Mt Ida Lithium & Rubidium MRE Update

Highlights:

Mt Ida Lithium updated Mineral Resource Estimate (MRE) now totalling

14.8 Mt @ 1.21% Li₂O, 170 ppm Ta₂O₅ and 0.42% Rb₂O

- Delta has one of the highest-grade publicly released Rubidium Oxide (Rb₂O) MRE's globally
- Lithium Whole of Ore Flotation (WOF) flowsheet extracts rubidium in the mica pre-float stage with recoveries averaging ~90%
- Rubidium product has the potential to improve the Mt Ida Lithium project economics and add an additional revenue stream
- Rubidium applications are growing globally with placement on the critical minerals list of the United States, Japan and many European countries
- Downstream processing and vertical integration studies are well underway with positive initial results
- Measured classification 0.5Mt de-risking early mining potential
- 7.7Mt now in Measured & Indicated classification at grades of 1.33% Li₂O, 0.45% Rb₂O & 212 ppm Ta₂O₅
- The Mt Ida project is fully permitted for both Open Pit & Underground Mining
- Delta's cash balance circa \$55M with listed investments \$108M¹ (as at 12 November 2025)

Delta Lithium Limited (ASX: DLI) ("Delta" or "the Company") is pleased to provide an update for its 100% owned Mt Ida Lithium Project. The Company recently demerged and ASX-listed its high-grade gold assets into Ballard Mining¹ (ASX:BM1). Delta has been benefitting from additional pegmatite intercepts via Ballard's current ongoing gold drilling program with four (4) rigs on site. The Company has carried out an update on the Mt Ida lithium Mineral Resource (MRE) based on recent lithium intercepts from drilling and also incorporating rubidium results, which were noted as pervasive within the lithium wireframe envelopes. The calculation of a maiden rubidium MRE at Mt Ida, coincident with the existing lithium and tantalum mineralisation illustrates the exciting critical mineral suite at the Mt Ida lithium project.

Ballard's planned gold drilling programs are expected to continue to provide additional incremental data for Delta Lithium which will provide the foundation for future de-risking works and potentially free further increases to resource confidence.

Commenting on the project, Delta Lithium Managing Director, James Croser said;

"This is a very positive milestone for the critical mineral credentials of Mt Ida, with the delineation of a highgrade maiden rubidium resource accompanying the lithium and tantalum. This presents as a worthy target for value-add and co-product revenue generation with little change to the current proposed process flowsheet. We will continue to seek understanding of the global significance of our rubidium in a very opaque market, dominated almost entirely by Chinese producers.

¹ Shares in listed investments include 156M BM1 (subject to escrow), 5M UVA and 500M JAV (subject to escrow)

13 November 2025

Further good news with the lithium MRE update providing an uptick in resource confidence as Delta continues to advance and de-risk the Mt Ida Lithium project at very low cost on the back of the gold drilling by Ballard Mining."

Mt Ida Project

Mt Ida is located approximately 240km north of Kalgoorlie in Western Australia. The Project area resides on granted mining leases and is fully permitted for commencement of open pit and underground mining at the main Sister Sam, Timoni and Sparrow resources. The Project is now experiencing incrementally free exploration via gold drilling activities being completed by Ballard mining (ASX:BM1). Due to the spatial nature of the LCT pegmatites and gold lodes, all BM1 Drilling that intersects pegmatites is also submitted for assaying which is resulting in increased drill density, particularly in the vicinity of Sister Sam and Timoni orebodies, and thus improved resource classification and confidence.

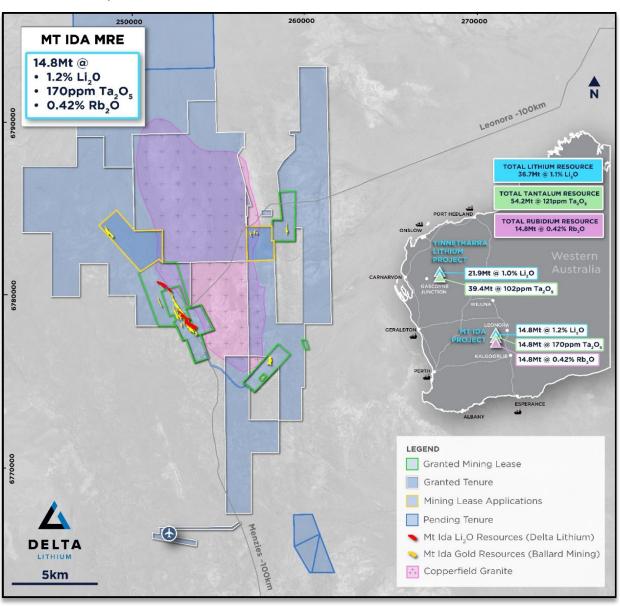


Figure 1: Plan view to Mt Ida Project location with global resources

Mt Ida Mineral Resource Update

The updated independent lithium Mineral Resource Estimate (MRE) was prepared by Snowden Optiro on the Sister Sam, Timoni and Sparrow pegmatites at the Company's wholly owned Mt Ida Lithium Project in the Eastern Goldfields Region of Western Australia – see table 1. This MRE update has been reported under the Reasonable Prospectus for Eventual Economic Extraction (RPEEE) criteria. This only includes material that falls within Open Pit shells & Minable Shape Optimizer's (MSO's), with the economic parameters included in Appendix 1 & 4.

This update comes as a result of previous drilling conducted by Delta and current gold infill drilling by Ballard Mining, which has resulted in the refining of wireframes, reducing volumes in certain areas and extending mineralisation in others but ultimately leading to an increase in overall confidence and tonnes.

The incorporation of this additional drilling when combined with advanced metallurgy, environmental and geotechnical works has allowed for the delineation of a portion of Measured resources – see figure 2. This is a great benefit to the project and speaks to the confidence of the shallow material which would be the initial focus in a mining scenario.

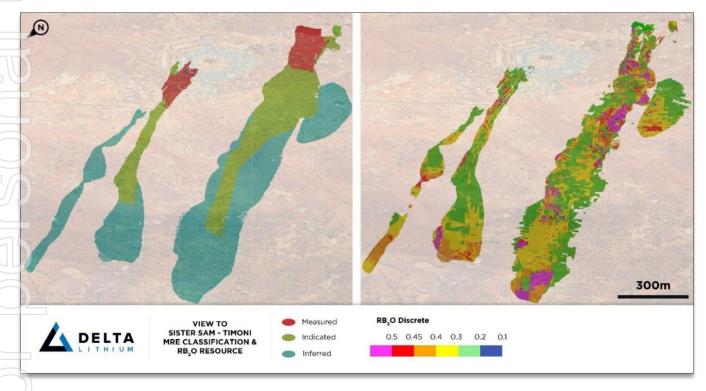


Figure 2: View facing Southeast showing Mt Ida Lithium Resource Classification & unconstrained Rubidium oxide block model

			Mt Ida Lith	ium, Tantal	um & Rubidium Resource November 2025					
						Li ₂ O		Ta ₂ O ₅	Rb₂O	
Area	Resource category		Cut-off grade (Li2O%)	Tonnes (t)	Grade (Li ₂ O%)	Tonnes (Li ₂ O)	Grade (Ta₂O₅ ppm)	Grade (Rb₂O%)		
			Measured		-	_	-	-		
	OP		Indicated	0.3	170,000	0.95	1,600	287	0.42	
			Inferred	0.3	-	-	-	-	-	
			al Resource		170,000	0.95	1,600	287	0.42	
			Measured		-	-	-	-	-	
Sparrow	UG		Indicated	0.5	1,100,000	1.05	11,000	176	0.43	
Sparrow			Inferred		1,100,000	0.93	10,000	141	0.40	
			al Resource		2,200,000	0.99	21,000	159	0.42	
		Measured			-	-	-	-	-	
	All		Indicated		1,300,000	1.03	13,000	191	0.43	
		Inferred		1,100,000	0.93	10,000	141	0.40		
			al Resource		2,400,000	0.99	31,000	168	0.42	
			Measured		270,000	1.30	3,500	268	0.44	
	OP		Indicated	0.3	3,200,000	1.45	46,000	257	0.48	
			Inferred	0.5	82,000	1.07	880	176	0.39	
		Tot	al Resource		3,500,000	1.43	51,000	256	0.47	
	Inferred		Measured		-	-	-	-	-	
			Indicated	0.5	2,000,000	1.38	27,000	166	0.45	
Sister Sam		0.5	4,900,000	1.12	55,000	119	0.38			
		Tot	al Resource		6,900,000	1.19	82,000	133	0.40	
			Measured		270,000	1.30	3,500	268	0.44	
	All		Indicated		5,200,000	1.42	73,000	222	0.47	
			Inferred		5,000,000	1.12	55,000	120	0.38	
		Tot	al Resource		10,400,000	1.27	130,000	175	0.42	
			Measured		220,000	1.09	2,400	240	0.33	
	OP		Indicated	0.3	290,000	1.18	3,400	216	0.41	
			Inferred	0.5	27,000	0.75	210	185	0.25	
		Tot	al Resource		540,000	1.12	6,000	224	0.37	
			Measured		-	-	-	-	-	
Timoni	UG		Indicated	0.5	470,000	1.35	6,400	191	0.33	
11110111			Inferred	0.5	1,000,000	0.99	10,000	137	0.38	
			al Resource		1,500,000	1.11	16,000	154	0.37	
			Measured		220,000	1.09	2,400	240	0.33	
	All		Indicated		760,000	1.29	9,900	200	0.36	
		Inferred			1,000,000	0.98	10,000	138	0.38	
		Tot	al Resource		2,000,000	1.11	22,000	173	0.37	
			Total Mea	sured	490,000	1.20	5,900	256	0.39	
			Total Indi		7,200,000	1.34	96,000	215	0.45	
			Total Inf		7,100,000	1.07	76,000	126	0.38	
		Ī	Tota	ı	14,800,000	1.21	177,000	170	0.42	

Table 1: Mt Ida updated MRE table reported under RPEEE criteria – See Appendix 1 and 4 (Tonnages and grades have been rounded to reflect the relative uncertainty of the estimate. Inconsistencies in the totals are due to rounding)

ASX ANNOUNCEMENT

13 November 2025

The primary aim of this update was to determine contained rubidium while updating the classification based upon the metallurgical feasibility work that has been completed to date. This resulting MRE highlights Mt Ida as a globally significant potential source of rubidium material as well as and the current highest-grade resource according to public data – see figure 3.

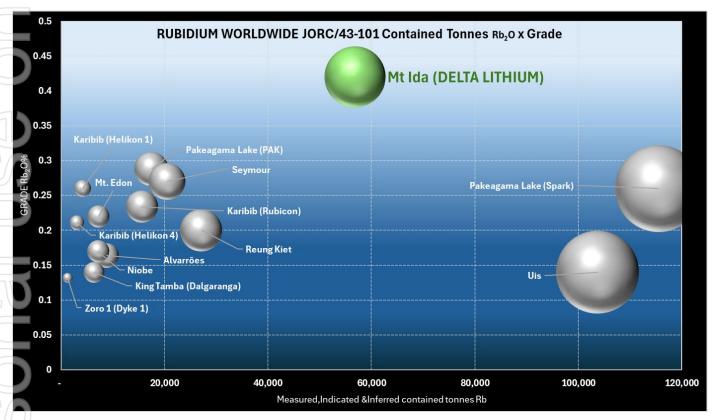


Figure 3: Bubble chart illustrating Mt Ida's Rb Mineral Resource compared with publicly released global Rb Mineral Resources (Inferred, Indicated and Measured reported according to JORC (2012) and NI-43 101). Refer Appendix 3.

Metallurgical Studies

Extensive metallurgical work has been completed on the Mt Ida Lithium Project to date. Feasibility testwork has confirmed that the Mt Ida deposit can produce tantalite, mica & spodumene concentrates via a process flowsheet including spirals and whole 'ore' flotation (WOF). Figure 4 illustrates the Mt Ida flowsheet and staged separation of spodumene, mica and tantalite concentrates.

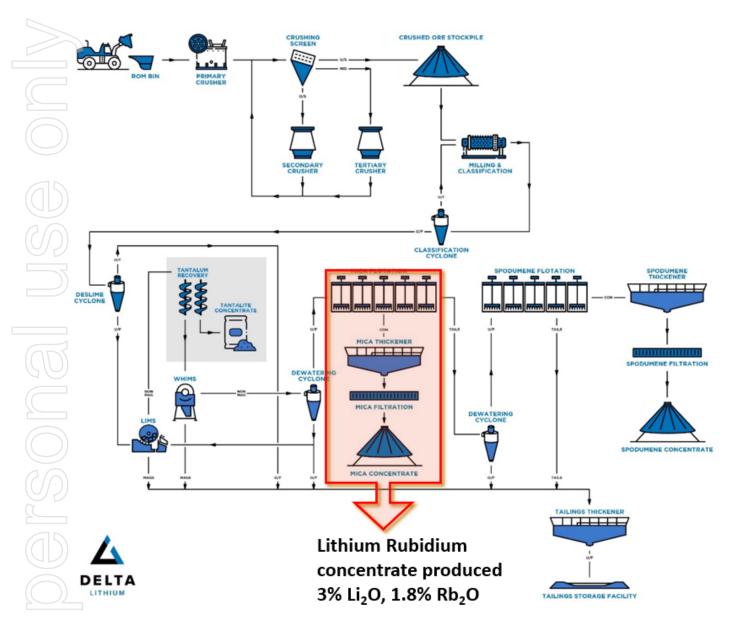


Figure 4: Block Flow diagram showing Mt Ida Lithium process flowsheet with average Li & Rb concentrate grades

based on testwork to date

Existing WOF flowsheet testwork confirmed that rubidium is readily extracted as a byproduct within the mica pre-float stage and reports to the mica concentrate. This can be seen in Table 2 highlighting the amenability of the existing flowsheet to recover >90% of Rubidium in the ore feed and up to 50-55% of the total contained Li₂O during this mica pre-float process, resulting in production of a high-grade lithium/rubidium concentrate with an overall average grade of 3.01% Li₂O and 1.8% Rb₂O based on flotation work to date.

ASX ANNOUNCEMENT

13 November 2025

Test Sample ID		Fraction			Grade	(%)			R	ecovery (%	%)
			Mass Yield (%)	Li₂O (ppm)	Li ₂ O	Fe ₂ O ₃	Rb (ppm)	Rb %	Li₂O	Fe2O₃	Rb
#6	Sighter Comp 2 P80 0.106mm +0.02mm LIMS NM Sighter Float #6	Mica Cl Con 1-4	29.34%	25496	2.55	0.570	15342	1.53	55.15%	69.10%	90.27%
#7	Sighter Comp 2 P80 0.106mm +0.02mm LIMS NM WHGMS NM Sighter Float #7	Mica CI Con 1-4	16.25%	31013	3.10	0.356	19729	1.97	37.63%	33.38%	60.52%
#8	Sighter Comp 2 P80 0.106mm +0.02mm LIMS NM WHGMS NM Sighter Float #8	Mica CI Con 1-4	33.50%	21403	2.14	0.342	14124	1.41	52.97%	65.65%	93.32%
#9	Sister Sam Comp 1 P100 3.35mm Float Feed P80 0.106mm +0.02mm LIMS NM Sighter Float #9	Mica CI Con 1-4	33.85%	34433	3.44	0.043	19562	1.96	56.94%	51.71%	96.28%
#10	Timoni Comp 1 P100 3.35mm Float Feed P80 0.106mm +0.02mm LIMS NM Sighter Float #10	Mica CI Con 1-4	31.54%	23542	2.35	0.175	16128	1.61	56.32%	72.14%	94.04%
#11	Sister Sam Comp 1 P100 3.35mm P80 0.106mm +0.02mm LIMS NM Sighter Float #11	Mica CI Con 1-4	37.45%	26738	2.67	0.041	15072	1.51	54.76%	22.65%	96.46%
#12	Timoni Comp 1 P100 3.35mm P80 0.106mm +0.02mm LIMS NM Sighter Float #12	Mica Cl Con 1-4	30.07%	19357	1.94	0.161	13425	1.34	51.15%	71.62%	92.87%
#13	Timoni Sister DMS Float Feed Comp P80 0.106mm Longi500 NM CUF Sighter Float #13	Mica CI Con 1-4	32.46%	30666	3.07	0.105	18020	1.80	57.60%	64.46%	95.66%
#14	Timoni Sister DMS Float Feed Comp P80 0.106mm Longi500 NM CUF Sighter Float #14	Mica CI Con 1-4	27.88%	32028	3.20	0.104	18333	1.83	54.29%	57.55%	94.41%
#15	Timoni Sister DMS Float Feed Comp P80 0.106mm Longi500 NM CUF Sighter Float #15	Mica CI Con 1-4	26.88%	34627	3.46	0.103	19536	1.95	55.02%	52.67%	94.83%
#16	Timoni Sister DMS Float Feed Comp P80 0.106mm Longi500 NM CUF Sighter Float #16	Mica Cl Con 1-4	28.56%	32687	3.27	0.102	19977	2.00	55.29%	53.60%	95.81%
#17	Timoni Sister DMS Float Feed Comp P80 0.106mm Longi500 NM CUF Sighter Float #17	Mica Ro Con 1-4	31.10%	31664	3.17	0.098	17994	1.80	54.70%	52.57%	95.89%
#18	Timoni Sister DMS Float Feed Comp P80 0.106mm Longi500 NM CUF Sighter Float #18	Mica Ro Con 1-4	41.38%	25066	2.51	0.093	13883	1.39	60.72%	68.63%	96.65%

Table 2: Mica flotation results summary showing Lithium / Rubidium grades

Further Testwork

These results are extremely encouraging and present with significant concentrations of high value critical minerals. As a result, the Company has commissioned **Strategic Metallurgy** to conduct Phase 1 downstream processing optimisation and economic studies to outline a pathway to potential commercial production of lithium, rubidium and potassium products from this mica concentrate. These works are underway and have already returned high recoveries from leaching stages and alum separation, thus confirming the amenability of the concentrate to produce high purity lithium carbonate (**Li**₂**CO**₃) and rubidium carbonate (**Rb**₂**CO**₃) as well as potassium sulphate as a byproduct. Phase 1 results will be released to market when completed in full and finalised.

Rubidium Market

The global rubidium market is relatively small but strategically significant segment within the specialty metals sector, underpinned by its **unique properties and expanding high-technology applications**. Traditionally used in specialty glass, electronics and chemical research, rubidium demand is increasingly driven by the following industries;

- Military and Defence Systems
- Quantum Technologies
- Biomedical Applications
- Oil & Gas Drilling applications

- Next-generation sensors (Atomic Clocks)

Emerging uses in quantum navigation, medical imaging, and specialty formate fluids are broadening the market's commercial footprint beyond its historical niche. Rubidium is a heavier alkali metal with a free outer valance electron, make it particularly valuable in quantum mechanics research where this hydrogen-like characteristic proves ideal for precision modelling in quantum mechanics and atomic physics particularly where solutions to Schrödinger's calculation are necessary.

The scarcity of high-purity supply and rising demand from defence, aerospace and energy technology sectors point to a tightening geostrategic market and sustained upward demand trajectory through the decade which is expected to reach USD 8 billion by 2033². Its recent designation as a critical mineral in key markets such as the United States and Japan, coupled with the global push to secure non-Chinese supply chains, positions Delta favourably in Western markets.

At today's price of approximately USD\$1,067³ per kilogram for high-purity rubidium carbonate, the potential value contribution from rubidium represents a significant strategic upside for the Mt Ida Project.

Next Steps

- Finalise Phase 1 downstream optimisation results on mica concentrate
- Yinnetharra exploration drill results

Release authorised by the Managing Director on behalf of the Board of Delta Lithium Limited.

For further information, please contact:

Delta Lithium

James Croser, Managing Director Peter Gilford, CFO & Company Secretary +61 8 6109 0104

info@deltalithium.com.au

Investor/Media Enquiries

Sodali & Co

Russell Quinn +61 403 322 097

About Delta Lithium

Delta Lithium (ASX: DLI) is an exploration and development company focused on bringing high-quality, lithium-bearing pegmatite deposits, located in Western Australia, into production. With current global JORC compliant resources of 36.9Mt@1.0% Li₂O, strong balance sheet and an experienced team driving the exploration and development workstreams, Delta Lithium is rapidly advancing its Projects.

The Mt Ida Project has coincident gold and lithium orebodies and holds a critical advantage over other developers with existing Mining Leases and an approved Mining Proposal. Delta Lithium is pursuing a development pathway to unlock maximum value for shareholders. Delta has recently spun out its gold assets into Ballard mining on 14th July 2025 and retains a 41% equity stake in this company.

Delta Lithium also holds the highly prospective Yinnetharra Lithium Project, with exciting lithium discoveries at the Malinda and Jamesons prospects. The Company is currently conducting exploration activities at Yinnetharra with fieldwork commenced for 2025 across our large tenure package, testing additional targets and aiming to build on the Maiden Resource at Malinda.

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Shane Murray, a Competent Person who is a Member of the Australasian Institute of Geoscientists (AIG). Mr. Murray has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Murray

² Rubidium: The Forgotten Element Enhancing Lithium Batteries

³ SMM Shanghai Metals Market Nov 12, 2025 (Rubidium Carbonate >99% USD/kg)

is an employee of Delta Lithium Limited and consents to the inclusion in this announcement of the matters based on his information in the form and

Information in this Announcement that relates to Metallurgical analysis of mica concentrate and downstream processing is based upon work undertaken by Mr. Nick Vines, a Competent Person who is a Member of the Australasian Institute of Mines and Metallurgy (Aus IMM). Mr. Vines has sufficient experience that is relevant to the style of mineralisation and type of deposit / concentrate under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Vines is an employee of Strategic Metallurgy and a consultant to Delta Lithium Ltd, Nick consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information in this report which relates to Mineral Resources for the Sister Sam, Timoni and Sparrow deposits at the Mt Ida Lithium Project was prepared by Ms Susan Havlin and reviewed by Dr Andrew Scogings, both employees of Snowden Optiro. Ms Havlin is a Member and Chartered Professional of the Australasian Institute of Mining and Metallurgy and Dr Scogings is a Member of the Australian Institute of Geoscientists (RPGeo industrial minerals) and they have sufficient experience relevant to the style of mineralisation, the type of deposit under consideration and to the activity undertaken to qualify as Competent Persons as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Havlin and Dr Scogings consent to the inclusion of the information in the release in the form and context in which it appears.

Refer to www.deltalithium.com.au for past ASX announcements.

Past Exploration results and Mineral Resource Estimates reported in this announcement have been previously prepared and disclosed by Delta Lithium in accordance with JORC 2012. The Company confirms that it is not aware of any new information or data that materially affects the information included in these market announcements. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the original market announcement, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. Refer to www.deltalithium.com.au for details on past exploration results and Mineral Resource Estimates.

Disclaimer

context in which it appears.

This release may include forward-looking and aspirational statements. These statements are based on Delta Lithium management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of Delta Lithium, which could cause actual results to differ materially from such statements. Delta Lithium makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing

Refer to www.deltalithium.com.au for past ASX announcements.

Sources

- US Department of Energy
- Australian Trade and Investment Commission
- Shanghai Metals Markets
- Mordor intelligence Rubidium markets
- Hallgarten & Company Metal Review July 2025, 'Rubidium: Cesium's Lesser-Known Twin'

Appendix 1; Section 5.8 Geological Interpretation and Estimation Parameters

The following is a material information summary relating to the Mineral Resource estimate, consistent with ASX Listing Rule 5.8.1 requirements. Further details are provided in the JORC Code Table 1 (Annexure 4).

Location, geology and geological interpretation

Delta's Mt Ida Lithium Project (Mt Ida or the Project) is located 350 km northwest of Kalgoorlie in the Eastern Goldfields region of Western Australia. Project tenements are 100% owned by wholly owned subsidiaries of Delta Lithium Ltd and cover approximately 170km² of the Mt Ida-Ularring Greenstone Belt, with multiple granted prospecting, exploration, and mining licences. The majority of the Mineral Resources are located within M29/002, M29/444 and M29/165.

The Project is situated in the Archaean Mt Ida-Ularring Greenstone Belt within the Kalgoorlie Terrane of the Yilgarn Craton. Lithium mineralisation is hosted within shallow to moderate north-west dipping pegmatites which intrude a thick package of upper greenschist-lower amphibolite facies with metamorphosed, steeply south-west dipping, mafic volcanics and intrusives. Pegmatites within the area of interest are preferentially hosted within a thick anorthosite-leucogabbro unit. This has occurred due to the brittle nature of the coarse-grained stratigraphy which has allowed existing structures to be exploited and hydraulically fractured creating optimal conditions for pegmatite development and subsequent emplacement.

The area has undergone strong folding and deformation with two large anticlines present within the area; the Mt Ida Anticline and the Kurrajong Anticline with major shear zones located between the anticlines and a noticeable absence of a syncline. It is this complex structural history that, particularly along the Timoni trend that has resulted in the Gold-Copper endowment we see today. There is a distinct interaction between these Gold related shear structures and the pegmatites which has permitted development in certain areas while hindering it in others.

Lithium mineralisation has been identified at three deposits: Sister Sam, Timoni and Sparrow. The mineralisation is hosted within pegmatites that exhibit the following characteristics:

- Preferentially emplaced in anorthosite-leucogabbro lithologies adjacent to a major series of shear zones.
- Shallow to moderate north-westerly dips, increasing to almost vertical at the deepest extents of the Sister Sam and Timoni deposits.
- Pegmatite bodies have been intersected to around 1,000 m down dip and extend to about 150 m along strike.
- Range in thickness from about 2 to 35 m
- Lithium-bearing minerals include spodumene, lepidolite and trilithionite
- Gangue minerals are mainly quartz and albite, with some microcline and muscovite

Pegmatite mineralisation wireframes were interpreted using Leapfrog Geo 3D software, with graphical selection of intervals used to form vein models of the mineralised pegmatites for all projects. Continuity and plunge orientations were established by applying the structural measurements collected from oriented diamond core, surface mapping, regional interpretation of the structural setting and exploratory data analysis. Weathering surfaces were interpreted using regolith logging data.

Drilling techniques

The drilling database (Table 6) used to define the Mineral Resource comprises 1,159 reverse circulation (RC) drillholes for a total of 142,996 m, 283 RC holes with diamond tails (RCD) for a total of 107,683 m and 134 diamond holes (DD) for a total of 23,774 m (4). Aircore (AC), and rotary air-blast (RAB) drillholes were used to aid in geological interpretation; however, samples collected by AC and RAB were not used in the MRE.

RC drilling used a 143 mm face-sampling hammer bit. Diamond core was drilled using HQ2 and NQ2 bits. Drilling is

generally spaced at 40 m by 40 m out to 80 m by 80 m.

Data from 11 holes were used in the MRE that were not drilled by Delta. Data from these drillholes have been reviewed against data from twin and proximal drillholes for validation and to confirm that there is no bias.

Company	Year	Drill type	Number of drillholes	Metres drilled		
Hamill	2002	RC	5	1,204		
ICI	2003	RC	3	640		
IGL	2004	RC	1	258		
Lamancha	2006	DD	1	298		
OBM	2020	RCD	1	382		
	2021	RC	36	6,463		
	2021	RCD	2	796		
		RC	7	1,514		
	2022	RCD	62	23,100		
		DD	27	4,088		
		RC	813	88,171		
Delta	2023	RCD	143	59,180		
Deita		DD	105	18,632		
	2024	RC	127	18,165		
		RCDD	26	11,978		
		DD	1	172		
		RC	220	30,404		
	2025	RCDD	9	1,986		
		DD	5	947		
		RC	342	51,881		
Ballard	2025	RCDD	42	11,443		
		DD	7	1,520		
	Tota	l	1,985	333,221		

Table 4: Drilling history at the Mt Ida Project - within resource area

Sampling and assaying

RC samples were passed through an in-line cone splitter and 2-3 kg samples collected from 1m intervals. Delta diamond core was logged in detail, with observations based on lithological boundaries. Half core samples were taken, generally on 1m intervals or on geological boundaries where appropriate (minimum of 0.3 m to maximum of 1.1 m).

Samples were analysed, by Nagrom, SGS and ALS laboratories in Perth, for lithium, tantalum, iron and other elements using a four-acid digest (hydrofluoric, nitric, perchloric and hydrochloric acids), suitable for silica-based samples with an ICP-MS or ICP-OES finish and peroxide fusion and ICP-MS and OES fininsh.

Field blanks and industry certified standards were inserted by Delta at a rate of 1 per 20 samples and field duplicates for RC were collected by Delta at a rate of 1 every 60 samples. No drill core duplicates have been completed at this stage. Laboratory Certified Reference Materials (CRMs) and/or in-house controls, blanks, splits and replicates were analysed with each batch of samples by the laboratory. Selected samples were re-analysed to confirm anomalous results.

Mineralogy

Drill samples have been analysed by methods such as thin section (petrography), X-Ray Diffraction (XRD), Quantitative Evaluation of Minerals by Scanning Electron Microscope (QEMSCAN) and Tescan Integrated Mineral Analyser (an SEM method known as TIMA) in addition to visual logging of lithium-bearing and other pegmatite minerals. For example, preliminary TIMA results for sixteen pegmatite samples from the Sister Sam deposit indicate that spodumene, quartz, albite and Li-bearing mica (lepidolite and trilithionite) are the major mineral components of the analysed samples. Lithium deportment (the mass percentage of lithium in each of the three main lithium mineral groups) indicated that ~23-95% of total lithium is within spodumene and that micaceous minerals, primarily lepidolite accounted for the balance of lithium. Minor traces of other lithium minerals petalite and bityite were noted.

Metallurgy

Extraction of lithium minerals is an important consideration when considering lithium pegmatite Mineral Resources, as different minerals have distinct lithium contents and behave differently during processing. For example pure spodumene is expected to contain ~8% Li₂O, compared with lithium micas which may contain ~3-7% Li₂O depending on the mineral species. Metallurgical testwork on drill samples to date indicates that flotation resulted in ~76-86% Li₂O total recoveries across two concentrates: spodumene (~5.6-6.5% Li₂O) and mica (~2-3.4% Li₂O). Advanced metallurgical studies have been completed comparing a hybrid DMS-Flotation circuit versus a straight whole ore flotation (WOF) circuit. The study indicated that a WOF flowsheet presented the best outcome for the Mt Ida Ore. The total recovery assumes that the mica and spodumene flotation concentrates are a saleable product and that there are reasonable prospects of eventual economic extraction of both types of concentrate.

Bulk density

Bulk density was measured from 5,075 core samples (including 1,028 samples of pegmatite) obtained from diamond drillholes using measurements according to the 'Archimedes' method. A regression formula was developed to estimate bulk density from Li₂O% for the pegmatite samples at Sister Sam and Timoni. Most of the measurements are from fresh rock. Dry bulk density factors, assigned by rock type and weathering at Sparrow, have been applied to generate resource tonnages.

Estimation methodology

Grade estimation was into parent blocks of 20 m(E) x 20 m(N) x 5 m(RL) below the 340 mRL at Sister Sam and Timoni and at Sparrow. Above the 340 mRL at Sister Sam and Timoni the parent block size was 5 m(E) x 5 m(N) x 5 m(RL) to reflect the closer drill spacing. Block dimensions were selected from kriging neighbourhood analysis and reflect the variability of the deposit as defined by the current drill spacing. Sub-cells, to a minimum dimension of 1 m(E) x 1 m(N) x 1 m(RL) at Sparrow and 2.5 m(E) x 2.5 m(N) x 2.5 m(RL) at Sister Sam and Timoni, were used to represent volume. Assay data was selected within the pegmatite mineralisation wireframes and composited to one metre lengths with no top-cuts applied, as no outliers were noted. Block grade estimation of lithium oxide (Li₂O), tantalum pentoxide (Ta₂O₅), rubidium oxide (Rb₂O) and ferric oxide (Fe₂O₃) grades by domain was completed using ordinary kriging (OK) into parent block cells. Li₂O, Ta₂O₅ and Fe₂O₃ are not correlated and Li₂O and Rb₂O are moderately correlated, all were estimated independently. Variogram analyses were undertaken to determine the grade continuity and the kriging estimation parameters used for the OK. Hard grade boundaries were applied to the estimation of each domain except Ta₂O₅ which has a soft boundary between the inner and outer mineralisation wireframes (based on Li₂O).

Cut-off grades

The Mineral Resource estimates for the Mt Ida Lithium deposit have been reported above a cut-off grade of $0.3\%~\text{Li}_2\text{O}$ in the open pit and $0.5\%~\text{Li}_2\text{O}$ for the underground to represent the portion of the Mineral Resource that may be considered for eventual economic extraction. This cut-off grade is commensurate with cut-off grades applied for reporting of lithium Mineral Resources hosted in spodumene-rich pegmatites elsewhere in Australia.

Mining factors

The Mineral Resource has been reported under conditions where the Company believes there are reasonable prospects of eventual economic extraction through a combination of open pit and potential underground mining methods. The lithium mineralisation at the Mt Ida Project extends from surface and it is expected that this will be suitable for open pit mining. High grade mineralisation is present at depth, and it is expected that this will be suitable for potential underground mining.

The Mineral Resource has been reported within a Whittle-optimised open pit shell and mineable shape optimiser (MSO) generated underground shapes, based on an A\$2350 per tonne SC6 price. The recovery of economic material to saleable products spodumene and lithium mica is expected to be through the application of industry standard process routes for lithium deposits; of crushing 'ore' to 3.35 mm, milling the ore to 106 microns and then two-stage flotation to create spodumene and lithium mica concentrates.

The Mt Ida Lithium Project is located in a well-established mining region and in close proximity to existing transport, energy and camp infrastructure. Based on these assumptions, it is considered that there are no mining factors which are likely to affect the assumption that the deposit has reasonable prospects for eventual economic extraction.

Metallurgical factors or assumptions

An approximate metallurgical recovery of 75% has been assumed in determining reasonable prospects of eventual economic extraction, based on the range of 70-85% metallurgical recoveries received so far from metallurgical test work undertaken on core samples from the Mt Ida Lithium Project. It is assumed that approximately 45-55% of lithia will be recovered to a spodumene concentrate and 55-65% of lithia is recovered in a mica concentrate.

Downstream Processing

In the downstream processing component, it is assumed that Lithium carbonate recovery will be 90% and a Rubidium Carbonate recovery of 85%. This is based upon acid leach work as well as impurity removal works completed by Strategic Metallurgy to date. This downstream flowsheet will be optimised going forward to understand equipment lists, CAPEX/OPEX and improved reagents while first pass leach results have been very promising. Lithium Carbonate and Rubidium Carbonate production tests are underway with this leached material and results will be received this quarter.

Mineral Resource classification

The Mineral Resource has been classified following the guidelines of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves, 2012 (the JORC Code). The Mineral Resource has been classified based on Li₂O as Measured, Indicated and Inferred based on confidence in geological, grade and mineralogical continuity and by taking into account the quality of the sampling and assay data, and confidence in estimation of Li₂O content. The classification criteria were assigned based on the robustness of the Li₂O grade estimate as determined from the drillhole spacing, geological (including mineralogy) confidence and grade continuity.

The Sister Sam, Timoni Measured Mineral Resources are supported by drilling of 10 m by 10 m spacing. The Sister Sam, Timoni and Sparrow's Indicated Mineral Resources are supported by drilling with a nominal 40 m by 20 m to 80 m by 40 m spacing and where geological and grade continuity is demonstrated. Inferred Mineral Resources are defined where drilling is at a wider spacing than used for definition of Indicated Mineral Resources.

The Rb₂O and Ta₂O₅ have a lower classification confidence and category.

Appendix 2 A - Lithium MRE Group summary table

			L	₂ O		Ta ₂ O ₅	Rb ₂ O
	Resource category	Cut-off grade (Li ₂ O%)	Tonnes (Mt)	Grade (% Li ₂ O)	Li ₂ O (Kt)	Grade (Ta₂O₅ ppm)	Grade (Rb ₂ O %
	Measured		-	-	-	-	
	Indicated	0.5	16.1	1.0	158	77	
Yinnetharra	Inferred	0.5	5.8	0.9	54	69	
	Total Resource		21.9	1.0	212	75	
	Measured		0.5	1.1	5.9	256	0.39
Mt Ida	Indicated	0.3 - 0.5	7.2	1.3	96	215	0.45
J J WIL IUa	Inferred	0.3 - 0.5	7.1	1.1	83	126	0.38
3	Total Resource		14.8	1.2	190	173	0.42
	Total Measured		0.5	1.1	5.5	256	0.39
	Total Indicated		23.3	1.1	254	120	
	Total Inferred		12.9	1.0	137	100	
	Total		36.7	1.1	402	115	

Appendix 2 B - Yinnetharra Tantalum Only MRE

		Y	innetharra Tant	alum Only Resource March 2025							
A	rea	Resource category	Cut-off grade (Ta₂O₅ppm)	Tonnes (Mt)	Li₂O%	Li ₂ O (Kt)	Ta₂O₅ ppm	Ta₂O₅ (Kt			
	Measur	red		-	-	-	-	•			
NAT4	Indicat	ed	65	3.7	0.1	3	82	0.3			
MT1	Inferre	ed	00	0.6	0.0	0	94	0.1			
715)	Total Res	ource		4.3	0.1	4	84	0.4			
	Measur	red		-	-	-	-	-			
MTOO	Indicat	ed	C.F.	-	-	-	-	-			
MT20	Inferre	ed	65	0.2	0.1	0	115	0.0			
7	Total Reso			0.2	0.1	0	115	0.0			
	Measured Indicated			-	-	-	-	-			
MTOO			0.5	4.3	0.1	5	123	0.5			
MT36	Inferre	ed	65	0.6	0.1	1	106	0.1			
	Total Res			4.9	0.1	5	121	0.6			
	Measured			-	-	-	-	-			
10	Indicat	ed		0.3	0.2	1	175	0.1			
MT42	Inferre	ed	65	2.5	0.1	2	208	0.5			
	Total Resource			2.8	0.1	3	204	0.6			
	Measur	red		-	-	-	-	-			
))	Indicat	ed		2.1	0.1	3	186	0.4			
MT47	Inferre	ed	65	0.5	0.1	0	257	0.1			
	Total Res	ource	-	2.5	0.1	3	199	0.5			
	Measur	red		-	-	-	-	-			
	Indicat	ed		-	-	_	-	-			
MT67	Inferre	ed	65	0.6	0.2	1	113	0.1			
JD)	Total Res	ource		0.6	0.2	1	113	0.1			
	Measur	red		-	-	-	-	-			
	Indicat	ed		-	-	_	-	-			
MT69	Inferre	ed	65	1.6	0.1	2	105	0.2			
	Total Res	ource		1.6	0.1	2	105	0.2			
	Measur			-	-	_	-	-			
	MT70 Inferred Total Resource			-	-	-	-	-			
MT70			65	0.7	0.1	1	161	0.1			
				0.7	0.1	1	161	0.1			
	Total Mea			-	-	-		-			
	Total Indi			10.4	0.1	12	122	1.3			
	Total Infe			7.1	0.1	7	156	1.1			
	Tota			17.5	0.1	19	136	2.4			

Appendix 3 - Globally Released Rubidium Resources

Appendix 5 – Gio	bally ix	cicasca	Kubiuiuiii	Nesou	1003											
Deposit	Peer	Country	Measured Reso			Indicated Reso			Inferred Reso			Total Resource				
			Tonnes	Grade (Li2O%)	Grade (Rb2O%)	Tonnes	Grade (Li2O%)	Grade (Rb2O%)	Tonnes	Grade (Li2O%)	Grade (Rb2O%)	Tonnes	Grade (Li2O%)	Grade (Rb2O%)	Cont. Rb (tonnes)	Reference
Alvarrões	GrupoMot	a Portugal	-	-	-	2,600,000	0.87	0.113	3,270,000	0.86	0.109	5,870,000	0.87	0.164	0.11	ASX 11 April 2019 - 210% increase in containe lithium at Alvarroes
Karibib - Rubicon	TSXV.ILC	Namibia	1,560,000	0.53	0.301	5,720,000	0.36	0.217	-	-	-	7,290,000	0.40	0.234		ASX 30 Jan 2020 – Updated MRE for Rubicon & Helikon 1
Karibib - Helikon 1	TSXV.ILC	Namibia	640,000	0.65	0.271	940,000	0.50	0.242	170,000	0.70	0.317	1,750,000	0.58	0.260		ASX 30 Jan 2020 – Updated MRE for Rubicon & Helikon 1
Karibib - Helikon 4	TSXV.ILC	Namibia	-	-	-	1,310,000	0.46	0.207	280,000	0.54	0.228	1,590,000	0.47	0.211		ASX 30 Jan 2023 – Helikon 4 & Rubicon Stockpiles Upgrade
King Tamba (Dalgaranga)	ASX:KTA	Australia	-	-	-	-	-	_	5,000,000	0.05	0.14	5,000,000	0.05	0.14	7300	ASX 9 March 2023 - IMPRESSIVE MAIDEN MINERAL RESOURCE ESTIMATE DELIVERED KING TAMBA
MtEdon	ASX:EMC	Australia	-		-	-	-	-	3,600,000	0.07	0.22	3,600,000	0.07	0.22	7900	ASX 18 Dec 2024 - EVEREST METALS ACHIEV UP TO 91% RUBIDIUM RECOVERY FROM MT EDON
Niobé	ASX:ARN	Australia	-	_	-	-	-	-	4,615,000	0.07	0.17	4,615,000	0.07	0.17	8060	ASX 12 Oct 2022 - Niobe's Rubidium & Lithiu Maiden Resource Achieved
Pakeagama Lake (PAK) OP	TSXV:FL	Canada	1,344,600	2.14	0.25	4,619,400	1.72	0.33	680,500	1.75	0.26	6,644,500	1.78	0.288		NI 43-101 Technical Report 14 July 2023 - Pr Feasibility Study for the PAK Project
Pakeagama Lake (Spark) OP	TSXV:FL	Canada	-	-	-	18,828,000	1.52	0.26	29,746,000	1.34	0.26	48,574,000	1.41	0.26		NI 43-101 Technical Report 14 July 2023 - Pr Feasibility Study for the PAK Project
Reung Kiet	ASX:PAM	Thailand	7,800,000	0.44	0.20	3,260,000	0.49	0.20	3,740,000	0.41	0.19	14,800,000	0.45	0.20		ASX 02 Nov 2023 - Mineral Resource Estima upgrade RK Lithium Prospect - 42% increase 14.8 Million Tonnes
Uis	ASX:AS2	Namibia	27,330,000	0.82	0.157	17,500,000	0.79	0.15	32,680,000	0.76	0.14	81,000,000	0.73	0.14	105,000	RNS Number: 94740 Andrada Mining Limite February 2023 - Drilling Delivers a Significan Lithium Resource Upgrade at the Uis Mine
Zoro 1 (Dyke 1)	CSE:FAT	Canada	-	-	-	-	-	-	1,074,567	0.91	0.132	1,075,000	0.91	0.132		NI 43-101 Technical Report 6 July 2018 Zoro Lithium Project, Snow Lake, Manitoba
Mt Ida (DELTA LITHIUM)	ASX:DLI	Australia	490,000	1.2	.39	7,200,000	1.34	0.45	7,100,000	1.07	0.38	14,800,000	1.21	0.42	56,840	ASX 13 Nov 2025 Mt Ida Lithium & Rubidium Update
Seymour	ASX:GT1		-	-	-	6,200,000	1.25	0.28	2,100,000	0.8	0.25	8,300,000	1.13	0.27	23,000	ASX 24 Jul 2025 Large High Grade Rubidium Resource Identified at the Seymour Project

Appendix 4 - Mount Ida JORC Tables

JORC Table 1: Section 1: Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information	 Gold & Lithium sampling activities carried out by Delta Lithium and now Ballard Mining at the Mt Ida Project have included reverse circulation (RC)and diamond (DD) drilling. RC samples were collected from a static cone splitter mounted directly below the cyclone on the rig, DD sampling was carried out to lithological/alteration domain with lengths between 0.3-1.1m Limited historical data has been supplied, historic sampling has been carried out by Hammill Resources, International Goldfields, La Mancha Resources, Eastern Goldfields and Ora Banda Mining, and has included RC, DD and rotary air blast (RAB) drilling Sampling of historic RC has been carried out via riffle split for 1m sampling, and scoop or spear sampling for 4m composites, historic RAB drilling was sampled via spear into 4m composites Historic core has been cut and sampled to geological intervals These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC Drilling has been carried out by Orlando Drilling and Frontline Drilling, PXD, RC drilling utilised an Explorac 220RC rig, T66 Schramm RC Rig with a 143 mm face sampling hammer bit, DD drilling was completed by a truck mounted Sandvik DE820 and a KWL 1500 and is HQ2 and NQ2 diameter. Diamond tails average 200-300m depth Historic drilling has been completed by various companies including Kennedy Drilling, Wallis Drilling, Ausdrill and unnamed contractors Historic DD drilling was NQ sized core It is assumed industry standard drilling methods and equipment were utilised for all historic drilling

Criteria	Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Sample condition is recorded for every RC drill metre including noting the presence of water or minimal sample return, inspections of rigs were carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Limited sample recovery and condition information has been supplied or found for historic drilling
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant inersections logged.	 Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All RC chip trays and drill core are photographed in full A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering It is unknown if all historic core was oriented, limited geotechnical logging has been supplied No historic core or chip photography has been supplied Historic comments on logging are very useful in to verify geological details between lithologies. Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies

Sub-sampling techniques and sample preparation If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-hall sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Samples analysed by via fire assay at ALS, Nagrom, NAL and SGS, and vor fire assay by ALS Samples analysed by via fire assay at ALS are d crushed to 3mm with 500g of material utilised for analysis Delta have recently amended the Photon method carry out analysis on Pulverised material studies of cursh and provided the samples are comparable. The recent system in place has been to conduct assaying and then 4-acid digest to determine 60 other materials, studies suggest the results are comparable. The recent system in place has been to conduct assaying and then 4-acid digest to determine 60 other materials, studies suggest the results are comparable. The recent system in place has been to conduct assaying and then 4-acid digest to determine 60 other materials, studies recarded ut at a 1:20 and were sampled directly from the splitter or fig. These were submitted for Lithium analysis via peroxide fusion experiments and the laboratory are unaw such submissions Historic field produced and the laboratory are unaw such submissions Historic has manifered.	Criteria	Explanation	Commentary
	Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size	 DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray Occasional wet RC samples were encountered, extra cleaning of the splitter was carried out afterward Should over 6 samples in a row be wet, the hole will be abandoned if it is aimed to be used in a MRE, with the intention of Diamond tailing it to retain sample quality. RC and DD samples have been analysed for Au by 50g fire assay by ALS, Nagrom, NAL and SGS, and via photon assay by ALS Samples analysed by via fire assay at ALS, Nagrom, NAI and SGS were dried, crushed and pulverised to 80% passing 75 microns before undergoing a selected peroxide fusion digest or 4 acid digest with ICPMS finish or fire assay with ICPMS finish Samples analysed via photon assay at ALS are dried and crushed to 3mm with 500g of material utilised for the analysis Delta have recently amended the Photon methodology to carry out analysis on Pulverised material rather than crushed material, studies suggest the results are comparable. The recent system in place has been to conduct Photon assaying and then 4-acid digest to determine Gold and other analytes, then all pegmatite interval pulps are resubmitted for Lithium analysis via peroxide fusion. RC duplicate field samples were carried out at a rate of 1:20 and were sampled directly from the splitter on the rig. These were submitted for the same assay process as the primary samples and the laboratory are unaware of such submissions Historic chip sampling methods include single metre riffle split and 4m composites that were either scoop or spear sampled, while historic core was cut onsite and half core sampled Historic Au analysis techniques generally included crushing, splitting if required, and pulverisation, with aquaregia or fire assay with AAS finish used to determine

Criteria	Explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Samples have been analysed by external laboratories utilising industry standard methods The assay methods utilised by ALS, Nagrom, NAL and SGS for RC chip and core sampling allow for total dissolution of the sample where required Photon assay is a non-destructive total analysis technique Standards and blanks are inserted at a rate of 1 in 20 in RC and DD sampling, All QAQC analyses were within tolerance QAQC reviews are completed on a monthly basis with any fails being investigated thoroughly in conjunction with the lab. All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods Limited historic QAQC data has been supplied, industry standard best practice is assumed
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data	Significant intercepts have been reviewed by senior personnel No specific twinned holes have been completed, but drilling has verified historic drilling intervals Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, th data is forwarded to the Database administrator for entry into a secure SQL database. Historic data was supplied various formats and has been validated as much as practicable No adjustments to assay data have been made Data entry, verification and storage protocols remain unknown for historic operators
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	MGA94 zone 51 grid coordinate system is used Current drilling collars have been pegged using a handheld GPS unit, all collars will be surveyed upon program completion by an independent third party Downhole surveys are completed by the drilling contractors using a true north seeking gyro instrument, AC drillholes did not have downhole surveys carried out Topography has been surveyed by recent operators. Collar elevations are consistent with surrounding holes and the natural surface elevation Historic collars are recorded as being picked up by DGPS, GPS or unknown methods and utilised the MGA94 zone 51 coordinate system Historic downhole surveys were completed by north seeking gyro, Eastman single shot and multi shot downhole camera
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill hole spacing is variable throughout the program are Spacing is considered appropriate for this style of exploration Sample compositing has not been applied

Orientation of data in relation to geological structure		Commentary
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material	 Drill holes are orientated perpendicular to the regional trend of the mineralisation previously drilled at the project; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised Some drillholes previously targeting Lithium mineralisation was not optimal for the Gold but this has been taken into account for modelling and statistics.
Sample security	The measures taken to ensure sample security	Samples are prepared onsite under supervision of Delta Lithium staff and transported by a third party directly to the laboratory Historic sample security measures are unknown
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None carried out

JORC Table 1; Section 3: Estimation and Reporting of Mineral Resources – Mt Ida lithium

	Criteria	JORC Code Explanation	Comments
	Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	All historical data for the Mt Ida Project was uploaded into Delta's Geobank database after Delta acquired the project. Delta data was logged in the field, and imported into Geobank, with assay files uploaded in digital format upon receipt from the laboratory.
	15		 The data is considered to be robust due to effective database management and validation checks. Original data and survey records are utilised to validate any noted issues.
	9		Drillhole data was extracted directly from the Company's drillhole database, which includes internal data validation protocols. Routine database checks are conducted by Delta's Database Administrator.
			Data was further validated by Snowden Optiro upon receipt, and prior to use in the Mineral Resource estimation.
			 Personnel access to the Geobank database is restricted to preserve the security of the data. The database is managed internally by a dedicated Database Administrator.
		Data validation procedures used.	Data from 11 holes were used in the Mineral Resource estimate that were not drilled by Delta. Data from these drillholes have been reviewed against data from proximal drillholes for validation and to confirm there is no bias.
	P		 Validation of the data was confirmed using mining software (Datamine) validation protocols, and visually in plan and section views.
	Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Neither Mrs Susan Havlin (Snowden Optiro, acting as the Competent Person for the resource estimation) or Dr Andrew Scogings (Snowden Optiro, acting as Competent Person for the mineralogy) have visted the site.
	Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The geological interpretation of the deposit is based on logging of the host units which have been interpreted into a 3D model of the lithology and structure.
			The confidence in the geological interpretation is reflected by the assigned Mineral Resource classification.
			The host rocks are generally well defined in the logged lithology records.
		Nature of the data used and of any assumptions made.	Both assay and geological data were used for the mineralisation interpretation.

Criteria	JORC Code Explanation	Comments
		 Geological logging data was used to interpret pegmatite veins and the lithium mineralisation within the pegmatite veins was defined by a nominal 0.4% Li₂O cut-off grade. An inner higher grade zone was defined by a nominal 1% Li₂O cut-off grade for parts of Sister Sam and Timoni.
		Geological and mineralisation continuity between drillholes and sections is good.
		No assumptions have been made about the data.
	The effect, if any, of alternative interpretations	No alternative interpretations were considered.
5	on Mineral Resource estimation.	Any alternative interpretations are unlikely to significantly affect the Mineral Resource estimate.
D D	The use of geology in guiding and controlling Mineral Resource estimation.	Geological logging (including spodumene crystal orientation from the diamond core and size) has been used for interpretation of the pegmatites.
5		 The lithium and tantalum grade estimates are wholly constrained within pegmatite veins that are readily distinguished from the surrounding rocks.
	The factors affecting continuity both of grade and geology.	 All geological observations were used to guide the interpretation and further control the mineralisation trends for the Mineral Resource estimate.
		 The mineralisation is contained within pegmatite veins that are readily distinguished from the surrounding rocks.
		 Implicit modelling indicates good continuity of the interpreted pegmatite veins both on-section and between sections.
D		 Faulting and shearing are very localised, and as such have not been used to constrain or offset mineralisation and geological domains.
15		The confidence in the grade and geological continuity is reflected by the assigned Mineral Resource classification.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below	Eighteen lithium mineralised pegmatites have been identified at the Mt Ida Project at three lithium deposits: Sister Sam, Timoni and Sparrow.
	surface to the upper and lower limits of the Mineral Resource	At Sister Sam, three northwest, moderately dipping (-40°) pegmatites have been drilled over a strike length of 1,000 m and to a vertical depth of around 830 m. The three pegmatites, pinch and swell and are from 5m to 45m thick.
		Timoni is located 500m northwest of Sister Sam and comprises nine mineralised pegmatites that are northwest moderately dipping (-40° to -60° west). These pegmatites have been drilled over a strike length of 900 m, down to a depth of 600 m and are up to 40m thick with thickness generally between 5m and 20m.

Criteria	JORC Code Explanation	Comments
		Sparrow is located 1.6km northwest of Timoni and is comprised of six mineralised pegmatites that dip to northwest (-45°). A fault intersects the pegmatites; however, no offset has been identified. These pegmatites have been drilled over a strike length of 1,000 m and to a vertical to a depth of 700 m and are from 5m to 15m thick.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	 Software used: Leapfrog Geo − wireframe modelling of geological units. Snowden Supervisor − geostatistics, variography, kriging neighbourhood analysis (KNA) and block model validation. Datamine Studio RM − wireframe modelling of mineralisation domains, drillhole validation, compositing, block modelling, grade estimation, classification and reporting. The Sister Sam and Timoni deposits were estimated in a single block model due to their close proximity. The Sparrow deposit was estimated as a separate block model. The Mineral Resource estimates were completed employing ordinary block kriged (OK) grade estimation of 1 m length composites. The mineralised interpretations defined consistent zones of mineralised material as defined by logged geology and/or assay data. The drill density is at a sufficient spacing that OK is considered appropriate to inform a local estimate. All drilling by Delta has been assayed for lithium and tantalum and have full QAQC compliance. Eleven holes drilled by previous companies with lithium assay data were retained within the dataset for estimation. Block model and estimation parameters: Lithium, tantalum and iron assay data was converted to lithium oxide (Rb₂O) and ferric oxides (Fe₂O₃). Li₂O%, Ta₂O₅ ppm Rb₂O% and Fe₂O₃% block grades were estimated using ordinary kriging (OK). OK is considered the most appropriate method with respect to the observed continuity of mineralisation, spatial analysis (variography) and dimensions of the domains Dynamic anisotropy was utilised to account for the undulating nature of the pegmatite veins. One metre downhole composite data were estimated into parent blocks using OK. Variogram analysis was undertaken to determine the kriging estimation parameters used for OK estimation of Li₂O,

Criteria	JORC Code Explanation	Comments
		 At Sparrow the pegmatites were divided into upper (above the fault) and lower and the inner cores were combined for one set of variography and the outer cores combined for another set of variography. At Sister Sam, Li₂O mineralisation continuity was interpreted from variogram analyses to have a main direction range from 100 m to 175 m and a semi-
		 major range of 70 m, with a low nugget of 14 to 28%. At Timoni, Li₂O mineralisation continuity was interpreted from variogram analyses to have a main direction range from 30 m to 100 m and a semimajor range of 25 m to 95 m, with a low nugget of 9
0		to 28%. • At Sparrow, Li ₂ O mineralisation continuity was interpreted from variogram analyses to have a main direction range from 100 m to 150m and a semimajor range of 90 m to 115 m, with a nugget of 13 to 25%.
		 The number of samples used for block grade estimation was determined by Kriging Neighborhood analysis (KNA). Three estimation passes were used for Li₂O, Ta₂O₅ Rb₂O and Fe₂O₃; the first search was based upon the variogram ranges; the second search was two
		times the initial search and the third search was either three or five times the initial search. The second search and the third searches had reduced sample numbers required for estimation. • A maximum composites per drillhole constraint was of four samples was applied.
		 Hard boundaries were applied at all domain boundaries as confirmed by geology and contact analysis except for Ta₂O₅ which ignored the inner Li₂O boundary. Boundary conditions for the weathering boundaries
	Description of how the goolegical	are soft, as confirmed by geology and contact analysis.
	Description of how the geological interpretation was used to control the resource estimates.	The geological interpretation was used at all stages to control the estimation. It was used to guide the orientation and shape of the mineralised domains and the inner higher grade cores. These were then used as boundaries for the grade estimation, using the trend of the mineralisation and geological units.
		 to control the search ellipse direction and the major controls on the distribution of grade. Geological interpretations were completed using implicit modelling by interval selection to create a 3D interpretation of the mineralised pegmatites. The interpretation of mineralisation was based on
		geological logging and Li ₂ O content. A nominal grade of 0.4% Li ₂ O was used to define the mineralisation within the interpreted pegmatites and 1% Li ₂ O for the inner high grade core.

Criteria	JORC Code Explanation	Comments
		 The mineralised domains are considered geologically robust in the context of the resource classification applied to the estimate.
	Discussion of basis for using or not using grade cutting or capping.	 Li₂O, Ta₂O₅, Rb₂O and Fe₂O₃ have low coefficients o variation (CV).
		 CVs and histograms were reviewed for each domain for both all analytes and no high-grade outliers were noted.
		No top-cut grades were applied.
5	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	 In September 2023, a JORC 2012 Indicated an Inferred Mineral Resource of 14.6 Mt at 1.2% Li₂0 was reported.
9	takes appropriate account of such data.	 The additional drilling and application of RPEEE is the form of an optimised pit shell and MSO has le to a 1% increase in tonnes with the grade staying the same.
7		No lithium production has occurred.
	The assumptions made regarding recovery of by-products.	 No assumptions have been applied for the recover of by-products.
		Metallurgical testwork is ongoing to determine the recoveries that could be expected.
	Estimation of deleterious elements or other non-grade variables of economic significance (e.g., sulphur for acid mine drainage	Fe2O3 is considered a deleterious element for lithium processing and is important to control throughout the mining and grade control process.
	characterisation).	Fe2O3 was estimated for all pegmatites and used the lithium inner and outer domains. The same process was applied to Fe2O3 for determining estimation parameters
2)	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	The nominal spacing of the drillholes is from 10m by 10 m to 40m by 40m to 80m by 80m. Drilling or section reduces at depth.
5		Grade estimation was into parent blocks of 20 mE by 20 mN by 5 mRL below the 340 mRL at Sister Sam and Timoni and at Sparrow. Above the 340 mRL at Sister Sam and Timoni the parent block size was 5 m(E) x 5 m(N) x 5 m(RL) to reflect the closer drill spacing.
		 This block dimension was confirmed by kriging neighbourhood analysis and reflects the variability of the deposit as defined by the current drill spacin and mineralisation continuity determined from variogram analysis.
		Sub-cells to a minimum dimension of 2.5 mE by 2. mN by 2.5 mRL at Sister Sam and Timoni and 1 mE by 1 mN by 1 mRL at Sparrow were used to represent volume.
	Any assumptions behind modelling of selective mining units.	Selective mining units were not modelled.

Criteria	JORC Code Explanation	Comments
	Any assumptions about correlation between variables.	No correlated variables have been investigated or estimated.
		• Li ₂ O, Ta ₂ O ₅ and Fe ₂ O ₃ are not correlated. Li ₂ O and Rb ₂ O are moderately correlated. Li ₂ O, Ta ₂ O ₅ Rb ₂ O and Fe ₂ O ₃ were estimated independently.
	The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.	Validation checks of the estimate occurred by way of global and local statistical comparison, comparison of volumes of wireframe versus the volume of the block model, comparison of the model average grade (and general statistics) and the declustered sample grade by domain, swath plots by northing, easting and elevation, visual check of drill data versus model data and comparison of global statistics for check estimates.
JD)		No production has taken place and thus no reconciliation data is available.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnage was estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied	The Mineral Resource has been reported above a cut-off grade of 0.3% Li ₂ O in the open pit and 0.5% Li ₂ O for the underground to represent the portion of the Mineral Resource that may be considered for eventual economic extraction.
		This cut-off grade has been selected by Delta in consultation with Snowden Optiro based on current experience and in-line with cut-off grades applied for reporting of Mineral Resources of lithium hosted in spodumene bearing pegmatites elsewhere in Australia. Given the stage of the Project and classification applied to the Mineral Resource, the cut-off grade is considered reasonable.
Mining factors or assumptions	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 The lithium mineralisation at Mt Ida extends from surface and is expected to be suitable for open pit mining. High grade mineralisation is present at depth and is expected to be suitable for potential underground mining. The Mt Ida Lithium Project is located in a well-established mining region and in close proximity to existing transport, energy and camp infrastructure.
assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Based on these assumptions, it is considered that there are no mining factors which are likely to affect the assumption that the deposit has reasonable prospects for eventual economic extraction The Mineral Resource has been reported within a Whittle-optimised open pit shell and mineable shape optimiser (MSO) generated underground shapes, 	

Criteria	JORC Code Explanation	Comments
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Metallurgical testwork undertaken so far demonstrates a flotation flowsheet that recovers a spodumene concentrate and a mica concentrate is viable for the Mt Ida project. An approximate metallurgical recovery of 75% has been assumed in determining reasonable prospects of eventual economic extraction, based on the range of 75-85% metallurgical recoveries received so far from metallurgical test work undertaken on core samples from the Mt Ida Lithium Project. It is assumed that approximately 60-65% of Lithia is recovered to a spodumene concentrate and 35-40% of lithia is recovered in a mica (lepidolite) concentrate and that Rb reports with the lepidolite concentrate
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made	 The Mt Ida Project is located in a historical gold mining district, with mining in the area occurring over the past 100 years. There are no major water courses in the Project area, although ephemeral streams do exist throughout the tenements. The mineralisation is a low sulphidation type with limited acid forming potential. Any potentially acid forming material will be able to be encapsulated in non-potentially acid forming material. It is assumed that surface waste rock landforms will be used to store waste material and conventional tailings storage facilities will be used for the management of process plant tailings. Baseline flora and fauna studies have been completed and there is no threatened or priority flora, vegetation and fauna within the Project area.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	 Bulk density for the resource was measured from 5,075 core samples (including 1,028 samples of mineralised pegmatite) from diamond holes using Archimedes measurements. The overall density data ranged from 1.00 to 8.85 t/m³ and the outliers were screened out. A formula based on the Li₂O grade was used to calculate the density. Density = (0.0419*Li₂O%)+2.6522 Fresh host rock outside the pegmatites were given the mean value of 2.84 t/m³.
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	 Density was measured using a standard well-documented procedure: the immersion or Archimedes method. Density has been calculated in both the pegmatite and host rock.

Criteria	JORC Code Explanation	Comments
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	 Samples taken were coded by lithology and weathering. Averages were derived within each weathering zone and this value then used to code the block model for each weathering zone.
		Results within each weathering zone (oxide, transitional and fresh) compared well to previous gold model bulk density application in the host rock.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	 The Mineral Resource has been classified based on Li₂O as Measured, Indicated and Inferred based on drillhole spacing, geological continuity and estimation quality parameters.
		The Sister Sam, Timoni Measured Mineral Resources are supported by drilling of 10 m by 10 m spacing and where all the block grades were estimated within the first search pass. Geological continuity is demonstrated by the geological interpretation from drilling. Grade continuity is demonstrated by variography and kriging metrics.
		The Sister Sam, Timoni and Sparrow's Indicated Mineral Resource are supported by drilling with nominal 40 m by 20m up to 80m by 40m spacing, and where the majority of the block grades were estimated within the first search pass. Geological continuity is demonstrated by the geological interpretation from drilling. Grade continuity is demonstrated by variography and kriging metrics.
		Inferred Mineral Resources were defined where there was a moderate level of geological confidence in geometry and the drill spacing is wider than used to define Indicated Mineral Resources. For Inferred Mineral Resources material, the majority of the block grades were estimated in the second and third search passes or are areas of grade extrapolation.
75		• The Rb ₂ O and Ta ₂ O ₅ have a lower confidence category.
	Whether appropriate account has been taken of all relevant factors (i.e., relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data).	The Mineral Resource has been classified on the basis of confidence in geological and grade continuity and taking into account the quality of the sampling and assay data, data density and confidence in estimation of Li ₂ O (from the kriging metrics).
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The assigned classification of Measure, Indicated and Inferred reflects the Competent Persons' assessment of the accuracy and confidence levels in the Mineral Resource estimate.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No external audits have been conducted on the Mineral Resource estimate. Shoulder Online undertaken rigerous internal near
		Snowden Optiro undertakes rigorous internal peer reviews during the compilation of the Mineral

Criteria	JORC Code Explanation	Comments
		Resource model and reporting.
	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate	 With further drilling it is expected that there will be variances to the tonnage, grade, and metal of the deposit. The Competent Persons expect that these variances will not impact on the economic extraction of the deposit. The assigned classification of Measured, Indicated and Inferred reflects the Competent Persons' assessment of the accuracy and confidence levels in the Mineral Resource estimate. It is the Competent Persons' view that this Mineral Resource estimate is appropriate to the type of deposit and proposed mining style.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used	The Mineral Resource classification is appropriate at the global scale.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available	No lithium production has occurred from the deposits.