ASX / MEDIA RELEASE

29 August 2025

CROWN PRINCE GOLD DEPOSIT CONTINUES TO GROW AT DEPTH

HIGHLIGHTS

The known extent of South-Eastern Zone (SEZ) mineralisation continues to expand at depth with further drill results received and incorporated into the mineralisation model for Crown Prince.

Significant intersections include:

- 3m at 43.10g/t Au from 239.65m, including 1m @ 69.4g/t Au from 245m in NGGRCDD1034.
- 36.3m @ 2.22g/t Au from 367.5m in NGGRCDD980

Open pit mining is progressing well with ore deliveries to Westgold Resources Limited's Bluebird Gold Processing Plant ("BBGO") on track for commencement in September.

Near mine drilling is also being undertaken, with satellite deposits near Crown Prince Operations being investigated as potential future development options.

New Murchison Gold Limited **(ASX:NMG)** ("**NMG**" or the "**Company**") is pleased to announce further results from near mine exploration activities at the Crown Prince Gold Mine (**Crown Prince**) at the Company's flagship Garden Gully Gold Project near Meekatharra, Western Australia.

Results from diamond drilling targeting mineralisation down plunge from the south-eastern and northern zone of mineralisation (Figure 1) outside the current Mineral Resource Estimate envelope indicate that ore zones extend well below the existing open pit, where mining has recently commenced.

Diamond hole NGGRCDD1034 drilled in central part of SEZ has returned high grade gold with up to 69.4g/t Au over 1m from 245m depth within a broader intersection of 3m at 43.10g/t Au from 245m (Figure 2). This high-grade intersection is located 75m below the base of the ultimate pit design at Crown Prince. Additionally, this hole adds to the confidence of mineralisation in the central part of SEZ (Figure 4).

Diamond hole NGGRCDD980 returned a wide and relatively continuous intersection of 36.3m @ 2.22g/t Au from 367.5m (Figure 3). This wide intersection is considered highly encouraging as the Crown Prince SEZ structure is strongly persisting at depth, this hole being the deepest drilled into the SEZ mineralised structure.

Alex Passmore NMG's CEO commented: "These intersections expand the underground mining potential of the Crown Prince Gold Mine. The high-grade results we are reporting today are from outside the existing resource which is likely to give good extensions to the resource inventory in these areas."

Registered Address
New Murchison Gold Limited
ACN 085 782 994

Level 2, 5 Ord Street West Perth WA 6005 E: info@newmurchgold.com.au

T: +61 (08) 9389 6927

W: newmurchgold.com.au

Projects

Garden Gully Gold Project

<u>Corporate</u>

Shares on Issue 10,733m Share Price \$0.02 Market Cap \$215m

ASX Code NMG

Gold mineralisation at Crown Prince is contained within quartz carbonate veins and surrounding alteration zones hosted within a package of mafic rocks including mafic schist (after dolerite and basalt) and occasional ultramafic and high magnesium basalts.

The mineralised zones are related to deformation and extension of the country rocks (mafic package) which is interpreted to have led to the formation of an en-echelon stepping vein array, which has been subsequently folded and offset by related shearing in the same deformation event.

Mineralisation is also present as supergene upgraded zones overprinting primary rock fabrics which has resulted in caprock and oxide gold resources adjacent to the primary mineralised lodes.

The diamond drilling results outlined in this release are well below the top of fresh rock (and hence supergene zones). Natural ground surface at Crown Prince is at 485mRL and this latest drilling is targeting around 225m below this level at 260mRL (Figure 4).

The intercept in NGGRCDD1034 is around 200m along strike from previously reported high grade results associated with the plunging drag fold at the SEZ ore body. Mineralisation in this area demonstrates widths and shapes that are expected to be very amenable to underground mining. The Company is working towards a resource update and underground feasibility study to underpin the future of mining at the Crown Prince Gold Mine well beyond the current 30-month open pit mine life.

Table 1: Drill hole details outlined in this release.

11									
	Hole ID	Max Depth	Dip angle	Azimuth	Easting	Northing	Elevation	Drill Type	Pre-collar Depth
	NGGRCDD976	282	-60	330	646018	7073517	490	RCDD	150
	NGGRCDD977	325	-60	330	646029	7073493	490	RCDD	150
	NGGRCDD980	666	-60	330	646074	7073420	489	RCDD	90
	NGGRCDD1034	313	-60	330	646123	7073551	480	RCDD	150
	NGGRCDD1035	361	-61.5	327	646142	7073550	480	RCDD	150

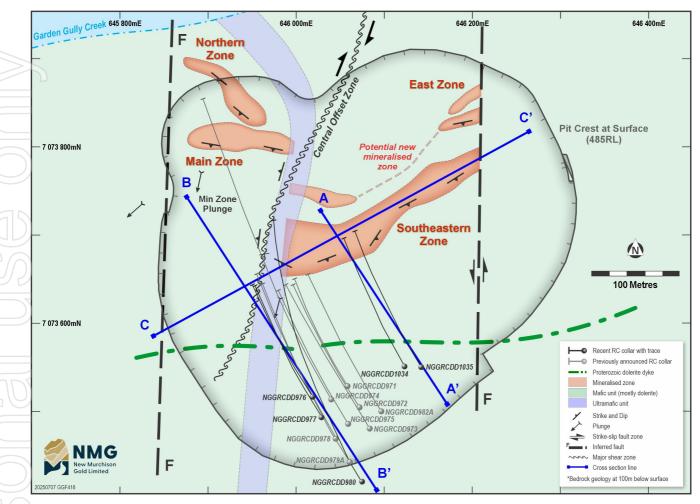
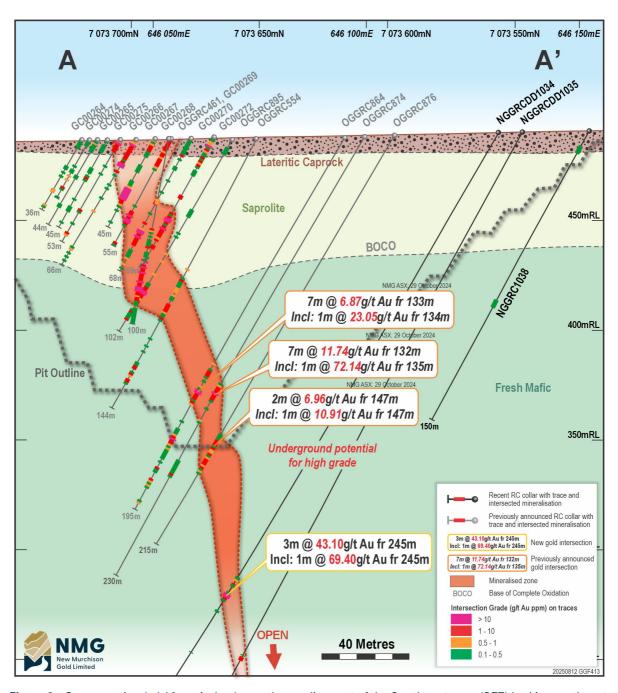



Figure 1: Plan view with recent drillhole traces, ore bodies and simplified geology.

 $\textbf{\textit{Figure 2:.} Cross section (+/-10m \textit{window)} over \textit{the median part of the Southeast zone (SEZ) looking northeast.} \\$

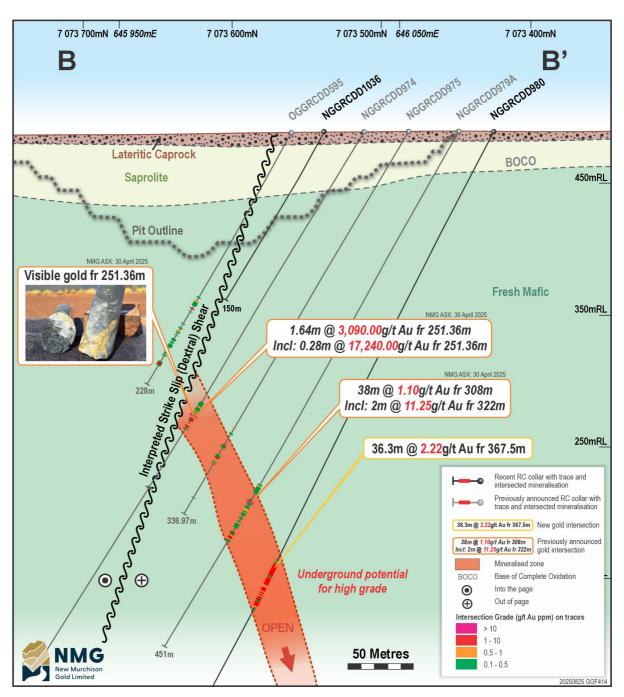
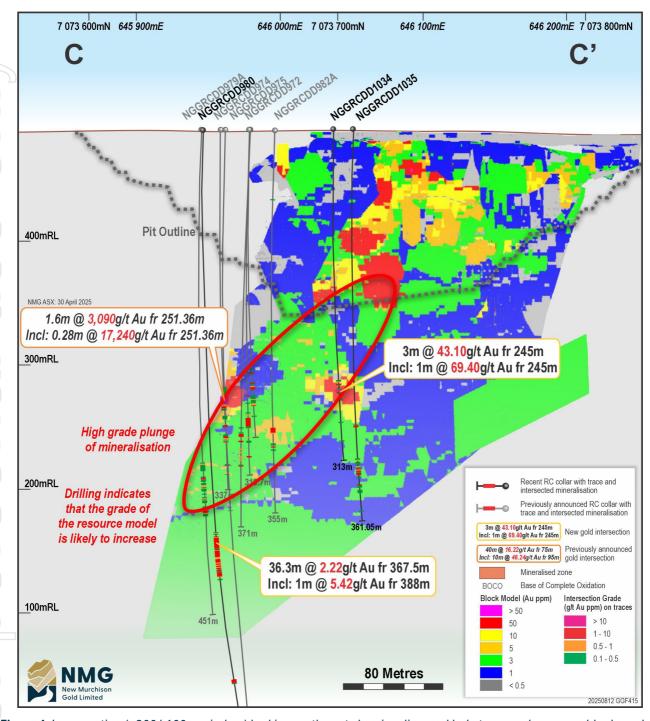



Figure 3: Cross section (+/-10m window) over the western end of the Southeast zone (SEZ) looking northeast.

Figure 4: Long section (+300/-100m window) looking northwest showing diamond hole trace and resource block model at SEZ

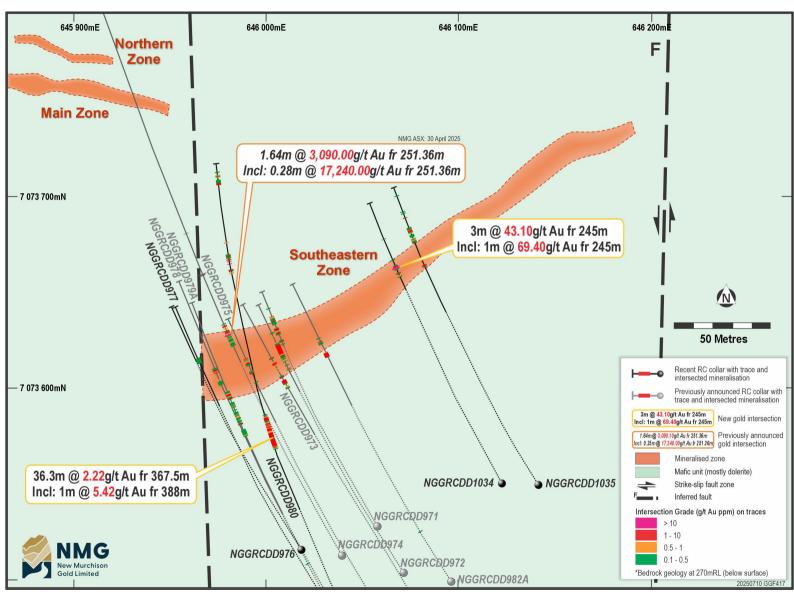


Figure 5: Horizontal section view at 260m RL (+/-40m window) showing interpreted SEZ and high-grade intersections in the recent diamond holes.

Authorised for release to ASX by the Board of New Murchison Gold Limited

For further information please contact:

Alex Passmore

Chief Executive Officer

E: info@newmurchgold.com

newmurchgold.com.au

Jane Morgan

Investor and Media Relations

E: jm@janemorganmanagement.com.au

ABOUT NEW MUCHISON GOLD

New Murchison Gold Ltd (ASX:NMG) is a mineral exploration and development company which holds a substantial package of tenements in the prolific Murchison goldfield near Meekatharra, Western Australia.

The Company is focused on the Garden Gully Gold Project which comprises a 677km² tenure package covering the Abbotts Greenstone Belt and other key regional structures. The project has multiple gold deposits along the belt with the most advanced being the Crown Prince Deposit.

Gold mineralisation in the belt is controlled by major north trending structures and contact zones between felsic and mafic metamorphosed rocks.

NMG updated its Mineral Resource Estimate in November 2024 and reported a maiden Ore Reserve and Feasibility Study for the Crown Prince Deposit in February 2025. This places NMG on track towards becoming a gold producer.

Disclaimer

This release may include forward-looking and aspirational statements. These statements are based on NMG management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of NMG, which could cause actual results to differ materially from such statements. NMG makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing.

Refer to <u>www.newmurchgold.com.au</u> for past ASX announcements.

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Costica Vieru, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG). Mr Vieru has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr Vieru is an employee of NMG Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Information in this announcement that relates to Mineral Resources is based upon, and fairly represents, information and supporting documentation compiled by Mr Brian Fitzpatrick MAusIMM (Competent Person). Mr Fitzpatrick is a Principal Geologist with Cube Consulting Pty Ltd and a Member of the Australasian Institute of Mining and Metallurgy with Competent Person accreditation. The Competent Person has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Fitzpatrick consents to the inclusion in this announcement of the matters based upon his input into the information in the form and context in which it appears.

The Competent Person for the Ore Reserve estimate is Mr Mark Chesher, a mining engineer with more than 40 years' experience in the mining industry. Mr. Chesher is a Fellow of the AusIMM, a Chartered Professional, a full-time employee of Chesher Mine Consulting Pty Ltd (CMC) and has sufficient open pit mining activity experience relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the JORC Code. Mr Chesher consents to the inclusion of information relating to the Ore Reserve in the form and context in which it appears.

In reporting the Ore Reserves referred to in this public release, CMC acted as an independent party, has no interest in the outcome of the Crown Prince Gold Project and has no business relationship with New Murchison Gold Ltd other than undertaking those individual technical consulting assignments as engaged, and being paid according to standard per diem rates with reimbursement for out-of-pocket expenses. Therefore, CMC and the Competent Person believe that there is no conflict of interest in undertaking the assignments which are the subject of the statements.

Past Exploration results and Mineral Resource Estimates reported in this announcement were previously prepared and disclosed by NMG in accordance with JORC Code. The Company confirms that it is not aware of any new information or data that materially affects the information included in these market announcements. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the original market announcement, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. Refer to www.newmurch.com.au for details on past exploration results and Mineral Resource Estimates.

Appendix 1. Assay results (>0.1g/t Au) - Fire Assay 50g charge and analysed by ICP-OES at Intertek labs, Perth.

Hole No	From	То	Interval	Au	Au Rpt	Average	Intersection
	267	268	1	0.109			
	268	269	1	0.130			
NGGRCDD977	269	270	1	0.123			
	270	271	1	0.120			
	271	272	1	0.131			
	272	273	1	0.110			
	365	366	1	0.315			
	366	367	1	0.663			
	367	367.5	0.5	0.184			
	367.5	368.1	0.6	3.223			
	368.1	368.8	0.7	0.793			
	368.8	369.8	1	1.170			
	369.8	370.85	1.05	2.832			
	370.85	372	1.15	1.323			
	372	373	1	3.655			
	373	374	1	2.655			
	374	375	1	1.339			
	375	376	1	1.052			
	376	377	1	1.183			
	377	378.1	1.1	2.316			
	378.1	379	0.9	0.398			36.3m at 2.22g/t
NGGRCDD980	379	379.6	0.6	1.872			(367.5-403.8m
	379.6	380	0.4	0.714			
	380	381	1	1.245			
	381	382	1	1.944			
	382	383	1	3.616			
	383	384	1	3.415			
	384	385	1	2.281			
	385	386	1	1.144			
	386	387	1	0.700			
	387	388	1	0.835			
	388	389	1	5.605	5.24	5.42	
	389	390	1	3.219			
	390	391	1	1.330			
	391	392	1	0.749			
	392	393	1	1.405			
	393	394	1	0.887			
	394	395	1	1.892			

	Hole No	From	То	Interval	Au	Au Rpt	Average	Intersection
		395	395.8	0.8	0.681			
		395.8	396.8	1	2.057			
		396.8	397.4	0.6	0.440			
		397.4	398.5	1.1	1.359			
		398.5	399	0.5	2.865			
		399	400	1	0.368			
		400	401	1	2.834			
		401	402	1	2.478			
a 5		402	402.8	8.0	4.648	4.35	4.50	
		402.8	403.3	0.5	4.425	4.71	4.57	
26		403.3	403.8	0.5	3.868			
		403.8	404.5	0.7	0.551			
		406	407	1	0.478			
		499.2	499.75	0.55	1.323			1.2m at 2.90g/t Au
	NGGRCDD980	499.75	500.4	0.65	2.157			(499.2-500.4m)
		500.4	501	0.6	0.152			
		501	501.8	0.8	0.534			
60		501.8	502.4	0.6	1.056			
		502.4	503	0.6	0.397			
		558	559	1	0.815			
		560	561	1	0.309			
		561	562	1	1.793			1.8m at 2.98g/t Au
20		567.7	568.5	8.0	4.875	2.27	3.57	(561-568.5m)
		570	570.8	0.8	0.508			
2		571.4	572	0.6	0.639			
A5		573	574	1	0.198			
		574	575	1	0.367			
		575	576	1	1.092			
		576	577	1	0.332			
		587.85	589	1.15	0.782			
22		645	646	1	2.631			2m at 1.99g/t Au
		646	647	1	1.349			(645-647m)
		647	648	1	0.223			
		648	649	1	0.303			
		649	650	1	0.258			
		650	651	1	0.251			
		652	653	1	0.669			
		653	654	1	0.195			
		654	655	1	0.530			
		657	658	1	0.369			

	Hole No	From	То	Interval	Au	Au Rpt	Average	Intersection
		236	236.6	0.6	0.120			
		236.6	237.3	0.7	0.313			
	П	237.3	238.3	1	0.709			
		239.65	240.15	0.5	3.158			
		240.15	241	0.85	0.183			
		244	245	1	0.112			
	NGGRCDD1034	245	246	1	69.909	68.89	69.40	
		246	247	1	59.090	53.78	56.43	3m at 43.10g/t Au
a		247	247.6	0.6	1.358			(245-248m)
		247.6	248	0.4	2.099			
26		248	249	1	0.145			
(U/2)		254	255	1	0.202			
		276.4	276.7	0.3	0.481			
		294	294.4	0.4	0.123			
		271	271.63	0.63	0.238			
		272.12	272.4	0.28	4.521	6.31	5.41	4 00m ot E 02g/t Au
OD		272.4	272.97	0.57	2.049			1.88m at 5.23g/t Au (272.12-274m)
60		272.97	274	1.03	2.374			(
		299	300	1	0.302			
		300	301	1	1.510			
		301	302	1	0.472			
		302	303	1	0.511			
20		303	304	1	0.318			
02		304	305	1	0.824			
		306	307	1	0.237			
75	NGGRCDD1035	307	308	1	0.323			
		308	309	1	0.350			
		310	311	1	0.605			
		311	312.15	1.15	0.498			
		312.15	313.05	0.9	5.127	5.04	5.08	1.56m at 4.42g/t Au
		313.05	313.71	0.66	1.813			(312.15-313.71m)
		313.71	314.27	0.56	0.982			
		314.27	315	0.73	1.281			
		315	316	1	0.395			
		316	317	1	0.267			
		327.24	327.73	0.49	1.602			
		327.73	328	0.27	0.301			
		332	333	1	0.144			
		334	335	1	0.111			
		351.3	352.25	0.95	0.355			

Appendix 2: JORC Table 1 Checklist of Assessment and Reporting Criteria

JORC Table 1 Checklist of Assessment and Reporting Criteria Section 1. Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 DD sample was collected based on lithology, type of alteration and visible mineralization on core before was cut on various lengths. The core was examined visually and logged by the geologist. Evidence of alteration or the presence of mineralization was noted on the drill logs. Intervals selected by the site geologist were tested by hand-held XRF and all those with elevated arsenic contents or other pathfinder elements have been bagged and numbered for laboratory analysis. Duplicate samples are submitted at a rate of approximately 10% of total samples taken (ie one duplicate submitted for every 20 samples). The Vanta XRF Analyzer is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule. The presence or absence of mineralization is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralization being sought.
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling technique was diamond drilling using a Sandvick DE880 truck mounted drill rig with HQ diameter from surface which was changed to NQ2 within the fresh rocks below 100m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond core was cut in half and sampling was done on various lengths based on lithology, alteration and visual mineralization. No significant core loss was encountered over the current sampled intervals. Half of the core was retained into the tray with the orientation mark preserved.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	Core are logged visually by qualified geologists. Lithology, and where possible structures, textures, colour, alteration types and minerals estimates are recorded.

Criteria	JORC Code Explanation	Commentary
2	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Representative cores are retained in core trays for each metre interval drilled. The entire length of each drill hole is logged and evaluated.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drill core was cut in half using an Almonte core saw. All the samples were collected from the same side of the core, preserving the orientation mark in the kept core half. The samples were sent to Intertek labs in Perth for Au analysis by FA50 (Fire Assay on 50g charge). Sample preparation techniques are well- established standard industry best practice techniques. Samples are dried and crushed and pulverized (whole sample) to 95% of the sample passing -75µm grind size. Field QC procedures include using certified reference materials as assay standards at every 20m. One duplicate sample is submitted for every 20 samples and a blank at 50 samples, approximately. Evaluation of the standards, blanks and duplicate samples assays shows them to be within acceptable limits of variability. Sample representativity and possible relationship between grain size and grade was confirmed following re-sampling and reassaying of high-grade interval. Sample size follows industry standard best practice and is considered appropriate for these style(s) of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The assay techniques used for these assays are international standard and can be considered total. Samples were dried, crushed and pulverized to 95% passing -75µm using 50g Fire Assay and analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry. The handheld XRF equipment used is an Olympus Vanta XRF Analyzer and Ora Gold Ltd. follows the manufacturer's recommended calibration protocols and usage practices but does not consider XRF readings sufficiently robust for public reporting. Ora Gold Ltd. uses the handheld XRF data as an indicator to support the selection of intervals for submission to laboratories for formal assay. The laboratory that carried out the assays is an AQIS registered site and is ISO certified. It conducts its own internal QA/QC processes in

Criteria	JORC Code Explanation	Commentary
		addition to the QA/QC implemented by Ora Gold Ltd, as its sample submission procedures. Evaluation of the relevant data indicates satisfactory performance of the field sampling protocols in place and of the assay laboratory. The laboratory uses check samples and assay standards to complement the duplicate sampling procedures practiced by New Murchison Gold Ltd.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All significant intersections are calculated and verified on screen and are reviewed prior to reporting. The program included no twin holes. Data is collected and recorded initially on hand-written logs with summary data subsequently transcribed in the field to electronic files that are then copied to head office. No adjustment to assay data has been needed.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole locations have been established using a differential GPS with an accuracy of ±0.3m. Regular surveys were undertaken every 18m using a Gyro survey tool. The map projection applicable to the area is Australian Geodetic GDA2020, Zone 50. Site DTM and differential GPS results for collar elevations are close i.e. within an acceptable margin of error
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole collars were located and oriented to deliver maximum relevant geological information to allow the geological model to be tested and assessed effectively. This is still early-stage exploration and is not sufficiently advanced for this to be applicable. Various composite sampling was applied depending on the geology of the hole. All anomalous sample intervals are reported in Appendix 1. Zones where geological logging and/or XRF analyses indicated the presence of mineralised intervals were sampled.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 This program is the deepest exploration drilling to test the south-east extension of the Crown Prince main ore bodies. Most of the drill holes within this area have been drilled 330 degrees north-westerly at -60 degrees dip. The current holes have been designed to test at depth the south-western part of the SEZ/SEB nose of the overturned anticline.

Criteria	JORC Code Explanation	Commentary
		 Sufficient data has been collected and compiled to be able to establish true widths, orientation of lithologies, relationships between lithologies and the nature of structural control. Data collected so far presents no suggestion that any sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	When all relevant intervals have been sampled, the samples are collected and transported by company personnel to secure locked storage in Perth before delivery by company personnel to the laboratory for assay.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Internal reviews are carried out regularly as a matter of policy. All assay results are considered representative as both the duplicates, standards and blanks from this program have returned satisfactory replicated results.

Section 2. Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Garden Gully project comprises of one prospecting license, P51/3009, twenty-two granted exploration licenses E51/2259, L51/138, L51/139, E51/1737, E51/1661, E51/1708, E51/1609, E51/1790, E51/1791, E51/2150, E51/1709, E51/1888, E51/1924, E51/1936, E51/1963, E51/1989, E51/2002, E51/2012, E51/2013, E51/2014, E51/2015, E51/1932, E51/1972, E51/1973, E51/2013 and four mining leases M51/390, M51/567, M51/886 and M51/889, totaling approximately 677 km². NMG holds a 100% interest in each lease. The project is partially located in the Yoothapina pastoral lease, 15km north of Meekatharra, in the Murchison of WA. The Crown Prince deposit is located on M51/886. The licences are in good standing and there are no known impediments to obtaining a licence to operate.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 First workings in the Garden Gully area: 1895 - 1901 with the Crown gold mine. 264 tonnes of ore at 1.99 oz/t average (~ 56 g/t Au). Maximum depth~24m. Kyarra Gold Mine (1909 – 1917): 18,790 oz gold from quartz veins in "strongly sheared, decomposed, sericite rich country rock". Seltrust explored for copper and zinc from 1977, reporting stratigraphically controlled

Criteria	JORC Code Explanation	Commentary
		 "gossanous" rock from chip sampling and drilling. In 1988, Dominion gold exploration at Crown defined a >100ppb gold soil anomaly. RAB to 32m: "no significant mineralisation": drilling was "sub-parallel to the dip of mineralisation"; best intersection: 15m at 2.38g/t from 5m. 1989 at Lydia: Julia Mines RAB drill holes 30 m intervals 100m apart across the shear zone
		targeting the arsenic anomaly. 12m at 5.16 g/t Au from 18m; 6m at 3.04 g/t Au from 18m. No samples deeper than 24m due to poor recovery, so open at depth in the prospective shear zone. Julia also drilled shallow air core at Crown mine, returned best intersection of 2m at 0.4g/t Au from 34m in quartz veins in felsic volcanics. In 1989, Matlock Mining explored North Granite Well and Nineteenth Hole; best result 8m at 2.1
		 g/t Au. Supergene zone: grades to 3.17 g/t Au and still open. 1993 – 2003: St Barbara Mines: RAB, RC on E51/1661. Gold associated with black shale (best: 1m at 0.64 g/t). In 1996, Australian Gold Resources RAB and RC drilling found Cu, Zn and Ag anomalies (up to 1800ppm Cu, 1650ppm Zn and 3.8 g/t Ag)
		 associated with saprolitic clay and black shales at 60-80m deep on current E51/1661. 2001-2002, Gamen (Bellissimo & Red Bluff Noms) trenched, sampled, mapped and RC drilled at Crown. Results (up to 0.19 g/t Au) suggest the presence of gold mineralisation further to the east of Crown Gold Mine. 2008 – 2009: Accent defined targets N and S of
Geology	Deposit type, geological setting and style of mineralisation.	Nineteenth Hole from satellite imagery and airborne magnetics. The Garden Gully project comprises now most of the Abbotts Greenstone Belt; comprised of Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional
		influence on structurally controlled gold emplacement in Abbotts and Meekatharra

Criteria	JORC Code Explanation	Commentary
		Greenstone Belts and in the Meekatharra Granite and associated dykes. The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All relevant drill hole details are presented in Table 1. The principal geologic conclusion of the work reported from this program at the Crown Prince prospect confirms the presence of high-grade gold mineralization in what are interpreted to be steep plunging shoots. Extensive primary gold mineralization was also intercepted below the base of oxidation; primary mineralization associated with sulphides, mainly pyrite and arsenopyrite, which offers a very positive outlook for deep potential for the prospect which is to be further tested in follow-up drilling.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All significant drill intercepts are displayed in Figures 2 and 3. Full assay data over 0.1g/t Au are included in Appendix 1. No assay grades have been cut. Arithmetic weighted averages are used. For example, 322m to 324m in NGGRCDD979A is reported as 2m at 11.25g/t Au. This comprised 2 samples, each of 1m, calculated as follows: [(1*3.55)+(1*18.947)] = [22.48/2] = 11.24g/t Au. No metal equivalent values are used.

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known'). 	 From early geological data the geometry of the mineralisation is interpreted to be a SSW plunging anticline. High-grade shoots are hosted in the hinge zone of the anticlinal structure. Additionally late-stage shear zones also host gold away from the hinge zone. True widths are variable with current information suggesting 6-7m width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	 Relevant location maps and figures are included in the body of this announcement (Figures 1 to 3). Sufficient data have been collected to allow two meaningful cross-sections to be drawn with confidence (Figure 3).
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This announcement includes only the results of te recent deep DD holes drilled at the Crown Prince South-East Extension (SEB) Prospect. The reporting is comprehensive and thus by definition balanced. It represents early results of a larger program to investigate the potential for economic mineralization at Garden Gully.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This announcement includes qualitative data relating to interpretations and potential significance of geological observations made during the program. As additional relevant information becomes available it will be reported and announced to provide context to current and planned programs.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Deeper RC and diamond drilling is planned to commence at Crown Prince to test the potential for down-dip primary mineralisation to the south-east, north-west and down-dip under the main ore bodies. Additional diamond drilling will be undertaken to better define the structural setting of the mineralised system under the current pit design.

