

28 October 2025

Maiden 838.7Mt Gallium Resource Estimate over Mt Ridley Project

838.7Mt at 29.3 ppm Ga (39.5 ppm Ga₂O₃) at 25ppm Ga cut off

Highlights

- Inferred Mineral Resource of 838.7 million tonnes @ 29.3 ppm gallium (39.5 ppm Ga₂O₃) for 24,584 tonnes contained gallium, reported at a 25 ppm cut-off.
 - Block 1 Central Gallium Zone
 - Inferred Resource of 164.1Mt @ 29.8 ppm Ga (40 ppm Ga₂O₃) for 4,888t contained Ga.
 - Strong correlation between high gallium and heavy rare earths (HREE) over a distinctive mafic lithologies unique to Mount Ridley's tenure.
 - Block 1 prioritised for resource-definition studies focused on heavy rare-earth and scandium potential.
 - Block 2 Northern Extension
 - Inferred Resource of 372.2Mt @ 30.3 ppm Ga (40.7 ppm Ga₂O₃) for 11,288t contained Ga.
 - Continuation of the same geological structure hosting elevated heavy rare earth and gallium grades.
 - Block 2 represents one of the most prospective zones for combined REE-galliumscandium resource expansion and definition.
 - Block 3 Mia Prospect and Eastern Area
 - Inferred Resource of 302.5Mt @ 27.8 ppm Ga (37.4 ppm Ga₂O₃) for 8,408t contained Ga.
 - Encompasses the previously announced Inferred REE Resource of 168Mt @ 1,201 ppm TREO (Mia Prospect).
 - The Company is investigating potential innovative metallurgical solution programs targeting a mixed rare earth carbonate product with gallium and other critical elements as secondary recoveries
 - Mount Ridley is assessing the broader critical mineral potential of the Mt Ridley Project, including scandium based on multielement datasets and the Company's existing drilling coverage.
 - Discussions are well advanced with Australian and international advisors with critical minerals, rare earth, and U.S.–Australia supply chain expertise to join the Company's advisory and management teams.

Mount Ridley Mines Limited (ASX: **MRD**) ("**Mount Ridley**" or "**the Company**") is pleased to report its maiden Gallium Mineral Resource Estimate (JORC 2012) at the Mt Ridley Project, located northeast of Esperance, Western Australia.

The Project represents a rare example of a multi-element regolith-hosted system in WA, where gallium, scandium and heavy rare earths are interpreted to occur within the same saprolitic and lateritic horizons.

This milestone follows the detailed and extensive desktop reviews outlined in the June 2025 Quarterly Report and 2025 Annual Report and represents a significant advancement in the Company's strategy to develop a **multi-element critical minerals project** anchored by **rare earths and gallium**.

The maiden gallium resource is an important technical milestone for the Company, confirming gallium as a secondary mineral of economic interest within the same clay and saprolitic horizons that host the Project's rare earth mineralisation.

The results provide further evidence of the Project's critical mineral potential, complementing the previously defined rare earth resource and advancing Mount Ridley's objective to develop a multi-element critical minerals project capable of contributing to the emerging Australian and allied supply chain for strategic metals.

Background

The Gallium Mineral Resource totals 838.7 million tonnes at 29.3 ppm gallium (39.5 ppm Ga₂O₃) (24,584 tonnes contained metal), reported across three deposits (Blocks 1 to 3) at a 25 ppm cut-off. Mineralisation extends for more than 25 kilometres in strike with an average width exceeding three kilometres and occurs from as shallow as four metres below surface to approximately sixty metres depth. The estimate is supported by 732 drillholes for 30,112 metres of drilling.

The gallium discovery stems from a systematic review of historical drilling data generated during the 2017–2018 nickel and copper exploration programs at the Mt Ridley Project. While those earlier programs did not yield significant base-metal results, the Company retained multielement assay data which, upon re-evaluation, revealed previously unrecognised gallium enrichment within the weathered saprolite and clay profiles.

Follow-up analysis demonstrated that gallium mineralisation is spatially associated with alkali-enriched gabbroic intrusions extending across the Grass Patch Complex within Blocks 1 and 2. Blocks 3 is hosted within the Biranup Complex granitoid gneiss area. This reinterpretation of historic data has allowed Mount Ridley to establish a large-scale, shallow, clay-hosted gallium system using existing drill coverage, substantially accelerating the path to its maiden Mineral Resource.

Gallium mineralisation occurs predominantly within the saprolite and lateritic clay zones of the weathered profile, while the underlying basement lithologies remain largely untested because most historical aircore drilling terminated at or near the top of fresh rock. The three resource areas together cover approximately 69.9 square kilometres within a 575 square kilometre tenure package, of which about 70% remains untested for gallium and rare earth mineralisation.

The Project's location, close to Esperance and established port, road and power infrastructure, provides important logistical advantages for future development.

Block 1 – Central Gallium Corridor (includes Keith's HREE Prospect)

Block 1 hosts an Inferred Resource of **164.1 million tonnes at 29.8 ppm gallium (40 ppm Ga₂O₃)**, containing approximately **4,888 tonnes of gallium metal**. Mineralisation is shallow, flat-lying and continuous within the saprolite zone.

The Keith's HREE Prospect is hosted within the Block 1 Area (see Figure 1) with extensive re-assaying of historical drill pulps outlining up to 3,949 ppm TREO (HREE ratio 64%) with TREO mineralisation extending over 4km in strike.¹ These results outlined the presence of extensive clay-hosted REE mineralisation across the prospect. Block 1 is prioritised for ongoing resource-definition studies focused

¹ ASX Releases, 2 August 2021 – "Rare Earth Element Potential Unveiled at Mount Ridley", 13 September 2021 – "Rare Earth Element Targets Extended", 21 October 2021 – "Encouraging Rare Earth Extraction Results" & 6 October 2022 – "Highest REE Grades & Extended Footprint at Mt Ridley Project" & 14 February 2023 – "Thick, Shallow and High-Grade REE at New Prospects".

on heavy rare-earth and scandium potential, utilising historical multi-element datasets under review.

Legacy pulps from this area are being re-assayed to confirm the presence of coincident gallium–REE enrichment and to assist in defining new heavy rare-earth/scandium resource targets and new resource estimates. Extensions to the south-west remain open for several kilometres and may form part of future drilling programs.

Block 2 – Northern Extension Corridor (includes Winston's HREE Prospect)

Block 2 contains an Inferred Resource of 372.2 million tonnes at 30.3 ppm gallium (40.7 ppm Ga_2O_3), equivalent to 11,288 tonnes of contained gallium. This block represents the northern continuation of the same geology seen at Block 1, with gallium enrichment observed within the same weathered clay profiles.

The Winston's HREE Prospect is hosted within the Block 2 Area (see Figure 1) with extensive re-assaying of historical drill pulps outlining up to 2,005 ppm TREO (HREE ratio 45%) with TREO mineralisation extending over 10km in strike.² These results confirmed the scale and continuity of REE mineralisation across the Winston corridor. Block 2 is also being advanced for resource-definition studies targeting heavy rare-earth and scandium potential, based on the verification and re-evaluation of historical multi-element datasets.

The Company is re-assaying legacy pulps from this area to confirm the presence of coincident gallium—REE enrichment and to assist in defining new heavy rare-earth/scandium resource targets and new resource estimates. Step-out drilling to the east and west could test extensions of more than four kilometres in each direction. Re-assay of archived pulps and re-logging of historical holes are underway to prioritise areas for potential new rare-earth resource definition.

Block 3 – Mia Prospect and Eastern Zone

Block 3 hosts an inferred resource of **302.5 million tonnes at 27.8 ppm gallium (37.4 ppm Ga₂O₃)**, containing 8,408 tonnes of gallium metal. This area includes the **Mia Prospect**, which already holds an **Inferred Rare Earth Resource of 168 million tonnes at 1,201 ppm TREO**. Gallium mineralisation is developed within the same saprolitic clays that host the REE system, confirming the potential for an integrated rare-earth and gallium mineralised sequence. The zone remains open along strike to the northeast and southwest, however the company's focus will be on Block 1 and 2, which appear to be enriched in heavy rare earths.

Strategic Plans and Forward Work

Mount Ridley's near-term objective is to integrate gallium into its broader rare-earth development program as a secondary and complementary mineral capable of enhancing project economics. The Company has commenced planning for a series of metallurgical studies aimed at evaluating combined recovery of rare earths and gallium through the production of a mixed rare-earth carbonate product with gallium and other critical minerals recovered as secondary outputs.

Initial discussions have begun with Australian and international research groups and processing specialists to design innovative extraction and purification pathways suitable for clay-hosted critical-mineral systems. Testwork will also investigate beneficiation options and hydrometallurgical processes such as solvent extraction and ion exchange for gallium recovery.

_

² (ASX Releases, 2 August 2021 – "Rare Earth Element Potential Unveiled at Mount Ridley", 13 September 2021 – "Rare Earth Element Targets Extended", 21 October 2021 – "Encouraging Rare Earth Extraction Results" & 2 August 2022 – "Excellent Drilling Results Expand REE Footprint at Mt Ridley")

In parallel, the Company is reviewing the Mt Ridley dataset for additional critical-mineral potential, including scandium, hafnium and germanium. This review forms part of a wider strategy to position Mount Ridley as a supplier of critical and technology metals essential to emerging energy and advancedmanufacturing industries.

To support this next phase of development, Mount Ridley is expanding its technical and advisory capability. Discussions are well advanced with Australian and international experts in rare-earth processing, critical-minerals policy and the U.S.–Australia strategic-minerals partnership to join the Company's advisory and management teams.

Gallium Mineral Resource Estimate Summary

The Mineral Resource areas known as Blocks 1 to 3 are situated in the in the vicinity of Mt Ridley and Lake Halbert region of Western Australia. The MRE hosting the gallium mineralisation comprises four exploration licenses (E63/1547, E63/1564, E63/2111 & E63/2112), see Figure 12. The gallium mineralisation striking over >25km in length and up to 6km in width, see Figure 1.

Table 1 presents the new JORC 2012 Resource Estimate (JORC 2012) for the Inferred category, applying a >25 ppm Ga cut-off. The resource currently stands at 838.7Mt at 29.3 ppm Ga (39.5 ppm Ga₂O₃), ranking it among the world's largest known gallium resources. The project tenure covers over 575 km², with a mineralised footprint of approximately 69.9 km² across three distinct MRE zones. Over 70% of the Project remains untested for gallium and will be systematically tested through drilling.

Table 1 - Mount Ridley Global Gallium Deposits Inferred Mineral Resource Estimate by Blocks (using a >25 ppm Ga cut-off)

Block	Resource	Geology	Density	Tonnage	Average Grade	Contained Ga	Average Grade
	Classification	Zones	(SG)	(t)	(ppm Ga)	Metal (t)	(ppm Ga₂O₃)
1	Inferred	Tertiary Sediments	1.53	35,876,169	29.5	1,057	39.6
_1	Inferred	Saprolite Zone	1.61	104,582,204	30.1	3,149	40.5
	Inferred	Basement Zone	2.60	23,599,570	28.9	681	38.8
1	Inferred	Total	1.68	164,057,943	29.8	4,888	39.64
152	Inferred	Tertiary Sediments	1.53	60,203,289	30.5	1,835	41.0
2	Inferred	Saprolite Zone	1.61	255,745,984	30.5	7,808	41.0
2	Inferred	Basement Zone	2.60	56,280,961	29.2	1,645	39.3
2	Inferred	Total	1.69	372,230,234	30.3	11,288	40.43
3	Inferred	Tertiary Sediments	1.53	14,768,086	27.6	408	37.1
3	Inferred	Saprolite Zone	1.61	281,796,162	27.8	7,829	37.3
3	Inferred	Basement Zone	2.60	5,918,859	29.0	172	39.0
3	Inferred	Total	1.62	302,483,107	27.8	8,408	37.83
Total	Inferred	Tertiary Sediments	1.53	110,847,544	29.8	3,300	40.0
Total	Inferred	Saprolite Zone	1.61	642,124,350	29.3	18,786	39.3
Total	Inferred	Basement Zone	2.60	85,799,391	29.1	2,498	39.1
	Inferred	Total	1.66	838,771,284	29.3	24,584	39.5

All drillhole collar files, along with their corresponding location maps, are presented in Appendices 2 to 5. Cross-sections are illustrated in Figures 3, 6, and 9, while significant drill intersections are summarised in Appendix 1. Figure 1 highlights the locations of the various MRE zones within the Exploration Licence areas.

Mount Ridley Mines Non-Executive Director Mr Pedro Kastellorizos commented:

"The timing of our maiden gallium resource could not be more significant," said Mount Ridley Mines Director, Pedro Kastellorizos. "With Australia and the United States now formally aligning on critical-minerals supply chains, the Mt Ridley Project represents one of the few new gallium discoveries outside of China, and it sits within an established rare-earth system. This resource establishes Mount Ridley as serious participant in Australia's emerging critical-minerals sector. Immediate focus will be on high-value zones rich in gallium and heavy rare earths as we advance metallurgical testwork and partnership discussions to define a viable development pathway"

Global Market Overview for Gallium

Gallium is a rare metal with unique electronic and thermal properties that make it essential in semiconductors, light-emitting diodes (LEDs), photovoltaics, power electronics and medical imaging technologies. Demand is accelerating as global investment in renewable energy systems, electric vehicles, advanced telecommunications (5G), and defence applications continues to grow.³

The global gallium market is undergoing rapid transformation, driven by both technological innovation and geopolitical realignment within the critical-minerals supply chain. In 2024, the gallium market was valued at approximately US\$1.7 billion and is projected to reach US\$6.5 billion by 2030, representing a compound annual growth rate of around 25 per cent (Gallium Market Demand and Growth Insights 2024, USDA Analytics).

At present, China produces more than 98 per cent of the world's gallium, largely as a by-product of bauxite and zinc refining.⁴ In December 2024, China imposed a total export ban on gallium and several other critical minerals, citing national-security concerns in response to restrictions on semiconductor technology exports.⁵ This action triggered a sharp price rise—up 56 per cent to about US\$375 per kilogram by October 2024—as inventories tightened and alternative supply sources became a strategic priority for governments and manufacturers worldwide.⁶

On 20 October 2025, the governments of Australia and the United States signed a landmark Framework for Securing Supply in the Mining and Processing of Critical Minerals and Rare Earths, committing both nations to jointly develop mining, refining and offtake capacity for key strategic materials including gallium, within allied jurisdictions. The framework includes coordinated funding programs and identifies new processing projects in Western Australia as priority developments, underscoring the growing policy focus on establishing domestic gallium production capacity outside China.⁷

Against this backdrop, Mount Ridley's discovery of a large-scale, clay-hosted gallium resource in Western Australia positions the Company at the forefront of this emerging sector. The Project's combination of insitu gallium mineralisation and rare-earth potential aligns directly with international efforts to diversify critical-mineral supply chains and reinforce Australia's role as a long-term strategic supplier to the United States and allied markets.

³ https://www.csis.org/analysis/beyond-rare-earths-chinas-growing-threat-gallium-supply-chains#h2-gallium-s-strategic-significance

⁴ https://www.rfcambrian.com/gallium-low-and-high-purity-dominated-by-china/

https://apnews.com/article/china-us-tech-semiconductor-chip-gallium-6b4216551e200fb719caa6a6cc67e2a4

⁶ https://www.persistencemarketresearch.com/market-research/gallium-market.asp

⁷ https://www.industry.gov.au/publications/united-states-australia-framework-securing-supply-mining-and-processing-critical-minerals-and-rare-earths

Gallium MRE – Further Information

The Mount Ridley Project MRE currently stands at 838.7Mt @ 29.3 ppm Ga (39.5 ppm Ga₂O₃) using >25 ppm Ga cut-off hosted within clay or saprolite zone. The current resource estimation extends from a very shallow depth of just 4m down to 61m vertically.

The MRE has been independently estimated by Odessa Resources Pty Ltd (Perth). The estimate has been produced by using Leapfrog Edge software to produce wireframes of the various mineralised lode systems and block grade estimation using an ordinary kriging interpolation. Top cuts were applied to individual lodes as necessary to limit the effect of high-grade outliers. The reporting is compliant with the 2012 JORC Code and Guidelines. Please refer to Table 1 and JORC Tables 1 to 2 for further details. Table 1 shows the Mount Ridley MRE as of October 2025 based on tonnes and grades. The MRE has been classified as an Inferred category with a >25 ppm Ga cut-off within Table 1.

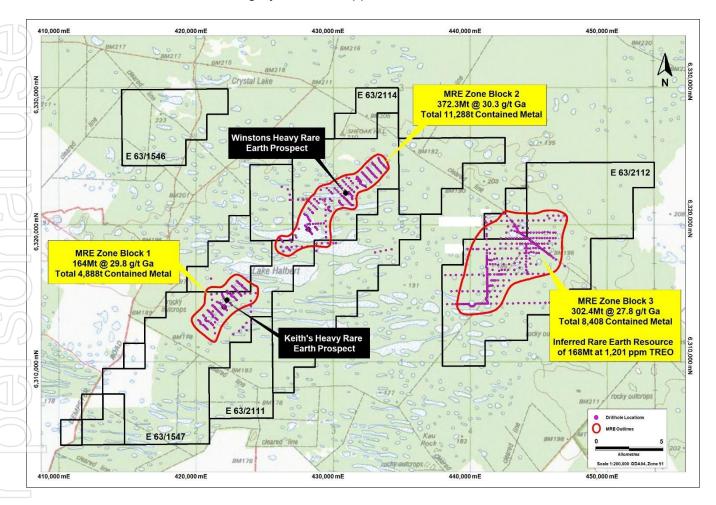


Figure 1 - Mount Ridley Gallium Topographic Location Map highlighting the MRE Zones

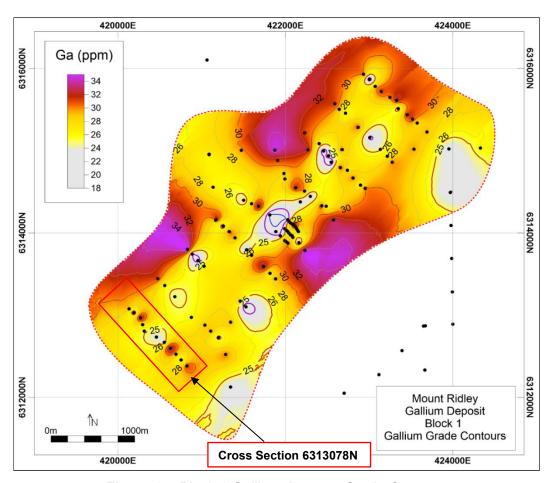


Figure 2 – Block 1 Gallium Average Grade Contours

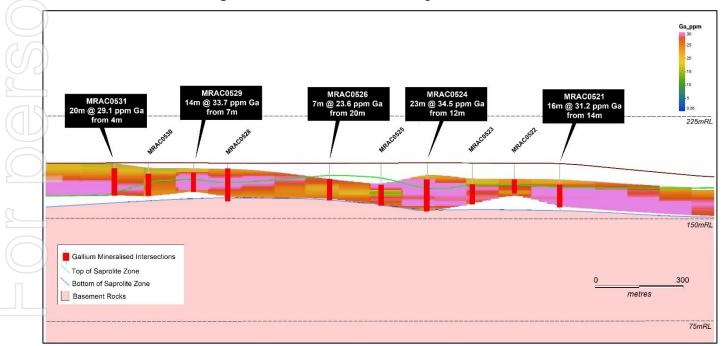


Figure 3 - Block 1 Cross Section 6313078mN highlighting Ga Block Model Grades

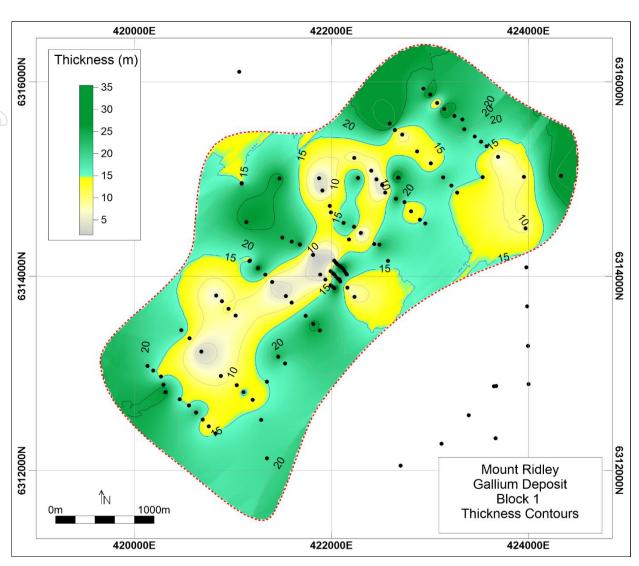


Figure 4 - Block 1 Mineralised Thickness of the Gallium in Drillholes

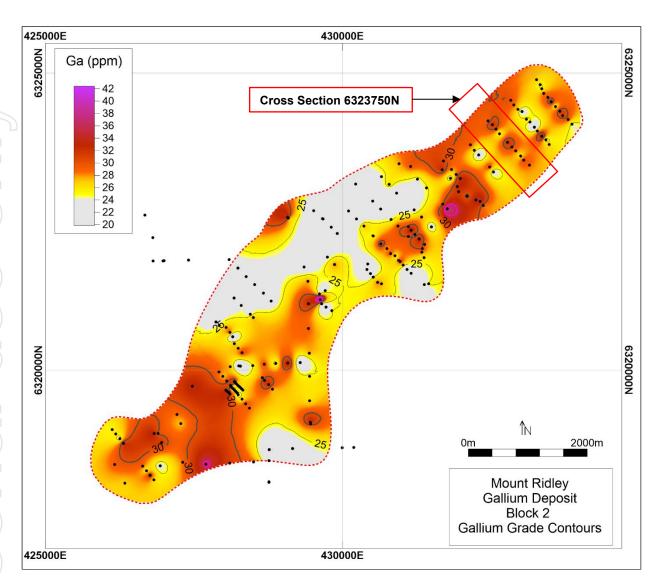


Figure 5 - Block 2 Gallium Average Grade Contours

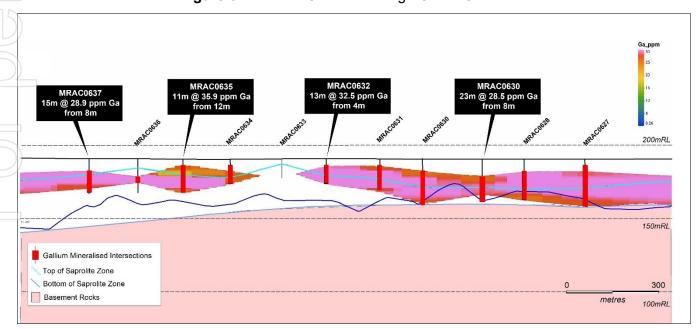


Figure 6 – Block 2 Cross Section 6323750mN highlighting Ga Block Model Grades

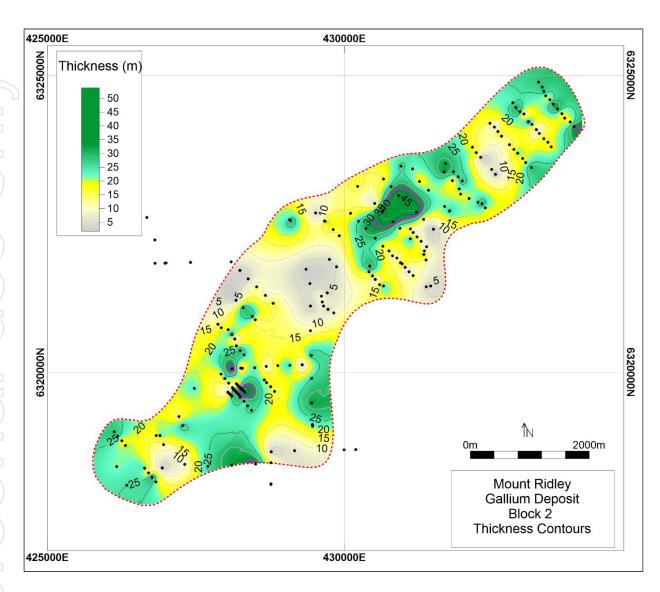


Figure 7 - Block 2 Mineralised Thickness of the Gallium in Drillholes

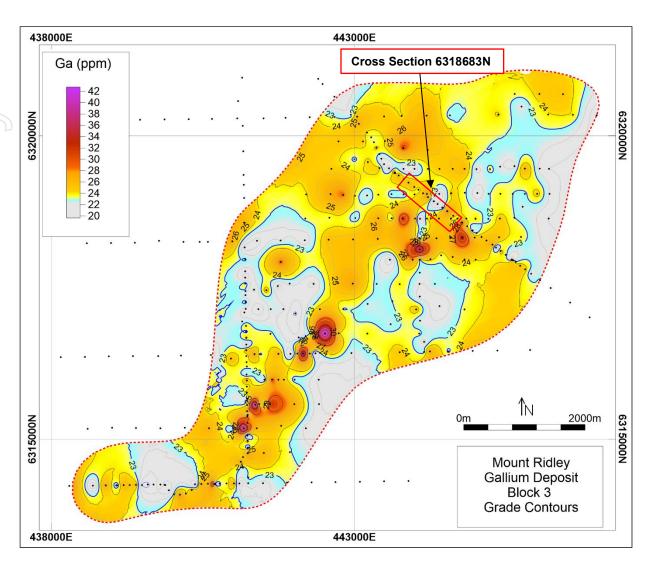


Figure 8 - Block 3 Gallium Average Grade Contours

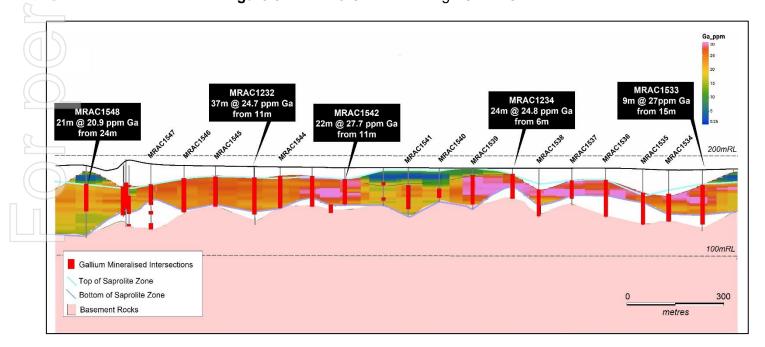


Figure 9 – Block 3 Cross Section 6318683N highlighting Ga Block Model Grades

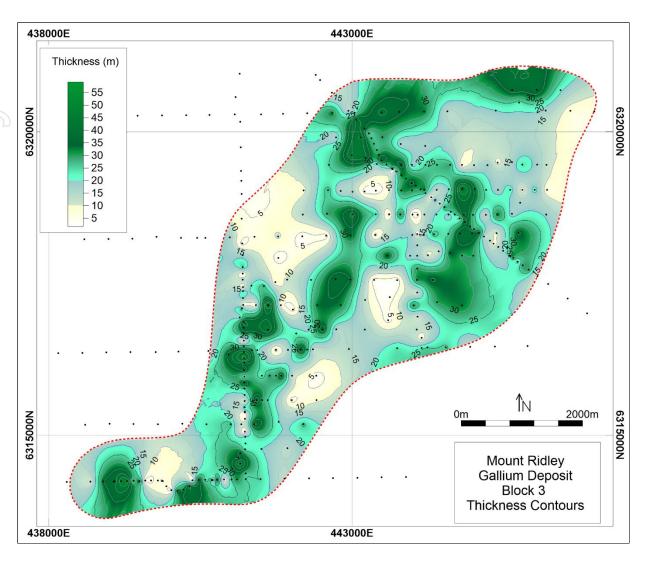


Figure 10 - Block 3 Mineralised Thickness of the Gallium in Drillholes

Forward Plan and Next Steps

The Project has exceptional growth potential with an abundant drill target already defined (refer to Figure 11). The extensive data review based on drilling geochemistry along with the interpreted geophysics has highlighted multiple targets proximal to the Gallium MRE zones. Extensive areas of interest have been identified through historical geophysics interpretation as the gallium mineralisation occurs in:

- MRE Block 1: Untested extensional drilling southwest of the gallium mineralisation along an 11km strike by 6km width.
- MRE Block 1/2: Untested 3km strike corridor requiring infill drilling between Block 1 and Block 2.
- 3. MRE Block 2: Untested extensional drilling to the east (**4.35km**) and west (**4.3km**) of the defined resource area.
- 4. MRE Block 3: Untested extensional drilling northeast (**5.3km strike**), plus additional untested zones extending **3km** east and **4km** southwest from the resource area.
- 5. Drill strike extensions to the corridor enclosing the more alkali rocks which are associated with better clay-hosted gallium intersections.
- 6. Continue metallurgical studies to confirm optimal areas for acid leach processing, and design an appropriate flow sheet; and
- 7. Determine what is required to estimate an Indicated Mineral Resource of sufficient size to support capital expenditure and progress.

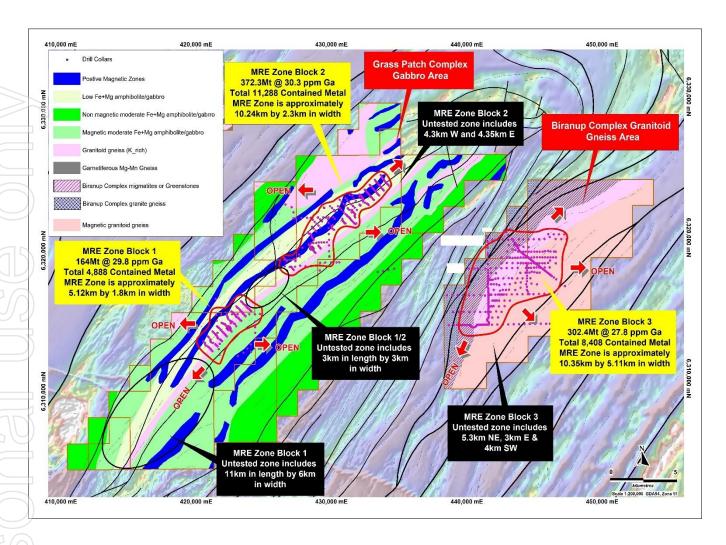


Figure 11 – Location map showing the 3 MRE Zones showing mutiple untested zones over Interpreted Total

Magnetic Intensity Images

Mount Ridley Gallium Project

The Mount Ridley Gallium Project is approximately 55 km northeast of Esperance in the vicinity of Mt Ridley and Lake Halbert, see Figures 1 and 11. Access to the tenement is via sealed roads and, within the project on good quality gravel roads and station tracks.

The elevation difference across the tenement is minimal and in the general range between 180 and 200 m RL. The land is mainly flat lying, except for small dune ridges. There are rare and isolated hills at least 50 meters above the drainage level occurring as erosional remnants.

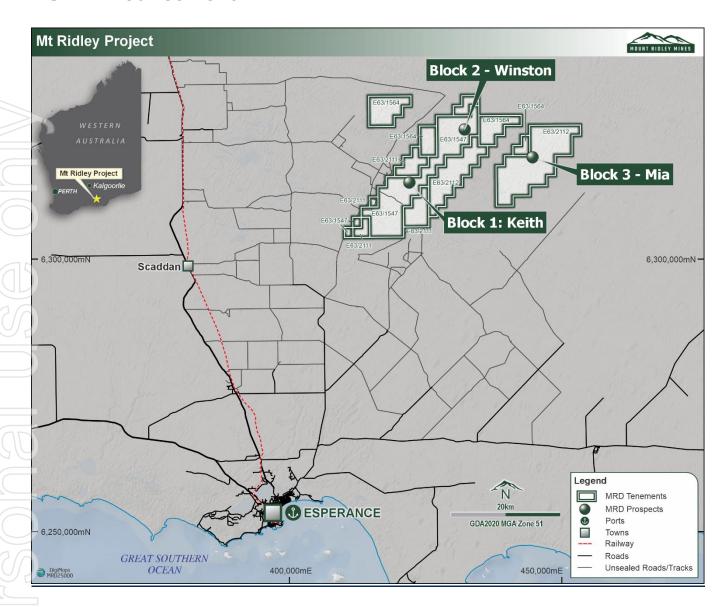


Figure 12 - Regional Location Map showing the major Infrastructure such as Esperance Port, Road and Rail

Mineral Resource Estimation and Supporting Technical Information Summary

A summary of other material information pursuant to ASX Listing Rules 5.8 is provided below for the updated New Norcia Project MRE. The Assessment and Reporting Criteria is in accordance with the 2012 JORC Code and Guidelines are presented in Appendix 1 to 3 to this announcement.

Geology and Geological Interpretation

The Mount Ridley Gallium Project which hosts MRE Blocks 1 and 2 is located on the south-eastern margin of the Yilgarn Craton and the Albany-Fraser metamorphic belt. The project area covers the Mount Ridley, which is interpreted to be a large (60km x 18km) ovoid structure bound by the Ridley Shear to the northwest and the Coramup Shear zone to the southeast (lying in a similar stratigraphic position to the Fraser Complex). This structure is interpreted to be intruded by very dense intrusives similar to those in the Fraser Complex.

Historically the Patch Complex and the targeting of massive Ni-Cu-PGE sulphides without any consideration for gallium and rare earth mineralisation. The surface geology is dominated by Cretaceous to Tertiary alluvial, sand and lacustrine cover deposits, some of which are large saline playa lakes such as Lake Halbert. Most of these drainages are aligned east-west parallel to the dominant wind direction.

The geology of Block 3 lies within Biranup Complex Granitoid Gneiss Area area of the Kepa Kurl Provance of the Albany-Fraser Orogen ("AFO"), including the Meso-Proterozoic-aged eastern Biranup Zone rocks - gneisses and granites with lesser interlayers of alkaline granite, mafic and ultramafic rocks, and includes intrusions of Recherche and Esperance Supersuite rocks.

Litho-geochemistry indicates that many of the highest-grade gallium intersections align with sinuous, niobium-enriched, plutonic dykes which are apparent in aeromagnetic imagery, which occur within a marginal zone between granitic gneisses and granites. Drilling has tested this structural zone over a strike length of 10 kilometres to date and potential remains for mineralised extensions in both northeasterly and south westerly directions. Much of the Project is overlain by Tertiary deposits of the western Eucla Basin.

The gallium mineralisation occurs as widespread, flat-lying lenses hosted within Proterozoic saprolite (upper brown-red clays to lower grey-green clays) with highest grades at the upper-to-lower redox front, in the lower saprolite horizon and at transition-to-fresh rock zone (Figures 3, 6 and 9). Mineralisation is recorded in weathered mafic and granitic rocks, and granitic gneiss.

1. Sampling and Sub-Sampling Techniques

Overview

Mineralisation within the Exploration Licence areas was discovered by company as part of regional exploration over their project areas. Drilling commenced in 2014 until 2022 by Mount Ridley Mines Limited which comprised only of Aircore Drilling (AC) with additional Diamond Drilling (DDH). A summary of sample types is provided in Table 2. The data on which the MRE has been determined is considered to be of high quality in nature.

1.1 Drilling Techniques

Air core drilling was employed to test the gallium mineralisation across the Project area. Drilling utilised blade bits of approximately 90mm diameter with 3m drill rods, with holes advanced to 'blade refusal' where penetration ceased due to harder rock. Diamond Drilling was completed by standard DDH Drilling techniques. Hole size used NQ³ drill core diameters. Selected holes were extended with a hammer bit to obtain fresh rock samples for petrographic analysis. Air core is widely regarded as the industry-standard method for testing sands, clays, and saprolite profiles, and the drilling produced generally dry samples.

Drill Spacing and Collar Location

- Block 1: Drilling was completed on a 500m x 100m grid, with infill drilling to a 100m x 20m grid within the central zone (see Appendix 2).
- Block 2: Drilling was conducted on a 500m x 120m grid, with infill drilling to a 100m x 25m grid within the southern portion of the MRE area (see Appendix 3).
- Block 3: Drilling was conducted along east—west lines spaced 400m apart. Hole spacing within the mineralised central zone was generally 100m, increasing to 200m and 400m along the flanks (see Appendix 4)

All drill collars were recorded using handheld GPS to ±5m accuracy (MGA94 Zone 51 grid system). Given that all holes were vertical, no downhole surveys were undertaken. Collar elevations were estimated using open-access SRTM data, considered fit-for-purpose due to the flat topography and early stage of project evaluation.

Drill sample recoveries were generally good, with occasional poor recovery recorded. These instances are not considered to introduce material bias, given the geological setting and nature of the mineralisation. The wide drill spacing is consistent with regional exploration programs designed to test anomalies. Mount Ridley has validated the assay dataset against both control samples and historical assays, with no evidence of sampling or assay bias identified.

A total of 732 holes for 30,112.4 metres of drilling has been conducted over the three MRE areas. Several industry standard drilling techniques have been applied in the extraction of the samples, including Aircore and Diamond Drilling, as summarised in Table 2.

Drilling	No.	No.	Minimum	Maximum	Average	No. Sampled
Type	Holes	Metres	Length (m)	Length (m)	Depth (m)	Intervals
AC/DDH	732	30,112	2	92	40.6	11,593

1.2 Sample Analysis Method

Previous operators used ALS and Bureau Veritas Laboratories from Perth which provided Certified Reference Materials (CRMs). Field duplicate data show the sampling and assaying is unbiased and suitable for use in mineral resource estimation.

Analyses reported herein by ALS Laboratory's ME-MS81, a lithium borate fusion with ICP-MS finish. Samples were also analysed by the ALS ME-ICP06 whole rock package and Aqua Regia Digestion with ICP-MS finish. Bureau Veritas reported assays using multi-elements using a mixed acid digest / ICP-OES which included 0.2g mixed acid digest (4 acid digest) (MA100).

Samples were of metre intervals returned from a conventional air core drilling rig via a rig mounted cyclone. One sample was routinely composited from three contiguous one metre intervals. Three percent (3%) of samples were duplicated for quality control analysis. Relevant certified reference material and blank samples were also inserted into the sample stream such as to represent approximately 3% of the samples submitted to the laboratory for analysis. A sample from each down-hole metre was placed into a chip tray for future reference and a collection of the end of hole samples were separately collected for other analyses including petrography.

For core samples, metallurgical assays for 1/2 core were compared with the original 1/4 core assays; a very good correlation was achieved. Periodic internal QAQC reports for Mount Ridley sampling procedures show good precision and accuracy of analytical methods and sampling procedures. No obvious contamination was observed during sample preparation.

Elemental results were converted to the equivalent oxide value using element-to-oxide stoichiometric conversion factors (see JORC table 2). Mount Ridley observes that reporting gallium and gallium oxide values is the industry accepted norm for reporting.

1.3 Estimation Methodology

Gallium grades and values were estimated by using an Inverse Distance Squared (ID2) interpolation using Leapfrog Geo 2024.1.2 software. Mineralisation is pervasive in the upper lateritic profile as a result of supergene enrichment processes, thus resulting in a shallow flat-lying geometry. There is no structural control on the mineralisation. All Aircore and diamond drilling was used to model the resource (Table 4).

Table 2: Sample Statistics

Block	Туре	No. Holes	Metres	Average Depth	Minimum Depth	Maximum Depth
1	AC	150	4,008	26.7	2	55
2	AC	237	9,884	41.7	3	81
3	AC	345	15,670	45.4	10	92
Total	AC	732	29,562	40.4	2	92
1	DD	2	73	36.6	30.2	42.9
2	DD	6	364	60.7	43	89.6
3	DD	2	113	56.6	45.6	67.5
Total	DD	10	550	55.0	30.2	89.6
Total	Total	742	30,112	40.6	2	92

Samples were composited to 1m. Resource constraints were developed by interpretation of the drilling data in conjunction with mapped laterites. The resource boundaries generally do not exceed 300m from the holes at the margins of the resource.

Grade composites were extracted for each of the resource domains. Estimation was carried out by ID2 method using a flat search ellipse of $350 \times 350 \times 5m$ was used for all estimations. A top cut of 45 ppm Ga was applied to the estimates for Blocks 1-3. Because of the widespread nature of the resources five separate block models were utilised. The parent block size was $50mE \times 50mN \times 1mRL$ and sub-blocked to a minimum size $12.5m \times 12.5m \times 0.25m$.

The modelled grades were checked and validated for potentially over-estimation by comparing the input grades with modelled grades by utilising swath plots. The input grades were compared with the ID2 (reported) grade and kriged modelled grades. The validation plots show that:

- The ID2 and kriged estimates correlate well
- The modelled grades correlate well with the input data

It was concluded that the estimation is reliable. Dry bulk densities were determined from data collected using the weight in air/weight in water method for selected drill core and is supported by the reconciliation of tonnages from the as-mined pit. Bulk density values have been applied to each block within the resource block model.

Key regolith stratigraphic contacts (refer Figure 5 above) were modelled using Leapfrog software, including base of transported, base of saprolite and base of fresh rock. The key estimated mineralised domains are all three lithologies.

The geological interpretation, in particular the host regolith units: saprolite and saprock, were used to constrain the estimation. It was used to guide the orientation and shape of the mineralised domains and then used as boundaries for the grade estimation, using the trend of the mineralisation and geological units to control the search ellipse direction and the major controls on the distribution of grade.

All drill hole samples contained within the mineralisation domains were composited to 1m and supported the estimation of block grades, using hard boundaries into the mineralised domain below the base of transported and above the top of fresh rock. Aggregated grades for gallium, were estimated into Leapfrog model using an Inverse Distance Squared algorithm (ID2).

Density values were derived by way of immersion methods (sealed) on half NQ³ core, with measuring 16 samples from two diamond core holes at the Block 3 Deposit (14 within the defined mineralised domains). Also considered where another 136 measurements were taken from other nearby in similar stratigraphy. Statistical analysis was completed by mineralised domains, rock type and oxidation. Densities applied to the model are transported cover of 1.53 t/m³, mineralised saprolite of 1.61 t/m³ and fresh bedrock of 2.6 t/m³.

1.5 Classification Criteria

Classification domains were determined on the basis of drill spacing and sample density. In areas where drill spacing averages approximately 20m, a volume designated as Indicated was blocked out. This volume was evaluated onto the resource block model.

1.6 Cut-off Grades

For the model, a nominal lower cut-off grade of 20 ppm Ga was utilised for interpreting geological continuity of the mineralisation. For this report, the cut-off grades applied to the estimate is 25 ppm Ga. This cut off is a commonly used cut off for similar deposits at the current gallium price, mining and processing costs.

1.7 Resource Classification Criteria

The assessment of confidence in the estimate of gallium-REE included guidelines as outlined in JORC (2012): Drill data quality and quantity, as follows:

- The resources have been systematically drilled on a regular 200 x 200m square pattern.
- A total of 732 drillholes have been used to define the geometry and grade of the resource.
- This is considered to be sufficient data on which a classified resource can be estimated.
- Geological domaining comprised a shallow, flat-lying geometry that was consistent with the formation of

a surficial laterite profile.

- There is very little downhole variance in the grade and between drillholes. The spatial continuity of gallium mineralisation is low to medium. Thus, an ID2 grade interpolation was considered adequate. This method showed a very close correlation with using an ordinary kriged interpolation.
- Given the scale of the deposits a drill-spacing of 500 x 100m was considered adequate for Blocks 1 & 2 and 200m x 400m pattern to 100m spaced holes along tracks over Block 3 for an Inferred classification.
- Data confidence and geological continuity is apparent.

Mining and Metallurgical Methods, Parameters and other modifying factors

Surface open cut mining is the most likely method to be used in the extraction of this orebody based on the mine design over Mount Ridley Project. Grades and geometry are amenable to conventional open cut mining. Mining assumptions were based on bench marking from industry standard mining operations. Gallium in clays is recovered by leaching (acid or alkaline), followed by hydrometallurgical purification (solvent extraction or ion exchange) to produce Ga (OH)₃ or Ga₂O₃. The process is conceptually similar to rare earth extraction from ion-adsorption clays but tuned for Ga chemistry.

Metallurgical recoveries are preliminary in nature and insufficient for inclusion in a Reserve. In August 2023, the company undertook metallurgical testwork by using HCl acid leach and solvent extraction. The results have been received for 12 samples from the Blocks 1 to 3. Samples were the products of the earlier screen beneficiation testing that were screened to -25 microns. Hydrochloric acid leach testing was supervised by Independent Metallurgical Operations Pty Ltd (IMO) with work undertaken by Metallurgy Pty Ltd. Samples were leached with hydrochloric acid at three strengths: 3.6g/l HCl (pH 1), 10g/l HCl and 25g/l HCl; and at a range of times from 6 hours to 24 hours. Best results were returned when samples were leached at 25g/l HCl for 24 hours. Further metallurgical testwork is required as part of the ongoing exploration programs.

This ASX announcement has been authorised for release by the Board of Mount Ridley Mines Ltd.

-ENDS-

For further information, please contact:

Pedro Kastellorizos

Non-Executive Director

Mount Ridley Mines Ltd

info@mtridleymines.com.au

References

SGC2722 Maude, G. 2013. AXG Mining, Mount Ridley Project, 2013 VTEM Interpretation

SGC2988 Maude, G. 2015. Mount Ridley Mines, 2015 R&D Submission, TEM Surveys Completed at the Mount Ridley Project

SGC3047 Maude, G. 2016. Mount Ridley Mines, Proposed Orientation AMT survey for Target 19

SGC3083 Maude, G. 2016. Mount Ridley Mines, 2016 R&D Submission, Geophysical Surveys Completed at the Mount Ridley Project

Scott Bishop (2004) First Combined (C104/2003) Annual Report for E63/816 Sheoak Hill East and E63/817 Sheoak Hill for the period ending 22 November 2003, Grass Patch Ni-Cu and PGE Project, Dundas Mineral Field, Esperance Si50-06, Western Australia, Report No. RPT03GPP007.

- J. D. A. Clarke (1994) Evolution of the Lefroy and Cowan palaeo-drainage channels, Western Australia, Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, 41:1, 55-68.
- S. Kerr (2022) Mount Ridley Project, C12/2015 Combined Annual Mineral Exploration Report, Mount Ridley Mines Ltd, 1st September 2021 to 31st August 2022.

- S. Kerr (2023) Mount Ridley Project, C12/2015 Combined Annual Mineral Exploration Report, Mount Ridley Mines Ltd, 1st September 2022 to 31st August 2023.
- S. Kerr (2024) Mount Ridley Project, E63/1617 Final Surrender Report, Mount Ridley Mines Ltd, 23rd September 2014 to 31st May 2024.
- S. Kerr (2024) Mount Ridley Project, E63/2114 Voluntary Partial Surrender Report, Mount Ridley Mines Ltd, 15th March 2022 to 26th July 2024.

Anthony Reid, John Keeling, Doug Boyd, Elena Belousova, Baohong Hou (2013) Source of zircon in world-class heavy mineral placer deposits of the Cenozoic Eucla Basin, southern Australia from LA-ICPMS U–Pb geochronology.

For further information please refer to previous ASX announcement from Mount Ridley Mines Ltd:

- 2 August 2021. "REE Potential Unveiled at Mount Ridley."
- 13 September 2021. "REE Targets Extended."
- 21 October 2021. "Encouraging Rare Earth Extraction Results."
- 3 August 2022. "Excellent Drilling Results Expand Rare Earth Mineralisation Footprint at the Mt Ridley Project."
- 6 October 2022. "Highest grades to date returned from Mt Ridley Rare Earth Project, Mineralised footprint extended to more than 1,200km²."
- 14 February 2023. "Thick, shallow and high grade REE mineralisation discovered at the new Jody and Marvin Prospects."
- 30 March 2023. "Resource drilling commences on 30km long Mia Marvin Zone at the Mount Ridley REE Project."
- 10 May 2023. "Coincident High-Grade Rare Earth Elements and Geophysical Anomalies at Mia Prospect."
- 25 May 2023. "Drilling update for the Mia REE Prospect."
- 6 July 2023. "Excellent Beneficiation Test Results Lift REE Grades."
- 21 September 2023. "Leach tests achieve up to 85% recovery of Magnet REE."
- 11 October 2023. "Drilling confirms continuity at Mount Ridley REE Project."
- 5 December 2023. "Drilling returns wide, high-grade REE intersections at two new prospects at the Mount Ridley Project."
- 21 February 2024. "Results flow from Mia resource-focussed drilling at Mount Ridley Rare Earth Element Project"
- 22 May 2024. "Maiden Inferred Mineral Resource Estimate for the Mia Prospect of 168Mt at 1,201ppm TREO"

Competent Persons Statement

The information in this report / ASX release that relates to Exploration Results, Exploration Targets and Mineral Resources is based on information compiled and reviewed by Mr. Alfred Gillman, Director of independent consulting firm, Odessa Resource Pty Ltd. Mr. Gillman, a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy (the AusIMM) and has sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Targets and Mineral Resources. Mr Gillman is a full-time employee of Odessa Resource Pty Ltd, who specialises in mineral resource estimation, evaluation, and exploration. Neither Mr Gillman nor Odessa Resource Pty Ltd holds any interest in Mount Ridley Mines, its related parties, or in any of the mineral properties that are the subject of this announcement. Mr Gillman consents to the inclusion in this report / ASX release of the matters based on information in the form and context in which it appears. Additionally, Mr Gillman confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

The information in this report that relates to Exploration Targets and Exploration Results is based on historical information compiled by Pedro Kastellorizos. Mr. Kastellorizos is the Non-Executive Director of Mount Ridley Mines Ltd and is a Member of the AusIMM of whom have sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Kastellorizos has verified the data disclosed in this release and consent to the inclusion in this release of the matters based on

the information in the form and context in which it appears. Mr Kastellorizos has reviewed all relevant data for the aircore drilling program and reported the results accordingly.

Forward Statement

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could", "would", "might" or "will be" taken, "occur" or "be achieved."

Forward-looking information is based on certain factors and assumptions management believes to be reasonable at the time such statements are made, including but not limited to, continued exploration activities, commodity prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the estimation of mineral reserves and resources, assumptions with respect to currency fluctuations, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in commodity prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing experienced personnel; access to adequate infrastructure to support exploration activities; risks associated with changes in the mining regulatory regime governing the Company and the Project; completion of the environmental assessment process; risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or revise any forward-looking information this is included herein, except in accordance with applicable securities laws.

About Mt Ridley Rare Earth Resource Estimations

Table 3 shows the Global JORC 2012 Resource Estimation tonnes/grade by Inferred category which currently stands at 168Mt @ 1,201 ppm Total Rare Earth Oxide (TREO). The MRE for the central Mia Prospect has been reported tabulating mineralisation above a 750ppm TREO cut-off grade. Of these, the 'magnet rare earths' (MagREO), Neodymium (Nd), Praseodymium (Pr), Terbium (Tb) and Dysprosium (Dy) are listed individually

Table 3: Global Total REO Inferred Mineral Resource Estimation

ſ	Project	Mass	Pr ₆ O ₁₁	Nd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	TREO	MagREO	MagREO/TREO
1		t	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Block 3	168,000,000	57	215	4	25	1201	301	25%
	Mia								

The Company is not aware of any new information or data that materially affects the information included in the original market announcement and all material assumptions and technical parameters underpinning the Mineral Resources for all Projects continue to apply and have not materially changed.

Appendix 1: Significant Gallium Drill Assay Results from MRE Blocks 1 to 3 (using a >25 ppm Ga cut-off)

MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
1	MRAC0477	24	30	6	29.3	39.4	175.8	236.3
1	MRAC0478	24	40	16	28.4	38.2	454.4	610.8
1	MRAC0479	20	38	18	31	41.7	558	750.1
1	MRAC0480	28	44	16	31.7	42.6	507.2	681.8
1	MRAC0481	20	28	8	34.1	45.8	272.8	366.7
1	MRAC0481	32	39	7	21.7	29.2	151.9	204.2
1	MRAC0482	12	35	23	32.7	44	752.1	1011
1	MRAC0483	16	38	22	29.6	39.8	651.2	875.3
1	MRAC0484	12	45	33	31.3	42.1	1032.9	1388.4
1	MRAC0485	0	4	4	29.3	39.4	117.2	157.5
1	MRAC0485	16	42	26	30.3	40.7	787.8	1059
1	MRAC0486	16	28	12	23.3	31.3	279.6	375.8
1	MRAC0486	32	40	8	21.5	28.9	172	231.2
1	MRAC0486	44	48	4	23.9	32.1	95.6	128.5
1	MRAC0487	12	16	4	27.7	37.2	110.8	148.9
1	MRAC0487	20	33	13	34.4	46.2	447.2	601.1
1	MRAC0488	4	40	36	31.3	42.1	1126.8	1514.6
1	MRAC0489	16	30	14	28.9	38.8	404.6	543.9
1	MRAC0490	12	20	8	25	33.6	200	268.8
1	MRAC0492	8	21	13	30.6	41.1	397.8	534.7
1	MRAC0494	4	12	8	21.8	29.3	174.4	234.4
1	MRAC0497	16	32	16	27.3	36.7	436.8	587.1
1	MRAC0498	20	34	14	29.9	40.2	418.6	562.7
1	MRAC0499	8	12	4	20.4	27.4	81.6	109.7
1	MRAC0499	16	21	5	20.2	27.2	101	135.8
1	MRAC0500	8	13	5	22.9	30.8	114.5	153.9
1	MRAC0502	4	31	27	31	41.7	837	1125.1
1	MRAC0503	8	23	15	26.7	35.9	400.5	538.4
1	MRAC0504	20	32	12	30.3	40.7	363.6	488.8
1	MRAC0505	24	38	14	25.8	34.7	361.2	485.5
1	MRAC0506	20	34	14	33.1	44.5	463.4	622.9
1	MRAC0507	8	24	16	33.2	44.6	531.2	714
1	MRAC0508	20	36	16	28.7	38.6	459.2	617.3
1	MRAC0509	8	24	16	31.2	41.9	499.2	671
1	MRAC0510	8	16	8	25.9	34.8	207.2	278.5
1	MRAC0512	8	27	19	29.5	39.7	560.5	753.4
1	MRAC0513	4	24	20	31.8	42.7	636	854.9
1	MRAC0514	12	22	10	27.7	37.2	277	372.3

MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
1	MRAC0515	12	27	15	28.2	37.9	423	568.6
1	MRAC0517	20	23	3	31	41.7	93	125
1	MRAC0518	16	20	4	28.6	38.4	114.4	153.8
1	MRAC0520	20	28	8	31.1	41.8	248.8	334.4
1	MRAC0521	16	32	16	31.2	41.9	499.2	671
1	MRAC0522	12	21	9	24.7	33.2	222.3	298.8
1	MRAC0523	16	30	14	28.5	38.3	399	536.3
1	MRAC0524	12	35	23	34.5	46.4	793.5	1066.6
1	MRAC0525	16	20	4	29.5	39.7	118	158.6
1	MRAC0525	24	31	7	27.4	36.8	191.8	257.8
75 1	MRAC0526	12	16	4	28.2	37.9	112.8	151.6
	MRAC0526	20	27	7	23.6	31.7	165.2	222.1
1	MRAC0527	4	31	27	25.2	33.9	680.4	914.6
	MRAC0528	4	28	24	26.8	36	643.2	864.6
1	MRAC0529	7	21	14	33.7	45.3	471.8	634.2
1	MRAC0529	8	24	16	23.1	31.1	369.6	496.8
1	MRAC0530	4	24	20	29.1	39.1	582	782.3
1	MRAC0531	8	26	18	31.1	41.8	559.8	752.5
	MRAC0532 MRAC0533	8	20	12	25.9	34.8	310.8	417.8
1	MRAC0539	8	16	8	25.7	34.5	205.6	276.4
_				12				458.1
1	MRAC0540	16	28		28.4	38.2	340.8	
1	MRAC0541	4	20	16	29.2	39.3	467.2	628
1	MRAC0542	4	16	12	24.2	32.5	290.4	390.4
1	MRAC0543	12	20	8	20.9	28.1	167.2	224.8
<u> </u>	MRAC0544	12	32	20	29	39	580	779.6
1	MRAC0550	4	11	7	27.3	36.7	191.1	256.9
1	MRAC0551	8	12	4	24.1	32.4	96.4	129.6
1	MRAC0552	0	8	8	21.8	29.3	174.4	234.4
1	MRAC0553	4	9	5	35.9	48.3	179.5	241.3
1	MRAC0554	12	25	13	32.8	44.1	426.4	573.2
1	MRAC0555	4	24	20	25	33.6	500	672.1
. 1	MRAC0555	28	32	4	21.1	28.4	84.4	113.5
1	MRAC0556	4	21	17	30.4	40.9	516.8	694.7
1	MRAC0557	8	12	4	29.4	39.5	117.6	158.1
1	MRAC0559	8	12	4	22.3	30	89.2	119.9
1	MRAC0560	8	17	9	28.6	38.4	257.4	346
1	MRAC0562	12	31	19	33.1	44.5	628.9	845.4
1	MRAC0563	8	20	12	29.8	40.1	357.6	480.7
1	MRAC0563	24	35	11	29.9	40.2	328.9	442.1
1	MRAC0564	12	36	24	29	39	696	935.6
1	MRAC0565	16	24	8	35.2	47.3	281.6	378.5
1	MRAC0566	20	28	8	22.2	29.8	177.6	238.7
1	MRAC0567	20	41	21	27.2	36.6	571.2	767.8
1	MRAC0568	8	38	30	28.6	38.4	858	1153.3

MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
1	MRAC0573	4	30	26	34	45.7	884	1188.3
1	MRAC0574	4	27	23	27.2	36.6	625.6	840.9
1	MRAC0575	4	28	24	23.7	31.9	568.8	764.6
1	MRAC0660	40	55	15	28.6	38.4	429	576.7
1	MRAC0661	40	8	4	25	33.6	100	134.4
	MRAC0661			4				
1		12	16		32.3	43.4	129.2	173.7
1	MRAC0662	20	36	16	35.6	47.9	569.6	765.7
1	MRAC0663	12	43	31	29.1	39.1	902.1	1212.6
1	MRAC0690	16	40	24	26.7	35.9	640.8	861.4
1	MRAC0691	16	35	19	26.6	35.8	505.4	679.4
1	MRAC0692	16	37	21	26.1	35.1	548.1	736.8
1	MRAC0693	12	36	24	28.6	38.4	686.4	922.7
1	MRAC0694	12	40	28	31.5	42.3	882	1185.6
1	MRAC0695	12	41	29	33.1	44.5	959.9	1290.3
1	MRAC0696	8	35	27	28.8	38.7	777.6	1045.2
1	MRAC0697	8	31	23	30.2	40.6	694.6	933.7
1	MRAC0698	12	21	9	25.7	34.5	231.3	310.9
1	MRAC0700	4	8	4	20.6	27.7	82.4	110.8
1	MRAC0703	4	8	4	22.3	30	89.2	119.9
1	MRAC0706	8	24	16	30.7	41.3	491.2	660.3
1	MRAC0707	4	22	18	27.3	36.7	491.4	660.5
1	MRAC0708	8	39	31	30.5	41	945.5	1270.9
1	MRAC0709	16	47	31	31.6	42.5	979.6	1316.8
1	MRAC0710	8	11	3	20.5	27.6	61.5	82.7
1	MRAC0711	8	24	16	26	34.9	416	559.2
1	MRAC0712	8	20	12	23.2	31.2	278.4	374.2
1	MRAC0957	18	51	33	26	34.9	858	1153.3
75 1	MRAC0958	33	42	9	22.5	30.2	202.5	272.2
1	MRAC0959	33	48	15	29.5	39.7	442.5	594.8
1	MRAC0960	9	27	18	25.6	34.4	460.8	619.4
1	MRAC0961	6	40	34	29.9	40.2	1016.6	1366.5
1	MRAC0962	15	39	24	32.5	43.7	780	1048.5
1	MRAC0963	24	27	3	34.9	46.9	104.7	140.7
	MRAC0964							
1		6	33	27	29.6	39.8	799.2	1074.3
1	MRAC0965	3	25	22	26.3	35.4	578.6	777.8
1	MRAC0966	15	39	24	27.3	36.7	655.2	880.7
1	MRAC0967	12	27	15	28.2	37.9	423	568.6
1	MRAC0970	18	33	15	28.9	38.8	433.5	582.7
1	MRAC0971	9	27	18	30.3	40.7	545.4	733.1
1	MRAC0972	6	25	19	22.6	30.4	429.4	577.2
1	MRAC0984	24	45	21	32.2	43.3	676.2	908.9
1	MRAC0985	27	30	3	24.2	32.5	72.6	97.6
1	MRAC0985	42	55	13	27.2	36.6	353.6	475.3
1	MRAC0986	27	30	3	24.9	33.5	74.7	100.4

	MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
	1	MRAC0986	45	49	4	24.1	32.4	96.4	129.6
	1	MRAC0987	33	39	6	27.4	36.8	164.4	221
	1	MRAC0988	27	51	24	27.8	37.4	667.2	896.9
	1	MRAC0989	24	42	18	27.2	36.6	489.6	658.1
	1	MRAC0990	21	30	9	21.9	29.4	197.1	264.9
	1	MRAC1032	6	15	9	25.2	33.9	226.8	304.9
	1	MRDD027	9	23	14	27.2	36.6	380.8	511.9
	1	MRDD028	17	42.9	25.9	28.7	38.6	743.3	999.2
	2	MRAC0438	24	45	21	28	37.6	588	790.4
	2	MRAC0439	28	48	20	26.1	35.1	522	701.7
75	2	MRAC0440	16	53	37	31.3	42.1	1158.1	1556.7
UJ)	2	MRAC0441	16	25	9	25.4	34.1	228.6	307.3
200	2	MRAC0442	20	44	24	28.9	38.8	693.6	932.3
$\cup \cup \cup$	2	MRAC0443	28	53	25	30.3	40.7	757.5	1018.2
R	2	MRAC0444	24	28	4	20.4	27.4	81.6	109.7
	2	MRAC0444	32	36	4	30.4	40.9	121.6	163.5
\vdash	2	MRAC0444	40	54	14	32.7	44	457.8	615.4
	2	MRAC0445	32	53	21	27.4	36.8	575.4	773.5
	2	MRAC0446	28	45	17	35.8	48.1	608.6	818.1
SU)	2	MRAC0447	28	50	22	33.1	44.5	728.2	978.8
				45	13				
	2	MRAC0448	32	 		29.8	40.1	387.4	520.7
	2	MRAC0449	28	44	16	26.4	35.5	422.4	567.8
J)	2	MRAC0450	28	32	4	22.3	30	89.2	119.9
10	2	MRAC0450	36	40	4	29.1	39.1	116.4	156.5
	2	MRAC0450	48	51	3	20.1	27	60.3	81.1
	2	MRAC0451	28	48	20	28.5	38.3	570	766.2
	2	MRAC0452	28	45	17	31.7	42.6	538.9	724.4
	2	MRAC0453	24	45	21	32.2	43.3	676.2	908.9
	2	MRAC0454	28	42	14	27.5	37	385	517.5
	2	MRAC0455	12	38	26	28.4	38.2	738.4	992.6
	2	MRAC0456	12	38	26	29.5	39.7	767	1031
7	2	MRAC0457	12	34	22	25.8	34.7	567.6	763
	2	MRAC0458	16	55	39	23.5	31.6	916.5	1232
	2	MRAC0459	16	46	30	24.4	32.8	732	984
=	2	MRAC0460	12	23	11	31.9	42.9	350.9	471.7
	2	MRAC0461	28	40	12	28.8	38.7	345.6	464.6
	2	MRAC0462	28	49	21	32.2	43.3	676.2	908.9
	2	MRAC0463	20	34	14	23.9	32.1	334.6	449.8
	2	MRAC0464	20	44	24	27.7	37.2	664.8	893.6
	2	MRAC0465	24	36	12	25.8	34.7	309.6	416.2
	2	MRAC0465	40	52	12	27.1	36.4	325.2	437.1
	2	MRAC0469	12	28	16	33.2	44.6	531.2	714
	2	MRAC0470	4	18	14	28.3	38	396.2	532.6
	2	MRAC0471	16	39	23	33.6	45.2	772.8	1038.8

	MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
•	2	MRAC0472	16	24	8	21.1	28.4	168.8	226.9
	2	MRAC0472	28	40	12	33.3	44.8	399.6	537.1
	2	MRAC0473	28	44	16	28.9	38.8	462.4	621.6
	2	MRAC0474	28	51	23	29.7	39.9	683.1	918.2
	2	MRAC0475	28	40	12	31.7	42.6	380.4	511.3
	2	MRAC0476	0	27	27	27.1	36.4	731.7	983.6
	2	MRAC0576	20	24	4	23.8	32	95.2	128
	2	MRAC0577	40	50	10	23.8	32	238	319.9
	2	MRAC0578	44	52	8	44.4	59.7	355.2	477.5
	2	MRAC0579	24	32	8	21.9	29.4	175.2	235.5
75	2	MRAC0579	44	52	8	34.9	46.9	279.2	375.3
	2	MRAC0580	24	28	4	20.6	27.7	82.4	110.8
00	2	MRAC0580	40	56	16	27.4	36.8	438.4	589.3
W	2	MRAC0581	40	49	9	25.1	33.7	225.9	303.7
	2	MRAC0582	36	40	4	24.7	33.2	98.8	132.8
	2	MRAC0582	44	56	12	24.2	32.5	290.4	390.4
	2	MRAC0583	20	24	4	25.3	34	101.2	136
	2	MRAC0583	40	52	12	24.2	32.5	290.4	390.4
	2	MRAC0584	28	46	18	28.3	38	509.4	684.7
66	2	MRAC0585	16	40	24	27.3	36.7	655.2	880.7
	2	MRAC0586	24	28	4	21.3	32.3	96	129
	_								
	2	MRAC0586	32	36	4	20.8	28	83.2	111.8
	2	MRAC0586	40	44	4	32.6	43.8	130.4	175.3
00	2	MRAC0587	24	39	15	27.6	37.1	414	556.5
$\bigcup_{i=1}^{n}$	2	MRAC0588	16	27	11	25.4	34.1	279.4	375.6
	2	MRAC0589	12	24	12	29.9	40.2	358.8	482.3
	2	MRAC0590	16	32	16	27.2	36.6	435.2	585
	2	MRAC0591	16	28	12	25.9	34.8	310.8	417.8
	2	MRAC0593	16	31	15	24	32.3	360	483.9
	2	MRAC0596	16	20	4	20.8	28	83.2	111.8
	2	MRAC0597	16	20	4	25.2	33.9	100.8	135.5
(7	2	MRAC0598	16	27	11	25.6	34.4	281.6	378.5
	2	MRAC0599	16	39	23	28.4	38.2	653.2	878
	2	MRAC0600	16	28	12	30.2	40.6	362.4	487.1
	2	MRAC0601	24	32	8	28.6	38.4	228.8	307.6
	2	MRAC0602	20	30	10	33.4	44.9	334	449
	2	MRAC0603A	20	37	17	28.5	38.3	484.5	651.3
•	2	MRAC0603B	16	30	14	30.2	40.6	422.8	568.3
	2	MRAC0604	20	28	8	35.3	47.5	282.4	379.6
	2	MRAC0605	24	44	20	28.4	38.2	568	763.5
	2	MRAC0606	16	46	30	35.5	47.7	1065	1431.6
	2	MRAC0607	12	36	24	33.6	45.2	806.4	1084
	2	MRAC0608	24	42	18	31.7	42.6	570.6	767
	2	MRAC0609	24	46	22	33.1	44.5	728.2	978.8

	MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
	2	MRAC0611	16	40	24	35.9	48.3	861.6	1158.2
	2	MRAC0612	20	45	25	28	37.6	700	940.9
	2	MRAC0613	24	52	28	27.8	37.4	778.4	1046.3
	2	MRAC0615	20	52	32	30.6	41.1	979.2	1316.2
	2	MRAC0617	16	32	16	29.2	39.3	467.2	628
	2	MRAC0618	12	33	21	26.1	35.1	548.1	736.8
	2	MRAC0622	12	19	7	30.2	40.6	211.4	284.2
	2	MRAC0623	12	15	3	22.9	30.8	68.7	92.3
	2	MRAC0627	4	33	29	28.4	38.2	823.6	1107.1
	2	MRAC0628	8	28	20	30.3	40.7	606	814.6
<i>a</i>	2	MRAC0629	12	29	17	25.6	34.4	435.2	585
	2	MRAC0630	8	31	23	28.5	38.3	655.5	881.1
$(U/\frac{1}{2})$	2	MRAC0631	4	21	17	30	40.3	510	685.5
	2	MRAC0632	4	17	13	32.5	43.7	422.5	567.9
	2	MRAC0634	4	17	13	24.5	32.9	318.5	428.1
	2	MRAC0635	4	8	4	27.3	36.7	109.2	146.8
	2	MRAC0635	12	23	11	35.9	48.3	394.9	530.8
651	2	MRAC0636	12	16	4	32.3	43.4	129.2	173.7
(())	2	MRAC0637	8	23	15	28.9	38.8	433.5	582.7
	2	MRAC0638	12	32	20	29.9	40.2	598	803.8
	2	MRAC0639	8	16	8	24.1	32.4	192.8	259.2
	2	MRAC0639	20	36	16	27	36.3	432	580.7
()	2	MRAC0640	12	20	8	23.8	32	190.4	255.9
	2	MRAC0640	24	40	16	26.7	35.9	427.2	574.2
(U/)	2	MRAC0641	12	33	21	28.7	38.6	602.7	810.1
	2	MRAC0642	16	20	4	23.1	31.1	92.4	124.2
	2	MRAC0642	24	34	10	35	47	350	470.5
	2	MRAC0643	12	45	33	31.8	42.7	1049.4	1410.6
	2	MRAC0644	12	44	32	25.3	34	809.6	1088.3
	2	MRAC0645	12	23	11	35.9	48.3	394.9	530.8
	2	MRAC0646	8	28	20	31.3	42.1	626	841.5
_	2	MRAC0647	12	28	16	29.6	39.8	473.6	636.6
	2	MRAC0648	8	44	36	24.2	32.5	871.2	1171.1
	2	MRAC0649	12	16	4	22.6	30.4	90.4	121.5
	2	MRAC0649	20	29	9	34.5	46.4	310.5	417.4
П	2	MRAC0650	16	20	4	24.3	32.7	97.2	130.7
	2	MRAC0650	24	35	11	25.9	34.8	284.9	383
	2	MRAC0651	12	31	19	34.4	46.2	653.6	878.6
	2	MRAC0652	12	23	11	27.3	36.7	300.3	403.7
	2	MRAC0653	24	39	15	31.2	41.9	468	629.1
	2	MRAC0654	12	20	8	22.6	30.4	180.8	243
	2	MRAC0654	24	33	9	33.3	44.8	299.7	402.9
	2	MRAC0655	12	20	8	21.8	29.3	174.4	234.4
-	2	MRAC0655	24	40	16	31.2	41.9	499.2	671

MRE Block lo	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
2	MRAC0656	16	24	8	22.8	30.6	182.4	245.2
2	MRAC0656	32	38	6	33.5	45	201	270.2
2	MRAC0657	16	24	8	24.4	32.8	195.2	262.4
2	MRAC0657	28	47	19	31.5	42.3	598.5	804.5
2	MRAC0658	20	24	4	27.3	36.7	109.2	146.8
2	MRAC0658	28	52	24	31.1	41.8	746.4	1003.3
2	MRAC0659	12	35	23	29.9	40.2	687.7	924.4
2	MRAC0714	16	30	14	32	43	448	602.2
2	MRAC0715	12	26	14	31.6	42.5	442.4	594.7
2	MRAC0716	16	32	16	23.7	31.9	379.2	509.7
2	MRAC0717	16	40	24	26.6	35.8	638.4	858.1
2	MRAC0718	16	52	36	27.9	37.5	1004.4	1350.1
2	MRAC0719	12	54	42	26.1	35.1	1096.2	1473.5
2	MRAC0713	12	16	4	23.4	31.5	93.6	125.8
2	MRAC0720	20	58	38	26	34.9	988	1328.1
2	MRAC0721	12	68	56	24.8	33.3	1388.8	1866.8
2	MRAC0722	12	59	47	26.9	36.2	1264.3	1699.5
2	MRAC0723	12	36	24	24.7	33.2	592.8	796.8
2	MRAC0724	12	48	36	29.2	39.3	1051.2	1413
2	MRAC0725	12	31	19	27	36.3	513	689.6
2	MRAC0726	12	47	35	23.2	31.2	812	1091.5
2	MRAC0727	12	44	32	26.4	35.5	844.8	1135.6
2	MRAC0728	12	38	26	28.2	37.9	733.2	985.6
2	MRAC0729	12	21	9	31.4	42.2	282.6	379.9
2	MRAC0730	12	26	14	34.7	46.6	485.8	653
2	MRAC0731	12	36	24	30.9	41.5	741.6	996.9
2	MRAC0732	12	32	20	34.3	46.1	686	922.1
2	MRAC0733	12	39	27	31.8	42.7	858.6	1154.1
2	MRAC0862	20	54	34	32.6	43.8	1108.4	1489.9
2	MRAC0863	28	38	10	24.1	32.4	241	324
2	MRAC0863	39	42	3	20.5	27.6	61.5	82.7
2	MRAC0864	10	30	20	29.2	39.3	584	785
2	MRAC0865	26	52	26	38.9	52.3	1011.4	1359.5
2	MRAC0866	24	46	22	29.1	39.1	640.2	860.6
2	MRAC0867	30	51	21	24.7	33.2	518.7	697.2
2	MRAC0868	25	38	13	25.1	33.7	326.3	438.6
2	MRAC0869	10	31	21	30.1	40.5	632.1	849.7
2	MRAC0870	13	39	26	27.5	37	715	961.1
2	MRAC0871	11	33	22	22.2	29.8	488.4	656.5
2	MRAC0871	37	48	11	21.5	28.9	236.5	317.9
2	MRAC0871	50	58	8	21.8	29.3	174.4	234.4
2	MRAC0873	15	30	15	24	32.3	360	483.9
2	MRAC0874	12	38	26	26.3	35.4	683.8	919.2
	MRAC0874 MRAC0875	18	36	46	26.3	30.9	1058	1422.2

MF Bloc		Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
2		MRAC0876	16	27	11	28.4	38.2	312.4	419.9
2	2	MRAC0877	13	30	17	31.5	42.3	535.5	719.8
2	2	MRAC0878	17	34	17	21.5	28.9	365.5	491.3
2		MRAC0880	19	23	4	20.8	28	83.2	111.8
2		MRAC0881	13	48	35	22.3	30	780.5	1049.1
2		MRAC0881	52	65	13	21.3	28.6	276.9	372.2
2		MRAC0882	11	50	39	24.6	33.1	959.4	1289.6
2		MRAC0883	13	31	18	29.4	39.5	529.2	711.4
2		MRAC0884	18	43	25	29.7	39.9	742.5	998.1
2		MRAC0885	23	39	16	35.1	47.2	561.6	754.9
		MRAC0886	30	46	16	26.1	35.1	417.6	561.3
2					8				
1		MRAC0886	50	58		20.9	28.1	167.2	224.8
		MRAC0887	19	34	15	31.8	42.7	477	641.2
2		MRAC0888	23	47	24	26.1	35.1	626.4	842
2		MRAC0889	12	43	31	27.2	36.6	843.2	1133.4
2		MRAC0890	21	37	16	20.6	27.7	329.6	443
2		MRAC0891	14	29	15	21.1	28.4	316.5	425.4
2		MRAC0893	27	30	3	21.9	29.4	65.7	88.3
((\\))2		MRAC0893	34	57	23	31.4	42.2	722.2	970.8
2	2	MRAC0894	17	31	14	20.6	27.7	288.4	387.7
2	2	MRAC0895	18	34	16	21.4	28.8	342.4	460.3
2	2	MRAC0896	23	35	12	22.2	29.8	266.4	358.1
2	2	MRAC0897	35	40	5	23.2	31.2	116	155.9
2	2	MRAC0898	40	45	5	27.9	37.5	139.5	187.5
((//)) 2	2	MRAC0898	51	57	6	24.5	32.9	147	197.6
2	2	MRAC0904	40	53	13	23	30.9	299	401.9
2	2	MRAC0905	46	54	8	22.3	30	178.4	239.8
2	2	MRAC0906	47	60	13	22.6	30.4	293.8	394.9
2	2	MRAC0907	49	53	4	22.2	29.8	88.8	119.4
2	2	MRAC0908	32	35	3	23	30.9	69	92.7
2	2	MRAC0909	57	66	9	23.3	31.3	209.7	281.9
2	2	MRAC0910	32	46	14	27.3	36.7	382.2	513.8
2	2	MRAC0911	35	45	10	26.3	35.4	263	353.5
2	2	MRAC0911	52	63	11	31.5	42.3	346.5	465.8
2	2	MRAC0912	32	50	18	24.4	32.8	439.2	590.4
2		MRAC0912	52	60	8	27.3	36.7	218.4	293.6
2		MRAC0913	28	33	5	21	28.2	105	141.1
2		MRAC0913	35	47	12	23.4	31.5	280.8	377.5
2		MRAC0935	21	27	6	23	30.9	138	185.5
2		MRAC0936	27	42	15	22.2	29.8	333	447.6
2		MRAC0937	15	33	18	30	40.3	540	725.9
2		MRAC0938	3	9	6	20.9	28.1	125.4	168.6
2		MRAC0938	24	33	9	26.5	35.6	238.5	320.6
2		MRAC0938	12				38.2	795.2	1068.9
- 4	-	MILYCORYA	12	40	28	28.4	JO.Z	190.2	1000.9

	MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
	2	MRAC0940	21	30	9	24.6	33.1	221.4	297.6
	2	MRAC0942	12	34	22	29.6	39.8	651.2	875.3
	2	MRAC0943	21	48	27	27.4	36.8	739.8	994.4
	2	MRAC0944	27	52	25	25.7	34.5	642.5	863.6
	2	MRAC0945	25	53	28	27.5	37	770	1035
	2	MRAC0946	29	41	12	28.9	38.8	346.8	466.2
	2	MRAC0947	0	3	3	32.4	43.6	97.2	130.7
	2	MRAC0947	36	57	21	29.1	39.1	611.1	821.4
	2	MRAC0948	48	51	3	27.8	37.4	83.4	112.1
	2	MRAC0954	30	36	6	23.1	31.1	138.6	186.3
75	2	MRAC0954	42	51	9	24.6	33.1	221.4	297.6
(UL)	2	MRAC0955	30	80	50	30.8	41.4	1540	2070.1
20	2	MRAC0956	27	61	34	25.4	34.1	863.6	1160.9
W 1	2	MRAC1010	33	45	12	23.8	32	285.6	383.9
	2	MRAC1010	48	53	5	25.7	34.5	128.5	172.7
	2	MRAC1011	39	58	19	33.6	45.2	638.4	858.1
-	2	MRAC1012	42	55	13	28.4	38.2	369.2	496.3
	2	MRAC1025	15	59	44	27.4	36.8	1205.6	1620.6
	2	MRAC1026	30	33	3	21	28.2	63	84.7
<u> </u>	2	MRAC1026	39	45	6	20.4	27.4	122.4	164.5
	2	MRAC1026	54	57	3	21.6	29	64.8	87.1
	2	MRAC1027	27	48	21	25.7	34.5	539.7	725.5
	2	MRAC1027	30	39	9	29.5	39.7	265.5	356.9
	2	MRAC1029	27	43	16	24.7	33.2	395.2	531.2
200	2	MRAC1029	30	52	22	36.4	48.9	800.8	1076.4
$\cup \cup$				 					1070.4
	2	MRAC1031	24	51	27	27.8	37.4	750.6	
	2	MRAC1092	30	67	37	24.3	32.7	899.1	1208.6
	2	MRAC1093	30	33	3	20.8	28	62.4	83.9
$\overline{}$	2	MRAC1093	60	63	3	20.4	27.4	61.2	82.3
	2	MRAC1365	30	51	21	29.1	39.1	611.1	821.4
-	2	MRAC1367	6	9	3	23	30.9	69	92.7
7	2	MRAC1367	15	37	22	28.4	38.2	624.8	839.9
	2	MRAC1368	18	27	9	28.5	38.3	256.5	344.8
	2	MRAC1369	12	38	26	35.8	48.1	930.8	1251.2
	2	MRAC1370	12	45	33	31.1	41.8	1026.3	1379.6
	2	MRAC1371	13	51	38	28.9	38.8	1098.2	1476.2
	2	MRDD033	24	36.85	12.85	27	36.3	347	466.4
-	2	MRDD034	17	39	22	33.2	44.6	730.4	981.8
	2	MRDD034	45	48	3	20.7	27.8	62.1	83.5
_	2	MRDD035	50	55	5	22.8	30.6	114	153.2
	2	MRDD036	35	58.6	23.6	34.2	46	807.1	1084.9
	2	MRDD037	26	40	14	21.7	29.2	303.8	408.4
	2	MRDD037	44	48	4	23.1	31.1	92.4	124.2
	2	MRDD038	30	77	47	33.8	45.4	1588.6	2135.4

	MRE lock ld	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
	3	MRAC0851	40	45	5	21.4	28.8	107	143.8
	3	MRAC0852	36	42	6	23.4	31.5	140.4	188.7
	3	MRAC1166	15	21	6	31	41.7	186	250
	3	MRAC1167	18	27	9	26.3	35.4	236.7	318.2
	3	MRAC1167	39	42	3	21	28.2	63	84.7
	3	MRAC1168	18	27	9	25	33.6	225	302.4
	3	MRAC1168	30	42	12	20.8	28	249.6	335.5
	3	MRAC1168	45	48	3	23	30.9	69	92.7
	3	MRAC1169	18	21	3	31.8	42.7	95.4	128.2
	3	MRAC1169	27	42	15	22.5	30.2	337.5	453.7
75	3	MRAC1169	45	48	3	20	26.9	60	80.7
	3	MRAC1170	24	30	6	23.5	31.6	141	189.5
20	3	MRAC1170	34	45	11	21.9	29.4	240.9	323.8
W 2	3	MRAC1171	21	24	3	25.1	33.7	75.3	101.2
	3	MRAC1171	30	35	5	24.9	33.5	124.5	167.4
	3	MRAC1172	21	27	6	26.2	35.2	157.2	211.3
	3	MRAC1172	41	61	20	27.6	37.1	552	742
	3	MRAC1173	21	24	3	20.3	27.3	60.9	81.9
	3	MRAC1174	34	60	26	21.3	28.6	553.8	744.4
	3	MRAC1175	18	38	20	22.2	29.8	444	596.8
	3	MRAC1176	21	25	4	21.5	28.9	86	115.6
	3	MRAC1178	25	51	26	24.4	32.8	634.4	852.8
	3	MRAC1179	12	29	17	23.7	31.9	402.9	541.6
	3	MRAC1180	9	13	4	30.5	41	122	164
200	3	MRAC1181	9	27	18	25.7	34.5	462.6	621.8
\bigcirc	3	MRAC1183	15	35	20	23.1	31.1	462	621
	3	MRAC1184	30	59	29	33.9	45.6	983.1	1321.5
	3	MRAC1186	21	24	3	20.7	27.8	62.1	83.5
	3	MRAC1186	36	51	15	23.5	31.6	352.5	473.8
	3	MRAC1186	63	69	6	20.2	27.2	121.2	162.9
	3	MRAC1187	21	35	14	23.1	31.1	323.4	434.7
	3	MRAC1187	36	44	8	20.6	27.7	164.8	221.5
	3	MRAC1187	45	50	5	21.5	28.9	107.5	144.5
	3	MRAC1187	63	66	3	24.3	32.7	72.9	98
(\bigcirc)	3	MRAC1188	24	39	15	20.6	27.7	309	415.4
	3	MRAC1188	42	63	21	23.2	31.2	487.2	654.9
	3	MRAC1189	30	55	25	23.3	31.3	582.5	783
	3	MRAC1190	18	36	18	29.5	39.7	531	713.8
	3	MRAC1192	15	52	37	25.3	34	936.1	1258.3
	3	MRAC1193	27	37	10	20.0	26.9	200	268.8
<u> </u>	3	MRAC1194	12	36	24	28.4	38.2	681.6	916.2
<u> </u>	3	MRAC1195	18	69	51	25.7	34.5	1310.7	1761.8
	3	MRAC1196	24	27	3	28.6	38.4	85.8	115.3
	3	MRAC1196	34		20				
	J	WIKACTTS	34	54	ZU	23.7	31.9	474	637.2

MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
3	MRAC1196	57	61	4	22.8	30.6	91.2	122.6
3	MRAC1226	15	30	15	21.8	29.3	327	439.6
3	MRAC1226	33	47	14	21.1	28.4	295.4	397.1
3	MRAC1227	15	27	12	21	28.2	252	338.7
3	MRAC1228	15	28	13	22.1	29.7	287.3	386.2
3	MRAC1229	12	48	36	23.7	31.9	853.2	1146.9
3	MRAC1229	63	66	3	22	29.6	66	88.7
3	MRAC1230	15	42	27	22.9	30.8	618.3	831.1
3	MRAC1230	54	57	3	21.5	28.9	64.5	86.7
3	MRAC1231	21	49	28	25.5	34.3	714	959.8
3	MRAC1232	11	48	37	24.7	33.2	913.9	1228.5
3	MRAC1232	30	33	3	22	29.6	66	88.7
1	+		+					
3	MRAC1234	6	30	24	24.8	33.3	595.2	800.1
3	MRAC1235	24	48	24	23	30.9	552	742
3	MRAC1236	6	21	15	27.1	36.4	406.5	546.4
3	MRAC1237	9	24	15	21.4	28.8	321	431.5
3	MRAC1238	9	36	27	22.2	29.8	599.4	805.7
3	MRAC1239	3	6	3	21.7	29.2	65.1	87.5
3	MRAC1241	10	27	17	23	30.9	391	525.6
3	MRAC1372	9	30	21	25.6	34.4	537.6	722.6
3	MRAC1373	3	21	18	21.4	28.8	385.2	517.8
3	MRAC1373	27	36	9	21.7	29.2	195.3	262.5
3	MRAC1374	5	22	17	25.4	34.1	431.8	580.4
3	MRAC1375	5	12	7	27	36.3	189	254.1
3	MRAC1376	3	33	30	24.6	33.1	738	992
3	MRAC1377	6	36	30	24.3	32.7	729	979.9
3	MRAC1378	6	9	3	24	32.3	72	96.8
3	MRAC1379	14	30	16	25.6	34.4	409.6	550.6
3	MRAC1380	10	30	20	23.2	31.2	464	623.7
3	MRAC1380	39	44	5	23.3	31.3	116.5	156.6
3	MRAC1381	9	37	28	23.3	31.3	652.4	877
3	MRAC1382	18	30	12	23.1	31.1	277.2	372.6
3	MRAC1383	22	42	20	21.9	29.4	438	588.8
3	MRAC1384	5	30	25	24.9	33.5	622.5	836.8
3	MRAC1385	9	33	24	25.2	33.9	604.8	813
3	MRAC1386	20	33	13	25.8	34.7	335.4	450.8
3	MRAC1387	27	51	24	23.1	31.1	554.4	745.2
3	MRAC1388	7	27	20	23.4	31.5	468	629.1
3	MRAC1389	12	36	24	24.7	33.2	592.8	796.8
3	MRAC1391	18	33	15	22.1	29.7	331.5	445.6
3	MRAC1393	15	56	41	38.9	52.3	1594.9	2143.9
3	MRAC1393	0	3	3	25.6	34.4	76.8	103.2
-			+					
3	MRAC1394	18	36	18	25.3	34	455.4	612.1
3	MRAC1395	14	45	31	27.7	37.2	858.7	1154.3

Г	MRE	Hole id	From	То	Mineralised Intervals	Ga	Ga₂O₃	mGa	mGa₂O₃
_	Block Id	noie id	(m)	(m)	Willieralised littervals	ppm	ppm	ppm	ppm
	3	MRAC1396	6	12	6	21.3	28.6	127.8	171.8
	3	MRAC1396	18	37	19	30.4	40.9	577.6	776.4
	3	MRAC1397	18	44	26	27.2	36.6	707.2	950.6
) 3	MRAC1398	27	33	6	24.6	33.1	147.6	198.4
	3	MRAC1398	39	50	11	25.6	34.4	281.6	378.5
	3	MRAC1399	21	24	3	26	34.9	78	104.8
	3	MRAC1399	29	45	16	21.5	28.9	344	462.4
	3	MRAC1400	21	54	33	25.9	34.8	854.7	1148.9
	3	MRAC1401	15	18	3	25.4	34.1	76.2	102.4
	3	MRAC1402	15	18	3	21.2	28.5	63.6	85.5
	3	MRAC1402	30	45	15	24.2	32.5	363	487.9
99	3	MRAC1403	39	50	11	21.9	29.4	240.9	323.8
	3	MRAC1404	21	24	3	20.9	28.1	62.7	84.3
	3	MRAC1404	42	48	6	21.6	29	129.6	174.2
	3	MRAC1405	18	21	3	20.1	27	60.3	81.1
	3	MRAC1406	18	21	3	24.6	33.1	73.8	99.2
	3	MRAC1407	18	21	3	35.5	47.7	106.5	143.2
	3	MRAC1407	30	60	30	29.8	40.1	894	1201.7
	3	MRAC1408	18	24	6	28.3	38	169.8	228.2
99	3	MRAC1409	22	62	40	23.8	32	952	1279.7
	3	MRAC1410	15	33	18	25.1	33.7	451.8	607.3
	3	MRAC1411	16	34	18	27	36.3	486	653.3
	3	MRAC1414	15	42	27	22.9	30.8	618.3	831.1
	3	MRAC1415	18	24	6	22.9	30.8	137.4	184.7
	3	MRAC1416	10	30	20	24.5	32.9	490	658.7
	3	MRAC1417	18	44	26	32.8	44.1	852.8	1146.3
	3	MRAC1418	21	24	3	33.7	45.3	101.1	135.9
	3	MRAC1419	21	36	15	21.8	29.3	327	439.6
	3	MRAC1420	27	30	3	34.6	46.5	103.8	139.5
	3	MRAC1420	39	57	18	22.4	30.1	403.2	542
	3	MRAC1421	21	51	30	25	33.6	750	1008.2
_	3	MRAC1422	21	47	26	24.5	32.9	637	856.3
	3	MRAC1423	20	53	33	23	30.9	759	1020.2
	3	MRAC1424	15	36	21	25.7	34.5	539.7	725.5
	3	MRAC1425	18	60	42	24.7	33.2	1037.4	1394.5
П	3	MRAC1426	15	48	33	24.3	32.7	801.9	1077.9
ШЩ	3	MRAC1427	12	45	33	26.5	35.6	874.5	1175.5
	3	MRAC1428	18	32	14	22.5	30.2	315	423.4
	3	MRAC1430	16	36	20	24.1	32.4	482	647.9
	3	MRAC1431	24	42	18	25.8	34.7	464.4	624.2
	3	MRAC1432	12	36	24	25.5	34.3	612	822.7
	3	MRAC1433	16	56	40	25	33.6	1000	1344.2
	3	MRAC1434	3	12	9	24.9	33.5	224.1	301.2
	3	MRAC1434	21	25	4	24.1	32.4	96.4	129.6

	MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
	3	MRAC1435	9	45	36	23.7	31.9	853.2	1146.9
	3	MRAC1525	30	41	11	21.6	29	237.6	319.4
	3	MRAC1525	45	48	3	20.3	27.3	60.9	81.9
	3	MRAC1526	13	38	25	25.6	34.4	640	860.3
	3	MRAC1527	1	6	5	23.2	31.2	116	155.9
	3	MRAC1528	9	39	30	24.6	33.1	738	992
	3	MRAC1529	9	27	18	24.7	33.2	444.6	597.6
	3	MRAC1529	33	36	3	21.9	29.4	65.7	88.3
	3	MRAC1530	14	33	19	23.4	31.5	444.6	597.6
	3	MRAC1531	15	30	15	24.5	32.9	367.5	494
75	3	MRAC1532	9	12	3	21	28.2	63	84.7
	3	MRAC1533	15	24	9	27	36.3	243	326.6
an	3	MRAC1534	15	48	33	26	34.9	858	1153.3
	3	MRAC1535	27	45	18	24.6	33.1	442.8	595.2
R	3	MRAC1535	48	51	3	20.7	27.8	62.1	83.5
	3	MRAC1536	12	48	36	23.8	32	856.8	1151.7
-	3	MRAC1537	12	30	18	30.2	40.6	543.6	730.7
	3	MRAC1538	22	43	21	23.8	32	499.8	671.8
	3	MRAC1539	7	36	29	29	39	841	1130.5
	3	MRAC1540	21	30	9	21.5	28.9	193.5	260.1
	3			30	12				390.4
		MRAC1541	18		3	24.2	32.5	290.4	
	3	MRAC1541	39	42		20.2	27.2	60.6	81.5
	3	MRAC1542	11	33	22	27.7	37.2	609.4	819.2
20	3	MRAC1543	9	39	30	24.9	33.5	747	1004.1
	3	MRAC1544	9	41	32	23.5	31.6	752	1010.8
	3	MRAC1545	10	40	30	25.6	34.4	768	1032.3
	3	MRAC1546	12	46	34	24.2	32.5	822.8	1106
	3	MRAC1547	18	39	21	25.3	34	531.3	714.2
	3	MRAC1547	45	48	3	20.3	27.3	60.9	81.9
	3	MRAC1547	57	63	6	20.3	27.3	121.8	163.7
	3	MRAC1548	24	45	21	20.9	28.1	438.9	590
7	3	MRAC1549	21	57	36	21.9	29.4	788.4	1059.8
	3	MRAC1549	60	63	3	21.2	28.5	63.6	85.5
	3	MRAC1550	20	36	16	22.8	30.6	364.8	490.4
	3	MRAC1550	39	51	12	21.2	28.5	254.4	342
	3	MRAC1551	12	39	27	24.3	32.7	656.1	881.9
	3	MRAC1552	15	42	27	23	30.9	621	834.7
	3	MRAC1552	48	51	3	20.4	27.4	61.2	82.3
	3	MRAC1553	18	36	18	24.4	32.8	439.2	590.4
	3	MRAC1553	39	42	3	20.1	27	60.3	81.1
	3	MRAC1553	48	54	6	22.9	30.8	137.4	184.7
	3	MRAC1554	12	54	42	26.3	35.4	1104.6	1484.8
	3	MRAC1555	33	51	18	23.2	31.2	417.6	561.3
	3	MRAC1556	15	18	3	20.2	27.2	60.6	81.5

	MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
Ī	3	MRAC1556	31	39	8	20.5	27.6	164	220.4
ŀ	3	MRAC1556	48	51	3	20.4	27.4	61.2	82.3
	3	MRAC1557	16	30	14	23.6	31.7	330.4	444.1
	3	MRAC1558	27	33	6	22.9	30.8	137.4	184.7
-	3	MRAC1559	19	40	21	23.5	31.6	493.5	663.4
	3	MRAC1560	14	33	19	22.8	30.6	433.2	582.3
	3	MRAC1561	19	27	8	24.1	32.4	192.8	259.2
	3	MRAC1561	33	36	3	22.5	30.2	67.5	90.7
	3	MRAC1562	18	57	39	24.3	32.7	947.7	1273.9
-	3	MRAC1563	16	54	38	22.7	30.5	862.6	1159.5
	3	MRAC1564	18	51	33	24.4	32.8	805.2	1082.3
	-								
	3	MRAC1565	12	41	29	24.9	33.5	722.1	970.6
J/J	3	MRAC1566	21	66	45	23	30.9	1035	1391.2
	3	MRAC1567	25	86	61	23.6	31.7	1439.6	1935.1
	3	MRAC1568	21	36	15	20.4	27.4	306	411.3
	3	MRAC1568	39	60	21	23.9	32.1	501.9	674.7
	3	MRAC1569	15	33	18	25.3	34	455.4	612.1
	3	MRAC1569	39	45	6	21	28.2	126	169.4
	3	MRAC1570	17	54	37	24	32.3	888	1193.6
	3	MRAC1570	57	60	3	20	26.9	60	80.7
	3	MRAC1571	15	39	24	24.3	32.7	583.2	783.9
	3	MRAC1572	12	21	9	24	32.3	216	290.3
	3	MRAC1573	11	33	22	27.9	37.5	613.8	825.1
	3	MRAC1574	13	20	7	28.3	38	198.1	266.3
	3	MRAC1576	12	15	3	20	26.9	60	80.7
ンロ	3	MRAC1576	21	41	20	27.2	36.6	544	731.2
	3	MRAC1577	24	44	20	21.8	29.3	436	586.1
715	3	MRAC1578	20	42	22	27.9	37.5	613.8	825.1
	3	MRAC1579	10	48	38	23.8	32	904.4	1215.7
	3	MRAC1580	9	42	33	27.4	36.8	904.2	1215.4
	3	MRAC1581	27	60	33	22.9	30.8	755.7	1015.8
	3	MRAC1581	63	76	13	20.8	28	270.4	363.5
	3	MRAC1582	19	39	20	24.4	32.8	488	656
	3	MRAC1583	18	43	25	22.7	30.5	567.5	762.8
	3	MRAC1584	27	50	23	26.8	36	616.4	828.6
	3	MRAC1585	48	51	3	22.7	30.5	68.1	91.5
	3	MRAC1586	25	63	38	23.7	31.9	900.6	1210.6
	3	MRAC1587	25	39	14	28.3	38	396.2	532.6
}	3	MRAC1588	12	55	43	26.7	35.9	1148.1	1543.3
-	3	MRAC1589	15	57	42	24.9	33.5	1045.8	1405.8
-	3	MRAC1590	15	45	30	23.8	32	714	959.8
}	3	MRAC1591	18	53	35	28.5	38.3	997.5	1340.8
1	J								
Ī	3	MRAC1592	21	24	3	22.9	30.8	68.7	92.3

ASX: MRD

	MRE	Hole id	From	То	Mineralised Intervals	Ga	Ga ₂ O ₃	mGa	mGa ₂ O ₃
_	Block Id		(m)	(m)		ppm	ppm	ppm	ppm
-	3	MRAC1593	33	54	21	26.6	35.8	558.6	750.9
	3	MRAC1594	21	30	9	21.7	29.2	195.3	262.5
	3	MRAC1594	39	45	6	21	28.2	126	169.4
	3	MRAC1594	51	57	6	21.2	28.5	127.2	171
	3	MRAC1594	63	78	15	20.8	28	312	419.4
	3	MRAC1595	27	30	3	20.6	27.7	61.8	83.1
	3	MRAC1595	36	75	39	22.3	30	869.7	1169.1
	3	MRAC1596	36	60	24	25.3	34	607.2	816.2
	3	MRAC1597	24	43	19	26.2	35.2	497.8	669.1
	3	MRAC1598	24	51	27	25.7	34.5	693.9	932.7
	3	MRAC1598	54	74	20	23.7	31.9	474	637.2
QL)	3	MRAC1599	27	72	45	26.6	35.8	1197	1609
	3	MRAC1600	24	59	35	26.7	35.9	934.5	1256.2
	3	MRAC1601	23	31	8	21.4	28.8	171.2	230.1
	3	MRAC1601	36	55	19	24.6	33.1	467.4	628.3
	3	MRAC1602	21	29	8	20.8	28	166.4	223.7
	3	MRAC1602	36	52	16	23.3	31.3	372.8	501.1
	3	MRAC1602	60	63	3	20	26.9	60	80.7
	3	MRAC1603	28	56	28	33.7	45.3	943.6	1268.4
90	3	MRAC1604	10	20	10	22.2	29.8	222	298.4
	3	MRAC1605	9	38	29	23.2	31.2	672.8	904.4
	3	MRAC1642	11	51	40	24.6	33.1	984	1322.7
	3	MRAC1643	13	51	38	23.3	31.3	885.4	1190.2
	3	MRAC1644	12	33	21	24.9	33.5	522.9	702.9
	3	MRAC1648	13	36	23	22	29.6	506	680.2
	3	MRAC1649	16	33	17	23.9	32.1	406.3	546.1
	3	MRAC1649	39	42	3	21.8	29.3	65.4	87.9
	3	MRAC1649	48	51	3	22.9	30.8	68.7	92.3
	3	MRAC1650	14	24	10	29.3	39.4	293	393.9
	3	MRAC1650	30	39	9	21.9	29.4	197.1	264.9
	3	MRAC1650	45	48	3	20.4	27.4	61.2	82.3
	3	MRAC1651	9	51	42	23	30.9	966	1298.5
	3	MRAC1652	7	48	41	24.3	32.7	996.3	1339.2
	3	MRAC1653	7	24	17	24.3	32.7	413.1	555.3
	3	MRAC1653	36	39	3	21.1	28.4	63.3	85.1
ПП	3	MRAC1654	17	30	13	23.4	31.5	304.2	408.9
	3	MRAC1654	31	51	20	20.9	28.1	418	561.9
	3	MRAC1655	12	29	17	21.1	28.4	358.7	482.2
	3	MRAC1656	11	36	25	23.9	32.1	597.5	803.2
	3	MRAC1657	11	38	27	24.4	32.8	658.8	885.6
	3	MRAC1658	13	42	29	25	33.6	725	974.5
	3	MRAC1659	12	18	6	25.7	34.5	154.2	207.3
	3	MRAC1660	12	24	12	21.5	28.9	258	346.8
	3	MRAC1661	14	33	19	23.4	31.5	444.6	597.6
<u>_</u>				<u> </u>	1		l	1	l

	MRE	Hole id	From	То	Mineralised Intervals	Ga	Ga ₂ O ₃	mGa	mGa ₂ O ₃
-	Block Id		(m) -	(m)		ppm	ppm	ppm	ppm
-	3	MRAC1662	7	15	8	22.1	29.7	176.8	237.7
	3	MRAC1662	27	33	6	20.4	27.4	122.4	164.5
	3	MRAC1663	7	18	11	23	30.9	253	340.1
	7) 3	MRAC1664	9	30	21	26.6	35.8	558.6	750.9
	3	MRAC1665	12	30	18	21.4	28.8	385.2	517.8
	3	MRAC1666	12	18	6	22.6	30.4	135.6	182.3
	3	MRAC1667	12	28	16	29.6	39.8	473.6	636.6
	3	MRAC1668	7	24	17	25.5	34.3	433.5	582.7
	3	MRAC1669	15	45	30	24	32.3	720	967.8
	3	MRAC1670	14	60	46	24.5	32.9	1127	1514.9
	3	MRAC1671	18	33	15	24.9	33.5	373.5	502.1
	3	MRAC1672	25	33	8	23.9	32.1	191.2	257
	3	MRAC1673	9	36	27	27	36.3	729	979.9
	3	MRAC1674	13	27	14	28.9	38.8	404.6	543.9
	3	MRAC1675	10	24	14	24.2	32.5	338.8	455.4
	3	MRAC1676	21	24	3	21.9	29.4	65.7	88.3
	3	MRAC1676	51	55	4	21.3	28.6	85.2	114.5
	3	MRAC1677	21	24	3	23.9	32.1	71.7	96.4
	3	MRAC1677	33	54	21	23.6	31.7	495.6	666.2
90	3	MRAC1678	7	15	8	22.6	30.4	180.8	243
	3	MRAC1678	21	24	3	22	29.6	66	88.7
	3	MRAC1679	21	51	30	22.3	30	669	899.3
	3	MRAC1680	9	36	27	24.2	32.5	653.4	878.3
	3	MRAC1681	11	45	34	27.8	37.4	945.2	1270.5
	3	MRAC1682	21	30	9	22.7	30.5	204.3	274.6
	3	MRAC1682	36	41	5	20.4	27.4	102	137.1
	3	MRAC1683	11	30	19	24.4	32.8	463.6	623.2
	3	MRAC1684	7	42	35	25.1	33.7	878.5	1180.9
	3	MRAC1684	51	54	3	20.1	27	60.3	81.1
	3	MRAC1685	9	21	12	22.2	29.8	266.4	358.1
	3	MRAC1685	27	36	9	22.2	29.8	199.8	268.6
	3	MRAC1685	54	70	16	24.2	32.5	387.2	520.5
	3	MRAC1686	10	30	20	23.4	31.5	468	629.1
	3	MRAC1687	10	27	17	23.7	31.9	402.9	541.6
	3	MRAC1688	11	34	23	23	30.9	529	711.1
1 п	3	MRAC1689	6	13	7	22.7	30.5	158.9	213.6
	3	MRAC1690	9	32	23	24.6	33.1	565.8	760.5
	3	MRAC1691	9	15	6	21.8	29.3	130.8	175.8
F	3	MRAC1691	24	33	9	21.1	28.4	189.9	255.3
	3	MRAC1692	34	48	14	23.2	31.2	324.8	436.6
	3	MRAC1693	10	39	29	23.3	31.3	675.7	908.3
	3	MRAC1694	21	54	33	22.8	30.6	752.4	1011.4
	3	MRAC1694	60	63	3	20.9	28.1	62.7	84.3
	3	MRAC1695	8	33	25	27	36.3	675	907.3
L	-			1	<u> </u>	l	L		l

	RE ck ld	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
	3	MRAC1696	15	18	3	22.7	30.5	68.1	91.5
	3	MRAC1696	24	33	9	21.2	28.5	190.8	256.5
	3	MRAC1696	36	39	3	23.2	31.2	69.6	93.6
	3	MRAC1697	12	46	34	32.2	43.3	1094.8	1471.6
	3	MRAC1698	18	21	3	25.8	34.7	77.4	104
	3	MRAC1698	30	45	15	21.5	28.9	322.5	433.5
	3	MRAC1699	30	45	15	24.1	32.4	361.5	485.9
	3	MRAC1699	54	63	9	21.5	28.9	193.5	260.1
	3	MRAC1700	10	21	11	31	41.7	341	458.4
	3	MRAC1701	9	27	18	23.4	31.5	421.2	566.2
	3	MRAC1702	9	45	36	24.3	32.7	874.8	1175.9
1	3	MRAC1703	12	39	27	24.2	32.5	653.4	878.3
$\{U/\}$	3	MRAC1704	18	30	12	22.5	30.2	270	362.9
	3	MRAC1705	11	45	34	24.6	33.1	836.4	1124.3
	3	MRAC1706	10	27	17	23	30.9	391	525.6
	3	MRAC1706	33	51	18	22.5	30.2	405	544.4
3	3	MRAC1706	63	66	3	20	26.9	60	80.7
3	3	MRAC1707	9	24	15	22.8	30.6	342	459.7
3	3	MRAC1708	7	21	14	21.4	28.8	299.6	402.7
3	3	MRAC1709	10	30	20	25.8	34.7	516	693.6
3	3	MRAC1710	30	57	27	26	34.9	702	943.6
	3	MRAC1711	11	50	39	34.5	46.4	1345.5	1808.6
3	3	MRAC1712	15	42	27	24.5	32.9	661.5	889.2
	3	MRAC1713	9	36	27	24.8	33.3	669.6	900.1
	3	MRAC1714	7	42	35	25	33.6	875	1176.2
3	3	MRAC1715	18	29	11	23.1	31.1	254.1	341.6
3	3	MRAC1716	10	18	8	24.4	32.8	195.2	262.4
	3	MRAC1717	7	23	16	28.7	38.6	459.2	617.3
	3	MRAC1718	15	24	9	21.1	28.4	189.9	255.3
3	3	MRAC1718	27	34	7	21	28.2	147	197.6
	3	MRAC1719	18	21	3	29	39	87	116.9
3	3	MRAC1719	27	47	20	23.4	31.5	468	629.1
	3	MRAC1721	29	49	20	20.7	27.8	414	556.5
3	3	MRAC1723	22	49	27	24.9	33.5	672.3	903.7
	3	MRAC1724	21	27	6	20.3	27.3	121.8	163.7
_ 3	3	MRAC1724	36	52	16	22.1	29.7	353.6	475.3
	3	MRAC1725	12	24	12	22.3	30	267.6	359.7
	3	MRAC1726	15	27	12	21.8	29.3	261.6	351.6
	3	MRAC1727	13	52	39	25.6	34.4	998.4	1342
	3	MRAC1728	13	48	35	27.4	36.8	959	1289.1
	3	MRAC1729	18	21	3	22.6	30.4	67.8	91.1
	3	MRAC1729	27	46	19	23.8	32	452.2	607.8
	3	MRAC1730	33	54	21	21.5	28.9	451.5	606.9
	3	MRAC1730	57	67	10	20.6	27.7	206	276.9
	J	WINAC 1/30	31	07	10	20.0	21.1	200	210.9

В	MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
	3	MRAC1731	16	48	32	22	29.6	704	946.3
	3	MRAC1732	9	45	36	22.8	30.6	820.8	1103.3
	3	MRAC1733	24	54	30	23.9	32.1	717	963.8
	3	MRAC1734	24	54	30	21.1	28.4	633	850.9
	3	MRAC1735	11	39	28	25.2	33.9	705.6	948.5
	3	MRAC1736	12	15	3	23	30.9	69	92.7
	3	MRAC1737	18	30	12	22.4	30.1	268.8	361.3
	3	MRAC1738	15	47	32	22.9	30.8	732.8	985
	3	MRAC1739	18	48	30	25.4	34.1	762	1024.3
	3	MRAC1740	24	42	18	26.4	35.5	475.2	638.8
715	3	MRAC1741	24	30	6	22.3	30	133.8	179.9
	3	MRAC1741	36	53	17	22.4	30.1	380.8	511.9
	3	MRAC1742	23	51	28	24.4	32.8	683.2	918.4
<i>94</i>	3	MRAC1742	54	69	15	20.7	27.8	310.5	417.4
-	3	MRAC1744	21	54	33	24.2	32.5	798.6	1073.5
	3	MRAC1744	57	66	9	21.3	28.6	191.7	257.7
	3	MRAC1745	19	42	23	21.4	28.8	492.2	661.6
	3	MRAC1745	51	60	9	20.3	27.3	182.7	245.6
10	3	MRAC1746	27	42	15	23.9	32.1	358.5	481.9
	3	MRAC1747	12	51	39	43.2	58.1	1684.8	2264.7
_	3	MRAC1748	13	27	14	24.2	32.5	338.8	455.4
	3	MRAC1750	15	18	3	20.7	27.8	62.1	83.5
	3	MRAC1750	24	48	24	22.7	30.5	544.8	732.3
	3	MRAC1751	18	30	12	22.5	30.2	270	362.9
	3	MRAC1752	17	54	37	24.9	33.5	921.3	1238.4
<i>94</i>	3	MRAC1753	16	43	27	26.4	35.5	712.8	958.1
	3	MRAC1754	18	48	30	29.5	39.7	885	1189.6
715	3	MRAC1755	17	36	19	22.2	29.8	421.8	567
	3	MRAC1756	15	36	21	22.7	30.5	476.7	640.8
	3	MRAC1757	27	39	12	20.7	27.8	248.4	333.9
	□ 3	MRAC1758	15	39	24	25.1	33.7	602.4	809.7
	3	MRAC1759	14	39	25	25.9	34.8	647.5	870.4
	3	MRAC1760	27	36	9	21.5	28.9	193.5	260.1
	3	MRAC1761	15	24	9	21.2	28.5	190.8	256.5
	3	MRAC1761	36	42	6	23	30.9	138	185.5
	3	MRAC1762	9	12	3	26.9	36.2	80.7	108.5
	3	MRAC1762	18	42	24	21.8	29.3	523.2	703.3
	3	MRAC1763	17	42	25	32.5	43.7	812.5	1092.2
	3	MRAC1764	16	42	26	23.6	31.7	613.6	824.8
<u> </u>	3	MRAC1765	15	62	47	25.6	34.4	1203.2	1617.3
-	3	MRAC1765	13	43	30	42.7	57.4	1203.2	1721.9
-	3	MRAC1766	9	29	20	26.1	35.1	522	701.7
-									
	3	MRAC1768 MRAC1769	7 10	20 30	13	23.1 22.4	31.1 30.1	300.3 448	403.7 602.2

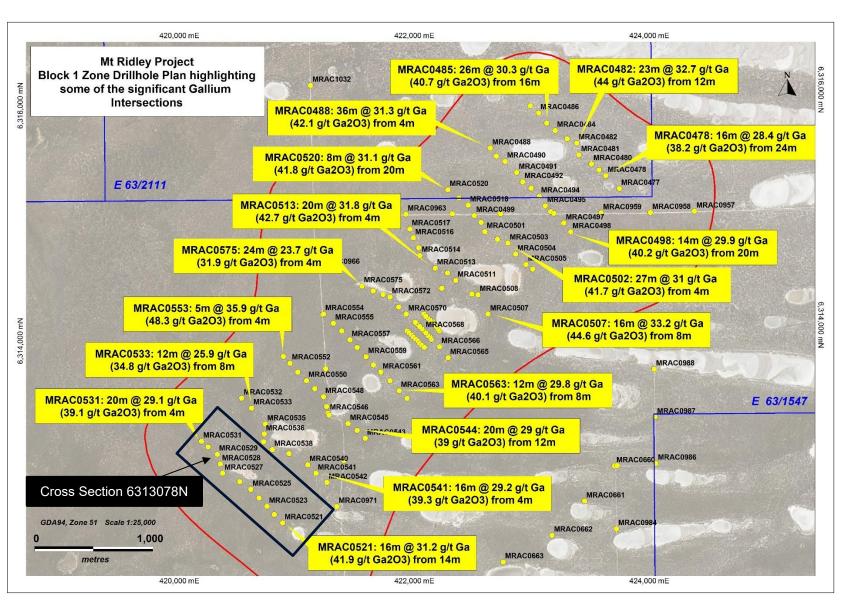
	MRE Block Id	Hole id	From (m)	To (m)	Mineralised Intervals	Ga ppm	Ga₂O₃ ppm	mGa ppm	mGa₂O₃ ppm
	3	MRAC1769	45	48	3	20.4	27.4	61.2	82.3
	3	MRAC1770	10	30	20	24.4	32.8	488	656
	3	MRAC1771	12	54	42	25.8	34.7	1083.6	1456.6
	3	MRAC1772	21	39	18	23.9	32.1	430.2	578.3
	3	MRAC1773	18	21	3	22.4	30.1	67.2	90.3
	3	MRAC1773	24	29	5	21.5	28.9	107.5	144.5
	3	MRAC1774	10	24	14	23.4	31.5	327.6	440.4
	3	MRAC1775	14	21	7	23.9	32.1	167.3	224.9
	3	MRAC1779	27	54	27	22.2	29.8	599.4	805.7
	3	MRAC1781	27	33	6	21.8	29.3	130.8	175.8
75	3	MRAC1782	13	31	18	38.5	51.8	693	931.5
	3	MRAC1783	15	33	18	22.8	30.6	410.4	551.7
	3	MRAC1784	11	36	25	23.2	31.2	580	779.6
ジロ	3	MRAC1785	30	36	6	22.4	30.1	134.4	180.7
	3	MRAC1786	18	24	6	23.3	31.3	139.8	187.9
	3	MRAC1787	9	15	6	21.5	28.9	129	173.4
	3	MRAC1788	12	37	25	26.6	35.8	665	893.9
	3	MRAC1789	13	25	12	43.1	57.9	517.2	695.2
1	3	MRAC1790	30	57	27	22.2	29.8	599.4	805.7
	3	MRAC1790	63	69	6	20.7	27.8	124.2	166.9
	3	MRAC1790	75	81	6	21.9	29.4	131.4	176.6
	3	MRAC1791	25	48	23	26.5	35.6	609.5	819.3
	3	MRAC1792	18	36	18	24.8	33.3	446.4	600.1
	3	MRAC1793	9	17	8	22.9	30.8	183.2	246.3
	3	MRAC1794	42	56	14	22.9	30.8	320.6	431
	3	MRAC1795	7	19	12	24.7	33.2	296.4	398.4
	3	MRAC1796	7	18	11	23.4	31.5	257.4	346
715	3	MRDD043	24	39	15	23.6	31.7	354	475.8
7	3	MRDD043	42	48	6	20.3	27.3	121.8	163.7
	3	MRDD044	10	42	32	22.1	29.7	707.2	950.6

Appendix 2: Total Drill Collar over Block 1 MRE

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Type	Depth (m)		
MRAC0477	423690	6315227	190.7	Aircore	30	0	-90
MRAC0478	423574	6315337	190.7	Aircore	42	0	-90
MRAC0479	423517	6315384	190.7	Aircore	38	0	-90
MRAC0480	423453	6315437	190.7	Aircore	44	0	-90
MRAC0481	423347	6315513	190.7	Aircore	39	0	-90
MRAC0482	423327	6315613	190.7	Aircore	35	0	-90
MRAC0483	423246	6315650	190.7	Aircore	38	0	-90
MRAC0484	423143	6315720	190.7	Aircore	45	0	-90
MRAC0485	423072	6315782	190.7	Aircore	42	0	-90
MRAC0486	423002	6315870	190.7	Aircore	50	0	-90
MRAC0487	422932	6315930	190.7	Aircore	33	0	-90
MRAC0488	422591	6315571	190.7	Aircore	40	0	-90
MRAC0489	422643	6315503	190.7	Aircore	30	0	-90
MRAC0490	422718	6315458	190.7	Aircore	22	0	-90
MRAC0491	422817	6315363	190.7	Aircore	11	0	-90
MRAC0492	422867	6315285	190.7	Aircore	21	0	-90
MRAC0493	422939	6315229	190.7	Aircore	5	0	-90
MRAC0494	423008	6315162	190.7	Aircore	14	0	-90
MRAC0495	423059	6315080	190.7	Aircore	6	0	-90
MRAC0496	423104	6315031	190.7	Aircore	4	0	-90
MRAC0497	423217	6314933	190.7	Aircore	32	0	-90
MRAC0498	423276	6314859	190.7	Aircore	34	0	-90
MRAC0499	422455	6314997	190.7	Aircore	21	0	-90
MRAC0500	422514	6314939	190.7	Aircore	13	0	-90
MRAC0501	422545	6314860	190.7	Aircore	16	0	-90
MRAC0502	422653	6314795	190.7	Aircore	31	0	-90
MRAC0503	422741	6314762	190.7	Aircore	23	0	-90
MRAC0504	422806	6314669	190.7	Aircore	38	0	-90
MRAC0505	422896	6314581	190.7	Aircore	38	0	-90
MRAC0506	422952	6314543	190.7	Aircore	34	0	-90
MRAC0507	422573	6314159	190.7	Aircore	24	0	-90
MRAC0508	422486	6314324	190.7	Aircore	46	0	-90
MRAC0509	422434	6314331	190.7	Aircore	24	0	-90
MRAC0510	422177	6314379	190.7	Aircore	18	0	-90
MRAC0511	422297	6314445	190.7	Aircore	14	0	-90
MRAC0512	422227	6314508	190.7	Aircore	27	0	-90
MRAC0513	422122	6314549	190.7	Aircore	25	0	-90
MRAC0514	421992	6314657	190.7	Aircore	22	0	-90
MRAC0515	421981	6314725	190.7	Aircore	27	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC0516	421936	6314807	190.7	Aircore	11	0	-90
MRAC0517	421907	6314882	190.7	Aircore	23	0	-90
MRAC0518	422403	6315086	190.7	Aircore	21	0	-90
MRAC0519	422324	6315147	190.7	Aircore	14	0	-90
MRAC0520	422230	6315217	190.7	Aircore	38	0	-90
MRAC0521	420824	6312384	190.7	Aircore	34	0	-90
MRAC0522	420754	6312455	190.7	Aircore	22	0	-90
MRAC0523	420692	6312524	190.7	Aircore	30	0	-90
MRAC0524	420624	6312597	190.7	Aircore	36	0	-90
MRAC0525	420553	6312669	190.7	Aircore	31	0	-90
MRAC0526	420458	6312734	190.7	Aircore	27	0	-90
MRAC0527	420314	6312806	190.7	Aircore	31	0	-90
MRAC0528	420293	6312885	190.7	Aircore	28	0	-90
MRAC0529	420268	6312967	190.7	Aircore	21	0	-90
MRAC0530	420190	6313029	190.7	Aircore	25	0	-90
MRAC0531	420133	6313078	190.7	Aircore	24	0	-90
MRAC0532	420476	6313444	190.7	Aircore	26	0	-90
MRAC0533	420559	6313360	190.7	Aircore	28	0	-90
MRAC0535	420677	6313224	190.7	Aircore	6	0	-90
MRAC0536	420667	6313140	190.7	Aircore	3	0	-90
MRAC0537	420662	6313075	190.7	Aircore	4	0	-90
MRAC0538	420737	6313007	190.7	Aircore	12	0	-90
MRAC0539	420877	6312973	190.7	Aircore	22	0	-90
MRAC0540	421038	6312879	190.7	Aircore	41	0	-90
MRAC0541	421108	6312805	190.7	Aircore	26	0	-90
MRAC0542	421200	6312727	190.7	Aircore	22	0	-90
MRAC0543	421527	6313103	190.7	Aircore	25	0	-90
MRAC0544	421458	6313170	190.7	Aircore	34	0	-90
MRAC0545	421381	6313228	190.7	Aircore	12	0	-90
MRAC0546	421210	6313316	190.7	Aircore	2	0	-90
MRAC0547	421197	6313373	190.7	Aircore	2	0	-90
MRAC0548	421172	6313457	190.7	Aircore	2	0	-90
MRAC0549	421097	6313524	190.7	Aircore	3	0	-90
MRAC0550	421027	6313594	190.7	Aircore	12	0	-90
MRAC0551	420954	6313666	190.7	Aircore	27	0	-90
MRAC0552	420886	6313742	190.7	Aircore	12	0	-90
MRAC0553	420829	6313800	190.7	Aircore	10	0	-90
MRAC0554	421172	6314161	190.7	Aircore	25	0	-90
MRAC0555	421255	6314082	190.7	Aircore	35	0	-90
MRAC0556	421327	6314016	190.7	Aircore	21	0	-90
MRAC0557	421396	6313941	190.7	Aircore	12	0	-90
MRAC0558	421458	6313875	190.7	Aircore	11	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Type	Depth (m)		
MRAC0559	421535	6313797	190.7	Aircore	12	0	-90
MRAC0560	421596	6313728	190.7	Aircore	17	0	-90
MRAC0561	421660	6313665	190.7	Aircore	9	0	-90
MRAC0562	421737	6313592	190.7	Aircore	31	0	-90
MRAC0563	421815	6313508	190.7	Aircore	35	0	-90
MRAC0564	421883	6313443	190.7	Aircore	37	0	-90
MRAC0565	422233	6313788	190.7	Aircore	24	0	-90
MRAC0566	422160	6313881	190.7	Aircore	29	0	-90
MRAC0567	422089	6313945	190.7	Aircore	41	0	-90
MRAC0568	422026	6314018	190.7	Aircore	38	0	-90
MRAC0569	421953	6314088	190.7	Aircore	13	0	-90
MRAC0570	421876	6314159	190.7	Aircore	11	0	-90
MRAC0571	421811	6314220	190.7	Aircore	7	0	-90
MRAC0572	421739	6314304	190.7	Aircore	2	0	-90
MRAC0573	421678	6314325	190.7	Aircore	30	0	-90
MRAC0574	421595	6314356	190.7	Aircore	27	0	-90
MRAC0575	421500	6314397	190.7	Aircore	30	0	-90
MRAC0660	423649	6312868	190.7	Aircore	55	0	-90
MRAC0661	423393	6312569	190.7	Aircore	16	0	-90
MRAC0662	423117	6312278	190.7	Aircore	43	0	-90
MRAC0663	422701	6312051	190.7	Aircore	43	0	-90
MRAC0690	422079	6313965	190.7	Aircore	52	0	-90
MRAC0691	422156	6314015	190.7	Aircore	35	0	-90
MRAC0692	422148	6314030	190.7	Aircore	37	0	-90
MRAC0693	422132	6314053	190.7	Aircore	37	0	-90
MRAC0694	422119	6314073	190.7	Aircore	42	0	-90
MRAC0695	422103	6314092	190.7	Aircore	41	0	-90
MRAC0696	422079	6314108	190.7	Aircore	35	0	-90
MRAC0697	422057	6314125	190.7	Aircore	31	0	-90
MRAC0698	422043	6314141	190.7	Aircore	21	0	-90
MRAC0699	422026	6314160	190.7	Aircore	15	0	-90
MRAC0700	421884	6314015	190.7	Aircore	12	0	-90
MRAC0701	421900	6314000	190.7	Aircore	12	0	-90
MRAC0702	421920	6313981	190.7	Aircore	12	0	-90
MRAC0703	421938	6313965	190.7	Aircore	10	0	-90
MRAC0704	421956	6313944	190.7	Aircore	13	0	-90
MRAC0705	421977	6313929	190.7	Aircore	14	0	-90
MRAC0706	421990	6313908	190.7	Aircore	24	0	-90
MRAC0707	422008	6313894	190.7	Aircore	22	0	-90
MRAC0708	422029	6313877	190.7	Aircore	39	0	-90
MRAC0709	422061	6313978	190.7	Aircore	48	0	-90
MRAC0710	422042	6314000	190.7	Aircore	12	0	-90


Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Type	Depth (m)		
MRAC0711	422009	6314033	190.7	Aircore	24	0	-90
MRAC0712	421990	6314053	190.7	Aircore	29	0	-90
MRAC0713	421972	6314069	190.7	Aircore	16	0	-90
MRAC0957	424328.4	6315033	179.76	Aircore	51	0	-90
MRAC0958	423953.3	6315023	181.73	Aircore	43	0	-90
MRAC0959	423534.9	6315020	181.96	Aircore	48	0	-90
MRAC0960	423132.1	6315016	182.51	Aircore	30	0	-90
MRAC0961	422672.7	6315014	183.32	Aircore	40	0	-90
MRAC0962	422269.4	6315012	185	Aircore	39	0	-90
MRAC0963	421872.8	6315009	186.15	Aircore	35	0	-90
MRAC0964	421472.9	6315005	184.63	Aircore	34	0	-90
MRAC0965	421088.2	6314953	187.33	Aircore	25	0	-90
MRAC0966	421136.1	6314556	188.21	Aircore	39	0	-90
MRAC0967	421165.7	6314154	184.35	Aircore	27	0	-90
MRAC0968	421191.2	6313696	185	Aircore	9	0	-90
MRAC0969	421218.7	6313300	177.21	Aircore	4	0	-90
MRAC0970	421345.3	6312914	175.38	Aircore	33	0	-90
MRAC0971	421285	6312523	175.89	Aircore	28	0	-90
MRAC0972	421345	6312126	174.74	Aircore	25	0	-90
MRAC0984	423665.1	6312334	175	Aircore	45	0	-90
MRAC0985	423671.6	6312871	175	Aircore	55	0	-90
MRAC0986	424001	6312890	175.22	Aircore	49	0	-90
MRAC0987	423994.4	6313284	177.45	Aircore	55	0	-90
MRAC0988	423986.1	6313690	175.61	Aircore	51	0	-90
MRAC0989	423976.5	6314092	176.92	Aircore	47	0	-90
MRAC0990	423970.4	6314492	176.09	Aircore	42	0	-90
MRAC1032	421061.4	6316103	180.33	Aircore	24	0	-90
MRDD027	421088.3	6314958	197.91	Diamond	30.2	0	-90
MRDD028	422679.1	6315013	186.622	Diamond	42.9	0	-90

mtridleymines.com.au

28 October 2025

Mount Ridley Mines Limited ABN 93 092 304 964 ASX: MRD

168 Stirling Highway, Nedlands WA 6009

Ph: +61 8 6165 8858

mtridleymines.com.au

ASX Announcement

28 October 2025

Appendix 3: Total Drill Collar over Block 2 MRE

	Append	dix 3: Total D	rill Collar o	ver Block 2 N	/IRE		
Hole Id	Easting	Northing	RL (m)	Drill Type	Total	Azimuth	Dip
	(GDA94)	(GDA94)			Depth (m)		
MRAC0438	426337	6318098	190.7	Aircore	45	0	-90
MRAC0439	426826	6318157	190.7	Aircore	48	0	-90
MRAC0440	426762	6318233	190.7	Aircore	53	0	-90
MRAC0441	426698	6318310	190.7	Aircore	25	0	-90
MRAC0442	426634	6318387	190.7	Aircore	44	0	-90
MRAC0443	428308	6320293	190.7	Aircore	53	0	-90
MRAC0444	428244	6320370	190.7	Aircore	54	0	-90
MRAC0445	428180	6320447	190.7	Aircore	53	0	-90
MRAC0446	428153	6320561	190.7	Aircore	46	0	-90
MRAC0447	428106	6320636	190.7	Aircore	51	0	-90
MRAC0448	428038	6320721	190.7	Aircore	45	0	-90
MRAC0449	427924	6320753	190.7	Aircore	57	0	-90
MRAC0450	427868	6320813	190.7	Aircore	52	0	-90
MRAC0451	428651	6319873	190.7	Aircore	51	0	-90
MRAC0452	428689	6319830	190.7	Aircore	45	0	-90
MRAC0453	428756	6319757	190.7	Aircore	45	0	-90
MRAC0454	428820	6319680	190.7	Aircore	43	0	-90
MRAC0455	428434	6319360	190.7	Aircore	38	0	-90
MRAC0456	428370	6319437	190.7	Aircore	38	0	-90
MRAC0457	428306	6319513	190.7	Aircore	34	0	-90
MRAC0458	428242	6319590	190.7	Aircore	55	0	-90
MRAC0459	428178	6319667	190.7	Aircore	46	0	-90
MRAC0460	428114	6319743	190.7	Aircore	23	0	-90
MRAC0461	428050	6319820	190.7	Aircore	45	0	-90
MRAC0462	426314	6318770	190.7	Aircore	49	0	-90
MRAC0463	426250	6318847	190.7	Aircore	35	0	-90
MRAC0464	426181	6318928	190.7	Aircore	49	0	-90
MRAC0465	426122	6319000	190.7	Aircore	55	0	-90
MRAC0466	426058	6319077	190.7	Aircore	12	0	-90
MRAC0469	426828	6318937	190.7	Aircore	28	0	-90
MRAC0470	427214	6319257	190.7	Aircore	18	0	-90
MRAC0471	427472	6319730	190.7	Aircore	39	0	-90
MRAC0472	427986	6319897	190.7	Aircore	42	0	-90
MRAC0473	427922	6319973	190.7	Aircore	48	0	-90
MRAC0474	426892	6318937	190.7	Aircore	51	0	-90
MRAC0475	426956	6318783	190.7	Aircore	42	0	-90
MRAC0476	427278	6319103	190.7	Aircore	27	0	-90
MRAC0576	429709	6321339	190.7	Aircore	45	0	-90

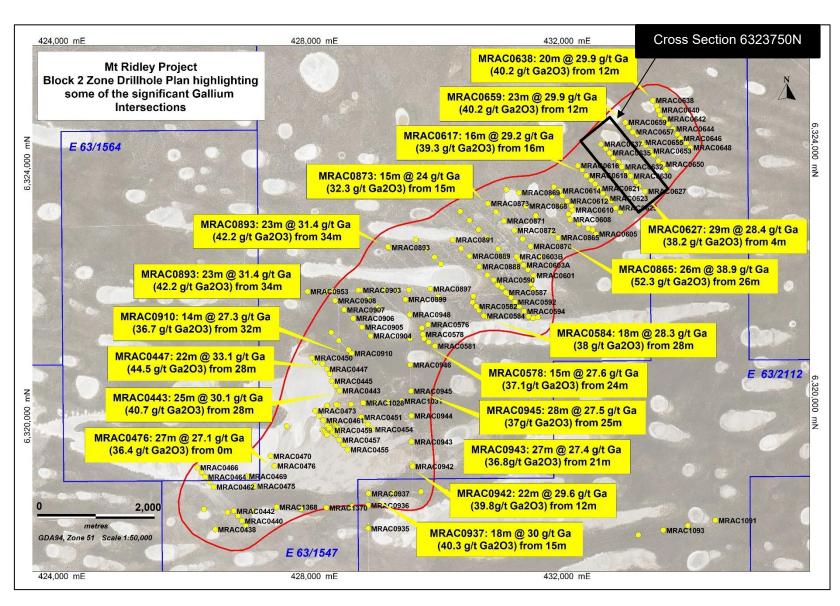
Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Type	Depth (m)		
MRAC0577	429610	6321285	190.7	Aircore	50	0	-90
MRAC0578	429626	6321185	190.7	Aircore	52	0	-90
MRAC0579	429646	6321118	190.7	Aircore	52	0	-90
MRAC0580	429720	6321061	190.7	Aircore	57	0	-90
MRAC0581	429817	6321000	190.7	Aircore	49	0	-90
MRAC0582	430471	6321627	190.7	Aircore	56	0	-90
MRAC0583	430517	6321567	190.7	Aircore	55	0	-90
MRAC0584	430591	6321477	190.7	Aircore	46	0	-90
MRAC0585	430655	6321455	190.7	Aircore	41	0	-90
MRAC0586	430409	6321694	190.7	Aircore	55	0	-90
MRAC0587	430940	6321847	190.7	Aircore	39	0	-90
MRAC0588	430880	6321927	190.7	Aircore	27	0	-90
MRAC0589	430808	6321965	190.7	Aircore	24	0	-90
MRAC0590	430748	6322046	190.7	Aircore	47	0	-90
MRAC0591	431021	6321770	190.7	Aircore	28	0	-90
MRAC0592	431084	6321697	190.7	Aircore	19	0	-90
MRAC0593	431153	6321630	190.7	Aircore	31	0	-90
MRAC0594	431227	6321550	190.7	Aircore	16	0	-90
MRAC0595	431300	6321469	190.7	Aircore	15	0	-90
MRAC0596	431374	6321442	190.7	Aircore	21	0	-90
MRAC0597	431451	6321456	190.7	Aircore	20	0	-90
MRAC0598	431371	6321896	190.7	Aircore	27	0	-90
MRAC0599	431335	6321986	190.7	Aircore	39	0	-90
MRAC0600	431343	6322048	190.7	Aircore	28	0	-90
MRAC0601	431380	6322115	190.7	Aircore	32	0	-90
MRAC0602	431290	6322208	190.7	Aircore	30	0	-90
MRAC0603A	431218	6322280	190.7	Aircore	37	0	-90
MRAC0603B	431110	6322416	190.7	Aircore	30	0	-90
MRAC0604	431156	6322355	190.7	Aircore	40	0	-90
MRAC0605	432369	6322773	190.7	Aircore	48	0	-90
MRAC0606	432315	6322843	190.7	Aircore	46	0	-90
MRAC0607	432244	6322863	190.7	Aircore	36	0	-90
MRAC0608	431955	6323003	190.7	Aircore	42	0	-90
MRAC0609	431932	6323091	190.7	Aircore	46	0	-90
MRAC0610	431995	6323153	190.7	Aircore	3	0	-90
MRAC0611	431980	6323224	190.7	Aircore	40	0	-90
MRAC0612	431910	6323296	190.7	Aircore	45	0	-90
MRAC0613	431834	6323379	190.7	Aircore	52	0	-90
MRAC0614	431789	6323458	190.7	Aircore	7	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Type	Depth (m)		
MRAC0615	431701	6323520	190.7	Aircore	52	0	-90
MRAC0616	432080	6323855	190.7	Aircore	12	0	-90
MRAC0617	432151	6323791	190.7	Aircore	45	0	-90
MRAC0618	432216	6323700	190.7	Aircore	33	0	-90
MRAC0619	432293	6323624	190.7	Aircore	14	0	-90
MRAC0620	432357	6323564	190.7	Aircore	13	0	-90
MRAC0621	432415	6323494	190.7	Aircore	13	0	-90
MRAC0622	432474	6323418	190.7	Aircore	20	0	-90
MRAC0623	432540	6323337	190.7	Aircore	15	0	-90
MRAC0624	432612	6323296	190.7	Aircore	17	0	-90
MRAC0625	432681	6323186	190.7	Aircore	7	0	-90
MRAC0626	432755	6323126	190.7	Aircore	5	0	-90
MRAC0627	433144	6323450	190.7	Aircore	33	0	-90
MRAC0628	433048	6323532	190.7	Aircore	28	0	-90
MRAC0629	432997	6323602	190.7	Aircore	29	0	-90
MRAC0630	432914	6323692	190.7	Aircore	31	0	-90
MRAC0631	432850	6323754	190.7	Aircore	21	0	-90
MRAC0632	432777	6323836	190.7	Aircore	17	0	-90
MRAC0633	432723	6323910	190.7	Aircore	13	0	-90
MRAC0634	432642	6323980	190.7	Aircore	17	0	-90
MRAC0635	432582	6324057	190.7	Aircore	23	0	-90
MRAC0636	432523	6324129	190.7	Aircore	23	0	-90
MRAC0637	432447	6324196	190.7	Aircore	24	0	-90
MRAC0638	433266	6324887	190.7	Aircore	41	0	-90
MRAC0639	433327	6324805	190.7	Aircore	36	0	-90
MRAC0640	433353	6324736	190.7	Aircore	43	0	-90
MRAC0641	433384	6324657	190.7	Aircore	33	0	-90
MRAC0642	433455	6324593	190.7	Aircore	34	0	-90
MRAC0643	433509	6324517	190.7	Aircore	45	0	-90
MRAC0644	433585	6324437	190.7	Aircore	48	0	-90
MRAC0645	433657	6324355	190.7	Aircore	23	0	-90
MRAC0646	433706	6324285	190.7	Aircore	29	0	-90
MRAC0647	433798	6324217	190.7	Aircore	33	0	-90
MRAC0648	433862	6324140	190.7	Aircore	48	0	-90
MRAC0649	433477	6323797	190.7	Aircore	29	0	-90
MRAC0650	433425	6323878	190.7	Aircore	35	0	-90
MRAC0651	433354	6323934	190.7	Aircore	31	0	-90
MRAC0652	433282	6324023	190.7	Aircore	23	0	-90
MRAC0653	433227	6324088	190.7	Aircore	39	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Type	Depth (m)		
MRAC0654	433155	6324178	190.7	Aircore	33	0	-90
MRAC0655	433096	6324223	190.7	Aircore	48	0	-90
MRAC0656	433019	6324350	190.7	Aircore	38	0	-90
MRAC0657	432950	6324388	190.7	Aircore	47	0	-90
MRAC0658	432882	6324465	190.7	Aircore	58	0	-90
MRAC0659	432833	6324542	190.7	Aircore	35	0	-90
MRAC0714	428178	6319808	190.7	Aircore	30	0	-90
MRAC0715	428196	6319790	190.7	Aircore	26	0	-90
MRAC0716	428213	6319773	190.7	Aircore	35	0	-90
MRAC0717	428231	6319755	190.7	Aircore	51	0	-90
MRAC0718	428249	6319738	190.7	Aircore	54	0	-90
MRAC0719	428267	6319720	190.7	Aircore	55	0	-90
MRAC0720	428284	6319702	190.7	Aircore	58	0	-90
MRAC0721	428302	6319685	190.7	Aircore	68	0	-90
MRAC0722	428320	6319667	190.7	Aircore	59	0	-90
MRAC0723	428231	6319614	190.7	Aircore	36	0	-90
MRAC0724	428213	6319632	190.7	Aircore	48	0	-90
MRAC0725	428196	6319649	190.7	Aircore	31	0	-90
MRAC0726	428160	6319685	190.7	Aircore	47	0	-90
MRAC0727	428143	6319702	190.7	Aircore	44	0	-90
MRAC0728	428125	6319720	190.7	Aircore	38	0	-90
MRAC0729	428036	6319667	190.7	Aircore	21	0	-90
MRAC0730	428054	6319649	190.7	Aircore	26	0	-90
MRAC0731	428072	6319632	190.7	Aircore	36	0	-90
MRAC0732	428089	6319614	190.7	Aircore	32	0	-90
MRAC0733	428107	6319596	190.7	Aircore	39	0	-90
MRAC0862	431676.2	6323374	186.23	Aircore	54	0	-90
MRAC0863	431816.4	6323231	185.48	Aircore	43	0	-90
MRAC0864	432098.1	6322929	185	Aircore	31	0	-90
MRAC0865	431765.5	6322716	185	Aircore	52	0	-90
MRAC0866	431684.2	6322794	184.78	Aircore	51	0	-90
MRAC0867	431412.5	6323065	186.98	Aircore	51	0	-90
MRAC0868	431261.9	6323215	187.31	Aircore	45	0	-90
MRAC0869	431147.2	6323428	188.18	Aircore	32	0	-90
MRAC0870	430952.1	6323476	189.23	Aircore	39	0	-90
MRAC0871	430911	6322980	185	Aircore	59	0	-90
MRAC0872	431074.1	6322831	185	Aircore	41	0	-90
MRAC0873	430655.9	6323257	185.08	Aircore	30	0	-90
MRAC0874	430786.2	6323127	185.2	Aircore	41	0	-90

Hole Id	Easting	Northing	RL (m)	_Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC0875	431205.6	6322699	185.36	Aircore	64	0	-90
MRAC0876	431330.6	6322578	185.91	Aircore	27	0	-90
MRAC0877	431495.4	6322413	186.37	Aircore	30	0	-90
MRAC0878	430221.2	6323132	185.5	Aircore	36	0	-90
MRAC0879	430364.6	6322989	185	Aircore	16	0	-90
MRAC0880	430508.6	6322844	185	Aircore	25	0	-90
MRAC0881	430643.1	6322710	185	Aircore	65	0	-90
MRAC0882	430817.9	6322534	182.5	Aircore	50	0	-90
MRAC0883	430931.4	6322425	183.35	Aircore	31	0	-90
MRAC0884	431107.2	6322250	185.12	Aircore	43	0	-90
MRAC0885	430971.2	6321831	187.5	Aircore	39	0	-90
MRAC0886	430426.3	6321788	186.07	Aircore	58	0	-90
MRAC0887	430646	6322125	183.37	Aircore	34	0	-90
MRAC0888	430518.9	6322258	186.08	Aircore	51	0	-90
MRAC0889	430361.8	6322424	187.5	Aircore	43	0	-90
MRAC0890	430234	6322545	186.99	Aircore	50	0	-90
MRAC0891	430098.8	6322682	185	Aircore	33	0	-90
MRAC0892	429513.5	6322686	185	Aircore	21	0	-90
MRAC0893	429089	6322560	185	Aircore	57	0	-90
MRAC0894	429910.7	6322299	185	Aircore	52	0	-90
MRAC0895	429810.9	6322407	185	Aircore	45	0	-90
MRAC0896	429660.3	6322550	185	Aircore	49	0	-90
MRAC0897	429744.5	6321905	184.4	Aircore	59	0	-90
MRAC0898	429865.3	6321779	185	Aircore	57	0	-90
MRAC0899	429350.1	6321739	183.17	Aircore	61	0	-90
MRAC0900	429213.7	6321876	183.31	Aircore	58	0	-90
MRAC0901	428916.5	6321605	185.92	Aircore	67	0	-90
MRAC0902	428775.1	6321744	187.5	Aircore	42	0	-90
MRAC0903	428631.8	6321885	186.26	Aircore	68	0	-90
MRAC0904	428798.9	6321162	185.88	Aircore	56	0	-90
MRAC0905	428666.3	6321299	186.98	Aircore	54	0	-90
MRAC0906	428522.3	6321439	185.1	Aircore	66	0	-90
MRAC0907	428378.5	6321575	185	Aircore	53	0	-90
MRAC0908	428238.1	6321719	185	Aircore	64	0	-90
MRAC0909	428092.4	6321861	185	Aircore	67	0	-90
MRAC0910	428496.5	6320885	185	Aircore	46	0	-90
MRAC0911	428447.2	6320943	186.17	Aircore	64	0	-90
MRAC0912	428296	6321088	184.53	Aircore	60	0	-90
MRAC0913	428175	6321216	185	Aircore	50	0	-90

Hole Id	Easting	Northing	RL (m)	Drill Type	Total	Azimuth	Dip
	(GDA94)	(GDA94)	100.11		Depth (m)		
MRAC0935	428761.9	6318114	180.44	Aircore	37	0	-90
MRAC0936	428759.2	6318478	181.16	Aircore	43	0	-90
MRAC0937	428766.6	6318666	182.37	Aircore	33	0	-90
MRAC0938	429156.1	6318680	181.56	Aircore	33	0	-90
MRAC0939	430189.1	6318703	179.44	Aircore	40	0	-90
MRAC0940	429994.8	6318697	180	Aircore	46	0	-90
MRAC0941	429595.6	6318695	180.31	Aircore	12	0	-90
MRAC0942	429462.4	6319095	181.85	Aircore	34	0	-90
MRAC0943	429445.7	6319485	182.27	Aircore	48	0	-90
MRAC0944	429445.5	6319897	182.09	Aircore	53	0	-90
MRAC0945	429438.1	6320288	182.34	Aircore	53	0	-90
MRAC0946	429425	6320703	182.5	Aircore	41	0	-90
MRAC0947	429424.3	6321117	184.89	Aircore	57	0	-90
MRAC0948	429417.5	6321498	184.32	Aircore	51	0	-90
MRAC0949	429406.1	6321889	183.45	Aircore	69	0	-90
MRAC0950	429017.3	6321894	183.89	Aircore	57	0	-90
MRAC0951	428605.4	6321884	186.22	Aircore	65	0	-90
MRAC0952	428201	6321874	185	Aircore	60	0	-90
MRAC0953	427800.7	6321863	185	Aircore	57	0	-90
MRAC0954	427406.8	6321853	184.84	Aircore	59	0	-90
MRAC0955	426997	6321844	190	Aircore	81	0	-90
MRAC0956	426810	6321837	188.92	Aircore	62	0	-90
MRAC1010	426806.2	6322233	188.25	Aircore	53	0	-90
MRAC1011	426673.4	6322611	187.5	Aircore	58	0	-90
MRAC1012	426214.6	6322800	188.94	Aircore	55	0	-90
MRAC1025	428110.8	6320057	181.15	Aircore	59	0	-90
MRAC1026	428282.2	6320068	184.04	Aircore	63	0	-90
MRAC1027	428490.3	6320079	183.72	Aircore	63	0	-90
MRAC1028	428681.9	6320100	182.5	Aircore	49	0	-90
MRAC1029	428874.6	6320115	183.82	Aircore	43	0	-90
MRAC1030	429077.7	6320118	185	Aircore	52	0	-90
MRAC1031	429288	6320129	182.64	Aircore	51	0	-90
MRAC1091	434258.2	6318239	180	Aircore	29	0	-90
MRAC1092	433821.2	6318158	181.76	Aircore	67	0	-90
MRAC1093	433429.6	6318084	181.19	Aircore	77	0	-90
MRAC1094	433038.4	6318008	180.99	Aircore	73	0	-90
MRAC1365	426162	6318416	180	Aircore	51	0	-90
MRAC1366	426535	6318366	180.25	Aircore	44	0	-90
MRAC1367	426929	6318389	181.62	Aircore	38	0	-90



Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Di
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1368	427311	6318452	182.5	Aircore	27	0	-9
MRAC1369	427698	6318420	182.17	Aircore	39	0	-9
MRAC1370	428100	6318439	182	Aircore	45	0	-6
MRAC1371	428502	6318458	182.07	Aircore	52	0	-6
MRDD033	428761.9	6318123	187.73	Diamond	43	0	-6
MRDD034	429460.2	6319123	182.76	Diamond	49.5	0	-6
MRDD035	428253.9	6320075	186.93	Diamond	64.5	0	-6
MRDD036	429073.2	6322574	189.73	Diamond	58.6	0	-6
MRDD037	429672.8	6322546	190.16	Diamond	59	0	-6
MRDD038	426976.1	6321837	201.91	Diamond	89.6	0	-6

28 October 2025

Mount Ridley Mines Limited ABN 93 092 304 964 ASX: MRD

168 Stirling Highway, Nedlands WA 6009

Ph: +61 8 6165 8858

mtridleymines.com.au

ASX Announcement

28 October 2025

Appendix 4: Total Drill Collar over Block 3 MRE

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC0850	442472	6320856	190.7	Aircore	32	0	-90
MRAC0851	441172	6319192	190.7	Aircore	45	0	-90
MRAC0852	440443	6318254	190.7	Aircore	42	0	-90
MRAC1166	441144	6320959	186.35	Aircore	38	0	-90
MRAC1167	441077	6320575	186.32	Aircore	42	0	-90
MRAC1168	441156	6320167	186.25	Aircore	54	0	-90
MRAC1169	441163	6319744	186.12	Aircore	67	0	-90
MRAC1170	441169	6319354	186.35	Aircore	47	0	-90
MRAC1171	441175	6318974	185.43	Aircore	36	0	-90
MRAC1172	441179	6318568	182.6	Aircore	61	0	-90
MRAC1173	441187	6318162	186.27	Aircore	51	0	-90
MRAC1174	441195	6317767	185.8	Aircore	70	0	-90
MRAC1175	441200	6317375	185.3	Aircore	48	0	-90
MRAC1176	441204	6317146	186.29	Aircore	50	0	-90
MRAC1177	441212	6316562	186.74	Aircore	32	0	-90
MRAC1178	441220	6316197	187.22	Aircore	65	0	-90
MRAC1179	441225	6315665	185	Aircore	34	0	-90
MRAC1180	441230	6315374	186.62	Aircore	17	0	-90
MRAC1181	441237	6314970	184.98	Aircore	39	0	-90
MRAC1182	441234	6314454	184.23	Aircore	36	0	-90
MRAC1183	441098	6314270	183.65	Aircore	56	0	-90
MRAC1184	440683	6314263	182.5	Aircore	59	0	-90
MRAC1185	440368	6314259	183.35	Aircore	63	0	-90
MRAC1186	439863	6314250	182.78	Aircore	69	0	-90
MRAC1187	439494	6314245	182.5	Aircore	66	0	-90
MRAC1188	439070	6314239	180.13	Aircore	63	0	-90
MRAC1189	438683	6314235	180	Aircore	55	0	-90
MRAC1190	438296	6314228	180.74	Aircore	37	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1192	440961	6316331	185	Aircore	52	0	-90
MRAC1193	440631	6316386	182.77	Aircore	38	0	-90
MRAC1194	440136	6316378	184.7	Aircore	37	0	-90
MRAC1195	439760	6316372	184.43	Aircore	69	0	-90
MRAC1196	439346	6316368	185	Aircore	61	0	-90
MRAC1226	442396.9	6320941	185.63	Aircore	48	0	-90
MRAC1227	442663.8	6320646	185.89	Aircore	30	0	-90
MRAC1228	442936.1	6320347	190	Aircore	28	0	-90
MRAC1229	443204.6	6320051	191.46	Aircore	71	0	-90
MRAC1230	443407.7	6319701	190	Aircore	58	0	-90
MRAC1231	443658.2	6319399	190	Aircore	50	0	-90
MRAC1232	443982.8	6319157	189.4	Aircore	58	0	-90
MRAC1233	444303.6	6318920	188.59	Aircore	38	0	-90
MRAC1234	444623.3	6318683	187.5	Aircore	30	0	-90
MRAC1235	444946	6318442	186.68	Aircore	56	0	-90
MRAC1236	445268.9	6318205	185.98	Aircore	36	0	-90
MRAC1237	445588	6317964	185.39	Aircore	43	0	-90
MRAC1238	445910.5	6317727	187.5	Aircore	39	0	-90
MRAC1239	446228.6	6317490	187.5	Aircore	11	0	-90
MRAC1240	446550.1	6317250	190	Aircore	15	0	-90
MRAC1241	446872.3	6317010	191.7	Aircore	29	0	-90
MRAC1372	445756	6314343	187.71	Aircore	34	0	-90
MRAC1373	445485	6314337	187.5	Aircore	37	0	-90
MRAC1374	445091	6314331	185.16	Aircore	22	0	-90
MRAC1375	444684	6314326	185.79	Aircore	27	0	-90
MRAC1376	444288	6314316	185.6	Aircore	38	0	-90
MRAC1377	443888	6314312	185	Aircore	39	0	-9(
MRAC1378	443483	6314308	189.79	Aircore	10	0	-9(
MRAC1379	443088	6314297	191.52	Aircore	36	0	-90
MRAC1380	442682	6314291	184.91	Aircore	44	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1381	442288	6314287	183.45	Aircore	37	0	-90
MRAC1382	441885	6314282	182.5	Aircore	30	0	-90
MRAC1383	441489	6314274	182.5	Aircore	47	0	-90
MRAC1384	445889	6316468	190.05	Aircore	48	0	-90
MRAC1385	445351	6316460	188.58	Aircore	34	0	-90
MRAC1386	444947	6316454	187.52	Aircore	40	0	-90
MRAC1387	444541	6316446	189.71	Aircore	54	0	-90
MRAC1388	444145	6316440	186	Aircore	32	0	-90
MRAC1389	443744	6316434	183.06	Aircore	36	0	-90
MRAC1390	443342	6316428	185.67	Aircore	14	0	-90
MRAC1391	442946	6316420	185.17	Aircore	51	0	-90
MRAC1392	442550	6316417	185.34	Aircore	19	0	-90
MRAC1393	442148	6316410	187.48	Aircore	56	0	-90
MRAC1394	441742	6316405	190	Aircore	61	0	-90
MRAC1395	441347	6316400	186.68	Aircore	64	0	-90
MRAC1396	438157	6316351	182.5	Aircore	37	0	-90
MRAC1397	438555	6316358	182.5	Aircore	44	0	-90
MRAC1398	438947	6316364	184.13	Aircore	50	0	-90
MRAC1399	443381	6318301	187.94	Aircore	61	0	-90
MRAC1400	442971	6318292	185.59	Aircore	56	0	-90
MRAC1401	442572	6318288	184.2	Aircore	42	0	-90
MRAC1402	442178	6318281	185	Aircore	45	0	-90
MRAC1403	441780	6318277	185.46	Aircore	50	0	-90
MRAC1404	441388	6318270	186.76	Aircore	48	0	-90
MRAC1405	438583	6318229	183.89	Aircore	57	0	-90
MRAC1406	438983	6318233	183.66	Aircore	41	0	-90
MRAC1407	439377	6318239	182.5	Aircore	60	0	-90
MRAC1408	439776	6318271	182.64	Aircore	36	0	-90
MRAC1409	440179	6318251	183.09	Aircore	62	0	-90
MRAC1410	440579	6318252	182.56	Aircore	38	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1411	440981	6318262	184.79	Aircore	34	0	-90
MRAC1412	438274	6320241	182.04	Aircore	14	0	-90
MRAC1413	438665	6320248	183.91	Aircore	29	0	-90
MRAC1414	439062	6320256	184.34	Aircore	54	0	-90
MRAC1415	439463	6320264	184.72	Aircore	38	0	-90
MRAC1416	439865	6320268	185	Aircore	38	0	-90
MRAC1417	440265	6320275	185.48	Aircore	44	0	-90
MRAC1418	440646	6320280	185	Aircore	42	0	-90
MRAC1419	441065	6320288	185.69	Aircore	41	0	-90
MRAC1420	441496	6320289	187.42	Aircore	60	0	-90
MRAC1421	441858	6320296	185	Aircore	51	0	-90
MRAC1422	442260	6320305	185.25	Aircore	47	0	-90
MRAC1423	442668	6320311	190	Aircore	53	0	-90
MRAC1424	443041	6320317	190	Aircore	37	0	-90
MRAC1425	443483	6320321	193.72	Aircore	65	0	-90
MRAC1426	443774	6320327	190.31	Aircore	55	0	-90
MRAC1427	444184	6320334	189.32	Aircore	45	0	-90
MRAC1428	444569	6320339	192.51	Aircore	32	0	-90
MRAC1429	444961	6320343	190.4	Aircore	12	0	-90
MRAC1430	445368	6320353	191.7	Aircore	36	0	-90
MRAC1431	444181	6318312	188.31	Aircore	43	0	-90
MRAC1432	444582	6318319	188.66	Aircore	36	0	-90
MRAC1433	444979	6318323	185	Aircore	56	0	-90
MRAC1434	445380	6318330	185.96	Aircore	26	0	-90
MRAC1435	445740	6318335	187.15	Aircore	51	0	-90
MRAC1525	443667	6319382	190	Aircore	60	0	-90
MRAC1526	445604	6317948	185.52	Aircore	42	0	-90
MRAC1527	446053	6317620	187.5	Aircore	15	0	-90
MRAC1528	445810	6317800	186.9	Aircore	42	0	-90
					.		

445728

6317858

186.35

Aircore

-90

0

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1530	445488	6318039	185	Aircore	40	0	-90
MRAC1531	445406	6318102	185	Aircore	40	0	-90
MRAC1532	445332	6318155	185.38	Aircore	17	0	-90
MRAC1533	445170	6318275	186.8	Aircore	43	0	-90
MRAC1534	445092	6318332	185.87	Aircore	61	0	-90
MRAC1535	445010	6318395	186.06	Aircore	52	0	-90
MRAC1536	444853	6318509	187.57	Aircore	49	0	-90
MRAC1537	444769	6318573	187.5	Aircore	36	0	-90
MRAC1538	444690	6318636	187.5	Aircore	48	0	-90
MRAC1539	444525	6318757	187.62	Aircore	41	0	-90
MRAC1540	444443	6318819	188.38	Aircore	34	0	-90
MRAC1541	444365	6318875	188.76	Aircore	50	0	-90
MRAC1542	444208	6318991	187.97	Aircore	36	0	-90
MRAC1543	444127	6319052	188.65	Aircore	39	0	-90
MRAC1544	444048	6319111	188.97	Aircore	41	0	-90
MRAC1545	443888	6319229	189.87	Aircore	40	0	-90
MRAC1546	443809	6319287	190	Aircore	47	0	-90
MRAC1547	443725	6319346	189.97	Aircore	63	0	-90
MRAC1548	443565	6319466	190	Aircore	71	0	-90
MRAC1549	443482	6319533	189.67	Aircore	67	0	-90
MRAC1550	443440	6319622	189.68	Aircore	59	0	-90
MRAC1551	443358	6319804	191.07	Aircore	56	0	-90
MRAC1552	443318	6319893	191.65	Aircore	81	0	-90
MRAC1553	443270	6319975	191.78	Aircore	60	0	-90
MRAC1554	443069	6320196	190	Aircore	60	0	-90
MRAC1555	441194	6317965	186.47	Aircore	56	0	-90
MRAC1556	441197	6317664	185.42	Aircore	52	0	-90
MRAC1557	441197	6317564	185.08	Aircore	30	0	-90
MRAC1558	441198	6317442	185.05	Aircore	43	0	-90
MDACAEEO	441100	0017000	105.77	\ :""-	40		00

441199

6317262

185.77

Aircore

40

-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1560	441180	6317090	186.64	Aircore	41	0	-90
MRAC1561	441144	6316940	186.56	Aircore	36	0	-90
MRAC1562	441209	6316867	186.8	Diamond	60	0	-90
MRAC1563	441208	6316771	186.51	Diamond	68	0	-90
MRAC1564	441212	6316668	186.77	Aircore	51	0	-90
MRAC1565	441214	6316465	185.81	Aircore	43	0	-90
MRAC1566	441215	6316372	185.91	Aircore	72	0	-90
MRAC1567	441218	6316269	186.79	Aircore	86	0	-90
MRAC1568	441219	6316069	186.59	Aircore	71	0	-90
MRAC1569	441221	6315966	185.95	Aircore	57	0	-90
MRAC1570	441224	6315868	185	Aircore	66	0	-9(
MRAC1571	441222	6315767	185	Aircore	39	0	-9(
MRAC1572	441226	6315565	185	Aircore	36	0	-9(
MRAC1573	441228	6315459	187.12	Aircore	34	0	-9(
MRAC1574	441232	6315269	186.55	Aircore	20	0	-9(
MRAC1575	441233	6315173	185.95	Aircore	16	0	-9(
MRAC1576	441233	6315057	185.22	Aircore	42	0	-9(
MRAC1577	441239	6314862	184.32	Aircore	44	0	-9(
MRAC1578	441238	6314770	184.15	Aircore	42	0	-9(
MRAC1579	441157	6314705	182.96	Aircore	57	0	-9(
MRAC1580	441124	6314629	184.03	Aircore	42	0	-9(
MRAC1581	441153	6314531	184.23	Aircore	76	0	-9(
MRAC1582	441245	6314370	183.9	Aircore	45	0	-9(
MRAC1583	441243	6314275	183.53	Aircore	43	0	-9(
MRAC1584	441011	6314270	183.42	Aircore	51	0	-9(
MRAC1585	440887	6314269	183.11	Aircore	66	0	-9(
MRAC1586	440775	6314266	182.58	Aircore	68	0	-90
MRAC1587	440579	6314265	182.5	Aircore	40	0	-9(
MRAC1588	440473	6314263	183.07	Aircore	55	0	-9(
MRAC1589	440312	6314161	183.13	Aircore	69	0	-9(

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1590	440217	6314102	182.91	Aircore	51	0	-90
MRAC1591	440118	6314083	182.67	Aircore	54	0	-90
MRAC1592	440017	6314093	182.61	Aircore	62	0	-90
MRAC1593	439936	6314156	182.69	Aircore	60	0	-90
MRAC1594	439797	6314252	182.35	Aircore	82	0	-90
MRAC1595	439686	6314251	182.26	Aircore	87	0	-90
MRAC1596	439591	6314253	182.5	Aircore	61	0	-90
MRAC1597	439394	6314247	182.5	Aircore	43	0	-90
MRAC1598	439290	6314244	182.14	Aircore	74	0	-90
MRAC1599	439190	6314245	181.23	Aircore	72	0	-90
MRAC1600	438897	6314239	180	Aircore	59	0	-90
MRAC1601	439081	6314240	180.23	Aircore	62	0	-90
MRAC1602	439880	6314244	182.79	Aircore	69	0	-90
MRAC1603	440702	6314263	182.5	Aircore	56	0	-90
MRAC1604	441233	6315386	186.67	Aircore	21	0	-90
MRAC1605	445655	6317921	185.82	Aircore	38	0	-90
MRAC1642	446047	6320691	195.91	Aircore	55	0	-90
MRAC1643	445639	6320689	192.11	Aircore	54	0	-90
MRAC1644	446433	6320688	195.27	Aircore	34	0	-90
MRAC1647	446822	6320682	194.26	Aircore	13	0	-90
MRAC1648	445751	6320485	192.12	Aircore	55	0	-90
MRAC1649	446188	6320353	196.88	Aircore	55	0	-90
MRAC1650	442617	6319455	185.4	Aircore	52	0	-90
MRAC1651	442996	6319615	188.77	Aircore	54	0	-90
MRAC1652	443217	6319571	189.89	Aircore	50	0	-90
MRAC1653	443406	6319468	189.32	Aircore	71	0	-90
MRAC1654	443807	6319454	188.09	Aircore	91	0	-90
MRAC1655	443986	6319455	187.5	Aircore	30	0	-90
MRAC1656	444209	6319456	188.69	Aircore	36	0	-90
MRAC1657	444397	6319455	188.17	Aircore	38	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1658	444614	6319454	185.44	Aircore	42	0	-90
MRAC1659	444812	6319454	187.5	Aircore	18	0	-90
MRAC1660	445007	6319453	190	Aircore	33	0	-90
MRAC1661	445230	6319452	186.53	Aircore	33	0	-90
MRAC1662	445400	6319494	186.85	Aircore	37	0	-90
MRAC1663	445634	6319500	187.79	Aircore	24	0	-90
MRAC1664	445805	6319459	187.82	Aircore	37	0	-90
MRAC1665	446051	6319459	192.34	Aircore	31	0	-90
MRAC1666	446205	6319454	192.5	Aircore	27	0	-90
MRAC1667	443801	6319799	187.71	Aircore	28	0	-90
MRAC1668	444202	6319768	185.38	Aircore	27	0	-90
MRAC1669	443500	6319913	190.56	Aircore	70	0	-90
MRAC1670	443136	6319910	190.7	Aircore	64	0	-90
MRAC1671	442733	6319910	187.94	Aircore	53	0	-90
MRAC1672	442200	6319036	185.42	Aircore	33	0	-90
MRAC1673	442603	6319038	185.02	Aircore	36	0	-90
MRAC1674	442811	6319028	186.15	Aircore	27	0	-90
MRAC1675	443004	6319012	187.96	Aircore	27	0	-90
MRAC1676	443204	6319016	189.16	Aircore	55	0	-90
MRAC1677	443390	6319031	189.66	Aircore	54	0	-90
MRAC1678	443606	6319038	189.61	Diamond	25	0	-90
MRAC1679	443806	6319037	188.81	Diamond	53	0	-90
MRAC1680	443986	6319037	188.39	Aircore	43	0	-90
MRAC1681	444192	6319043	188.62	Aircore	45	0	-90
MRAC1682	444395	6319042	187.73	Aircore	41	0	-90
MRAC1683	444593	6319052	187.79	Aircore	37	0	-90
MRAC1684	444816	6319061	185	Aircore	69	0	-90
MRAC1685	445024	6319057	185	Aircore	70	0	-90
MRAC1686	445210	6319044	187.13	Aircore	35	0	-90
MRAC1687	445401	6319044	188.99	Aircore	32	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1688	445605	6319046	188.23	Aircore	34	0	-90
MRAC1689	445804	6319046	187.5	Aircore	13	0	-90
MRAC1690	446008	6319046	188.79	Aircore	33	0	-90
MRAC1691	446211	6319046	192.28	Aircore	50	0	-90
MRAC1692	442185	6318635	185	Aircore	52	0	-90
MRAC1693	442585	6318651	186.04	Aircore	39	0	-90
MRAC1694	443008	6318646	187.92	Aircore	63	0	-90
MRAC1695	443387	6318640	188.92	Aircore	33	0	-90
MRAC1696	443612	6318640	189.08	Aircore	57	0	-90
MRAC1697	443793	6318638	189.34	Aircore	46	0	-90
MRAC1698	443994	6318639	189.68	Aircore	52	0	-90
MRAC1699	444192	6318638	188.94	Aircore	65	0	-90
MRAC1700	444389	6318635	187.94	Aircore	31	0	-90
MRAC1701	444590	6318637	187.5	Aircore	27	0	-90
MRAC1702	444840	6318635	186.17	Aircore	55	0	-90
MRAC1703	444992	6318633	187.45	Aircore	50	0	-90
MRAC1704	445204	6318634	187.44	Aircore	37	0	-90
MRAC1705	445394	6318636	188.66	Aircore	57	0	-90
MRAC1706	445631	6318650	189.22	Aircore	92	0	-90
MRAC1707	445767	6318830	188.29	Aircore	27	0	-90
MRAC1708	446197	6318638	188.09	Aircore	27	0	-90
MRAC1709	443990	6318304	187.5	Aircore	37	0	-90
MRAC1710	444349	6318310	189.2	Aircore	57	0	-90
MRAC1711	444774	6318326	188.36	Aircore	50	0	-90
MRAC1712	444996	6317960	188.9	Aircore	47	0	-90
MRAC1713	444812	6317963	189.87	Aircore	39	0	-90
MRAC1714	444613	6318005	190.08	Aircore	48	0	-90
MRAC1715	444423	6318030	188.82	Aircore	30	0	-90
MRAC1716	444248	6317966	186.99	Aircore	18	0	-90
MRAC1717	443953	6317958	186.26	Aircore	24	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1718	443578	6317957	185.79	Aircore	53	0	-90
MRAC1719	441782	6317920	185	Aircore	47	0	-90
MRAC1720	441402	6317957	186.59	Aircore	45	0	-90
MRAC1721	441339	6317467	185.06	Aircore	50	0	-90
MRAC1722	441438	6317453	185	Aircore	50	0	-90
MRAC1723	441543	6317458	185.43	Aircore	49	0	-90
MRAC1724	441732	6317525	187.5	Aircore	52	0	-9(
MRAC1725	441928	6317563	186.02	Aircore	29	0	-90
MRAC1726	442322	6317562	185.15	Aircore	37	0	-90
MRAC1727	442723	6317575	189.69	Aircore	52	0	-90
MRAC1728	442967	6317566	188.93	Aircore	55	0	-90
MRAC1729	443361	6317558	186.34	Aircore	46	0	-9(
MRAC1730	443744	6317557	183.58	Aircore	67	0	-90
MRAC1731	444067	6317561	185.23	Aircore	51	0	-9(
MRAC1732	444322	6317562	186	Aircore	50	0	-9(
MRAC1733	444808	6317138	186.26	Aircore	57	0	-90
MRAC1734	444400	6317192	187.21	Aircore	60	0	-90
MRAC1735	444012	6317140	187.87	Aircore	43	0	-90
MRAC1736	443619	6317274	182.5	Aircore	28	0	-90
MRAC1737	443214	6317228	186.17	Aircore	34	0	-90
MRAC1738	442812	6317144	186.45	Aircore	47	0	-9(
MRAC1739	442427	6317144	185.21	Aircore	57	0	-90
MRAC1740	442021	6317071	186.91	Aircore	43	0	-90
MRAC1741	441824	6317145	185.85	Aircore	53	0	-90
MRAC1742	441615	6317145	185	Aircore	77	0	-90
MRAC1743	441412	6317143	186.09	Aircore	28	0	-90
MRAC1744	441612	6316738	187.26	Aircore	67	0	-90
MRAC1745	442079	6316676	185.19	Aircore	60	0	-90
MRAC1746	442280	6316743	185.57	Aircore	63	0	-90
MRAC1747	442510	6316742	185.1	Aircore	51	0	-9(

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1748	442738	6316745	185.93	Aircore	27	0	-90
MRAC1749	442811	6315983	186.35	Aircore	17	0	-90
MRAC1750	442408	6315980	186.08	Aircore	48	0	-90
MRAC1751	442008	6315980	187.94	Aircore	43	0	-90
MRAC1752	441833	6315980	188.34	Aircore	56	0	-90
MRAC1753	441744	6315981	187.42	Aircore	44	0	-90
MRAC1754	441638	6315979	186.72	Aircore	48	0	-90
MRAC1755	441510	6315982	186.69	Aircore	55	0	-90
MRAC1756	441437	6316401	187.37	Diamond	39	0	-90
MRAC1757	441943	6316408	189.17	Diamond	48	0	-90
MRAC1758	442053	6316409	187.95	Aircore	39	0	-90
MRAC1759	442259	6316412	187.43	Aircore	43	0	-90
MRAC1760	442354	6316414	187.66	Aircore	36	0	-90
MRAC1761	442410	6315579	187.99	Aircore	47	0	-90
MRAC1762	442003	6315577	185	Aircore	44	0	-90
MRAC1763	441607	6315580	184.5	Aircore	42	0	-90
MRAC1764	441515	6315578	185	Aircore	56	0	-90
MRAC1765	441426	6315580	185	Aircore	62	0	-90
MRAC1766	441363	6315567	185	Aircore	43	0	-90
MRAC1767	441502	6314771	185	Aircore	29	0	-90
MRAC1768	441931	6314786	182.5	Aircore	21	0	-90
MRAC1769	442194	6315182	184.71	Aircore	54	0	-90
MRAC1770	441789	6315221	183.37	Aircore	31	0	-90
MRAC1771	441387	6315181	185.36	Aircore	57	0	-90
MRAC1772	443207	6316743	187.16	Aircore	48	0	-90
MRAC1773	443594	6316895	187.5	Aircore	40	0	-90
MRAC1774	444064	6316743	187.5	Aircore	29	0	-90
MRAC1775	446596	6320347	195	Aircore	28	0	-90
MRAC1776	446992	6320339	194.21	Aircore	36	0	-90
MRAC1779	444076	6318632	189.05	Aircore	66	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1780	444073	6318473	187.62	Aircore	23	0	-90
MRAC1781	444073	6318314	187.71	Aircore	39	0	-90
MRAC1782	444074	6318131	187.5	Aircore	31	0	-90
MRAC1783	444074	6317959	186.38	Aircore	33	0	-90
MRAC1784	444073	6317747	185.78	Aircore	41	0	-90
MRAC1785	444071	6317352	185.95	Aircore	44	0	-90
MRAC1786	444075	6316953	188.05	Aircore	45	0	-90
MRAC1787	444144	6316606	187.5	Aircore	21	0	-90
MRAC1788	444238	6316447	186.56	Aircore	37	0	-90
MRAC1789	441174	6315182	186.62	Aircore	25	0	-90
MRAC1790	440998	6315180	187.1	Aircore	81	0	-90
MRAC1791	440600	6315179	185.76	Aircore	51	0	-90
MRAC1792	440202	6315189	183.78	Aircore	36	0	-90
MRAC1793	439799	6315180	182.5	Aircore	18	0	-90
MRAC1794	439394	6315183	182.9	Aircore	57	0	-90
MRAC1795	439001	6315190	182	Aircore	19	0	-90
MRAC1796	438598	6315173	180.76	Aircore	18	0	-90
MRDD043	443663.5	6319392	197.41	Aircore	67.5	0	-90
MRDD044	445607	6317954	204.37	Aircore	45.6	0	-90
MRAC0850	442472	6320856	190.7	Aircore	32	0	-90
MRAC0851	441172	6319192	190.7	Aircore	45	0	-90
MRAC0852	440443	6318254	190.7	Aircore	42	0	-90
MRAC1166	441144	6320959	186.35	Aircore	38	0	-90
MRAC1167	441077	6320575	186.32	Aircore	42	0	-90
MRAC1168	441156	6320167	186.25	Aircore	54	0	-90
MRAC1169	441163	6319744	186.12	Aircore	67	0	-90
MRAC1170	441169	6319354	186.35	Aircore	47	0	-90
MRAC1171	441175	6318974	185.43	Aircore	36	0	-90
MRAC1172	441179	6318568	182.6	Aircore	61	0	-90
MRAC1173	441187	6318162	186.27	Aircore	51	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1174	441195	6317767	185.8	Aircore	70	0	-90
MRAC1175	441200	6317375	185.3	Aircore	48	0	-90
MRAC1176	441204	6317146	186.29	Aircore	50	0	-90
MRAC1177	441212	6316562	186.74	Aircore	32	0	-90
MRAC1178	441220	6316197	187.22	Aircore	65	0	-90
MRAC1179	441225	6315665	185	Aircore	34	0	-90
MRAC1180	441230	6315374	186.62	Aircore	17	0	-90
MRAC1181	441237	6314970	184.98	Aircore	39	0	-90
MRAC1182	441234	6314454	184.23	Aircore	36	0	-90
MRAC1183	441098	6314270	183.65	Aircore	56	0	-90
MRAC1184	440683	6314263	182.5	Aircore	59	0	-90
MRAC1185	440368	6314259	183.35	Aircore	63	0	-90
MRAC1186	439863	6314250	182.78	Aircore	69	0	-90
MRAC1187	439494	6314245	182.5	Aircore	66	0	-90
MRAC1188	439070	6314239	180.13	Aircore	63	0	-90
MRAC1189	438683	6314235	180	Aircore	55	0	-90
MRAC1190	438296	6314228	180.74	Aircore	37	0	-90
MRAC1192	440961	6316331	185	Aircore	52	0	-90
MRAC1193	440631	6316386	182.77	Aircore	38	0	-90
MRAC1194	440136	6316378	184.7	Aircore	37	0	-90
MRAC1195	439760	6316372	184.43	Aircore	69	0	-90
MRAC1196	439346	6316368	185	Aircore	61	0	-90
MRAC1226	442396.9	6320941	185.63	Aircore	48	0	-90
MRAC1227	442663.8	6320646	185.89	Aircore	30	0	-90
MRAC1228	442936.1	6320347	190	Aircore	28	0	-90
MRAC1229	443204.6	6320051	191.46	Aircore	71	0	-90
MRAC1230	443407.7	6319701	190	Diamond	58	0	-90
MRAC1231	443658.2	6319399	190	Diamond	50	0	-90
MRAC1232	443982.8	6319157	189.4	Aircore	58	0	-90
MRAC1233	444303.6	6318920	188.59	Aircore	38	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1234	444623.3	6318683	187.5	Aircore	30	0	-90
MRAC1235	444946	6318442	186.68	Aircore	56	0	-90
MRAC1236	445268.9	6318205	185.98	Aircore	36	0	-90
MRAC1237	445588	6317964	185.39	Aircore	43	0	-90
MRAC1238	445910.5	6317727	187.5	Aircore	39	0	-90
MRAC1239	446228.6	6317490	187.5	Aircore	11	0	-90
MRAC1240	446550.1	6317250	190	Aircore	15	0	-90
MRAC1241	446872.3	6317010	191.7	Aircore	29	0	-90
MRAC1372	445756	6314343	187.71	Aircore	34	0	-90
MRAC1373	445485	6314337	187.5	Aircore	37	0	-90
MRAC1374	445091	6314331	185.16	Aircore	22	0	-90
MRAC1375	444684	6314326	185.79	Aircore	27	0	-90
MRAC1376	444288	6314316	185.6	Aircore	38	0	-90
MRAC1377	443888	6314312	185	Aircore	39	0	-90
MRAC1378	443483	6314308	189.79	Aircore	10	0	-90
MRAC1379	443088	6314297	191.52	Aircore	36	0	-90
MRAC1380	442682	6314291	184.91	Aircore	44	0	-90
MRAC1381	442288	6314287	183.45	Aircore	37	0	-90
MRAC1382	441885	6314282	182.5	Aircore	30	0	-90
MRAC1383	441489	6314274	182.5	Aircore	47	0	-90
MRAC1384	445889	6316468	190.05	Aircore	48	0	-90
MRAC1385	445351	6316460	188.58	Aircore	34	0	-90
MRAC1386	444947	6316454	187.52	Aircore	40	0	-90
MRAC1387	444541	6316446	189.71	Aircore	54	0	-90
MRAC1388	444145	6316440	186	Aircore	32	0	-90
MRAC1389	443744	6316434	183.06	Aircore	36	0	-90
MRAC1390	443342	6316428	185.67	Aircore	14	0	-90
MRAC1391	442946	6316420	185.17	Aircore	51	0	-90
MRAC1392	442550	6316417	185.34	Aircore	19	0	-90
MDAGAGG	440440	6016410	107.40	A:	F.C.		-00

442148

6316410

187.48

Aircore

56

0

-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1394	441742	6316405	190	Aircore	61	0	-90
MRAC1395	441347	6316400	186.68	Aircore	64	0	-90
MRAC1396	438157	6316351	182.5	Aircore	37	0	-90
MRAC1397	438555	6316358	182.5	Aircore	44	0	-90
MRAC1398	438947	6316364	184.13	Aircore	50	0	-90
MRAC1399	443381	6318301	187.94	Aircore	61	0	-90
MRAC1400	442971	6318292	185.59	Aircore	56	0	-90
MRAC1401	442572	6318288	184.2	Aircore	42	0	-90
MRAC1402	442178	6318281	185	Aircore	45	0	-90
MRAC1403	441780	6318277	185.46	Aircore	50	0	-90
MRAC1404	441388	6318270	186.76	Aircore	48	0	-90
MRAC1405	438583	6318229	183.89	Aircore	57	0	-90
MRAC1406	438983	6318233	183.66	Aircore	41	0	-90
MRAC1407	439377	6318239	182.5	Aircore	60	0	-90
MRAC1408	439776	6318271	182.64	Aircore	36	0	-90
MRAC1409	440179	6318251	183.09	Aircore	62	0	-90
MRAC1410	440579	6318252	182.56	Aircore	38	0	-90
MRAC1411	440981	6318262	184.79	Aircore	34	0	-90
MRAC1412	438274	6320241	182.04	Aircore	14	0	-90
MRAC1413	438665	6320248	183.91	Aircore	29	0	-90
MRAC1414	439062	6320256	184.34	Aircore	54	0	-90
MRAC1415	439463	6320264	184.72	Aircore	38	0	-90
MRAC1416	439865	6320268	185	Aircore	38	0	-90
MRAC1417	440265	6320275	185.48	Aircore	44	0	-90
MRAC1418	440646	6320280	185	Aircore	42	0	-90
MRAC1419	441065	6320288	185.69	Aircore	41	0	-90
MRAC1420	441496	6320289	187.42	Aircore	60	0	-90
MRAC1421	441858	6320296	185	Aircore	51	0	-90
MRAC1422	442260	6320305	185.25	Aircore	47	0	-90
		 				 _	

442668

6320311

190

Aircore

-90

0

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1424	443041	6320317	190	Aircore	37	0	-90
MRAC1425	443483	6320321	193.72	Aircore	65	0	-90
MRAC1426	443774	6320327	190.31	Aircore	55	0	-90
MRAC1427	444184	6320334	189.32	Aircore	45	0	-90
MRAC1428	444569	6320339	192.51	Aircore	32	0	-90
MRAC1429	444961	6320343	190.4	Aircore	12	0	-90
MRAC1430	445368	6320353	191.7	Aircore	36	0	-90
MRAC1431	444181	6318312	188.31	Aircore	43	0	-90
MRAC1432	444582	6318319	188.66	Aircore	36	0	-90
MRAC1433	444979	6318323	185	Aircore	56	0	-90
MRAC1434	445380	6318330	185.96	Aircore	26	0	-90
MRAC1435	445740	6318335	187.15	Aircore	51	0	-90
MRAC1525	443667	6319382	190	Aircore	60	0	-90
MRAC1526	445604	6317948	185.52	Aircore	42	0	-90
MRAC1527	446053	6317620	187.5	Aircore	15	0	-90
MRAC1528	445810	6317800	186.9	Aircore	42	0	-90
MRAC1529	445728	6317858	186.35	Aircore	45	0	-90
MRAC1530	445488	6318039	185	Aircore	40	0	-90
MRAC1531	445406	6318102	185	Aircore	40	0	-90
MRAC1532	445332	6318155	185.38	Aircore	17	0	-90
MRAC1533	445170	6318275	186.8	Aircore	43	0	-90
MRAC1534	445092	6318332	185.87	Aircore	61	0	-90
MRAC1535	445010	6318395	186.06	Aircore	52	0	-90
MRAC1536	444853	6318509	187.57	Aircore	49	0	-90
MRAC1537	444769	6318573	187.5	Aircore	36	0	-90
MRAC1538	444690	6318636	187.5	Aircore	48	0	-90
MRAC1539	444525	6318757	187.62	Aircore	41	0	-90
MRAC1540	444443	6318819	188.38	Aircore	34	0	-90
MRAC1541	444365	6318875	188.76	Aircore	50	0	-90
MRAC1542	444208	6318991	187.97	Aircore	36	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1543	444127	6319052	188.65	Aircore	39	0	-90
MRAC1544	444048	6319111	188.97	Aircore	41	0	-90
MRAC1545	443888	6319229	189.87	Aircore	40	0	-90
MRAC1546	443809	6319287	190	Aircore	47	0	-90
MRAC1547	443725	6319346	189.97	Aircore	63	0	-90
MRAC1548	443565	6319466	190	Aircore	71	0	-90
MRAC1549	443482	6319533	189.67	Aircore	67	0	-90
MRAC1550	443440	6319622	189.68	Aircore	59	0	-90
MRAC1551	443358	6319804	191.07	Aircore	56	0	-90
MRAC1552	443318	6319893	191.65	Aircore	81	0	-90
MRAC1553	443270	6319975	191.78	Aircore	60	0	-90
MRAC1554	443069	6320196	190	Aircore	60	0	-90
MRAC1555	441194	6317965	186.47	Aircore	56	0	-90
MRAC1556	441197	6317664	185.42	Aircore	52	0	-90
MRAC1557	441197	6317564	185.08	Aircore	30	0	-90
MRAC1558	441198	6317442	185.05	Aircore	43	0	-90
MRAC1559	441199	6317262	185.77	Aircore	40	0	-90
MRAC1560	441180	6317090	186.64	Aircore	41	0	-90
MRAC1561	441144	6316940	186.56	Aircore	36	0	-90
MRAC1562	441209	6316867	186.8	Aircore	60	0	-90
MRAC1563	441208	6316771	186.51	Aircore	68	0	-90
MRAC1564	441212	6316668	186.77	Aircore	51	0	-90
MRAC1565	441214	6316465	185.81	Aircore	43	0	-90
MRAC1566	441215	6316372	185.91	Aircore	72	0	-90
MRAC1567	441218	6316269	186.79	Aircore	86	0	-90
MRAC1568	441219	6316069	186.59	Aircore	71	0	-90
MRAC1569	441221	6315966	185.95	Aircore	57	0	-90
MRAC1570	441224	6315868	185	Aircore	66	0	-90
MRAC1571	441222	6315767	185	Aircore	39	0	-90
MRAC1572	441226	6315565	185	Aircore	36	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1573	441228	6315459	187.12	Aircore	34	0	-90
MRAC1574	441232	6315269	186.55	Aircore	20	0	-90
MRAC1575	441233	6315173	185.95	Aircore	16	0	-90
MRAC1576	441233	6315057	185.22	Aircore	42	0	-90
MRAC1577	441239	6314862	184.32	Aircore	44	0	-90
MRAC1578	441238	6314770	184.15	Aircore	42	0	-90
MRAC1579	441157	6314705	182.96	Aircore	57	0	-90
MRAC1580	441124	6314629	184.03	Aircore	42	0	-90
MRAC1581	441153	6314531	184.23	Aircore	76	0	-90
MRAC1582	441245	6314370	183.9	Aircore	45	0	-90
MRAC1583	441243	6314275	183.53	Aircore	43	0	-90
MRAC1584	441011	6314270	183.42	Aircore	51	0	-90
MRAC1585	440887	6314269	183.11	Aircore	66	0	-90
MRAC1586	440775	6314266	182.58	Aircore	68	0	-90
MRAC1587	440579	6314265	182.5	Aircore	40	0	-90
MRAC1588	440473	6314263	183.07	Aircore	55	0	-90
MRAC1589	440312	6314161	183.13	Aircore	69	0	-90
MRAC1590	440217	6314102	182.91	Aircore	51	0	-90
MRAC1591	440118	6314083	182.67	Aircore	54	0	-90
MRAC1592	440017	6314093	182.61	Aircore	62	0	-90
MRAC1593	439936	6314156	182.69	Aircore	60	0	-90
MRAC1594	439797	6314252	182.35	Aircore	82	0	-90
MRAC1595	439686	6314251	182.26	Aircore	87	0	-90
MRAC1596	439591	6314253	182.5	Aircore	61	0	-90
MRAC1597	439394	6314247	182.5	Aircore	43	0	-90
MRAC1598	439290	6314244	182.14	Aircore	74	0	-90
MRAC1599	439190	6314245	181.23	Aircore	72	0	-90
MRAC1600	438897	6314239	180	Aircore	59	0	-90
MRAC1601	439081	6314240	180.23	Aircore	62	0	-90
MRAC1602	439880	6314244	182.79	Aircore	69	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1603	440702	6314263	182.5	Aircore	56	0	-90
MRAC1604	441233	6315386	186.67	Aircore	21	0	-90
MRAC1605	445655	6317921	185.82	Aircore	38	0	-90
MRAC1642	446047	6320691	195.91	Aircore	55	0	-90
MRAC1643	445639	6320689	192.11	Aircore	54	0	-90
MRAC1644	446433	6320688	195.27	Aircore	34	0	-90
MRAC1647	446822	6320682	194.26	Aircore	13	0	-90
MRAC1648	445751	6320485	192.12	Aircore	55	0	-90
MRAC1649	446188	6320353	196.88	Aircore	55	0	-90
MRAC1650	442617	6319455	185.4	Aircore	52	0	-90
MRAC1651	442996	6319615	188.77	Aircore	54	0	-90
MRAC1652	443217	6319571	189.89	Aircore	50	0	-90
MRAC1653	443406	6319468	189.32	Aircore	71	0	-90
MRAC1654	443807	6319454	188.09	Aircore	91	0	-90
MRAC1655	443986	6319455	187.5	Aircore	30	0	-90
MRAC1656	444209	6319456	188.69	Aircore	36	0	-90
MRAC1657	444397	6319455	188.17	Aircore	38	0	-90
MRAC1658	444614	6319454	185.44	Aircore	42	0	-90
MRAC1659	444812	6319454	187.5	Aircore	18	0	-90
MRAC1660	445007	6319453	190	Aircore	33	0	-90
MRAC1661	445230	6319452	186.53	Aircore	33	0	-90
MRAC1662	445400	6319494	186.85	Aircore	37	0	-90
MRAC1663	445634	6319500	187.79	Aircore	24	0	-90
MRAC1664	445805	6319459	187.82	Aircore	37	0	-90
MRAC1665	446051	6319459	192.34	Aircore	31	0	-90
MRAC1666	446205	6319454	192.5	Aircore	27	0	-90
MRAC1667	443801	6319799	187.71	Aircore	28	0	-90
MRAC1668	444202	6319768	185.38	Aircore	27	0	-90
MRAC1669	443500	6319913	190.56	Aircore	70	0	-90
MRAC1670	443136	6319910	190.7	Aircore	64	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1671	442733	6319910	187.94	Aircore	53	0	-90
MRAC1672	442200	6319036	185.42	Aircore	33	0	-90
MRAC1673	442603	6319038	185.02	Aircore	36	0	-90
MRAC1674	442811	6319028	186.15	Aircore	27	0	-90
MRAC1675	443004	6319012	187.96	Aircore	27	0	-90
MRAC1676	443204	6319016	189.16	Aircore	55	0	-90
MRAC1677	443390	6319031	189.66	Aircore	54	0	-90
MRAC1678	443606	6319038	189.61	Aircore	25	0	-90
MRAC1679	443806	6319037	188.81	Aircore	53	0	-90
MRAC1680	443986	6319037	188.39	Aircore	43	0	-90
MRAC1681	444192	6319043	188.62	Aircore	45	0	-90
MRAC1682	444395	6319042	187.73	Aircore	41	0	-90
MRAC1683	444593	6319052	187.79	Aircore	37	0	-90
MRAC1684	444816	6319061	185	Aircore	69	0	-90
MRAC1685	445024	6319057	185	Aircore	70	0	-90
MRAC1686	445210	6319044	187.13	Aircore	35	0	-90
MRAC1687	445401	6319044	188.99	Aircore	32	0	-90
MRAC1688	445605	6319046	188.23	Aircore	34	0	-90
MRAC1689	445804	6319046	187.5	Aircore	13	0	-90
MRAC1690	446008	6319046	188.79	Aircore	33	0	-90
MRAC1691	446211	6319046	192.28	Aircore	50	0	-90
MRAC1692	442185	6318635	185	Aircore	52	0	-90
MRAC1693	442585	6318651	186.04	Aircore	39	0	-90
MRAC1694	443008	6318646	187.92	Aircore	63	0	-90
MRAC1695	443387	6318640	188.92	Aircore	33	0	-90
MRAC1696	443612	6318640	189.08	Aircore	57	0	-90
MRAC1697	443793	6318638	189.34	Aircore	46	0	-90
MRAC1698	443994	6318639	189.68	Aircore	52	0	-90
MRAC1699	444192	6318638	188.94	Aircore	65	0	-90
MRAC1700	444389	6318635	187.94	Aircore	31	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1701	444590	6318637	187.5	Aircore	27	0	-90
MRAC1702	444840	6318635	186.17	Aircore	55	0	-90
MRAC1703	444992	6318633	187.45	Aircore	50	0	-90
MRAC1704	445204	6318634	187.44	Aircore	37	0	-90
MRAC1705	445394	6318636	188.66	Aircore	57	0	-90
MRAC1706	445631	6318650	189.22	Aircore	92	0	-90
MRAC1707	445767	6318830	188.29	Aircore	27	0	-90
MRAC1708	446197	6318638	188.09	Aircore	27	0	-90
MRAC1709	443990	6318304	187.5	Aircore	37	0	-90
MRAC1710	444349	6318310	189.2	Aircore	57	0	-9(
MRAC1711	444774	6318326	188.36	Aircore	50	0	-9(
MRAC1712	444996	6317960	188.9	Aircore	47	0	-9(
MRAC1713	444812	6317963	189.87	Aircore	39	0	-9(
MRAC1714	444613	6318005	190.08	Aircore	48	0	-90
MRAC1715	444423	6318030	188.82	Aircore	30	0	-9(
MRAC1716	444248	6317966	186.99	Aircore	18	0	-9(
MRAC1717	443953	6317958	186.26	Aircore	24	0	-90
MRAC1718	443578	6317957	185.79	Aircore	53	0	-90
MRAC1719	441782	6317920	185	Aircore	47	0	-90
MRAC1720	441402	6317957	186.59	Aircore	45	0	-90
MRAC1721	441339	6317467	185.06	Aircore	50	0	-90
MRAC1722	441438	6317453	185	Aircore	50	0	-90
MRAC1723	441543	6317458	185.43	Aircore	49	0	-9(
MRAC1724	441732	6317525	187.5	Aircore	52	0	-90
MRAC1725	441928	6317563	186.02	Aircore	29	0	-90
MRAC1726	442322	6317562	185.15	Aircore	37	0	-9(
MRAC1727	442723	6317575	189.69	Aircore	52	0	-9(
MRAC1728	442967	6317566	188.93	Aircore	55	0	-9(
MRAC1729	443361	6317558	186.34	Aircore	46	0	-9(
MRAC1730	443744	6317557	183.58	Aircore	67	0	-9(

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1731	444067	6317561	185.23	Diamond	51	0	-90
MRAC1732	444322	6317562	186	Diamond	50	0	-90
MRAC1733	444808	6317138	186.26	Aircore	57	0	-90
MRAC1734	444400	6317192	187.21	Aircore	60	0	-90
MRAC1735	444012	6317140	187.87	Aircore	43	0	-90
MRAC1736	443619	6317274	182.5	Aircore	28	0	-90
MRAC1737	443214	6317228	186.17	Aircore	34	0	-90
MRAC1738	442812	6317144	186.45	Aircore	47	0	-90
MRAC1739	442427	6317144	185.21	Aircore	57	0	-90
MRAC1740	442021	6317071	186.91	Aircore	43	0	-90
MRAC1741	441824	6317145	185.85	Aircore	53	0	-90
MRAC1742	441615	6317145	185	Aircore	77	0	-90
MRAC1743	441412	6317143	186.09	Aircore	28	0	-90
MRAC1744	441612	6316738	187.26	Aircore	67	0	-90
MRAC1745	442079	6316676	185.19	Aircore	60	0	-90
MRAC1746	442280	6316743	185.57	Aircore	63	0	-90
MRAC1747	442510	6316742	185.1	Aircore	51	0	-90
MRAC1748	442738	6316745	185.93	Aircore	27	0	-90
MRAC1749	442811	6315983	186.35	Aircore	17	0	-90
MRAC1750	442408	6315980	186.08	Aircore	48	0	-90
MRAC1751	442008	6315980	187.94	Aircore	43	0	-90
MRAC1752	441833	6315980	188.34	Aircore	56	0	-90
MRAC1753	441744	6315981	187.42	Aircore	44	0	-90
MRAC1754	441638	6315979	186.72	Aircore	48	0	-90
MRAC1755	441510	6315982	186.69	Aircore	55	0	-90
MRAC1756	441437	6316401	187.37	Aircore	39	0	-90
MRAC1757	441943	6316408	189.17	Aircore	48	0	-90
MRAC1758	442053	6316409	187.95	Aircore	39	0	-90
MRAC1759	442259	6316412	187.43	Aircore	43	0	-90
MRAC1760	442354	6316414	187.66	Aircore	36	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1761	442410	6315579	187.99	Aircore	47	0	-90
MRAC1762	442003	6315577	185	Aircore	44	0	-90
MRAC1763	441607	6315580	184.5	Aircore	42	0	-90
MRAC1764	441515	6315578	185	Aircore	56	0	-90
MRAC1765	441426	6315580	185	Aircore	62	0	-90
MRAC1766	441363	6315567	185	Aircore	43	0	-90
MRAC1767	441502	6314771	185	Aircore	29	0	-90
MRAC1768	441931	6314786	182.5	Aircore	21	0	-90
MRAC1769	442194	6315182	184.71	Aircore	54	0	-90
MRAC1770	441789	6315221	183.37	Aircore	31	0	-90
MRAC1771	441387	6315181	185.36	Aircore	57	0	-90
MRAC1772	443207	6316743	187.16	Aircore	48	0	-90
MRAC1773	443594	6316895	187.5	Aircore	40	0	-90
MRAC1774	444064	6316743	187.5	Aircore	29	0	-90
MRAC1775	446596	6320347	195	Aircore	28	0	-90
MRAC1776	446992	6320339	194.21	Aircore	36	0	-90
MRAC1779	444076	6318632	189.05	Aircore	66	0	-90
MRAC1780	444073	6318473	187.62	Aircore	23	0	-90
MRAC1781	444073	6318314	187.71	Aircore	39	0	-90
MRAC1782	444074	6318131	187.5	Aircore	31	0	-90
MRAC1783	444074	6317959	186.38	Aircore	33	0	-90
MRAC1784	444073	6317747	185.78	Aircore	41	0	-90
MRAC1785	444071	6317352	185.95	Aircore	44	0	-90
MRAC1786	444075	6316953	188.05	Aircore	45	0	-90
MRAC1787	444144	6316606	187.5	Aircore	21	0	-90
MRAC1788	444238	6316447	186.56	Aircore	37	0	-90
MRAC1789	441174	6315182	186.62	Aircore	25	0	-90
MRAC1790	440998	6315180	187.1	Aircore	81	0	-90
MRAC1791	440600	6315179	185.76	Aircore	51	0	-90
MRAC1792	440202	6315189	183.78	Aircore	36	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1793	439799	6315180	182.5	Aircore	18	0	-90
MRAC1794	439394	6315183	182.9	Aircore	57	0	-90
MRAC1795	439001	6315190	182	Aircore	19	0	-90
MRAC1796	438598	6315173	180.76	Aircore	18	0	-90
MRDD043	443663.5	6319392	197.41	Aircore	67.5	0	-90
MRDD044	445607	6317954	204.37	Aircore	45.6	0	-90
MRAC0850	442472	6320856	190.7	Aircore	32	0	-90
MRAC0851	441172	6319192	190.7	Aircore	45	0	-90
MRAC0852	440443	6318254	190.7	Aircore	42	0	-90
MRAC1166	441144	6320959	186.35	Aircore	38	0	-90
MRAC1167	441077	6320575	186.32	Aircore	42	0	-90
MRAC1168	441156	6320167	186.25	Aircore	54	0	-90
MRAC1169	441163	6319744	186.12	Aircore	67	0	-90
MRAC1170	441169	6319354	186.35	Aircore	47	0	-90
MRAC1171	441175	6318974	185.43	Aircore	36	0	-90
MRAC1172	441179	6318568	182.6	Aircore	61	0	-90
MRAC1173	441187	6318162	186.27	Aircore	51	0	-90
MRAC1174	441195	6317767	185.8	Aircore	70	0	-90
MRAC1175	441200	6317375	185.3	Diamond	48	0	-90
MRAC1176	441204	6317146	186.29	Diamond	50	0	-90
MRAC1177	441212	6316562	186.74	Aircore	32	0	-90
MRAC1178	441220	6316197	187.22	Aircore	65	0	-90
MRAC1179	441225	6315665	185	Aircore	34	0	-90
MRAC1180	441230	6315374	186.62	Aircore	17	0	-90
MRAC1181	441237	6314970	184.98	Aircore	39	0	-90
MRAC1182	441234	6314454	184.23	Aircore	36	0	-90
MRAC1183	441098	6314270	183.65	Aircore	56	0	-90
MRAC1184	440683	6314263	182.5	Aircore	59	0	-90
MRAC1185	440368	6314259	183.35	Aircore	63	0	-90
MRAC1186	439863	6314250	182.78	Aircore	69	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1187	439494	6314245	182.5	Aircore	66	0	-90
MRAC1188	439070	6314239	180.13	Aircore	63	0	-90
MRAC1189	438683	6314235	180	Aircore	55	0	-90
MRAC1190	438296	6314228	180.74	Aircore	37	0	-90
MRAC1192	440961	6316331	185	Aircore	52	0	-90
MRAC1193	440631	6316386	182.77	Aircore	38	0	-90
MRAC1194	440136	6316378	184.7	Aircore	37	0	-90
MRAC1195	439760	6316372	184.43	Aircore	69	0	-90
MRAC1196	439346	6316368	185	Aircore	61	0	-90
MRAC1226	442396.9	6320941	185.63	Aircore	48	0	-90
MRAC1227	442663.8	6320646	185.89	Aircore	30	0	-90
MRAC1228	442936.1	6320347	190	Aircore	28	0	-9(
MRAC1229	443204.6	6320051	191.46	Aircore	71	0	-9(
MRAC1230	443407.7	6319701	190	Aircore	58	0	-9(
MRAC1231	443658.2	6319399	190	Aircore	50	0	-9(
MRAC1232	443982.8	6319157	189.4	Aircore	58	0	-9(
MRAC1233	444303.6	6318920	188.59	Aircore	38	0	-9(
MRAC1234	444623.3	6318683	187.5	Aircore	30	0	-9(
MRAC1235	444946	6318442	186.68	Aircore	56	0	-9(
MRAC1236	445268.9	6318205	185.98	Aircore	36	0	-9(
MRAC1237	445588	6317964	185.39	Aircore	43	0	-9(
MRAC1238	445910.5	6317727	187.5	Aircore	39	0	-9(
MRAC1239	446228.6	6317490	187.5	Aircore	11	0	-9(
MRAC1240	446550.1	6317250	190	Aircore	15	0	-90
MRAC1241	446872.3	6317010	191.7	Aircore	29	0	-9(
MRAC1372	445756	6314343	187.71	Aircore	34	0	-9(
MRAC1373	445485	6314337	187.5	Aircore	37	0	-9(
MRAC1374	445091	6314331	185.16	Aircore	22	0	-90
MRAC1375	444684	6314326	185.79	Aircore	27	0	-90
MRAC1376	444288	6314316	185.6	Aircore	38	0	-9(

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1377	443888	6314312	185	Aircore	39	0	-90
MRAC1378	443483	6314308	189.79	Aircore	10	0	-90
MRAC1379	443088	6314297	191.52	Aircore	36	0	-90
MRAC1380	442682	6314291	184.91	Aircore	44	0	-90
MRAC1381	442288	6314287	183.45	Aircore	37	0	-90
MRAC1382	441885	6314282	182.5	Aircore	30	0	-90
MRAC1383	441489	6314274	182.5	Aircore	47	0	-90
MRAC1384	445889	6316468	190.05	Aircore	48	0	-90
MRAC1385	445351	6316460	188.58	Aircore	34	0	-90
MRAC1386	444947	6316454	187.52	Aircore	40	0	-90
MRAC1387	444541	6316446	189.71	Aircore	54	0	-90
MRAC1388	444145	6316440	186	Aircore	32	0	-90
MRAC1389	443744	6316434	183.06	Aircore	36	0	-90
MRAC1390	443342	6316428	185.67	Aircore	14	0	-90
MRAC1391	442946	6316420	185.17	Aircore	51	0	-90
MRAC1392	442550	6316417	185.34	Aircore	19	0	-90
MRAC1393	442148	6316410	187.48	Aircore	56	0	-90
MRAC1394	441742	6316405	190	Aircore	61	0	-90
MRAC1395	441347	6316400	186.68	Aircore	64	0	-90
MRAC1396	438157	6316351	182.5	Aircore	37	0	-90
MRAC1397	438555	6316358	182.5	Aircore	44	0	-90
MRAC1398	438947	6316364	184.13	Aircore	50	0	-90
MRAC1399	443381	6318301	187.94	Aircore	61	0	-90
MRAC1400	442971	6318292	185.59	Aircore	56	0	-90
MRAC1401	442572	6318288	184.2	Aircore	42	0	-90
MRAC1402	442178	6318281	185	Aircore	45	0	-90
MRAC1403	441780	6318277	185.46	Aircore	50	0	-90
MRAC1404	441388	6318270	186.76	Aircore	48	0	-90
MRAC1405	438583	6318229	183.89	Aircore	57	0	-90
MRAC1406	438983	6318233	183.66	Aircore	41	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1407	439377	6318239	182.5	Aircore	60	0	-90
MRAC1408	439776	6318271	182.64	Aircore	36	0	-90
MRAC1409	440179	6318251	183.09	Aircore	62	0	-90
MRAC1410	440579	6318252	182.56	Aircore	38	0	-90
MRAC1411	440981	6318262	184.79	Aircore	34	0	-90
MRAC1412	438274	6320241	182.04	Aircore	14	0	-90
MRAC1413	438665	6320248	183.91	Diamond	29	0	-90
MRAC1414	439062	6320256	184.34	Diamond	54	0	-90
MRAC1415	439463	6320264	184.72	Aircore	38	0	-90
MRAC1416	439865	6320268	185	Aircore	38	0	-90
MRAC1417	440265	6320275	185.48	Aircore	44	0	-90
MRAC1418	440646	6320280	185	Aircore	42	0	-90
MRAC1419	441065	6320288	185.69	Aircore	41	0	-90
MRAC1420	441496	6320289	187.42	Aircore	60	0	-90
MRAC1421	441858	6320296	185	Aircore	51	0	-90
MRAC1422	442260	6320305	185.25	Aircore	47	0	-90
MRAC1423	442668	6320311	190	Aircore	53	0	-90
MRAC1424	443041	6320317	190	Aircore	37	0	-90
MRAC1425	443483	6320321	193.72	Aircore	65	0	-90
MRAC1426	443774	6320327	190.31	Aircore	55	0	-90
MRAC1427	444184	6320334	189.32	Aircore	45	0	-90
MRAC1428	444569	6320339	192.51	Aircore	32	0	-90
MRAC1429	444961	6320343	190.4	Aircore	12	0	-90
MRAC1430	445368	6320353	191.7	Aircore	36	0	-90
MRAC1431	444181	6318312	188.31	Aircore	43	0	-90
MRAC1432	444582	6318319	188.66	Aircore	36	0	-90
MRAC1433	444979	6318323	185	Aircore	56	0	-90
MRAC1434	445380	6318330	185.96	Aircore	26	0	-90
MRAC1435	445740	6318335	187.15	Aircore	51	0	-90
MRAC1525	443667	6319382	190	Aircore	60	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1526	445604	6317948	185.52	Aircore	42	0	-90
MRAC1527	446053	6317620	187.5	Aircore	15	0	-90
MRAC1528	445810	6317800	186.9	Aircore	42	0	-90
MRAC1529	445728	6317858	186.35	Aircore	45	0	-90
MRAC1530	445488	6318039	185	Aircore	40	0	-90
MRAC1531	445406	6318102	185	Aircore	40	0	-90
MRAC1532	445332	6318155	185.38	Aircore	17	0	-90
MRAC1533	445170	6318275	186.8	Aircore	43	0	-90
MRAC1534	445092	6318332	185.87	Aircore	61	0	-90
MRAC1535	445010	6318395	186.06	Aircore	52	0	-90
MRAC1536	444853	6318509	187.57	Aircore	49	0	-90
MRAC1537	444769	6318573	187.5	Aircore	36	0	-90
MRAC1538	444690	6318636	187.5	Aircore	48	0	-90
MRAC1539	444525	6318757	187.62	Aircore	41	0	-90
MRAC1540	444443	6318819	188.38	Aircore	34	0	-90
MRAC1541	444365	6318875	188.76	Aircore	50	0	-90
MRAC1542	444208	6318991	187.97	Aircore	36	0	-90
MRAC1543	444127	6319052	188.65	Aircore	39	0	-90
MRAC1544	444048	6319111	188.97	Aircore	41	0	-90
MRAC1545	443888	6319229	189.87	Aircore	40	0	-90
MRAC1546	443809	6319287	190	Aircore	47	0	-90
MRAC1547	443725	6319346	189.97	Aircore	63	0	-90
MRAC1548	443565	6319466	190	Aircore	71	0	-90
MRAC1549	443482	6319533	189.67	Aircore	67	0	-90
MRAC1550	443440	6319622	189.68	Aircore	59	0	-90
MRAC1551	443358	6319804	191.07	Aircore	56	0	-90
MRAC1552	443318	6319893	191.65	Aircore	81	0	-90
MRAC1553	443270	6319975	191.78	Aircore	60	0	-90
MRAC1554	443069	6320196	190	Aircore	60	0	-90
		 		<u>.</u> .		 	

MRAC1555

441194

6317965

186.47

Aircore

-90

0

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1556	441197	6317664	185.42	Aircore	52	0	-90
MRAC1557	441197	6317564	185.08	Aircore	30	0	-90
MRAC1558	441198	6317442	185.05	Aircore	43	0	-90
MRAC1559	441199	6317262	185.77	Aircore	40	0	-90
MRAC1560	441180	6317090	186.64	Aircore	41	0	-90
MRAC1561	441144	6316940	186.56	Aircore	36	0	-9(
MRAC1562	441209	6316867	186.8	Aircore	60	0	-9(
MRAC1563	441208	6316771	186.51	Aircore	68	0	-9(
MRAC1564	441212	6316668	186.77	Aircore	51	0	-9(
MRAC1565	441214	6316465	185.81	Aircore	43	0	-9(
MRAC1566	441215	6316372	185.91	Aircore	72	0	-9(
MRAC1567	441218	6316269	186.79	Aircore	86	0	-90
MRAC1568	441219	6316069	186.59	Aircore	71	0	-9(
MRAC1569	441221	6315966	185.95	Aircore	57	0	-9(
MRAC1570	441224	6315868	185	Aircore	66	0	-90
MRAC1571	441222	6315767	185	Aircore	39	0	-9
MRAC1572	441226	6315565	185	Aircore	36	0	-9
MRAC1573	441228	6315459	187.12	Aircore	34	0	-9
MRAC1574	441232	6315269	186.55	Aircore	20	0	-9
MRAC1575	441233	6315173	185.95	Aircore	16	0	-9
MRAC1576	441233	6315057	185.22	Aircore	42	0	-9
MRAC1577	441239	6314862	184.32	Aircore	44	0	-90
MRAC1578	441238	6314770	184.15	Aircore	42	0	-90
MRAC1579	441157	6314705	182.96	Aircore	57	0	-90
MRAC1580	441124	6314629	184.03	Diamond	42	0	-90
MRAC1581	441153	6314531	184.23	Diamond	76	0	-90
MRAC1582	441245	6314370	183.9	Aircore	45	0	-90
MRAC1583	441243	6314275	183.53	Aircore	43	0	-90
MRAC1584	441011	6314270	183.42	Aircore	51	0	-90
				 			

MRAC1585

440887

6314269

183.11

Aircore

-90

0

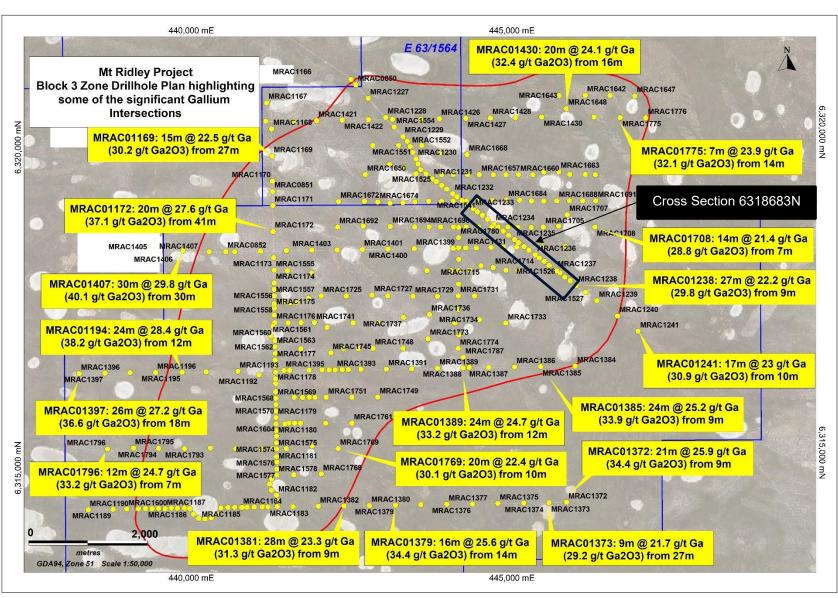
Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1586	440775	6314266	182.58	Aircore	68	0	-90
MRAC1587	440579	6314265	182.5	Aircore	40	0	-90
MRAC1588	440473	6314263	183.07	Aircore	55	0	-90
MRAC1589	440312	6314161	183.13	Aircore	69	0	-90
MRAC1590	440217	6314102	182.91	Aircore	51	0	-90
MRAC1591	440118	6314083	182.67	Aircore	54	0	-90
MRAC1592	440017	6314093	182.61	Aircore	62	0	-90
MRAC1593	439936	6314156	182.69	Aircore	60	0	-90
MRAC1594	439797	6314252	182.35	Aircore	82	0	-90
MRAC1595	439686	6314251	182.26	Aircore	87	0	-90
MRAC1596	439591	6314253	182.5	Aircore	61	0	-90
MRAC1597	439394	6314247	182.5	Aircore	43	0	-90
MRAC1598	439290	6314244	182.14	Aircore	74	0	-90
MRAC1599	439190	6314245	181.23	Aircore	72	0	-90
MRAC1600	438897	6314239	180	Aircore	59	0	-90
MRAC1601	439081	6314240	180.23	Aircore	62	0	-90
MRAC1602	439880	6314244	182.79	Aircore	69	0	-90
MRAC1603	440702	6314263	182.5	Aircore	56	0	-90
MRAC1604	441233	6315386	186.67	Aircore	21	0	-90
MRAC1605	445655	6317921	185.82	Aircore	38	0	-90
MRAC1642	446047	6320691	195.91	Aircore	55	0	-90
MRAC1643	445639	6320689	192.11	Aircore	54	0	-90
MRAC1644	446433	6320688	195.27	Aircore	34	0	-90
MRAC1647	446822	6320682	194.26	Aircore	13	0	-90
MRAC1648	445751	6320485	192.12	Aircore	55	0	-90
MRAC1649	446188	6320353	196.88	Aircore	55	0	-90
MRAC1650	442617	6319455	185.4	Aircore	52	0	-90
MRAC1651	442996	6319615	188.77	Aircore	54	0	-90
MRAC1652	443217	6319571	189.89	Aircore	50	0	-90
MRAC1653	443406	6319468	189.32	Aircore	71	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1654	443807	6319454	188.09	Aircore	91	0	-90
MRAC1655	443986	6319455	187.5	Aircore	30	0	-90
MRAC1656	444209	6319456	188.69	Aircore	36	0	-90
MRAC1657	444397	6319455	188.17	Aircore	38	0	-90
MRAC1658	444614	6319454	185.44	Aircore	42	0	-90
MRAC1659	444812	6319454	187.5	Aircore	18	0	-90
MRAC1660	445007	6319453	190	Aircore	33	0	-90
MRAC1661	445230	6319452	186.53	Aircore	33	0	-90
MRAC1662	445400	6319494	186.85	Aircore	37	0	-90
MRAC1663	445634	6319500	187.79	Aircore	24	0	-90
MRAC1664	445805	6319459	187.82	Aircore	37	0	-90
MRAC1665	446051	6319459	192.34	Aircore	31	0	-90
MRAC1666	446205	6319454	192.5	Aircore	27	0	-90
MRAC1667	443801	6319799	187.71	Aircore	28	0	-90
MRAC1668	444202	6319768	185.38	Aircore	27	0	-90
MRAC1669	443500	6319913	190.56	Aircore	70	0	-90
MRAC1670	443136	6319910	190.7	Aircore	64	0	-90
MRAC1671	442733	6319910	187.94	Aircore	53	0	-90
MRAC1672	442200	6319036	185.42	Aircore	33	0	-90
MRAC1673	442603	6319038	185.02	Aircore	36	0	-90
MRAC1674	442811	6319028	186.15	Aircore	27	0	-90
MRAC1675	443004	6319012	187.96	Aircore	27	0	-90
MRAC1676	443204	6319016	189.16	Aircore	55	0	-90
MRAC1677	443390	6319031	189.66	Aircore	54	0	-90
MRAC1678	443606	6319038	189.61	Aircore	25	0	-90
MRAC1679	443806	6319037	188.81	Aircore	53	0	-90
MRAC1680	443986	6319037	188.39	Aircore	43	0	-90
MRAC1681	444192	6319043	188.62	Aircore	45	0	-90
MRAC1682	444395	6319042	187.73	Aircore	41	0	-90
MRAC1683	444593	6319052	187.79	Aircore	37	0	-90

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1684	444816	6319061	185	Aircore	69	0	-90
MRAC1685	445024	6319057	185	Aircore	70	0	-90
MRAC1686	445210	6319044	187.13	Aircore	35	0	-90
MRAC1687	445401	6319044	188.99	Aircore	32	0	-90
MRAC1688	445605	6319046	188.23	Aircore	34	0	-90
MRAC1689	445804	6319046	187.5	Aircore	13	0	-90
MRAC1690	446008	6319046	188.79	Aircore	33	0	-90
MRAC1691	446211	6319046	192.28	Aircore	50	0	-90
MRAC1692	442185	6318635	185	Aircore	52	0	-90
MRAC1693	442585	6318651	186.04	Aircore	39	0	-90
MRAC1694	443008	6318646	187.92	Aircore	63	0	-90
MRAC1695	443387	6318640	188.92	Aircore	33	0	-90
MRAC1696	443612	6318640	189.08	Aircore	57	0	-90
MRAC1697	443793	6318638	189.34	Aircore	46	0	-90
MRAC1698	443994	6318639	189.68	Aircore	52	0	-90
MRAC1699	444192	6318638	188.94	Aircore	65	0	-90
MRAC1700	444389	6318635	187.94	Aircore	31	0	-90
MRAC1701	444590	6318637	187.5	Aircore	27	0	-90
MRAC1702	444840	6318635	186.17	Aircore	55	0	-90
MRAC1703	444992	6318633	187.45	Aircore	50	0	-90
MRAC1704	445204	6318634	187.44	Aircore	37	0	-90
MRAC1705	445394	6318636	188.66	Aircore	57	0	-90
MRAC1706	445631	6318650	189.22	Aircore	92	0	-90
MRAC1707	445767	6318830	188.29	Aircore	27	0	-90
MRAC1708	446197	6318638	188.09	Aircore	27	0	-90
MRAC1709	443990	6318304	187.5	Aircore	37	0	-90
MRAC1710	444349	6318310	189.2	Aircore	57	0	-90
MRAC1711	444774	6318326	188.36	Aircore	50	0	-90
MRAC1712	444996	6317960	188.9	Aircore	47	0	-90
MRAC1713	444812	6317963	189.87	Aircore	39	0	-90
	1	1	i i	i	I .	1	i

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1714	444613	6318005	190.08	Aircore	48	0	-90
MRAC1715	444423	6318030	188.82	Aircore	30	0	-90
MRAC1716	444248	6317966	186.99	Aircore	18	0	-90
MRAC1717	443953	6317958	186.26	Aircore	24	0	-90
MRAC1718	443578	6317957	185.79	Aircore	53	0	-90
MRAC1719	441782	6317920	185	Aircore	47	0	-90
MRAC1720	441402	6317957	186.59	Aircore	45	0	-90
MRAC1721	441339	6317467	185.06	Aircore	50	0	-90
MRAC1722	441438	6317453	185	Aircore	50	0	-90
MRAC1723	441543	6317458	185.43	Aircore	49	0	-90
MRAC1724	441732	6317525	187.5	Aircore	52	0	-90
MRAC1725	441928	6317563	186.02	Aircore	29	0	-90
MRAC1726	442322	6317562	185.15	Aircore	37	0	-90
MRAC1727	442723	6317575	189.69	Aircore	52	0	-90
MRAC1728	442967	6317566	188.93	Aircore	55	0	-90
MRAC1729	443361	6317558	186.34	Aircore	46	0	-90
MRAC1730	443744	6317557	183.58	Aircore	67	0	-90
MRAC1731	444067	6317561	185.23	Aircore	51	0	-90
MRAC1732	444322	6317562	186	Aircore	50	0	-90
MRAC1733	444808	6317138	186.26	Aircore	57	0	-90
MRAC1734	444400	6317192	187.21	Aircore	60	0	-90
MRAC1735	444012	6317140	187.87	Aircore	43	0	-90
MRAC1736	443619	6317274	182.5	Aircore	28	0	-90
MRAC1737	443214	6317228	186.17	Aircore	34	0	-90
MRAC1738	442812	6317144	186.45	Aircore	47	0	-90
MRAC1739	442427	6317144	185.21	Aircore	57	0	-90
MRAC1740	442021	6317071	186.91	Aircore	43	0	-90
MRAC1741	441824	6317145	185.85	Aircore	53	0	-90
MRAC1742	441615	6317145	185	Aircore	77	0	-90
MRAC1743	441412	6317143	186.09	Aircore	28	0	-90
	1	1	i	i	I .	1	i

Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1744	441612	6316738	187.26	Aircore	67	0	-90
MRAC1745	442079	6316676	185.19	Aircore	60	0	-90
MRAC1746	442280	6316743	185.57	Aircore	63	0	-90
MRAC1747	442510	6316742	185.1	Aircore	51	0	-90
MRAC1748	442738	6316745	185.93	Aircore	27	0	-90
MRAC1749	442811	6315983	186.35	Aircore	17	0	-90
MRAC1750	442408	6315980	186.08	Aircore	48	0	-90
MRAC1751	442008	6315980	187.94	Aircore	43	0	-90
MRAC1752	441833	6315980	188.34	Aircore	56	0	-90
MRAC1753	441744	6315981	187.42	Aircore	44	0	-90
MRAC1754	441638	6315979	186.72	Aircore	48	0	-90
MRAC1755	441510	6315982	186.69	Aircore	55	0	-9(
MRAC1756	441437	6316401	187.37	Aircore	39	0	-90
MRAC1757	441943	6316408	189.17	Aircore	48	0	-9(
MRAC1758	442053	6316409	187.95	Aircore	39	0	-90
MRAC1759	442259	6316412	187.43	Aircore	43	0	-90
MRAC1760	442354	6316414	187.66	Aircore	36	0	-90
MRAC1761	442410	6315579	187.99	Aircore	47	0	-9(
MRAC1762	442003	6315577	185	Aircore	44	0	-9(
MRAC1763	441607	6315580	184.5	Aircore	42	0	-90
MRAC1764	441515	6315578	185	Aircore	56	0	-90
MRAC1765	441426	6315580	185	Aircore	62	0	-90
MRAC1766	441363	6315567	185	Aircore	43	0	-9(
MRAC1767	441502	6314771	185	Aircore	29	0	-9(
MRAC1768	441931	6314786	182.5	Aircore	21	0	-90
MRAC1769	442194	6315182	184.71	Aircore	54	0	-9(
MRAC1770	441789	6315221	183.37	Aircore	31	0	-90
MRAC1771	441387	6315181	185.36	Aircore	57	0	-90
MRAC1772	443207	6316743	187.16	Aircore	48	0	-9(
MRAC1773	443594	6316895	187.5	Aircore	40	0	-9(



Hole Id	Easting	Northing	RL (m)	Drill	Total	Azimuth	Dip
	(GDA94)	(GDA94)		Туре	Depth (m)		
MRAC1774	444064	6316743	187.5	Aircore	29	0	-90
MRAC1775	446596	6320347	195	Aircore	28	0	-90
MRAC1776	446992	6320339	194.21	Aircore	36	0	-90
MRAC1779	444076	6318632	189.05	Aircore	66	0	-90
MRAC1780	444073	6318473	187.62	Aircore	23	0	-90
MRAC1781	444073	6318314	187.71	Aircore	39	0	-90
MRAC1782	444074	6318131	187.5	Aircore	31	0	-90
MRAC1783	444074	6317959	186.38	Aircore	33	0	-90
MRAC1784	444073	6317747	185.78	Aircore	41	0	-90
MRAC1785	444071	6317352	185.95	Aircore	44	0	-90
MRAC1786	444075	6316953	188.05	Aircore	45	0	-90
MRAC1787	444144	6316606	187.5	Aircore	21	0	-90
MRAC1788	444238	6316447	186.56	Aircore	37	0	-90
MRAC1789	441174	6315182	186.62	Aircore	25	0	-90
MRAC1790	440998	6315180	187.1	Aircore	81	0	-90
MRAC1791	440600	6315179	185.76	Aircore	51	0	-90
MRAC1792	440202	6315189	183.78	Aircore	36	0	-90
MRAC1793	439799	6315180	182.5	Aircore	18	0	-90
MRAC1794	439394	6315183	182.9	Aircore	57	0	-90
MRAC1795	439001	6315190	182	Aircore	19	0	-90
MRAC1796	438598	6315173	180.76	Aircore	18	0	-90
MRDD043	443663.5	6319392	197.41	Diamond	67.5	0	-90
MRDD044	445607	6317954	204.37	Diamond	45.6	0	-90

28 October 2025

Mount Ridley Mines Limited

ABN 93 092 304 964

ASX: MRD

168 Stirling Highway, Nedlands WA 6009

Ph: +61 8 6165 8858

mtridleymines.com.au

ASX Announcement

28 October 2025

JORC Code, 2012 Edition - Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succee		0
Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	New gallium areas were sampled using Aircore ("AC") drilling by Mount Ridley Mines Ltd from 2014 to 2021 on a nominal 500m by 100m grid within Blocks 1 and 2 Block 3, drilling was conducted along east—west lines spaced 400m apart. Hole spacing within the mineralised central zone was generally 100m, increasing to 200m and 400m along the flanks. In total of 732 holes were completed totalling 30,112.4m over the current tenure area. Holes were drilled vertical to optimally intersect the mineralised zones. Diamond (DDH) was completed over 10 holes, totalling 550.4m diamond drilling, sampled between 1m in the barren zones and between 0.6 to 1 metre within the ore zones. Every sample weighted between 1 and 2kgs. All holes were drilled vertically to refusal, terminating in basement rocks aimed to locate coarse-grained, mineralised gabbroic rocks of intrusive maficultramafic origin and identify contacts. Drill holes were located just off existing tracks and drilled to blade refusal into basement rocks. All drill hole collars in the supplied database have been accurately located with coordinates in MGA94 grid system. Down hole surveys have not been taken as drill holes are all vertical. All drill samples were collected at 1m intervals. Whole samples were taken when sample return was less than 2kg. Samples of drill chips drilled using a conventional aircore drilling rig were collected through a cyclone as 1m piles laid out consecutively on the ground then sampled as between 1m and 3m composite spear samples. Samples were analysed at an accredited laboratory using techniques generally used when investigating clay-hosted REE mineralisation. Diamond core holes (MRDD043 and MRDD044) were completed for SG and metallurgy study. A twin riffle splitter was used for samples weighing more than 2kg, with one split collected in a calico bag for analysis and the remainder dropped on the ground. Sampling and QAQC procedures were carried out to industry standards.

Criteria	JORC Code explanation	Commentary
		Analyses reported herein by ALS Laboratory's M MS81, a lithium borate fusion with ICP-MS finish.
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Q Exploration Pty Ltd conducted aircore drilling us an Edson 100 with a 250/400 PSI on-board compress mounted on an Isuzu 750 4x4 truck. Challenge Drill using an RA150 truck mounted drill rig completed the AirCore (AC) drilling program.
	what method, etc).	Aircore. A type of reverse circulation drilling using s rods and a 100mm blade bit drilled to refusal (sapro to fresh rock).
		Samples of drill chips drilled using a convention aircore drilling rig were collected through a cyclone 1m piles laid out consecutively on the ground the sampled as between 1m and 3m composite spus samples.
		Diamond drilling was completed by standard D Drilling techniques with Warman 600 Diamond Drill with the hole size used NQ ³ drill core diameter.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample	All samples were weighed. This provides an indir record of sample recovery.
	recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	All diamond and Aircore samples were visual checked for recovery, moisture and contaminat and no recovery problems were encountered Geologists commented when recovery was poor wet ground conditions.
	material.	Drilling has been with rigs of sufficient capacity provide dry chip samples. Chip sample recovery v generally not logged.
		No relationships between sample recovery and gradexist.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or	Logging has been completed for all DDH & AC drill including rock type, grain size, texture, colour, foliation mineralogy, alteration, sulphide and veining, with detailed description written for many intervals.
	quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the	All logging was of a level sufficient in detail to supp resource estimation.
	relevant intersections logged.	Holes have been logged at 1m intervals to recoverable weathering, regolith, rock type, colour, alteration mineralisation and texture and any other notal features.
		Logging was qualitative, however the geologists of recorded quantitative mineral percentage ranges

Criteria	JORC Code explanation	Commentary
		the gallium-REE minerals present.
Sub-sampling techniques and	If core, whether cut or sawn and whether	DDH and AC samples for each 1 metre of drilling were
sample preparation	quarter, half or all core taken.	
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	split once through a riffle splitter and collected into a calico bag at the drill site. All samples were dry. 1m samples or up to 3m composite samples were 'speared' from the sample piles for an approximately 2.5 - 3.5kg sample. Sample composite length is determined by geology. Certified reference material (CRM) routinely inserted within the sampling sequence at a rate of 3% each. Field duplicates taken at pre-specified intervals at the time of drilling at the rate of 3% Samples were submitted to ALS and Bureau Veritas Laboratories from Perth for a variety of analysis techniques. Analysis of samples (included drying and pulverising to 85% passing 75um) was undertaken by ALS Laboratory in Perth and analysed for a full digest by lithium borate fusion and ICP-MS (ALS code - ME-MS81) including the
		85% passing 75um) was undertaken by ALS Laborator in Perth and analysed for a full digest by lithium borat
		analysis by lithium borate fusion and ICPAES. Ultra trace level of 38 Elements by lithium borate fusion and ICPMS finish
		Assay_description: CRU-QC: Crushing ME-GRA05: H2O/LOI by TGA furnace. ME-ICP06: Whole Rock analysis by lithium borate fusion and ICPAES ME-MS81: Ultra trace level of 38 Elements by lithium borate fusion and ICPMS finish
		Bureau Veritas
		Each batch was sorted, dried and pulverised (PR001). Each sample was routinely assayed in two ways: gold by fire assay; and multi-elements using a mixed acid digest / ICP-OES.
		Gold analyses consisted of pulverising <3.0kg to 90% passing 75um (PR303); and 40g fire assay / AAS finish LLD – 0.01ppm Au (FA001).

ASX Announcement

Criteria	JORC Code explanation	Commentary
		Multi element analyses consisted ofn0.2g mixed acid digest (4 acid digest) (MA100); ICP-OES analysis – detection limits in ppm (MA101)
		Laboratory standards taken at the pulverizing stage and selective repeats conducted at the laboratory's discretion.
		Field QC procedures involved the use of coarse standards, and field duplicates. The field duplicates were collected at a rate of 1:100 and have accurately reflected the original assay. A recognised laboratory has been used for analysis of samples. The standards are not certified and have no expected value, but the material was homogeneous and produced repeatable results.
		Sample sizes were considered appropriate to correctly represent the bulk tonnage mineralisation based on the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for gallium-REE.
		Sample sizes were considered appropriate to correctly represent the bulk tonnage mineralisation based on the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for gallium-REE.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis	Analysis of AC samples was undertaken by ALS Laboratory in Perth and analysed for a full digest by lithium borate fusion and ICP-MS (ALS code - ME-MS81) including the full suite of rare earth elements. Aqua Regia Digestion with ICP-MS finish
	including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates,	Sample preparation details: Crushing H2O/LOI by TGA furnace. Whole Rock analysis by lithium borate fusion and ICPAES. Ultra trace level of 38 Elements by lithium borate fusion and ICPMS finish
	external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	Assay description CRU-QC: Crushing ME-GRA05: 2O/LOI by TGA furnace. ME-ICP06: Whole Rock analysis by lithium borate fusion and ICPAES
		ME-MS81: Ultra trace level of 38 Elements by lithium borate fusion and ICPMS finish -ppm finish
		Assays included Ba, W, Ce, Nb, Eu, MgO%, Th, V, Gd, Nd, Tm, Sn, BaO%, P2O5%, Th, Tb, Nb, Nd, TiO2%, Zr, Yb, Ba, Cs, Cr, Dy, Lu, Tb, Gd, Y, Sm, Ga, Sn, Sr Cr2O3%, K2O5 Hf, SiO2%, Fe2O3%, P2O5%, Dy, Sr, Ho, Ga Zr, Ta, Tm, Rb, W, SrO%, Cr2O3%, U, CaO%, Na2O%, Pr, Al2O3%, La, Ho Hf, Al2O3%, CaO%, Lu, Ta, Yb Sm,

Criteria	JORC Code explanation	Commentary
		MnO%, V, Pr, Y, Nb, Na2O% and Er
		Bureau Veritas
		Each batch was sorted, dried and pulverised (PR001). Each sample was routinely assayed in two ways: gold by fire assay; and multi-elements using a mixed acid digest / ICP-OES.
		Gold analyses consisted of pulverising <3.0kg to 90% passing 75um (PR303); and 40g fire assay / AAS finish LLD — 0.01ppm Au (FA001). Multi element analyses consisted of 0.2g mixed acid digest (4 acid digest) (MA100); ICP-OES analysis — detection limits in ppm (MA101) and Ni, Cu, Co, Cr, Mg, Fe, Zn, As.
		No geophysical tools were used to determine any element concentrations used in this resource estimate.
		Laboratory QAQC includes the use of internal standards using certified reference material, laboratory duplicates and pulp repeats. The field duplicates have accurately reflected the original assay.
		The QAQC results confirm the suitability of the drilling data for use in the Mineral Resource estimation.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	There have been no twinned holes drilled at this point, although there is very closely spaced drill grade control at the same orientations drilling that confirmed the continuity of mineralisation.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Recovered samples were generally composed of gravel, pisolites, or clay and no visual distinction can consistently be made between gallium mineralisation
	Discuss any adjustment to assay data.	and barren material. All assay results returned in digital files from ALS and Bureau Veritas laboratory which confirmed the mineralised intersections recorded in
		the New Norcia database.
		Geologists logged all drill samples at the rig, with a minimum logging interval of 1m. All logging data was captured directly into laptops to ensure consistency of coding and minimise data entry errors. Logging was described using the MRD Logging Codes preloaded into the data logger.
		Assay results were loaded electronically, directly form the assay laboratory. All drillhole data was visually validated prior to resource estimation.

	Criteria	JORC Code explanation	Commentary
*			All drillhole information was stored graphically and digitally in MS excel and MS access formats.
			No adjustments have been made to assay data.
	Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Down hole surveys have not been taken only in the diamond drillholes as drill holes and all AC holes were drilled vertically through the predominantly flat lying laterite.
		Specification of the grid system used. Quality and adequacy of topographic control.	Topographic surface based on Landgate topography series containing 5m contour data. This was supplemented by using RTK surveyed points and drillhole collars recorded by BRL.
			All rock chip locations were recorded with a handheld GPS with +/- 5m accuracy.
			All data used in this report are in: Datum: Geodetic Datum of Australia 94 (GDA94) Projection: Map Grid of Australia (MGA), Zone 51.
	Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the	The nominal drill hole spacing is 500m by 100m o 400m.
		degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The mineralised domains have demonstrated sufficient continuity in both geological and grade continuity to support the estimation of Minera Resource, and the classifications applied under the 2012 JORC Code.
15			Drill hole sampling was at even 0.5m lengths so no compositing was carried out.
¥)		All previously reported sample/intercept composites have been length weighted.
	Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drill holes are drilled vertical, which was approximately perpendicular to the orientation of the flat-lying mineralisation.
		If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation-based sampling bias has been identified in the data.
	Sample security	The measures taken to ensure sample security.	The chain of custody was managed by company representatives and was considered appropriate. The laboratory receipts received samples against the sample dispatch documents and issued a reconciliation report for every sample batch.
	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques are consistent with industry standards.

ASX Announcement

Criteria	JORC Code explanation	Commentary	

(Criteria listed in the	e preceding section also apply to this	section)
Criteria	JORC Code explanation	Commentary
status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tenements E63/1547, E63/1564, E63/2111 & E63/2112 are key tenements within the Company's Mt Ridley Gallium Project and are the subject of this Mineral Resource Statement. The Prospect is located 55km NE of Esperance, Western Australia. The Registered Holder is Mount Ridley Mines Limited (Company) (100%). There are no overriding royalties other than the standard government royalties for the relevant minerals. There are no other material issues affecting the tenements at this stage.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historically several large companies such as BHP, RGC, Iluka and Western Mining have completed large regional appraisals of the district going back many years. These programs were mainly for mineral sands, gold, uranium and base metals. More recently and locally, exploration for lignite and brown coals in the Tertiary overburden (mainly Miocene - aged) was common in the 1990s. Several coal mining leases were taken out in the eastern part of the project area. During the mid-1970's Central Norsemen Gold Corporation explored an area to the northwest of Dingo Rocks for precious and base metals. They considered the terrane to be prospective for high grade metamorphic Au deposits, Broken Hill-Type Zn-Pb-Cu deposits, magmatic Ni-Cu sulphides and Fe-Ti magnetite deposits. Aerial radiometric anomalies associated with a cluster of playa lakes suggested potential for uranium mineralisation. Exploration activities included geological mapping, ground radiometric surveys, auger drilling, RC drilling, diamond drilling and petrology. In late 1979 Western Colleries Ltd (now Wesfarmers) and Mokey Pty Ltd began exploration of the Grass Patch region for Tertiary (Eocene) lignite deposits. Regional airborne INPUT EM surveying was used to identify the location of Tertiary palaeochannels that host the Eocene lignite deposits. The Scadden lignite deposit, containing 607 million tonnes, was discovered in mid-1980. BHP explored a tenement in the Dingo Rocks area for gold in 1985 without success. From the mid 1990's and up to 2001 Pan Australian Exploration Pty Ltd (PAE), a subsidiary of Pan Australian Resources NL, explored the Grass Patch region for base metals using a "Grenville-aged" Broken Hill-Type Zn-

a variety of consultant companies, the main one being Etheridge Henley and Williams Pty Ltd (EHW). In later years PAE established a joint venture

Criteria	JORC Code explanation	Commentary
		with BHP Minerals (BHPM) on selected tenements in the area with BHPM
		as exploration managers.
		BHP Minerals (BHPM) acquired tenement in the Grass Patch area in the late 1990's and in 1999 established a joint venture with Pan Australia Resources over selected tenements. In the period 1999-2000, BHPM explored the area for BHT Zn-Pb deposits using the same model utilised by PAE.
		Bishop was the first to research and champion the potential of Grass Patch, interpreted as a large, crudely layered, amphibolite-gabbro complex beneath shallow cover sediments. The mafic complex is considered to have the potential to host nickel-copper sulphide deposits and PGE deposits. Bishop undertook the previously mentioned comprehensive prior-data review, detailed litho-geochemistry interpretation from 'best available' end of hole assays, development of a geological map based on this information. Additional drilling tested the models but didn't return assays of commercial consequence.
		RIDLEY RESOURCES Targeted the circular geophysical signature interpreted to be a layered gabbroic mafic intrusion (Bishop's Scadden Complex) with one drillhole in 2009. Nearby lignite locations were aircore drilled in 2010-2011, returning poorly developed lignite intersections.
		MOUNT RIDLEY MINES LIMITED (formerly AXG MINING LTD) 2013-pres Geophysics-driven exploration targeting included: • 2013 Helicopter-borne electromagnetic survey (VTEM) • 2015 and 2016, Airborne magnetic (AMAG) and radiometric (ARAD) surveying • Airborne electromagnetic (VTEM-max) surveying • Ground based gravity (GRAV) surveys • Ground based or transient electromagnetic (TEM) surveys • Borehole or downhole TEM (DHTEM) surveys
		Substantial programmes of auger, aircore and diamond drilling all previously reported.
		Historically, most exploration programs in the district were ineffective or incomplete. Commonly, regional RAB/AC programs did not penetrate through the transported overburden (many holes were less than 20 m deep). Surface geochemistry is known to be ineffective in areas of significant overburden.
		In the early 2000's, Pan Australian Resources and Western Platinum/ BHP Minerals recognised the significance of a 60 x 15 km coincident gravity-magnetic feature known as the Mount Ridley, discovered during the 1960's by the Bureau of Mineral Resources (now Geoscience Australia). Collectively they explored the region using a "Grenville-aged" Broken Hill-type Zn-Pb-Cu-Ag exploration model but never drilled a hole into the Mount Ridley. Bishop (2002) was the first to research and champion the potential of Mount Ridley for a new, large layered mafic intrusion with the

	Criteria	JORC Code explanation	Commentary
			potential to host nickel-copper sulphide deposits and PGE deposits, well before the discovery of Nova.
			The true potential of the area has been historically untested, and has remained untested until most recently, in light of a magmatic sulphide model, post the modern discovery of Nova-Bollinger.
			In more recent times, a circular geophysical signature identified in the southwest of E63/1547, was interpreted to be layered gabbroic mafic intrusion and was tested by Ridley Resources in 2009. An RC drill hole RRC001, was drilled vertically into the eastern part of the anomaly down to 136 m. Logging described a mixture of metamorphosed mafic rocks, possibly leuco- gabbro occurring with granitic gneisses. These rocks also contained magnetite, epidote, garnet and pyrite. Peak values encountered were 0.007 ppm Au, 0.003 ppm Pd, 3.2 ppm Ag, 34 ppm Cu and 56 ppm Ni. It must be noted however, that this is only one hole and the strike length of the anomaly is 9 kilometres.
			The first helicopter-borne electromagnetic survey (VTEM) was completed in March 2013 by AXG Mining Ltd, the precursor to Mt Ridley Mines, to investigate further, this geophysical feature thought to represent a layered mafic intrusion. Interpretation of the results and identification of follow-up targets was completed by SGC in October 2014 and discussed in the Annual Report Mt Ridley Mines Ltd E63/1547 Feb 2014 – Feb 2015.
7COL			Ridley Resources Ltd also conducted follow-up work on identified lignite locations in 2010 /11 conducting a small drilling program comprising 12 aircore holes (RRAC001 to RRAC012) along existing tracks. The holes achieved a maximum depth of 36 m and various lignite intersections were identified. Ongoing exploration could not be justified due to thin intersections and poor lignite grades.
			Previous exploration completed by Mt Ridley Mines
			A review of the regional gravity data indicates the Albany-Fraser Province is clearly underlain by prominent NE-trending corridors of higher density material which is interpreted to represent igneous, mafic-ultramafic rock types and probably the source of the mineralising magmas.
			Mt Ridley Mines has recognized similarly, the presence of a significant gravity anomaly inside its tenements that may indicate the presence of denser, nearer-surface, igneous intrusive rocks. Initial work to investigate this anomaly included data review, field inspection and an airborne magnetic/radiometric geophysical survey to identify both potential magnetic and non- magnetic intrusive targets. This was followed by limited ground-based geophysics, reconnaissance and infill aircore drilling, and targeted diamond drilling to physically identify the geological and geochemical nature of the priority intrusive targets and conductive targets.
			In the 2014-2015 and 2015-2016 reporting periods, Mt Ridley Mines identified through geophysics and deep drilling, three priority intrusive

Criteria	JORC Code explanation	Commentary
		targets, Targets 2, 19 & 20. It was confirmed that Targets 2, 19 & 20 contain intrusive olivine-rich igneous rocks which are known to be associated with sulphides rich in nickel and copper as revealed in the Nova deposit.
		Aircore holes at these targets have been shown to be anomalous in both nickel and copper mineralisation.
		Ground-based electromagnetic, intrusive Target 2 has a coincident FLTEM anomaly and air core drilling has also identified sulphides associated with it.
		Early-stage exploration was focused on locating the source of mineralization at these locations. Exploration work for the 2014-2015 reporting period included: • Detailed low-level airborne aeromagnetic surveying • Orientation ground-based EM surveying • Aircore Drilling • Diamond Drilling • Regional airborne VTEM surveying using the VTEM max time-domain system • Targeted ground-based EM surveying • Detailed gravity surveying
		 Exploration work for the 2015-2016 combined reporting period included: Geophysical Audio Magnetotelluric (AMT) Survey Geophysical Audio Magnetotelluric (AMT) Modelling Ground EM Surveying (FLEM) Geophysical Magnetic Survey Air Core Drilling Diamond Drilling
Geology	Deposit type, geological setting, and style of mineralisation.	E63/1547 is the central tenement in the Mt Ridley Project, situated on the 1:250,000 scale GSWA sheet Esperance SI51-06 and the 1:100,000 scale GSWA sheet Burdett 3331.
		The Mt Ridley project is located in the Albany-Fraser Mobile Belt on the south-eastern edge of the Yilgarn Craton in south-east WA. Surface geology is dominated by Cretaceous to Tertiary alluvial, sand and lacustrine cover deposits, some of which are large saline playa lakes such as Lake Halbert. Bedrock geology consists of Archaean to MesoProterozoic gneisses and granites, some intermixed with mafic and ultramafic rocks.
		The project is mainly underlain by Archaean to Meso-Proterozoic gneisses and granites; some intermixed with mafic and ultramafic rocks. The Geological Survey of WA recognise the following units in the project area (from north to south): • In the northern west: The Munglinup Gneiss - a granitic Neo-Archaean to Meso-Proterozoic gneiss. • Large area in the central portion of the tenement: Dalyup Gneiss dating from the Palaeo-Proterozoic and comprising gneissic granites, augen gneisses and possible mafics.

Criteria	JORC Code explanation	Commentary
		 consisting of recrystallized and/or porphyritic granites, probably intrusive in nature. In the far southeastern corner Coramup Gneiss ranging in age from Palaeo-Proterozoic to Meso-Proterozoic and comprising orthogneiss, quartzites and granitic gneisses.
Drill hole	A summary of all information material	Appendix 1 shows gallium assay data. The drill hole information has been
Information	to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	inserted and tubulated within Appendices 2 to 4. Easting and Northing coordinates are all referenced to GDA94, MGA projection, Zone 51.
Data	In reporting Exploration Results,	Aggregate intercepts are not incorporated. All sampling intervals are at
aggregation	weighting averaging techniques, maximum and/or minimum grade	even 1m intervals.
methods	truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used	Gallium ppm was converted to Gallium oxide (Ga ₂ O ₃) by is in a factor of 1.3442 (<u>Advanced Analytical Centre - Element-to-stoichiometric oxide conversion factors - JCU Australia</u>) Metal equivalent values are not being reported.
	for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	All drill holes were vertical and intersected the mineralisation orthogonally
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down	The gallium-REE lodes were flat lying following the profile of the gently undulating topography.

Criteria	JORC Code explanation	Commentary
	hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	The vertical drill holes through the horizontal gallium-REE mineralisation results in true widths being recorded.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the current announcement
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant results above the stated reporting criteria have previously been reported, not just the higher-grade intercepts.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Groundwater, and geotechnical studies have not commenced as part of the assessment of the project.
Further work	The nature and scale of planned further work (eg., tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Planned further work includes additional drilling to test Blocks 1 and 2 portion of the gallium/REE areas previously untested.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	Drilling data were managed in a DataShed database. Mt Ridley data was logged in the field and then imported into DataShed, with assay files uploaded in digital format upon receipt from the laboratory. All drilling information for the Mt Ridley Project was supplied to the CP as a Microsoft Access database. All data has been validated for location, survey and depth by the CP during the drilling data review and 3-D modelling processes prior to inclusion in the resource estimate. The data was compared and found to be consistent with that used in a previously published rare earths (REE) mineral resource estimate.
Site visits	Comment on any site visits	The Competent Person CP did not undertake a site visit.

Criteria	JORC Code explanation	Commentary
	undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	The CP will conduct a site visit when appropriate as part of the ongoing exploration programs. Mr Gillman (CP) will conduct a site visit when appropriate as part of the ongoing exploration programs. A site visit is not considered to be required due to the quality of the data that has been previously validated in the field.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	The geological interpretation of the Mt Ridley Gallium deposit is based on all new drilling and sampling (completed between 2022 and 2024 entirely by Mt Ridley) of the host regolith stratigraphy which has been interpreted into a 3D model of the regolith domains. The density of Air Core drilling throughout the deposit and two Diamond core holes has supported the development of an appropriately robust geological model and understanding of the mineralisation distribution sufficient for an Inferred resource. The host regolith units are generally well defined in the logged lithology records. Data is stored in a master DataShed database. Exports were in Microsoft Access format for import to modelling software. No assumptions were made or applied to the data. The data is considered to be robust due to effective database management, and validation checks to verify the quality. Original data and survey records are utilised to validate any noted issues. It is likely that further drilling will bring some variation to interpretation but is unlikely to change the overall understanding of the mineralisation. The grade estimate is mostly constrained within the regolith zone (saprolite and saprock). Logged drillhole geological data were used to guide the interpretation and further control the trends of the Mineral Resource estimate.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Mt Ridley Mineral Resource comprise three separate areas that are referred as Blocks 1, and 3. Block 1 has an approximate strike length of 5.1km by 1.8km. Block 2 has an approximate strike length of 10.2km by 2.3km. Block 3 has an approximate strike length of 10.35km by 5m. The sub-horizontal thickness of mineralised zones in the model ranges from 5 m to 50 m.
		Colore Boy
Estimation and	The nature and appropriateness of the	LeapfrogGeo/Edge was used for wireframe modelling of geological units
modelling	estimation technique(s)	A parent block of 50m (X) x 50m (Y) x 1m (Z) with sub-celling to 12.5m (X) x 12.5m (Y) x $0.25m$ (Z) was applied. This is based on drillhole spacings in the mineralised
techniques	applied and key assumptions,	domains.
	including treatment of extreme grade values,	Three separate block models were generated for each resource domain.
	domaining, interpolation	Data Compositing - samples were composited to 1m.
	parameters and maximum	Resource constraints were developed by interpretation of the drilling data in
	distance of extrapolation	conjunction with logged regolith. Most of the drilling was carried out on a 100x500n

Criteria	JORC Code explanation	Commontoni
Citteria		Commentary
	from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of byproducts. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units.	(Blocks 1 and 2). Drill coverage in Block 3 varied from a roughly 200mx400m pattern to 100m spaced holes along tracks. The resource boundaries generally do not exceed 300m from the holes at the margins of the resource. No by-product recovery has been assumed. The geological interpretation, in particular the host regolith units: saprolite and saprock, were used to constrain the estimation. It was used to guide the orientation and shape of the mineralised domains and then used as boundaries for the grade estimation, using the trend of the mineralisation and geological units to control the search ellipse direction and the major controls on the distribution of grade. A top cut of 45 ppm Ga was applied to the estimates for Blocks 1-3. Grades were estimated into a Leapfrog block model using Inverse Distance Squared (ID2). Search ellipses used anisotropy with the ellipses aligned following a clear northeasterly trend as noted in the geology. A minimum of 4 and a maximum of 12 composited (1m) samples were used for block estimates immediately around holes (search ellipse of 500x250x10m oriented at 045 degrees. The modelled grades were checked for potential over-estimation by comparing the input grades with modelled grades by utilising swath plots. The input grades were compared with the ID2 (reported) grade and kriged modelled grades. The validation plots show that: • The ID2 and kriged estimates correlate well • The modelled grades correlate well with the input data In conclusion, it is apparent that the estimation is reliable.
	Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Block 1 Swath Plot in Y 29 20 20 20 20 20 20 20 20 20
 Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and	Tonnages and grades were estimated on a dry in situ basis.

Criteria	JORC Code explanation	Commentary	
	the method of determination of the moisture content.		
Cut-off parameters	The basis of the adopted cut- off grade(s) or quality parameters applied.		ut-off grade of 20 ppm Ga was utilised for the mineralisation. For this report, the cut-off opm Ga.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Based on the orientations, thicknesses, and depths to which the mineralised zo have been modelled, the expected mining method would be open pit mining. Based on the orientations, thicknesses, and depths to which the mineralised zo have been modelled, the expected mining method would be open pit mining. Based on the orientations, thicknesses, and depths to which the mineralised zo have been modelled, the expected mining method would be open pit mining.	
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	500 micron (μm) and 25 μm used. Rebeing the relationship between mass screening at 75 μm. Acid leach testing was carried out of Winstons and Vincent Prospects. Sail beneficiation testing that were screed was supervised by Independent Met undertaken by Metallurgy Pty Ltd. Sail three strengths: 3.6g/I HCI (pH 1), 10 from 6 hours to 24 hours. ANSTO carried out twenty-eight (28) head samples (-25 μm fraction) under Condition 1: 1.5 M NaCl at 25 g/L HCl 24 h 30 °C 4 wt% solids 6, 12 and 24 h samples Short Wave Infrared Spectroscopy (S (pXRF) Infrared spectroscopy on samples were supported to the samples of the sam	sing a range of screens with apertures between sults are showing that optimum beneficiation, a rejected and REE recovered, was achieved by on 12 composite samples from the Mia, Jody, imples were the products of the earlier screen med to -25 µm. Hydrochloric acid leach testing stallurgical Operations Pty Ltd (IMO) with work amples were leached with hydrochloric acid at Og/I HCl and 25g/I HCl; and at a range of times diagnostic leach tests were carried out from 14 or two different sets of conditions. Condition 2: 1.5 M NaCl at pH 1 (Cl Matrix) 24 h 30 °C 4 wt% solids 6, 12 and 24 h samples WIR) and Portable X-ray Fluorescence Analysis was carried out by Portable Spectral Services ification and characterisation of minerals using

Criteria	JORC Code explanation	Commentary
		fifty-three (3,953) samples in total were analysed. The Spectral Geologist™ (TSG) software version 8.1.0.5 (May, 2022) was used to process collected VNIR-SWIR data. Portable x-ray fluorescence (pXRF) was also carried out on drill sample pulps using a Bruker S1-Titan instrument. This was done in conjunction to SWIR on four thousand four hundred and eighty-four (4,484) samples in total which includes 648 diamond drilling samples.
		Micro X-ray Fluorescence Spectroscopy (μ XRF) Three hundred and eighty-eight 388 end of hole samples (EOH) for lithogeochemical mapping of mainly fresh rock – saprock were analysed by Portable Spectral Services using a Bruker M4 Tornado Plus instrument. This is a rapid and non-destructive technique to quickly acquire qualitative and quantitative geochemical data at high resolution (μ m scale). The AMICS software was used to identify the minerals reported.
		Metallurgical results showed very poor REE recovery was achieved under low acid (pH 4) suggesting that the mineralisation style at the sample sites is not ionic adsorbed clay (IAC). Emphasis has been put on understanding the protolith which is key to understanding the types of clay species. Diagnostic leach tests at pH 1 for 6 h at 30 °C yielded low total RE extractions (< 20%) with a few exceptions, where the 6 h liquor extractions were between 31 and 47%, For these tests, the extractions of the HREs were greater than the LREs. Efficacy of beneficiation by staged removal of decreasing size fractions show that rare earth elements can be significantly concentrated into a -25 µm fraction by sizing alone, without the need for more complex mineral processing techniques such as gravity or flotation. Leachability and
		recovery of REE, including from different clay types, using sulphuric acid under elevated pressure and temperature conditions (PAL) generally showed low concentrations of Nd and Pr taken into solution.
		Additional control tests, including H2SO4, by Independent Metallugical Operations (IMO) had varied results, however best results were achieved from clays derived from felsic rocks. Some very high extraction rates, up to 72% of REE, were achieved using the hydrochloric acid leach at an acid concentration of 25g/l HCl within a leaching period of 24 hours, albeit that samples tested were very dilute. H2SO4 failed to provide satisfactory recovery of key elements Nd and Pr. ANSTO's testing of leachability and recovery of REE, including from different clay types from beneficiated samples, using hydrochloric acid under (near) ambient pressure and temperature is agreeable with the work carried out by IMO.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be	No environmental impacts of mining and processing have been examined as this requires a more in-depth knowledge of the proposed process flowsheet. The clay is naturally occurring and inert. The deposit is in an area of Western Australia that has numerous mining operations, open-cut, and any proposed mine would comply with the well-established environmental laws and protocols in Western Australia.

Criteria	JORC Code explanation	Commentary
	well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Density values were derived by way of a water-immersion method of sealed core samples of half PQ core, with 16 samples measured from two diamond core holes at the Block 3 Deposit (14 within the defined mineralised domains). Densities applied to the model are transported overburden (waste) of 1.53 t/m³, saprolite of 1.61 t/m³, and fresh bedrock of 2.6 t/m³.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	The Mineral Resource estimate was classified as Inferred, based on: confidence in the geological model. continuity of mineralized zones. drilling density. confidence in the underlying database; and available bulk density information. Current drill spacing supporting Inferred ranges from 100m to 400m in both the X and Y directions.
Audits or reviews Discussion o	The results of any audits or reviews of Mineral Resource estimates. f Where appropriate a statement of the relative	No external audits have been conducted on the Mineral Resource estimate. The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code.
relative	accuracy and confidence level in the Mineral Resource	The first state of the paradiment of the 2012 forth court

Criteria	JORC Code explanation	Commentary
accuracy/ confidence	estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	The statement relates to global estimates of tonnes and grade. It is likely that further drilling will bring some variation to interpretation but is unlikely to change the overall understanding of the mineralisation. There has been no mining at the Mt Ridley Deposit, so it is not possible to compare to production data.