

Bullabulling resource update on track as drilling extends mineralisation at depth and along strike

New results include 10m @ 10.9 g/t Au at Phoenix and 5m @ 21.7 g/t Au at Dicksons

Highlights

Minerals 260 Limited (ASX:MI6) is pleased to report further results from its ongoing drilling program at the Bullabulling Gold Project, located 25km west of Coolgardie in Western Australia, with the latest results continuing to support a potential increase to the current 2.3Moz Mineral Resource Estimate (MRE). Assays have been received for a further 107 drill holes totalling 21,496m, including:

Phoenix Deposit (current resource 27Mt @ 1.1g/t Au for 930koz Au)

Infill

12m @ 2.0g/t Au from 220m in BBRC0299*

Extensional

- 10m @ 2.4g/t Au from 75m in BBRC0288, including*
 - 1m @ 17.1g/t Au from 76m
- 10m @ 10.9g/t Au from 203m in BBRC0320*, including:
 - 1m @ 88.9g/t Au from 203m
- 16m @ 1.6g/t Au from 162m in BBRC0321#
- 4m @ 3.3g/t Au from 111m & 2m @ 9.0g/t Au from 148m in BBRC0322*, including:
 - 1m @ 11.1g/t Au from 113m, and
 - 1m @ 17.1g/t Au from 149m
- 15m @ 2.2g/t Au from 93m in BBRC0325*, including:
 - 1m @ 22.2g/t Au from 95m

Bacchus Deposit (current resource 22Mt @ 1.3g/t Au for 890koz Au)

Infill

- 9m @ 3.0g/t Au from 148m and 10m @ 1.7g/t Au from 282m in BRRD0030*1, including:
 - 1m @ 17.8g/t Au from 156m
- 4m @ 9.8g/t Au from 139m in BBRC0276#, including:
 - 1m @ 31.1g/t Au from 140m

Page | 1

- 14m @ 4.2g/t Au from 250m in BBRC0277#, including:
 - 3m @ 11.5g/t Au from 257m
- 9m @ 3.1g/t Au from 25m in BBRC0339*, including:
 - 1m @ 10.2g/t Au from 28m
- 11m @ 1.8g/t Au from 185m in BBRC0333#
- 14m @ 1.2g/t Au from 234m in BBRC0334#
- 7m @ 1.9g/t Au from 104m in BBRC0351*

Extensional

- 10m @ 2.2 g/t Au from 94m in BBRC0342*, including:
 - 1m @ 12.1 g/t Au from 94m
- 5m @ 4.6g/t Au from 197m in BBRC0305#, including:
 - 1m @ 11.4g/t Au from 199m
- 11m @ 2.0 g/t Au from 43m in BBRC0352*, including:
 - 1m @ 12.6 g/t Au from 43m

Dicksons Deposit (current resource 7.7Mt @ 0.9g/t Au for 222koz Au)

- 9m @ 2.2g/t Au from 56m in BBRC0329*, including:
 - 1m @ 13.8g/t Au from 64m
- 5m @ 21.7g/t Au from 164m in BBRC0383*, including:
 - 2m @ 48.3g/t Au from 164m

Kraken Deposit (current resource 2.8Mt @ 1.7g/t Au for 160koz Au)

- 1.2m @ 19.1g/t Au from 172m & 1m @ 23.1g/t Au from 182m in BBDD0047*
- 9m @ 1.48g/t Au from 71m in BBRC0307*
- 12m @ 1.6g/t Au from 92m in BBRC0369*

Extensional

- 8m @ 1.6g/t Au from 53m in BBRC0394*, including:
 - 1m @ 10.7g/t Au from 60m

Gibraltar Prospect

Extensional

- 19.9m @ 1.7g/t Au from 230.7m in BBRD0272¹, including:
 - 0.3m @ 15.5g/t Au from 234.4m
- * True widths are estimated at between 85% and 95% of the reported drillhole intercepts
- # True widths are estimated at between 70% and 85% of the reported drillhole intercepts
- ¹ Diamond tail results reported only. See previous ASX announcements for RC pre-collar significant intercepts

- Drilling continues to target extensions of high-grade intercepts located beneath or along strike from the current MRE as well as infill drilling to support the Pre-Feasibility Study (PFS).
- Total metres drilled by Minerals 260 has now exceeded 100,000m of which ~90,000m will be used for the updated MRE, scheduled to be completed by early December 2025.
- Results have confirmed extensions of mineralisation at depth at Phoenix, Bacchus, Kraken and Dicksons, including multiple high-grade intercepts beneath the existing pit shells
- Extensional drilling continues to confirm the **continuity of mineralisation at depth along the entire 8.5km strike extent of the current MRE.**
- Infill drilling within the Bacchus pits has returned high-grade mineralisation along the footwall shear zone.
- Multiple mineralised lenses have been extended outside the MRE pit shells, indicating strong potential to increase the Mineral Resource at depth and along strike.
- Drilling at Gibraltar intersected thick, high-grade mineralisation down-plunge of the main lode.

Table 1 - Drilling Summary

	Holes (RC & DD)	Metres (RC & DD)
Drilled by MI6 ¹	492	102,884
Previously reported	330	70,644
Reported in this announcement	107	21,496
Total reported	437	92,140
Assays pending	55	10,744
Remaining from 110,000m plan	~40	~7,000

¹Two diamond holes were drilled by Norton Goldfields prior to the completion of the transaction.

Management Comment

Minerals 260 Managing Director, Luke McFadyen, said: "Infill and extensional drilling at Bullabulling continues to deliver excellent results. With over 100,000m drilling completed since April, the majority of the drilling data (~90,000m) will be included in the upcoming resource update, which remains on track for early December. The results from Gibraltar, which is not included in the current MRE, will be included in the updated Bullabulling MRE".

Details

Minerals 260 Limited ("Minerals 260" or the "Company") **(ASX: MI6)** is pleased to report further results from the drilling program at its 100%-owned 2.3Moz Bullabulling Gold Project ("Bullabulling" or the "Project") located 25km west of Coolgardie in Western Australia.

Assays have been received for an additional 107 drill holes totalling 21,496m.

A total of 492 holes for 102,884m have been completed, comprising 53 DD holes for 10,623m, 426 RC holes for 88,448m, and 13 RC/DD holes for 3,813m (**Figure 1**). See **Appendix 1** for a summary of the results included in this announcement.

Drilling results in this announcement are from:

- Infill drilling of Inferred classified ounces within the Dicksons, Phoenix, Bacchus and Kraken pit shells designed to support an upgrade to Indicated status;
- Drilling to follow up higher grade intercepts in the Bacchus and Phoenix deposits;
- Diamond tails to follow up RC drilling at the Gibraltar prospect; and
- Extensional drilling beneath the existing MRE pit shells.

Bacchus Deposit (current resource 22Mt @ 1.3g/t Au for 890koz Au)

Recent drilling at Bacchus has focussed on infilling Inferred areas of the MRE to support the potential reclassification to the Indicated category, which would enable their consideration in a future maiden Ore Reserve.

Infill drilling continues to intersect thick and higher than resource grade intercepts beneath the existing pit, in particular along the footwall lode, reinforcing the existing MRE (**Figure 2**). Results include:

- 14m @ 4.2g/t Au from 250m in BBRC0277
- 4m @ 9.8g/t Au from 139m in BBRC0276
- 11m @ 1.8g/t Au from 185m in BBRC0333
- 14m @ 1.2g/t Au from 234m in BBRC0334

Extensional drilling continues to intersect zones of thick and consistent mineralisation in the Bacchus footwall lode beneath the existing pit, with BBRC0352 returning 11m @ 2.0 g/t Au from 43m, BBRC0342 10m @ 2.2 g/t Au from 94m and BBRC0305 5m @ 4.6g/t Au from 197m.

Phoenix Deposit (current resource 27Mt @ 1.1g/t Au for 930koz Au)

Recent drilling at the Phoenix deposit has targeted down dip extensions beneath the existing pit where previous drilling was too shallow to intersect the main footwall lode. BBRC0320 intersected 10m @ 10.9g/t Au from 203m, including 1m @ 88.9g/t Au from 203m (Figure 3).

Other extension holes targeting mineralisation down dip of the MRE include BBRC0288 with 10m @ 2.4q/t Au from 75m, BBRC0321 with 16m @ 1.6g/t Au from 162m, and BBRC0325 with 15m @ 2.2g/t Au from 93m.

With multiple stacked lodes intersected in all drill holes, these high-grade intercepts are likely to result in a deeper pit shell than the current MRE design.

Dicksons Deposit (current resource 7.7Mt @ 0.9g/t Au for 222koz Au)

Recent drilling at Dicksons focussed on infill and depth extensions beneath the MRE pit shells. Results were very positive with one of the highest gram x metre intercepts of the drilling campaign received, with BBRC0383 intersecting 5m @ 21.7 g/t Au from 164m beneath the existing MRE (Figure 4). Other significant results include BBRC0329 with 9m @ 2.2 g/t Au from 56m, including 1m @ 13.8 g/t Au from 64m.

These intercepts will be followed up with additional drilling to continue to improve understanding of the structural controls of this high-grade mineralisation.

Kraken Deposit (current resource 2.8Mt @ 1.7g/t Au for 160koz Au)

Recent drilling at Kraken has focussed on infilling Inferred areas of the MRE to support the potential reclassification to the Indicated category. Results include BBRC0369 with 12m @ 1.6 g/t Au from 92m, BBRC0307 with 9m @ 1.48 g/t Au from 71m and BBDD0047 with 1.2m @ 19.1g/t Au from 172m & 1m @ 23.1g/t Au from 182m.

BBRC0394 intersected thick mineralisation beneath the MRE, with 8m @ 1.6g/t Au from 53m, including 1m @ 10.7g/t Au from 60m. These results are highly encouraging and indicate resource growth potential which will continue to be targeted.

Drilling will focus on the eastern and western extensions of Kraken to define additional shallow, higher-grade ounces which could provide an opportunity to optimise mine scheduling by targeting shallow high-grade mineralisation early in the mine life.

Gibraltar Prospect

Drilling at Gibraltar targeted the down plunge extension to mineralisation and results for BBRD0272 returned 19.9m @ 1.7 g/t Au from 230.7m, including 0.3m @ 15.5 g/t Au from 234.4m (Figure 5). This result indicates mineralisation is potentially increasing in thickness and grade with depth. A maiden MRE is planned for Gibraltar this year and further drilling is planned to follow up these results.

Minerals 260

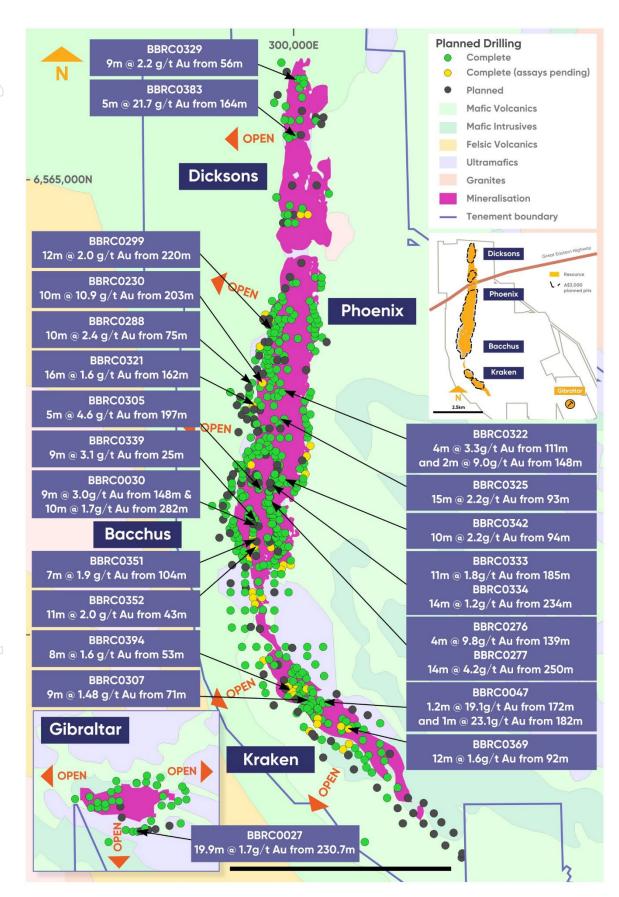


Figure 1 - Planned and completed drilling collar locations with highlighted results

PO Box 638, West Perth WA 6872

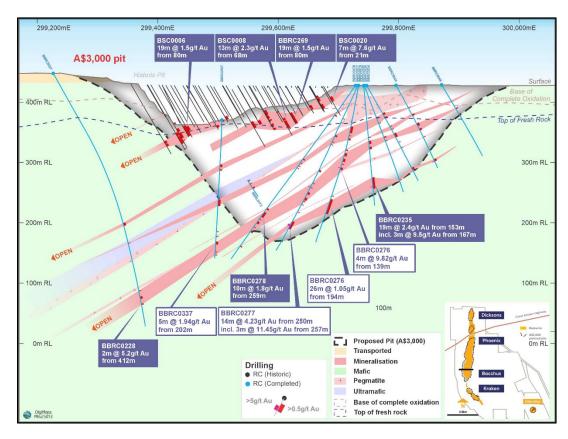


Figure 2 - Section 6566380N showing continuation of thick mineralisation in BBRC0276 and BBRC0277 along the foot wall lode beneath the Bacchus pit (new results are in white boxes)

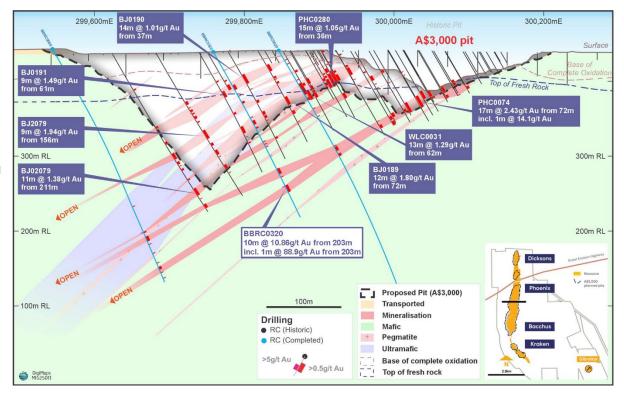


Figure 3 - Section 6567770N showing high-grade mineralisation at depth beneath the Phoenix pit in drill hole BBRC0320 (new results are in white boxes)

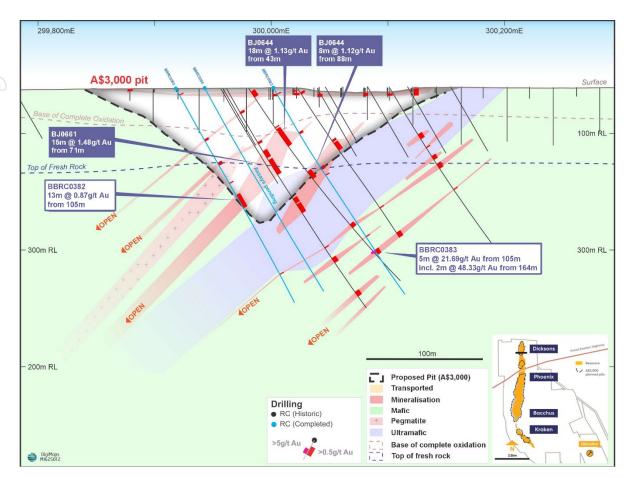


Figure 4 - Section 6570500N showing high grade drilling results from BBRC0383 beneath the planned Dicksons resource pit, historical intercepts (BJ0644 and BJO661) also shown (new results are in white boxes)

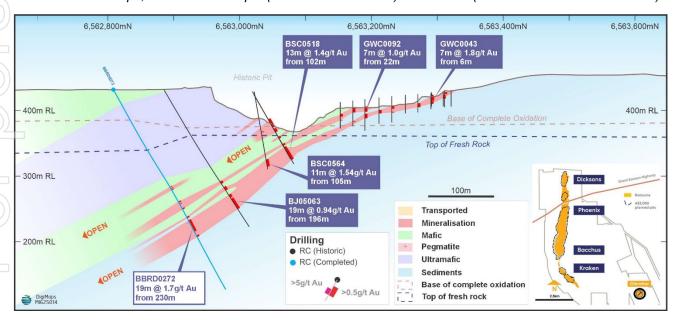


Figure 5 - Section 6562955N (looking west) showing thick mineralisation in BBRD0272 extending from the existing Gibraltar pit, historical intercepts also shown (new results are in white boxes)

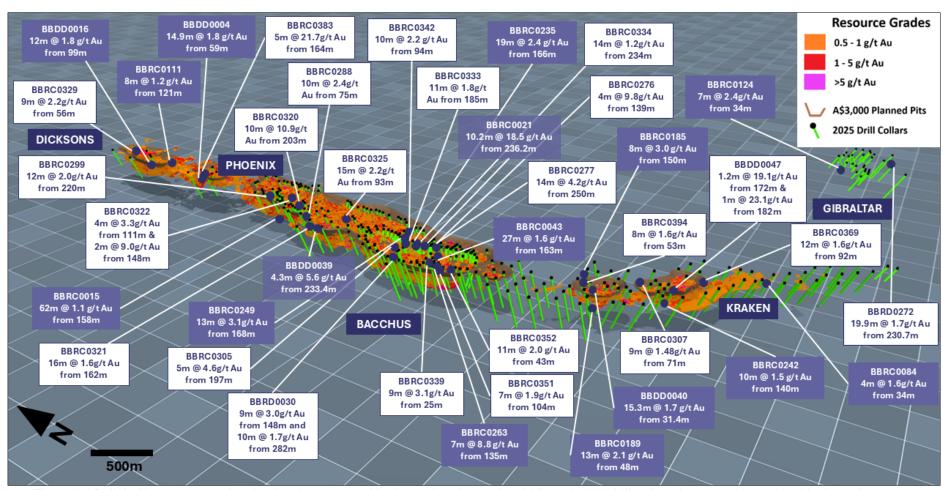


Figure 6 - Bullabulling resource showing key intercepts with planned and completed Minerals 260 drill collars (new results are in white boxes)

This announcement has been authorised for release by the Board of Minerals 260 Limited.

For further information please contact:

Luke McFadyen
Managing Director

info@minerals260.com.au

T: +61 8 6556 6020

Investor Relations:

Nicholas Read Read Corporate

T: +61 8 9388 1474

nicholas@readcorporate.com.au

Bullabulling Gold Project Overview

Bullabulling Gold Project is a potential open pit mining operation located 25km south-west of Coolgardie in the Eastern Goldfields region of Western Australia. The Project hosts a JORC 2012 Mineral Resource Estimate of 60Mt @ 1.2g/t Au for 2.3Moz of gold, on granted mining leases (M15/503, M15/1414, M15/282, M15/554 and M15/552) and is located within a largely contiguous ~587sq km tenement package.

Bullabulling offers exploration upside, with multiple highly prospective targets at depth and along strike, which supports the plan to grow the Mineral Resource and is the focus of exploration drilling by the Company.

Table 1 - Bullabulling Mineral Resource Estimate as of December 2024

		Indicated			Inferred			TOTAL	
By Area	Tonnes (Mt)	Grade (Au g/t)	Ounces (koz)	Tonnes (Mt)	Grade (Au g/t)	Ounces (koz)	Tonnes (Mt)	Grade (Au g/t)	Ounces (koz)
NORTH									
Bacchus	8.5	1.2	330	13	1.3	560	22	1.3	890
Dicksons	6.3	0.9	180	1.4	0.9	41	7.7	0.9	220
Phoenix	25	1.1	850	2.0	1.3	82	27	1.1	930
Laterite				1.3	1.1	45	1.3	1.1	45
Pegmatite				0.016	1.1	0.58	0.016	1.1	0.58
Waste				0.084	1.4	3.8	0.084	1.4	3.8
Subtotal North	39	1.1	1,400	18	1.3	730	57	1.1	2,100
SOUTH									
Kraken				2.8	1.7	160	2.8	1.7	160
Laterite				0.048	0.7	1.0	0.048	0.7	1.0
Subtotal South				2.9	1.7	160	2.9	1.7	160
TOTAL	39	1.1	1,400	21	1.3	890	60	1.2	2,300
By Material Type									
NORTH									
Oxide	3.7	1.1	130	1.6	1.1	60	5.3	1.1	189
Transition	11	1.0	350	1.7	1.0	57	12	1.0	410
Primary	25	1.1	880	15	1.3	620	40	1.2	1,500
Subtotal North	39	1.1	1,400	18	1.3	730	57	1.1	2,100
SOUTH									
Oxide	-	-		0.34	1.4	15	0.34	1.4	15
Transition	-	-	-	1.1	1.4	50	1.1	1.4	50
Primary	-	-		1.4	2.0	91	1.4	2.0	91
Subtotal South				2.9	1.7	160	2.9	1.7	160
TOTAL	39	1.1	1,400	21	1.3	890	60	1.2	2,300

¹ Bullabulling Mineral Resource Estimate (Snowden Optiro, December 2024). 0.5g/t Au cut-off grade and \$3,000 pit shell. Tonnages, grades and ounces have been rounded to two significant figures to reflect the relative uncertainty of the estimate.

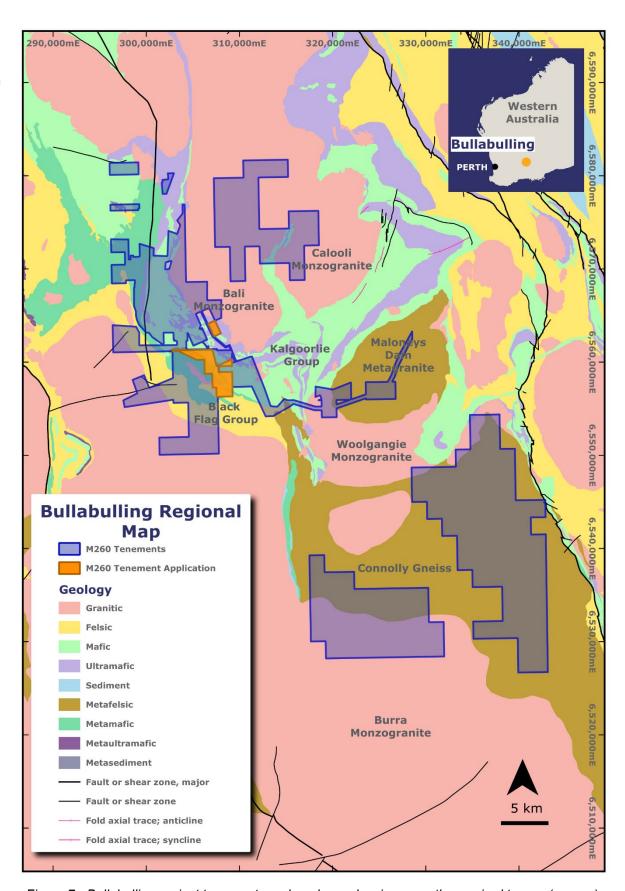


Figure 7 - Bullabulling project tenements and geology, showing recently acquired tenure (orange)

Competent Person Statement

The information in this announcement that relates to Exploration Results for the Bullabulling Gold Project is based on, and fairly represents, information and data compiled by Mr Matthew Blake, who is a Competent Person and a member of the Australasian Institute of Geoscientists (AIG). Mr Blake is a full-time employee of the company. Mr Blake has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Blake consents to the inclusion in this announcement of the information and data relating to the Bullabulling Gold Project in the form and context in which it appears.

The information in this announcement that relates to the Mineral Resource Estimate for the Bullabulling Gold Project is extracted from the Minerals 260 Limited ASX announcement titled "Acquisition of Bullabulling Gold Project" dated 14 January 2025.

The information in this announcement that relates to prior Exploration Results and Historical Exploration Results for the Bullabulling Gold Project is extracted from the following ASX announcements:

- "Bullabulling Gold Project Exploration Strategy" dated 12 May 2025
- "Bullabulling Gold Project Drilling Results" dated 4 June 2025
- "Bullabulling Gold Project Drilling Update" dated 7 July 2025
- "Gold discovered along strike and at depth at Bullabulling" dated 4 August 2025
- "High-Grade Intercepts Expand Bullabulling Drill Program" dated 9 September 2025
- "High-Grade Results to Support Bullabulling Resource Upgrade" dated 7 October 2025

These announcements are available at www.minerals260.com.au.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcements and that in the case of the Mineral Resource Estimate for the Bullabulling Gold Project, all material assumptions and technical parameters underpinning the estimates in the previous announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons findings presented have not been materially modified from the original market announcements.

Forward Looking Statements

This announcement may contain forward-looking statements, guidance, forecasts, estimates, prospects, projections or statements in relation to future matters that may involve risks or uncertainties and may involve significant items of subjective judgement and assumptions of future events that may or may not eventuate (Forward Statements).

Forward Statements can generally be identified by the use of forward-looking words such as "anticipates", "estimates", "will", "should", "could", "going", "may", "expects", "plans", "forecast", "target" or similar expressions. Forward Statements including references to updating or upgrading mineral resource estimates, future or near-term production and the general prospectivity of the deposits at the Bullabulling Gold Project (Project), likelihood of permitting the Project and taking a financial investment decision, among other indications, guidance or outlook on future revenues, distributions or financial position and performance or return or growth in underlying investments are provided as a general guide only and should not be relied upon as an indication or guarantee of future performance.

In addition, these Forward Statements are based upon certain assumptions and other important factors that, if untrue, could materially affect the future results, performance or achievements expressed or implied by such information or statements. There can be no assurance that such information or statements will prove to be accurate.

Key assumptions upon which the Company's forward-looking information is based include, without limitation, assumptions regarding the exploration and development activities, receipt of timely approvals and permits, ability to obtain timely finance on reasonable terms when required in the future and contracting for development, construction and commissioning of any future mining operation on terms favourable to the Company, the current and future social, economic and political conditions and any other assumption generally associated with the mining industry. To the extent that certain statements contained in this announcement may constitute 'Forward Statements' or statements about forward looking matters, then the information reflects the Company's (and no other party's) intent, belief or expectations as at the date of this announcement. No independent third party has reviewed the reasonableness of any such statements or assumptions. None of the Company, its related bodies corporate and their respective officers, directors, employees, advisers, partners, affiliates and agents (together, the MI6 Parties) represent or warrant that such Forward Statements will be achieved or will prove to be correct or gives any warranty, express or implied, as to the accuracy, completeness, likelihood of achievement or reasonableness of any Forward Statement contained in this announcement.

Forward Statements are not guarantees of future performance and involve known and unknown risk, uncertainties and other factors, many of which are beyond the control of the Company, and their respective officers, employees, agents and advisors, that may cause actual results to differ materially from those expressed or implied in such statements. Except as required by law or regulation, the Company assumes no obligation to release updates or revisions to Forward Statements to reflect any changes. Recipients should form their own views as to these matters and any assumptions on which any of the Forward Statements are based and not place reliance on such statements.

Appendix 1 - Bullabulling Project - RC & DD Drill Hole Statistics

Appendix								_		Signit Inter	cepts
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	Grade (g/t)
								148	157	9	2.95
BBRD0030*	RC/DD	299436	6566531	428	320	-60	90	inc.	1m @ 17.8/	t Au from 1	56m
								282	292	10	1.68
DDDC0344	D.C.	204707	CE C20CC	420	150	60	250	112	113	1	0.8
BBRC0211	RC	304707	6563066	428	150	-60	350	124	129	5	0.86
								31	32	1	2.56
BBRC0237	RC	299828	6566037	425	148	-81	94	62	63	1	1.58
								84	85	1	1.64
DDD 000.00	200	200464	6564670	407	400	60		361	364	3	1.93
BBRC0266	RC	299464	6564678	427	490	-60	90	384	385	1	0.53
								56	60	4	0.84
								72	76	4	0.89
								99	100	1	1.67
								107	113	6	0.9
								123	124	1	0.64
BBRC0268	RC	299597	6567028	434	286	-60	90	150	151	1	0.5
								158	165	7	0.52
								186	187	1	0.65
								188	189	1	0.53
								193	220	27	0.7
								233	240	7	0.83
								165	166	1	0.96
								173	175	2	0.82
BBRC0269	RC	299626	6567076	432	258	-60	90	196	204	8	2.8
								212	217	5	1.62
								233	238	5	3.58
								224.7	227.2	2.5	0.63
								230.7	250.56	19.86	1.65
BBRD0272*	RC/DD	305088	6562810	430	216	-60	350	inc. 0.3	m @ 15.5 g/	t Au from 2	34.35m
								257.17	260	2.83	1.53
								69	80	11	0.66
								84	85	1	0.6
								89	92	3	0.94
								108	110	2	1.14
BBRC0276	RC	299739	6566380	428	270	-80	270	114	119	5	0.56
								124	129	5	0.97
								133	134	1	0.91
								139	143	4	9.82

										Inter	
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	Grade (g/t)
								inc. 1	lm @ 31.1 g	/t Au from 1	L40m
								188	189	1	1.03
								194	220	26	1.05
								60	61	1	1.21
								67	68	1	2.6
								90	93	3	1.39
								102	103	1	1.22
								107	108	1	2.18
								154	157	3	0.95
								178	179	1	2.16
BBRC0277	RC	299738	6566380	428	306	-65	270	186	187	1	13.2
								195	199	4	1.96
								205	210	5	0.61
								212	213	1	0.55
								218	219	1	0.99
								232	233	1	0.97
								250	264	14	4.23
								inc. 3	m @ 11.45 g	g/t Au from	257m
								195	198	3	1.21
BBRC0287	RC	299522	6567434	434	310	-60	90	217	218	1	0.52
								242	243	1	0.72
								67	71	4	0.79
								75	85	10	2.4
								inc.	1m @ 17.1 g	g/t Au from	76m
								99	100	1	1.12
								108	109	1	0.81
								118	119	1	1.64
BBRC0288	RC	299733	6567728	436	268	-60	90	123	126	3	0.72
								139	141	2	0.83
								150	154	4	0.76
								194	195	1	0.51
								199	200	1	0.65
								215	216	1	1.54
								225	231	6	3.2
								31	35	4	0.8
								47	55	8	0.65
BBRC0289	RC	299779	6567629	436	256	-60	90	70	78	8	0.7
								98	99	1	1.74
								109	127	18	0.76

	III-II-				Donath			F		Inter	
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	Grade (g/t)
								131	132	1	1.84
								152	160	8	0.61
								192	195	3	0.99
								200	201	1	1.47
								30	35	5	1.1
								58	59	1	0.51
								71	72	1	0.62
BBRC0298	RC	299664	6565779	426	295	-60	0	136	137	1	0.95
								196	197	1	0.81
								199	200	1	0.74
								208	209	1	1.05
								62	65	3	0.6
								70	71	1	0.7
								78	79	1	0.54
								98	105	7	0.69
								175	178	3	3.83
BBRC0299	RC	299786	6568330	445	258	-60	90	182	183	1	0.61
								193	194	1	0.83
								201	203	2	0.78
								207	208	1	0.71
								211	212	1	1.14
								220	232	12	2.03
								61	62	1	0.51
								118	119	1	1.8
								124	129	5	1.17
								133	141	8	0.59
								181	194	13	0.61
BBRC0301	RC	299627	6567730	438	170	-60	90	214	218	4	0.53
								220	221	1	0.63
								223	224	1	0.51
								232	233	1	0.87
								235	236	1	0.67
								246	248	2	0.77
BBRC0302	RC	299615	6566680	377	210	-60	90	30	31	1	1.09
DUNCUSUZ	NC NC	233013	0300000	3//	210	-00	30	172	173	1	3.36
								82	83	1	0.77
BBRC0303	RC	299611	6566740	378	240	-55	90	93	94	1	0.62
מטעכטטאממ	, nc	233011	0300740	3/6	240	-33	30	113	115	2	0.71
								136	141	5	0.88

Page | 15

										Inter	
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	0.5g/t) Grade (g/t)
								196	204	8	1.19
								46	49	3	1.11
								81	82	1	2.13
								94	95	1	0.71
BBRC0304	RC	299613	6565758	428	336	-60	0	164	166	2	0.64
22.10000		233020	0000700	.20				190	191	1	0.88
								194	195	1	0.67
								237	238	1	1.07
								1	4	3	0.64
								153	154	1	1.77
								182	183	1	1.92
BBRC0305	RC	299608	6566615	386	264	-75	270	197	202	5	4.56
										g/t Au from	
								240	242	2	4.9
								12	13	1	0.53
								15	16	1	0.5
								18	20	2	0.76
								23	24	1	0.54
								27	28	1	0.99
BBRC0306	RC	299529	6566680	398	228	-80	90	37	38	1	0.8
								130	131	1	0.83
								172	173	1	0.52
								191	192	1	0.68
								208	210	2	1
								215	219	4	0.53
								44	45	1	0.51
								51	54	3	0.5
BBRC0307	RC	300204	6564261	418	108	-60	45	56	57	1	0.53
								71	80	9	1.48
								88	92	4	0.54
22222		200:	6561333		45.5			87	90	3	1.28
BBRC0308	RC	300175	6564233	417	126	-60	45	94	95	1	0.5
								53	54	1	0.51
								93	94	1	1.39
BBRC0309	RC	300146	6564205	417	144	-60	45	103	105	2	0.86
								110	112	2	0.7
								116	117	1	0.61
BBRC0310	RC	299566	6567080	432	273	-60	90	206	219	13	0.89
BBRC0311	RC	299630	6567130	432	300	-60	90	107	115	8	0.69

											Inter	ficant cepts
	Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	Grade (g/t)
Г									121	122	1	1.48
									159	160	1	0.52
									161	162	1	0.58
									167	170	3	0.52
									192	193	1	0.53
									198	199	1	0.65
									230	231	1	1.4
	BBRC0312	RC	300148	6567180	434	87	-60	90	9	10	1	5.87
	BBRC0313	RC	300319	6564261	417	94	-60	45	53	54	1	1.55
	BBRC0314	RC	300380	6564265	419	82	-60	45	38	39	1	1.23
	DDD00045	200	200250	5554004	447	420	60	45	53	57	4	0.55
	BBRC0315	RC	300260	6564204	417	120	-60	45	78	81	3	1.13
									66	67	1	1.06
	BBRC0316	RC	300376	6564038	417	60	-60	45	83	93	10	1.39
									100	102	2	0.84
									48	49	1	0.76
	BBRC0317	RC	300572	6564062	419	114	-60	45	54	59	5	0.8
									67	69	2	0.51
									76	82	6	1.13
	BBRC0318	RC	300551	6563985	417	148	-60	45	98	103	5	0.64
									107	108	1	0.66
									115	116	1	0.62
	DDD00040	200	200522	6564007	440	126	60	45	63	64	1	1.55
	BBRC0319	RC	300632	6564007	418	126	-60	45	70	71	1	0.84
									52	59	7	0.91
									68	69	1	0.68
									77	80	3	1.07
									101	102	1	1.11
									106	112	6	0.98
									116	118	2	1.71
	BBRC0320	RC	299752	6567780	439	250	-60	90	137	138	1	0.62
									141	142	1	1.11
									145	146	1	0.68
									178	186	8	0.52
									190	191	1	0.52
									203	213	10	10.86
											/t Au from 2	
							_		86	91	5	0.61
l	BBRC0321	RC	299603	6567580	435	307	-80	90	162	178	16	1.56

										Signit Inter	cepts
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	Grade (g/t)
								188	189	1	0.8
								194	195	1	1.34
								219	220	1	0.97
								223	224	1	0.73
								234	236	2	0.99
								245	246	1	0.74
								267	270	3	0.71
								277	282	5	1.05
								298	299	1	0.9
								35	36	1	0.65
								41	44	3	1.72
								48	51	3	1.44
								56	57	1	0.54
								59	60	1	0.57
								90	96	6	1.3
BBB6666		200707	65.57000		222	60		111	115	4	3.28
BBRC0322	RC	299787	6567830	441	232	-60	90	inc. 1	lm @ 11.1 g	/t Au from 1	L13m
								141	142	1	0.52
								148	150	2	9.01
								inc. 1	lm @ 17.1 g	/t Au from 1	L49m
								157	158	1	0.78
								164	165	1	0.51
								188	191	3	0.56
								114	115	1	0.59
								127	130	3	0.89
								136	140	4	0.68
								144	145	1	0.87
								150	151	1	1.33
								181	183	2	1.7
BBRC0323	RC	299800	6568380	445	274	-60	90	187	189	2	0.6
								201	202	1	0.59
								220	224	4	0.82
								228	229	1	0.55
								232	233	1	0.68
								236	237	1	0.59
								265	266	1	0.53
BBRC0324	RC	300105	6566681	434	94	-60	90		No signific	ant results	
DDDC033E	DC.	200796	6567202	121	222	-60	90	60	67	7	0.68
BBRC0325	RC	299786	6567382	434	232	-60	90	76	77	1	0.67

										Inter	
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	0.5g/t) Grade (g/t)
								93	108	15	2.18
								inc.	1m @ 22.2 į	g/t Au from	95m
								121	125	4	0.58
								130	131	1	0.67
								171	172	1	1.21
								177	180	3	0.91
								199	200	1	2.66
								61	63	2	0.87
								68	69	1	0.97
								74	75	1	0.72
								86	87	1	1.5
								119	120	1	1.31
BBRC0326	RC	299641	6567530	434	310	-60	90	145	146	1	0.77
								174	177	3	0.57
								181	185	4	0.88
								225	228	3	0.72
								237	238	1	1.07
								241	242	1	0.53
								25	26	1	2.21
								46	47	1	1.81
								68	69	1	0.52
								71	73	2	0.71
BBRD0327*	RC/DD	299869	6568730	454	298	-60	90	146	148	2	2.45
								173	175	2	0.59
								179	180	1	0.56
								199	201	2	0.8
								205	207	2	0.99
								113	124	11	0.68
BBRC0328	RC	299910	6570820	435	209	-60	90	146	161	15	0.77
								192	199	7	0.58
								31	51	20	0.72
BBRC0329	RC	300040	6571121	432	166	-60	90	56	65	9	2.2
DUNCUSZS	NC.	300040	03/1121	+3∠	100	-00	30	inc.	1m @ 13.8	g/t Au from	64m
								159	160	1	2.31
								87	88	1	0.93
								102	109	7	1.7
BBRC0330	RC	299790	6566780	426	253	-75	270	127	128	1	0.66
								148	155	7	0.7
								174	175	1	1.67

								_		Signit Inter	cepts
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	Grade (g/t)
								212	215	3	0.61
								72	73	1	0.75
								80	81	1	2.41
								89	90	1	1.59
								121	122	1	0.52
BBRC0331	RC	299792	6566780	429	280	-80	90	128	131	3	0.66
BBKC0331	RC RC	299792	0300780	429	280	-80	90	135	136	1	1.11
								156	159	3	1.14
								164	165	1	1.17
								178	182	4	0.95
								188	189	1	0.82
								74	75	1	0.74
								90	91	1	0.64
								165	166	1	3.56
								199	200	1	0.75
BBRC0332	RC	299722	6566586	428	370	-55	270	224	229	5	1.72
BBRCU332	RC RC	299722	0300380	428	370	-55	270	241	244	3	5.77
								inc. 1	lm @ 15.4 g	/t Au from 2	241m
								311	312	1	1.23
								322	323	1	1.14
								365	366	1	1.11
								98	99	1	0.73
								105	107	2	1.01
								123	124	1	0.61
								130	132	2	0.83
BBRC0333	RC	299724	6566586	428	262	-80	270	137	138	1	3.15
BBRC0333	, KC	233724	0300380	420	202	-80	270	150	154	4	0.6
								167	168	1	0.54
								185	196	11	1.79
								203	205	2	1.54
								244	247	3	0.72
								18	19	1	0.51
								36	37	1	4.28
								98	104	6	1.19
BBRC0334	RC	299732	6566528	429	274	-80	270	108	112	4	0.97
DBNC0334	, nc	239132	0300320	423	2/4	-60	270	128	129	1	11.9
								138	140	2	0.61
								154	170	16	0.7
								178	179	1	0.87

								_		Signit Inter	cepts
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	Grade (g/t)
								183	186	3	0.81
								189	190	1	0.57
								193	194	1	0.64
								234	248	14	1.17
								7	14	7	0.76
								24	26	2	0.77
								33	37	4	0.82
								41	42	1	0.56
								47	49	2	1.1
								64	67	3	1.11
BBRC0335	RC	299538	6566330	368	280	-70	86	74	76	2	1.64
								83	84	1	3.58
								117	118	1	4.59
								152	154	2	11.08
								inc. 1	lm @ 21.5 g	/t Au from 1	.53m
								168	169	1	0.58
								191	196	5	1.72
								0	4	4	0.57
								54	56	2	2.13
								67	68	1	0.88
								72	74	2	1.08
								90	91	1	1.78
								97	98	1	0.53
BBRC0336	RC	299494	6566330	366	298	-85	90	142	143	1	0.55
								145	146	1	0.66
								190	191	1	0.62
								192	193	1	0.8
								208	209	1	0.82
								232	233	1	1.78
								241	243	2	1.8
								0	3	3	1.12
								74	78	4	0.52
								82	84	2	0.81
								132	143	11	0.5
BBRD0337*	RC/DD	299507	6566394	367	370	-90	90	185	186	1	0.58
								193	194	1	0.8
								202	207	5	1.94
								219	220	1	0.69
								224	225	1	0.55

	Hole				Depth			From		Signif Inter	epts
Hole_ID	Type	East	North	RL	(m)	Dip	Azimuth	(m)	To (m)	Gold (> Interval (m)	Grade (g/t)
								1	3	2	0.5
								12	13	1	3.36
BBRC0338	RC	299499	6566274	367	100	-90	90	28	36	8	0.69
								49	50	1	0.53
								55	56	1	0.68
								6	14	8	1.51
								25	34	9	3.06
								inc.	1m @ 10.2	g/t Au from	28m
								52	53	1	0.72
DDD00000		200500	6566007	200	246			80	81	1	1.19
BBRC0339	RC	299580	6566287	380	246	-60	90	130	131	1	1.69
								137	138	1	0.66
								142	145	3	0.53
								150	153	3	3.52
								176	188	12	0.71
								40	41	1	0.65
								45	47	2	1.05
								73	79	6	0.56
								97	98	1	1.23
BBRC0340	RC	299789	6566730	430	240	-75	90	102	103	1	0.56
								107	109	2	0.62
								116	117	1	0.58
								138	147	9	0.54
								165	166	1	5.6
								54	60	6	0.86
								71	72	1	0.5
								122	123	1	0.86
								146	147	1	1.18
BBRC0341	RC	299788	6566730	430	252	-70	270	154	155	1	0.57
								156	157	1	0.5
								163	166	3	0.56
								217	226	9	0.93
								19	20	1	0.7
								23	24	1	0.87
								57	60	3	1.49
BBRC0342	RC	299879	6566680	429	168	-60	90	79	80	1	1.08
								86	88	2	0.65
								94	104	10	2.24
								inc.	1m @ 12.1	g/t Au from	94m

	Hole				Depth			From		Signit Intere	cepts
Hole_ID	Туре	East	North	RL	(m)	Dip	Azimuth	(m)	To (m)	Interval (m)	Grade (g/t)
								117	119	2	0.8
								123	129	6	1.87
								138	139	1	0.6
								144	145	1	1.31
								26	27	1	0.51
BBRC0343	RC	299897	6565980	425	102	-60	90	49	57	8	0.61
								65	69	4	0.77
								0	1	1	0.55
								99	100	1	2.09
								127	128	1	0.61
BBRC0344	RC	299598	6566763	377	180	-55	40	130	137	7	0.59
								164	170	6	0.55
								171	172	1	0.52
								179	180	1	0.87
								0	3	3	1.61
								59	60	1	0.56
								116	119	3	0.65
								133	140	7	0.69
BBRC0345	RC	299582	6566740	379	234	-80	90	160	161	1	1.21
								179	180	1	0.95
								189	191	2	0.56
								202	206	4	1.6
								214	215	1	0.8
								123	124	1	0.85
								204	206	2	0.89
BBRC0346	RC	299613	6566615	386	252	-90	90	238	240	2	2
								244	246	2	2.23
								123	126	3	0.75
								172	173	1	0.71
BBRC0347	RC	299417	6566578	439	264	-60	90	210	212	2	1.36
								224	226	2	3.17
								246	247	1	0.87
								0	1	1	0.63
BBRD0348*	RC/DD	299465	6566536	430	267	-55	90	125	133	8	1.19
								138	139	1	0.5
								91	94	3	0.84
222222		200:22	656655	45-	0.15			106	107	1	0.57
BBRC0349	RC	299483	6566881	435	312	-60	90	112	116	4	0.75
								130	131	1	1.34

Page | 23

								_		Signit Inter	cepts
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	Grade (g/t)
								135	141	6	0.53
								170	171	1	0.51
								227	228	1	0.51
								269	270	1	0.53
								275	288	13	0.69
								300	303	3	1.79
								24	26	2	1.36
								42	43	1	0.54
								50	51	1	0.57
								55	56	1	1.34
								67	69	2	2.76
								119	121	2	0.56
								127	128	1	0.51
BBRC0350	RC	299546	6566231	372	274	-80	270	165	166	1	1.92
								177	178	1	1.46
								184	185	1	0.51
								206	207	1	0.67
								216	217	1	0.53
								228	229	1	3.21
								245	247	2	0.85
								268	269	1	0.96
								18	22	4	0.52
								41	43	2	1.09
DDDC0354	D.C.	200526	CECC022	266	142	00	00	58	60	2	2.13
BBRC0351	RC	299536	6566033	366	142	-90	90	80	81	1	0.55
								91	92	1	1.15
								104	111	7	1.85
								6	7	1	1.18
								12	13	1	0.62
								18	24	6	1.63
								43	54	11	2.02
BBRC0352	RC	299568	6565980	366	160	-85	90	inc.	1m @ 12.6	g/t Au from	43m
								58	64	6	0.84
								78	79	1	1
								108	109	1	0.5
								132	133	1	1.99
DDDCO3E3	D.C.	200577	6565030	360	04	00	00	25	32	7	0.57
BBRC0353	RC	299577	6565930	369	94	-90	90	36	52	16	0.9
BBRC0354	RC	299425	6566837	432	352	-59	87	117	118	1	6.95

								_		Inter	
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	Grade (g/t)
								122	125	3	1.39
								145	146	1	0.64
								150	155	5	1.03
								219	220	1	0.92
								223	224	1	1.07
								245	246	1	0.71
								283	289	6	0.95
								299	304	5	0.9
								54	58	4	0.51
								65	66	1	0.58
								69	74	5	0.54
								78	80	2	0.96
								98	100	2	0.79
								109	110	1	0.57
								115	118	3	4.41
BBRC0355	RC	299450	6565934	432	274	-60	90	inc.	lm @ 10.5 g	/t Au from 1	L15m
								122	123	1	1.12
								131	132	1	0.61
								146	154	8	0.54
								202	206	4	0.93
								226	230	4	3.25
								265	266	1	0.51
BBRC0356	RC	299367	6566124	432	280	-53	90		Assays	pending	
BBRC0357	RC	299424	6566506	431	334	-55	130		Assays	pending	
BBRC0358	RC	299410	6566515	433	360	-70	75		Assays	pending	
BBRC0359	RC	299707	6566080	403	184	-80	270		Assays	pending	
								45	46	1	0.5
								57	58	1	0.52
BBRC0360	RC	300107	6564390	418	96	-60	45	60	62	2	0.71
								70	71	1	0.88
								50	52	2	0.94
DDDCCCC4	D C	200277	6564364	460	436	60		65	68	3	0.87
BBRC0361	RC	300077	6564361	419	126	-60	45	78	86	8	0.63
								92	93	1	0.96
								64	65	1	0.61
								73	77	4	0.78
BBRC0362	RC	300048	6564334	418	138	-60	45	84	85	1	0.59
								103	107	4	0.6
								111	113	2	0.99

										Signif Inter	
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	0.5g/t) Grade (g/t)
								128	129	1	0.58
BBRC0363	RC	300195	6564414	418	76	-60	45	120		ant results	0.50
BBRC0364	RC	300210	6564378	418	84	-60	45			ant results	
								58	59	1	1.65
								69	70	1	0.68
BBRC0365	RC	300124	6564293	387	138	-60	45	77	81	4	0.51
								85	86	1	0.51
								120	121	1	0.69
BBRC0366	RC	300765	6563973	420	138	-60	45		No signific	ant results	
								107	111	4	1.09
								119	120	1	0.52
BBRC0367	RC	300709	6563696	417	180	-60	45	134	135	1	0.66
								142	143	1	1.86
								147	148	1	0.9
								102	111	9	0.51
								112	113	1	0.58
								117	118	1	2.03
BBRC0368	RC	300675	6563771	419	192	-60	45	143	144	1	1.05
								157	158	1	0.96
\								173	174	1	0.56
								189	190	1	0.71
BBRC0369	RC	300525	6563964	414	162	-60	45	92	104	12	1.58
								47	68	21	0.66
								93	94	1	0.78
BBRC0370	RC	299762	6567017	440	282	-62	90	131	135	4	0.62
								139	143	4	0.96
								148	150	2	1.88
								0	1	1	1.23
								32	33	1	0.81
\								92	93	1	0.76
BBRC0371	RC	299723	6566029	406	162	-85	90	96	98	2	0.98
								109	111	2	0.56
								134	135	1	0.61
								141	143	2	3.1
								5	9	4	0.92
								156	157	1	0.68
BBRC0372	RC	299450	6566534	435	265	-51	142	159	160	1	0.54
								165	166	1	2.16
								177	180	3	1.13

										Inter	ficant cepts
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	0.5g/t) Grade (g/t)
								221	222	1	0.55
								226	228	2	2.37
								234	235	1	0.54
								243	246	3	1.54
								33	34	1	0.69
								90	92	2	0.96
BBRC0373	RC	299748	6566630	428	210	-70	90	104	105	1	4.29
								156	159	3	1.98
								199	200	1	5.64
								14	18	4	1.28
								28	29	1	0.54
								61	62	1	0.68
								79	83	4	0.55
								89	92	3	1.06
								98	99	1	0.5
BBRC0374	RC	299848	6567176	432	204	-60	90	103	105	2	0.56
								117	122	5	0.81
								129	130	1	0.54
								139	140	1	0.67
								144	145	1	0.94
								154	156	2	1.5
BBRC0375	RC	299943	6567180	434	180	-60	90		Assays	pending	
BBRC0376	RC	299827	6567630	437	204	-60	90		Assays	pending	
BBRC0377	RC	299875	6567680	439	180	-60	90		Assays	pending	
BBRC0378	RC	299368	6565933	434	198	-62	90		Assays	pending	
BBRC0379	RC	299724	6565780	425	216	-60	90		Assays	pending	
								0	1	1	2.57
								13	14	1	1.54
								19	20	1	2.6
BBRC0380	RC	300061	6571123	432	148	-60	90	31	35	4	1.48
								41	48	7	0.62
								52	53	1	0.77
								58	62	4	0.57
DDDC0004	B.0	200100	6574400	422	435	60	66	51	52	1	1.14
BBRC0381	RC	300108	6571123	432	136	-60	90	118	125	7	0.77
								6	7	1	0.53
DDDCCCCC	B.0	200000	6570500	433	210	60		50	52	2	0.93
BBRC0382	RC	299920	6570500	438	210	-60	90	73	76	3	0.61
								93	94	1	0.66

												ficant cepts
$\langle \rangle$	Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Gold (> Interval (m)	Grade (g/t)
7									105	118	13	0.87
									182	183	1	0.53
\									6	7	1	0.85
4									44	46	2	0.63
									79	82	3	1.01
	BBRC0383	RC	300001	6570500	438	204	-60	90	87	88	1	1.09
									150	151	1	1.65
									164	169	5	21.69
)											/t Au from 1	
2	BBRC0384	RC	299939	6570470	439	202	-60	90			pending	
)	BBRC0385	RC	300109	6571070	434	136	-60	90			pending	
-	BBRC0386	RC	299897	6570670	438	238	-60	90		Assays	pending	
ا .	BBRC0387	RC	300062	6570670	438	250	-60	90		Assays	pending	
1	BBRC0388	RC	299503	6567630	445	346	-60	90		Assays	pending	
)	BBRC0389	RC	299560	6565287	432	184	-60	90		Assays	pending	
	BBRC0390	RC	300097	6564603	418	50	-60	45		No signific	ant results	
.	BBRC0391	RC	300072	6564580	408	76	-60	45	65	68	3	0.79
	BBRC0392	RC	299981	6564594	417	124	-84	45	48	54	6	0.76
)									42	43	1	0.69
	BBRC0393	RC	299981	6564594	417	102	-60	45	56	57	1	0.58
) [53	61	8	1.64
	BBRC0394	RC	299992	6564500	420	120	-60	45	inc.	1m @ 10.7 į	g/t Au from	60m
									66	67	1	0.9
)	BBRC0395	RC	300036	6564653	421	60	-60	45		No signific	ant results	
1	BBRC0396	RC	300017	6564631	420	84	-60	45	53	54	1	0.79
١	BBRC0397	RC	300138	6564531	420	60	-60	45		No signific	ant results	
4	BBRC0398	RC	300077	6564472	419	100	-60	45	36	43	7	0.63
	BBRC0399	RC	300048	6564444	419	112	-60	45	54	59	5	0.68
ď	BBRC0400	RC	300063	6564403	419	112	-60	45		Assays	pending	l
1	BBRC0401	RC	300140	6566976	432	58	-90	90		Assays	pending	
)	BBRC0402	RC	300137	6564419	419	88	-60	45		Assays	pending	
ŀ	BBRC0403	RC	300019	6564416	419	100	-60	45		Assays	pending	
ŀ	BBRC0404	RC	299961	6564360	419	136	-60	45		Assays	pending	
1	BBRC0405	RC	299663	6564730	425	190	-60	90		Assays	pending	
f	BBRC0406	RC	300005	6564347	419	148	-60	45		Assays	pending	
f	BBRC0407	RC	300516	6564007	417	202	-60	45		Assays	pending	
ŀ	BBRC0408	RC	300260	6564093	417	166	-60	45		Assays	pending	
f	BBRC0409	RC	299935	6564446	420	118	-60	45		Assays	pending	
f	BBRC0410	RC	299479	6565880	432	156	-60	90		Assays	pending	

										Signif Inter	
Hole_ID	Hole	East	North	RL	Depth	Dip	Azimuth	From	To (m)	Gold (>	0.5g/t)
D	Туре				(m)			(m)		Interval (m)	Grade (g/t)
BBRC0411	RC	299647	6565420	424	120	-60	90		Assays	pending	
BBRC0412	RC	299752	6566230	428	222	-71	270		Assays	pending	
BBRC0413	RC	299774	6566281	428	174	-57	270		Assays	pending	
BBRC0414	RC	299550	6565420	432	198	-60	90		Assays	pending	
BBRC0415	RC	299883	6565780	424	132	-60	90		Assays	pending	
BBRC0416	RC	299861	6565730	424	120	-60	90		Assays	pending	
BBRC0417	RC	299964	6565780	424	90	-60	90		Assays	pending	
BBRC0418	RC	299542	6565480	432	258	-60	90		Assays	pending	
BBRC0419	RC	299573	6565350	431	244	-60	90		Assays	pending	
BBRC0420	RC	299748	6565972	402	196	-90	270		Assays	pending	
BBRC0421	RC	299546	6566079	369	136	-75	270		Assays	pending	
BBRC0422	RC	299546	6566079	369	152	-80	90		Assays	pending	
BBRC0423	RC	299569	6565980	366	121	-60	90		Assays	pending	
BBRC0424	RC	299557	6565980	365	126	-80	270		Assays	pending	
BBRC0425	RC	299594	6566765	377	252	-90	90		Assays	pending	
BBRC0426	RC	299529	6566880	432	324	-50	90		Assays	pending	
BBRC0427	RC	299494	6565835	430	282	-60	90		Assays	pending	
BBRC0428	RC	300125	6566780	432	60	-75	90		Assays	pending	
BBRC0430	RC	299655	6567780	438	318	-60	90		Assays	pending	
BBRC0431	RC	299550	6567530	434	198	-65	90		Assays	pending	
BBRC0432	RC	300152	6569630	449	282	-60	90		Assays	pending	
BBRC0433	RC	300072	6569630	450	225	-60	90		Assays	pending	
BBRC0434	RC	299624	6568180	441	318	-60	90		Assays	pending	
BBRC0435	RC	299740	6568480	446	293	-60	90		Assays	pending	
BBRC0440	RC	300602	6563978	417	136	-60	45		Assays	pending	
BBRC0441	RC	300540	6563754	417	182	-60	45		Assays	pending	
BBRC0442	RC	300171	6563952	416	220	-60	45		Assays	pending	
BBRC0443	RC	300605	6563815	417	208	-60	45		Assays	pending	
BBRC0444	RC	300257	6564034	417	191	-60	45		Assays	pending	
								44	51	7	1.39
								56.15	58	1.85	0.53
								84.27	86	1.73	0.9
								88	89	1	0.85
BBDD0033	DD	299799	6567030	432	169	-60	90	126	127	1	0.95
								131	136	5	1.65
								156	161	5	1.13
								171.21	174	2.79	1.1
	_			_	_		_	27	28	1	1.59
BBDD0043	DD	300466	6563786	414	312	-60	45	93.1	93.4	0.3	0.68

	11-1-				Donath			F		Inter	
Hole_ID	Hole Type	East	North	RL	Depth (m)	Dip	Azimuth	From (m)	To (m)	Interval (m)	Grade (g/t)
								139	140	1	0.51
								165.16	167	1.84	3.3
								171.5	179	7.5	0.97
								189	190	1	0.58
								201	202	1	0.83
								211	213.55	2.55	1.18
								219	225.33	6.33	0.95
								235	238.5	3.5	0.89
								34.07	39	4.93	0.63
DDDD0046	20	200042	6566377	426	1114	60	00	51.96	56.96	5	0.68
BBDD0046	DD	299843	6566277	426	114.4	-60	90	72.74	74	1.26	0.95
								82	82.79	0.79	0.79
								99.53	101	1.47	0.53
BBDD0047	DD	200208	6564091	417	190	60	45	105	113	8	1.28
BBDD0047	DD	300308	6564081	417	189	-60	45	171.97	173.15	1.18	19.1
								182	183	1	23.1
								16	17	1	0.85
								24	24.34	0.34	0.52
								29	30	1	0.85
								37.2	41.9	4.7	0.52
								44	52	8	0.56
								57.53	57.92	0.39	0.51
								66	78.26	12.26	0.64
BBDD0048	DD	299549	6566130	371	253	-75	90	84	84.75	0.75	0.78
								113.95	119	5.05	0.71
								125.9	126.26	0.36	4.15
								141.95	143	1.05	0.55
								169	169.77	0.77	0.72
								185	185.33	0.33	2.34
								193.68	193.94	0.26	3.46
								218.66	218.96	0.3	0.73
								74	76.95	2.95	0.73
								83.39	88.16	4.77	0.53
								90	92.15	2.15	0.63
DDDC0054		200752	656666	4	262	63	6.0	114.45	114.88	0.43	0.88
BBDD0051	DD	299750	6568280	444	282	-63	90	119.63	120	0.37	0.76
								122	125	3	0.5
								141	144	3	1.43
								150	150.4	0.4	1.28

	Hole_ID	Hole	East	North	RL	Depth	Dip	Azimuth	From	To (m)	Signif Interd Gold (>	cepts
	note_ib	Туре	Lust	North	I.L	(m)	Бір	Azimuui	(m)	10 (111)	Interval (m)	Grade (g/t)
									175.12	178.1	2.98	1.49
									181.2	182	0.8	2.16
))									207	207.93	0.93	0.66
									211	213	2	3.27
									219	220	1	1.99
									57.4	58.7	1.3	0.82
									59.4	61.5	2.1	0.65
	BBDD0052	DD	300277	6564173	417	150	-60	45	80	81	1	0.82
2									96.07	97.15	1.08	0.53
5									100	100.37	0.37	1
									50.28	53	2.72	0.65
									86.44	87	0.56	1.13
									94.24	100	5.76	0.52
))									101	102	1	0.54
	BBDD0053	DD	299707	6567630	436	260	-63	90	127.46	133.93	6.47	0.92
	BBDD0033	DD	299707	0307030	430	200	-03	30	142.44	143	0.56	0.85
									147	158.83	11.83	0.89
))									186	186.42	0.42	0.89
									190	198	8	0.72
))									226.8	234	7.2	0.62
									74	75	1	0.71
	BBDD0054	DD	300820	6563689	418	148	-60	45	93.75	97.96	4.21	0.51
))	55000034	00	300020	0303003	410	140	-00	45	100.14	100.46	0.32	1.51
									103	103.83	0.83	0.64

^{*}Diamond tail results reported only. See previous announcements for RC pre-collar results.

Appendix 2 – Bullabulling Project – JORC Code 2012 Table 1 Criteria

The table below summarises the assessment and reporting criteria used for the Bullabulling Project and reflects the guidelines in Table 1 of The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code, 2012).

Section 1 Sampling Techniques and Data

Criteria

JORC Code explanation

Commentary

Sampling techniques

Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.

Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.

Aspects of the determination of mineralisation that are Material to the Public Report.

In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.

The Bullabulling Mineral Resource estimate is based on 5,530 reverse circulation (RC) drillholes for 335,717 m, 74 diamond core (DD) drillholes for 8,107 m and 27 RC pre-collars with DD tails (RC DD) for 3,668 m drilled between 1985 and 2023 by various companies. Drilling by Minerals 260 post-dates the resource estimate.

Minerals 260 Limited

RC samples were collected by the metre from the drill rig in calico bags via a cone splitter with a bulk coarse reject sample collected in buckets and poured on the ground.

2-5 kg samples were collected from each metre of RC drilling with samples typically dry. Rock chips for logging were obtained by sieving a large scoop from each bag. Washed chips were placed into appropriately labelled chip trays.

Cyclones regularly cleaned to remove hung-up clays and avoid cross-sample contamination. The coarse reject samples were weighed in small campaigns only, and the weight recorded in an Excel spreadsheet which was later entered into the database. Calico weights are recorded at the laboratory.

Diamond core (HQ, NQ and PQ) sampled in intervals of ~1.0 m (with a minimum of 0.3 m) where possible, otherwise intervals less than 1.0 m selected based on geological boundaries.

Drill core samples were typically half HQ and NQ. PQ core was reserved for metallurgical sampling. Samples of approximately 10 cm length were selected by the geologist and subject to bulk density measurements using the water displacement method.

The core was cut in half parallel to the orientation mark, with one half retained and the other half sent to the laboratory for analysis.

For RC and DD samples, entire samples were oven dried for 24 hours, weighed and pulverised with 85% <75µm. If the primary sample was larger than 3 kg it was split prior to pulverising. A 50 g charge is collected and subject to fire assay (Au-AA26) and analysed for gold using atomic absorption spectrometry (AAS).

Portable x-ray fluorescence (pXRF) determinations were performed to verify litho-geochemistry only using a Olympus Vanta portable analyser, which was regularly calibrated.

All collars are initially collected via handheld GPS, with a surveyor to be commissioned to collect final coordinates via a differential global positioning system (GPS) (accuracy ±0.1

Bullabulling Gold Limited (Bullabulling Gold)

Sampling techniques are as per Minerals 260, other than the below:

RC samples coarse reject sample collected in plastic mining bags. The coarse reject samples were weighed, and the weight recorded in a field book which was later entered into the database

Magnetic susceptibility was measured using a model KT-10 portable magnetic susceptibility metre with readings taken at 1 m intervals.

Portable x-ray fluorescence (pXRF) determinations were

Criteria	JORC Code explanation	Commentary
)		performed to verify litho-geochemistry only using a PAS XL3 950s GOLDD+ portable analyser, which was regularl calibrated.
		All collars surveyed by Fugro Spatial Solutions or ABIMS be differential global positioning system (GPS) (accuracy ±0. m).
		Historical (pre-2000)
		Similar sampling practices with a riffle splitter utilised for R sampling.
		No information is available on the sample preparation practices.
		Gold analysis was by a mixture of methods (fire assay ar acid digest, acid digest only and bottle roll), followed by AA finish.
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka,	Drilling techniques from 1974 to 2025 includes: Aircore (AC) – standard 3.5" AC drill bit
	sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-	Rotary air blast (RAB) – standard 4.25" drill bit
	sampling bit or other type, whether core is	RC – 5.5" with face sampling hammer
	oriented and if so, by what method, etc).	NQ2 DD core, standard tube
		HQ3 DD core, standard tube PQ3 DD core, standard tube.
		AC and RAB holes were used to inform geologic
		interpretations only in the resource estimate whe appropriate data was available.
		The drilling was typically aligned at -60° to the east, which appropriate given the strike and dip of the mineralisation. The bulk of the drilling is RC with DD holes completed for budensity determinations and metallurgical testing.
		Holes were drilled on a nominal 35 m x 75 m grid spacin historically, with 40m x 40m by Minerals 260. RC drillhold range in depth from 1 m to 348 m, averaging 59 m Bullabulling Gold DD holes range in depth from 136 m 573.5 m, averaging 355 m.
		DD holes were drilled directly from surface or from base of R pre-collars. All Bullabulling Gold, DD core was oriented whe possible using an ACT REFLEX (ACT II RD) tool. All Minera 260 DD core is oriented with an Axis orientation tool It unknown how historical drill core was oriented and is assume to be to industry standards.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recoveries for Bullabulling Gold's and Minerals 260 RC drilling is visually estimated and recorded for each met in Micromine Field Marshal (Bullabulling Gold) and validate Excel logging software (Minerals 260).
		Analysis of historical results yielded an average recovery 97%.
		For DD core, recovery was measured and recorded for eve metre in Micromine Field Marshal software (Bullabulling Gol or validated Excel sheets (Minerals 260).
		Diamond core recoveries averaged 99% for historical core.
	Measures taken to maximise sample recovery and ensure representative nature of the	There is no recovery information available for the historic drilling.
	samples.	Minerals 260
		RC drill collars were sealed to prevent sample loss and hole were normally drilled dry to prevent poor recoveries ar contamination caused by water ingress.
		For DD drillholes, core blocks were inserted in sections whe core loss has occurred. This was recorded on the block ar during the logging process and with photography of wet cor

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship between sample recovery and grade was noted.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	For RC drilling, geological logging was undertaken on chip samples at 1 m intervals with lithology, oxidation strength, mineralogy, grainsize, texture, colour, vein infill and percentage, metal sulphide percentage and alteration type and strength recorded.
		Geological logging, structural measurements, rock-quality designation (RQD) and recovery measurements were carried out on DD core. DD core was photographed wet and dry.
		XRF determinations of lithophile elements nickel and chromium were utilised to confirm the visual identification of ultramafic or komatiitic units (Bullabulling Gold only).
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging was quantitative, based on visual field estimates
	The total length and percentage of the relevant intersections logged.	All holes were logged from start to finish and all logging was done with sufficient detail to meet the requirements or resource estimation and mining studies.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	DD core sample lengths were adjusted so that they did not cross lithological boundaries with ~1 m sample intervals ideally used. Samples are collected from half core cut using an onsite diamond saw. The remaining half core was stored as a library sample.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Non-core samples were collected as 1 m samples. RC samples were collected using a cone splitter (Bullabulling Gold and Minerals 260) or riffle splitter (historical) to cut the sample stream and produce a 2–5 kg sample.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation followed industry best practice standards and was conducted by internationally recognised laboratories including ALS (2025-current), Amdel, Jinning, Genalysis (2010-2014) and A.C.E. Laboratories Kalgoorlie and Broker Hill Minerals Southern Cross laboratory (pre-2010).
		Sample preparation included oven drying, jaw crushing and pulverising to 80% passing 75 $\mu m. $
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Field duplicates were collected at a rate of 1 in 20 on average. A proportion of pulp duplicates were re- submitted for assay and then assayed by an umpire laboratory.
		Subsampling is performed during the preparation stage according to the laboratory's internal protocols.
	Measures taken to ensure that the sampling is representative of the in situ material collected,	Measures taken to ensure representative drill samples included:
	including for instance results for field duplicate/second-half sampling.	Regular cleaning of cyclones and sampling equipment to prevent contamination Statistical comparison of field and laboratory duplicates standards and blanks
		Statistical comparison of anomalous composite assays versus average of follow up 1 m assays.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The entire sample (2–5 kg) was submitted to the laboratory consistent with industry standards.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or	Assay and laboratory procedures were selected following a review of techniques provided by internationally certified laboratories.
	total.	Historical
		Pre-1994 samples were analysed for gold at A.C.E Laboratories using a 24-hour bottle roll cyanide extraction technique with an AAS finish. Residues of all samples with solution reads greater than 0.4 g/t Au were assayed by

Criteria	JORC Code explanation	Commentary				
		Genalysis using the fire assay/AAS technique.				
		Post-1994, samples were sent to Broken Hill Mineral Southern Cross laboratory who used an acid digest/AA: technique with a 0.01 g/t Au detection limit.				
		Bullabulling Gold				
		From June 2010 to December 2012, samples were assaye for gold at ALS facilities by the fire assay method (50 g charg 0.01 g/t Au detection limit).				
		RC samples from five pre-collars in the first DD drilling program (June to August 2010) were assayed at ALS using by fire assay (30 g charge 0.002 g/t Au detection limit) and half core samples by fire assay (30 g charge 0.01 g/t Addetection limit). Solutions from samples assaying >10 g/t Addetection limit). Solutions from samples assaying >10 g/t Addetection limit) were diluted and reanalysed using method Au-DIL (Addetection).				
		The final gold assay was selected in priority of Au-DIL then 5 g charge then 30 g charge.				
		From January 2013 to April 2014, samples were assayed for gold at the Bureau Veritas laboratory in Kalgoorlie laborator using a 40 g charge (0.01 g/t Au detection limit).				
		The assay techniques used are total.				
		Minerals 260				
		From April 2025, samples were assayed for gold at A facilities by the fire assay method (50 g charge 0.01 g/t detection limit), with ME-ICP61 and four acid digest for elements:				
		Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, L Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, V Zn.				
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading	Bullabulling Gold performed XRF determinations to veril litho-geochemistry using a PAS XL3t 950s GOLDD handheld XRF (pXRF). The pXRF readings were not representative of grade intervals and are not reported.				
	times, calibrations factors applied and their derivation, etc.	Minerals 260 use an Olympus Vanta pXRF to assist with lithe geochemistry. The pXRF readings were not representative of grade intervals and are not reported.				
	Nature of quality control procedures adopted	Historical				
	(eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and	Bullabulling Gold inserted field duplicates at a rate of 1 in 2 samples on average. A proportion of pulp duplicates were re submitted for assay including assay by an umpire laboratory				
	precision have been established	Laboratory standards checked for accuracy and precision.				
		No information is available on the historical quality contri procedures and is assumed to be done to industry standards				
		Minerals 260				
		QAQC samples are inserted 1:10 samples, with combination of blanks, certified reference materials and fiel duplicates. QAQC results are analysed monthly to ensur there is no bias in samples.				
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Intersections were peer reviewed in-house.				
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	No twin holes were drilled.				
		Historical				
		All Bullabulling Gold field data was manually collected entered into Micromine Field Marshall software, validated Micromine, and loaded into a commercial database (GBIS All electronic data was routinely backed up. Data was exported as csv files for processing by several different				

Criteria	JORC Code explanation	Commentary
		No information is available on the historical data management and is assumed to be done to industry standards.
		Minerals 260
		Data is collected and entered into validated Excespreadsheets, validated in Micromine, and loaded into an M2 Deposit database where additional checks are performed be an external contractor. Data is exported as an Accest
	Discuss any adjustment to assay data.	There was no requirement to adjust assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used	The local mine grid was based on AMG Zone 51 coordinate up until 2014. From 2015 onwards GDA94/MGA Zone 51 wa used including for the resource estimate. Nominal RLs base on regional topographic datasets were used initially; howeve these were updated as differential GPS coordinates wer collected.
	Quality and adequacy of topographic control.	Bullabulling Gold
		All collars were surveyed by Fugro Spatial Solutions or ABIMS by differential GPS (accuracy ±0.1m). A campaign of differential GPS surveys of surviving historical collars was undertaken by Fugro and results compared with the inherite database. Results indicated that the location data for historical drilling is accurate.
		Almost all drilling was subject to gyroscopic survey. N downhole surveys were undertaken on vertical holes.
		From January 2011 to April 2014, continuous downhol surveys were performed mainly in-rod by gyroscop technique on the bulk of RC drillholes (85%). A proportic (13%) were surveyed down open hole. 24 holes wher downhole surveys were unable to be performed relied collar survey data for downhole traces.
		Historical
		Very few of the historical RC drillholes have downhole survey and therefore rely on collar information.
		Historical DD holes have downhole survey information base on Eastman camera surveys, with minimal hole deviation noted.
		Collar surveys were completed by Spectrum Surveys ar Datum Surveys using an unknown survey instrumer Coordinates were resurveyed to ensure accuracy, with Datu Survey data given preference, where available.
		Minerals 260
		All collars are initially surveyed with handheld GPS (accuract 5m), with all drill collars to be picked up by an extern surveyor using a differential GPS. Coordinates are collected in GDA94/MGA Zone 51.
		Downhole surveys for all holes are conducted with a Tru North Seeking Gyro, which is regularly calibrated.
Data spacing	Data spacing for reporting of Exploration	Historical
and distribution	Results.	Drilling of the main 7 km north-south Bullabulling mineralise trend was completed along a set of east-west trendir sections. The section spacing typically ranges from 20 m x 2 m apart to 35 m x 75 m apart. Preliminary drilling of the northwest-southeast oriented portion of the mineralised trer over a strike length of 2 km was undertaken on east-we sections.
		From January 2013, infill drilling of the northwest-southea oriented trend along the Kraken areas was completed or northeast-southwest trending sections orthogonal to the mineralised trend. Section spacing was maintained at 35 m 75 m.

Areas were classified as Indicated where there is infill drilling

Criteria	JORC Code explanation	Commentary
)		at 20–40 m along strike and 20 m on section and where the geological and grade continuity are robust. Areas with dril spacing 40–80 m along strike and/or along section were classified as Inferred. All laterite material was set to Inferred as the drilling is predominantly historical.
		Minerals 260
		Infill and step out drilling is conducted at 40m along section and 40 to 50m along strike. Exploration holes are completed on an 160 x 160m spacing initially, with infill holes drilled pending results.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The section spacing is sufficient to establish the degree of geological and grade continuity necessary to support the resource classifications applied.
		The spacing of holes is considered of sufficient density to provide an "Indicated" or "Inferred" classification under the JORC Code (2012).
	Whether sample compositing has been applied.	Historical No sample compositing was applied to historical drilling.
		Minerals 260 For intervals deemed to have a low potential of mineralisation based on surrounding data, samples are composited to 4m samples with the 1m samples retained. Samples are scooped off the drill pad and placed into a calico. If results are anomalous, the 1m samples are sent for analysis.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling was angled typically at -60° to achieve the most representative intersections through mineralisation.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling is typically oriented perpendicular to the interpreted strike of the geology and no bias is envisaged. No sampling bias was observed.
Sample security	The measures taken to ensure sample	Historical
	security.	Bullabulling Gold's RC and DD core samples were collected from drill site and delivered by the company to either to ALS or Amdel in Kalgoorlie following standard chain of custody procedures.
		Core prepared for metallurgical testwork was stored at site and then freighted to ALS' metallurgical facility in Perth. Pulp samples are boxed and stored at site in locked sea containers.
		There is no available information on the historical sample security which is assumed to be done to industry standards.
		Minerals 260
		RC and DD core samples were collected from drill site and delivered by freight company to ALS in Perth following standard chain of custody procedures.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	In late 2011, a review of the ALS assay data was undertaken by contractor RSC who made a number of recommendations to improve laboratory practices. Following the review, the quality of the quality control samples submitted by Bullabulling Gold improved.
		In March 2025, an audit of ALS, Perth was conducted by Minerals 260 geologists to view laboratory practices and cleanliness. No issues were observed.

Section 2 Reporting of Exploration Results			
Criteria	JORC Code explanation	Commentary	
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Bullabulling Project comprises 11 granted Mining Leases (M15/1414, M15/282, M15/483, M15/503, M15/529, M15/552, M15/554, M15/1878, M15/1879, M15/1880, M15/1881). 4 granted Exploration Licenses (E15/1392, E15/1485, E15/2113, E15/2114,). 5 Exploration Licence Applications (E15/2111, E15/2112, E15/2117, E15/2118, E15/2150). 16 granted General Purpose Leases (G15/47, G15/30, G15/31,	
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	G15/32, G15/33, G15/34, G15/35, G15/36, G15/37, G15/38, G15/39, G15/40, G15/41, G15/42, G15/44, G15/45). 1 General Purpose Lease Application (G15/49). 18 granted Miscellaneous Licences (L15/156, L15/157, L15/158, L15/196, L15/206, L15/218, L15/222, L15/328, L15/330,	
		L15/1301, L15/230, L15/333, L15/334, L15/335, L15/336, L15/337, L15/339, L15/339, L15/357). 2 Miscellaneous License Applications (L15/359, M15/499). 8 granted Prospecting Licenses (P15/6062, P15/6208, P15/6209, P15/6210, P15/6211, P15/6212, P15/6213, P15/6618). 6 Prospecting Licence Applications (P15/6971, P15/6972, P15/6973, P15/7010, P15/7011, P15/7012). 26 Prospecting Licences subject to an option agreement (P15/6427, P15/6474 to P15/6492, P15/6559 to P15/6264.	
		The tenement package forms a contiguous, ~587 km² area located ~65 km southwest of Kalgoorlie, Western Australia.	
		The 26 Prospecting Licences subject to an option agreement are held by Belararox Limited	
		All other tenements are 100%-owned by Bullabulling Operations Pty Ltd (BOPL) and Minerals 260 Holdings Pty Ltd, which are wholly owned subsidiaries of Minerals 260 Limited.	
		Several tenements are subject to royalties: Franco Nevada Australia Pty Ltd – 1% gross royalty on all gold produced from M15/282, M15/552 and M15/554 Vox Royalty Australia Pty Ltd – A\$10/fine ounce (or fine ounce equivalent) of gold produced (post the first 100,000 ounces produced) on M15/503 and M15/1414.	
		The Bullabulling Project is largely contained within the Bullabulling Pastoral Lease owned by Bullabulling Operations Pty Ltd. Bullabulling Operations Pty Ltd has agreed to transfer the Bullabulling Pastoral Lease to Norton Gold Fields Pty Ltd. Subject to obtaining relevant approvals, Norton Gold Fields Pty Ltd is the beneficial holder of the Bullabulling Pastoral Lease. An Access and Compensation Deed has been executed with Norton Gold Fields Pty Ltd providing permission to access to the Bullabulling Pastoral Lease on completion of the transfer	
		Bullabulling Operations Pty Ltd and Bullabulling Gold Pty Ltd has a Native Title Land Use Agreement in place.	
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All granted licences are currently in good standing.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Ownership of the Bullabulling Project has changed several times since initial exploration work in the early 1970s. The major work phases included:	
		Western Mining Corporation from 1974 to 1982: 150 RC holes were drilled to the north of the current Phoenix pit. Valiant Consolidated Ltd and Hill Minerals NL joint venture in 1985. Work included magnetic surveys, soil sampling and RC and RAB drilling which led to the discovery of the Bacchus deposit.	

Criteria	JORC Code explanation	Commentary
		Central Kalgoorlie Gold Mines NL explored the area north and south of the Great Eastern Highway at the same time focusing on the laterite gold mineralisation. Drilling confirmed the presence of lateritic and primary mineralisation and the existence of the Phoenix deposit. Samantha Gold NL purchased the project in 1993. The drilling database at the time consisted of 6,500 auger, RAB, AC, RC and DD holes. Samantha continued RC drilling focusing of the Bacchus and Phoenix areas. Samantha Gold became Resolute Samantha Limited and then Resolute Limited in 1996. Open pit mining commenced in 1995 and focused on the Bacchus and Phoenix areas. Small pits were also developed in the Hobbit and Dicksons areas exploiting supergence mineralisation. In 2002, Jervois Mining Limited acquired the project from Resolute and commenced a small heap leach operation. Jervois Mining Limited sold the project to Auzex Resources Limited in February 2010. Ongoing exploration was carried out under a joint venture with GGG Resources Plc. By February 2012, 696 holes (mostly RC) totalling 114,259 mineralisation.
		had been drilled. Bullabulling Gold Limited was formed in April 2012 following GGG Resources purchase of Auzex Resources 50% interest in the project. A further 69 holes for 10,816 m of mostly RC drilling had been completed by April 2013 including resource updates in 2012 and 2013 and a prefeasibility study in 2013. In September 2014, Norton Gold Fields ("Norton") completer a takeover of Bullabulling Gold who in turn was acquired by Zijin Mining Group Co. Ltd in May 2015. Additional exploration and metallurgical drilling and testwork was completed along with a Mineral Resource update, mining studies and environmental surveys.
Geology	Deposit type, geological setting and style of mineralisation.	The Bullabulling project is located within the Coolgardi Domain of the Kalgoorlie Terrane in the Archaean Yilgar Craton of Western Australia.
		The greenstone sequences within Coolgardie Domain ar bounded by the Zuleika Shear to the east and the Ida Fault the west. The Kunanalling Shear Zone passes through the middle of the domain.
		The domain comprises a series of north-south striking mafic ultramafic, felsic volcanic and sedimentary rocks which are extensively metamorphosed from multiple deformation phases ranging from greenschist to amphibolite facies metamorphism. The stratigraphy is generally dipping 30–40 to the west and is cut by numerous pegmatite/aplite dykes an sills. Variations in dip occur due to folding and occasional faulting.
		Gold mineralisation is hosted in a continuous sequence amphibolite which strikes over approximately 8 km. The amphibolites range from hornblende-rich to quartz-rich and overlie an ultramafic basement.
		The Bullabulling trend is typified by a network of ductile hig strain zones and folds that broadly parallel the stratigraph and are the result of multiple deformation events. Th structures have allowed fluid flow into the amphibolit sequence resulting in the deposition and remobilisation of gold.
Prill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Provided in Appendix 1
	easting and northing of the drill hole	

Criteria	JORC Code explanation	Commentary	
)	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Drilling assays have been composited using a weighter average of gold grades, with a 0.5g/t Au cut-off. No top cut have been applied to grades. The resource cut-off is 0.5g/Au.	
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Shorter intercepts with higher grades have been reported provided the grade (g/t Au) x thickness (m) is equal or greated than 1.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	N/A	
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	The Bullabulling mineralisation parallels the stratigraph where it dips at between 15° and 60° towards the wes averaging around 30°. Southeast of Kraken, th	
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	averaging around 30°. Southeast of Kraken, mineralisation is oriented about an open fold wit stratigraphy and strikes northwest-southeast mineralisation dipping between 30° and 45° to the south	
	If it is not known and only the down hole lengths are reported, there should be a clear	Drilling has been completed perpendicular to mineralisatio with most holes orientated to the east and dipping at -60°.	
	statement to this effect (eg 'down hole length, true width not known').	The true thickness of mineralisation is estimated at betwee 85% and 95% of the reported drillhole intercepts, unles otherwise stated.	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All RC and diamond drilling results by Minerals 260 for the Bullabulling project have been reported in Appendix 1.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All other substantive exploration data is reported in th announcement.	
Further work The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).		Mineral 260' has the following activities planned for 2025: RC and DD infill and extensional drilling at mai deposit areas. Initial testing of regional targets. Sterilisation drilling Water bore drilling.	

Criteria	JORC Code explanation		Commentary	
		•	Geotechnical and metallurgical drilling a testwork.	and
		•	Heritage and environmental surveys.	
		•	Auger drilling	