

ASX ANNOUNCEMENT 19/11/2025

BOLT CUTTER CENTRAL LITHIUM DISCOVERY GROWS TO 900M STRIKE AS DRILLING CONTINUES

Highlights

- Lithium assay results returned from 20 RC holes from a planned **60-hole**, **10,000m** drilling program at Wildcat's Bolt Cutter Project in WA's Pilbara:
 - Harry Pegmatite extended 500m to the south and 100m to the north of the original discovery
 - o **BCRC034** targeted a ~100m strike extension to the north of Harry and returned:
 - 12m @ 1.65% Li₂O from 90m (est. true width)
 - o **BCRC033** targeted a lateral extension to the north-east of Harry and returned:
 - 11m@ 1.32% Li₂O from 54m (est. true width), including
 - 2m @ 2.26% Li₂O from 54m
 - o **BCRC021** targeted a **500m strike extension** to the **south** and returned:
 - 9m @ 1.12% Li₂O from 33m (est. true width);
- Lithium mineralization at Bolt Cutter Central has a strike of at least 900m and remains open in multiple directions; drilling is ongoing
- Assay results are expected to be delivered continuously for the next ~3 months
- Bolt Cutter Central is ~10km west of Wildcat's 74.1Mt Tabba Tabba Project
- Wildcat remains well funded with \$51.2M as at 30 September 2025.

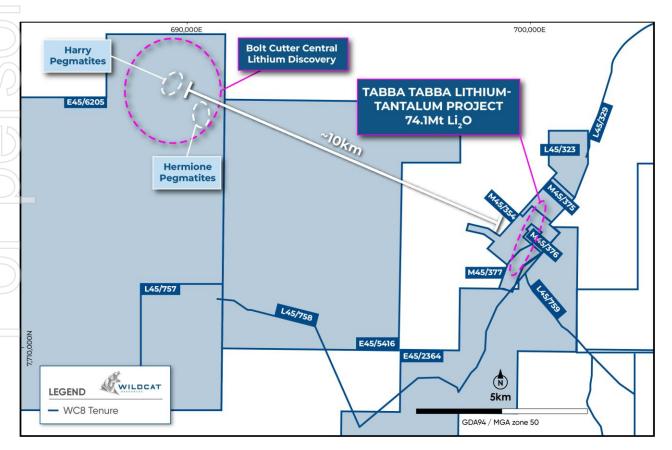


Figure 1: Location of the Bolt Cutter Central lithium discovery relative to Wildcat's Tabba Tabba Project

Wildcat's Geology Manager Torrin Rowe said: "Our geology team opted to drill BCRC021 early in the program, targeting roughly half a kilometre south of the Harry pegmatite swarm to understand the spatial spread of the anomalous pegmatite system. With the results from BCRC021 now returned, the known mineralised strike length of the Harry pegmatite swarm has nearly tripled and it remains open in multiple directions.

With the extent of the Bolt Cutter Central lithium pegmatite system continuing to grow, we look forward to further extensions from the ongoing drill program."

Australian lithium explorer and developer Wildcat Resources Limited (ASX: WC8) ("Wildcat" or the "Company") is pleased to announce assay results from RC drilling at its Bolt Cutter Central lithium discovery¹, located ~10km west of its Tabba Tabba Project, WA (Figure 1, 2 and 4).

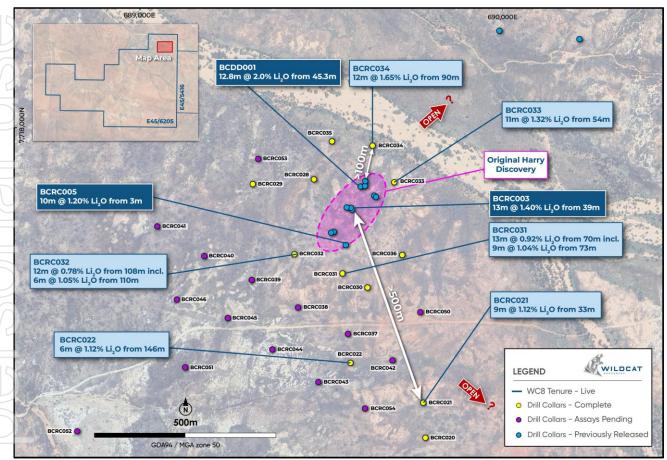


Figure 2: Plan view map at Harry showing best intercepts. The Harry pegmatites remain open in all directions with further extensions planned as part of the current drilling program.

¹ WC8 ASX announcement dated 4 August 2025.

Bolt Cutter Central

Bolt Cutter Central is ~10km west of Wildcat's **74.1Mt Tabba Tabba Project** (Figure 1). The project is located on Exploration Licences E45/6205 and E45/5416, both 100%-owned Wildcat tenements, with a 100%-owned Miscellaneous Licence (L45/757) for infrastructure just 5km south of the area of interest. The targeted area is generally flat, with variable shallow cover and pegmatites are hosted entirely within a granodiorite unit (Figure 3).

Previously released² results include:

- o **20.0m @ 1.7% Li₂O** from 43.0m (BCRC002) (12.0m est. true width)
- o 12.8m @ 2.0% Li₂O from 45.3m (BCDD001) (est. true width)
- o 13.0m @ 1.4% Li₂O from 39.0m (BCRC003) (est. true width)
- 13.0m @ 1.3% Li₂O from 40.0m (BCRC007) (est. true width)
- o 12.9m @ 1.6% Li2O from 86.9m (BCDD002) (7.6m est. true width)
- o 10.0m @ 1.2% Li₂O from 3.0m (BCRC005) (est. true width)
- o 6.0m@1.5% Li₂O from 15.0m (BCRC008) (est. true width)
- o 8.0m @ 1.3% Li₂O from 31.0m (BCRC006) (est. true width)
- 4.0m @ 2.2% Li₂O from 57.0m (BCRC008) (est. true width)
- o 8.0m @ 1.1% Li₂O from 67.0m (BCRC008) (est. true width)
- 5.0m @ 2.31% Li₂O from 6.0m (BCRC001) (est. true width).

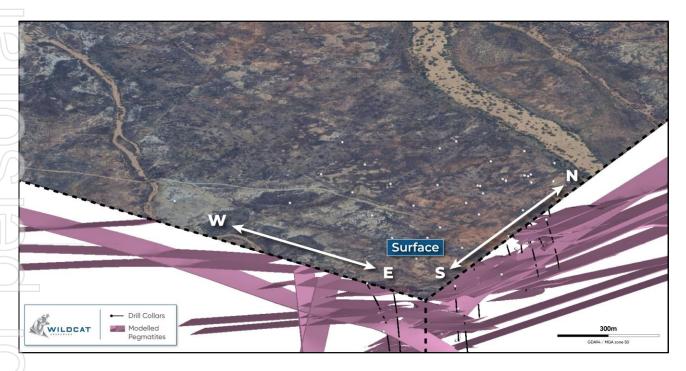


Figure 3: The evolving geological model at Bolt Cutter Central, looking down and to the north-west. Pink shapes represent early geological modelling of the evolving pegmatite swarm, with a dominant north-east trend.

² WC8 ASX announcements dated 4 August 2025, 10 September 2025 and 15 September 2025

Bolt Cutter Central - 10,000m RC Drilling Program

A 10,000m reverse circulation (RC) drilling program is currently underway at Bolt Cutter Central, targeting the strike and dip extents of the Harry pegmatites, as well as testing several interpreted pegmatite trends across the area, including Hermione.

Initial reconnaissance drilling successfully intercepted pegmatites outside the main Harry zone, with hole BCRC021, located more than 500m south of the initial Harry discovery, returning a best result of **9m@1.12%Li₂O from 33m**.

Following these encouraging results which confirm the potential scale of the Harry pegmatite swarm, the team adopted a systematic approach to extensional drilling. Results continue to confirm the presence of numerous **stacked pegmatites**, striking northeast–southwest and dipping shallowly to the northwest.

The ongoing drill program has been designed on a 150m grid to define the geometry and continuity of the Harry pegmatites. The pegmatite system at Bolt Cutter Central is extensive, with a proven strike length of **at least 900m**, which remains open in all directions.

Notably, the northernmost drill holes at Harry returned 11m @ 1.32% Li₂O from 54m (BCRC033) and 12m @ 1.65% Li₂O from 90m (BCRC034), highlighting the potential for further extensions to the north and encouraging continued drilling in this area (Figure 4).

Best intercepts include:

- 12m@ 1.65% Li₂O from 90m (est. true width) (BCRC034)
- <u>11m@ 1.32% Li₂O</u> from 54m (est. true width) (BCRC033) including:
 - o 2m @ 2.26% Li₂O from 54m (est. true width)
- 9m@1.08% Li2O from 90m (est. true width) (BCRC033) including:
 - o 2m @ 2.61% Li₂O from 92m (est. true width)
- 6m @ 1.04% Li₂O from 192m (est. true width) (BCRC033)
- 9m@1.12 Li₂O from 33m (est. true width) (BCRC021)
- 6m @ 1.12 Li₂O from 146m (est. true width) (BCRC022)

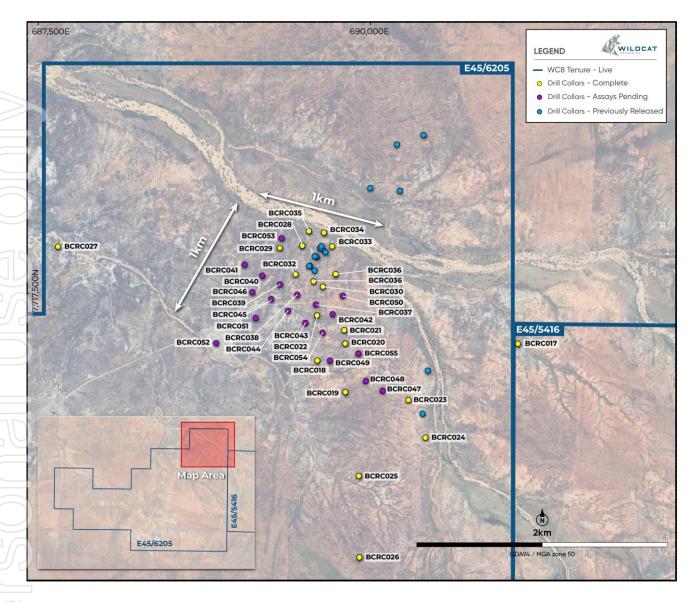


Figure 4: Plan view of Bolt Cutter Central showing holes completed and holes with assays pending

Next steps at Bolt Cutter Central:

- Complete the ~10,000m RC program
- Receive and interpret assays
- Finalise planning of further RC and diamond exploration drilling to commence in early 2026
- Initiate the first phase of long lead-time studies at Bolt Cutter Central.

Mount Adrah Gold Project, NSW - Diamond Drilling

Seven diamond holes were planned for completion at Wildcat's Mount Adrah Gold Project in NSW to continue testing of geophysical and structural targets for intrusive-related or reef-style gold mineralisation. Due to adverse weather conditions leading to project delays, only five diamond holes and one re-drill were completed (Figure 5) and all results have now been received.

Holes WCDD0002 and WCDD0003 were targeting lode-style gold veins to the east of the Hobbes Pipe Resource (770koz @ 1.1g/t)³ to investigate existing high-grade intercepts and holes WCDD0001, WCDD0004 and WCDD0007 were drilled targeting geophysical anomalies. Narrow but high-grade, reef style mineralisation was intersected with best results of:

- 0.5m @ 22.9g/t Au from 263.4m (est. true width) (WCDD0003)
- 0.5m @ 6.93g/t Au from 346m (est. true width) (WCDD0003)
- 0.3m @ 5.92g/t Au from 461.4m (est. true width) (WCDD0002).

³ FRN ASX Announcement dated 23 Aug 2019

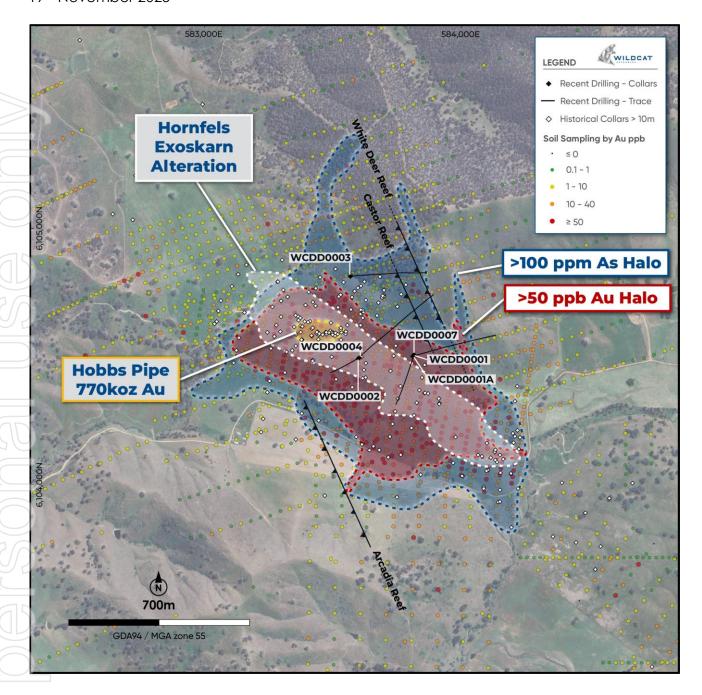


Figure 5: Drill collar map for recently completed holes at Mt Adrah, NSW

Antimony:

Selective multi-element assays confirmed the presence **of high-grade antimony** in WCDD0002. Work is ongoing at Mt Adrah to explore how extensive this antimony anomaly is, both within the drillhole and across the camp in general. Best results include:

- 0.7m @ 10.6% Sb from 195.4 (est. true width) (WCDD0002)
 - o Coincident with 2.37g/t Au
- 0.65m @ 2.27% Sb from 248m (est. true width) (WCDD0002)
 - o Coincident with 0.2g/t Au
- **0.7m @ 3.38% Sb** from 262m (est. true width) (WCDD0002)
 - o Coincident with 0.17g/t Au.

This announcement has been authorised by the Board of Directors of the Company.

- ENDS -

FOR FURTHER INFORMATION, PLEASE CONTACT:

AJ Saverimutto

Managing Director

Tel: +61 (8) 6555 2950

<u>info@wildcatresources.com.au</u>

Matthew Banks

Executive Director

Tel: +61 (8) 6555 2950

<u>info@wildcatresources.com.au</u>

Nathan Ryan

NWR Communications

Tel: +61 420 582 887

nathan.ryan@

nwrcommunications.com.au

About Tabba Tabba

The Tabba Tabba Project (**Project**) (Figure 6) is an advanced lithium and tantalum development project that is located on granted Mining Leases just 80km by road from Port Hedland, Western Australia. It is nearby some of the world's largest hard-rock lithium mines (47km by road from the 446Mt Pilgangoora Project¹ and 87km by road to the 259Mt Wodgina Project²).

The Project was one of four significant LCT pegmatite projects in WA, previously owned by Sons of Gwalia. The others were Greenbushes, Pilgangoora and Wodgina which are now Tier-1 hard-rock lithium mines. Tabba Tabba is the last of these assets to be explored and developed for lithium mineralisation.

The Tabba Tabba Project contains a maiden JORC (2012) Mineral Resource Estimate ("**MRE**") of 74.1Mt @ 1.0% Li₂O (Table 2)³, which includes a maiden JORC (2012) Probable Ore Reserve estimate of 46.3Mt @ 0.99 Li₂O (Table 3)⁴.

Table 1: Tabba Tabba Lithium JORC (2012) MRE as at 28 November 2024 (using 0.45% Li₂O cut-off).

Category	Tonnes (Mt)	Li₂O (%)	Ta₂O₅ (ppm)	Fe₂O₃ (%)	Li ₂ O (T)	Ta ₂ O ₅ (lb)
Indicated	70.0	1.01	53	0.64	709,100	9,948,600
Inferred	4.1	0.76	65	0.88	31,100	724,700
Total	74.1	1.00	54	0.65	740,200	10,673,300

Notes:

Table 2 Tabba Tabba Project Maiden Ore Reserve of 46.3Mt at 0.99%.

Source	Classification	Tonnes (Mt)	Li ₂ O grade (%)	Ta₂O₅ (ppm)	Fe₂O₃ (%)	Li₂O (kt)
On an mil	Proved	-	-	-	-	-
Open pit	Probable	36.8	1.00	62.4	1.06	366
llo doversous d	Proved	-	-	-	-	-
Underground	Probable	9.5	0.94	51.9	0.86	90
Total	Probable	46.3	0.99	60.2	1.02	456

The Ore Reserve estimate (Table 3) is based on the November 2024 MRE (Table 2), but does not include the Chewy, Han or Hutt pegmatites, which collectively account for approximately 15% of the MRE.

https://wcsecure.weblink.com.au/clients/wildcatresources/headline.aspx?headlineid=61240199

https://wcsecure.weblink.com.au/clients/wildcatresources/headline.aspx?headlineid=61275222

⁻Reported above a Li₂O cut-off grade of 0.45%. Appropriate rounding applied.

¹ Pilbara Minerals Ltd ASX announcement 11 June 2025: https://lpls.irmau.com/site/pdf/5fb09df7-4e59-4c10-ab9e-69207cbc8620/Pilgangoora-Mineral-Resource-Update.pdf?Platform=ListPage

² Mineral Resources Ltd ASX announcement 23 October 2018: http://clients3.weblink.com.au/pdf/MIN/02037855.pdf

³ Tabba Tabba maiden resource

⁴ Tabba Tabba Pre-Feasibility announcement 29 July 2025:

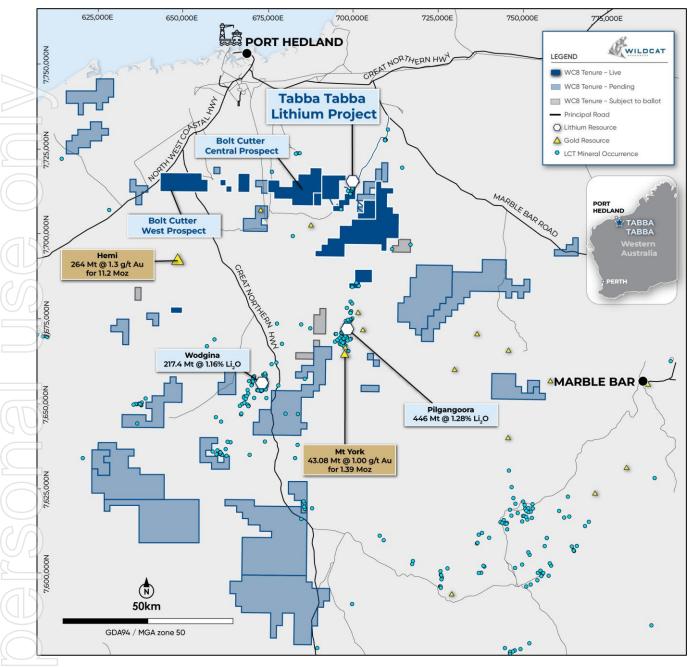


Figure 6: Location of the Tabba Tabba Project. Pending Miscellaneous Licences are not shown.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Wildcat Resources Limited's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Wildcat Resources Limited believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties, and no assurance can be given that actual results will be consistent with these forward-looking statements.

Competent Person's Statement

The information in this announcement that relates to Exploration Results for Tabba Tabba Project is based on, and fairly represents, information compiled by Mr Torrin Rowe (Head of Geology and Exploration at Wildcat Resources Limited), a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG). Mr Rowe is a fulltime employee and shareholder of Wildcat Resources Limited. Mr Rowe has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Rowe consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

No New Information or Data: This document contains exploration results, historic exploration results and Mineral Resource Estimates as originally reported in fuller context in Wildcat Resources Limited ASX Announcements - as published on the Company's website. Wildcat confirms that it is not aware of any new information or data that materially affects the exploration results, metallurgical results and Mineral Resource Estimates information included in the relevant market announcements. Wildcat confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from those market announcements.

Appendix 1

Table 3: Bolt Cutter Central significant intercepts - Intercepts reported using geological interpretation to define appropriate intercept widths against geology and grade. Grades are rounded to two decimal places. NSI stands for No Significant Intercept returned. Intercepts are reported with a minimum cutoff grade of 0.3% Li_2O and no more than 2m of internal waste (waste is defined as 'not pegmatite' and/or below cutoff grade).

Hole ID	From (m)	To (m)	Intercept Length (m)	Est True Width (m)	Grade (Li₂O%)	Pros
BCRC017	()	,	g ()	NSI	J. G. G. C. (2.2070)	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
BCRC018	17	19	2	2	0.43	На
and:	91	92	1	1	0.67	Но
and:	116	118	2	2	0.91	Нс
BCRC019	7	8	1	1	0.59	Нс
and:	20	22	2	2	0.43	Но
BCRC020	10	12	2	2	0.83	Нс
and:	23	27	4	4	0.79	Нс
and:	32	33	1	1	1.75	Но
and:	60	61	1	1	0.39	Но
and:	79	80	1	1	0.64	Но
and:	95	96	1	1	0.74	Но
BCRC021	14	17	3	3	1.40	Нс
and:	33	42	9	9	1.12	Нс
and:	51	52	1	1	1.75	Нс
and:	57	60	3	3	1.12	Нс
and:	82	83	1	1	0.49	Нс
and:	101	102	1	1	0.37	Но
BCRC022	46	48	2	2	1.12	Но
and:	146	152	6	6	1.12	Но
BCRC023				NSI		
]						
BCRC024	6	9	3	3	0.67	Herm
000000	60	65	5	5	0.49	Hern
BCRC025	00		ŭ		0	

Hole ID	From (m)	To (m)	Intercept Length (m)	Est True Width (m)	Grade (Li₂O%)	Prospec
and:	125	126	1	1	0.53	Hermione
	<u> </u>					
BCRC026				NSI		
B D						
BCRC027				NSI		
000000						
BCRC028				NSI		
BCRC029	24	27	3	3	1.66	Harn
and:	91	92	1	1	0.55	Harry Harry
and:	214	217	3	3	1.22	Harry
and:	253	255	2	2	0.97	Harry
unu.	255	200	2		0.77	ridity
BCRC030	79	81	2	2	0.38	Harry
and:	102	105	3	3	0.71	Harry
<u> </u>	102	100	ı	<u> </u>	0.71	riarry
BCRC031	53	54	1	1	0.52	Harry
and:	70	83	13	13	0.92	Harry
and:	120	122	2	2	1.25	Harry
BCRC032	22	24	2	2	0.56	Harry
and:	108	120	12	12	0.78	Harry
BCRC033	21	24	3	3	0.43	Harry
and:	54	65	11	11	1.32	Harry
including:	54	56	2	2	2.26	Harry
and:	82	87	5	5	0.45	Harry
and:	90	99	9	9	1.08	Harry
including:	92	94	2	2	2.61	Harry
and:	150	154	4	4	0.54	Harry
and:	192	198	6	6	1.04	Harry
			1		1	
BCRC034	53	55	2	2	0.89	Harry
Including:	54	55	1	1	1.20	Harry
and:	90	102	12	12	1.65	Harry
BCRC035	98	101	3	3	1.19	Harry
and:	180	182	2	2	0.67	Harry
and:	206	207	1	1	0.48	Harry
and:	216	218	2	2	0.97	Harry

Hole ID	From (m)	To (m)	Intercept Length (m)	Est True Width (m)	Grade (Li₂O%)	Prospect
BCRC036	86	90	4	4	1.28	Harry
and:	107	110	3	3	1.05	Harry
and:	129	133	4	4	1.07	Harry

Table 4 Mt Adrah Significant Intercepts Table, Au g/t: Grades are rounded to two decimal places. Intercepts are reported with a minimum cutoff grade of 0.5 g/t Au and no more than 2m of internal waste (waste is defined as below cutoff grade).

Hole ID	From (m)	To (m)	Intercept Length (m)	Est True Width (m)	Grade (Au ppm)	Prospect	
WCDD0001A	241	243	2	2	0.96		
WCDD0002	22.7	28	5.3	5.3	0.53		
and:	67	71	4	4	0.63		
and:	83	85	2	2	0.96		
and:	99	102.1	3.1	3.1	0.58		
and:	142	158	16	16	0.59		
and:	195.4	200	4.6	4.6	0.56		
and:	218	220	2	2	1.3		
and:	457	462.1	5.1	5.1	0.73		
including:	461.4	461.7	0.3	0.3	5.92		
WCDD0003	58.6	62.6	4	4	0.59		
and:	255.8	263.9	8.1	8.1	1.63		
including:	263.4	263.9	0.5	0.5	22.9		
and:	346	346.5	0.5	0.5	6.93		
WCDD0004	15.4	18.8	3.4	3.4	0.9		
and:	65	67	2	2	0.94		
WCDD0007	101	104	3	3	0.58		
and:	144	147.5	3.5	3.5	0.53		
and:	174	176	2	2	2.29		

Table 5 Mt Adrah Significant Intercepts Table, Sb %: Grades are rounded to two decimal places. Intercepts are reported with a minimum cutoff grade of 0.1% Sb and no more than < 1m of internal waste (waste is defined as below cutoff grade).

Hole ID	From (m)	To (m)	Sample ID	Intercept Length (m)	Sb %
WCDD0002	195.4	196.1	MADD04850	0.7	10.6
WCDD0002	248	248.65	MADD04908	0.65	2.27
WCDD0002	262	262.7	MADD04926	0.7	3.38

Table 6 Bolt Cutter Central drill hole collar table – MGA94 Zone 50 – Only includes new collars or collars with changing assay status.

	Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth	Azimuth	Dip	Assay Status	Prospect	Comments
	BCRC017	RC	691063	7717123	83	138	90	-81	Received	Harry	Complete
	BCRC018	RC	689577	7717024	77	138	86	-55	Received	Harry	Complete
	BCRC019	RC	689782	7716792	80	144	94	-80	Received	Harry & Hermione	Complete
	BCRC020	RC	689787	7717144	79	138	87	-81	Received	Harry	Complete
	BCRC021	RC	689781	7717241	81	120	85	-81	Received	Harry	Complete
	BCRC022	RC	689580	7717351	78	162	88	-80	Received	Harry	Complete
6	BCRC023	RC	690251	7716727	80	144	140	-59	Received	Hermione	Complete
	BCRC024	RC	690373	7716452	83	126	141	-62	Received	Hermione	Complete
	BCRC025	RC	689872	7716182	83	144	139	-62	Received	Hermione	Complete
	BCRC026	RC	689867	7715591	83	156	87	-59	Received	Hermione	Complete
	BCRC027	RC	687657	7717880	70	144	89	-54	Received	Harry	Complete
	BCRC028	RC	689479	7717858	83	132	121	-81	Received	Harry	Complete
	BCRC029	RC	689310	7717845	78	265	119	-81	Received	Harry	Complete
	BCRC030	RC	689627	7717559	75	194	120	-71	Received	Harry	Complete
90	BCRC031	RC	689558	7717598	80	138	118	-81	Received	Harry	Complete
	BCRC032	RC	689425	7717651	80	132	119	-82	Received	Harry	Complete
	BCRC033	RC	689701	7717850	80	244	31	-72	Received	Harry	Complete
	BCRC034	RC	689641	7717951	80	168	31	-80	Received	Harry	Complete
CC	BCRC035	RC	689529	7717963	80	288	139	-81	Received	Harry	Complete
	BCRC036	RC	689723	7717649	80	162	120	-80	Received	Harry	Complete
	BCRC037	RC	689573	7717431	80	108	115	-82	Pending	Harry	Complete
	BCRC038	RC	689435	7717504	80	156	120	-80	Pending	Harry	Complete
	BCRC039	RC	689307	7717580	80	198	120	-70	Pending	Harry	Complete
	BCRC040	RC	689176	7717646	80	222	120	-79	Pending	Harry	Complete
	BCRC041	RC	689046	7717728	80	204	127	-80	Pending	Harry	Complete
	BCRC042	RC	689696	7717358	80	174	120	-80	Pending	Harry	Complete
	BCRC043	RC	689491	7717298	60	180	121	-79	Pending	Harry	Complete
	BCRC044	RC	689364	7717388	76	174	123	-80	Pending	Harry	Complete
	BCRC045	RC	689241	7717475	78	174	119	-81	Pending	Harry	Complete
	BCRC046	RC	689100	7717526	77	156	121	-81	Pending	Harry	Complete
	BCRC047	RC	690059	7716798	80	204	119	-82	Pending	Hermione	Complete
	BCRC048	RC	689935	7716870	80	180	115	-81	Pending	Harry & Hermione	Complete
	BCRC049	RC	689671	7717022	80	180	121	-66	Pending	Harry	Complete
	BCRC050	RC	689773	7717491	80	176	121	-81	Pending	Harry	Complete
	BCRC051	RC	689119	7717325	80	168	119	-80	Pending	Harry	Complete

ASX Announcement 19th November 2025

Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth	Azimuth	Dip	Assay Status	Prospect	Comments
BCRC052	RC	688825	7717157	80	204	117	-81	Pending	Harry	Complete
BCRC053	RC	689325	7717911	80	156	119	-60	Pending	Harry	Complete
BCRC054	RC	689621	7717225	80	168	118	-81	Pending	Harry	Complete
BCRC055	RC	689883	7717070	80	200	120	-80	Pending	Harry	Complete

	BCRC055	RC	689883	7717070	80	200	120	-80	Pending	Harry	Complet
	Table 7 Mt	Adrah	drill hole co	ollar table	– MGA9	94 Zone 55					
	Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth	Azimuth	Dip	Assay Status	Prospect	Comme
710	WCDD0001	DD	583817	6104498	364	20.9	74	-55	Received	Hobbs Pipe	Comple
	WCDD0001A	DD	583817	6104498	364	545.5	71	-55	Received	Hobbs Pipe	Comple
	WCDD0002	DD	583605	6104489	369	600.5	44	-55	Received	Hobbs Pipe	Comple
90	WCDD0003	DD	583575	6104808	387	477.6	81	-55	Received	Hobbs Pipe	Comple
	WCDD0004	DD	583610	6104493	369	210.6	241	-55	Received	Hobbs Pipe	Comple
	WCDD0007	DD	583821	6104504	364	297.5	200	-56	Received	Hobbs Pipe	Comple

Appendix 2

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Criteria	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Bolt Cutter Central Reverse circulation completed by Hagstrom Drilling. All RC drilling samples were collected as 1m composites, targeted 3-5kg sub-sample was collected for every 1m interval using a static cone splitter with the sub-sample placed into calico sample bags and the bulk reject placed in rows on the ground. Pegmatite intervals were assessed visually for LCT mineralisation by the rig geologist assisted by tools such as ultraviolet light and LIBS analyser. All samples with pegmatite and adjacent wall rock samples were sent to ALS laboratories in Perth for chemical analysis. The entire 3kg sub-sample was pulverised in a chrome steel bowl which was split and an aliquot obtained for a 50gm charge assay. LCT mineralisation was assessed using the MS91-PKG package which uses sodium peroxide fusion followed by dissolution and analysis with ICP-AES and ICP-MS. Additional multielement analyses (48-element suite) using 4-Acid digest ICP-MS were requested at the rig geologist's discretion to aid geological interpretation. Mt Adrah Diamond drilling completed by DDH1 Drilling Diamond core samples were collected in plastic core trays, sequence checked, metre marked and oriented using the base of core orientation line. It was then cut longitudinally down the core axis (parallel to the orientation line where possible) using an Almonte core saw and half the core sampled into calico bags using a minimum interval of 30cm and a maximum interval of 1.3m. Samples were on average >3kg and were prepped at ALS in Orange using fine crush CRU-3, then rotary split and pulverised using PUL-23a. Samples were assayed by ALS Brisbane for fire assay using 30gm Au-AA25. Multielement data were collected at the core logging geologist's discretion and assayed for 48 elements using ME-MS61 from the primary sample pulp. Some PGE analysis was completed on selected pyrrhotite-rich samples using 30 g PGM-ICP23

Criteria	ia	Criteria	Commentary
Drilling	g	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Bolt Cutter Central Reverse circulation with orientation surveys taken every 30m and an end of hole orientation using an Imdex gyro tool. A continuous survey in and out of hole was completed at drillhole completion. Mt Adrah HQ Drilling completed with a DDH1 Sandvik DE710 track-mounted diamond drill rig Down hole surveys were completed every 30m and at end of hole using a ChampGyro downhole gyroscope
Drill sa recove		 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Bolt Cutter Central RC sample recovery (poor/good) and moisture content (dry/wet) was recorded by the rig geologist in metre intervals based on visual estimation. The static cone splitter (Ox Engineering drill sampling system) on the RC rig was regularly checked by the rig geologist as part of QA/QC procedures. Sub-sample weights were measured and recorded by the laboratory. No analysis of sample recovery versus grade has been made at this time. Mt Adrah Diamond drilling is orientated, meter marked and samples are recorded based on geological parameters. Core recovery is calculated based on core block depths and physical measurements. No analysis of sample recovery versus grade has been made at this time
Loggin	ng	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All RC samples were qualitatively logged by the rig geologist for lithology, alteration, mineralisation, structure, weathering and more. Data was then captured by Ocris and imported into a database. Pegmatite intervals were assessed visually for lithium mineralisation by the rig geologist assisted by tools such as ultraviolet light and a LIBS analyser. All chip trays were photographed in natural light and compiled using Sequent Ltd's Imago solution. UV photography studies are ongoing. Spodumene percentage estimates are interpreted by trained geologists with experience in spodumene deposits. Geologists use a combination of LIBs analyser, UV fluorescence and other geological logging tools (mineral cleavage, experience etc.) to log this mineral abundance. However, visual estimates of mineralogy or material abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths, mineralogy, and grade of the visible mineralisation reported.

	Criteria	Cri	iteria	Со	mmentary
				Mt	Adrah
				•	All diamond core was qualitatively logged by the rig geologist for lithology, alteration, mineralisation, structure, weathering and more. Data was then captured by Ocris and imported into a database. All of the core trays were photographed
	Sub-sampling	•	If core, whether cut or sawn and whether quarter, half or all core taken.	Bol	t Cutter Central
	techniques and sample preparation	•	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	•	3kg to 5kg sub-samples of RC chips were collected from the rig-mounted static cone splitter into uniquely numbered calico bags for each 1m interval.
	preparation	•	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	•	Sample sizes are appropriate to the crystal size of the material being sampled with a targeted 85% passing 75 μm .
		•	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	•	Sub-sample preparation was by ALS laboratories using industry standard and appropriate preparation techniques for the assay methods in use.
	5)	•	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	•	Internal laboratory standards were used, and certified OREAS standards and certified blank material were inserted into the sample stream at regular intervals by the rig geologist.
		•	Whether sample sizes are appropriate to the grain size of the material being sampled.	•	Duplicates were obtained from using a duplicate outlet direct from the cyclone in the RC at the site geologist's discretion in zones containing visual indications of mineralised pegmatite.
9				Mt	Adrah
	Ĭ			•	Diamond core is drilled with HQ diameter and is cut longitudinally down the core axis (along the orientation line where possible) with an Almonte core saw and half core samples between 30cm and 1.3m in length are sampled and collected in numbered calico bags.
				•	Standards were inserted at approximately 1 in 20 samples and blanks were inserted at approximately 1 in 50 samples. Both coarse crushed and laboratory duplicates were used.
7				•	Sample sizes are appropriate to the crystal size of the material being sampled with a targeted 85% passing 75 µm.
				•	Sub-sample preparation was by ALS laboratories using industry standard and appropriate preparation techniques for the assay methods in use.
2/				•	Internal laboratory standards were used, and certified OREAS standards and certified blank material were inserted into the sample stream at regular intervals by the rig geologist.
\cup	Quality of	•	The nature, quality and appropriateness of the assaying and laboratory	Bol	t Cutter Central
	assay data and laboratory tests	•	procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and	•	The RC samples were analysed with MS91-PKG at ALS using sodium peroxide fusion ICP-AES/MS for an LCT suite, fire assay for gold, and 4-acid digest ICP-AES and ICP-MS for multi-element analysis.
Ų.			model, reading times, calibrations factors applied and their derivation, etc.	•	Appropriate OREAS standards were inserted at regular intervals.

Criteria	Criteria	Commentary
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Blanks were inserted at regular intervals during sampling. Certified reference material standards of varying lithium grades have been used at a rate not less than 1 per 25 samples. Check sampling via an umpire lab has not yet been completed. Mt Adrah Standards were inserted at approximately 1 in 20 samples and blanks were inserted
		 at approximately 1 in 50 samples. Laboratory duplicates were inserted at approximately 1 in 20 samples. Analysis of QAQC data has shown acceptable levels of accuracy and precision. Check sampling via an umpire lab has not yet been completed.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No independent verification of significant intersections has been made. Significant intersections were produced by an automated export from the database managers and checked by a Senior Geologist/Exploration Manager and the Geology Manager. No twinned holes have been drilled Industry standard procedures guiding data collection, collation, verification, and storage were followed. No adjustment has been made to assay data as reported by the laboratory other than calculation of Li₂O% from Li ppm using a 2.153 conversion factor.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Bolt Cutter Central Location of drill holes were recorded by tablet GPS. Locational accuracy is +-1m in the XY and +-5m in the Z orientation. Survey priority is then replaced with a differential GPS (DGPS) on a campaign basis, by Wildcat staff with a company owned DGPS. All current data is in MGA94 (Zone 50). Topological control is via GPS and DEM calculated from a drone photographic survey. The LiDAR has generated a topographic surface accurate to <20cm. Downhole surveys collected using an Imdex Gyro tool Mt Adrah Location of drill holes were recorded by tablet GPS. Locational accuracy is +-1m in the XY and +-5m in the Z orientation. Survey priority is then replaced with a differential GPS (DGPS) on a campaign basis, by Wildcat staff with a company owned DGPS. All current data is in MGA94 (Zone 50). Downhole surveys collected using a ChampGyro north-seeking gyroscope

Criteria	Criteria	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole spacing varies from 50m to ~600m apart with varying levels of infill. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Bolt Cutter Central No fabric orientation data has been obtained from the RC holes. True width has been estimated from a 3D geological model built using Leapfrog software and holes are designed to intercept at true width. True width has not been estimated for pegmatites of unknown geometry (early discoveries) and instead downhole widths are provided. The drilling orientation and intersection angles are deemed appropriate. Mt Adrah The orientation of sampling is interpreted to be perpendicular to the orientation of interpreted mineralisation bodies. Assay results are therefore interpreted to be true widths.
Sample security	The measures taken to ensure sample security.	All samples were packaged into bulka bags and strapped securely to pallets and delivered by Wildcat staff to freight depots in Port Hedland. The samples were transported from Port Hedland to Perth ALS laboratories via Toll or Centurian freight contractors. Any umpire assays were transported as pulps or coarse rejects by ALS to Intertek (genalysis). Mt Adrah All samples were packaged into bulka bags, strapped securely to pallets and delivered by Land Transport Wagga Wagga to ALS' Orange facility.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Several internal audits have been completed by the Company's technical team as part of ongoing data validation. These include SQL queries, field validation, general data integration and photo analysis. No major errors have been identified.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Wildcat Resources Limited Ltd owns 100% of the Tabba Tabba Project Mining Leases (M45/354; M45/375; M45/376 and M45/377) and E45/6205 (Bolt Cutter Central). Royalties and material issues are set out in an agreement between Wildcat and GAM for Wildcat to acquire the Tabba Tabba Project as announced on 17th May 2023: https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf No known impediments. EL6372 is 100% owned by Wildcat Resource Ltd. Tenure is current and in good standing and there are no extraordinary impediments to obtaining a licence to operate in the area. All regulatory approvals are in place.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 At Tabba Tabba Goldrim Mining Ltd and Pancontinental Mining Ltd ("PanCon") completed 24 OHP, 59 RC and 3 DD holes between 1984 and 1991. GAM drilling of 29 RC holes in 2013. Pilbara Minerals Ltd (PLS) completed 5 diamond holes in November 2013. Historic drilling targeted tantalum mineralisation. Drilling into the vast majority of the lithium resources has been competed by Wildcat since mid-2023. At Bolt Cutter Central Bolt Cutter Central had not seen any meaningful exploration. At Mt Adrah The Hobbs deposit was discovered by Getty Oil Development Company Pty Ltd in 1980. Hobbs and Horsborough (1983) estimated that the deposit contained 12.8 Mt at 1.32 g/t gold for 168,960 ounces of gold (pre-JORC). During 2005, a JORC 2004 compliant Mineral Resource Estimate was undertaken by Rankin of SMC Consultants (2005) for Golden Cross Resources Limited at 0.5g/t cut-off, defining approximately 239,000 ounces of gold to a depth of 120 metres. Gossan Hill undertook a series of exploration programs incorporating airborne magnetics and RAB, airtrack, RC, and diamond drilling that culminated in an upgraded JORC 2012 compliant resource of 650,0000 ounces of gold, comprising 101,000 oz Au Measured, 303,000 oz Au Indicated, and 246,000 oz Au Inferred at 0.75g/t Au cut-off grade. In June 2013, Sovereign Gold undertook a diamond drill program to test the depth potential of the Hobbs Pipe. The first hole (GHD001), drilled to a recorded depth of 1,029.6m, confirmed reasonably continuous gold

Criteria	JORC Code explanation	Commentary
		mineralisation over 886 metres downhole from surface. In December 2013 Sovereign Gold announced an updated JORC 2012 compliant Mineral Resource Estimate of 20.5Mt at 1.1g/t, for 765,900 oz of contained gold.
Geology	Deposit type, geological setting and style of mineralisation.	 The Bolt Cutter Central pegmatites are interpreted to be forming a NW trending swarm dipping shallowly (30°) to the west. They are hosted by a granodiorite unit They appear to average ~2-5m in width and are stacked in semi-consistent intervals While geological observations should not replace detailed lab analysis for definitive mineralogy, geologists have interpreted spodumene within the pegmatites at Bolt Cutter Central. Hobbs Pipe is an intrusion related gold deposit (IRGS) hosted by a monzodiorite that intrudes mafic rocks, migmatites and metasedimentary rocks. Proximal high grade lode-style gold is associated with the IRGS system.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer to tables in the report and notes attached thereto which provide all relevant details. Previous company announcements available here: https://www.asx.com.au/markets/trade-our-cash-market/announcements.wc8
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 At Bolt Cutter Central: Intercepts are reported with a minimum cutoff grade of 0.3% Li2O and no more than 2m of internal waste (waste is defined as 'not pegmatite' and/or below cutoff grade) At Mt Adrah: Au reported intervals are calculated using ≥ 0.5ppm Au cut-off grade and using a ≤ 2m minimum internal dilution. Sb reported intervals are calculated using ≥ 1000 ppm Sb cut-off grade and using a ≤ 1m minimum internal dilution.

Criteria	JORC Code explanation	Commentary
Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Most pegmatite intervals intercepted have returned assay results >0.3% Li₂O, some are mineralised in totality, others are partially mineralised with localised zones of lithium mineralisation below 0.3%Li₂O. This is expected in fractionated, zoned pegmatite systems. Some zones have mineralisation that averages below 0.1% Li₂O. Holes are planned to intersect perpendicular to modelled mineralisation. Where surface conditions have not allowed optimal collar placement estimated true widths have been calculated and reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See this announcement for appropriate maps
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 The only drillholes the company is aware of are those released in Wildcat ASX announcements A summary of unannounced results for drillholes and their corresponding drillhole details has been included in this announcement (Appendix 1, Table 4). All results have been announced for Mt Adrah drilling
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Everything meaningful and material is disclosed in the body of the report, has been previously announced or is ongoing/incomplete. Geological observations have been factored into modelling and estimation work.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling plans aim to extend the modelled pegmatites and increase the confidence of these zones (e.g. to Exploration Targets and Mineral Resources) and exploration drilling will target potential repeating pegmatites at depth. Further work at Bolt Cutter Central will also detailed mineralogy work to accurately and transparently report on the nature of the lithium mineralisation. Investigate extent of antimony anomaly. Commence early planning on untested gold in soils anomalies.