

SIGNIFICANT GOLD DISCOVERIES CONTINUE AT GOLDEN GATE - DRILLING HITS 253.0m @ 1.5 G/T AU FROM SURFACE AND OPEN IN ALL DIRECTIONS ENDING IN MINERALISATION

DRILLING CONFIRMS DISCOVERY STATUS AT HORSE HEAVEN'S GOLDEN GATE TARGET WITH THREE CONSECUTIVE HOLES ENDING IN MINERALISATION, IDENTIFYING THE LARGE INTRUSION-RELATED GOLD SYSTEM ONLY 16KM FROM THE STIBNITE GOLD PROJECT (PPTA.NAS)

Highlights

- Golden Gate now has reported results for three diamond holes from surface, all ending in gold mineralisation, confirming a large, open intrusion-related gold system. The two most recent holes include:
 - o HH-GG25-003C: Down hole interval of 253.0m @ 1.50 g/t gold from surface to 253.0m (open ended), including:
 - 111.9m @ 2.31 g/t gold from 130.5m and 18.3m @ 3.98 g/t gold from 149.4m (with the highest assay result of 5.91 g/t gold over a down hole width of 1.5m)
 - HH-GG25-002C: Down hole interval of 265.2m @ 0.60 g/t gold from surface to 265.2m (open ended), including 89.9m @ 1.15g/t gold from 121.9m.
 - On 28 October 2025, the Company reported a down hole interval of **189.2m @ 1.30 g/t Au from 34m**, ending in mineralisation, in HH-GG25-001C, including:
 - o Down hole interval of 12.9m @ 2.32 g/t Au from 94.4m; and
 - Down hole interval of 70.8m @ 2.24 g/t Au from 128.8m.

These results demonstrate the continuous potential for a large intrusive-hosted gold system with geology, sulphides and alteration similar to the Stibnite gold-antimony deposit, only ~16km away.

- Multiple near-term catalysts include:
 - A Reverse Circulation drill rig is being mobilised to Golden Gate to immediately follow-up on the results of the first three holes.
 - Assay batch results from 7 additional oriented Core holes of the Phase-1 program (including bottom of HH-GG25-001C) to be released progressively over the following months.
- RML's Horse Heaven project is strategically located in a district central to domestic critical mineral supply chains (gold-antimony-tungsten-silver), all aligned with the U.S. government priorities.

RML's CEO of US Operations, Craig Lindsay, commented on the discovery:

"Following up our first hole with even stronger results from holes 2 and 3 is an exceptional outcome for the Golden Gate prospect.

These results confirm that Golden Gate hosts a large, robust gold system with all holes returning broad gold mineralisation from surface and finishing in mineralisation.

That level of continuity and consistency is extremely rare this early in a program and highlights the potential scale and our belief that Golden Gate has all the hallmarks of a significant intrusive-related gold deposit, comparable to the major systems seen elsewhere in the district, including Perpetua's Stibnite, which is only 16km away.

With multiple targets still to test across the broader Horse Heaven Project, including Antimony Ridge, our confidence continues to grow that we're on the verge of uncovering a truly district-scale gold system with complementary known tungsten and antimony mineralisation."

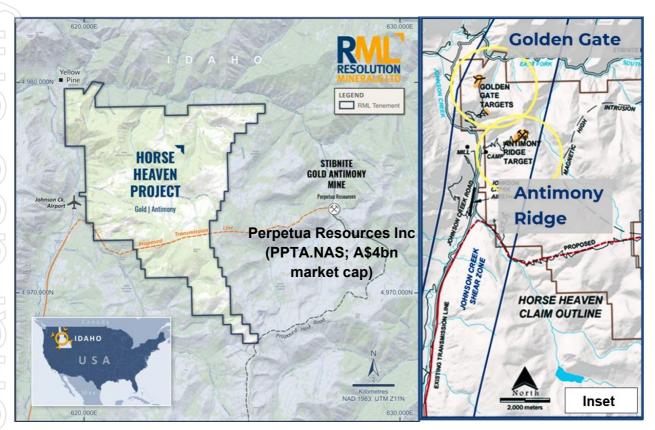
Resolution Minerals Ltd (ASX: RML; OTCQB: RLMLF) ("Resolution" or "Company") is pleased to report that its maiden drill program at its 100% owned Horse Heaven Gold-Antimony-Tungsten-Silver Project ("Horse Heaven" or the "Project"), Idaho, USA (Figure 1) has delivered additional broad intervals of near-surface gold mineralisation at Golden Gate Prospect.

Assay results have now been received for drill holes HH-GG25-002C and HH-GG25-003C, which, together with previously announced HH-GG25-001C, confirm continuity of strong gold mineralisation from surface across multiple holes. HH-GG25-002C and HH-GG25-001C were drilled as fan holes from the same platform, while HH-GG25-003C, located ~75m northeast, successfully extended the mineralisation system along strike.

As seen in recently reported hole HH-GG25-001C, gold mineralisation in the second and third holes is believed to be associated with pyrite and arsenopyrite, which are evident throughout the holes, supporting an Intrusion-Related Gold System model.

Significant down hole intersections of gold mineralisation include:

HH-GG25-003C:


- 253.0m at 1.50 g/t gold from surface to 253.0m (open ended), including:
 - 45.7m at 1.88g/t gold from 71.6m; and
 - 111.9m at 2.31 g/t gold from 130.5m; including:
 - 18.3m @ 3.98 g/t gold from 149.4m
 - This interval also has the highest assay result to date of 5.91 g/t gold over a down hole width of 1.5m.

HH-GG25-002C:

- **265.2m @ 0.60 g/t gold from surface to 265.2m** (open ended), including:
 - o 89.9m @ 1.15g/t gold from 121.9m.

In both drill holes the gold mineralisation is open-ended at end-of-hole, therefore in both instances, open at depth.

Figure 1: Horse Heaven Project location map, highlighting the location of the two current major antimony-gold-silver-tungsten targets, the Golden Gate Target (where the Phase 1 Core Drilling Program was conducted) and the Antimony Ridge Target. Also highlighted is the fully-permitted Stibnite Gold Project, which is only 6km east of Horse Heaven. Note: Coordinates are UTM metres north and east metric system, not latitude/longitude.

Hole ID	Drill	Diameter		Drill Hol	e Loca	tion		Elevation	Dip	Az	EOH	EOH(m)
note ID	Туре	Diameter	Grid	Datum	Zone	Easting	Northing	(m)	Dip	AZ	(ft)	EOH(III)
HH-GG25-001C	Core	HQ3	UTM	NAD83	11T	619741	4978962	1963	-55	120	760	231.6
HH-GG25-002C	Core	HQ3	UTM	NAD83	11T	619740	4978961	1963	-55	145	870	265.2
HH-GG25-003C	Core	HQ3	UTM	NAD83	11T	619792	4979034	1992	-55	158	830	253.0

Table 1: Drill parameters of the maiden Golden Gate Diamond Core drill program, including for holes with assays reported in this announcement, HH-GG25-002C and HH-GG25-003C, and the previous announcement of 28 October 2025 "Significant Gold Discovery at Horse Heaven Project", HH-GG25-001C.

Purpose of HH-GG25-003 C

Drill hole HH-GG25-003C was designed to (i) re-evaluate previously drilled gold occurrences in the shallow, <u>oxidised</u> profile (identified in pre-RML drilling) stepping out in a northeast direction from HH-GG-001C; (ii) test for a northeastern extension of sub-surface mineralisation subject of historical tungsten mining, close to where HH-GG25-001C/2C are collared; and (iii) For the first time, like HH-GG-001C, identify possible <u>un-oxidised</u> mineralisation at depth to the northeast.

Results of HH-GG25-003C

The hole was highly successful in identifying material intervals of un-oxidised gold mineralisation. The style of gold mineralisation in HH-GG25-003C is the same as that identified in HH-GG25-001C (hole 1). It is hosted in altered quartz-sericite to silicified monzonite, quartz-monzonite and granodiorite (Figure 3) and is closely associated with pyrite and arsenopyrite, which are described as occurring throughout the hole.

Significant gold mineralisation is recorded in HH-GG25-003C from "top to bottom", thus including a down hole intersection of 253.0m at 1.50 g/t gold from surface to end-of-hole (at 253.0m). This intersection includes 45.7m at 1.88g/t gold from 71.6m in an oxidised profile, and 111.9m at 2.31 g/t gold from 130.5m; including: 18.3m @ 3.98 g/t gold from 149.4m in an un-oxidised profile.

Importantly, higher grade zones occur below the unoxidized profile, where associated metal sulphides are preserved, mirroring the pattern seen in HH-GG25-001C,

Elevated Tungsten in HH-GG25-003C is recorded over a down hole interval of 5ft (1.5m) between 55.0ft and 60ft (16.7m and 18.3m). Sample 190656 contains 0.113% W (tungsten). The tungsten mineralisation is believed to be a sub-surface northeasterly extension of mineralisation subject of historical mine workings dating from the time of historic Scheelite mining.

Purpose of HH-GG25-002C

Drill hole HH-GG25-002C was drilled to (i) re-evaluate previously drilled gold occurrences in the oxidised profile (identified in pre-RML drilling) fanning out from HH-GG-001C in a more southeasterly direction (Figure 2); (ii) test for a southeastern extension of sub-surface mineralisation subject of historical tungsten mining, close to where HH-GG25-001C/2C are positioned; and (iii) for like HH-GG-001C, identify possible un-oxidised mineralisation at depth but in a more southeasterly direction (noting that the drill hole was completed well prior to HH-DD25-001C assay results).

Results of HH-GG25-002C

The hole intersected gold mineralisation from surface to end of hole, the longest continuous interval of the three holes reported to date, confirming that gold mineralisation remains open in all directions. The key take away is the fact that, like HH-GG25-003C, HH-GG25-002C is mineralisation from "top to bottom" (Figure 4). Down hole gold mineralisation includes an intersection of **265.2m @ 0.60 g/t gold from surface to end-of-hole (at 265.2m)**. This intersection represents the. It includes **89.9m at 1.15g/t gold from 121.9m** in an un-oxidised profile.

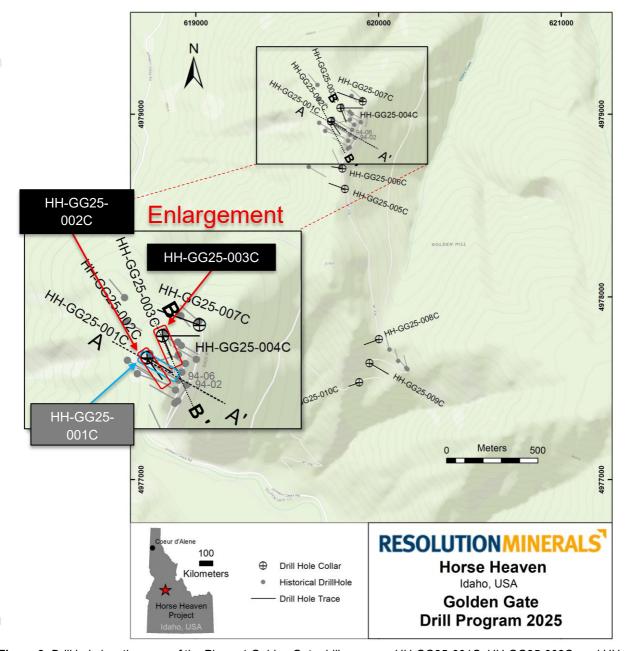


Figure 2: Drill hole location map of the Phase 1 Golden Gate drill program. HH-GG25-001C, HH-GG25-002C, and HH-GG25-003C are located in the central northern part of the Golden Gate Target. INSERT: Enlarged part of the plan, included to show the details of the drill hole configuration in the vicinity of HH-GG25-001C. HH-GG25-001C is the first hole at Horse Heaven to properly test un-oxidised mineralisation. Shallow, pre-RML RC drill holes (grey hole traces) are also shown, including 94-02 and 94-06, which both appear in Figure 3. The drill hole parameters and summary mineralised interval of the pre-RML RC drill holes were provided to the market in ASX announcement dated 11 June 2025.

Elevated Tungsten in HH-GG25-002C is recorded over a down hole interval of 8.6ft (2.7m) between 127.1ft and 135.7ft (36.5m and 38.0m). Sample 190684 contains 0.193% W. The tungsten mineralisation is believed a sub-surface extension of mineralisation subject of historical mine workings dating from the time of Scheelite mining (also intersected in HH-GG0001C).

Preliminary Interpretation of HH-GG25-001C, HH-GG25-002C, and HH-GG25-003C

The pervasive, material levels of gold mineralisation in HH-GG25-002C, and HH-GG25-003C confirm the discovery of a potentially large Intrusion Related Gold System at the Golden Gate Prospect. For all three holes, the down hole envelopes of gold mineralisation are very significant and include:

HH-GG-001C: 189.2m @ 1.30 g/t Au from 34m (open ended)

HH-GG-002C: 265.2m @ 0.60 g/t Au from surface (open ended)

HH-GG-003C: 253.0m @ 1.50 g/t from surface (open ended)

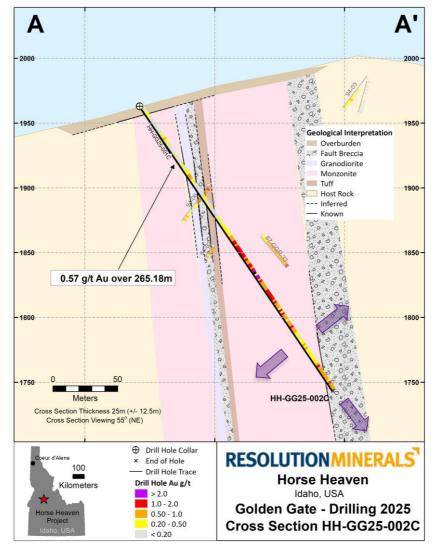



Figure 3: Schematic cross section of HH-GG25-003C showing the local geology, highlighting the significant gold intersections, and pre-RML RC drill holes intersections draw into the plane of the cross section. Strong pervasive gold mineralisation is hosted in both the monzonite (including 1.88g/t gold over 45.72m) and granodiorite (including 2.31g/t gold over 111.86m), lower-grade, but still significant god mineralisation is hosted in fault breccias. The cross section shows how the pervasive gold mineralisation of HH-GG25-003C traverses a repeating sequence of fault breccias, structurally-bound monzonites and granodiorites. Together with the open nature of the mineralisation, this is highly encouraging (purple arrows).

Figure 4: Schematic cross section of HH-GG25-002C showing the local geology, highlighting the significant gold intersections, and pre-RML RC drill holes intersections draw into the plane of the cross section. Pervasive gold mineralisation is hosted two monzonites (including a lower down hole intersections of 1.15g/t gold over 89.9m). The monzonites are effected by fault breccias, which themselves host material intersections of gold. The open nature of the mineralisation is highly encouraging (purple arrows).

Gold mineralisation in HH-GG25-001C, HH-GG25-002C, and HH-GG25-003C is associated with relatively low levels of pyrite and arsenopyrite, rarely with a combined total percentage of the rock (core material) greater than 5%. The sulphides occur as disseminations and veins/veinlets/stockwork in brecciated and non-brecciated monzonites and granodiorites.

Gold mineralisation in drillholes HH-GG25-002C and HH-GG25-003C (between 400 and 695 feet, or 235-795) occurs in quartz-sericite-pyrite altered monzonite to porphyritic granodiorite with locally sheared and brecciated intervals. Pyrite and arsenopyrite occur as disseminations and in veins. Higher gold grades are associated with zones of stockwork to sheeted polyphase chalcedonic quartz veins with black-silica-sulfide rims. At depth, drillholes show increasing epidote and chlorite alteration and calcite veining.

Sericite alteration is pervasive with the sulphides, with localised intervals of epidote, chlorite, biotite, and silica. At shallow depths iron-oxides (including limonite) are relatively common.

Tungsten mineralization in HH-GG25-002 from 115-140ft is associated with brecciated monzonite with pyrite-arsenopyrite mineralization and brown manganese oxide matrix fill. Tungsten mineralization in HH-GG25-003 from 15-105ft occurs within a brecciated and/or silicified feldspar-quartz felsic intrusive with strong limonite and local MnOx alteration.

An important observation, that was not apparent in HH-GG-001C alone, is that the gold envelope of HH-GG25-001C, HH-GG25-002C, and HH-GG25-003C traverses a repeating sequence of fault breccias, structurally-bound monzonites and granodiorites (Figure 3 and Figure 4).

The open-ended and repeating nature of a structurally controlled gold-host is of particular interest. It goes to the possibility of strike and dip extensions, hence scale and potential resource building.

The gold mineralisation in HH-GG25-001C, HH-GG25-002C, and HH-GG25-003C displays three key elements germane to prospectivity. The gold mineralisation is:

- Associated with sulphide disseminations and veinlets and is pervasive in style;
- Open-ended at depth and in all directions; and
- Hosted in a repeating sequence of structure and structurally-controlled felsic intrusive rocks of the Idaho Batholith.

The broad intersections of gold mineralisation are collectively consistent, compatible and confirmatory of, the Intrusion Related Gold Systems ("IRGS") Exploration Model of Horse Heaven (ASX announcement dated 11 June 2025, titled "Agreement to Acquire Major Drill-Ready Antimony-Gold-Tungsten Project in Stibnite Mining District, Idaho, USA" and ASX announcement dated 28 October 2025, titled "Near Surface Discovery of 189.2m @ 1.3 g/t gold from 34m, ending in mineralisation". Please refer to Appendix A for further information regarding Intrusion Related Gold Systems and the Horse Heaven – Stibnite deposit exploration model-based comparison.

Next Assays Update

Resolution has now completed its 10 holes Phase-1 diamond program at Gold Gate, with all holes logged and sampled. This announcement reports results from the second batch of core samples, for HH-GG25-002C and HH-GG25-003C).

- Assay results for the bottom of HH-GG25-001C are imminent.
- Assay results for HH-GG25-004C to HH-GG25-010C will be available sequentially over the next few months, possibly extending into December 2025.

RML's Lead Geologist, Austin Zinsser stated:

"The results of our very first drill holes at Horse Heaven are excellent and we look forward to developing a comprehensive model for Valley County's next world class gold deposit. I have worked in the Perpetua – Horse Heaven region for nearly 20 years and the similarities are notable – especially structural controls, mineralization style and geochemical profile. The results bode exceedingly well for the Horse Heaven project as a whole, with other equally strong targets yet to receive drilling, i.e. Antimony Ridge."

Next Steps

Horse Heaven continues to emerge as a large-scale, multi commodity project prospective for gold, antimony, silver, and tungsten. With the recent discovery at Golden Gate, Resolution is advancing a dual-track strategy tracking gold exploration and resource definition while simultaneously progressing other commodity pathways to capture critical minerals opportunities.

Project Wide

The Company is nearing completion of a project-wide stream sediment program designed to refine drill targeting across the broader Horse Heaven tenure. Once assay results have been received and interpreted, the Company will release the outcomes and integrate them into the next phase of the regional exploration program.

Antimony Ridge

The Company is applying for a drill permit for a large drill program to test deep extensions of the extensive shallow antimony mineralisation known at Antimony Ridge. A man-portable drill rig was trialled at Antimony Ridge. Results are pending.

The Company is also currently collecting representative samples of stibnite-silica vein mineralisation from exposures at Antimony Ridge. These samples will be used to conduct initial metallurgical test work and mineralisation characterisation studies.

Golden Gate

As an immediate follow-up to the gold mineralisation of HH-GG25-001C, and now, further bolstered by the results of HH-GG25-002C and HH-GG25-003C, the Company is mobilising a reverse circulation ("RC") drill rig to expand our drill footprint within the current drill permit allowance.

As previously reported (28 October 2025), the Company is applying for a large (50 hole) drill permit to follow up on HH-GG25-001C and other expected results of HH-GG25-002C to HH-GG25-010C.

Downstream Strategy

As announced on 31 October 2025, RML has entered into an agreement to acquire 25 acres of private land adjoining the Horse Heaven project that contains a tungsten and antimony processing mill and machinery, electrical power, industrial water usage rights, as well as existing tungsten stockpiles. The acquisition will potentially fast track Resolution to antimony and tungsten production.

The mill, once it is up and running, will make Resolution one of the few antimony, tungsten and gold companies in the U.S. with its own processing capability.

The acquisition is critical to Resolution as there is little to no available private land in the area and the site will provide, among other things, a location to conduct future processing activities, a hub for exploration and drilling activities, suitable land for staff accommodations, facilities for storage, core cutting and related activities and industrial water rights.

Authorised for release by the board of Resolution Minerals Ltd.

For further information, please contact Aharon Zaetz Executive Director.

Aharon Zaetz

Executive Director

Resolution Minerals Ltd

M: +61 424 743 098

ari@resolutionminerals.com

Jane Morgan

Investor Relations

Jane Morgan Management

M: +61 405 555 618

jm@janemorganmanagement.com.au

Follow us:

Website: www.resolutionminerals.com LinkedIn: @Resolution Minerals

X: @Resolution LTD

Competent Person's Statement

The information in this report that relates to exploration results, is based on and fairly represents information reviewed and compiled by Mr Ross Brown BSc (Hons), M AusIMM, Principal Geologist/director of exploration consulting firm, Riviere Minerals Pty. Ltd, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Brown has sufficient experience, which is relevant to the exploration activities, style of mineralisation and types of deposits under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Riviere Minerals is consulting to Resolutions Minerals Limited and consents to the inclusion in this announcement of the matters based on their information in the form and context in which it appears.

The Company confirms it is not aware of any new information or data that materially affects the information cross referenced in this announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

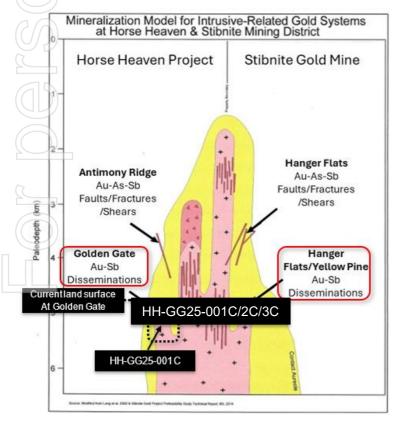
About Rivere Minerals

Riviere Minerals Pty Ltd ("Riviere") is a resource consultancy specialising in project evaluation and portfolio management. Its principal geologist and sole director, Mr Ross Brown, has nearly 40 years of experience in mineral exploration worldwide. Through Riviere, Mr Brown also provides assistance in exploration planning, execution and ASX reporting.

Forward Looking Statements

This announcement may contain forward-looking statements. These statements relate to the Company's expectations, beliefs, intentions or strategies regarding the future. These statements can be identified by the use of words like "anticipate", "believe", "intend", "estimate", "expect", "may", "plan", "project", "will", "should", "seek" and similar words or expressions containing same. These forward-looking statements reflect the Company's views and assumptions with respect to future events as of the date of this release and are subject to a variety of unpredictable risks, uncertainties, and other unknowns. Actual and future results and trends could differ materially from those set forth in such statements due to various factors, many of which are beyond our ability to control or predict. These include, but are not limited to, risks or uncertainties associated with the acquisition and divestment of projects, joint venture and other contractual risks, metal prices, exploration, development and operating risks, competition, production risks, sovereign risks, regulatory risks including environmental regulation and liability and potential title disputes, availability and terms of capital and general economic and business conditions.

Given these uncertainties, no one should place undue reliance on any forward-looking statements attributable to the Company, or any of its affiliates or persons acting on its behalf. Subject to any continuing obligations under applicable law, the Company disclaims any obligation or undertaking to disseminate any updates or revisions to any forward-looking statements in this announcement to reflect any change in expectations in relation to any forward-looking statements or any change in events, conditions or circumstances on which any such statement is based.


Appendix A: Intrusion Related Gold Systems, A Horse Heaven / Stibnite Deposit Exploration Model-based Comparison.

The broad intersections of gold mineralisation of HH-GG25-001C, HH-GG25-002C, and HH-GG25-003C are collectively consistent, compatible and confirmatory of the Intrusion Related Gold Systems ("IRGS") Exploration Model of Horse Heaven (ASX announcement dated 11 June 2025, titled "Agreement to Acquire Major Drill-Ready Antimony-Gold-Tungsten Project in Stibnite Mining District, Idaho, USA" and ASX announcement dated 28 October 2025, titled "Near Surface Discovery of 189.2m @ 1.3 g/t gold from 34m, ending in mineralisation".

Intrusion Related Gold Systems are a broad church of mineralisation with many variations in mineralising mechanisms, geological and structural setting, alteration and metal/mineral composition. IRGSs can form large, giant, and supergiant deposits with multimillion ounce resources, including as an example only, in the U.S.: Fort Knox, Pogo, and Donlin Creek; and in Australia: The Granites, Telfer, Hemi, and Kidston.

Of particular relevance to Horse Heaven is the Stibnite Mine deposit, located only 6km east of Horse Heaven. It is another example of an IRGS (intrusive hosted and structurally controlled gold deposit). The gold mineralisation at Stibnite has not been discretely categorised but is noted to share similarities with both reduced intrusion systems and Carlin-type gold deposits. Golden Gate is believed broadly analogous at the Stibnite deposits. Gold mineralisation at both Golden Gate and Stibnite is localised by northerly fault systems; hosted by felsic intrusive rocks of the Idaho batholith, associated with fine-grained sulphides, sericite alteration, biotite replacement and quartz-pyrite-arsenopyrite veining.

The pervasive nature of the gold mineralisation with low levels of disseminated pyrite and arsenopyrite in an altered monzonite and granodiorite in HH-GG25-001C/2C/3C is reminiscent of IRGS's. Using the Lang (2000) schematic section of an IRGS. The interpreted projected position of HH-GG25-001C is possibly into a structurally prepared zone associated with the Johnson Creek shear zone, where IRGS disseminated gold mineralisation distal or lateral to the causative intrusion has been localised.

By extension of the Lang IRGS – Horse Heaven/Stibnite Mine comparison model (App A-Figure 1), it follows that the Golden Gate Prospect exhibits similarities in terms of: i) host rock, ii) gold mineralisation, iii) associated disseminated sulphides, and iv) localisation along north striking shear zones to the Stibnite Mine Hanger Flats-Yellow Pine gold deposits.

Appendix A Figure 1: Schematic IRGS cross section showing the relative positions of the Stibnite Mining District Hanger Flats and Yellow Pipe deposits (Right half) and the Antimony Ridge and Golden Gate prospects (Left half). This cross section is modified from Lang et al 2000. A possible drill hole projection of HH-GG25-001C/2C/3C is highlighted and a hypothetical current land surface level relative to the

Source: Lang, J.R., Baker, T., Hart, C.J.R. and Mortensen, J.K. (2000) An Exploration Model for Intrusion-Related Gold Systems. SEG Newsletter, No. 40, 15 p. https://doi.org/10.5382/SEGnews.2000-40.fea.

E. Conrad E. et al 2014 Stibnite Gold Project Prefeasibility Technical Report Midas Gold Corp. Report cover page.

		Drill				Length	Sample	Au	W
Location	Hole ID	Technique	Sample ID	From (ft)	To (ft)	(ft)	Length	Au-AA23	ME-ICP61
		reciiiique				(11)	(ft)	ppm	ppm
Golden Gate	HH-GG25-002C	Core	190657	0.0	8.5	8.5	4.0	0.143	10
Golden Gate	HH-GG25-002C	Core	190658	8.5	12.3	3.8	3.0	0.21	30
Golden Gate	HH-GG25-002C	Core	190659	12.3	16.5	4.2	2.8	0.033	130
Golden Gate	HH-GG25-002C	Core	190660	16.5	20.0	3.5	2.2	0.122	60
Golden Gate	HH-GG25-002C	Core	190661	20.0	22.8	2.8	2.8	0.1	70
Golden Gate	HH-GG25-002C	Core	190662	22.8	26.7	3.9	3.9	0.357	10
Golden Gate	HH-GG25-002C	Core	190663	26.7	29.7	3.0	3.0	0.258	10
Golden Gate	HH-GG25-002C	Core	190665	29.7	34.3	4.6	4.6	0.301	10
Golden Gate	HH-GG25-002C	Core	190666	34.3	37.7	3.4	3.4	0.102	<10
Golden Gate	HH-GG25-002C	Core	190667	37.7	40.0	2.3	2.3	0.12	<10
Golden Gate	HH-GG25-002C	Core	190668	40.0	44.8	4.8	4.8	0.123	<10
Golden Gate	HH-GG25-002C	Core	190669	44.8	49.1	4.3	4.3	0.189	10
Golden Gate	HH-GG25-002C	Core	190670	49.1	61.0	11.9	3.5	0.045	<10
Golden Gate	HH-GG25-002C	Core	190671	61.0	67.0	6.0	3.6	0.027	<10
Golden Gate	HH-GG25-002C	Core	190672	67.0	80.0	13.0	3.5	0.027	<10
Golden Gate	HH-GG25-002C	Core	190673	80.0	85.0	5.0	5.0	0.158	<10
Golden Gate	HH-GG25-002C	Core	190674	85.0	90.0	5.0	5.0	0.318	<10
Golden Gate	HH-GG25-002C	Core	190675	90.0	95.0	5.0	5.0	0.196	<10
Golden Gate	HH-GG25-002C	Core	190676	95.0	100.0	5.0	5.0	0.416	10
Golden Gate	HH-GG25-002C	Core	190678	100.0	105.0	5.0	5.0	0.501	<10
Golden Gate	HH-GG25-002C	Core	190679	105.0	110.0	5.0	5.0	0.308	<10
	HH-GG25-002C		190680	110.0	115.0	5.0	5.0	0.251	70
Golden Gate	HH-GG25-002C	Core	190681	115.0	120.0	5.0	5.0	0.181	550
Golden Gate	HH-GG25-002C	Core	190682	120.0	123.8	3.8	3.8	0.165	10
	HH-GG25-002C		190683	123.8	127.1	3.3	3.3	0.238	870
Golden Gate	HH-GG25-002C	Core	190684	127.1	131.8	4.7	4.7	0.162	1930
Golden Gate	HH-GG25-002C	Core	190685	131.8	135.7	3.9	3.9	0.107	470
Golden Gate	HH-GG25-002C	Core	190686	135.7	140.7	5.0	5.0	0.126	1210
Golden Gate	HH-GG25-002C	Core	190687	140.7	145.0	4.3	4.3	0.084	10
	HH-GG25-002C		190688	145.0	150.0	5.0	5.0	0.14	70
	HH-GG25-002C		190689	150.0	154.5	4.5	4.5	0.261	80
Golden Gate	HH-GG25-002C	Core	190691	154.5	159.3	4.8	4.8	0.154	40
Golden Gate	HH-GG25-002C	Core	190692	159.3	164.2	4.9	4.9	0.093	20
	HH-GG25-002C		190693	164.2	168.7	4.5	4.5	0.09	20
Golden Gate	HH-GG25-002C	Core	190694	168.7	173.1	4.4	4.4	0.098	10
Golden Gate	HH-GG25-002C	Core	190695	173.1	178.0	4.9	4.9	0.166	10
Golden Gate	HH-GG25-002C	Core	190696	178.0	182.8	4.8	4.8	0.282	<10
Golden Gate	HH-GG25-002C	Core	190697	182.8	186.8	4.0	4.0	0.188	10
Golden Gate	HH-GG25-002C	Core	190698	186.8	191.0	4.2	4.2	0.248	10
Golden Gate	HH-GG25-002C	Core	190699	191.0	195.7	4.7	4.7	0.159	20
	HH-GG25-002C	†	190700	195.7	203.0	7.3	3.8	0.285	60
	HH-GG25-002C	+	190701	203.0	210.8	7.8	3.6	0.331	50
	HH-GG25-002C	-	190702	210.8	215.8	5.0	5.0	0.836	10
	HH-GG25-002C	1	190703	215.8	220.4	4.6	4.6	0.735	20
	HH-GG25-002C		190704	220.4	225.5	5.1	5.1	0.922	20
	HH-GG25-002C	†	190705	225.5	230.4	4.9	4.9	0.398	10
	HH-GG25-002C		190706	230.4	235.3	4.9	4.9	0.189	20
	HH-GG25-002C	†	190707	235.3	240.0	4.7	4.7	0.215	30
	HH-GG25-002C		190708	240.0	244.5	4.5	4.5	0.146	30

	1						Sample	Au	W
Location	Hole ID	Drill	Sample ID	From (ft)	To (ft)	Length	Length	Au-AA23	
Location	l lote ib	Technique	Sample ID	10111 (11)	10 (11)	(ft)	(ft)		
Coldon Coto	LILL CC25 002C	Coro	100700	244.5	240 5	F 0	5.0	ppm	ppm
	HH-GG25-002C	Core	190709	244.5	249.5	5.0		0.119	20
	HH-GG25-002C	Core	190710	249.5	253.8	4.3	4.3	0.105	10
	HH-GG25-002C	Core	190711	253.8	257.5	3.7	3.7	0.082	40
	HH-GG25-002C	Core	190712	257.5	261.8	4.3	4.3	0.127	30
-	HH-GG25-002C	Core	190713	261.8	266.7	4.9	4.9	0.101	20
-	HH-GG25-002C	Core	190715	266.7	271.1	4.4	4.4	0.151	20
Golden Gate	HH-GG25-002C	Core	190716	271.1	274.1	3.0	3.0	0.112	20
	HH-GG25-002C	Core	190717	274.1	277.0	2.9	2.9	0.196	20
Golden Gate	HH-GG25-002C	Core	190718	277.0	281.5	4.5	4.5	0.206	10
Golden Gate	HH-GG25-002C	Core	190719	281.5	286.3	4.8	4.8	0.217	10
Golden Gate	HH-GG25-002C	Core	190720	286.3	290.7	4.4	4.4	0.148	10
Golden Gate	HH-GG25-002C	Core	190721	290.7	295.0	4.3	4.3	0.229	10
Golden Gate	HH-GG25-002C	Core	190722	295.0	300.0	5.0	5.0	0.144	10
Golden Gate	HH-GG25-002C	Core	190723	300.0	304.8	4.8	4.8	0.103	20
Golden Gate	HH-GG25-002C	Core	190724	304.8	309.3	4.5	4.5	0.147	<10
	HH-GG25-002C	Core	190725	309.3	313.8	4.5	4.5	0.209	<10
	HH-GG25-002C		190726	313.8	318.6	4.8	4.8	0.149	<10
	HH-GG25-002C	Core	190727	318.6	323.7	5.1	5.1	0.063	<10
Golden Gate	HH-GG25-002C	Core	190729	323.7	328.6	4.9	4.9	0.074	10
Golden Gate	HH-GG25-002C	Core	190730	328.6	333.5	4.9	4.9	0.127	20
Golden Gate	HH-GG25-002C	Core	190731	333.5	337.7	4.2	4.2	0.168	<10
Golden Gate	HH-GG25-002C	Core	190732	337.7	342.6	4.9	4.9	0.179	<10
Golden Gate	HH-GG25-002C	Core	190733	342.6	347.6	5.0	5.0	0.23	10
Golden Gate	HH-GG25-002C	Core	190734	347.6	352.0	4.4	4.4	0.188	<10
Golden Gate	HH-GG25-002C	Core	190735	352.0	357.0	5.0	5.0	0.355	10
Golden Gate	HH-GG25-002C	Core	190736	357.0	361.3	4.3	4.3	0.186	10
Golden Gate	HH-GG25-002C	Core	190737	361.3	366.1	4.8	4.8	0.386	10
Golden Gate	HH-GG25-002C	Core	190738	366.1	370.8	4.7	4.7	0.291	10
Golden Gate	HH-GG25-002C	Core	190739	370.8	375.1	4.3	4.3	0.237	10
Golden Gate	HH-GG25-002C	Core	190740	375.1	380.0	4.9	4.9	0.207	10
Golden Gate	HH-GG25-002C	Core	190741	380.0	385.0	5.0	5.0	0.339	<10
Golden Gate	HH-GG25-002C	Core	190742	385.0	390.0	5.0	5.0	0.33	10
Golden Gate	HH-GG25-002C	Core	190743	390.0	394.9	4.9	4.9	0.259	10
Golden Gate	HH-GG25-002C	Core	190745	394.9	400.0	5.1	5.1	0.371	10
Golden Gate	HH-GG25-002C	Core	190746	400.0	405.0	5.0	5.0	0.637	10
Golden Gate	HH-GG25-002C	Core	190747	405.0	409.9	4.9	4.9	0.95	10
Golden Gate	HH-GG25-002C	Core	190748	409.9	415.0	5.1	5.1	0.912	10
Golden Gate	HH-GG25-002C	Core	190749	415.0	420.0	5.0	5.0	1.16	10
Golden Gate	HH-GG25-002C	Core	190750	420.0	425.0	5.0	5.0	1.235	10
Golden Gate	HH-GG25-002C	Core	190751	425.0	430.0	5.0	5.0	0.793	10
Golden Gate	HH-GG25-002C	Core	190752	430.0	435.0	5.0	5.0	1.115	10
Golden Gate	HH-GG25-002C	Core	190753	435.0	440.0	5.0	5.0	1.5	10
Golden Gate	HH-GG25-002C	Core	190754	440.0	445.0	5.0	5.0	1.73	10
Golden Gate	HH-GG25-002C	Core	190755	445.0	450.0	5.0	5.0	1.61	10
Golden Gate	HH-GG25-002C	Core	190756	450.0	455.0	5.0	5.0	1.395	10
Golden Gate	HH-GG25-002C	Core	190757	455.0	460.0	5.0	5.0	1.785	10
Golden Gate	HH-GG25-002C	Core	190758	460.0	465.0	5.0	5.0	1.12	10
Golden Gate	HH-GG25-002C	Core	190760	465.0	470.0	5.0	5.0	0.997	10
Golden Gate	HH-GG25-002C	Core	190761	470.0	475.0	5.0	5.0	1.175	10
Golden Gate	HH-GG25-002C	Core	190762	475.0	480.0	5.0	5.0	0.522	10

							Sample	Au	W
Location	Hole ID	Drill	Sample ID	From (ft)	To (ft)	Length	Length	Au-AA23	
Location	l liote ib	Technique		1 10111 (11)	10 (11)	(ft)	_		
Coldon Coto	LILL CC25 002C	Coro	100762	400.0	405.0	F 0	(ft) 5.0	ppm	ppm
	HH-GG25-002C	1	190763	480.0	485.0	5.0		0.84	10
	HH-GG25-002C	ł	190764	485.0	490.0	5.0	5.0	1.355	10
	HH-GG25-002C	ł	190765	490.0	495.0	5.0	5.0	1.085	10
	HH-GG25-002C	1	190767	495.0	500.0	5.0	5.0	0.8	10
	HH-GG25-002C	ł	190768	500.0	505.0	5.0	5.0	1.23	10
	HH-GG25-002C	1	190769	505.0	510.0	5.0	5.0	2.72	10
	HH-GG25-002C	1	190770	510.0	515.0	5.0	5.0	4.19	10
	HH-GG25-002C	1	190771	515.0	520.0	5.0	5.0	0.404	<10
	HH-GG25-002C	1	190772	520.0	525.0	5.0	5.0	2.48	10
Golden Gate	HH-GG25-002C	1	190773	525.0	530.0	5.0	5.0	3.3	50
	HH-GG25-002C	1	190774	530.0	535.0	5.0	5.0	0.756	10
	HH-GG25-002C	1	190775	535.0	540.0	5.0	5.0	1.265	10
	HH-GG25-002C	1	190776	540.0	545.0	5.0	5.0	0.919	10
	HH-GG25-002C		190777	545.0	550.0	5.0	5.0	0.753	10
l	HH-GG25-002C		190778	550.0	555.0	5.0	5.0	0.99	10
Golden Gate	HH-GG25-002C	1	190779	555.0	560.0	5.0	5.0	0.983	10
	HH-GG25-002C	1	190781	560.0	565.0	5.0	5.0	0.85	10
	HH-GG25-002C	1	190782	565.0	570.0	5.0	5.0	1.325	20
	HH-GG25-002C	1	190783	570.0	575.0	5.0	5.0	1.965	770
	HH-GG25-002C	1	190784	575.0	580.0	5.0	5.0	1.615	10
	HH-GG25-002C	1	190785	580.0	585.0	5.0	5.0	1.43	30
Golden Gate	HH-GG25-002C	1	190786	585.0	590.0	5.0	5.0	1.12	20
	HH-GG25-002C	1	190787	590.0	595.0	5.0	5.0	1.315	40
	HH-GG25-002C	1	190788	595.0	600.0	5.0	5.0	0.933	10
	HH-GG25-002C	1	190789	600.0	605.0	5.0	5.0	1.15	20
	HH-GG25-002C	1	190790	605.0	610.0	5.0	5.0	0.786	10
Golden Gate	HH-GG25-002C	1	190791	610.0	615.0	5.0	5.0	0.626	10
Golden Gate	HH-GG25-002C		190792	615.0	620.0	5.0	5.0	0.914	10
	HH-GG25-002C		190793	620.0	625.0	5.0	5.0	0.481	<10
	HH-GG25-002C	1	190794	625.0	630.0	5.0	5.0	1.205	10
	HH-GG25-002C	1	190795	630.0	635.0	5.0	5.0	0.49	10
Golden Gate	HH-GG25-002C		190796	635.0	640.0	5.0	5.0	1.41	10
	HH-GG25-002C		190797	640.0	645.0	5.0	5.0	0.712	10
	HH-GG25-002C		190798	645.0	650.0	5.0	5.0	0.895	10
	HH-GG25-002C	1	190799	650.0	655.0	5.0	5.0	0.568	10
	HH-GG25-002C	1	190800	655.0	660.0	5.0	5.0	0.26	10
	HH-GG25-002C	1	190801	660.0	665.0	5.0	5.0	0.54	10
	HH-GG25-002C		190802	665.0	670.0	5.0	5.0	0.587	10
	HH-GG25-002C		190803	670.0	675.0	5.0	5.0	0.82	10
	HH-GG25-002C		190804	675.0	680.0	5.0	5.0	1.17	<10
	HH-GG25-002C	1	190805	680.0	685.0	5.0	5.0	0.506	10
	HH-GG25-002C	1	190806	685.0	690.0	5.0	5.0	0.794	10
	HH-GG25-002C	1	190807	690.0	695.0	5.0	5.0	0.56	10
	HH-GG25-002C	1	190808	695.0	700.0	5.0	5.0	0.352	10
	HH-GG25-002C	1	190809	700.0	705.0	5.0	5.0	0.299	10
	HH-GG25-002C	1	190810	705.0	710.0	5.0	5.0	0.247	10
		1	190811	710.0	715.0	5.0	5.0	0.099	10
Golden Gate	HH-GG25-002C	Core	190812	715.0	720.0	5.0	5.0	0.245	<10
Golden Gate	HH-GG25-002C	Core	190813	720.0	725.0	5.0	5.0	0.488	<10
Golden Gate	HH-GG25-002C	Core	190814	725.0	730.0	5.0	5.0	0.486	<10

Location	on Hole ID Dr		Sample ID	From (ft)	To (ft)	Length	Sample Length	Au Au-AA23	W ME-ICP61
Location	liote ib	Technique	Campio ib	10111 (10)	. 0 (,	(ft)	(ft)	ppm	
Golden Gate	HH-GG25-002C	Core	190816	730.0	735.0	5.0	5.0	0.795	ppm <10
	HH-GG25-002C	Core	190817	735.0	740.0	5.0	5.0	0.428	10
	HH-GG25-002C		190818	740.0	745.0	5.0	5.0	0.423	<10
	HH-GG25-002C		190819	745.0	750.0	5.0	5.0	0.371	10
	HH-GG25-002C		190820	750.0	755.0	5.0	5.0	0.329	10
	HH-GG25-002C	Core	190821	755.0	760.0	5.0	5.0	0.324	<10
	HH-GG25-002C		190822	760.0	765.0	5.0	5.0	0.304	<10
	HH-GG25-002C	Core	190823	765.0	770.0	5.0	5.0	0.439	<10
Golden Gate	HH-GG25-002C	Core	190824	770.0	775.0	5.0	5.0	0.38	<10
Golden Gate	HH-GG25-002C	Core	190825	775.0	780.0	5.0	5.0	0.368	<10
Golden Gate	HH-GG25-002C	Core	190826	780.0	785.0	5.0	5.0	0.448	10
Golden Gate	HH-GG25-002C	Core	190827	785.0	790.0	5.0	5.0	0.244	<10
Golden Gate	HH-GG25-002C	Core	190828	790.0	795.0	5.0	5.0	0.671	<10
Golden Gate	HH-GG25-002C	Core	190829	795.0	800.0	5.0	5.0	1.195	10
Golden Gate	HH-GG25-002C	Core	190830	800.0	805.0	5.0	5.0	0.82	<10
Golden Gate	HH-GG25-002C	Core	190832	805.0	810.0	5.0	5.0	0.839	<10
Golden Gate	HH-GG25-002C	Core	190833	810.0	815.0	5.0	5.0	0.516	10
Golden Gate	HH-GG25-002C	Core	190834	815.0	820.0	5.0	5.0	0.531	<10
Golden Gate	HH-GG25-002C	Core	190835	820.0	825.0	5.0	5.0	0.533	<10
Golden Gate	HH-GG25-002C	Core	190836	825.0	830.0	5.0	5.0	0.762	<10
Golden Gate	HH-GG25-002C	Core	190837	830.0	835.0	5.0	5.0	0.532	<10
Golden Gate	HH-GG25-002C	Core	190838	835.0	840.0	5.0	5.0	0.714	<10
Golden Gate	HH-GG25-002C	Core	190839	840.0	845.0	5.0	5.0	0.338	10
Golden Gate	HH-GG25-002C	Core	190840	845.0	850.0	5.0	5.0	1.04	10
Golden Gate	HH-GG25-002C	Core	190841	850.0	855.0	5.0	5.0	0.536	10
	HH-GG25-002C		190842	855.0	860.0	5.0	5.0	0.812	30
Golden Gate	HH-GG25-002C	Core	190843	860.0	865.0	5.0	5.0	0.895	10
Golden Gate	HH-GG25-002C	Core	190844	865.0	870.0	5.0	5.0	0.911	<10

	1	1	I	l	I		Camarala	T 4	14/
		Drill	0		T - (54)	Length	Sample	Au	W
Location	Hole ID	Technique	Sample ID	From (π)	ιο (π)	(ft)	Length	Au-AA23	ME-ICP61
						` ,	(ft)	ppm	ppm
Golden Gate	HH-GG25-003C	Core	190845	0.0	10.0	10.0	10.0	0.3	230
Golden Gate	HH-GG25-003C	Core	190846	10.0	15.0	5.0	5.0	0.162	160
Golden Gate	HH-GG25-003C	Core	190847	15.0	20.0	5.0	5.0	0.161	450
Golden Gate	HH-GG25-003C	Core	190848	20.0	25.0	5.0	5.0	0.181	440
Golden Gate	HH-GG25-003C	Core	190849	25.0	30.0	5.0	5.0	0.231	530
Golden Gate	HH-GG25-003C	Core	190851	30.0	35.0	5.0	5.0	0.191	500
Golden Gate	HH-GG25-003C	Core	190852	35.0	40.0	5.0	5.0	0.177	580
Golden Gate	HH-GG25-003C	Core	190853	40.0	45.0	5.0	5.0	0.171	750
Golden Gate	HH-GG25-003C	Core	190854	45.0	50.0	5.0	5.0	0.146	330
Golden Gate	HH-GG25-003C	Core	190855	50.0	55.0	5.0	5.0	0.183	570
Golden Gate	HH-GG25-003C	Core	190856	55.0	60.0	5.0	5.0	0.119	1130
Golden Gate	HH-GG25-003C	Core	190857	60.0	65.0	5.0	5.0	0.147	270
Golden Gate	HH-GG25-003C	Core	190859	65.0	80.0	15.0	5.0	0.116	950
Golden Gate	HH-GG25-003C	Core	190862	80.0	85.0	5.0	5.0	0.134	590
Golden Gate	HH-GG25-003C	Core	190863	85.0	90.0	5.0	5.0	0.18	470
Golden Gate	HH-GG25-003C	Core	190864	90.0	95.0	5.0	5.0	0.367	550
Golden Gate	HH-GG25-003C	Core	190865	95.0	100.0	5.0	5.0	0.074	290
Golden Gate	HH-GG25-003C	Core	190866	100.0	105.0	5.0	5.0	0.206	360
Golden Gate	HH-GG25-003C	Core	190867	105.0	110.0	5.0	5.0	0.162	310
Golden Gate	HH-GG25-003C	Core	190868	110.0	115.0	5.0	5.0	0.129	150
Golden Gate	HH-GG25-003C	Core	190869	115.0	120.0	5.0	5.0	0.133	160
Golden Gate	HH-GG25-003C	Core	190870	120.0	125.0	5.0	5.0	0.311	100
Golden Gate	HH-GG25-003C	Core	190871	125.0	130.0	5.0	5.0	0.23	340
Golden Gate	HH-GG25-003C	Core	190872	130.0	135.0	5.0	5.0	0.251	320
Golden Gate	HH-GG25-003C	Core	190873	135.0	140.0	5.0	5.0	0.228	310
Golden Gate	HH-GG25-003C	Core	190874	140.0	145.0	5.0	5.0	0.241	380
Golden Gate	HH-GG25-003C	Core	190875	145.0	150.0	5.0	5.0	0.265	250
Golden Gate	HH-GG25-003C	Core	190876	150.0	155.0	5.0	5.0	0.149	250
Golden Gate	HH-GG25-003C	Core	190877	155.0	160.0	5.0	5.0	0.197	190
Golden Gate	HH-GG25-003C	Core	190878	160.0	165.0	5.0	5.0	0.217	170
Golden Gate	HH-GG25-003C	Core	190879	165.0	170.0	5.0	5.0	0.421	230
Golden Gate	HH-GG25-003C	Core	190880	170.0	175.0	5.0	5.0	0.431	70
Golden Gate	HH-GG25-003C	Core	190881	175.0	180.0	5.0	5.0	0.57	10
Golden Gate	HH-GG25-003C	Core	190882	180.0	185.0	5.0	5.0	0.578	20
Golden Gate	HH-GG25-003C	Core	190883	185.0	190.0	5.0	5.0	0.18	40
Golden Gate	HH-GG25-003C	Core	190884	190.0	195.0	5.0	5.0	0.432	40
Golden Gate	HH-GG25-003C	Core	190885	195.0	200.0	5.0	5.0	0.491	20
Golden Gate	HH-GG25-003C	Core	190886	200.0	205.0	5.0	5.0	0.796	20
Golden Gate	HH-GG25-003C	Core	190887	205.0	210.0	5.0	5.0	0.849	70
Golden Gate	HH-GG25-003C	Core	190888	210.0	215.0	5.0	5.0	0.879	60
Golden Gate	HH-GG25-003C	Core	190889	215.0	220.0	5.0	5.0	0.998	60
Golden Gate	HH-GG25-003C	Core	190890	220.0	225.0	5.0	5.0	0.64	10
Golden Gate	HH-GG25-003C	Core	190891	225.0	230.0	5.0	5.0	0.774	10
Golden Gate	HH-GG25-003C	Core	190892	230.0	235.0	5.0	5.0	0.873	10
Golden Gate	HH-GG25-003C	Core	190893	235.0	238.0	3.0	3.0	1.35	<10
Golden Gate	HH-GG25-003C	Core	190895	238.0	241.2	3.2	3.2	0.581	<10
Golden Gate	HH-GG25-003C	Core	190896	241.2	245.0	3.8	3.8	0.407	20

		Drill				Length	Sample	Au	W
Location	Hole ID		Sample ID	From (ft)	To (ft)	_	Length	Au-AA23	ME-ICP61
		Technique				(ft)	(ft)	ppm	ppm
Golden Gate	HH-GG25-003C	Core	190897	245.0	250.0	5.0	5.0	1.37	10
Golden Gate	HH-GG25-003C	Core	190898	250.0	255.0	5.0	5.0	1.03	20
Golden Gate	HH-GG25-003C	Core	190899	255.0	258.0	3.0	3.0	0.87	20
Golden Gate	HH-GG25-003C	Core	190900	258.0	260.9	2.9	2.9	1.255	10
Golden Gate	HH-GG25-003C	Core	190901	260.9	263.0	2.1	2.1	1.57	30
Golden Gate	HH-GG25-003C	Core	190903	263.0	267.6	4.6	4.6	1.86	<10
Golden Gate	HH-GG25-003C	Core	190904	267.6	272.2	4.6	4.6	2.3	20
Golden Gate	HH-GG25-003C	Core	190905	272.2	275.0	2.8	2.8	2.5	10
Golden Gate	HH-GG25-003C	Core	190906	275.0	280.0	5.0	5.0	2.13	<10
Golden Gate	HH-GG25-003C	Core	190907	280.0	284.7	4.7	4.7	1.21	10
Golden Gate	HH-GG25-003C	Core	190909	284.7	289.5	4.8	4.8	2.1	10
Golden Gate	HH-GG25-003C	Core	190910	289.5	294.5	5.0	5.0	1.665	<10
Golden Gate	HH-GG25-003C	Core	190911	294.5	299.5	5.0	5.0	1.56	<10
Golden Gate	HH-GG25-003C	Core	190912	299.5	304.5	5.0	5.0	1.42	<10
Golden Gate	HH-GG25-003C	Core	190913	304.5	309.7	5.2	5.2	1.825	<10
Golden Gate	HH-GG25-003C	Core	190914	309.7	315.0	5.3	5.3	2.64	<10
Golden Gate	HH-GG25-003C	Core	190915	315.0	320.0	5.0	5.0	2.59	10
Golden Gate	HH-GG25-003C	Core	190916	320.0	325.0	5.0	5.0	1.295	<10
Golden Gate	HH-GG25-003C	Core	190917	325.0	330.0	5.0	5.0	2.7	<10
Golden Gate	HH-GG25-003C	Core	190918	330.0	335.0	5.0	5.0	1.63	<10
Golden Gate	HH-GG25-003C	Core	190920	335.0	339.0	4.0	4.0	1.53	<10
Golden Gate	HH-GG25-003C	Core	190921	339.0	342.4	3.4	3.4	1.52	<10
Golden Gate	HH-GG25-003C	Core	190922	342.4	345.0	2.6	2.6	2.51	<10
Golden Gate	HH-GG25-003C	Core	190923	345.0	350.0	5.0	5.0	1.7	<10
Golden Gate	HH-GG25-003C	Core	190924	350.0	355.0	5.0	5.0	1.63	<10
Golden Gate	HH-GG25-003C	Core	190925	355.0	360.0	5.0	5.0	2.44	<10
Golden Gate	HH-GG25-003C	Core	190927	360.0	365.0	5.0	5.0	4.39	<10
Golden Gate	HH-GG25-003C	Core	190928	365.0	370.0	5.0	5.0	1.88	<10
Golden Gate	HH-GG25-003C	Core	190929	370.0	375.0	5.0	5.0	2.08	10
Golden Gate	HH-GG25-003C	Core	190930	375.0	378.3	3.3	3.3	3.15	<10
Golden Gate	HH-GG25-003C	Core	190931	378.3	380.2	1.9	1.9	2.86	<10
Golden Gate	HH-GG25-003C	Core	190932	380.2	385.0	4.8	4.8	0.475	10
Golden Gate	HH-GG25-003C	Core	190933	385.0	390.0	5.0	5.0	0.466	10
Golden Gate	HH-GG25-003C	Core	190934	390.0	395.0	5.0	5.0	0.276	10
Golden Gate	HH-GG25-003C	Core	190935	395.0	400.0	5.0	5.0	0.475	10
Golden Gate	HH-GG25-003C	Core	190936	400.0	405.0	5.0	5.0	0.296	10
Golden Gate	HH-GG25-003C	Core	190937	405.0	410.0	5.0	5.0	0.826	10
Golden Gate	HH-GG25-003C	Core	190938	410.0	412.0	2.0	2.0	1.025	10
Golden Gate	HH-GG25-003C	Core	190939	412.0	415.8	3.8	3.8	0.854	10
Golden Gate	HH-GG25-003C	Core	190940	415.8	420.0	4.2	4.2	0.663	<10
Golden Gate	HH-GG25-003C	Core	190941	420.0	425.0	5.0	5.0	0.438	<10
Golden Gate	HH-GG25-003C	Core	190942	425.0	428.0	3.0	3.0	0.426	10
Golden Gate	HH-GG25-003C	Core	190943	428.0	431.0	3.0	3.0	1.33	10
Golden Gate	HH-GG25-003C	Core	190944	431.0	435.0	4.0	4.0	1.5	20
Golden Gate	HH-GG25-003C	Core	190945	435.0	440.0	5.0	5.0	1.865	10
Golden Gate	HH-GG25-003C	Core	190947	440.0	444.3	4.3	4.3	1.595	<10
Golden Gate	HH-GG25-003C	Core	190949	444.3	447.2	2.9	2.9	0.972	<10
Golden Gate	HH-GG25-003C	Core	190950	447.2	451.0	3.8	3.8	1.885	<10
Golden Gate	HH-GG25-003C	Core	190951	451.0	454.7	3.7	3.7	2.34	<10
Golden Gate	HH-GG25-003C	Core	190952	454.7	459.5	4.8	4.8	2.46	<10

	•								
Location	Hole ID	Drill Technique	Sample ID	From (ft)	To (ft)	Length (ft)	Sample Length	Au Au-AA23	W ME-ICP61
		recinique				(11)	(ft)	ppm	ppm
Golden Gate	HH-GG25-003C	Core	190953	459.5	464.2	4.7	4.7	2.16	<10
Golden Gate	HH-GG25-003C	Core	190954	464.2	468.8	4.6	4.6	3.25	<10
Golden Gate	HH-GG25-003C	Core	190955	468.8	473.0	4.2	4.2	3.36	<10
Golden Gate	HH-GG25-003C	Core	190956	473.0	476.0	3.0	3.0	3.36	<10
Golden Gate	HH-GG25-003C	Core	190957	476.0	480.0	4.0	4.0	3.25	<10
Golden Gate	HH-GG25-003C	Core	190958	480.0	485.0	5.0	5.0	2.94	<10
Golden Gate	HH-GG25-003C	Core	190960	485.0	490.0	5.0	5.0	2.12	<10
Golden Gate	HH-GG25-003C	Core	190961	490.0	495.0	5.0	5.0	4.23	<10
Golden Gate	HH-GG25-003C	Core	190963	495.0	500.0	5.0	5.0	1.57	<10
Golden Gate	HH-GG25-003C	Core	190964	500.0	505.0	5.0	5.0	3.77	<10
Golden Gate	HH-GG25-003C	Core	190965	505.0	510.0	5.0	5.0	4.06	<10
Golden Gate	HH-GG25-003C	Core	190966	510.0	515.0	5.0	5.0	3.05	<10
Golden Gate	HH-GG25-003C	Core	190967	515.0	520.0	5.0	5.0	2.88	<10
Golden Gate	HH-GG25-003C	Core	190968	520.0	525.0	5.0	5.0	3.94	<10
Golden Gate	HH-GG25-003C	Core	190969	525.0	530.0	5.0	5.0	4.74	<10
Golden Gate	HH-GG25-003C	Core	190971	530.0	535.0	5.0	5.0	3.92	<10
Golden Gate	HH-GG25-003C	Core	190972	535.0	540.0	5.0	5.0	5.82	<10
Golden Gate	HH-GG25-003C	Core	190973	540.0	545.0	5.0	5.0	5.91	<10
Golden Gate	HH-GG25-003C	Core	190974	545.0	550.0	5.0	5.0	3.97	<10
Golden Gate	HH-GG25-003C	Core	190975	550.0	555.0	5.0	5.0	1.65	<10
Golden Gate	HH-GG25-003C	Core	190976	555.0	559.0	4.0	4.0	1.265	<10
Golden Gate	HH-GG25-003C	Core	190977	559.0	563.6	4.6	4.6	2.87	10
Golden Gate	HH-GG25-003C	Core	190978	563.6	565.8	2.2	2.2	1.985	10
Golden Gate	HH-GG25-003C	Core	190979	565.8	570.0	4.2	4.2	2.52	<10
Golden Gate	HH-GG25-003C	Core	190981	570.0	575.0	5.0	5.0	2.22	<10
Golden Gate	HH-GG25-003C	Core	190982	575.0	580.0	5.0	5.0	1.97	10
Golden Gate	HH-GG25-003C	Core	190983	580.0	585.0	5.0	5.0	3.45	<10
Golden Gate	HH-GG25-003C	Core	190984	585.0	590.0	5.0	5.0	1.04	<10
Golden Gate	HH-GG25-003C	Core	190985	590.0	593.5	3.5	3.5	2.19	<10
Golden Gate	HH-GG25-003C	Core	190986	593.5	597.2	3.7	3.7	3.1	10
Golden Gate	HH-GG25-003C	Core	190987	597.2	601.8	4.6	4.6	1.56	10
Golden Gate	HH-GG25-003C	Core	190988	601.8	605.0	3.2	3.2	2.42	10
Golden Gate	HH-GG25-003C	Core	190989	605.0	609.3	4.3	4.3	2.36	10
Golden Gate	HH-GG25-003C	Core	190990	609.3	614.2	4.9	4.9	2.59	10
Golden Gate	HH-GG25-003C	Core	190991	614.2	617.0	2.8	2.8	2.63	10
Golden Gate	HH-GG25-003C	Core	190992	617.0	621.0	4.0	4.0	1.915	<10
Golden Gate	HH-GG25-003C	Core	190993	621.0	625.0	4.0	4.0	2.74	<10
Golden Gate	HH-GG25-003C	Core	190994	625.0	630.0	5.0	5.0	2.27	<10
Golden Gate	HH-GG25-003C	Core	190995	630.0	635.0	5.0	5.0	2.41	<10
Golden Gate	HH-GG25-003C	Core	190996	635.0	640.0	5.0	5.0	3.19	10
Golden Gate	HH-GG25-003C	Core	190997	640.0	645.0	5.0	5.0	2.08	10
Golden Gate	HH-GG25-003C	Core	190998	645.0	650.0	5.0	5.0	2.75	<10
Golden Gate	HH-GG25-003C	Core	190999	650.0	655.0	5.0	5.0	1.52	<10
Golden Gate	HH-GG25-003C	Core	191000	655.0	660.0	5.0	5.0	1.55	<10
Golden Gate	HH-GG25-003C	Core	191001	660.0	665.0	5.0	5.0	2.18	<10
Golden Gate	HH-GG25-003C	Core	191002	665.0	669.6	4.6	4.6	1.22	<10
Golden Gate	HH-GG25-003C	Core	191003	669.6	674.5	4.9	4.9	2.11	<10
Golden Gate	HH-GG25-003C	Core	191004	674.5	679.5	5.0	5.0	1.31	<10
Golden Gate	HH-GG25-003C	Core	191005	679.5	684.5	5.0	5.0	1.185	10
Golden Gate	HH-GG25-003C	Core	191007	684.5	689.5	5.0	5.0	1.36	<10

		Drill				Length	Sample	Au	W
Location	Hole ID	Technique	Sample ID	From (ft)	To (ft)	(ft)	Length	Au-AA23	ME-ICP61
		recinique				(11)	(ft)	ppm	ppm
Golden Gate	HH-GG25-003C	Core	191008	689.5	694.5	5.0	5.0	1.2	<10
Golden Gate	HH-GG25-003C	Core	191009	694.5	698.0	3.5	3.5	1.34	<10
Golden Gate	HH-GG25-003C	Core	191010	698.0	702.0	4.0	4.0	2.33	<10
Golden Gate	HH-GG25-003C	Core	191011	702.0	705.5	3.5	3.5	2.4	10
Golden Gate	HH-GG25-003C	Core	191012	705.5	710.0	4.5	4.5	1.825	<10
Golden Gate	HH-GG25-003C	Core	191013	710.0	715.0	5.0	5.0	1.995	10
Golden Gate	HH-GG25-003C	Core	191014	715.0	718.5	3.5	3.5	3.18	10
Golden Gate	HH-GG25-003C	Core	191015	718.5	723.4	4.9	4.9	0.871	<10
Golden Gate	HH-GG25-003C	Core	191016	723.4	727.0	3.6	3.6	1.51	10
Golden Gate	HH-GG25-003C	Core	191017	727.0	732.0	5.0	5.0	1.64	10
Golden Gate	HH-GG25-003C	Core	191018	732.0	736.0	4.0	4.0	1.14	10
Golden Gate	HH-GG25-003C	Core	191019	736.0	739.5	3.5	3.5	1.46	10
Golden Gate	HH-GG25-003C	Core	191021	739.5	744.3	4.8	4.8	1.965	10
Golden Gate	HH-GG25-003C	Core	191022	744.3	746.6	2.3	2.3	1.47	10
Golden Gate	HH-GG25-003C	Core	191023	746.6	751.7	5.1	5.1	1.285	10
Golden Gate	HH-GG25-003C	Core	191024	751.7	755.0	3.3	3.3	2.26	10
Golden Gate	HH-GG25-003C	Core	191025	755.0	760.0	5.0	5.0	1.23	10
Golden Gate	HH-GG25-003C	Core	191026	760.0	765.0	5.0	5.0	1.13	10
Golden Gate	HH-GG25-003C	Core	191027	765.0	770.0	5.0	5.0	1.08	10
Golden Gate	HH-GG25-003C	Core	191029	770.0	775.0	5.0	5.0	1.32	10
Golden Gate	HH-GG25-003C	Core	191030	775.0	780.0	5.0	5.0	0.88	10
Golden Gate	HH-GG25-003C	Core	191031	780.0	785.0	5.0	5.0	1.6	<10
Golden Gate	HH-GG25-003C	Core	191032	785.0	790.0	5.0	5.0	2.05	10
Golden Gate	HH-GG25-003C	Core	191033	790.0	795.0	5.0	5.0	2.29	10
Golden Gate	HH-GG25-003C	Core	191034	795.0	0.008	5.0	5.0	0.933	10
Golden Gate	HH-GG25-003C	Core	191035	800.0	805.0	5.0	5.0	0.638	10
Golden Gate	HH-GG25-003C	Core	191036	805.0	810.0	5.0	5.0	0.785	10
Golden Gate	HH-GG25-003C	Core	191037	810.0	815.0	5.0	5.0	0.839	10
Golden Gate	HH-GG25-003C	Core	191038	815.0	820.0	5.0	5.0	0.486	10
Golden Gate	HH-GG25-003C	Core	191039	820.0	823.5	3.5	3.5	0.407	10
Golden Gate	HH-GG25-003C	Core	191040	823.5	830.0	6.5	6.5	0.138	<10

Appendix C: Pre-RML Golden Gate Drilling, highlighting 94-02 and 94-06 (appearing in Figures 3 and 4). Table first published in (ASX announcement dated 11 June 2025, titled "Agreement to Acquire Major Drill-Ready Antimony-Gold-Tungsten Project in Stibnite Mining District, Idaho, USA").

Hole ID	Easting (m)	Northing (m)	Azimuth (°)	Dip (°)	Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
94-1	619903	4978955	300	-55	152.4	0	152.4	152.4	0.489
						18.29	25.91	7.62	0.554
						36.58	41.15	4.57	0.61
						60.96	70.1	9.14	0.675
						105.16	132.59	27.43	0.891
					including	105.16	111.25	6.1	1.073
					including	120.4	126.49	6.1	1.158
94-2	619872	4978870	300	-50	170.69	0	170.69	170.69	0.627
						102.11	109.73	7.62	0.616
						112.78	170.69	57.91	1.104
					including	123.45	150.88	27.43	1.564
					including	137.16	149.35	12.19	1.843
94-3	619842	4978818	300	-50	167.64	0	167.64	167.64	0.269
						89.92	96.01	6.1	0.608
94-4	619867	4978941	300	-55	121.92	0	121.92	121.92	0.508
						70.1	77.72	7.62	1.162
					including	97.54	118.87	21.34	0.981
94-5	619856	4978913	300	-50	121.92	0	121.92	121.92	0.552
						3.05	9.14	6.1	1.058
						88.39	121.92	33.53	1.058
					including	99.06	121.92	22.86	1.255
94-6	619845	4978887	300	-50	152.4	0	152.4	152.4	0.495
						47.24	53.34	6.1	1.653
						100.59	134.11	33.53	0.797
94-7	619835	4978854	300	50	167.64	0	167.64	162.54*	0.457
			4 missing s	amples	*	103.63	111.25	7.62	0.684
						120.4	141.73	21.34	1.125
					including	128.02	138.69	10.67	1.611
86-GGR-1	619853	4979099	140	-50	70.1	0	70.1	70.1	0.784
						21.34	51.82	30.48	1.354
						54.86	67.06	12.19	0.634
86-GGR-2	619832	4978811	34	-50	105.16	0	105.16	105.16	0.154

Appendix D: JORC Code, 2012 Edition Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 This announcement contains exploration results of two drill holes with the III reference HH-GG25-002C and HH-GG25-003C The data is: drill hole data; sample data assay data; and geological data Supporting data includes drill colla locations in UTM metric data, togethe with dip, azimuth, altitude and end of hol data. Reported assay data is gold. The Company has completed multi-elemer analysis and has referred to tungste geochemistry. Please note that the primary data of the core samples (start, finish, interval) were converted from imperial fee measurements to metric metres in this announcement. Note that the operatin jurisdiction uses imperial measuremer system. The assay data is derived independent professional laboratory services compant of submitted core samples from HH-GG25-002C and HH-GG25-003C. HH-GG25-002C and HH-GG25-003C. HH-GG25-002C and HH-GG25-003C. HH-GG25-002C and HH-GG25-003C. Sample intervals are contiguous and range in length individually from 2.2ft to 5.2ft (averagin 4.5ft). The samples are half-cut corprepared by industry standard corcutting saw by qualified personnel. Samples were taken for the majority of the hole depth except where rock voids were encountered. Geological data is derived from detailed geological and geotechnical logging be qualified personnel.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-	 HH-GG25-002C and HH-GG25-003C are diamond core drill holes that was drilled by Evolve Exploration Ltd using a Multipowe MP500 modular core rig providing HO diamond drill core.
	sampling bit or other type, whether core is oriented and if so, by what method,	The drill core is not oriented.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine (see a respective). 	Drill core recovery of HH-GG25-002C and HH-GG25-003C was very good (a function of the solid lithologies) approaching 100%. Where drilling encountered voids, no core was recovered. This happenstance represents < 1% of the total length of the drill hole.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drill core was logged for lithology, alteration, mineralization, structure (geotechnical) using oriented core to a level which has enabled preliminary interpretations relating to style of mineralisation, host and thickness. At this stage no Mineral Resource Estimates, mining studies or metallurgical studies are appropriate. Drill core is also logged for RQD and Core recovery. Drill core is then digited photographed wet and dry while whole after logging. The logging, as described above is both quality and quantitative. 100% of the relevant intersections were logged as per above.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The HQ core was halved using a diamond core saw and sampled on geological intervals approximating 2.2 ft to 5.2 ft in length. Drill core was halved using a gasoline powered core saw by RML contract staff who maintain possession of the core at its Antimony Camp facility. Half-cut core samples were bagged and tagged using bar-coded sample tags and were securely stored prior to shipment at the Antimony Camp facility. Half cut core samples were transported by RML contractors under lock and key to ALS prep' lab' facility in Twin Falls, ID. No third-party shippers were involved in the shipping process; chain of custody forms were exchanged at ALS Minerals in Twin Falls and a copy kept on file. The

Criteria	JORC Code explanation	Commentary
		remaining boxed cut core are kept at a secure locked facility in Donnelly, ID. • ALS Minerals Twin Falls prep' lab' logs in the samples using the sample tag bar codes provided. Samples were then crushed to 70% less than 2mm, rotary split off 250g, pulverise split to better than 85% passing 75 microns. • All samples were then shipped to ALS Minerals analytical laboratory in Vancouver, British Columbia.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Gold was assayed by analytical method Au-AA23: Au by fire assay and AAS 30g nominal sample weight. Multielement analysis was by analytical method ME-ICP61: 34 elements by HF-HNO3-HCIO4 acid digestion, HCI leach and ICP-AES. Quantitatively dissolves nearly all elements for the majority of geological materials. Only the most resistive minerals, such as Zircons, are only partially dissolved. No geophysical tools, spectrometers, handheld XRF instruments, etc were used in the generation of the assay data. Certified reference materials (CRM) from an ISO certified supplier were inserted randomly into the sample stream at a ratio of 2%. CRMs were obtained for Meg LLC of Reno, Nevada; two separate CRMs were used for gold: a low grade and high-grade standard. Blank material was inserted randomly in the sample stream at a ratio of 2%. Blank material is commercially available peagravel that has been previously tested for gold concentrations. Duplicates samples were collected by quarter cutting the core at randomly selected intervals. Two quarter-cut portions of core were sent for analysis; the remaining half is kept at a secure facility. Core intervals of poor recovery were not used for duplicate samples. Duplicate core samples were inserted into the sample stream at a ratio of 2%.

	Criteria	JORC Code explanation	Commentary
	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	No verification of the significant intersections by either independent or alternative company personnel has been completed to date. The company acknowledges the material nature of the results and is planning a program of select verification assays. Such were the immediacy of the results; these verifications were not possible prior to the release of the [initial/first] results. The Company is confident that its sample security processes are adequate for the interim period.
			The announcement details drill holes HH-GG25-002C and HH-GG25-003C. Note that HH-GG25-002C was drilled on the same platform as HH-GG25-001C but drilled in a different direction (Figure 2). By this HH-GG25-002C and HH-GG25-001C are fanned holes.
W.			 Sample results, certificates and results were sent via email to RML site contractors in Antimony Camp where results are analysed and interpreted.
)		 No assay adjustments have been carried out.
	Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The drill hole locations were achieved using handheld GPS programmed into the local coordinate system. The accuracy of the GPS is in line with best practice standards.
)	 Specification of the grid system used. Quality and adequacy of topographic control. 	
	Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The assay data spacing of HH-GG25-002C and HH-GG25-003C, the length and frequency of each sample and the collective coverage of the drill holes are best practise in terms of hole sample representativeness. In terms of geological data spacing associated with HH-GG25-002C and HH-GG25-003C every metre of the holes were logged.
	Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key 	The drill holes have a drill direction that is approaching perpendicular to the regional trend (lithologically and structurally) and also approaching perpendicular to the known mineralisation of a historical tungsten mine. The purpose of the holes

Criteria	JORC Code explanation	Commentary
	mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	was to test the occurrence of known tungsten mineralisation at surface at depth, and to test the occurrence of gold in un-oxidised rocks at depth.
		Cautionary Note: There is currently insufficient data pertaining to sampling orientation and the local-scale orientation of mineralisation to determine the true width of the gold intervals in these holes. Additional holes in all directions are required to determine whether the gold mineralisation is broadly pervasive or (to various degrees) spatially constrained. For example, if the gold mineralisation is broadly pervasive, then the gold intervals in this announcement are true widths. If the gold mineralisation is spatially constrained, then the gold intervals in this announcement are not true widths. Based in increasing data, the gold mineralisation is interpreted as being broadly pervasive in association with a structurally-controlled repeating host sequence of country-rock granites and fault breccias.
Sample security	The measures taken to ensure sample security.	All drill core samples were delivered directly to RML's geologists on site where they remain under direct supervision at a secure site.
Audits reviews	• The results of any audits or reviews of sampling techniques and data.	The competent person is unaware of the undertaking of audits or reviews for sampling technique and data, other than its own review.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, past sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of 	 This announcement refers to the one project, Horse Heaven project in Idaho USA, comprising six hundred and ninety-nine (699) U.S. Federal lode mining claims covering 5,644 hectares and includes six hundred and eighty-nine (689) mining claims and ten lode mining claims referred as the Oberbillig Group. The competent person understands that the mining claims are all in good standing. No exploration results reported in this
done by other parties	exploration by other parties.	release were performed by other parties.
Geology	Deposit type, geological setting and style of mineralisation.	The project area is dominated by Cretaceous-aged granitic rocks relating to intrusive phases associated with the Atlanta Lobe of the Idaho Batholith. These largely granodiorite rocks have intruded Neoproterozoicaged metasediments, comprising quartzites (which are dominant) calcsilicates, marble and black shale. The area and broader region are affected by broad reginal folding and N-S, NNE-SSW, and NE-SW faults. Gold, antimony, tungsten and silver mineralisation is associated with hydrothermally altered and fractured granodiarites.
Drillhole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: a easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length.	granodiorites. The drillhole information for HH-GG25-002C and HH-GG25-003C, are included in an in-text table (Table 1) with drill collar location data, altitude, dip, azimuth, and end of hole.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and 	In reporting downhole gold intersections results of HH-GG25-002C and HH-GG25-003C, no maximum and minimum truncations were used. In reporting downhole gold intersections/intervals, assay results of HH-GG25-002C and HH-GG25-003C,
Balationahin	 longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	weighted averages were required due to the fact that sample lengths were variant (between 2.2ft and 5.2ft). The sample interval length was multiplied by the sample assay data then divided by the total length of the interval. No metal equivalents were used in this announcement.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 With reference to HH-GG25-002C and HH-GG25-003C, the holes were drilled close to perpendicular across the prospect-scale orientation of the known mineralisation. There is insufficient data pertaining to the gold mineralisation identified in HH-GG25-002C and HH-GG25-003C, to allow conclusive statements concerning the sampling orientation and the local-scale orientation of mineralisation. Therefore the true width nature of the reported widths of the mineralisation (in rock chip channel and drilling) is not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	A map and a cross section are provided with geolocation information (coordinates, northing and scale bar). Legends are included within each figure (where appropriate) and when additional explanation is required, this is given to the figure caption.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This announcement is considered to be fair and balanced with respect to the exploration results and interpretations based on them.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other material data associated with new exploration results in this announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The drill holes subject of this announcement, HH-GG25-002C and HH-GG25-003C, are part of the 10-hole diamond core program, which as the announcement reports, Is completed. Drill hole data of HH-GG25-004C through to HH-GG25-010C will be released to the market upon receipt. A plan (Figure 2) and a cross sections (Figures 3 and 4) are included in this announcement to provide a sense of location of the hole in relation: to i) other drill holes; and ii) intersected mineralisation. The cross sections include a geological interpretation.