

15 October 2025 | ASX RELEASE

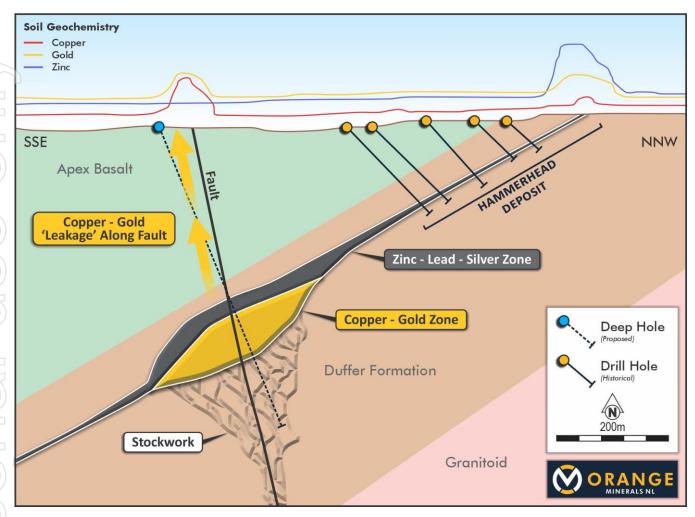
Lennon's Find Project: Rock chips up to 2,948g/t Ag identified ahead of drilling deep anomaly.

HIGHLIGHTS

- New rock chips samples taken along an identified 4.5km mineralised trend Lennon's Find Project,
 Western Australia, return outstanding grades including;
 - o 2,948 g/t Ag, 3.55 g/t Au, 17.4% Pb (OLRS38),
 - o 746 g/t Ag, 3.4% Cu (OLRS22)
 - o 5.5 g/t Au & 22.4% Pb (OLRS35)
 - o 583 g/t Ag, 5.29% Cu & 5.70% Zn (OLRS20)
- Rock chip results increase confidence ahead of drilling a 650m diamond hole in November to test a
 deep induced polarisation (IP) anomaly.
- WA Government Exploration Incentive Scheme to partially fund the drilling.
- Lennons Find hosts a near surface resource of 1.55 Mt at 5.9% zinc, 0.2% Cu, 1.6% Pb, 0.28 g/t Au, and 84g/t Ag¹ and has never had any deep drill testing.

Orange Minerals NL (ASX: OMX) ("Orange" or "the Company") is looking forward to drilling the deep copper/gold IP anomaly at its polymetallic Lennon's Find Project in Western Australia after high-grade rock chips up to 2,948 g/t Ag confirmed the project's prospectivity.

In recent site preparation for the upcoming diamond drilling program at Lennon's Find, Orange collected additional rock chip samples from surface gossans along the 4.5-kilometre mineralised corridor returning excellent results (Table 1).


The upcoming 650-metre diamond hole will be the first to test a pronounced induced polarisation (IP) anomaly located beneath the existing Resource of 1.55 Mt at 5.9% zinc, 0.2% Cu, 1.6% Pb, 0.28 g/t Au, and 84g/t Ag, within the Duffer Formation. The anomaly is interpreted to represent the feeder zone to the known zinc-lead-silver mineralisation.

Orange Minerals Managing Director Mr Chris Michael said:

"The rock chip sampling has continued to confirm the strength of the mineralised corridor and refined our understanding of the system's geometry. The upcoming 650-metre diamond hole will directly test the centre of the IP anomaly, which we interpret as the potential feeder zone of a larger VMS system beneath the surface."

¹The information in this release which relates to the Estimation and Reporting of Mineral Resources at the Lennon's Find can be found in the Company's announcement "Orange Minerals Acquires Lennon's Find Project Pilbara WA" on 8 August 2023.

Figure 1. Lennon's Find Project conceptual VHMS model. See Figure 3 Section Line for Soil Geochemistry

November Drill Program

Terra Drilling has been contracted to commence a 650m diamond hole in early November. The program is supported by a \$110,930 grant from the WA Government's Exploration Incentive Scheme (EIS). Drill planning is complete while ground works and the drill pad are ready.

Drilling to date has been shallow and focused on the oxide potential of the known deposits which sit evenly along the length of the project's 4.5km mineralised corridor; Grey Nurse, Tiger, Hammerhead, Mako and Bronze Whaler.

The upcoming hole will test a compelling copper-gold IP anomaly interpreted to represent VMS style mineralisation at depth below the zinc-barite anomalous gossans that may represent a distal component to a buried core zone.

The anomaly was identified by an IP survey conducted in September 2024, which extended earlier IP work carried out in 2018, and soil sampling prior to that. Notably, the combined surveys show the IP anomaly is coincidental with a magnetic linear trend and an overlying fault, thus increasing its prospectivity.

Rock Chip Sampling

Thirty-five new rock chip samples were collected from the 4.5km Lennon's Find mineralised trend in M 45/368. The samples were collected to validate historical programs and infill gaps in previous sample surveys where the zone thins or has been displaced by NE-SW faults. The highest assay results from the sampling were gold (5.50 ppm OLRS35), silver (2948 ppm OLRS38), copper (5.29% OLRS20), lead (22.40% OLRS35) and zinc (5.70% OLRS20) – see Figure 1. Assays are reproduced in Appendix 2 and significant results are listed in Table 1².

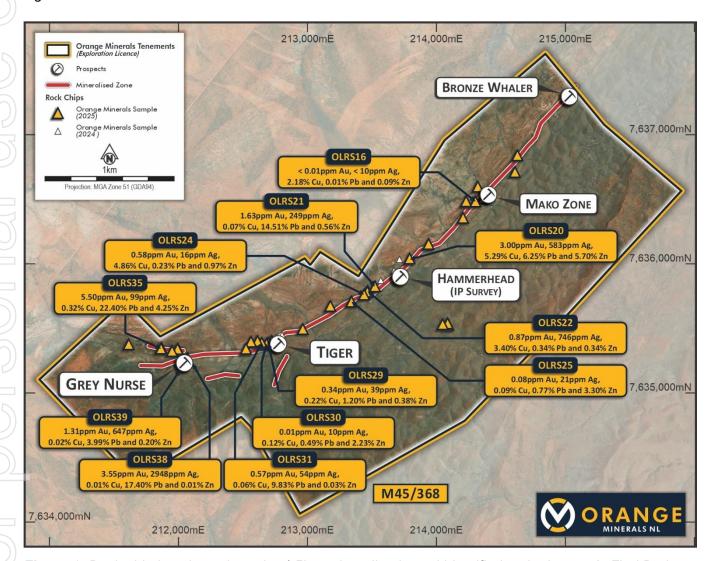


Figure 2. Rock chip locations along the 4.5km mineralised trend identified at the Lennon's Find Project.

² For historical drillhole collars and results see Laconia Resources Limited ASX announcements (9 March 2011, 3 October 2011 and 12 October 2011).

Samp_No	Easting	Northing	Rl	Au_ppm	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm
OLRS16	214366	7636511	331	<0.01	<10	21782	94	877
OLRS20	213791	7636041	339	3.00	583	52883	62527	56988
OLRS21	213522	7635825	336	1.63	249	739	145082	5648
OLRS22	213463	7635783	336	0.87	746	34001	3368	3393
OLRS24	213438	7635762	338	0.58	16	48613	2333	9734
OLRS25	213341	7635707	340	0.08	21	915	7677	32983
OLRS29	212695	7635389	340	0.34	39	2196	11976	3845
OLRS30	212683	7635384	339	0.01	10	1181	4886	22270
OLRS31	212646	7635389	337	0.57	54	597	98299	285
OLRS35	211868	7635350	330	5.50	99	3187	223993	42509
OLRS38	212072	7635267	346	3.55	2948	144	174007	81
OLRS39	212068	7635267	345	1.31	647	243	39892	1959

Table 1. Lennon's Find Project significant rock chip assays.

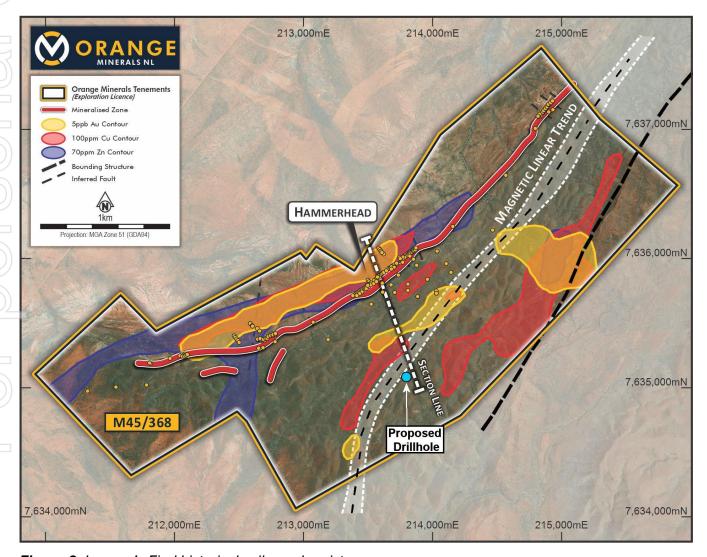


Figure 3. Lennon's Find historical soil geochemistry.

Historical Soil Sampling - Laconia Resources 2012

Laconia Resources conducted a 134-sample soil survey on a 200m spacing across the mining lease in 2012. Anomalism covers the mafic schists of the Apex Basalt, and d general elevation of copper and gold would be expected as a lithological response to the mafic units, but a broad zone seems to be greatly influenced by the position of a magnetic feature and by a regional bounding structure in the southeastern corner of the mining lease (Figure 3). Zinc, as expected, was anomalous over the main gossan trend, with values up to 1470ppm.

Geological Setting

The Lennon's Find project is located in the Archean Marble Bar greenstone belt on the SE boundary of the Mount Edgar Batholith. The greenstone rocks are comprised of felsic schists of the Duffer Formation overlain by the Apex Basalt, and both formations are part of the Warrawoona Group. The package dips to the SE beneath, or faulted against, rocks of the Fortescue Group. The Duffer Formation is comprised of three laterally persistent units: a basal quartzo – feldspathic schist (Unit 1), meta sedimentary rocks, mostly psammites and pelites (Unit 2) and an upper quartz – muscovite schist (Unit 3). All the known base metal sulphides deposits occur within the upper part of the Duffer Formation.

Base metal mineralisation at Lennon's Find is considered to be VMS style and has been mapped over a strike of 4.5km as discontinuous gossans and disseminated sulphide zones. The base metal mineralisation is predominantly zinc – lead – copper – silver - gold, with significant amounts of barite, and occurs as stratiform, lenticular bodies. Five deposits have been identified being Grey Nurse, Tiger, Hammerhead, Mako and Bronze Whaler.

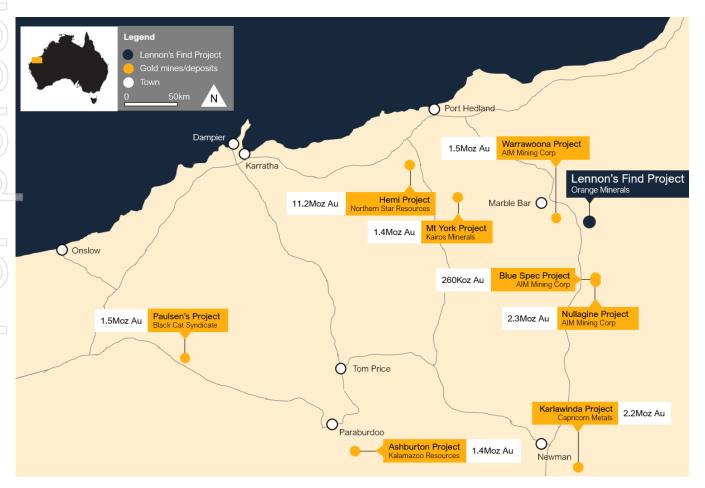


Figure 4. Lennon's Find Project location.

This ASX announcement has been authorised for release by the Board of Orange Minerals NL.

For further information, please contact:

Chris Michael
Managing Director
Orange Minerals
contact@orangeminerals.com.au
+61 8 6102 2039

Gareth Quinn Investor Relations Republic IR gareth@republicir.com.au 0417 711 108

Competent Persons Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Phil Shields, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Shields is an employee of Orange Minerals NL and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Shields consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Statement

This release includes forward – looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and are based on current assumptions. Should one or more of the uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs or opinions should change.

Streamlined Competent Person Statement (LR 5.23)

The information in this announcement relating to Exploration Results for the Lennon's Find Project was previously reported in ASX releases dated [insert relevant previous date(s)]. The Company confirms that it is not aware of any new information or data that materially affects the information included in those earlier announcements, and that all material assumptions and technical parameters underpinning those results continue to apply and have not materially changed. This announcement includes additional rock-chip sampling results which do not materially change the overall interpretation of the project.

About Orange Minerals NL

Orange Resources NL is an exploration company listed on the ASX (ASX: OMX) with Australian-based projects in the NSW Lachlan Fold Belt (LFB), WA Eastern Gold Fields and Pilbara in WA, all world-class mineral provinces. The LFB of NSW hosts major mines including Cadia/Ridgeway, North Parkes and Lake Cowal and the tenements in the Eastern Goldfields of WA are close to the Daisy Milano gold mine and Black Cat Resources Majestic Project. The Orange Minerals exploration team plan to rapidly explore its tenement packages with aggressive exploration programmes at its key properties. The company is currently focussing on the Calarie & Wisemans Creek gold/base metal Projects in NSW, the Majestic/Kurnalpi gold, the Lennon's Find Base Metal and the Mulga Rocks Uranium/Critical Minerals Projects in WA.

APPENDIX 1: Laconia Resources Limited – Historical Lennon's Find Soil Samples

Samp No	Easting MGA	Northing_MGA	Au ppb	Ag ppm	Bi ppm	Cu ppm	Pb ppm	Sb ppm	Zn ppm	Samp No	Easting MGA	Northing_MGA	Au ppb	Ag ppm	Bi ppm	Cu_ppm	Pb ppm	Sb ppm	Zn ppm
LF001	210973	7635088	1	-0.05	0.08	-6	4	0.06	20	LF068	212973	7635288	2	0.10	0.08	61	7	0.08	38
LF002	211173	7635088	1	-0.05	0.10	7	6	0.06	40	LF069	212173	7635088	4	0.25	0.06	69	6	0.28	50
LF003	211373	7635088	1	-0.05	0.22	19	18	0.08	85	LF070	212373	7635088	2	0.10	0.06	64	7	0.04	32
LF004	211573	7635088	1	0.10	0.16	10	6	0.06	34	LF071	212573	7635088	1	0.30	0.14	81	9	0.06	82
LF005	211773	7635088	2	0.10	0.14	26	8	0.04	35	LF072	212773	7635088	-1	0.05	0.08	31	5	0.04	26
LF006	211973	7635088	4	0.05	0.08	25	4	0.04	30	LF073	212973	7635088	1	0.10	0.04	73	4	0.04	68
LF007	211173	7634888	1	-0.05	0.30	22	23	0.12	121	LF074	213173	7635088	1	0.05	0.06	57	3	0.06	22
LF008 LF009	211373 211573	7634888 7634888	-1 -1	-0.05 -0.05	0.12	8 6	5 4	0.06	22	LF075 LF076	213373 213573	7635088 7635088	2	-0.05 0.10	0.04	62 106	2	0.04	30 37
LF010	211773	7634888	1	0.05	0.12	32	9	0.04	38 58	LF077	213773	7635088	3	-0.05	0.10	67	2	-0.02	42
LF011	211973	7634888	3	-0.05	0.04	62	2	-0.02	41	LF078	213973	7635088	15	0.15	0.06	73	3	0.04	65
LF012	212173	7634888	1	0.05	0.04	67	4	0.04	29	LF079	214173	7635088	4	0.05	0.04	100	3	0.06	32
LF013	212373	7634888	2	0.05	0.06	74	8	-0.02	70	LF080	214373	7635088	4	0.05	0.04	83	2	-0.02	34
LF014	212573	7634888	1	0.10	0.10	66	11	0.06	153	LF081	214173	7634888	3	-0.05	0.04	107	3	0.04	46
LF015	212773	7634888	-1	-0.05	0.04	60	4	-0.02	42	LF082	213973	7634888	3	-0.05	0.04	32	3	0.04	24
LF016	212773	7634688	-1	-0.05	0.14	14	8	0.06	25	LF083	211973	7635288	2	0.40	0.38	70	42	0.12	274
LF017	212173	7634688	-1	-0.05	0.20	23	6	0.06	40	LF084	212173	7635288	8	0.20	0.40	126	23	0.16	1470
LF018	211973	7634688	-1	-0.05	0.34	18	7	0.04	29	LF085	212373	7635288	9	0.20	0.88	47	12	0.12	262
LF019	211773 211573	7634688	-1 -1	0.05 -0.05	0.14	31	8	0.06	37	LF086 LF087	212573 212773	7635288 7635288	3	0.20	0.16	22	12	0.04	52
LF020 LF021	211373	7634688 7634688	-1	-0.05	0.34	15 6	5	0.08	26 16	LF087	212773	7635288	4	0.15 0.10	0.26	58 34	14 14	0.10	54 36
LF021 LF022	211573	7634488	-1	-0.05	0.08	7	4	0.06	20	LF089	213973	7636088	2	0.10	0.06	62	3	0.04	44
LF023	211773	7634488	-1	-0.05	0.16	24	7	0.06	31	LF090	214173	7636088	3	0.10	0.06	85	3	-0.02	69
LF024	213573	7635888	21	2.00	8.58	1050	178	0.28	1470	LF091	214373	7636288	2	0.05	0.04	64	2	0.06	61
LF025	213773	7635888	2	0.20	0.10	57	14	0.06	51	LF092	214173	7636288	3	0.35	0.26	64	29	0.10	109
LF026	213973	7635888	3	0.05	0.08	104	4	0.04	53	LF093	214373	7636488	1	0.15	0.18	32	9	0.04	52
LF027	214173	7635888	1	0.05	0.08	78	4	0.04	42	LF094	213373	7634888	3	0.05	0.06	74	3	0.04	33
LF028	214373	7635888	-1	-0.05	0.06	66	3	0.04	40	LF095	213173	7634888	2	-0.05	0.08	56	2	0.04	30
LF029	214573	7635888	2	0.05	0.06	74	3	-0.02	60	LF096	212913	7634888	1	-0.05	0.08	64	3	0.08	40
LF030	214773	7635888	5	0.05	0.04	118	2	0.04	49	LF097	212973	7634688	1	-0.05	0.04	63	3	0.10	41
LF031 LF032	214973 214973	7635888	8 5	0.05 -0.05	0.06	120 90	3 5	0.04	71 64	LF098 LF099	213173 213373	7634688 7634688	-1	-0.05 -0.05	0.06	54 116	2	0.06	22 37
LF032 LF033	214973	7635688 7635688	4	0.05	0.06	126	3	0.06	51	LF100	213573	7634688	2	-0.05	-0.02 -0.02	53	3	0.08	48
LF034	214375	7635688	3	0.05	0.04	66	2	0.04	40	LF101	213773	7634688	-1	-0.05	-0.02	53	2	-0.02	32
LF035	214175	7635688	9	0.20	0.64	107	4	0.10	41	LF102	213973	7634688	2	0.05	0.12	88	4	0.06	72
LF036	213978	7635688	5	0.05	0.06	85	4	0.04	53	LF103	213773	7634888	3	-0.05	0.04	46	2	0.04	30
LF037	213773	7635688	6	0.10	0.04	101	3	-0.02	31	LF104	213573	7634888	4	0.10	0.10	57	4	0.06	58
LF038	213573	7635688	3	0.05	0.10	63	7	0.06	44	LF105	214573	7636088	7	0.15	0.06	95	3	0.06	40
LF039	213373	7635688	1	0.55	0.86	107	78	0.16	359	LF106	214773	7636088	10	0.10	0.04	81	3	0.04	42
LF040	213173	7635688	5	0.30	0.84	111	18	0.06	93	LF107	214973	7636088	5	0.05	0.08	109	5	0.10	80
LF041 LF042	212773 212913	7635488	7	0.10	0.22	170	17	0.06	792	LF108	215173	7636088	10	-0.05 -0.05	0.04	98 43	3	0.06	70 46
LF042 LF043	212913	7635488 7635488	3	0.20	0.22	31 52	18 10	0.10	67 44	LF109 LF110	215373 215573	7636088 7636288	1	-0.05	0.18	32	11 10	0.20 0.10	39
LF043	213173	7635488	-1	0.10	0.12	70	4	0.04	35	LF111	215373	7636288	1	-0.05	0.10	35	15	0.10	35
LF045	213573	7635488	2	0.05	0.06	56	3	0.04	38	LF112	215173	7635888	13	0.10	0.04	129	2	0.06	67
LF046	213773	7635488	3	-0.05	0.06	57	4	0.04	45	LF113	215173	7636288	2	-0.05	0.06	118	3	0.08	59
LF047	213973	7635488	6	0.10	0.08	44	5	0.04	46	LF114	215173	7636488	6	-0.05	0.04	56	2	0.04	35
LF048	214173	7635488	1	-0.05	0.04	63	2	-0.02	64	LF115	215373	7636688	4	-0.05	0.10	134	4	0.10	78
LF049	214573	7635688	2	-0.05	0.04	77	2	-0.02	33	LF116	215373	7636888	2	0.05	0.04	81	3	0.06	54
LF050	214373	7635488	2	0.10	-0.02	98	2	-0.02	62	LF117	215173	7637088	1	-0.05	-0.02	35	2	0.04	26
LF051	214573	7635488	3	0.05	0.06	126	3	0.04	61	LF118	215173	7636888	1	0.15	-0.02	58	2	-0.02	51
LF052	214773	7635488	2	-0.05	0.04	107	3	0.06	38	LF119	215173	7636688	1	-0.05	0.04	67	2	0.04	49
LF053 LF054	214573 214373	7635288 7635288	2	0.05 -0.05	0.04	129 73	2	0.04 -0.02	45 44	LF120 LF121	214973 214773	7636288 7636288	3	-0.05 -0.05	0.06	70 71	3	0.12	52 47
LF054 LF055	214373	7635288	2	-0.05	0.04	107	2	-0.02	27	LF121 LF122	214773	7636288	2	-0.05	0.04	57	3	0.12	47
LF055	213973	7635288	1	0.05	0.04	79	2	-0.02	42	LF122	214573	7636488	2	0.05	0.04	78	2	0.04	43
LF057	213773	7635288	1	0.10	0.04	112	2	0.04	36	LF124	214773	7636488	1	0.05	0.04	64	2	0.04	32
LF058	213573	7635288	36	0.25	0.38	102	3	0.04	33	LF125	214973	7636488	1	-0.05	0.04	63	2	0.06	64
LF059	212973	7634288	2	0.05	0.12	24	6	0.14	25	LF126	215573	7636488	1	-0.05	0.12	38	13	0.08	43
LF060	213173	7634288	1	0.05	0.08	69	3	0.08	39	LF127	215773	7636488	1	-0.05	0.12	38	14	0.10	42
LF061	213373	7634488	5	0.05	0.08	56	6	0.14	67	LF128	215573	7636688	1	-0.05	0.12	37	13	0.10	42
LF062	213573	7634488	-1	-0.05	-0.02	67	2	-0.02	40	LF129	214973	7636688	1	0.05	0.04	91	2	-0.02	56
LF063	213173	7634488	-1	-0.05	0.06	55	2	0.06	26	LF130	214973	7636888	-1	0.05	0.08	67	4	0.04	51
LF064	212973	7634488	-1	-0.05	0.08	56	4	0.06	41	LF131	214973	7637088	4	0.15	0.10	65	6	0.04	39
LF065 LF066	212773 213373	7634488	-1	-0.05 -0.05	-0.02	60 67	5 2	0.08	44 29	LF132 LF133	214773 214573	7636888 7636688	-1	0.05 -0.05	0.04	49 7	3	-0.02 -0.02	27 7
LF066 LF067	213373	7635288 7635288	-1 -1	-0.05	0.02	58	3	0.04	50	LF133 LF134	214573	7636688	-1 1	-0.05	0.04	66	3	0.12	54
LFU0/	2131/3	/033206	-1	0.13	0.00	50	э	0.00	50	LF134	214//3	7030008	1 1	-0.03	0.04	1 00	_ 3	0.12	54

APPENDIX 2: Orange Minerals – Lennon's Find Rock Chip Samples

	Samp_No	Easting	Northing	Au_ppm	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm
	OLRS7	214093	7635526	< 0.01	<10	75	2	85
	OLRS8	214047	7635531	< 0.01	19	25	92	45
	OLRS9	213938	7636154	<0.01	<10	<10	145	64
	OLRS12	214205	7636356	0.16	27	1529	4496	441
	OLRS13	214205	7636356	0.01	<10	2504	2399	725
	OLRS14	214229	7636484	< 0.01	<10	31	23	2045
	OLRS15	214319	7636599	<0.01	<10	<10	27	266
	OLRS16	214366	7636511	< 0.01	<10	21782	121	877
	OLRS17	214608	7636712	<0.01	<10	74	38	51
	OLRS18	214627	7636841	< 0.01	<10	32	22	200
	OLRS19	214302	7636483	1.65	<10	289	537	2135
	OLRS20	213791	7636041	3.00	583	52883	62527	56988
	OLRS21	213522	7635825	1.63	249	739	145082	5648
)	OLRS22	213463	7635783	0.87	746	34001	3368	3393
	OLRS23	213466	7635789	0.03	<10	810	89	2160
	OLRS24	213438	7635762	0.58	16	48613	2333	9734
	OLRS25	213341	7635707	0.08	21	915	7677	32983
)	OLRS26	213177	7635673	0.04	37	1690	218	223
	OLRS27	212964	7635495	<0.01	<10	31	102	128
	OLRS28	212723	7635403	0.03	<10	1466	912	5527
	OLRS29	212695	7635389	0.34	39	2196	11976	3845
	OLRS30	212683	7635384	0.01	10	1181	4886	22270
	OLRS31	212646	7635389	0.57	54	597	98299	285
	OLRS32	212613	7635401	0.11	<10	241	123	126
	OLRS33	212523	7635342	0.02	<10	480	369	775
	OLRS34	212562	7635397	< 0.01	15	103	173	550
	OLRS35	211868	7635350	5.50	99	3187	223993	42509
	OLRS36	211865	7635343	0.02	<10	298	268	925
	OLRS37	211951	7635324	0.25	21	87	563	211
	OLRS38	212072	7635267	3.55	2948	144	174007	81
	OLRS39	212068	7635267	1.31	647	243	39892	1959
	OLRS40	211997	7635339	<0.01	<10	125	137	1825
	OLRS41	211993	7635340	0.02	<10	20	191	116
	OLRS42	211615	7635376	0.09	50	118	4614	319
	OLRS43	214085	7635539	0.03	10	17	894	111

APPENDIX 3: Table 1.0

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	 Nature and quality of sampling (e.g., cut channels, random chips or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the public report. In cases where 'industry standard' work has been this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverized to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Orange Mineral Rock Chip sampling (OLRS7 – 43) A representative sample was collected from exposed outcrops and weathered areas by a company geologist. It is important to note that these samples may not reflect the potential mineral grade at greater depths. A 1 – 3kg sample was bagged from each location. Samples were collected along the 4.5km strike of the Lennons Find mineralisation trend. Field observations were recorded at each sample point Photos were taken of all sample locations Historical Soil Sampling – Laconia Resources Limited 2012 Samples were at an average of 10cm below surface. Average soil sample size was approximately 500 grams 134 soil samples collected on 200m spacing over the mining lease M 45/368 The strip along the northern boundary of the license was not sampled as it covered the Mount Edgar Granite.

Criteria	JORC Code Explanation	Commentary
Drilling Techniques	Drill type (e.g., core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face sampling bit or other type, whether core is orientated and if so, by what method, etc.).	No new drilling in this report
Drill Sample Recovery	Method of recording and accessing core and chip sample recoveries and results accessed. Measures taken to maximise sample recovery and ensure the representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss / gain of fine / coarse material.	No new drilling in this report
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	 Rock chip sample field observations were recorded at each sample point. The sample results are not used in Mineral Resource Estimates.
Sub Sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet 	 All samples were dried and coarse crushed (nominal 6mm) Samples were pulverized (nominal 85% passing 75 um).

Criteria	JORC Code Explanation	Commentary
	 or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate / second half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Sample sizes are appropriate for the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc. 	 Orange Minerals Rock Chip Samples: Samples sent to the accredited SGS Kalgoorlie for fire assay and multi element analysis and SGS Perth for multi element over range. Samples were assayed for gold by Fire Assay (GO_FAP50V10) – 50g sample charge and MP-AES finish. Multi element, 4 acid digest (GE_ICP40Q20) and ICP-OES finish for 8 elements (Ag, As, Bi, Cu, Fe, Mo, Pb, and Zn). Historical Soil Sampling – Laconia Resources Limited 2012: Samples were analysed at Ultratrace Laboratories Perth for Au, Pt and Pd (FA003 method), Ag, Bi, Pb, Sb and Sn (AR102 method) and Cr, Cu, Ni and Zn (AR101 method). AR101 method is aqua regia digest followed by ICP-AES. AR102 method is aqua regia digest followed by ICP-MS. FA003 is a fire assay procedure.

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 No verification will be undertaken for these initial samples that will not be used in any resource estimates. The samples were to check the validity of historical sampling. SGS conducted repeat assaying and included laboratory standard checks for the OMX samples.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down hole surveys), trenches, mine workings and other locations used in Mineral Resource Estimation. Specification of the grid system used. Quality and accuracy of topographic control. 	 All samples were located using a Garmin GPS using MGA94 Zone 51 coordinates. The accuracy is considered sufficient for an early exploration sampling program.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure (s) and classification applied. Whether sample compositing has been applied. 	 The sampling represents an initial reconnaissance program over the Lennons Find mineralisation. The samples are not considered for Mineral Resource estimation. Data spacing / distribution was dependent on the identification of the main gossan and mineralisation in the outcrop. Distance between rock chip samples varies, data spacing was dictated by availability of outcrop.

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structure is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The sampling was conducted in a selective manner targeting supergene precious and base metal mineralisation from outcrops. No new drilling in this report. No attempt has been made to demonstrate geological or grade continuity between sample points.
Sample security	The measures taken to ensure sample security	Samples were securely packed in a polyweave bag and sealed with a cable tie to mitigate contamination or unapproved handling. Samples were transported to SGS Kalgoorlie by a Company Geologist.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been conducted to date.

Section 2: Reporting of Exploration Results

(Criteria listed in the previous section also apply to this section)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name / number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 In August 2023, a binding term sheet was entered into with Musketeer Mining Ltd, to acquire up to a 75% share in the Lennons Find Polymetallic Project 75km southeast of Marble Bar in the Pilbara region, WA. Lennons Find includes a Mining Lease (M 45/368) Orange Minerals can earn 51% of the Lennons Find project by spending A\$500,000 (A\$1M in total by 31 March 2028.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	M 45/368 has been the subject of previous exploration by numerous companies, including Cominco Exploration (1969), Serem Australia (1976-1977), Centenary International Mining (1984 – 1988), Gascoyne Gold Mines (1995), Jabiru Metals (2007), Laconia Resources (2011 – 2012) and Musketeer Mining (current).
Geology	Deposit type, geological setting, and style of mineralisation.	 The Lennons Find deposits consist of stratiform, lenticular sulphide bodies hosted by the Duffer Formation. The Duffer Formation is characterized by basal quartzo-feldspathic schist, overlain by clastic metasedimentary rocks, in turn overlain by quartz-muscovite schist. The formation hosts five mineralised zones, occurring at two stratigraphic levels 10-60m beneath the contact with the overlying Apex Basalt. An upper horizon within the quartz muscovite schist, located 10 – 20m from the contact, is intensely mineralised and contains the Tiger, Hammerhead and Bronze Whaler deposits. The mineralisation generally consists of sphalerite, chalcopyrite and galena, associated with pyrite and barite. The mineralisation style combined with features such as vertical metal zonation, texture and its stratiform mode suggests the deposits are volcanogenic (VMS) origin.

Criteria	JORC Code Explanation	Commentary
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes. Easting and northing of the drill hole Elevation or RL of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth Hole length 	 No new drilling in this report. Historical Laconia Soil Sampling has been tabulated in Appendix 1. The rock chip data has been tabulated in Appendix 2
Data aggregation methods	In reporting Exploration results, weighting averaging techniques, maximum and / or minimum grade truncations and cut off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths are reported, there should be stated, and some typical examples.	 No new drilling results have been reported No aggregation methods applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration results. If the geometry of the mineralisation with respect to the drill hole is known, its nature should be reported. If it is not known and only the down-hole lengths are reported, there should be a clear statement to this effect (e.g. down hole length, true width not known). 	No new drilling in this report

Criteria	JORC Code Explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of the drill hole collar locations and appropriate sectional views.	Maps and images are included within the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration results.	All relevant and material exploration data for the target area has been discussed, reported or referenced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including, geological observations, geophysical survey results, geochemical survey results, bulk samples – size and method of treatment, metallurgical test results, bulk density, groundwater, geotechnical and rock characteristics, potential deleterious or contaminating substances.	 This report relates to the recent rock chip sampling by Orange Minerals in M 45/368. The results and data provided in this announcement add further meaning and understanding to the geological knowledge of the Lennons Find deposit.
Further work	The nature and scale of planned further work (e.g., tests for lateral or depth extensions or large – scale step out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Orange Minerals is planning to drill one deep diamond drill hole (650m) to test for sulphide mineralisation below the Hammerhead deposit. A drill company has been contracted for completion in Q4 2025.