC034	PN0000884786	39.62	41.15	0.258	0.036	707.5
	25TCRC034	PN0000884787	41.15	42.67	0.598	0.67	668.3
	25TCRC034	PN0000884788	42.67	44.2	1.092	0.142	1091.2
	25TCRC034	PN0000884789	44.2	45.72	1.428	0.043	1310.4
	25TCRC034	PN0000884791	45.72	47.24	0.294	0.01	668
	25TCRC034	PN0000884792	47.24	48.77	0.81	0.075	1119
	25TCRC034	PN0000884793	48.77	50.29	0.944	0.022	1128.2
	25TCRC034	PN0000884794	50.29	51.82	1.768	0.041	687.8
	25TCRC034	PN0000884795	51.82	53.34	0.886	0.032	503.7
	25TCRC034	PN0000884796	53.34	54.86	1.161	0.057	702.3
	25TCRC034	PN0000884797	54.86	56.39	0.934	0.11	1039.2
)	25TCRC034	PN0000884798	56.39	57.91	2.41	11.8	582.9
	25TCRC034	PN0000884799	57.91	59.44	0.676	0.17	527.6
	25TCRC034	PN0000884801	59.44	60.96	1.116	1.12	380.8
	25TCRC034	PN0000884802	60.96	62.48	0.764	0.8	418.2
	25TCRC034	PN0000884803	62.48	64.01	0.973	0.98	370
	25TCRC034	PN0000884804	64.01	65.53	2.354	0.192	1598.9
	25TCRC034	PN0000884806	65.53	67.06	1.928	0.054	2467.2
	25TCRC034	PN0000884807	67.06	68.58	2.527	3.06	1159.7
	25TCRC034	PN0000884808	68.58	70.1	1.157	0.8	451.6
	25TCRC034	PN0000884809	70.1	71.63	0.751	0.095	355.9
	25TCRC034	PN0000884811	71.63	73.15	0.21	0.075	274.4
	25TCRC034	PN0000884812	73.15	74.68	0.387	0.036	855.9
	25TCRC034	PN0000884813	74.68	76.2	0.073	0.016	1278.1