

OD6 Metals Australian Clay-Hosted Rare Earths

Splinter Rock Rare Earth Project Leveraging the Rising Tide for REE's

IMPORTANT INFORMATION

Disclaimer

This presentation has been prepared by OD6 Metals Ltd (ACN 654 839 602) (**OD6**) and is current as at the date of this document. The information contained in this presentation is for informational purposes only and does not constitute an offer to issue, or arrange to issue, securities or other financial products. The information contained in this presentation is not investment or financial product advice and is not intended to be used as the basis for making an investment decision. The presentation has been prepared without considering the investment objectives, financial situation or needs of any particular person. Before making an investment decision, you should consider, with or without the assistance of a financial adviser, whether an investment is appropriate considering your particular investment needs, objectives and financial circumstances. Past performance is no guarantee of future performance. Any securities that may be issued by OD6 should be considered speculative and there is no guarantee implied or explicit that there will be a return on the capital invested or that any dividend will be paid or that there will be an increase in the price or value of OD6's shares in the future.

No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this presentation. To the maximum extent permitted by law, none of OD6, its directors, employees or agents, nor any other person accepts any liability, including, without limitation, any liability arising out of fault of negligence, for any loss arising from the use of the information contained in this presentation. In particular, no representation or warranty, express or implied is given as to the accuracy, completeness or correctness, likelihood of achievement or reasonableness or any forecasts, prospects or returns contained in this presentation nor is any obligation assumed to update such information. Such forecasts, prospects or returns are by their nature subject to significant uncertainties and contingencies.

No New Information

The information in this report relating to the Mineral Resource estimate for the Splinter Rock Project is extracted from the Company's ASX announcement dated 29 May 2024. OD6 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

This document contains information extracted from ASX market announcements reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (2012 JORC Code) and available for viewing at https://www.od6metals.com.au/investors/asx-announcements/. OD6 confirms that it is not aware of any new information or data that materially affects the information included in any original ASX market announcement.

Forward Looking Statements

Certain statements contained in this presentation, including information as to the future financial or operating performance of OD6 and its projects, are forward looking statements. Such forward looking statements:

- may include, among other things, statements regarding incomplete and uncertain proposals or targets, production and prices, operating costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions;
- are necessarily based upon several estimates and assumptions that, while considered reasonable by OD6, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and
- involve known and unknown risks and uncertainties that could cause actual events or results to differ
 materially from estimated or anticipated events or results reflected in such forward-looking
 statements.

OD6 disclaims any intent or obligation to update publicly any forward-looking statements, whether as a result of new information, future events or results or otherwise. The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward looking statements. All forward looking statements made in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward looking statements due to the inherent uncertainty therein.

No representation is made that, in relation to the tenements the subject of this presentation, OD6 has now or will at any time in the future develop further resources or reserves within the meaning of the Australian Code for Reporting of Exploration Results, Mineral resources and Ore Reserves (**The JORC Code**).

Cautionary Statement

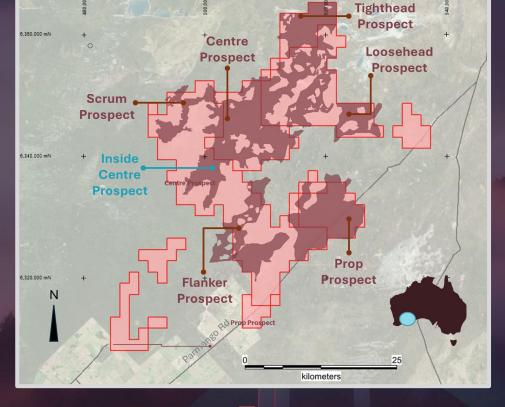
In relation to photographs of mine-spoil material, from Gulf Creek no representation as to the composition of the rocks is presented here. Laboratory assay results are required to determine the grade of mineralisation and the Company will update the market when check sampling and assay results are received and compiled. The Competent Person advises that the photographs contained in this Presentation are not necessarily representative of the geology exploited by historic mines at Gulf Creek and are not to be construed as being representative of potentially economic mineralisation.

OD6 METALS | AUSTRALIAN CRITICAL MINERALS 2

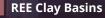
SPLINTER ROCK REE PROJECT HIGHLIGHTS

A 100% Owned Australian Critical Minerals Project

- Strong Rare Earth Demand Fundamentals
- 682Mt at 1,338 ppm TREO JORC Resource
- →75% Nd & Pr Overall Recovery
- High-quality Mixed Rare Earth Carbonate (MREC) of ~56% TREO
- → High-quality Mixed Rare Earth Hydroxide (MREH) of ~59% TREO
- Superior product quality with low levels of impurities (Al, Fe, P, Si)
- Extremely low uranium and thorium content (<0.001% U + Th)
- Optimised capital and operating cost drivers
- Offtake Engagement North America, Europe & Asia
- Positive Study Outcomes ANSTO and CPC
- Accelerated Scale up Testing at ANSTO 2.5t Metallurgical Core



- 1. Refer to ASX Announcement Mineral Resource Estimate Doubles
- 2. Refer to ASX Announcement IX Improves Processing Flowsheet
- 3. Refer to ASX Announcement High Quality MREC produced


Splinter Rock Rare Earth

USE

ASX:OD6

CRITICAL MAGNET RARE EARTH ELEMENTS

Four Critical, High Value Metals, Which Captures 90% of the MREC Product Value

59 Praseodymium

Electric vehicles

Wind turbines

60 Neodymium

- · Electric vehicles
- · Wind turbines
- Semiconductors

Heavy rare earth elements

66 Dysprosium

- · Electric vehicles
- Wind turbines
- Nuclear reactors
- Semiconductors

- 65 **Terbium**
- Xray's
- · High temp fuel cells
- · Electric vehicles
- · Wind turbines
- Semiconductors

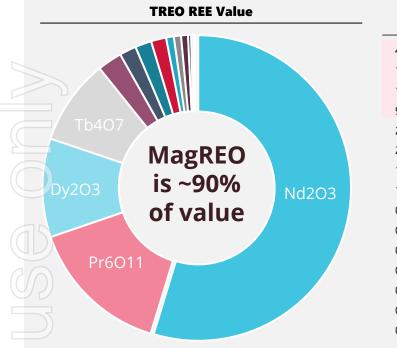
hydrogen 1																	helium 2
Н																	He
lithium 3	beryllium 4											boron 5	carbon 6	nitrogen 7	asygen 8	fluorine 9	neon 10
Li	Ве		L	.ight	trar	e eai	rth e	lem	ents			В	С	N	0	F	Ne
sodium 11	magnesium 12						41.			_		aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg	L	Heavy rare earth elements Al Si P S CI A												Ar		
potassium 19	caldium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	getium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	modum 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellerium 52	iodne 53	senon 54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe
cesium 55	barium 56		hafnium 72	tentalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
Cs	Ва		Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
francium 87	radium 88		rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meiterium 109	darmstadtium 110	roentgenium 111	copernicium 112	nhonium 113	flerovium 114	moscovium 115	Ivermorium 116	tennessine 117	oganesson 118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

lanthanum	cerium	præeodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dу	Но	Er	Tm	Yb	Lu
actinium	thorium	protectinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

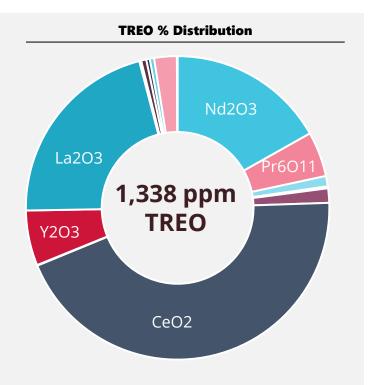
GLOBALLY SIGNIFICANT CLAY-HOSTED RARE EARTH DISCOVERY

Inside Centre to be the Cornerstone Deposit at Splinter Rock

- 682Mt at 1,338 ppm TREO (at a 1,000ppm cut-off grade) for 910 kt contained TREO ¹
- ► High-value MagREO represents an average of ~23% of TREO grade for 205 kt contained MagREO ¹
- High Grade Inside Centre Prospect 119Mt at 1,632ppm TREO (Indicated)
- Overall Process Recoveries of ~75% ²
- High-quality MREC ~56% & MREH ~59% TREO ³
- +90% of product value from Nd + Pr + Dy +Tb
- Located close to port of Esperance away from farmland
- No private royalties



- 1. Refer to ASX Announcement Mineral Resource Estimate Doubles
- 2. Refer to ASX Announcement IXI Improves Processing Flowsheet
- 3. Refer to ASX Announcement High Quality MREC produced

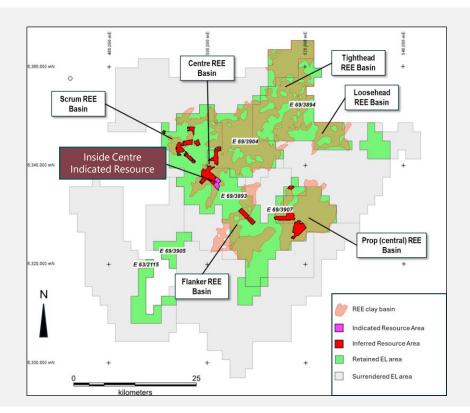


MRE TREO VALUE AND DISTRIBUTION

Nd, Pr, Dy, Tb resent ~90% of Potential contained Value

Value	Distr	ibutior	1
49.9%	■ Nd2O3	16.9%	_
13.7%	■ Pr6O11	4.8%	REC
16.1%	Dy2O3	1.1%	MagRE
9.4%	■ Tb4O7	0.2%	_
2.2%	■ Gd2O3	1.5%	
2.1%	■ CeO2	44.4%	
1.9%	■ Lu2O3	0.1%	
1.6%	■ Y2O3	5.6%	
0.8%	■ La2O3	21.6%	
0.6%	■ Ho2O3	0.2%	
0.9%	■ Er2O3	0.5%	
0.4%	■ Eu2O3	0.4%	
0.3%	■ Yb2O3	0.4%	
0.2%	■ Sm2O3	2.4%	
0.1%	■ Tm2O3	0.1%	

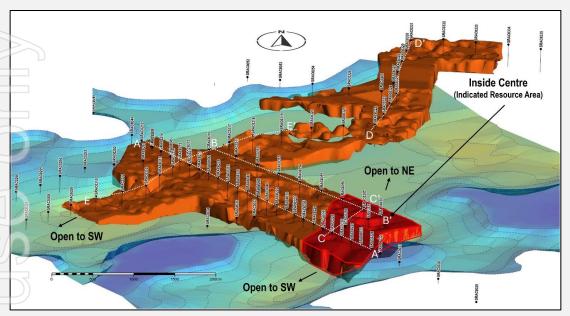
TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3 MagREO (Magnet Rare Earth Oxide) = Nd2O3 + Pr6O11 + Tb4O7 + Dy2O3

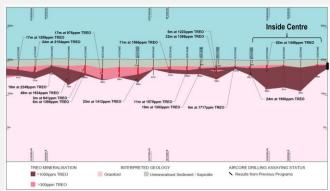

Note: Contained value is based on forecast pricing sourced from Adamas Intelligence "Rare Earth Pricing Quarterly Outlook". The chart is illustrative only of where rare earth economic value will be primarily derived from

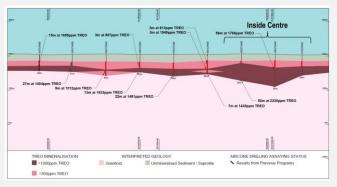
RESOURCE GROWTH POTENTIAL

Upside to Towards Billions of Tonnes – Across a Tenement Holding Area of 949 km²

- Current resource based on drilling <10% of clay basins identified
- Inside Centre has direct extensions of thick
 REE high-grade zones pending further
 drilling
- Centre Basin Extends >30km to the NE
- Potential to exceed well beyond 1 billion tonnes
- Has the best zone even been discovered?
- 1. Refer to ASX Announcement Mineral Resource Estimate Doubles
 - Refer to ASX Announcement Start of the Art Modelling Reveals Basin Extensions

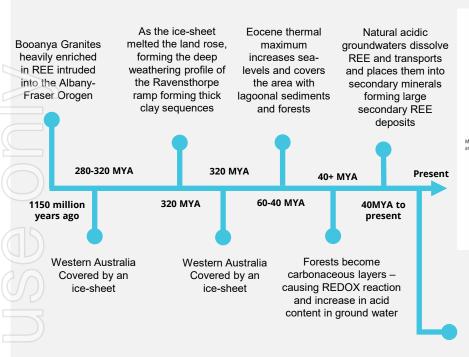


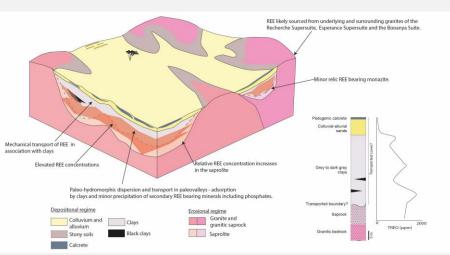

INSIDE CENTRE - A HIGH GRADE STAND OUT


Indicated MRE OF 119Mt at 1,632ppm TREO (at 1,000ppm TREO cutoff grade)

Inside Centre to be the focus of future works

Refer to ASX Announcement Mineral Resource Estimate Doubles





UNIQUE GEOLOGICAL FORMATION

Why this is different to all other clay projects in WA – its not just about weathering of granites

- Splinter Rock is different to other clay projects in WA
- This is not just about weathering granites, requiring processing of refractory REE minerals using high temperature
- Our REE have already been mobilised with acidic ground waters and available for leaching at ambient temperatures and pressures, direct to a industry acceptable MREC

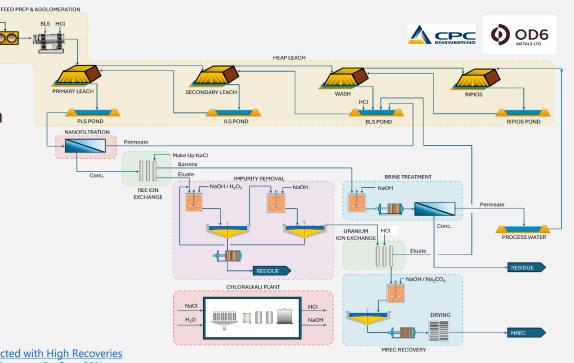
OD6 METALS | AUSTRALIAN CRITICAL MINERALS

INNOVATIVE PROCESSING STEPS

Simplified Processing Pathway to Produce High Quality Low Impurity Product

Simple acidic heap leach

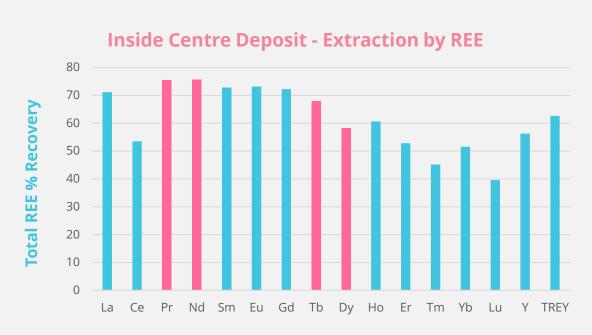
Capital intensive processing steps removed - tanks, thickening, clay washing, solid liquid separation


84.5% Acid Recycling with Nanofiltration (NF)

69% reduction in liquor volume sent to Ion Exchange (IX) and Impurity Removal (IR) Circuits

U & Th Removed from product

Refer to ASX Announcement Innovative Process Flowsheet Selected with High Recoveries


Refer to ASX Announcement Nanofiltration Reduces Acid Requirements By Over 80%

OUTSTANDING METALLURGICAL RESULTS

Rare Earths Recovered with Simple Heap Leach

- Excellent overall Nd and Pr recovery of ~75% inclusive of impurity removal
- Estimated 7.5 kg HCI/t ore consumption
- High quality MREC and MREH
 ~56-59% TREO and Low
 Impurity (Al, Fe, Si, U, Th)
- Product quality meets or exceeds global MREC and MREH benchmarks

- 1. Refer to ASX Announcement Heap Leach Improves Met Recoveries
- 2. Refer to ASX Announcement IXI Improves Processing Flowsheet
- 3. Refer to ASX Announcement High Quality MREC produced
 - Refer to ASX Announcement Innovative Process Flowsheet Selected with High Recoveries

MREC and MREH TREO AND IMPURITY COMPOSITION

Nd, Pr, Dy, Tb resent ~90% of Potential contained Value

- >55% Total Rare Earth Oxide (TREO) equivalents
- High Magnetic Rare Earth
 content to represent +90% of
 product value (Nd + Pr + Dy + Tb)
- Low levels of impurities
- <0.001% Uranium and Thorium</p>
- Offtake Engagement
 - North America, Europe & Asia
- Further composition refinements underway at ANSTO

TREO Composition

Element	MREC	MREH
	wt%	wt%
La ₂ O ₃	13.40	8.01
CeO ₂	27.44	28.93
Pr ₆ O ₁₁	2.86	3.82
Nd ₂ O ₃	9.16	13.26
Sm ₂ O ₃	1.11	1.63
Eu ₂ O ₃	0.15	0.21
Gd ₂ O ₃	0.54	0.84
Tb ₄ O ₇	0.07	0.10
Dy ₂ O ₃	0.26	0.40
Ho ₂ O ₃	0.046	0.06
Er ₂ O ₃	0.09	0.14
Tm ₂ O ₃	0.01	0.02
Yb ₂ O ₃	0.06	0.08
Lu ₂ O ₃	0.01	0.01
Y ₂ O ₃	1.14	1.75
TREO	56.37	59.25

Impurity Composition

•	
MREC	MREH
wt%	wt%
0.38	0.58
3.62	0.04
0.01	0.02
0.27	0.03
0.08	<0.01
0.30	0.08
1.83	1.00
<0.0125	<0.01
<0.124	0.07
<0.0621	<0.07
0.05	0.08
<0.10	0.25
<0.001	<0.001
<0.001	<0.001
	wt% 0.38 3.62 0.01 0.27 0.08 0.30 1.83 <0.0125 <0.124 <0.0621 0.05 <0.10 <0.001

PRIME LOCATION FOR FUTURE DEVELOPMENT

Existing Australian Infrastructure a Key Differentiating Factor

ESTABLISHED ESPERANCE TOWNSHIP

Proximate to large coastal town Esperance.
 Local workforce potential for any future development

READY ACCESS TO ESPERANCE BULK PORT

- Esperance Port handles over 200 ships p.a.
- Cape size vessel capacity
- Regular container ships link to the export market

SERVICED BY EXISTING ROAD NETWORK

 Established, well maintained road network connecting Splinter Rock to town and port

LOCAL RENEWABLE POWER CONNECTED

- Proven renewable energy production
- Esperance has Dual
 4.5 MW wind turbines
 plus 4 MW solar farm
 and gas turbines

NEXT STEPS

Advanced Metallurgical Testwork and Studies

- ANSTO Testwork Scale Up:
 - Heap leach Optimisation: Heap Leach duration and kinetics, Acid strength and consumption, Counter current heap configuration, Particle agglomeration methodology
 - ❖ Impurity Removal Verification: Nanofiltration (NF) acid recovery, Ion Exchange (IX) selectivity, two stage Impurity Removal (IR) optimisation
 - ❖ Bulk MREC and MREH Production: Precipitation to produce >1 kg of MREC and/or MREH for customer qualification, offtake discussions, and to assess commercial payability options
- Mining Study to Commence: Inside Centre Deposit pit shells, stripping ratios, mine scheduling and preliminary mining costs
- Engagement with potential offtake partners
- Engagement with government and potential financing partners
- Review Selective Nd, Pr, Tb and Dy Oxide Production Potential

 Refer ASX Announcement – Innovative Process Flowsheet Selected with High Recoveries at Splinter Rock

BENCHMARKING SHOWS POTENTIAL LOW CAPEX PROJECT

	OD6	IXR	MEI	VMM	VTM	BCM	LIN	ILU	ARU
Location	Australia	Uganda	Brazil	Brazil	Australia	Brazil	Malawi	Australia	Australia
Ore Type	Clay Hosted	Clay Hosted	Clay Hosted	Clay Hosted	Clay Hosted	Clay Hosted	Hard Rock Monazite	Hard Rock Monazite	Hard Rock Apatite
Processing Method	Heap Leach at Ambient	Heap Leach at Ambient	Leach Tanks at Ambient	Leach Tanks at Ambient	Leach Tanks at 60-90°C	In-situ Leach	Gravity, Mag Sep & Float	Crack, Leach, Purify, SX	Mill, Float, Leach, Bake, SX
Product	MREC/H	MREC	MREC	MREC	MREC	MREC	Monazite Conc.	Nd Pr Dy Tb Oxides	NdPr Oxide + SEG/HRE Oxide
Resource Grade TREO	1,338 ppm	640 ppm	2,359 ppm	2,508 ppm	493 ppm	746 ppm	2.14 %	Mixed	2.6 %
Feed Grade TREO	1,632 ppm	848 ppm	3,701 ppm	3,380 ppm	520 ppm	1,113 ppm	2.9 %	Mixed	2.9 %
Annual Throughput	ТВА	5 Mtpa	6 Mtpa	5 Mtpa	8 Mtpa	9 Mtpa	536 ktpa	Variable	1.05 Mtpa
TREO Recovery	~70-75%	35 %	55 %	57 %	86 % #	48 %	60 %	Not stated	80 - 85%
REO Production	ТВА	1,160 t	13,584 t	9,448 t	1,913 t excludes Ce+La	4,800 t	8,259 t	15,100 t	5,013 t
Payability Assumed	70-75 %	70 %	70 %	70 %	85 %	70 %	50-60 %	100 %	70 - 100 %
САРЕХ	ТВА	US\$120 M	US\$443 M	US\$354 M	US\$219 M	US\$55 M	US\$40 M	~US\$1,200 M	US\$1,226 M
Capital Intensity per tonne REO or NdPr	ТВА	US\$104,803	US\$32,611	US\$37,468	US\$114,479	US\$11,458	US\$4,843	US\$79,470	US\$244,564
Annual OPEX \$/kg REO or NdPr	ТВА	US\$52.99 /kg REO	US\$13,53 / kg REO	US\$9.30 / kg REO	US\$69.32 /kg REO	US\$6.15 / kg REO	US\$3.70 /kg REO	US\$37 / kg NdPr	US\$43.7 / kg NdPr
Market Capitalisation ¹	~\$13 M	~\$134 M	~\$514 M	~\$138 M	~\$138 M	~\$67 M	~\$467 M	~\$3.08 B	~\$1.10 B
Link to Source		DFS Report 20 March 2023	PFS Report 21 July 2025	PFS Report 9 July 2025	Scoping Study 12 March 2025	Scoping Study 26 Feb 2025	FS Report 1 July 2024	Update Econ. 6 Dec 2024	Debt Funding 23 July 2024

recovery post +53um material removal

1. As at 28 October 2025

RARE EARTHS MARKET HEATING UP

US Government determination to develop domestic critical minerals underpins REE industry revival

US Department of
Defense invests
US\$400M in direct
equity in America's
largest REE producer –
MP Materials, operator
of the Mountain Pass
mine in California

The deal includes
offtake & minimum
price guarantees for
NdPr at a significant
premium to current
spot

Subsequently, Apple have entered into a US\$500M agreement to buy rare earths magnets from MP Materials

Chinese REE export restrictions intensifies US
Government efforts to establish a domestic REE supply chain

CNBC news

Pentagon to become largest shareholder in Rinehart-backed rare earth miner MP Materials

Spencer Kimball and Adrian Rauso | CNBC Fri, 11 July 2025 7:59AM | ■ Comments WA rare earths positioned to play key role with US amid Donald Trump's critical minerals clash with China

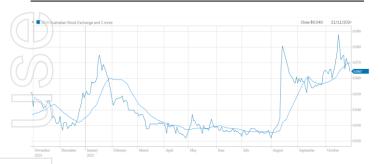
CORPORATE SNAPSHOT

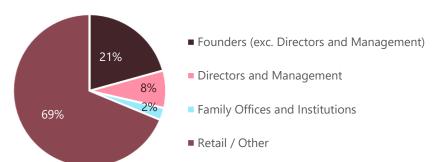
High Calibre Leadership Team and Tight Capital Structure

Capital Structure	ASX: OD6
Price per share ¹	A\$0.065
Total number of shares on issue ¹	198.93M
Performance rights and options ²	86.87M
Market capitalisation (undiluted) ¹	A\$12.9M
Cash ²	A\$3.0M
Debt ²	Nil
Enterprise value	A\$9.9M

Mr Brett Hazelden MANAGING DIRECTOR

Mr Piers Lewis NON-EXECUTIVE CHAIRMAN


Dr Mitch Loan NON-EXECUTIVE DIRECTOR


Dr Darren HoldenGeological Advisor

Share Price 12 Month History

A\$/share

Register Detail

^{1.} As at 31 October 2025

^{2.} Cash balance as at 1 October 2025

SPLINTER ROCK MINERAL RESOURCE ESTIMATE

At 1,000ppm Cut Off Grade

Prospect	Category	Tonnes (Mt)	TREO (ppm)	Pr ₆ O ₁₁ (ppm)	Nd ₂ O ₃ (ppm)	Tb ₄ O ₇ (ppm)	Dy ₂ O ₃ (ppm)	MagREO (ppm)	MagREO (% of TREO)
Inside Centre	Indicated	119	1,632	79	271	2	12	366	22.4%
Centre	Inferred	276	1,342	65	228	3	15	310	23.1%
Centre NW	Inferred	21	1,255	65	227	3	14	309	24.6%
Scrum	Inferred	126	1,228	58	210	3	15	285	23.2%
Prop	Inferred	94	1,160	53	190	2	13	259	22.3%
Flanker	Inferred	45	1,250	59	212	3	16	290	23.2%
Total	1+1	682	1,338	64	226	3	14	307	22.9%

Refer to ASX Announcement Mineral Resource Estimate Doubles

TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3 MagREO (Magnet Rare Earth Oxide) = Nd2O3 + Pr6O11 + Tb4O7 + Dy2O3

OD6

[%] Magnet REO = (MagREO / TREO)*100

For full Mineral Resource estimate details refer to OD6 ASX announcement 29 May 2024, "Mineral Resource Estimate Doubles". OD6 is not aware of any new information or data that materially affects the Mineral Resource estimate included in that release. All material assumptions and technical parameters underpinning the Mineral Resource estimate in that release continue to apply and have not materially changed.

SPLINTER ROCK MINERAL RESOURCE ESTIMATE

Focused on quality over quantity of resource

Cut-off grade (ppm TREO)			Contained TREO (k tonne)	MagREO (ppm)	MagREO (% of TREO)	Contained MagREO (k tonnes)
400	2,226	884	1,968	201	22.7%	447
600	1,654	1014	1,677	232	22.9%	384
800	1,125	1164	1,310	267	22.9%	300
1,000	682	1338	913	307	22.9%	209
1,200	394	1518	598	348	22.9%	137
1,400	226	1686	381	386	22.9%	87

TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3 MagREO (Magnet Rare Earth Oxide) = Nd2O3 + Pr6O11 + Tb4O7 + Dy2O3

REAGENT

CONSUMPTION

OD6

[%] Magnet REO = (MagREO / TREO)*100

For full Mineral Resource estimate details refer to OD6 ASX announcement 29 May 2024, "Mineral Resource Estimate Doubles". OD6 is not aware of any new information or data that materially affects the Mineral Resource estimate included in that release. All material assumptions and technical parameters underpinning the Mineral Resource estimate in that release continue to apply and have not materially changed.

CONTACT US

REGISTERED OFFICE

c/o LCP Group Level 1, 1 Alvan Street Subiaco WA 6008 Phone: +61 8 6189 8515

Email: info@od6metals.com.au

SHARE REGISTRY

Computershare Investor Services Level 11, 172 St Georges Tce Perth WA 6000

www.od6metals.com.au ASX:OD6

LUCAS ROBINSON

Investor Relations
lucas@corporatestorytime.com
+61 408 228 889

