

27 October 2025

JOINT ASX ANNOUNCEMENT

AustChina executes Heads of Agreement for Option to **Acquire Gold, Base Metals and Critical Minerals Project Portfolio**

HIGHLIGHTS

- AustChina has entered into a binding Heads of Agreement (HOA) with First Au Ltd (ASX: FAU) for an Option to acquire the Eastern Victorian Goldfield Project (Project), in the East Gippsland region of Victoria
- Once granted, AustChina will have the Option to acquire 100% interest in FAU subsidiaries Victorian Goldfields Pty Ltd and Jacquian Pty Ltd
- The Project is prospective for gold, base metals, REE and key critical minerals and previous drilling has returned high-grade gold;¹
 - ERN001: 0.2m @ 36.88g/t within broader mineralisation
 - o ERN004B: 0.5m @ 21.13g/t
 - o ERN007: 2.7m @ 6.71g/t
 - ERN008B: 10.7m @ 3.05g/t incl. 2.5m @ 8.32g/t
- AustChina will pay FAU \$75,000 cash (non-refundable) and will issue \$150,000 of AUH shares to FAU (subject to AUH shareholder approval) as an Option fee - the **Option period is 19 months**
- Should AustChina exercise the Option to acquire the subsidiaries it will pay FAU \$200,000 cash and issue \$500,000 of AUH shares to FAU (subject to AUH shareholder approval).
- If the Option was to be exercised, the Project would be a strategic addition to AustChina's project portfolio and a complement to its existing mineral resources assets

¹ As originally reported by FAU, refer ASX Announcement: (ASX:FAU) dated 31 August 2023 and titled "Haunted Stream, Victoria Delivers Further Outstanding Drilling Results". Requirements to satisfy ASX Listing Rules 5.7 and 5.22 are also included in this announcement.

AustChina Holdings Limited (ASX: AUH) ("AUH", the "Company" or "AustChina") is pleased to announce it has entered a Heads of Agreement for a conditional and exclusive option (Option) to acquire 100% interest in FAU wholly owned subsidiaries, Victorian Goldfields Pty Ltd and Jacquian Pty Ltd (together, the **Subsidiaries**) who hold the Eastern Victorian Goldfield Project (the Project), in the East Gippsland region of Victoria (Figure 1).

In addition to gold prospectivity, the Project hosts a suite of tenements prospective for silver, copper, lead and zinc as well as rare earth elements (REE) and antimony, tungsten and molybdenum.

Subject to the grant and exercise of the Option, and completion of the acquisition, the Project represents a strategic addition to AustChina's project portfolio, and will complement its existing mineral resources assets; the Sulphide Creek Gold-Antimony Project and the Mersey VMS Base Metals and Gold Project, both in Tasmania, and the Blackall Coal Project in Queensland.

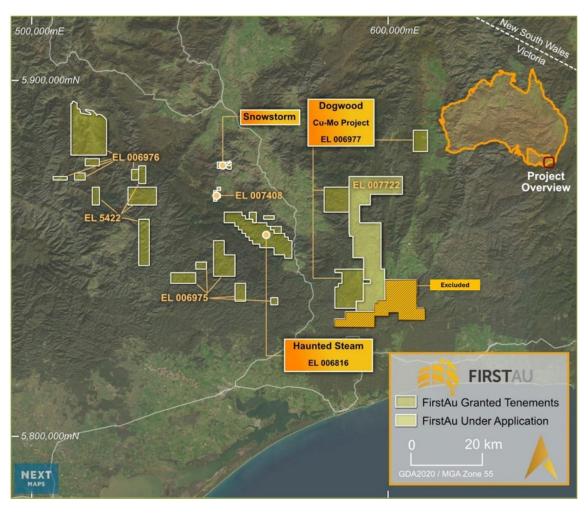


Figure 1: The Eastern Victorian Goldfield Project location map ¹

AustChina Holdings Chief Executive Officer, Andrew Fogg, commented:

"We are very excited about the opportunity to have an option to acquire the Eastern Victorian Goldfield Project. This represents an excellent exploration opportunity in an established minerals exploration region with very positive geological characteristics. In addition to the gold potential within the Project area, the tenure hosts strong prospectivity for silver, base metals along with REE and key critical minerals.

The acquisition of the Eastern Victorian Goldfield Project would represent a strategic addition to the Company's existing suite of assets and provide a strong driver for the Company to deliver shareholder value.

Upon exercise of the Option, we will seek to develop and commence our works programme over the Project and look forward to updating the market on material progress and outcomes over the coming period of time."

First Au Ltd ('FAU') Chairman, Daniel Raihani, commented:

"We're very pleased to have reached this agreement with AustChina, which we see as a positive outcome for both companies. The Eastern Victorian Goldfield Project is a quality exploration asset with strong potential, and we believe AustChina is well positioned to advance it and unlock its value.

For First AU, this transaction aligns with our strategic focus on other priority gold projects, while allowing our shareholders to retain exposure to any future upside should AustChina's exploration success continue."

Transaction summary

The key terms of the HOA are outlined below:

- **Option Fee**: Subject to shareholder approval and the renewal of EL006816 (**Renewal**) to the satisfaction of AUH, AustChina will pay FAU \$75,000 cash (non-refundable) and will issue 75,000,000 AUH shares to FAU at a deemed issue price of \$0.002 (together, **the Option Fee**) on or before the date that is 7 days after the Renewal, if the Renewal occurs on or before 7 February 2026; or 3 months following Renewal if the EL006816 Renewal occurs after 7 February 2026 (or such later date as FAU and AUH agree) (**Option Fee End Date**). The Option Fee shares are subject to 6-month voluntary escrow.
- **Exclusivity**: AUH will hold exclusive rights to acquire the Subsidiaries and the Project from execution of the HOA until the earlier to occur of settlement or termination (either by AUH or by FAU if AUH doesn't pay the Option Fee by the Option End Date).

- Option Period: On payment/issue of the Option Fee in full (Option Fee Payment Date), FAU agrees to grant AUH the Option commencing on the Option Fee Payment Date and ending 5:00pm (AWST) on the date that is 19 months after the Option Fee Payment Date (Option Period).
- **Conditions**: Exercise of the Option is conditional upon the satisfaction (or waiver) of the following conditions precedent:
 - completion of due diligence by AUH;
 - o AUH undertaking a capital raising and receiving valid applications for at least \$1 million in capital;
 - o the parties obtaining all third party approvals and consents; and
 - o AUH obtaining all shareholder and regulatory approvals (including shareholder approval for the issue of Consideration Shares (defined below)),

(together, the Conditions).

Subject to the satisfaction of the Conditions, AUH will have the right to exercise the Option.

- Commitment: During the Option Period, AUH agrees to allocate a minimum of \$750,000 towards exploration and holding costs and will undertake all activities on the Tenements in a professional and best practice manner.
- **Consideration**: Upon exercise of the Option, AUH agrees to pay \$200,000 in cash and will issue that number of AUH Shares equal to \$500,000 calculated using a share price equal to the volume weighted average price (VWAP) of AUH Shares calculated over the 14 consecutive trading days on which AUH Shares have actually traded on the ASX immediately prior to the issue date, less a discount of 10% (Consideration Shares) (together, the **Consideration**). The Consideration Shares are subject to 6-month voluntary escrow.
- **Director nomination**: Subject to completion of the acquisition, FAU will have the right to appoint a non-executive director to the AUH board subject to FAU holding a substantial (>5%) shareholding in AUH at the time.

Project overview

The East Victorian Goldfield Project comprises six exploration licences and two exploration licence applications (Table 1). The Project is initially assessed as providing four distinct but complementary exploration opportunities. These are summarised below.

Haunted Stream (EL006816). This is an ~8-8.5 km mineralised corridor of fold-hinge and shear-controlled quartz-sulphide shoots within Ordovician turbidites. The area has been tested to shallow depths (relative to Victorian analogues), and drilling has confirmed multi-metre, high-grade gold with bonanza spikes²:

ERN001: 0.2m @ **36.88g/t** within broader mineralisation

ERN004B: 0.5m @ 21.13g/t **ERN007:** 2.7m @ **6.71g/t**

ERN008B: 10.7m @ **3.05g/t** incl. 2.5m @ **8.32g/t**

These gold shoots remain open down-plunge beneath shallow historic workings, providing potential for exploration upside. This target would represent a priority exploration focus (subject to exercising the Option and completing the acquisition).

<u>Dogwood (EL006977)</u>. This area is interpreted to have porphyry copper–gold potential in the Yeoval tract (continental arc), with a 4km × 2km alteration/mineralisation footprint. Previous drilling has been undertaken, and coincident IP and geochemistry anomalies remain untested.

Dargo Block & Snowstorm-Extended (EL5422 & EL007335). These licences are interpreted as a dyke-hosted and intrusive-related gold opportunity, analogous to the Woods Point dyke swarm and Walhalla fold/fault gold systems. Field and historical records confirm dyke-hosted gold and multiple mineralisation styles across the district.

Dargo High Plains (EL006976). This is a greenfield target, interpreted to have high-grade gold potential. Numerous historic alluvial and primary gold workings are present across the licence, which are materially under-tested by modern exploration, with minimal drilling beneath historic workings.

This announcement has been approved for release by the Chairman of the Board

For further information

Andrew Fogg James Moses

Chief Executive Officer Investor & Media Relations

T: +61 7 3229 6606 T: +61 420 991 574

E: info@austchinaholdings.com E: james@mandatecorporate.com.au

² As originally reported by FAU, refer ASX Announcement: (ASX:FAU) dated 31 August 2023 and titled "Haunted Stream, Victoria Delivers Further Outstanding Drilling Results". Requirements to satisfy ASX Listing Rules 5.7 and 5.22 are also included in this announcement.

About AustChina Holdings

AustChina Holdings (ASX: AUH) is a junior ASX-listed mineral resources focused company, with a focus on key, high-demand minerals – including gold, antimony and base metals. Its current projects include the Sulphide Creek Gold Antimony Project and the Mersey Volcanogenic Massive Sulphide (VMS) Base Metals and Gold Project in active world-class mineral belts in Tasmania, and the Blackall Coal Project in Queensland. It also holds investment interests in an ASX-listed copper exploration company.

Granted Tenements

LICENCE	HOLDER	INTEREST	TYPE	EXPIRY DATE	GRANT DATE	AREA (KM)	COMMODITY
EL006976	Victorian Goldfields Pty Ltd	100%	Exploration Licence	27/03/2027	28/03/2022	155	Base Metals (copper / lead / zinc); Copper; Gold; Antimony; Rare Earth Elements; Molybdenum
EL5422	Victorian Goldfields Pty Ltd	100%	Exploration Licence	12/04/2027	13/04/2022	99	Gold; Platinum; Silver; Base Metals
EL006975	Victorian Goldfields Pty Ltd	100%	Exploration Licence	27/03/2027	28/03/2022	107	Base Metals (copper / lead / zinc); Copper; Gold; Antimony; Molybdenum
EL007335	Victorian Goldfields Pty Ltd	100%	Exploration Licence	27/03/2027	28/03/2022	7	Base Metals (copper / lead / zinc <u>);Gold;</u> Silver; Cobalt; Tin; Tungsten
EL006977	Victorian Goldfields Pty Ltd	100%	Exploration Licence	27/03/2027	28/03/2022	153	Base Metals (copper / lead / zinc); Copper; Gold; Antimony; Rare Earth Elements; Molybdenum
EL006816	Jacquian Pty	100%	Exploration Licence	22/09/2025 Expired as at Execution Date	23/09/2020	100	Gold; Base Metals (copper / lead / zinc); Silver

Applications

LICENCE	HOLDER	INTEREST	TYPE	EXPIRY DATE	APPLICATION	AREA (KM)	COMMODITY
EL007408 (Application only)	Victorian Goldfields Pty Ltd	100%	Exploration Licence	N/A	27/08/2020	0	Base Metals (copper / lead / zinc); Cobalt; Gold; Nickel; Molybdenum
EL007722 (Application only)	Victorian Goldfields Pty Ltd	100%	Exploration Licence	N/A	23/08/2021	0	Base Metals (copper / lead / zinc); Gold; Silver; Antimony; Barite; Cobalt; Nickel; Tin; Tungsten; Molybdenum

Table 1: Exploration Licences and Exploration Licences Applications within the Eastern Victorian Goldfield Project tenure

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on and fairly represents information compiled by Ian E Neilson MSc, a Competent Person who is a Registered Professional Geologist #10222 and member of the Australian Institute of Geoscientists and Society of Economic Geologists. Mr Neilson was a consultant to First Au Limited ("FAU") at the time of the ASX Release on 31 August 2023. Mr Neilson operates his own business and consults to AUH in the capacity as their exploration geologist as and when required.

Mr Neilson declares in accordance with the transparency principles of the JORC Code that he is now a shareholder of AustChina Holdings Limited. Mr Neilson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australian Code for Reporting of

Exploration Results, Mineral Resources and Ore Reserves. Mr Neilson has consented to the inclusion in this public report of the matters based on his information in the form and context in which it appears. Additionally, Mr Neilson confirms that he is not aware of any new information or data that

materially affects the information contained in the ASX releases referred to in this report.

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by FAU. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

Appendix 1 - JORC Code, 2012 Edition – Table 1 report – Ernestine Drilling project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary			
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The sampling has been carried out on diamond drilling core. A total of 9 diamond holes were sampled from a recently completed 1,047.8m drilling program. Approximately 280.1 m of core was cut and sampled from a total 833.5m drilled			
	Include reference to measures taken to ensure sample representation and the appropriate calibration of any measurement tools or systems used.	· · · · · · · · · · · · · · · · · · ·			
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Diamond core was collected into standard plastic core trays by the drilling contractor. Downhole depths determined, were then marked on wooden blocks. The diamond core was split using a diamond bladed saw into ½ core for assay, while ½ remained in the core tray for reference and future metallurgical studies. Intervals of between 0.2 and 1.0 meter samples were collected from HQ & NQ2 diamond core, which was cut for sampling. A sample size of approximately 1-2 kg minimum was collected for each sample. All samples were crushed and pulverised at the lab to -75um using CRU-31, SPL-32a with a 500g charge for Au-PAO1 photon assay for Au.			
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The diamond drilling rig, owned and operated by Precision Drilling, was used to obtain the samples. Core was both HQ and NQ2 diameter. Diamond core was oriented by the drill contractor using a Boart Longyear TRUSHOT tool. Downhole survey was completed by a gyro-tool for all drill holes. All holes had single shot surveys performed at ~15 meter intervals.			
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Diamond core sample recovery was measured and calculated during the logging, using standard RQD logging procedures.			

Criteria	JORC Code explanation	Commentary
		Recovery of the samples was generally good, generally estimated to be full, except for some sample loss at the collar of the hole, and when samples were hosted in fault zones at depth, which affected only a few samples.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	The diamond drilling generally showed good recovery (>80%), particularly within the mineralized interval.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship between recovery and grade has been identified.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All core was geologically logged by FAU's geologists using the First Au geological logging legend and protocol. Structural logging was undertaken by Ian E Neilson MSc RP Geo, FAU's Chief Geologist.
		All core was orientated, marked into meter intervals, and compared to the depth measurements on the core blocks. Any core loss recorded in the drilling database. Core was logged geologically and structurally.
		Logging information was transferred into FAU database once it was completed.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of diamond core records lithology, mineralogy estimates, mineralisation, weathering, colour and other features of the samples. All core was photographed wet and dry.
	The total length and percentage of the relevant intersections logged	All holes were logged in full.
Sub-sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken.	0.2m to 1.0-metre intervals of 1/2 core samples were collected by FAU geologist's and field staff into calico bags.
preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	n/a
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples were prepared at the ALS in Adelaide and analysis in ALS Labs in Perth. Samples were dried, and the whole sample pulverised to 70% passing 2mm, and a sub-sample of

Criteria	JORC Code explanation	Commentary		
		approx. 500g retained. A nominal 500g was used for the assay analysis. The procedure is industry standard for this type of sample analysis technique (Photon Assay).		
	Quality control procedures adopted for all sub-sampling stages to maximise representation of samples.	A CRM standard and fine blank was submitted at a rate of approximately 1 in 20 samples. At the laboratory, regular Repeats and Lab Check samples are assayed. Duplicate analysis is performed on all samples > 10 g/t Au using Fire Assay 50g charges on existing residual.		
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Diamond core field duplicates were not taken but will be measured in future if the holes are required in a Resource Estimation. The nature of the mineralisation was relatively homogenous and could be represented within a quarter core sample over 1m interval.		
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate to give an indication of mineralisation given the particle size and the preference to keep the sample weight at a targeted 1 to 2kg mass.		
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.			
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable.		
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	First Au protocol for the 2023 diamond drilling was for a single CRM (Certified Reference Material) and a fine blank to be inserted in 1 of every 20 samples. At the ALS Laboratory, regular assay Repeats, Lab Standards and Blanks are analysed. Results of the Lab QAQC were analysed on assay receipt. On analysis, all assays passed QAQC protocols, showing no levels of contamination.		
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant results were checked by First Au executives and geologists.		
JU) -	The use of twinned holes.	Not applicable.		

Criteria	JORC Code explanation	Commentary			
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All field logging is carried out using a customised logging form on a Tough Book and transferred into an Access database. Assay files are received electronically from the Laboratory. All data is stored by EarthSQL, a centralised and certified Database Administration Group on behalf of FAU. Project Access database prepared by EarthSQL This data is then transferred to a FAU centralised database			
	Discuss any adjustment to assay data.	No assay data was adjusted.			
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Diamond hole collar locations were surveyed by GPS.			
	Specification of the grid system used.	Grid projection is MGA94, Zone 55.			
	Quality and adequacy of topographic control.	A 50cm contour set derived from LIDAR and Collar pick-up of historical drill holes does an adequate job of defining the topography.			
Data spacing	Data spacing for reporting of Exploration Results.	The diamond holes here were placed for a specific target.			
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	This is not considered material.			
	Whether sample compositing has been applied.	Intervals were sampled generally at 1m or less (dependent on geology) in Diamond.			
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	It is considered the orientation of the drilling and sampling suitably captures the likely "structures" for each exploration domain.			
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	From available information, mineralisation appears moderate to steeply dipping in orientation, although more studies are required to determine true thickness. The drill angle is considered optimal to represent this, for current stage of exploration.			
Sample security	The measures taken to ensure sample security.	Samples were sealed and sent by secure freight to the ALS laboratory in Adelaide.			

Criteria		JORC Code explanation	Commentary			
Audits of reviews	or	The results of any audits or reviews of sampling techniques and data.	Sampling and assaying techniques are industry-standard. No specific audits or reviews have been undertaken at this stage in the program.			

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties,	Drilling undertaken by FAU and historic drilling information by Mantle Mining and geology reinterpreted by First Au Limited sits wholly within Haunted Stream EL006816. The tenement is held under the name of Jaquian Pty Ltd. See FAU announcement 3 rd June 2020.
	a 5	native title interests, historical sites, wilderness or national park and environmental settings.	There are no other agreements or JV, and the area is not located in a National Park or Reserve.
13		The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements included in this report are granted.
	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Most recently exploration by Mantle Mining between 2007 to 2014, completed rock chip sampling, ground magnetic surveys, and some limited drilling. From preliminary data compilation, some of the historic drilling under the old mine workings did intersect gold mineralisation, although initial analysis suggests that some of this drilling was ineffective in properly testing the lode positions due to poor structural control and will require redrilling by the company.
			Other explorers over Haunted Stream area over the past 40 years include Freeport of Australia, Canyon Resources, Enigma Gold, Condor Mining Corporation Limited and Barrick Gold. This data is still been compiled. Most of this exploration has concentrated on surface sampling of historic workings.
	Geology	Deposit type, geological setting and style of mineralisation.	Field reconnaissance and review of the literature suggests that mineralisation has an orogenic signature, is hosted in folded and faulted, Turbidite sequences predominantly comprising quartz-arenite to sandstone, black shale, siltstone and greywacke sequences of Upper Ordovician age rocks. Historic reports from explorers identified both free gold and heavily mineralized sulphide charged gold zones and were the target of early miners in the mid to late 1800's. Hand specimens indicate the presence of Arseno-pyrites, Pyrite, Chalcopyrite and Lead Zinc. This is supported by the current drilling.

	Criteria	JORC Code explanation	Commentary
			Where accessible, mapping of available adits and open stopes along with outcrop highlighted mineralized quartz veins occurred in tension vein arrays, conjugate spur and laminated veins, shear veins and hydrothermal breccia style veins occurs best in silicified, chlorite altered sandstone units immediately adjacent black shale contacts. Carbonate (+ ankerite) spotting occurs throughout the mineralized sections of rock as does minor calcite in conjugate veins.
	Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above	Drilling collars, surveys and end of hole depths and specific intersection intervals are reported in Appendix 2 following Appendix 1, Table 1 Report. These drilling results were originally released on 31 August 2023 by FAU to the ASX. ¹ .
		sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth	
4		 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does 	
		not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
	Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Diamond drilling is recorded as weighted averages. No cut-off grades applied.
		Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be	This is not applicable to reporting
		shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents recorded

Criteria	JORC Code explanation	Commentary			
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Only downhole lengths are reported, with no true widths been determined yet. All intersections occur at moderate to high angles to the drill core. Planned scissor holes to determine true width.			
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Maps and sections have been included within the report above, with scales provided.			
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	All the drilling by FAU is reported around the Ernestine area. Best intersects from each hole is reported along with assays for first two holes and supporting mineralogical logs pertaining to mineralisation style, host structure, intensity and type for all holes as comparison to assay results from first two holes to demonstrate a reasonable correlation of the continuum of mineralized stratigraphy across the fan of drill holes.			
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The drilling is specifically targeting a steeply inclined (up to 65 degrees) shoot of mineralisation hosted in an ~NS fault jog within a ~NE-SW trending plane occurring footwall to a SW dipping fault observed in an old historic working. The prospective fault compartment is being drill targeted between ~WNW-ESE trending dextral normal faults. The mineralisation envelope is anticipated to pinch and swell down plunge approximately sub-parallel to the main bedding. Historic stopes within the area plunge at attitudes approximating the dip of bedding and are observed following steep fold plunges. This linear component is further supporting the targeting of the mineralized zone.			
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work includes the continued structural logging and mapping, sampling within the project area to assist in determining additional drill targets. In conjunction with this, all historic data is being compiled for Haunted stream.			

Appendix 2 - Drilling & Results 3

³ ASX Release (FAU) Haunted Stream Victoria Delivers Further Outstanding Drilling Results 30 August 2023.

Collar Locations and Surveys

Hole ID	Easting	Northing	Z	Azimuth MAG	Dip	ЕОН
ERN001	567744	5854613	293.7895	243	-45	68.7
ERN002	567744	5854613	293.7895	254	-55	68.4
ERN003	567744	5854613	293.7895	222	-55	71.1
ERN004B	567744	5854613	293.7895	222	-60	104.5
ERN005	567744	5854613	293.7895	227	-60	110.5
ERN006	567668	5854589	292.1	84	-60	89.6
ERN007	567668	5854589	292.1	82	-66	118
ERN008	567668	5854589	292.1	95	-70	122.5
ERN009	567668	5854589	292.1	60	-45	80.2
ERN010	567670	5854580	292.4	267	-49	80.4
ERN011	567670	5854580	292.4	209	-45	133.9

Drilling Results

Hole ID			
ERN001	from	to	Au ppm
ERN001	21.8	22.2	0.96
ERN001	22.2	22.5	0.3
ERN001	22.5	23	0.08
ERN001	37.7	38.3	<0.05
ERN001	38.3	38.6	0.91
ERN001	38.6	38.85	6.85
ERN001	38.85	39.3	4.67
ERN001	39.3	39.55	4.85
ERN001	39.55	40.1	2.07
ERN001	40.1	40.3	36.88
ERN001	40.3	40.7	2.49
ERN001	40.7	41.2	3.22
ERN001	41.2	41.6	5.62
ERN001	41.6	42	4.57
ERN001	42	42.45	4.8
ERN001	42.45	42.9	9.62
ERN001	42.9	43.5	1.08
ERN001	43.5	44	7.34
ERN001	44	44.6	2.13
ERN001	44.7	45.2	3.66
ERN001	45.2	45.7	1.39
ERN001	45.9	46	0.36
ERN001	46	46.5	0.52
ERN001	46.5	47	3.21
ERN001	47	47.4	1.17
ERN001	47.4	47.7	1.39
ERN001	47.7	48.2	1.63
ERN001	48.2	48.8	1.28
ERN001	48.8	49	0.69
ERN001	49	49.5	1.37

ERN001	49.5	50	3.18
ERN001	50	50.4	2.65
ERN001	50.4	51	0.47
ERN001	51	51.5	1.2
ERN001	51.5	52	0.42

ERN002	from	to	Au ppm
ERN002	51.5	51.85	0.21
ERN002	51.85	52.3	0.91
ERN002	52.3	52.8	0.65
ERN002	52.8	53.1	1.99
ERN002	53.1	53.5	5.17
ERN002	53.85	54.35	0.69
ERN002	54.7	55	0.56
ERN002	55.3	55.8	2.88
ERN002	55.8	56.2	4.73
ERN002	56.2	56.55	3.16
ERN002	56.55	57	1.59
ERN002	<i>57</i>	57.35	6.02
ERN002	57.35	57.6	12.81
ERN002	57.6	57.9	4.51
ERN002	57.9	58.2	1.81
ERN002	58.2	<i>58.7</i>	3.25
ERN002	<i>58.7</i>	59.1	3.14
ERN002	59.1	59.4	0.93
ERN002	59.4	<i>59.75</i>	2.3
ERN002	<i>59.75</i>	60.3	1.53
ERN002	60.3	60.75	0.79
ERN002	60.75	61.25	0.29
ERN002	61.25	61.6	0.42
ERN002	61.6	62.15	3.65
ERN002	62.15	62.95	2.98

ı	ERN003	from	to	Au ppm
	ERN003	36.2	36.7	0.75
	ERN003	36.7	37.2	1.77
	ERN003	37.2	37.7	0.97
	ERN003	38.7	39.2	1.42
	ERN003	39.2	39.7	0.69
	ERN003	39.7	40.2	0.89
	ERN003	40.2	40.7	0.74
a 5	ERN003	40.7	41.2	1.82
	ERN003	41.2	41.6	1.91
	ERN003	41.6	42.3	1.54
	ERN003	42.3	43	2.81
	ERN003	43	43.6	4.47
	ERN003	43.6	44.2	2.67
	ERN003	44.2	45.1	3.19
(18)	ERN003	45.1	45.7	1.15
	ERN003	45.7	46.4	0.41
	ERN003	46.4	46.7	0.64
	ERN003	46.7	47	0.61
	ERN003	47	47.6	0.68
$(\mathcal{O}(\mathcal{O}))$	ERN003	47.6	48.2	0.27
	ERN003	48.8	49.4	0.76
75	ERN003	50	50.4	0.83
	ERN003	50.4	50.8	1.52
	ERN003	50.8	51.3	0.14
	ERN003	51.3	51.8	1.19
	ERN003	51.8	52.5	<0.07
	ERN004b	27	27.5	<0.05
	ERN004b	27.5	28	0.06
ПП	ERN004b	28	28.5	<0.05
	ERN004b	28.5	29	<0.05
	ERN004b	69	69.5	0.49
	ERN004b	69.5	70	2.08

ERN004b	70	70.5	0.59
ERN004b	70.5	71	0.36
ERN004b	71	71.5	2.53
ERN004b	71.5	72	3.71
ERN004b	72	72.5	1.5
ERN004b	72.5	73	2.48
ERN004b	73	73.5	6.27
ERN004b	73.5	74	6.11
ERN004b	74	74.5	3.8
ERN004b	74.5	75	4.44
ERN004b	75	75.5	4.73
ERN004b	75.5	76	6.19
ERN004b	76	76.5	6.53
ERN004b	76.5	77	3.43
ERN004b	77	77.5	0.36
ERN004b	77.5	78	0.25
ERN004b	78	78.5	0.79
ERN004b	79	79.5	0.66
ERN004b	79.5	80	0.88
ERN004b	80	80.5	21.13
ERN004b	80.5	81	1.16
ERN004b	81	81.5	0.34
ERN004b	86.5	87	1.4
ERN004b	87	87.5	1.17
ERN004b	87.5	88	2.74
ERN004b	88	88.5	0.36
ERN004b	88.5	89	0.07
ERN004b	89	89.5	0.43
ERN004b	89.5	90	2.54
ERN004b	90	90.5	0.08
ERN004b	90.5	91	<0.06
ERN004b	91	91.5	<0.06
ERN004b	91.5	92	0.27

ERN005	from	to	Au ppm
ERN005	35.2	35.6	<0.06
ERN005	35.6	36.2	0.06
ERN005	36.2	36.5	0.15
ERN005	36.5	37	<0.04
ERN005	37	37.5	<0.06
ERN005	51.5	51.8	<0.04
ERN005	52.3	52.8	1.21
ERN005	52.8	53.2	<0.05
ERN005	54.5	54.9	0.44
ERN005	54.9	55.4	<0.06
ERN005	55.4	55.8	<0.06
ERN005	55.8	56.3	<0.06
ERN005	56.3	56.5	<0.06
ERN005	60.6	61.1	0.59
ERN005	61.1	61.6	<0.05
ERN005	61.6	62.1	0.12
ERN005	62.1	62.6	0.67
ERN005	62.6	63.1	<0.06
ERN005	63.1	63.4	<0.08
ERN005	63.4	63.9	0.87
ERN005	63.9	64.4	0.93
ERN005	64.4	64.9	0.41
ERN005	64.9	65.4	0.9
ERN005	65.4	65.9	0.35
ERN005	65.9	66.4	0.15
ERN005	66.4	66.9	0.27
ERN005	66.9	67.4	0.17
ERN005	67.4	67.9	0.12
ERN005	67.9	68.5	<0.07
ERN005	69	69.5	0.41
ERN005	69.5	70.1	0.39
ERN005	70.1	70.6	0.85

ERNO05 70.6 71.1 2.25 ERNO05 71.5 72 3 ERNO05 72 72.5 8.47 ERNO05 72 72.5 8.47 ERNO05 73 73.5 4.2 ERNO05 73.5 74 1.32 ERNO05 74.5 75 0.87 ERNO05 74.5 75 0.59 ERNO05 75.5 76 0.59 ERNO05 76.7 77.4 0.52 ERNO05 76.7 77.4 0.52 ERNO05 77.4 77.9 0.6 ERNO05 77.4 77.9 0.6 ERNO05 77.4 77.9 0.6 ERNO05 78.4 78.9 0.81 ERNO05 78.4 78.9 0.81 ERNO05 79.4 79.9 0.55 ERNO05 80.4 80.9 1.98 ERNO05 80.4 80.9 1.98 </th <th></th> <th></th> <th></th> <th></th>				
ERNO05 71.5 72 3 ERNO05 72 72.5 8.47 ERNO05 72.5 73 7.68 ERNO05 73 73.5 4.2 ERNO05 74 74.5 0.87 ERNO05 74.5 75 0.59 ERNO05 76.7 75.7 0.51 ERNO05 76.7 77.4 0.52 ERNO05 76.7 77.4 0.52 ERNO05 76.7 77.4 0.52 ERNO05 77.4 77.9 0.6 ERNO05 77.4 77.9 0.6 ERNO05 77.4 77.9 0.6 ERNO05 78.4 78.9 0.81 ERNO05 78.4 78.9 0.49 ERNO05 79.4 79.9 0.55 ERNO05 79.9 80.4 0.77 ERNO05 80.9 81.4 1.29 ERNO05 81.9 82.3 0.59	ERN005	70.6	71.1	2.25
ERNOOS 72 72.5 8.47 ERNOOS 72.5 73 7.68 ERNOOS 73 73.5 4.2 ERNOOS 74 74.5 0.87 ERNOOS 74.5 75 0.59 ERNOOS 75.5 76 0.59 ERNOOS 76.7 77.4 0.52 ERNOOS 76.7 77.4 0.52 ERNOOS 77.4 77.9 0.6 ERNOOS 77.9 78.4 0.65 ERNOOS 78.4 78.9 0.81 ERNOOS 79.4 79.9 0.55 ERNOOS 79.4 79.9 0.55 ERNOOS 79.9 80.4 0.77 ERNOOS 80.4 80.9 1.98 ERNOOS 80.9 81.4 1.29 ERNOOS 82.3 82.8 0.76 ERNOOS 82.8 83.3 1.76 ERNOOS 83.8 84.3 0.61 <td>ERN005</td> <td>71.1</td> <td>71.5</td> <td>1.7</td>	ERN005	71.1	71.5	1.7
ERNOOS 72.5 73 7.68 ERNOOS 73 73.5 4.2 ERNOOS 73.5 74 1.32 ERNOOS 74 74.5 0.87 ERNOOS 74.5 75 0.59 ERNOOS 76 76.7 0.51 ERNOOS 76.7 77.4 0.52 ERNOOS 77.4 77.9 0.6 ERNOOS 77.9 78.4 0.65 ERNOOS 78.4 78.9 0.81 ERNOOS 79.4 79.9 0.55 ERNOOS 79.4 79.9 0.55 ERNOOS 80.4 80.9 1.98 ERNOOS 80.4 80.9 1.98 ERNOOS 81.9 82.3 0.59 ERNOOS 81.9 82.3 0.76 ERNOOS 82.3 82.8 0.76 ERNOOS 83.3 83.8 0.61 ERNOOS 83.3 84.9 0.83 <td>ERN005</td> <td>71.5</td> <td>72</td> <td>3</td>	ERN005	71.5	72	3
ERNO05 73 73.5 74 1.32 ERN005 74 74.5 0.87 ERN005 74.5 75 0.59 ERN005 75.5 76 0.59 ERN005 76 76.7 0.51 ERN005 76.7 77.4 0.52 ERN005 77.4 77.9 0.6 ERN005 77.9 78.4 0.65 ERN005 78.4 78.9 0.81 ERN005 78.4 79.9 0.55 ERN005 79.4 79.9 0.55 ERN005 79.4 79.9 0.55 ERN005 80.4 80.9 1.98 ERN005 80.9 81.4 1.29 ERN005 81.9 82.3 0.59 ERN005 82.8 83.3 1.76 ERN005 82.8 83.3 1.76 ERN005 82.8 83.3 0.61 ERN005 83.8 84.3 </td <td>ERN005</td> <td>72</td> <td>72.5</td> <td>8.47</td>	ERN005	72	72.5	8.47
ERNO05 73.5 74 1.32 ERNO05 74 74.5 0.87 ERNO05 74.5 75 0.59 ERNO05 75.5 76 0.59 ERNO05 76.7 77.4 0.52 ERNO05 76.7 77.4 0.52 ERNO05 77.4 77.9 0.6 ERNO05 77.9 78.4 0.65 ERNO05 78.4 78.9 0.81 ERNO05 78.4 78.9 0.81 ERNO05 79.4 79.9 0.55 ERNO05 79.9 80.4 0.77 ERNO05 80.9 81.4 1.29 ERNO05 80.9 81.4 1.29 ERNO05 82.3 82.3 0.59 ERNO05 82.8 83.3 1.76 ERNO05 83.8 84.3 0.61 ERNO05 83.8 84.3 0.66 ERNO05 84.3 84.9 0.	ERN005	72.5	73	7.68
ERNOOS 74 74.5 0.87 ERNOOS 74.5 75 0.59 ERNOOS 76.7 76.7 0.51 ERNOOS 76.7 77.4 0.52 ERNOOS 77.4 77.9 0.6 ERNOOS 77.9 78.4 0.65 ERNOOS 78.4 78.9 0.81 ERNOOS 78.9 79.4 0.49 ERNOOS 79.4 79.9 0.55 ERNOOS 79.9 80.4 0.77 ERNOOS 80.4 80.9 1.98 ERNOOS 80.9 81.4 1.29 ERNOOS 81.9 82.3 0.59 ERNOOS 82.8 83.3 1.76 ERNOOS 82.8 83.3 1.76 ERNOOS 83.8 84.3 0.61 ERNOOS 83.8 84.3 0.61 ERNOOS 84.3 84.9 0.83 ERNOOS 84.3 84.9 <t< td=""><td>ERN005</td><td>73</td><td>73.5</td><td>4.2</td></t<>	ERN005	73	73.5	4.2
ERNO05 74.5 75 0.59 ERNO05 75.5 76 0.59 ERNO05 76.7 77.4 0.52 ERNO05 77.4 77.9 0.6 ERNO05 77.9 78.4 0.65 ERNO05 78.4 78.9 0.81 ERNO05 78.9 79.4 0.49 ERNO05 79.4 79.9 0.55 ERNO05 79.9 80.4 0.77 ERNO05 80.9 81.4 1.29 ERNO05 80.9 81.4 1.29 ERNO05 82.3 82.3 0.59 ERNO05 82.3 82.8 0.76 ERNO05 82.3 82.8 0.76 ERNO05 82.3 82.8 0.76 ERNO05 83.3 84.3 0.61 ERNO05 83.3 84.3 0.61 ERNO05 83.8 84.3 0.66 ERNO05 84.3 84.9 <t< td=""><td>ERN005</td><td>73.5</td><td>74</td><td>1.32</td></t<>	ERN005	73.5	74	1.32
ERNO05 75.5 76 0.59 ERNO05 76.7 76.7 0.51 ERNO05 76.7 77.4 0.52 ERNO05 77.4 77.9 0.6 ERNO05 77.9 78.4 0.65 ERNO05 78.4 78.9 0.81 ERNO05 78.9 79.4 0.49 ERNO05 79.9 80.4 0.77 ERNO05 80.4 80.9 1.98 ERNO05 80.9 81.4 1.29 ERNO05 81.9 82.3 0.59 ERNO05 82.3 82.8 0.76 ERNO05 82.8 83.3 1.76 ERNO05 83.3 83.8 0.61 ERNO05 83.3 83.8 0.61 ERNO05 83.8 84.3 0.66 ERNO05 84.3 84.9 0.83 ERNO05 84.9 85.3 0.42 ERNO05 85.8 86.4	ERN005	74	74.5	0.87
ERNO05 76 76.7 77.4 0.52 ERN005 76.7 77.4 0.52 ERN005 77.4 77.9 0.6 ERN005 77.9 78.4 0.65 ERN005 78.4 78.9 0.81 ERN005 79.4 79.9 0.49 ERN005 79.4 79.9 0.55 ERN005 79.9 80.4 0.77 ERN005 80.4 80.9 1.98 ERN005 80.9 81.4 1.29 ERN005 81.9 82.3 0.59 ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.3 85.3 0.75 ERN005 85.3 85.8 0.75 ERN005 85.8	ERN005	74.5	<i>75</i>	0.59
ERNOOS 76.7 77.4 0.52 ERNOOS 77.4 77.9 0.6 ERNOOS 77.9 78.4 0.65 ERNOOS 78.4 78.9 0.81 ERNOOS 78.9 79.4 0.49 ERNOOS 79.4 79.9 0.55 ERNOOS 80.4 80.9 1.98 ERNOOS 80.4 80.9 1.98 ERNOOS 80.9 81.4 1.29 ERNOOS 82.3 82.8 0.76 ERNOOS 82.3 82.8 0.76 ERNOOS 83.3 83.8 0.61 ERNOOS 83.8 84.3 0.66 ERNOOS 84.3 84.9 0.83 ERNOOS 85.3 85.8 0.75 ERNOOS 85.8 86.4 1.07 ERNOOS 86.4 86.7 0.42 ERNOOS 86.7 87.2 0.22 ERNOOS 86.7 87.2 0.22 ERNOOS 86.7 87.2 0.59 <td>ERN005</td> <td>75.5</td> <td>76</td> <td>0.59</td>	ERN005	75.5	76	0.59
ERN005 77.4 77.9 0.6 ERN005 77.9 78.4 0.65 ERN005 78.4 78.9 0.81 ERN005 78.9 79.4 0.49 ERN005 79.4 79.9 0.55 ERN005 79.9 80.4 0.77 ERN005 80.4 80.9 1.98 ERN005 80.9 81.4 1.29 ERN005 81.9 82.3 0.59 ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 86.7 87.2 0.59 <td>ERN005</td> <td>76</td> <td>76.7</td> <td>0.51</td>	ERN005	76	76.7	0.51
ERN005 77.9 78.4 0.65 ERN005 78.4 78.9 0.81 ERN005 78.9 79.4 0.49 ERN005 79.4 79.9 0.55 ERN005 79.9 80.4 0.77 ERN005 80.4 80.9 1.98 ERN005 80.9 81.4 1.29 ERN005 81.9 82.3 0.59 ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.8 84.3 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.3 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 86.7 87.2 0.59	ERN005	76.7	77.4	0.52
ERNO05 78.4 78.9 0.81 ERN005 78.9 79.4 0.49 ERN005 79.4 79.9 0.55 ERN005 79.9 80.4 0.77 ERN005 80.4 80.9 1.98 ERN005 80.9 81.4 1.29 ERN005 81.9 82.3 0.59 ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.8 84.3 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 86.7 87.2 0.22 ERN005 86.7 87.2 0.59	ERN005	77.4	77.9	0.6
ERNO05 78.9 79.4 0.49 ERN005 79.4 79.9 0.55 ERN005 79.9 80.4 0.77 ERN005 80.4 80.9 1.98 ERN005 80.9 81.4 1.29 ERN005 81.9 82.3 0.59 ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	77.9	78.4	0.65
ERNO05 79.4 79.9 0.55 ERN005 79.9 80.4 0.77 ERN005 80.4 80.9 1.98 ERN005 80.9 81.4 1.29 ERN005 81.9 82.3 0.59 ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	78.4	78.9	0.81
ERN005 79.9 80.4 0.77 ERN005 80.4 80.9 1.98 ERN005 80.9 81.4 1.29 ERN005 81.9 82.3 0.59 ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	78.9	79.4	0.49
ERN005 80.4 80.9 1.98 ERN005 80.9 81.4 1.29 ERN005 81.9 82.3 0.59 ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	79.4	79.9	0.55
ERN005 80.9 81.4 1.29 ERN005 81.9 82.3 0.59 ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	79.9	80.4	0.77
ERN005 81.9 82.3 0.59 ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	80.4	80.9	1.98
ERN005 82.3 82.8 0.76 ERN005 82.8 83.3 1.76 ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	80.9	81.4	1.29
ERN005 82.8 83.3 1.76 ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	81.9	82.3	0.59
ERN005 83.3 83.8 0.61 ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	82.3	82.8	0.76
ERN005 83.8 84.3 0.66 ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	82.8	83.3	1.76
ERN005 84.3 84.9 0.83 ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	83.3	83.8	0.61
ERN005 84.9 85.3 0.42 ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	83.8	84.3	0.66
ERN005 85.3 85.8 0.75 ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	84.3	84.9	0.83
ERN005 85.8 86.4 1.07 ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	84.9	85.3	0.42
ERN005 86.4 86.7 0.42 ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	85.3	85.8	0.75
ERN005 86.7 87.2 0.22 ERN005 87.2 87.7 0.59	ERN005	85.8	86.4	1.07
ERN005 87.2 87.7 0.59	ERN005	86.4	86.7	0.42
	ERN005	86.7	87.2	0.22
ERN005 87.7 88.2 0.96	ERN005	87.2	87.7	0.59
	ERN005	87.7	88.2	0.96

	ERN005	88.2	88.7	0.26
	ERN005	88.7	89.2	0.73
	ERN005	89.2	89.7	0.29
	ERN005	89.7	90.2	2
	ERN005	90.2	90.7	1.12
	ERN005	90.7	91.2	1.39
	ERN005	91.2	91.7	1.61
	ERN005	91.7	92	3.04
	ERN005	92	92.5	1.91
	ERN005	92.5	93	1.49
	ERN005	93.5	94	2
	ERN005	94	94.5	0.78
	ERN005	94.5	95	2.8
	ERN005	95	95.5	2.15
	ERN005	95.5	96	1.28
20	ERN005	96	96.5	0.84
	ERN005	96.5	97	2.44
	ERN005	97	97.5	0.66
	ERN005	97.5	98	0.25
	ERN005	98	98.5	1.12
	ERN005	99	99.5	0.59
	ERN005	99.5	99.8	1.19
	ERN005	99.8	100.4	2.4
	ERN005	100.4	101.1	0.76
	ERN005	101.1	101.5	0.81
	ERN005	101.5	102	1.1
	ERN005	102	102.5	1.4
	ERN005	102.5	103	1.03
	ERN005	103	103.5	2.65
	ERN005	103.5	103.9	0.64
	ERN005	103.9	104.2	1.09
	ERN005	104.2	104.7	9.6
	ERN005	104.7	105.6	2.03

ERN005	106	106.5	2.52
ERN005	106.5	107	2.39
ERN005	107	107.5	1.16
ERN005	107.5	108	0.64

ERN006	from	to	Au ppm
ERN006	34.7	35	<0.06
ERN006	35	35.5	2.97
ERN006	35.5	36	1.11
ERN006	36	36.5	1.43
ERN006	36.5	36.9	2.09
ERN006	36.9	37.4	2.93
ERN006	37.4	37.8	2.45
ERN006	37.8	38.1	0.25
ERN006	38.1	38.6	<0.06
ERN006	38.6	39	<0.05
ERN006	39	39.5	0.21
ERN006	39.5	40	<0.06
ERN006	40	40.5	<0.06
ERN006	40.5	41	0.87
ERN006	41	41.5	<0.05
ERN006	41.5	42	0.12
ERN006	42	42.5	<0.05
ERN006	42.8	43.1	2.81
ERN006	43.1	43.5	0.16
ERN006	50.3	50.8	0.41
ERN006	50.8	51.1	0.39
ERN006	51.1	51.5	0.37
ERN006	51.5	52	1.23
ERN006	52	52.6	0.26
ERN006	53	53.3	0.58
ERN006	53.3	53.6	0.71
ERN006	53.6	54.1	0.43

	ERN006	54.1	54.6	2.81
	ERN006	54.6	55	3.6
	ERN006	55	55.5	0.12
	ERN006	55.5	55.8	0.21
	ERN006	55.8	56.2	<0.05
	ERN006	56.2	56.6	0.2
	ERN006	59.8	60.4	0.16
	ERN006	60.4	60.9	2.16
	ERN006	60.9	61.4	1.98
	ERN006	61.4	61.9	1.44
	ERN006	61.9	62.4	1.52
	ERN006	62.4	62.6	<0.05
	ERN006	76.9	77.1	<0.06
	ERN006	77.4	77.7	<0.05
	ERN006	77.7	78.2	0.2
210	ERN006	78.2	78.7	0.97
	ERN006	78.7	79.1	0.12
	ERN006	79.1	79.7	0.66
	ERN006	79.7	80.2	0.5
	ERN006	80.2	80.6	0.13
	ERN006	83	83.5	0.33
	ERN006	83.5	83.9	<0.07
	ERN006	83.9	84.2	0.23
	ERN006	84.2	84.7	0.67
	ERN006	84.7	85	0.25
	ERN006	85	85.5	0.29
	ERN006	85.5	86	0.6

ERN007	from	to	Au ppm
ERN007	9.4	9.7	<0.05
ERN007	9.7	9.9	0.08
ERN007	9.9	10.2	<0.04
ERN007	39.9	40.25	0.07

ERN007 40.25 41 0.1 ERN007 41.15 41.35 3.06 ERN007 42.15 41.35 3.06 ERN007 42.5 43 0.43 ERN007 43.3 43.4 0.41 ERN007 47.8 48.2 0.43 ERN007 48.35 48.6 0.09 ERN007 48.95 49.05 3.16 ERN007 49.05 49.4 0.19 ERN007 49.8 50.3 <0.05 ERN007 49.8 50.3 <0.05 ERN007 50.3 50.7 0.07 ERN007 50.3 50.7 0.07 ERN007 50.3 50.7 0.07 ERN007 50.3 50.7 0.07 ERN007 51.6 52 <0.05 ERN007 54.2 54.7 0.42 ERN007 55.5 55.8 <0.06 ERN007 55.5 55.8				
ERN007 41.15 41.35 3.06 ERN007 42 42.5 2.01 ERN007 42.5 43 0.43 ERN007 43 43.4 0.41 ERN007 47.8 48.2 0.43 ERN007 48.35 48.6 0.09 ERN007 48.95 49.05 3.16 ERN007 49.05 49.4 0.19 ERN007 49.8 50.3 <0.05	ERN007	40.25	41	0.1
ERN007 42 42.5 2.01 ERN007 42.5 43 0.43 ERN007 47.8 48.2 0.43 ERN007 47.8 48.2 0.43 ERN007 48.35 48.6 0.09 ERN007 48.95 49.05 3.16 ERN007 49.05 49.4 0.19 ERN007 49.4 49.8 0.13 ERN007 49.8 50.3 <0.05	ERN007	41	41.15	0.46
ERN007 42.5 43 0.43 ERN007 43 43.4 0.41 ERN007 47.8 48.2 0.43 ERN007 48.35 48.6 0.09 ERN007 48.95 48.95 1.34 ERN007 48.95 49.05 3.16 ERN007 49.05 49.4 0.19 ERN007 49.8 50.3 <0.05	ERN007	41.15	41.35	3.06
ERN007 43 43.4 0.41 ERN007 47.8 48.2 0.43 ERN007 48.35 48.6 0.09 ERN007 48.95 49.05 1.34 ERN007 48.95 49.05 3.16 ERN007 49.05 49.4 0.19 ERN007 49.8 50.3 <0.05	ERN007	42	42.5	2.01
ERN007 47.8 48.2 0.43 ERN007 48.35 48.6 0.09 ERN007 48.6 48.95 1.34 ERN007 48.95 49.05 3.16 ERN007 49.05 49.4 0.19 ERN007 49.4 49.8 0.13 ERN007 50.3 50.7 0.07 ERN007 50.3 50.7 0.07 ERN007 50.3 50.7 0.07 ERN007 50.3 50.7 0.07 ERN007 51.6 52 <0.05	ERN007	42.5	43	0.43
ERN007 48.35 48.6 0.09 ERN007 48.6 48.95 1.34 ERN007 48.95 49.05 3.16 ERN007 49.05 49.4 0.19 ERN007 49.8 50.3 <0.05	ERN007	43	43.4	0.41
ERN007 48.6 48.95 1.34 ERN007 48.95 49.05 3.16 ERN007 49.05 49.4 0.19 ERN007 49.4 49.8 0.13 ERN007 49.8 50.3 <0.05	ERN007	47.8	48.2	0.43
ERN007 48.95 49.05 3.16 ERN007 49.05 49.4 0.19 ERN007 49.4 49.8 0.13 ERN007 50.3 50.7 0.05 ERN007 50.3 50.7 0.07 ERN007 50.7 51 0.18 ERN007 51.6 0.09 ERN007 51.6 52 <0.05	ERN007	48.35	48.6	0.09
ERN007 49.05 49.4 0.19 ERN007 49.4 49.8 0.13 ERN007 49.8 50.3 <0.05	ERN007	48.6	48.95	1.34
ERN007 49.4 49.8 0.13 ERN007 49.8 50.3 <0.05	ERN007	48.95	49.05	3.16
ERN007 49.8 50.3 <0.05	ERN007	49.05	49.4	0.19
ERN007 50.3 50.7 0.07 ERN007 50.7 51 0.18 ERN007 51 51.6 0.09 ERN007 51.6 52 <0.05	ERN007	49.4	49.8	0.13
ERN007 50.7 51 0.18 ERN007 51 51.6 0.09 ERN007 51.6 52 <0.05	ERN007	49.8	50.3	<0.05
ERN007 51 51.6 0.09 ERN007 51.6 52 <0.05	ERN007	50.3	50.7	0.07
ERN007 51.6 52 <0.05	ERN007	50.7	51	0.18
ERN007 54.2 54.7 0.42 ERN007 54.7 55.1 2.48 ERN007 55.1 55.5 0.16 ERN007 55.5 55.8 <0.06	ERN007	51	51.6	0.09
ERN007 54.7 55.1 2.48 ERN007 55.1 55.5 0.16 ERN007 55.5 55.8 <0.06	ERN007	51.6	52	<0.05
ERN007 55.1 55.5 0.16 ERN007 55.5 55.8 <0.06	ERN007	54.2	54.7	0.42
ERN007 55.5 55.8 <0.06	ERN007	54.7	55.1	2.48
ERN007 55.8 56.4 0.22 ERN007 56.4 57.1 0.18 ERN007 57.1 57.5 0.34 ERN007 57.5 58 0.62 ERN007 58 58.2 0.68 ERN007 58.3 59 1.04 ERN007 59 59.8 0.54 ERN007 59.8 60.6 0.33 ERN007 60.6 61 <0.05	ERN007	55.1	55.5	0.16
ERN007 56.4 57.1 0.18 ERN007 57.1 57.5 0.34 ERN007 57.5 58 0.62 ERN007 58 58.2 0.68 ERN007 58.3 59 1.04 ERN007 59 59.8 0.54 ERN007 59.8 60.6 0.33 ERN007 60.6 61 <0.05	ERN007	55.5	55.8	<0.06
ERN007 57.1 57.5 0.34 ERN007 57.5 58 0.62 ERN007 58 58.2 0.68 ERN007 58.3 59 1.04 ERN007 59 59.8 0.54 ERN007 59.8 60.6 0.33 ERN007 60.6 61 <0.05	ERN007	55.8	56.4	0.22
ERN007 57.5 58 0.62 ERN007 58 58.2 0.68 ERN007 58.3 59 1.04 ERN007 59 59.8 0.54 ERN007 59.8 60.6 0.33 ERN007 60.6 61 <0.05	ERN007	56.4	57.1	0.18
ERN007 58 58.2 0.68 ERN007 58.3 59 1.04 ERN007 59 59.8 0.54 ERN007 59.8 60.6 0.33 ERN007 60.6 61 <0.05	ERN007	57.1	57.5	0.34
ERN007 58.3 59 1.04 ERN007 59 59.8 0.54 ERN007 59.8 60.6 0.33 ERN007 60.6 61 <0.05	ERN007	57.5	58	0.62
ERN007 59 59.8 0.54 ERN007 59.8 60.6 0.33 ERN007 60.6 61 <0.05	ERN007	58	58.2	0.68
ERN007 59.8 60.6 0.33 ERN007 60.6 61 <0.05	ERN007	58.3	59	1.04
ERN007 60.6 61 <0.05 ERN007 67.5 68 1.08 ERN007 68 68.4 0.83	ERN007	59	59.8	0.54
ERN007 67.5 68 1.08 ERN007 68 68.4 0.83	ERN007	59.8	60.6	0.33
ERN007 68 68.4 0.83	ERN007	60.6	61	<0.05
	ERN007	67.5	68	1.08
ERN007 68.4 69 0.9	ERN007	68	68.4	0.83
	ERN007	68.4	69	0.9

		1		1
	ERN007	69	69.5	0.54
	ERN007	69.5	69.8	1.17
	ERN007	69.8	70.4	1.56
	ERN007	70.4	71.25	0.33
	ERN007	71.25	71.7	0.46
	ERN007	71.7	72.2	1.21
	ERN007	72.2	72.8	1.99
	ERN007	72.8	73.5	0.31
	ERN007	73.5	73.95	0.12
	ERN007	73.95	74.1	1.4
	ERN007	74.1	74.7	4.57
	ERN007	74.7	75.25	0.73
	ERN007	75.25	75.7	0.42
	ERN007	75.7	76.2	0.9
	ERN007	86	86.45	0.68
22	ERN007	86.45	87	1.03
	ERN007	87.4	87.8	18.87
	ERN007	88.35	88.8	6.35
	ERN007	88.8	89.6	3.76
	ERN007	89.6	90.1	2.36
	ERN007	90.1	90.5	0.81
	ERN007	90.5	90.8	1.03
	ERN007	90.8	91	0.64
	ERN007	91	91.5	0.61
	ERN007	91.5	92	1.54
	ERN007	92	92.3	0.5
	ERN007	92.3	92.8	0.88
	ERN007	92.8	93	0.22
	ERN007	93	93.7	0.49
	ERN007	93.7	94.25	0.57
	ERN007	94.25	94.8	0.65
	ERN007	94.8	95.25	1.54
	ERN007	95.25	95.8	0.66

ERN007	95.8	96.2	0.37
ERN007	96.2	96.6	<0.05
ERN007	96.6	97.2	0.24
ERN007	97.2	97.9	0.55
ERN007	97.9	98.4	0.09
ERN007	98.4	99	3.42
ERN007	99.5	100	<0.04
ERN007	100	100.3	<0.05
ERN007	100.3	100.6	0.16
ERN007	104.5	105	1.21
ERN007	105	105.65	1.81
ERN007	105.65	106.15	1.22
ERN007	106.15	106.6	0.89
ERN007	106.6	107.3	0.39
ERN007	107.3	108	0.14
ERN007	108	108.5	0.81
ERN007	108.5	109	0.12
ERN007	109	109.6	0.08
ERN007	109.6	110	0.63
ERN007	110	110.55	2.53
ERN007	110.55	111.2	0.39
ERN007	111.2	111.7	1.12
ERN007	111.7	112.2	0.88
ERN007	112.2	112.5	2.84
ERN007	112.5	112.85	0.72
ERN007	112.85	113.5	0.46
ERN007	113.5	114	0.08
ERN007	114	114.3	0.85
ERN007	114.7	115	0.15

ERN008B	from	to	Au ppm
ERN008B	6.8	7.2	1.7
ERN008B	7.2	8	1.16
ERN008B	8	8.6	0.91

ERN008B 8.6 9	1.45
ERN008B 9 9.6	1.33
ERN008B 9.6 10 <0.05	
ERN008B 40.5 41.2 <0.05	
ERN008B 41.2 41.7	0.31
ERN008B 41.7 42	0.91
ERN008B 42 42.5	3.17
ERN008B 42.5 43	2.54
ERN008B 43 43.5	1.16
ERN008B 43.5 43.9	2.85
ERN008B 43.9 44.3	0.34
ERN008B 44.3 44.9	0.49
ERN008B 44.9 45.3	0.59
ERN008B 45.3 45.6	1.2
ERN008B 45.6 45.95	0.05
ERN008B 45.95 46.15	2.71
ERN008B 46.15 46.7	0.78
ERN008B 46.7 46.8	0.29
ERN008B 46.8 47.6	0.3
ERN008B 48.45 49.1	1.38
ERN008B 49.1 49.5	1.63
ERN008B 49.5 50	0.52
ERN008B 50 50.6	0.18
ERN008B 50.6 51.1	0.54
ERN008B 51.1 51.65	0.52
ERN008B 51.65 51.8	0.59
ERN008B 51.8 52.35	0.96
ERN008B 52.35 53	0.75
ERN008B 53 53.6	0.44
ERN008B 53.6 54	0.91
ERN008B 54 54.7	1.14
ERN008B 54.7 55.25	0.14
ERN008B 55.25 55.65	

ERN008B	55.65	56.4	<0.05
ERN008B	56.4	57.25	0.25
ERN008B	57.25	57.8	0.41
ERN008B	57.8	58.5	0.64
ERN008B	58.5	58.8	<0.06
ERN008B	59.4	59.6	0.81
ERN008B	59.6	60.1	0.98
ERN008B	60.1	60.5	1.12
ERN008B	70.65	71.25	0.11
ERN008B	71.6	71.9	<0.05
ERN008B	71.9	72.65	<0.05
ERN008B	72.65	73.3	0.07
ERN008B	73.3	74	0.79
ERN008B	74	74.5	0.27
ERN008B	74.5	75	0.16
ERN008B	75	75.9	<0.05
ERN008B	75.9	76.5	0.08
ERN008B	76.5	77	0.26
ERN008B	77	77.6	0.92
ERN008B	77.6	78.35	0.92
ERN008B	78.35	78.85	3.34
ERN008B	78.85	79.35	1.72
ERN008B	79.35	80.15	1.37
ERN008B	80.15	81	1.31
ERN008B	81	81.7	0.94
ERN008B	81.7	82.35	0.72
ERN008B	82.35	82.85	0.28
ERN008B	82.85	83.35	0.2
ERN008B	83.35	83.85	0.06
ERN008B	83.85	84.55	0.1
ERN008B	84.55	85.05	0.11
ERN008B	85.05	85.55	<0.05
ERN008B	85.9	86.6	0.1

ERN008B	86.6	87	0.65
ERN008B	87	87.6	2.4
ERN008B	87.6	88.2	1.55
ERN008B	88.2	88.7	0.54
ERN008B	88.7	89.4	1.46
ERN008B	89.4	89.85	3.16
ERN008B	89.85	90.3	0.63
ERN008B	90.3	90.7	0.11
ERN008B	90.7	91.7	0.14
ERN008B	91.7	92.1	0.13
ERN008B	92.1	92.6	0.57
ERN008B	92.6	93.3	0.23
ERN008B	93.3	93.7	0.34
ERN008B	93.7	94.05	0.68
ERN008B	94.75	95.45	5.24
ERN008B	95.45	96	11.82
ERN008B	96	96.5	8.62
ERN008B	96.5	97.1	3.81
ERN008B	97.1	97.7	1.93
ERN008B	97.7	98	3.41
ERN008B	98	98.6	1.13
ERN008B	98.6	98.9	0.62
ERN008B	99.4	100.05	1.04
ERN008B	100.05	100.4	0.5
ERN008B	100.4	100.9	3.55
ERN008B	100.9	101.3	0.47
ERN008B	101.3	101.7	1.48
ERN008B	101.7	102.1	0.58
ERN008B	102.1	102.5	1.13
ERN008B	102.5	103.2	0.65
ERN008B	103.2	103.8	1.7
ERN008B	103.8	104.4	0.86
ERN008B	104.4	105.05	0.21

ERN008B	105.05	105.35	0.8
ERN008B	105.35	105.8	0.09
ERN008B	105.8	106.35	0.27
ERN008B	106.35	106.7	0.52
ERN008B	106.7	107.3	0.58
ERN008B	107.3	107.9	0.12
ERN008B	107.9	108.55	0.24
ERN008B	108.55	109.05	0.27
ERN008B	109.05	109.85	<0.05
ERN008B	109.85	110.25	<0.05
ERN008B	110.25	111.05	0.13
ERN008B	111.05	111.5	0.31
ERN008B	111.5	112	<0.04
ERN008B	112	112.2	<0.05
ERN008B	112.2	112.45	0.46
ERN008B	112.45	112.65	6.65
ERN008B	112.65	113.35	4.01
ERN008B	113.35	114	0.96
ERN008B	114	114.5	2.43
ERN008B	114.5	114.95	0.84
ERN008B	114.95	115.6	2.6
ERN008B	115.6	116.15	0.25
ERN008B	116.15	116.6	0.6

ERN009	from	to	Au ppm
ERN009	32	32.6	<0.05
ERN009	32.6	33.2	<0.05
ERN009	33.2	33.9	<0.04
ERN009	33.9	34.4	<0.06
ERN009	34.4	34.9	<0.06
ERN009	34.9	35.5	<0.05
ERN009	35.5	36.1	<0.04
ERN009	36.1	36.75	0.47
ERN009	36.75	37.6	2.98

ERN009	37.6	38	0.92
ERN009	38	38.5	0.47
ERN009	38.5	39	0.29
ERN009	39	39.5	0.12
ERN009	39.5	40.2	0.12
ERN009	40.2	40.6	<0.06
ERN009	40.6	40.95	0.1
ERN009	40.95	41.45	<0.05
ERN009	41.45	42	0.29
ERN009	42	42.3	<0.05
ERN009	46.65	47.3	0.34
ERN009	47.3	48.1	6.14
ERN009	48.1	48.55	0.74

ERN009	48.55	49.1	0.47
ERN009	54	54.65	0.42
ERN009	54.65	54.95	2.74
ERN009	54.95	55.3	2.47
ERN009	55.3	56	0.37
ERN009	56	56.65	0.34
ERN009	71.2	71.85	0.22
ERN009	71.85	72.55	2.25
ERN009	72.55	73	1.78
ERN009	73	73.5	1.54
ERN009	73.5	74.2	0.56
ERN009	74.2	74.9	0.55
ERN009	74.9	75.2	<0.05

