

22 May 2025

ASX Limited - Company Announcements Platform

RAPID LITHIUM LIMITED (ASX: RLL)

# EXECUTION OF SHARE PURCHASE AGREEMENT TO ACQUIRE TWO SILVER PROJECTS IN NEW SOUTH WALES

Rapid Lithium Limited (**Rapid** or **Company**) is pleased to announce that it has entered into a Share Purchase Agreement (**SPA**) with Silver Metal Group Limited (**SMG**) (formerly Thomson Resources Ltd) to acquire all of the shares in two subsidiaries of SMG, being Conrad Resources Pty Ltd and Webbs Resources Pty Ltd (**Transaction**) for a total consideration of A\$6.50 million in cash and shares.

# HIGHLIGHTS

- Following completion of the Transaction, Rapid will own 100% of the Conrad and Webbs Silver Projects in the New England Fold Belt of NSW with a combined total of ~34.9 million silver equivalent ounces of high-grade silver assets.
  - The Webbs Silver Projects has a JORC 2012 Mineral Resources Estimate of 2.2Mt at 205 g/t silver equivalent (AgEq) for a contained 14.2Moz AgEq<sup>1</sup>; and
  - The Conrad Silver Project has a Mineral Resource of 3.33Mt at 193g/t AgEq for a contained 20.72 Moz AgEq<sup>2</sup> which has also been reported under the JORC 2012 guidelines.
- Webbs was historically a high-grade silver mine, with production of 55,000t at 710g/t silver<sup>3</sup>.
- The Conrad Silver Project was historically the largest silver project in the NSW section of the New England Fold Belt with historic production of 3.5Moz silver at ~600g/t Ag<sup>2</sup> and significant co- products of lead, zinc, copper and tin.
- The opportunity exists to unlock the potential of the Projects rapidly, as neither have had any modern exploration or drilling done in the last decade. Exploration for new, parallel and blind structures can deliver new silver discoveries in the district.
- RLL will rapidly implement programs at Webbs Silver Project with a focus to expand and upgrade the existing JORC Mineral Resource Estimate with targeted geophysics, drilling and metallurgical studies beginning in June 2025.
- Rapid adding to its portfolio of critical minerals, with a strong silver market adding to the compelling opportunity.

1 ASX Release 9 June 2022 "Thomson Delivers 14 Moz Silver Equivalent Indicated and Inferred Mineral Resource Estimate for Webbs Deposit". 2 ASX Release 11 August 2021 "Thomson Announces 20.7 Moz Silver Equivalent Indicated And Inferred Mineral Resource Estimate For Conrad".

3 McManus, J. & Cormack, M. 1962. Report on Webb's Silver Mine. Enterprise Exploration Co. Pty. Ltd. NSW Geological Survey Open File Data GS1962-055, R00028589

The original Resource statements for the Conrad and Webbs Projects can be accessed at: <u>https://announcements.asx.com.au/asxpdf/20210811/pdf/44z6ppxyzxqhzl.pdf</u> and <u>https://announcements.asx.com.au/asxpdf/20220609/pdf/459s88mt3zrkw0.pdf</u>.

The Webbs Resource Statement<sup>1</sup> consists of an Indicated Resource of 0.8 Mt at 179 g/t Ag, 0.18% Cu, 0.62% Pb, 1.19% Zn and an Inferred Resource of 1.3 Mt at 116 g/t Ag, 0.13% Cu, 0.5% Pb and 1.04% Zn. The resources were calculated at a 30 g/t Ag cut-off and reported to 225 m below surface. Metallurgical recoveries used for the calculation of AgEq were: Ag 87%, Cu 85%, Pb 70% and Zn 89%. AgEq value was calculated using the formula AgEq = Ag g/t + 108.5 \* Cu (%) + 19.7 \* Pb (%) + 34.1 \* Zn (%).

The Conrad Mineral Resource (Appendix 2) consists of an open pit component of 2.4Mt at 152g/t AgEq (above 40g/t AgEq cut-off and within an optimised open pit) and an underground component of 0.94Mt at 300g/t AgEq (without a cut-off but within mineable zones). The Ag equivalent formula used an exchange rate of US\$0.73, Ag price A\$38/oz, Zn price A\$4,110/t, Pb price A\$3,014/t, Cu price A\$13,699/t, Sn price A\$41,096, recoveries of 90% for Ag, Pb, Zn, Cu and 70% for Sn. Ag Equivalent (AgEq) was calculated using the formula AgEq = Ag g/t + 24.4\*Pb(%) + 111.1\*Cu(%) + 33.3\*Zn(%) + 259.2\*Sn(%) based on metal prices and metal recoveries into concentrate.

# Commenting on this exciting opportunity, Rapid Lithium Managing Director, Martin Holland, said:

"We are very pleased to acquire these high-grade silver assets in a strong silver market. We believe there is an exciting opportunity to rapidly unlock the potential of these assets using modern exploration and expanding the resources. These are exciting times to be adding assets of this quality to our portfolio of critical minerals".

# **Background of the Transaction**

Conrad Resources Pty Ltd and Webbs Resources Pty Ltd own the following tenements which comprise the Conrad Silver Project and the Webbs Silver Project:

| Tenement | Holder                   |
|----------|--------------------------|
| EPL 1050 | Conrad Resources Pty Ltd |
| EL 5674  | Webbs Resources Pty Ltd  |
| EL 5977  | Conrad Resources Pty Ltd |
| ML 5992  | Conrad Resources Pty Ltd |
| ML 6040  | Conrad Resources Pty Ltd |
| ML 6041  | Conrad Resources Pty Ltd |

# Location

The assets are located in the New England Fold Belt in Northern NSW, accessible by sealed road from Glen Innes and Inverell.



Figure 1: Location of the NSW Webbs and Conrad Silver Projects

# Webbs Silver Project

The Webbs Silver Project comprises a high-grade silver bearing lode system located in northern New South Wales. The Webbs Silver Project has a mineral resource estimation reported in accordance with JORC 2012 for a total of 14.2 Moz AgEq at 205 g/t AgEq<sup>1</sup>.

The work completed by SMG and others to date on the Webbs Silver Project deposit including validation of historic data, relogging and surface mapping, and updated grade-alteration modelling has not only significantly improved the understanding of controls on mineralisation at the Webbs Silver Project but has also highlighted a number of compelling targets for resource expansion and new exploration.<sup>1</sup>

Exploration programs focused on identifying parallel mineralised structures will commence immediately with a micro gravity survey covering the two main high grade silver rich lodes. Drill permitting is underway with six 500m deep diamond drill holes as a first priority will be drilled at the Webbs South and Webbs Main deposits to collect fresh samples for metallurgical testwork and structural information to allow a new JORC Mineral Resource Estimate to be completed as rapidly as possible. Further drilling will follow this work targeting strike and down dip extensions to grow the silver rich resources. Opportunity exists to use new geophysics technologies to search for blind parallel structures. A budget of A\$2.5 million will be allocated to Webbs Silver Project to rapidly complete the work programs.

The Webbs Resource Statement<sup>1</sup> consists of an Indicated Resource of 0.8 Mt at 179 g/t Ag, 0.18% Cu, 0.62% Pb, 1.19% Zn and an Inferred Resource of 1.3 Mt at 116 g/t Ag, 0.13% Cu, 0.5% Pb and 1.04% Zn. The resources were calculated at a 30 g/t Ag cut-off and reported to 225 m below surface.

# Table Error! No text of specified style in document.: 2022 Mineral Resource estimate for Webbs polymetallic deposit above 30 g/t Ag and above 500mRL

|                                        |                 |                       |                  | Grade |                |                                       | Metal                 |                   |                 |                 |                                       |  |
|----------------------------------------|-----------------|-----------------------|------------------|-------|----------------|---------------------------------------|-----------------------|-------------------|-----------------|-----------------|---------------------------------------|--|
| Resource<br>Classification<br>(RESCAT) | Tonnage<br>(Mt) | Silver<br>(ppm<br>Ag) | Copper<br>(% Cu) |       | Zinc<br>(% Zn) | Silver<br>Equivalent<br>(ppm<br>AgEq) | Silver<br>(Moz<br>Ag) | Copper<br>(kt Cu) | Lead<br>(kt Pb) | Zinc<br>(kt Zn) | Silver<br>Equivalent<br>(Moz<br>AgEq) |  |
| Measured (1)                           | -               | -                     | -                | -     | -              | -                                     | -                     | -                 | -               | -               | -                                     |  |
| Indicated (2)                          | 0.8             | 179                   | 0.18             | 0.62  | 1.2            | 252                                   | 4.7                   | 6.7               | 1.5             | 5.1             | 6.7                                   |  |
| Inferred (3)                           | 1.3             | 116                   | 0.13             | 0.50  | 1.0            | 176                                   | 5.0                   | 7.6               | 1.8             | 6.8             | 7.6                                   |  |
| Total:                                 | 2.2             | 140                   | 0.15             | 0.55  | 1.1            | 205                                   | 9.7                   | 14.2              | 3.3             | 11.9            | 14.2                                  |  |

Notes: The Mineral Resource estimate is based on a 30 g/t Ag (Ag) cut-off.

The AgEq formula used the following processing recoveries:

Ag 87%, Cu 85%, Pb 70%, Zn 89%

AgEq was calculated using the following formulas:

AgEq = Ag (g/t) + 108.5 \* Cu (%) + 19.7 \* Pb (%) + 34.1 \* Zn (%)

based on metal prices and metal recoveries into concentrate.

The metal price assumptions used, where applicable, in the AgEq formula at an exchange rate of US\$0.73 were: Ag price A\$38/oz, Cu price A\$13,699, Zn price A\$4,110/t and Pb price A\$3,014/t. Metals prices were based on the previous 5 years of price data and price sentiment at the time of reporting the Mineral Resource estimate.

Totals may not add up due to rounding.

Rapid Lithium notes that the current Australian dollar prices are well in excess of those used for the 2022 Mineral Resource Estimate. As at 20 May 2025 the spot prices are Ag price A\$50/oz, Cu price A\$14,850, Zn price A\$4,127/t and Pb price A\$3,040/t. In RLL's opinion all elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

### **Commentary on the Estimate for Webbs**

The geological mapping for the Webbs Resource Estimate above has significantly improved the geological understanding of the Webbs silver mineralisation. In effect the lodes appear as "mega kink bands", with multiple veinlets at a small angle to the direction of the general trend. This understanding will help any mining that will take place.

Samples used in the estimate are industry standard from exploration and resource drilling using the reverse circulation (RC) with face sampling bit and diamond core drilling in various sizes: usually HQ size first, changing down to NQ size for the deeper sections. The majority of samples used in the Webbs estimate are 1m RC chip samples, supplemented by diamond core cut to geological boundaries. Assays again are industry standard at high quality laboratories with trace element analysis by aqua regia with ICP-AES finish for the elements in the estimate. Drill spacing at Webbs averaged around 50m. To qualify for classification as "Indicated" a block needed three different drillholes within 20m. For "Inferred" a block needed to be within 40m of at least 2 drill holes. This is considered a fairly conservative approach.

A general cut off grade of 30 g/t Ag was used for the estimate on economic grounds. An argument could be made for a lower cut off e.g. 20 g/t Ag, or to use 30 g/t Ag equivalent. This may be considered for future resource estimates as silver prices have improved greatly since 2022. The estimate was carried out in Datamine software with the standard technique of "Ordinary Kriging" which is used generally across the industry. Blocks are constrained to lie within geological "domains" or mineralised wireframes.

Metallurgical analysis is comprehensive, industry leading and positive for achievement of a saleable product. There have been 10 campaigns of testing: the most recent phase used 390kg from 55 different holes. Aspects tested were mineralogy, grinding, flotation, and the Albion<sup>™</sup> process.

Historical workings at Webbs are confined to the northern part of the deposit: in the southern part the resource is shallow and essentially at surface. Hence the optimal mining method, at least at first, appears to be open cut. Whether that open cut is to be extended north or whether underground operations may be more cost effective depends on other factors such as whether Webbs is to be developed in a joint project with other nearby silver-rich deposits such as Webbs Consols, Conrad, Texas and Mt Carrington. No other potential modifying factors, e.g. environmental, social or legislative, are considered to be material to this estimate.

# Conrad Silver Project

The Conrad Silver Project represents a polymetallic exploration and mining opportunity located in northern New South Wales. The Conrad Silver Project is the largest historic silver producer in the New England region producing approximately 3.5 Moz of silver at an average grade of 600 g/t Ag with significant co-production of lead, zinc, copper and tin<sup>2</sup>.

The Conrad Silver Project has compelling resource expansion and exploration targets along strike. Steeply plunging mineralised shoots is an important feature of the Conrad Silver Project deposit. Resource modelling highlights the Mystery, King Conrad, Borah, Moore and Davis shoots are all open and untested at depth with high grade drill intersections in the range of 374 to 1,035 g/t AgEq highlighted at the base of these shoots<sup>2</sup> (also see sections and tables in Appendix 2).

Work programs on Conrad Silver Project will include a full review of the current Mineral Resource Estimate and previous drilling, with a plan to commence field work in the September quarter. An initial budget of A\$500,000 has been allocated with a plan to update the historical JORC Mineral Resource Estimate and review historical metallurgy given new pre concentration technologies available which may have a positive impact on project economics.

As of August 2021, The Conrad Mineral Resource (tabulated below) consists of an open pit component of 2.4Mt at 152g/t AgEq (above 40g/t AgEq cut-off and within an optimised open pit) and an underground component of 0.94Mt at 300g/t AgEq (without a cut-off but within mineable zones).

| I dule 2.        |                            |         |                      |          |        |        |        |        | Colliau Silver Flojeci |          |         |         |         |         |
|------------------|----------------------------|---------|----------------------|----------|--------|--------|--------|--------|------------------------|----------|---------|---------|---------|---------|
|                  |                            |         | Grade                |          |        |        |        | Metal  |                        |          |         |         |         |         |
| Area             | Resource<br>Classification | Tonnage | Silver<br>Equivalent | Silver   | Copper | Lead   | Tin    | Zinc   | Silver<br>Equivalent   | Silver   | Copper  | Lead    | Tin     | Zinc    |
|                  |                            | (Mt)    | (g/t Ag Eq)          | (g/t Ag) | (% Cu) | (% Pb) | (% Sn) | (% Zn) | (Moz Ag Eq)            | (Moz Ag) | (kt Cu) | (kt Pb) | (kt Sn) | (kt Zn) |
|                  | Indicated                  | 1.66    | 163                  | 66       | 0.08   | 1.01   | 0.16   | 0.67   | 8.72                   | 3.53     | 1.38    | 16.77   | 2.62    | 11.19   |
| Open Pit         | Inferred                   | 0.74    | 125                  | 54       | 0.08   | 0.74   | 0.12   | 0.39   | 2.96                   | 1.27     | 0.58    | 5.42    | 0.9     | 2.87    |
|                  | Total OP                   | 2.4     | 152                  | 62       | 0.08   | 0.93   | 0.15   | 0.59   | <u>11.68</u>           | 4.80     | 1.92    | 22.3    | 3.6     | 14.15   |
|                  | Indicated                  | 0.2     | 300                  | 136      | 0.24   | 1.87   | 0.27   | 0.65   | 1.93                   | 0.87     | 0.48    | 3.75    | 0.55    | 1.3     |
| Under-<br>ground | Inferred                   | 0.74    | 300                  | 150      | 0.17   | 2.03   | 0.22   | 0.72   | 7.11                   | 3.56     | 1.26    | 14.97   | 1.63    | 5.31    |
| 8                | Total UG                   | 0.94    | 300                  | 147      | 0.19   | 2.00   | 0.23   | 0.71   | <u>9.04</u>            | 4.43     | 1.78    | 18.73   | 2.15    | 6.65    |
|                  | Indicated                  | 1.86    | 178                  | 74       | 0.10   | 1.10   | 0.17   | 0.67   | 10.65                  | 4.40     | 1.86    | 20.47   | 3.16    | 12.47   |
| Total            | Inferred                   | 1.47    | 213                  | 102      | 0.12   | 1.38   | 0.17   | 0.55   | 10.07                  | 4.83     | 1.77    | 20.34   | 2.51    | 8.11    |
|                  | Total                      | 3.33    | 193                  | 86       | 0.11   | 1.22   | 0.17   | 0.62   | <u>20.72</u>           | 9.23     | 3.67    | 40.68   | 5.67    | 20.67   |

| Table 2: | 2021 Minaral Basauras astimate for Conred Silver Project |
|----------|----------------------------------------------------------|
| Table 2: | 2021 Mineral Resource estimate for Conrad Silver Project |

Note: The Conrad MRE utilises a 40 g/t Ag equivalent cut-off within an optimised pit (2.0 revenue factor) for the portion of the deposit likely mined by open pit and no Ag equivalent cut-off within mineable zones for the underground portion of the deposit. Totals may not add up due to rounding.

The Ag equivalent formula used the following metal prices, recovery and processing assumptions: Using an exchange rate of US\$0.73, Ag price A\$38/oz, Zn price A\$4,110/t, Pb price A\$3,014/t, Cu price A\$13,699/t, Sn price A\$41,096, recoveries of 90% for Ag, Pb, Zn, Cu and 70% for Sn.

Ag Equivalent (AgEq) was calculated using the formula AgEq = Ag g/t + 24.4\*Pb(%) + 111.1\*Cu(%) + 33.3\*Zn(%) + 259.2\*Sn(%) based on metal prices and metal recoveries into concentrate.

The metal price assumptions used in the AgEq formula at an exchange rate of US\$0.73 were: Ag price A\$38/oz, Cu price A\$13,699, Zn price A\$4,110/t and Pb price A\$3,014/t. Metals prices were based on the previous 5 years of price data and price sentiment at the time of reporting the Mineral Resource estimate.

Totals may not add up due to rounding.

Rapid Lithium notes that the current Australian dollar prices are well in excess of those used for the 2021 Mineral Resource Estimate. As at 20 May 2025 the spot prices are Ag price A\$50/oz, Cu price A\$14,850, Zn price A\$4,127/t, Pb price A\$3,040/t and Sn A\$50,860. In RLL's opinion all elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

#### Commentary on the Estimate for Conrad

The Conrad lode is a unique geological feature, which is not to say that others like it may still be found, particularly beside and parallel to the Conrad Lode itself. It is a narrow vein that is 0.5m to 5m wide but extends continuously for over 3km. This width to length ratio is extreme in geology. It occurs within a granite body and both sides of the vein are in "solid" relatively unaltered granite. This makes underground narrow vein mining an attractive proposition, probably to be carried out using a single boom jumbo for development and long hole stoping for production. The Greisen zone offers a conventional open-cut operation with 5-10m bench heights.

Samples used in the estimate are industry standard from exploration and resource drilling using the reverse circulation (RC) with face sampling bit and diamond core drilling in various sizes: usually HQ size first, changing down to NQ size for the deeper sections. The majority of samples are diamond core cut to geological boundaries, supplemented by 1m RC chip samples. Assays again are industry standard at high quality laboratories with trace element analysis by aqua regia with ICP-AES finish for most of the elements in the estimate except tin, which is assayed by XRF.

Drill spacing on the Conrad lode averages around 100m; at the Greisen zone it is about 50m. To qualify for classification as "Indicated" a drillhole spacing had to be within 50m, along with a couple of other constraints of the kriging methodology. Other blocks with grade estimates within the wireframes were classified as Inferred.

No cut-off grade was used for the underground part of the estimate, as the vein has very good continuity and should be mined for its entire length. A rather high 40 g/t Ag cut off was used for the open-pit portion - an argument could be made for a lower cut off e.g. 20 g/t Ag, or to use 30 g/t Ag equivalent. This may be considered for future resource estimates as silver prices have improved greatly since 2022.

The estimate was carried out in Datamine software with the standard technique of "Ordinary Kriging" which is used generally across the industry. Blocks are constrained to lie within mineralised wireframes.

Metallurgical analysis is limited in comparison to the Webbs estimate. Nevertheless, the testing that has been done suggests the ore is amenable to gravity pre-concentration and flotation.

No other potential modifying factors, e.g. environmental, social or legislative, are considered to be material to this estimate.

### Key terms of the SPA

The total consideration payable by Rapid to SMG is A\$4,000,000 in cash and A\$2,500,000 worth of fully paid ordinary shares in Rapid (**Consideration Shares**). The price for the Consideration Shares will be determined by dividing A\$2,500,000 by the issue price of shares issued under the Placement (defined below).

Completion of the Transaction is subject to a number of conditions precedent, including:

- standard counterparty and third-party consents being obtained;
- Rapid completing the Placement (defined below);

- Rapid obtaining shareholder approval under ASX Listing Rule 7.1 to approve the issue of the Consideration Shares;
- Rapid being in a position to issue a cleansing notice on the issue of the Consideration Shares to ensure there are no restrictions to their on-sale (other than any escrow restrictions required by ASX); and
- SMG obtaining all necessary shareholder approvals (if any) to give effect to the Transaction.

### **Capital raising**

Rapid does not have sufficient cash reserves to fund the Transaction, as such it will be conducting an equity capital raise to raise aggregate funds of at least A\$7,000,000 via an institutional placement (**Placement**). Foster Stockbroking and GBA Capital have been mandated as Joint Lead Managers to the Placement.

The funds raised from the Placement will be used as follows:

- payment in full of the cash consideration for the Transaction; and
- the balance to develop the Conrad and Webbs Silver Projects, including as described above.

The issue price and terms of participation for the Placement are yet to be finalised, however Rapid shareholders will be informed promptly after this is determined.

### Indicative timetable

A notice of meeting will be sent to Rapid shareholders containing further details on the Transaction. Rapid recommends shareholders read the notice of meeting and accompanying documents in full once received.

The *indicative* timetable to complete the Transaction is set out below:

| ) | Event                                                | Date                                                       |
|---|------------------------------------------------------|------------------------------------------------------------|
|   | Notice of general meeting sent to Rapid shareholders | Week commencing 2 June 2025                                |
| ) | General meeting                                      | Week commencing 30 June 2025                               |
|   | Completion of Transaction                            | Week commencing 30 June 2025 and after the General Meeting |

Note: The above dates are indicative only and subject to change.

### **Existing Rapid assets**

In respect of Rapid's existing assets, Rapid notes the following on the existing projects:

### **United States**

Given continued constrained Li pricing globally, Rapid continues to explore options for reducing its holding costs for its Li assets. This includes delaying or renegotiating payment terms and focusing on developing a

target exploration campaign on primary targets when Li prices increase. In this context, Rapid's current intention is to limit its Li costs to the following:

- Tin Mountain acquisition costs of \$300,000 by 1 July 2025 and otherwise retaining the assets in good standing. As part of this, Rapid has successfully re-negotiated the terms of the underlying acquisition agreement for Tin Mountain as previously announced, which has resulted in overall cost reductions of \$550,000 (USD);
- Ingersoll Rapid continues to asses a potential drill program for Ingersoll of up to 1,000meters. If this program proceeds it would commence in Q4 2025 at its fully permitted Ingersoll brownfield site. Similar to the above, Rapid successfully re-negotiated the terms of the underlying acquisition agreement for Ingersoll, delaying and revising payment terms which resulted in deferment of payments of \$450,000 (USD) until Q2 (CY) of 2026.

# Canada

Prophet River Project - Rapid plans to commence on the ground sampling and mapping of the Prophet River Project in Q3 of 2025 (subject to completion of the acquisition by Rapid of that Project). Estimated cost of this Project is CAD\$150,000. Further geophysical work will be planned from this reconnaissance and sampling and permitting is currently in process. Confirmatory drilling of the previously drilled area(s) is also being planned and application for the drilling is being sought.

Rapid will continue to provide shareholders with further updates on material developments in respect of the Transaction.

\*\*\*

This ASX release was authorised on behalf of the board of directors of Rapid by Rick Anthon, Chairman.

For further information, please contact:

Martin C Holland – Managing Director Rapid Lithium Limited E: <u>mch148@outlook.com</u> The information in this release relating to August 2021 Conrad Mineral Resource statement is based on information compiled by Phil Micale who, at the time of reporting in 2021, was a full-time employee of AMC Consultants. Mr Micale is a Member of the Australasian Institute of Mining and Metallurgy (member number 301942) and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Micale consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Exploration Targets, Exploration Results as well as the Mineral Resource Estimate for the Webbs Silver Project is based on information compiled by Eoin Rothery, (RPGeo, MSc), who is a member of the Australian Institute of Geoscientists (No. 2374). Mr. Rothery works through Avoca Minerals Pty Ltd and acts as a geological consultant. Mr Rothery has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Rothery consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

This document contains exploration results and historic exploration results as originally reported in Thomson Resources Limited ASX Announcements – as published at <a href="https://announcements.asx.com.au/asxpdf/20210811/pdf/44z6ppxyzxqhzl.pdf">https://announcements.asx.com.au/asxpdf/20210811/pdf/44z6ppxyzxqhzl.pdf</a> and <a href="https://announcements.asx.com.au/asxpdf/20220609/pdf/459s88mt3zrkw0.pdf">https://announcements.asx.com.au/asxpdf/20210811/pdf/44z6ppxyzxqhzl.pdf</a> and <a href="https://announcements.asx.com.au/asxpdf/20220609/pdf/459s88mt3zrkw0.pdf">https://announcements.asx.com.au/asxpdf/20220609/pdf/44z6ppxyzxqhzl.pdf</a> and <a href="https://announcements.asx.com.au/asxpdf/20220609/pdf/459s88mt3zrkw0.pdf">https://announcements.asx.com.au/asxpdf/20220609/pdf/44z6ppxyzxqhzl.pdf</a> and <a href="https://announcements.asx.com.au/asxpdf/20220609/pdf/459s88mt3zrkw0.pdf">https://announcements.asx.com.au/asxpdf/20220609/pdf/44z6ppxyzxqhzl.pdf</a> and <a href="https://announcements.asx.com.au/asxpdf/20220609/pdf/459s88mt3zrkw0.pdf">https://announcements.asx.com.au/asxpdf/20220609/pdf/459s88mt3zrkw0.pdf</a>.

Disclaimer regarding forward looking information: This announcement contains "forward-looking statements". All statements other than those of historical facts included in this announcement are forward looking statements. Where a company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis. However, forward-looking statements re subject to risks, uncertainties and other factors, which could cause actual results to differ materially from future results expressed, projected or implied by such forward-looking statements. Such risks include, but are not limited to, gold and other metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks and governmental regulation and judicial outcomes.

# JORC CODE Tables – relating to the Webbs Silver Project

The information in this announcement that relates to the Exploration Results and the Webbs Mineral Resource estimate is based on information compiled by Eoin Rothery, (RPGeo, MSc), who is a member of the Australian Institute of Geoscientists (No. 2374). Mr. Rothery works through Avoca Minerals Pty Ltd and acts as a geological consultant. Mr Rothery has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Rothery consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report which relates to Metallurgical Results is based on information compiled by Mr Rod Ventura of CORE Group. Mr Ventura and CORE Group are consultants to Thomson Resources Ltd and have sufficient experience in metallurgical processing of the type of deposits under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Ventura is a Member of the Australian Institute of Mining & Metallurgy (AusIMM No. 335650), and consents to the inclusion in this report of the matters based on that information in the form and context in which it appears.

# Section 1 Sampling Techniques and Data

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |                                                                           | Com                                      | mentary                                  |                                                                                      |                         | C                                     |     |           |    |    |          |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|---------------------------------------|-----|-----------|----|----|----------|--|--|
| Sampling<br>techniques | <ul> <li>niques random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg</li> </ul> | <ul> <li>The Webbs deposit has been drilled and sampled by diamond coring (DD) (surface and underground), reverse circulation (RC) methods. A total of 37,495 m from 335 drillholes has been drilled between 1963 and 2013.</li> <li>These examples should not be he broad meaning of sampling.</li> <li>Silver Mines Ltd (SVL) drilled a total of 33,990.54 m from 313 drillholes between 2007 and 2013, comprising of 25,737.5 m RC, 3,958.04 m of DD, and 4,295 m of RC precollars with DD tails.</li> </ul> |                                                                                                                                                                                                    |                                                                           |                                          |                                          |                                                                                      |                         |                                       |     |           |    |    |          |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Company                                                                                                                                                                                            | Year<br>Drilled                                                           | Hole<br>Type                             | No. of Drill<br>holes                    | Total Metres Drilled                                                                 |                         |                                       |     |           |    |    |          |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SVL                                                                                                                                                                                                | 2007-2013                                                                 | RC                                       | 269                                      | 25,737.50                                                                            |                         |                                       |     |           |    |    |          |  |  |
| R                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>In cases where 'industry standard' work has been done<br/>this would be relatively simple (eg 'reverse circulation<br/>drilling was used to obtain 1 m samples from which 3 kg</li> </ul>                                                                                                                                                                                                                                                                                                              | <ul> <li>In cases where 'industry standard' work has been done<br/>this would be relatively simple (eg 'reverse circulation<br/>drilling was used to obtain 1 m samples from which 3 kg</li> </ul> | ,                                                                         |                                          |                                          | ,                                                                                    |                         |                                       | SVL | 2008-2011 | DD | 31 | 3,958.04 |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |                                                                           | SVL                                      | 2011-2013                                | RC/DD                                                                                | 13                      | 4,295<br>3,145.7 (RC)<br>1,149.3 (DD) |     |           |    |    |          |  |  |
|                        | was pulverised to produce a 30 g charge for fire assay').                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    | Total:                                                                    |                                          | 313                                      | 33,990.54                                                                            |                         |                                       |     |           |    |    |          |  |  |
|                        | In other cases more explanation may be required, such<br>as where there is coarse gold that has inherent sampling<br>problems. Unusual commodities or mineralisation types<br>(eg submarine nodules) may warrant disclosure of<br>detailed information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>inspection via</li> <li>DD core samp<br/>between 0.2 -<br/>sampled.</li> <li>RC drillhole di</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                | the relogging p<br>ling was condu<br>• 1.58 m length<br>ameter was 5"<br>ras completed o                                                                                                           | orocess.<br>ucted over se<br>in mineralise<br>and 5.5".<br>over the entir | lected part<br>d zones an<br>e length of | ts of DD core. So<br>Ind typically 1 m o | amples were mainly ½ cor<br>outside of mineralisation. I<br>2007 to 2008. Samples we | RCD128 and 220 were not |                                       |     |           |    |    |          |  |  |

| Criteria   | JORC Code explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | СР |
|------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|            |                       | RC campaigns completed between 2009 – 2013 collected 1 m samples over selected portions of the drillhole, however not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|            |                       | all drillholes were sampled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|            |                       | <ul> <li>One of the three RC precollars drilled in 2011 was sampled, with limited 1 m samples collected over selected zones of the<br/>drillhole. RC precollars drilled in 2013 were sampled over selected zones of the drillhole at 1 m intervals</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|            |                       | <ul> <li>Sample collection method of RC drillholes varied between campaigns and included riffle splitting by hand on a standalone</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|            |                       | splitter (2007) and a 3-way rig mounted riffle splitter (2008-2010). Sample collection method is unknown for 2011 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|            |                       | 2013 pre-collars.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|            |                       | • RC012-030 were sampled in full. RC031-114 were assayed where visually mineralised and adjacent samples, other areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|            |                       | of the drillhole were composited into maximum 5 m lengths, and other sections are not sampled at all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|            |                       | <ul> <li>RC114-RC290 were analysed using Niton pXRF and were assayed where samples returned greater than 20 ppm Ag along</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|            |                       | with immediately adjacent or internal samples that were less than 20 ppm Ag. A review of available pXRF data indicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|            |                       | this rule was not always followed and as a result of this sampling methodology mineralised intersections have not been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|            |                       | consistently closed off with geochemical laboratory assaying.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|            |                       | <ul> <li>Diamond drilling was sampled on mineralisation boundaries and visual estimations of veining. However, review of the available core indicates that mineralised sections of core were in some case not sampled; nor sampling continued into the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|            |                       | unmineralised wall rock to close off the mineralised interval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|            |                       | SVL Sample Representativity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|            |                       | • The drillholes are drilled mostly towards the west into the steeply dipping north-south trending mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|            |                       | Downhole widths in most instances do not represent true widths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| $\bigcirc$ |                       | • RC sampling (2007-2010) was by riffle split at the rig resulting in a nominal 87.5%:12.5% ratio. This is considered an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|            |                       | acceptable method for RC sample representivity at Webbs. The sample collection method is unknown for 2011 and 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| )          |                       | RC pre-collars, however it assumes samples were riffle split based on previous drilling and rig type/drill company.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|            |                       | Diamond drill core sizes were mainly HQ3 (core from surface) and NQ2 (RC collars). Diamond drillholes drilled in 2008     ware colleged with HQ and then drilled with NQ. Diamond drillholes drilled in 2014 were colleged with PQ3 followed by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|            |                       | were collared with HQ and then drilled with NQ. Diamond drillholes drilled in 2011 were collared with PQ3 followed by HQ3. Drillholes with RC pre-collars and DD tails drilled in 2011 were 5" and HQ3 drillhole size respectively. The core sizes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|            |                       | are considered to provide representative sample mass for the mineralisation style of the Webbs deposit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| GR         |                       | <ul> <li>The analysis of historic assay result bias related to different-by-different sample fractions has not been reviewed to date.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|            |                       | ···,··· ···, ····, ····, ·····, ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|            |                       | SVL Sample Preparation and Assaying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|            |                       | All samples were submitted to ALS (Brisbane) where they were weighed, dried, crushed to 2 mm, split (by riffling) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|            |                       | pulverised up to 3 kg to 95% passing 75 microns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|            |                       | RC samples in 2007 were analysed for gold by 30 g charge fire assay with AAS finish. Multielement analysis was completed     bus assay as a fire of the second of the |    |
|            |                       | by aqua regia digest with ICP-AES finish as per ALS method code "ME-ICP41" for selected elements, including Ag, As, Bi,<br>Cu, Pb, Sb, Sn, W and Zn. Selected samples were re-assayed for In, Sb, Sn and W by XRF (ME-ZRF05 method). Ore grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|            |                       | (OG) analysis was competed for Ag, Cu, Pb and Zn by aqua regia digest, with AAS or ICP-AES finish (OG-46 method). High-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| (O/D)      |                       | grade (>2000 g/t) Ag in drillhole RC012 assay was completed by 30 g fire assay and gravimetric finish.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|            |                       | • RC and DD samples collected between 2008 and 2013 were digested by aqua regia with ICP-AES finish for selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|            |                       | elements, including Ag, As, Bi, Cu, Fe, Pb, S, Sb, Sn, W, Zn, and occasionally In, and Mo. Ore grade analysis was by OG-46.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 60         |                       | Very high-grade silver was analysed by extended ore grade aqua regia digest with ICP-AES finish (OG-46h method).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|            |                       | Samples were not assayed for gold.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| ()         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 7          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |

Criteria

#### JORC Code explanation

#### Historic Drilling

• The Geological Survey of New South Wales (GNSW) drilled a total of 456.57 m from eight DD drillholes in 1963. Six drillholes were drilled from underground (BH001-006) and two from surface (BH007 & 8). Planet Management (PM) drilled a total of 3,048.08 m from 34 diamond core drillholes between 1969 and 1970.

| Company           | Year Drilled | Hole Type | No. of<br>Drillholes | Total Metres<br>Drilled |
|-------------------|--------------|-----------|----------------------|-------------------------|
| GNSW              | 1963         | DD        | 8                    | 456.5                   |
| Planet Management | 1969/70      | DD        | 34                   | 3,048.08                |
|                   |              | Total:    | 42                   | 3,504.65                |

#### **Historic Sampling**

- Diamond drill core sizes for drilling completed by PM is unknown. GNSW core size comprised AX (30.1 mm) and rare BX (42 mm). Core is stored by the Geological Survey of New South Wales in Londonderry but has not been reviewed to date.
- Diamond core sampling was conducted over selected zones of core. Sample sizes are unknown. GNSW samples are a
  combination of historic composites and interval samples. Intervals range from 0.5-2.29 m. PM samples are historic
  composites that range in length from 0.4-8.08 m.
- No assay results are available for DC9, DC18, DC19 or DC26 and assays for drillholes DC05, DC20, DC23, DC23-DC25, DC27, DC30 & DC31 had no interval data.
- No RC sampling was completed.

#### **Historic Sample Representativity**

- PM drillholes are drilled mostly towards the west into the steeply dipping north-south trending mineralisation. Diamond drill core sizes are unknown.
- Downhole widths in most instances do not represent true widths.
- 6 GNSW drillholes were drilled from underground, and two drillholes were drilled at surface from the east into the steeply dipping N-S trending mineralisation. Diamond drill core sizes were mainly AX (core from surface and underground).

#### **Historic Sample Preparation and Assaying**

- PM sample preparation and assay techniques are unknown. Based on review of the assay results the apparent assay values are reasonable for the style and tenor of mineralisation in the Webbs deposit. Assays for Ag are available for all intervals with Cu, Pb, Zn, As, Sb available for selective intervals.
- GNSW samples are recorded as being sampled at the Chemical Laboratories, Department of Mines. Sample preparation
  and assay techniques are unknown. Assay for Ag are available for all intervals. Cu, Pb, Zn are available for selective
  intervals. The lower detection limit for Cu, Pb, and Zn was 0.005%. The upper detection limit and limits for Ag are unknown.

#### 2022 Check Assays

- Thomson Resources engaged geoscience consultancy Global Ore Discovery Pty Ltd to undertake an assessment and validation of the historic drillholes database, which included a check assay program of selected pulps, as well as a significant bulk density measurement program
- A total of 153 pulp samples with additional QAQC were selected for check assay

СР

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                          | Com                                                                                                                              | mentary                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                     | СР |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----|
|                        |                                                                                                                                                                                                                                                                                                                         | AA25 metho<br>digest with A<br>Ga, K, La, Li,<br>aqua regia d<br>ICPMS finish<br>Rb, Sm, Sn, S<br>on samples r<br>(Pb-OG62), 1<br>• Sample prep | d, consisting<br>AES finish as p<br>Mg, Mn, Mo<br>igest with AES<br>was also dor<br>Gr, Ta, Tb, Th,<br>eturning resu<br>0,000 ppm Z<br>paration and | of a 30 g ch<br>per method N<br>, Na, Ni, P, Pt<br>S finish as per<br>ne on the foll<br>Tm, U, V, W,<br>ults equal to o<br>n (Zn-OG62).<br>assaying by t | arge fire assay<br>ME-ICP61. Ana<br>o, S, Sb, Sc, Sr,<br>r method ME-I<br>lowing Analyte<br>, Y, Yb, Zr as pe<br>or greater than | alysis. Samples were re-homogeniz<br>v with AA finish. Multielement anal-<br>lytes requested included Ag, Al, As,<br>Th, Ti, Tl, U, V, W, Zn. Multielement<br>CP41 for element Sn. Lithium Borate<br>s Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, G<br>er ME-MS85 method. Ore grade ana<br>n 100 ppm Ag (Ag-OG62), 10,000 pp<br>ne laboratory are considered appli-<br>posit. | ysis was completed b<br>Ba, Be, Bi, Ca, Cd, Co,<br>: analysis was also con<br>Fusion with acid disso<br>Ge, Hf, Ho, In, La, Lu,<br>lysis (aqua regia) was<br>m Cu (Cu-OG62), 10,0 | y four acid<br>, Cr, Cu, Fe,<br>mpleted by<br>olution and<br>Nb, Nd, Pr,<br>completed<br>000 ppm Pb |    |
| Drilling<br>techniques | <ul> <li>Drill type (eg core, reverse circulation, open-hole<br/>hammer, rotary air blast, auger, Bangka, sonic, etc) and<br/>details (eg core diameter, triple or standard tube, depth<br/>of diamond tails, face-sampling bit or other type,<br/>whether core is oriented and if so, by what method, etc).</li> </ul> | and differin<br>comprehens<br>SVL Drilling<br>• SVL employe<br>below. Samp<br>• Some core d                                                     | g rig capabi<br>ively docume<br>ed various dri<br>ole bit type is                                                                                   | ilities. Not a<br>ented and war<br>Il contractors<br>unknown.<br>e oriented, wit                                                                         | all drilling co<br>s possibly inco<br>s to complete                                                                              | over a number of drilling campaigns<br>mpanies, rig type and drillhole s<br>nsistent from campaign to campaign<br>drill campaigns at Webbs. A summa<br>rements recovered from SVL paper lo                                                                                                                                                                             | ize has been adequ<br>n. A summary is provid<br>ry of drill campaigns                                                                                                             | uately and<br>ded below.<br>is provided                                                             |    |
| $\bigcirc$             |                                                                                                                                                                                                                                                                                                                         | Company                                                                                                                                         | Hole type                                                                                                                                           | Year                                                                                                                                                     | No. of                                                                                                                           | Drill Comp/Rig                                                                                                                                                                                                                                                                                                                                                         | Hole Size /                                                                                                                                                                       |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         | SVL                                                                                                                                             | RC                                                                                                                                                  | 2007                                                                                                                                                     | Drillholes<br>19                                                                                                                 | Robert Lukes Drilling/RL Airtrack                                                                                                                                                                                                                                                                                                                                      | Core size<br>5"                                                                                                                                                                   |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         | SVL                                                                                                                                             | DD                                                                                                                                                  | 2008                                                                                                                                                     | 4                                                                                                                                | Wells Drilling/Boart Longyear BD520                                                                                                                                                                                                                                                                                                                                    | HQ/NQ                                                                                                                                                                             |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         | SVL                                                                                                                                             | RC                                                                                                                                                  | 2008-2011                                                                                                                                                | 223                                                                                                                              | Competitive Drilling/Unknown                                                                                                                                                                                                                                                                                                                                           | 5"                                                                                                                                                                                |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         | SVL                                                                                                                                             | RC                                                                                                                                                  | 2009                                                                                                                                                     | 14                                                                                                                               | Associated Exploration Drilling<br>(AED)/Unknown                                                                                                                                                                                                                                                                                                                       | 5"                                                                                                                                                                                |                                                                                                     | ER |
| (C(D))                 |                                                                                                                                                                                                                                                                                                                         | SVL                                                                                                                                             | DD                                                                                                                                                  | 2010                                                                                                                                                     | 11                                                                                                                               | Associated Exploration Drilling<br>(AED)/Unknown                                                                                                                                                                                                                                                                                                                       | HQ3                                                                                                                                                                               |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         | SVL                                                                                                                                             | DD                                                                                                                                                  | 2011                                                                                                                                                     | 16                                                                                                                               | Unknown/Unknown                                                                                                                                                                                                                                                                                                                                                        | PQ3/HQ3                                                                                                                                                                           |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         | SVL                                                                                                                                             | RC/DD                                                                                                                                               | 2011                                                                                                                                                     | 3                                                                                                                                | Precollar (RC) - Competitive<br>Drilling/Unknown Diamond Tails -<br>unknown                                                                                                                                                                                                                                                                                            | Precollars -5"<br>Diamond Tails -<br>HQ3                                                                                                                                          |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         | SVL                                                                                                                                             | RC                                                                                                                                                  | 2013                                                                                                                                                     | 13                                                                                                                               | New Competitive Drilling/Rig 1 and<br>Rig 8                                                                                                                                                                                                                                                                                                                            | 5.5"                                                                                                                                                                              |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         | SVL                                                                                                                                             | RC/DD                                                                                                                                               | 2013                                                                                                                                                     | 10                                                                                                                               | Precollar - New Competitive<br>Drilling/Rig 1 and Rig 8<br>Diamond tails - Australian Mineral and<br>Waterwell Drilling (AMWD) /Rig5<br>(track rig)                                                                                                                                                                                                                    | RC Precollars -<br>5.5"<br>Diamond tails -<br>NQ2                                                                                                                                 |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |                                                                                                     |    |
| 65                     |                                                                                                                                                                                                                                                                                                                         | Historic Drilling                                                                                                                               |                                                                                                                                                     |                                                                                                                                                          | - http://www.t                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         | PM drill cont                                                                                                                                   | ractor is unk                                                                                                                                       | nown. Sampl                                                                                                                                              | e bit type is un                                                                                                                 | known.                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                   |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |                                                                                                     |    |
|                        |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |                                                                                                     |    |

| Criteria      | JORC Code explanation                                                                                               |            |                              |                |               | C                    | ommentary                                                                                   |                           |            | CF |
|---------------|---------------------------------------------------------------------------------------------------------------------|------------|------------------------------|----------------|---------------|----------------------|---------------------------------------------------------------------------------------------|---------------------------|------------|----|
|               |                                                                                                                     | •          |                              |                |               |                      | Drillers.Underground drilling was cor                                                       | npleted by a E500 air op  | erated rig |    |
|               |                                                                                                                     |            | and surface a                | Mindrill F20   | 0 (E1000). S  |                      | be was AX and lesser BX.                                                                    |                           |            |    |
|               |                                                                                                                     |            | Company                      | Hole type      | Year          | No. of<br>Drillholes | DrillComp / Rig                                                                             | Hole Size /<br>Core size  |            |    |
|               |                                                                                                                     |            | GNSW                         | DD             | 1963          | 8                    | Associated Diamond Drillers/UG -<br>E500 air operated rig<br>Surface - Mindrill F20 (E1000) | BX/AX                     |            |    |
|               |                                                                                                                     |            | Planet<br>Management         | DD             | 1969/70       | 34                   | Unknown                                                                                     | Unknown                   |            |    |
| Drill sample  | • Method of recording and assessing core and chip sample                                                            | SVL Drilli |                              |                |               |                      |                                                                                             | <u> </u>                  |            |    |
| recovery      | recoveries and results assessed.                                                                                    | •          | No consistent                | recording o    | of qualitativ | e RC recover         | y data (sample size and moisture) has                                                       | s been undertaken.        |            |    |
|               | <ul> <li>Measures taken to maximise sample recovery and<br/>ensure representative nature of the samples.</li> </ul> | •          | Quantitative I               | RC recovery    | data com      | orising select       | ted weights from bulk rejects and re                                                        | e-splits for some 2010 dr | illing was |    |
| $\mathcal{D}$ | <ul> <li>Whether a relationship exists between sample recovery</li> </ul>                                           |            | recovered. Th                |                | -             |                      |                                                                                             |                           |            |    |
|               | and grade and whether sample bias may have occurred                                                                 | •          |                              |                |               |                      | run recovery was recovered from f<br>ata (DDH026, 31) and eight later DD ta                 |                           |            |    |
|               | due to preferential loss/gain of fine/coarse material.                                                              |            | -                            |                |               | -                    | urements on drillholes with no record                                                       |                           | -          |    |
| 5             |                                                                                                                     |            |                              |                |               |                      | entire drillhole was not always meas                                                        |                           |            |    |
| ))            |                                                                                                                     |            |                              | -              |               | -                    | alues and/or missing sheets. Not all                                                        |                           |            |    |
| R             |                                                                                                                     |            | recovery over                | the assay ir   | nterval.      |                      |                                                                                             |                           |            |    |
| $\bigcirc$    |                                                                                                                     | •          |                              |                |               | -                    | ered was >90% recovery. However, d                                                          | ata is incomplete and the | refore no  |    |
| D             |                                                                                                                     |            |                              |                |               |                      | le has been able to be undertaken.                                                          |                           |            |    |
| 2             |                                                                                                                     | •          | Quantitative I               | -              | -             |                      | -                                                                                           |                           |            | E  |
| $\mathcal{D}$ |                                                                                                                     | •          |                              |                | -             | -                    | th minimal grade bias. Some low sam                                                         |                           | -          |    |
|               |                                                                                                                     |            |                              |                |               |                      | of core weights is recommended but w<br>ion and the mineralisation style at We              |                           | sumcient   |    |
|               |                                                                                                                     |            |                              | -              | -             | -                    | ign due to different drill rigs and split                                                   |                           | casionally |    |
|               |                                                                                                                     |            | -                            | -              | -             |                      | n using a splitter. There is no conclusi                                                    | -                         | -          |    |
| R             |                                                                                                                     |            | wet or dry sar               |                |               |                      |                                                                                             | Ū                         |            |    |
| $\bigcirc$    |                                                                                                                     | Historic I | Drilling                     |                |               |                      |                                                                                             |                           |            |    |
|               |                                                                                                                     | •          | No recovery d                | ata is availa  | ble for PM    | drilling             |                                                                                             |                           |            |    |
|               |                                                                                                                     | •          |                              | -              |               | -                    | un recovery has been reviewed from                                                          |                           |            |    |
|               |                                                                                                                     |            |                              | Logs record    | d core lost   | and interva          | I. Core recovery was commonly >90                                                           | 0% recovery. Logs have    | not been   |    |
| $\mathcal{D}$ |                                                                                                                     | -          | digitized.<br>No quantitativ | o lab cama     | lo woighte    | woro rocovor         | ad                                                                                          |                           |            |    |
| Ľ             |                                                                                                                     | •          |                              |                |               |                      | ea.<br>outh Wales in Londonderry but has no                                                 | t heen reviewed to data   |            |    |
| Logging       | • Whether core and chip samples have been geologically                                                              | SVL loggi  |                              | sy the Geo     | iogical July  | cy of New Sc         | such wates in condonaerry but has he                                                        |                           |            |    |
| Jogging       | and geotechnically logged to a level of detail to support                                                           | •          |                              | ging files red | orded litho   | logy, oxidatio       | on, alteration and mineralisation and s                                                     | some oriented core. Selec | ted paper  |    |
|               | appropriate Mineral Resource estimation, mining                                                                     |            | 0 0                          |                |               | 07                   | Irillholes to RC114.                                                                        |                           |            |    |
|               | studies and metallurgical studies.                                                                                  | •          | DD logging wa                | is focused o   | n delineati   | ng unique ge         | ological intervals whist RC logging wa                                                      | s on a meter basis        |            | E  |
| 5             | • Whether logging is qualitative or quantitative in nature.<br>Core (or costean, channel, etc) photography.         | •          | Core run reco                | very was ree   | covered fro   | m SVL paper          | logs, digital data paper logs and digit                                                     | al files (detailed above) |            |    |
| $\mathcal{V}$ | • The total length and percentage of the relevant                                                                   |            |                              |                |               |                      |                                                                                             |                           |            |    |
| Ę             | intersections logged.                                                                                               |            |                              |                |               |                      |                                                                                             |                           |            |    |
|               |                                                                                                                     |            |                              |                |               |                      |                                                                                             |                           |            |    |
|               |                                                                                                                     |            |                              |                |               |                      |                                                                                             |                           |            |    |
|               |                                                                                                                     |            |                              |                |               |                      |                                                                                             |                           |            |    |

| Criteria     | JORC Code explanation | Commentary CP                                                                                                                                                                                                                                                          |
|--------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                       | <ul> <li>Logging was both qualitative with quantitative components. Lithology, oxidation, mineralisation, and structural data<br/>contain both qualitative and quantitative fields. Alteration is qualitative. The recovery (core run and sample), RQD, and</li> </ul> |
|              |                       | <ul> <li>specific gravity measurements are quantitative.</li> <li>SVL core photos were recovered for most of the 2008-2011 drilling and one of the 13 RCD tails. SVL RC photos were</li> </ul>                                                                         |
|              |                       | recovered for drillholes RC012-RC057, RC072-RC085, and RC087-RC091.                                                                                                                                                                                                    |
|              |                       | • SVL also undertook Niton pXRF analysis, broadly using this as an indication of mineralisation.                                                                                                                                                                       |
|              |                       | <ul> <li>Logs for SVL drillholes are available for most drillholes. Logs are not always complete.</li> </ul>                                                                                                                                                           |
|              |                       | <ul> <li>Bulk density was undertaken on five diamond drillholes for 135 measurements and for RC drillholes 95 pulp<br/>measurements.</li> </ul>                                                                                                                        |
|              |                       | <ul> <li>SVL logging was to at an acceptable level of detail to support Mineral Resource Estimates, mining studies and metallurgical<br/>studies.</li> </ul>                                                                                                           |
|              |                       | 2021 Re-logging                                                                                                                                                                                                                                                        |
|              |                       | <ul> <li>Thomson's geoscience consultants undertook an extensive relogging campaign of 13,125.89 m of RC chips and diamond core. This was 31 DD drillholes, 10 RCD drillholes and &amp; 132 RC drillholes.</li> </ul>                                                  |
| 9            |                       | • 5,208.2 m comprising 13 DD drillholes for 1,471.7 m, 1 DD tail for 55.3 m and 43 drillholes for 3,736.5 m were logged in full for lithology, oxidation, mineralisation, and structures.                                                                              |
|              |                       | <ul> <li>The ore zone and a 5-10 m buffer of an additional nine DD drillholes for 383.1 m was logged lithology, oxidation,<br/>mineralisation, and structures.</li> </ul>                                                                                              |
|              |                       | • Alteration was selectively logged around primary and secondary mineralisation for an additional 89 RC drillholes, nine DD drillholes, nine RCD drillholes.                                                                                                           |
|              |                       | • DD diameter, sample intervals, recovery and sample quality were spot checked.                                                                                                                                                                                        |
| 2            |                       | • Logging was completed onto paper logs and digitally, documenting lithology, alteration, oxidation, mineralisation, and                                                                                                                                               |
|              |                       | structure. Logging was to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.                                                                                                                              |
|              |                       | Logging was both qualitative with quantitative components. Lithology, oxidation, mineralisation, and structural data                                                                                                                                                   |
| and          |                       | contain both qualitative and quantitative fields. Alteration is qualitative. The recovery (core run and sample), RQD, and specific gravity measurements are quantitative.                                                                                              |
|              |                       | Bulk density was undertaken on 39 drillholes with 759 measurements.                                                                                                                                                                                                    |
|              |                       | <ul> <li>Core photos were undertaken for drill core prior to transport from Glen Innes to Thomson's Texas operations. All core was photographed however core from drillholes RCD281, RCD276, RCD278 &amp; RCD272 was severely compromised.</li> </ul>                  |
|              |                       | <ul> <li>RC Chip trays were transferred from Glen Innes to Thomson's Texas operations, with all trays photographed.</li> </ul>                                                                                                                                         |
|              |                       | <ul> <li>Paper logs were then scanned, and data was entered into spreadsheets and will be uploaded into TMZ custom version of</li> </ul>                                                                                                                               |
| $(\bigcirc)$ |                       | the commercially available MX Deposit relational drillhole data base.                                                                                                                                                                                                  |
| 200          |                       | <ul> <li>The level of re-logging detail is considered applicable for the grade and style of mineralisation and the mineralogy of the<br/>Webbs Deposit.</li> </ul>                                                                                                     |
|              |                       | Historic Logging                                                                                                                                                                                                                                                       |
|              |                       | <ul> <li>Paper logging of GNSW drillholes BH001-BH008 recorded detailed descriptions of lithology, alteration, mineralisation,</li> </ul>                                                                                                                              |
|              |                       | bedding/foliation, Joints, Shears, and fractures. Logging was focused on delineating unique geological intervals.                                                                                                                                                      |
|              |                       | <ul> <li>Core run recovery was recovered on GNSW paper logs (detailed above).</li> </ul>                                                                                                                                                                               |
|              |                       |                                                                                                                                                                                                                                                                        |
|              |                       |                                                                                                                                                                                                                                                                        |
| ~            |                       |                                                                                                                                                                                                                                                                        |
|              |                       |                                                                                                                                                                                                                                                                        |

|              | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       | Comme                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                           |                                                                                                                           |                      |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|
| preparation  | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | svit QAQCE<br>svit Sampling<br>svit Sampling<br>e<br>Svit Sampling<br>e<br>Diama<br>length<br>Samp<br>e<br>RC sa<br>at 1 m<br>and a<br>Samp<br>Depose<br>svit QAQCE<br>e<br>Minim | is stored b<br>ond core s<br>n in miner<br>les were c<br>Q3/HQ3/I<br>sampled.<br>mpling va<br>n intervals<br>summary<br>le masses<br>sit. | is available.<br>not been d<br>y the Geolog<br>ampling was<br>alised zones<br>ut with a me<br>HQ/NQ2/NQ<br>ried by camp<br>, with some<br>of sample c<br>are conside | gitized<br>gical Survey of<br>and typically 2<br>echanical core<br>core sizes and<br>baign, betwee<br>5 m composite<br>ollection methered applicable<br>were found. S | tions for PM di<br>f New South Wa<br>ver selected zon<br>1 m outside of r<br>saw. Core cut b<br>d ½ core and ¼ d<br>en sampling of so<br>res collected out<br>hods for RC cam<br>le for the grade | rillholes DC14, D16, DC1<br>les in Londonderry but ha<br>res of core. Samples were<br>nineralisation<br>by core saw is an appropri<br>core sampling are appropri<br>elected or entire length o<br>rside of the mineralised zo<br>paigns is provided in the so<br>and style of mineralisat | iate for grain size and form of materi<br>f whole. Samples were often collecte<br>ones. Samples were typically riffle spl | m<br>ed<br>it,<br>bs |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • The F                                                                                                                                                                           | C re-split<br>table (Ag,                                                                                                                  | s laboratory                                                                                                                                                         | batches wer                                                                                                                                                           |                                                                                                                                                                                                   | splits with no original ass                                                                                                                                                                                                                                                               | mos. Assays from 48 samples appe<br>ay.<br>Sample Collection                                                              | ar                   |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SVL                                                                                                                                                                               | RC                                                                                                                                        | 2007                                                                                                                                                                 | 19                                                                                                                                                                    | Whole                                                                                                                                                                                             | 1 m (rare 5 m)                                                                                                                                                                                                                                                                            | Riffle split by hand, using a stand along riffle splitter                                                                 |                      |
| $\mathbf{D}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SVL                                                                                                                                                                               | RC                                                                                                                                        | 2008                                                                                                                                                                 | 27                                                                                                                                                                    | Whole                                                                                                                                                                                             | 1 m within<br>mineralisation and 5 m<br>comps outside of<br>mineralisation                                                                                                                                                                                                                | 3-way rig mounted riffle splitter                                                                                         |                      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SVL                                                                                                                                                                               | DD                                                                                                                                        | 2008                                                                                                                                                                 | 4                                                                                                                                                                     | Selected                                                                                                                                                                                          | 0.3 to 1.15 m within<br>main mineralisation and<br>1 m outside                                                                                                                                                                                                                            | 1/2 core                                                                                                                  |                      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                      | 1                                                                                                                                                                     | -                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                           |                                                                                                                           |                      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SVL                                                                                                                                                                               | RC                                                                                                                                        | 2009-2010                                                                                                                                                            | 57<br>(11 drillholes<br>not sampled)                                                                                                                                  |                                                                                                                                                                                                   | 1 m                                                                                                                                                                                                                                                                                       | 3-way rig mounted riffle splitter                                                                                         |                      |

Criteria

\_\_\_\_

|     |      |      |                                                         | Commen                                              | itary                                                                                    |                                     |  |
|-----|------|------|---------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------|--|
| SVL | DD   | 2010 | 11                                                      | Selected                                            | 0.2 to 1.4 m within main<br>mineralisation and 1 m<br>outside                            | Mixture of 1/4 core and 1/2 core    |  |
| SVL | DD   | 2011 | 16                                                      | Selected                                            | 0.3 to 1.58 m within<br>main mineralisation and<br>1 m outside                           | 1/2 core                            |  |
| SVL | RCDD | 2011 | 3<br>(only 1<br>precollar<br>sampled and<br>no diamond) | Very limited<br>sampling of<br>only 1<br>precollar. | 1 m                                                                                      | RC - Unknown                        |  |
| SVL | RCDD | 2013 | 10                                                      | RC and DD selected                                  | Precollar - 1 m<br>DD - 0.5 to 2.2 m<br>within main<br>mineralisation and 1 m<br>outside | Precollar - Unknown<br>DD- 1/2 core |  |

СР

#### **Historic Sampling**

- Diamond core sampling was conducted over selected zones of core. Sample sizes are unknown.
- PM samples are historic composites that range in length from 0.4-8.08 m.
- GNSW samples are a combination of historic composites and interval samples. Intervals range from 0.5-2.29 m.
- Core is stored by the Geological Survey of New South Wales in Londonderry but has not been reviewed to date.

#### Historic QAQC

QAQC protocols are unknown

| Company              | Hole<br>type | Year        | No. of<br>Drillholes | Sample Method<br>Over Drillhole | Sampling Intervals                                                                                                                                       | Sample Collection                                              |
|----------------------|--------------|-------------|----------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| GNSW                 | DD           | 1963        | 8                    | Unknown                         | Samples are a combination of<br>historic composites and interval<br>samples. Intervals range from<br>0.5-2.29 m                                          | Unknown. Samples could be<br>reviewed at GNSW core<br>library. |
| Planet<br>Management | DD           | 1969/<br>70 | 34                   | Unknown                         | Data is sourced from historic<br>reports where it is in the form of<br>reportable intercept summary<br>tables. Composite lengths range<br>from 0.1-4.8 m | reviewed at GNSW core                                          |

#### 2022 Pulp Check Assays

• Whole pulp samples were selected from Thomson's pulp storage facility at there Texas Project. Each sample was given a new sample ID. The paper pulp packet was place inside a plastic zip lock bag with the new sample ID written on the outside and with a sample ticket. Samples were re-homogenised at ALS.

- (

#### JORC Code explanation

Quality of • The nature, quality and appropriateness of the assaying assay data and laboratory procedures used and whether the

- and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
  - Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

SVL Assaying

٠

 Samples were submitted to ALS (Brisbane) where they were weighed, dried, crushed to 2 mm, split (by riffling) and pulverised up to 3 kg to 95% passing 75 microns

Commentary

Assay methods are described in *Sampling techniques* section above and in the table below.

| Company | Hole<br>type | Year          | No. of<br>Drillhol<br>es |     | Au Digest/<br>Finish                 | ME<br>elements                                                 | ME Digest/<br>Finish                                                                                                                     | OG<br>Elements    | OG<br>Method                                                                                                                                    |
|---------|--------------|---------------|--------------------------|-----|--------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| SVL     | RC           | 2007          | 19                       | ALS | 30g fire assay<br>with AAS<br>finish | Ag, As, Bi,<br>Cu, Pb, Sb,<br>Sn, W, Zn                        | Aqua regia digest<br>with ICP-AES<br>finish (ME-ICP41s<br>- selected elements)<br>selected re-assay of<br>Sb, Sn, W by XRF<br>(ME-XRF05) | Ag, Cu,<br>Pb, Zn | Aqua regia/AAS or<br>ICP-MS (OG-46),<br>Very high-grade<br>silver by 30 g fire<br>assay and<br>gravimetric finish                               |
| SVL     | RC/D<br>D    | 2008-<br>2013 | 294                      | ALS | Not assayed                          | Ag, As, Bi,<br>Cu, Fe, Pb, S,<br>Sb, Sn, W, Zn<br>(+/- In, Mo) |                                                                                                                                          | Ag, Cu,<br>Pb, Zn | Aqua regia/AAS or<br>ICP-MS (OG-46),<br>Very high-grade<br>silver by Extended<br>ore grade aqua<br>regia digest/ICP-<br>AES finish (OG-<br>46h) |

ER

#### SVL QAQC

- No definitive SVL QAQC protocol, sample list or compilation was recovered. Lab files were reconciled by Thomson's
  geoscience consultants in 2022 with drill samples, and QAQC types and ID were assigned using available source data and
  assays, with confidence levels assigned. Source data included minimal SVL files, ticket books (many tickets with no sample
  information) sample sheets (RC271-290) and lab sample weights.
- QAQC types were defined as standards, blanks and unknown (interpreted to be possibly coarse standard or duplicates).
- Standards, blanks & unknown insertion rates varied across years and batches. On a per Lab batch basis, use of Company
  inserted QAQC varies from nil to well in excess of insertion rates considered appropriate for the mineralisation style and
  stage of exploration at Webbs (refer to table).
- Standards were approximately 5% inserted with 13 Geostats standards used with variable frequency.
- The standards were plotted for Ag, Cu, Pb, Zn, when applicable, with minimal results outside 3 Standard Deviations from certified expected value.
- Blanks were approximately 1% inserted with the provenance of various blanks unknown.
- In 2010-2011 drilling coarse and pulp blanks were identified, with additional minor blanks with relatively high values Cu Pb Zn – this is unable to be resolved. Most blanks are within acceptable values for Cu, Pb and Zn.
- In 2012-2013 drilling, pulp blanks are acceptable

Criteria

and

#### **JORC Code explanation**

| -          |    |     |        |      |
|------------|----|-----|--------|------|
|            | mn | ner | Ta.    | r\/  |
| <b>U</b> U |    |     | I L GI | H V. |

|      |        |        | Blanks |       |        | Unknown |       |         |
|------|--------|--------|--------|-------|--------|---------|-------|---------|
|      | Total  | None   | Inse   | rted  | None   | Inse    | rted  | Present |
| Year | # Jobs | # jobs | Min %  | Max % | # jobs | Min %   | Max % | # Jobs  |
| 2007 | 4      | 0      |        |       | 0      |         |       | 0       |
| 2008 | 17     | 0      |        |       | 13     | 1       | 4     | 5       |
| 2009 | 3      | 0      |        |       | 0      | 3       | 8     | 1       |
| 2010 | 18     | 17     | 1      |       | 5      | 4       | 27    | 0       |
| 2011 | 55     | 28     | 1      | 11    | 3      | 1       | 69    | 3       |
| 2012 | 2      | 0      | 7      | 7     | 0      | 7       | 7     | 0       |
| 2013 | 10     | 3      | 4      | 16    | 3      | 3       | 11    | 1       |

% inserted rate calculated using # drill samples Not included 2 XRF, 1 superceeded, 2 resplits

2022 Pulp Check Assays

- Check assays were submitted to ALS Brisbane for analysis. Samples were re-homogenized and analysed for gold by Au-• AA25 method, consisting of a 30 g charge fire assay with AA finish. Multielement analysis was completed by four acid digest with AES finish as per method ME-ICP61. Analytes requested included Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn. Multielement analysis was also completed by aqua regia digest with AES finish as per method ME-ICP41 for element Sn. Lithium Borate Fusion with acid dissolution and ICPMS finish was also done on the following Analytes Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Ge, Hf, Ho, In, La, Lu, Nb, Nd, Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb, Zr as per ME-MS85 method. Ore grade analysis (aqua regia) was completed on = 100 ppm Ag (Ag-OG62), 10,000 ppm Cu (Cu-OG62), 10,000 ppm Pb (Pb-OG62), 10,000 ppm Zn (Zn-OG62).
- QAQC samples including CRM and pulp blanks were inserted at a rate of 7.18%. All standards returned results within two ٠ standard deviations of the certified value, and no significant contamination of blanks was observed.
- Sample preparation and assaying by the ALS Brisbane laboratory is considered applicable for the grade and style of mineralisation and the mineralogy of the Webbs Deposit.

#### **Historic Assaying & QAQC**

- PM sample preparation and assay techniques are unknown. Assays for Ag are available for all intervals with Cu, Pb, Zn, As, ٠ Sb available for selective intervals.
- ٠ GNSW samples are recorded as being sampled at the Chemical Laboratories, Department of Mines. Sample preparation and assay techniques are unknown. Assay for Ag are available for all intervals. Cu, Pb, Zn are available for selective intervals

observed to have alteration and mineralisation in core and chips reflecting the tenor of assays in the database.

Selected mineralised intervals were relogged by Thomson's geoscience consultants, the lode intersections were generally

Over the deposit there are 12 sets of paired RC and Diamond drill holes (<20 m apart). Two of the pairs had assay results

and interval widths of similar grade and length. Six of the pairs have RC Ag results higher than the DD Ag results and four

had DD Ag results higher than the RC results. The difference between 1-3% for nine of the pairs which would be in line

• QAQC protocols are unknown for PM and GNSW drilling.

with the natural variation of the deposit.

Verification • The verification of significant intersections by either SVL Drilling independent or alternative company personnel.

# •

٠

of sampling and assaying ٠ The use of twinned holes.

- Documentation of primary data, data entry procedures, • • data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data. ٠

SVL Logging, sampling, and assays were received in excel files. Initial data storage is unknown.

Criteria

СР

| Criteria    | JORC Code explanation                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | СР |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|             |                                                                                                                                                                                                                                                                                                                | <ul> <li>Drilling data was reviewed using original data sources where possible. Source data included original collar and downhole survey data, annual reports, news releases, digital SVL files, digital assay files, 5m DEM and some paper logs.</li> <li>Overall validation included standard drill hole validation (overlapping intervals, hole depths etc), a review of hole location, downhole surveys and assays against source data, 3D, and 5 m DEM.</li> <li>No complete Historical Dataset with Lab Job #, complete OG assays &amp; all holes was supplied. For the 2022 Compilation consisted of original Digital ALS Assay files with all assays + Sample ID &amp; Holes from all Historical Files. All sample ID &amp; holes were validated against all Historical files &amp; available Source data &amp; Assay files. Assays were reviewed in 3D for mineralisation consistency and multi-element assay availability. A sample confidence field was added in to identify samples with weight issue or other sample reconciliation issue. QAQC was compiled from source data and original assay files reconciliation. A final comparison of 2022 compilation file vs Historical Datasets was undertaken. Earlier rounding errors, some missing As, Pb and Zn results, and some missing OG results were rectified. A complete assay file was then compiled from original Lab assays &amp; incomplete &amp; inconsistent Historical datasets with reconciliation between datasets and lab files and available source data.</li> <li>No adjustments to assay data were undertaken.</li> </ul> |    |
|             |                                                                                                                                                                                                                                                                                                                | • The level of data validation is satisfactory to support a considered applicable for the grade and style of mineralisation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 16          |                                                                                                                                                                                                                                                                                                                | the mineralogy of the Webbs Deposit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|             |                                                                                                                                                                                                                                                                                                                | <ul> <li>2022 Check Assays</li> <li>Global Ore compared 2022 check assay results of SVL pulps to original assays for Ag, Cu, Pb, Zn, Sn and Sb. Pulp re-assay values show low levels variation from the historic assay results R<sup>2</sup> values &gt; 0.99. R<sup>2</sup> values were 0.9987 for Ag, 0.9971 for Cu, 0.9941 for Pb, and 0.9957 for Zn.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 99          |                                                                                                                                                                                                                                                                                                                | Historic Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Location of | Accuracy and quality of surveys used to locate drill holes                                                                                                                                                                                                                                                     | <ul> <li>GNSW and PM logging, sampling and assays were reviewed and recovered from historic company files (.pdf). Initial data storage is unknown.</li> <li>A desktop review of drilling data was completed using original data sources where possible. Source data included, annual/final reports, 5 m DEM and some paper logs.</li> <li>Assays were sourced from historic reports, sections, tables, plans. Interval lengths were reported in ft and converted. Intervals in holes DC13, DC15 and DC32 were reported as horizontal lengths and were converted to downhole lengths using the hole dip. Ag was reported in Oz per long ton, dwt and gr. All were converted to ppm. Base metals were reported as a mix of percent and ppm. Percent values were converted to ppm where applicable. PM assays are all composites – no raw sample intervals exist. GNSW assays were reported as intervals and composites. Where interval assays existed, composites were removed.</li> <li>Core is stored by the Geological Survey of New South Wales in Londonderry but has not been reviewed to date.</li> <li>Validation highlighted the complex nature of historical data. The historic drillholes showed acceptable correlation to nearby drilling by SVL. The level of validation is considered applicable for the grade and style of mineralisation and the mineralogy of the Webbs Deposit.</li> </ul>                                                                                                                                                                                               |    |
| data points | <ul> <li>Accuracy and quarry of surveys used to locate and notes<br/>(collar and down-hole surveys), trenches, mine workings<br/>and other locations used in Mineral Resource<br/>estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul> | <ul> <li>208 Webbs drill collars were located using DGPS by Direct Systems (2001-2011) (a downhole survey company) using<br/>Projection MGA94 Zone 56 and RC062 as a base station. A further 74 drillholes appear to have been surveyed by DGPS or<br/>similar, but no original data has been found. A further 31 drillholes appear to have been picked up by handheld GPS.<br/>Twenty-eight GPS drillholes were assigned Regional RL from 5 m DEM. Some drillhole collars were updated due to cross<br/>checking of locations by multiple source data/noting method pick up &amp; 3D review &amp; 5 m DEM cross check.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ER |

| <ul> <li>end system is GDAM MCA Zoe S 5</li> <li>Bownhole tools and intervale surveys have original dawnhole surveys ource data - 50 dnilloles have no downhole tools and interval servers were work with the most frequent tool = Northsecker Gyro. Other tools included any downhole instancement and an agaeted downhole instrument and any downhole instancement and any downhole instancement and is to AC has biologas. Some dnilholes have no downhole to cross checking of anyes by multiples source data. All the ontiger DOV/RC DD m/DUIL company/86, Hole Size/Data et a was compiled from source data.</li> <li>Mettadat: A file ontiger DOV/RC DD m/DUIL company/86, Hole Size/Data et a was compiled from source data.</li> <li>Mettadat: A file ontiger DOV/RC DD m/DUIL company/86, Hole Size/Data et a was compiled from source data.</li> <li>Mettadat: A file ontiger DOV/RC DD m/DUIL company/86, Hole Size/Data et a was compiled from source data.</li> <li>Mettadat: A file ontiger DOV/RC DD m/DUIL company/86, Hole Size/Data et a was compiled from source data.</li> <li>Mettadat: A file ontiger DOV/RC DD m/DUIL company/86, Hole Size/Data et a was compiled from source data.</li> <li>Mettadat: A file ontiger DOV/RC DD m/DUIL company/86, Hole Size/Data et a was compiled from source data.</li> <li>Mettadat: A file ontiger DOV/RC DD m/DUIL company/86, Hole Size/Data et a was compiled with the survey. Size All a size and the survey for RC222. Dovemble Size and the survey for RC227. Dovemble Size an</li></ul>                                                                                                                                                                                                                                                                         |    | Criteria | JORC Code explanation |      |              |      |           | Co                 | mmentary                                                              | СР |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|-----------------------|------|--------------|------|-----------|--------------------|-----------------------------------------------------------------------|----|
| Included single and multishot cameras and a magnetic downhole instrument. Intervals ranged from 10 to 50 m. P. is<br>incread dialinois with no surveys were offen due to 6 Cho betokages. Some dufficies were updated due to cross<br>checking of surveys by multiple source data.       Image: Comp Type Verter Definition<br>Survey Method Intervals     Netadata: A file noting EOH/RC DB mO/Dill Company/Rig /Nole Size/Date etc was compled from source data.       Image: Comp Type Verter Definition<br>Survey Method Intervals     Comp Type Verter Definition<br>Survey Method Intervals<br>(SVL RC 2007 19     DGPS (RTK)<br>assumed .<br>SVL RC 2008 4     RCD12-022 Downhole Survey Australia using a<br>Grosomant digital downhole camera at 5 m intervals.<br>(RCD3: 300 Downhole Survey Australia using a Flexit<br>Survey (RCC202.9)       SVL RC 2008 4     DDH001-002,004<br>DDH001-002,004<br>DDH001-002,004<br>DDH003 - handheid<br>DDH003 - handheid<br>DDH003 - handheid<br>GPS assumed .<br>SVL RC 2008 27     Single and multishot camera surveys at intervals.<br>(RCD41.04.04.04.00.02)       SVL RC 2008 5     ZVL RC 2008 27     Single and multishot camera at Sim intervals (no downhole surveys for<br>RCD41.04.04.00.02)       SVL RC 2008 5     ZVL RC 2008 201     Single and multishot camera at Sim intervals (no downhole surveys for<br>RCD41.04.04.00.02)       SVL RC 2009 6     SVL RC 2008 21     Single and multishot camera at Sim intervals (no downhole surveys for<br>RCD41.04.04.00.02)       SVL RC 2009 6     SVL RC 2009 6     Single and multishot camera at Sim intervals (no downhole surveys for<br>RCD41.04.04.00.02)       SVL RC 2009 6     SVL RC 2009 6     Single and multishot camera at Sim intervals (no downhole surveys for RCD77, 078,<br>Bissum using a LBCR<br>BO/DIME Surveys for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |          |                       |      |              |      |           |                    | original downhole survey source data - 50 drillholes have no downhole | _  |
| Inferred dillinoise, with no survey buildip experted aduation or cross deta.       Comp Hole Year No. of Child Company/Rg /Hole Size/Date etc was compiled from source data.       Comp Hole Year No. of Child Company/Rg /Hole Size/Date etc was compiled from source data.       SVL RC 2007 19     Collar Location Method Intervals       SVL RC 2007     19     DGPS (RTK)<br>assumed - Collar                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |          |                       |      |              |      | -         |                    |                                                                       |    |
| checking of surveys by multiples Source data/noting original azimuth and a mineralisation roos check.         • Metadata: A file noting EOH/Re-CD myDrill Company/Big /Hold Size/Date etc was compiled from source data. <b>Comp</b><br><b>Hole</b><br><b>Vie</b><br><b>Vie</b><br><b>Vie</b><br><b>R</b><br><b>Comp</b><br><b>Hole</b><br><b>Vie</b><br><b>R</b><br><b>Vie</b><br><b>R</b><br><b>Vie</b><br><b>R</b><br><b>Vie</b><br><b>R</b><br><b>Vie</b><br><b>R</b><br><b>Vie</b><br><b>R</b><br><b>Vie</b><br><b>R</b><br><b>R</b><br><b>D</b><br><b>D</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |                       |      |              | -    |           |                    |                                                                       |    |
| Metadata: A file noting EOH/RC-00 m/brill Company/Rig /Hole Size/Date etc was compiled from source data.     Tomp Hole Type Year Orlithole Collar Location Method     Type Year Orlithole Collar Location Method     SvL RC 2007 19     BOPS (RTK)     Swamed -      Contractor unknown     Swamed -      Cont                                                                                                                                                                                                                                                    |    |          |                       |      |              |      |           |                    |                                                                       |    |
| Comp         Probe<br>Type         Year         Drillhole<br>s         Collar Location<br>s         Downhole Survey Method Intervals           SVL         RC         2007         19         Sesumed -<br>contractor unknown.         COLLAR (C) 2002 Downhole Surveys Australia using a Flexit<br>Contractor unknown.         RC012-022 Downhole Surveys Australia using a Flexit<br>Surveys Australia using a Flexit<br>Contractor unknown.           SVL         DD         2008         2         DDH001-002, 004<br>DOH001-002, 004<br>DOH001-002, 004<br>DOH001-002, 004<br>DOH001-002, 004<br>DOFPS (RTK)         Sigle and multishot camera surveys at intervals<br>contractor unknown.         Sigle and multishot camera surveys at intervals<br>contractor unknown.           SVL         RC         2008         2         DOH001-002, 004<br>DOFPS (RTK)         Downhole Surveys Australia using a Flexit<br>Contractor unknown.         Sigle and multishot camera aurveys at intervals<br>(DO express Australia using a Flexit SmartTool<br>multishot camera at 25m intervals (no downhole surveys for<br>contractor unknown.           SVL         RC         2008         27         Boels with DGPS<br>(RTK by Direct<br>Systems using a<br>Leica 3001/200         Downhole Surveys Australia using a Flexit SmartTool<br>multishot camera at 25m intervals (no downhole surveys for<br>RC041, 045, 049, 052)           SVL         RC         2008         27         Boels with DGPS<br>(RTK by Direct<br>Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals to the odownhole surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-15 Multishot camera surveys at 30 m intervals<br>completed by AED Dril                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |          |                       |      |              | -    |           | -                  |                                                                       |    |
| Comp         Probe<br>Type         Year         Drillhole<br>s         Collar Location<br>s         Downhole Survey Method Intervals           SVL         RC         2007         19         Sesumed -<br>contractor unknown.         COLLAR (C) 2002 Downhole Surveys Australia using a Flexit<br>Contractor unknown.         RC012-022 Downhole Surveys Australia using a Flexit<br>Surveys Australia using a Flexit<br>Contractor unknown.           SVL         DD         2008         2         DDH001-002, 004<br>DOH001-002, 004<br>DOH001-002, 004<br>DOH001-002, 004<br>DOH001-002, 004<br>DOFPS (RTK)         Sigle and multishot camera surveys at intervals<br>contractor unknown.         Sigle and multishot camera surveys at intervals<br>contractor unknown.           SVL         RC         2008         2         DOH001-002, 004<br>DOFPS (RTK)         Downhole Surveys Australia using a Flexit<br>Contractor unknown.         Sigle and multishot camera aurveys at intervals<br>(DO express Australia using a Flexit SmartTool<br>multishot camera at 25m intervals (no downhole surveys for<br>contractor unknown.           SVL         RC         2008         27         Boels with DGPS<br>(RTK by Direct<br>Systems using a<br>Leica 3001/200         Downhole Surveys Australia using a Flexit SmartTool<br>multishot camera at 25m intervals (no downhole surveys for<br>RC041, 045, 049, 052)           SVL         RC         2008         27         Boels with DGPS<br>(RTK by Direct<br>Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals to the odownhole surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-15 Multishot camera surveys at 30 m intervals<br>completed by AED Dril                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |          |                       |      |              |      |           |                    |                                                                       |    |
| SVL     RC     2007     19     assumed -<br>contractor unknown     RCD12-022 Downhole Surveys Australia using a<br>Gyroamart digital downhole Surveys Australia using a<br>CR023-30 Downhole Surveys Australia using a<br>RCD23-30 Downhole Surveys Australia using a<br>RCD23-30 Downhole Surveys Australia using a<br>RCD23-30 Downhole Surveys Australia using a<br>Smither and Smither and Sm                                                                                                                                                                                                                                                                                        |    |          |                       | Comp | Hole<br>Type | Year | Drillhole |                    | Downhole Survey Method intervals                                      |    |
| SVL     RC     2007     19     assumed - contractor unknown     Roc 2004     Co23-30 Downhole Surveys Australia using a Flexit contractor unknown       SVL     DD     2008     2     DDH001-002, 004     Single and multishot camera surveys at intervals contractor unknown.     Single and multishot camera surveys at intervals       SVL     DD     2008     2     DDFOS assumed - contractor unknown.     Single and multishot camera surveys at intervals       SVL     RC     2008     2     DGPS (RTK)     DOWnole Surveys Australia using a Flexit SmartTool multishot camera at 25m intervals (no downhole surveys for contractor unknown.       SVL     RC     2008     2     assumed - contractor unknown.     Detween 25 m and 50 m most likely completed DDH003 - handheld DFOS       SVL     RC     2008     2     assumed - contractor unknown.     DGPS (RTK)       DGPS (RTK)     DGPS (RTK)     Downhole Surveys Australia using a Flexit SmartTool multishot camera at 25m intervals (no downhole surveys for CO77, 078, files). Other holes arreme at 15m intervals of 10 m. Not all holes were able to be same.       SVL     RC     2009     2011     27     assumed to be same.       SVL     DD     2011     27     assumed to be same.     083, 085, 086       SVL     DD     2011     27     DGPS RTK by Direct Systems using a Heaver and surveys at 30 m intervals on 10 m. RC221-270 - 077, 078, files). Other holes at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |          |                       |      |              |      |           |                    | RC012-022 Downhole Surveys Australia using a                          |    |
| SVL     DD     2008     4     DDH001-002, 004<br>DCPS assumed -<br>contractor unknown.     Single and multishot camera surveys at intervals.<br>Single and multishot camera surveys at intervals.       SVL     DD     2008     4     DCPS (RTK)<br>DCPS (RTK)     Downhole Surveys Australia using a Flexit SmartTool<br>multishot camera at 25m intervals (no downhole surveys for<br>Contractor unknown.       SVL     RC     2008     27     assumed -<br>contractor unknown.     Downhole Surveys Australia using a Flexit SmartTool<br>multishot camera at 25m intervals (no downhole surveys for<br>contractor unknown.       SVL     RC     2009     69     43 holes with DGPS<br>RTK by Direct.     Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>same.       SVL     DD     2011     27     27     DGPS RTK by<br>Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>same.       SVL     DD     2011     27     27     DGPS RTK by<br>Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>same.       SVL     DD     2011     27     DGPS RTK by<br>Direct Systems using a Leica<br>300/1200 (DHoHole<br>GPS only)       SVL     RC     2011     141     DGPS RTK by<br>Direct Systems using a DAHA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DAHA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DMU 901/1500 magnetic downhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |          |                       |      |              |      |           | . ,                |                                                                       |    |
| SVL     DD     2008     A     DDH001-002, 004<br>DGPS assumed -<br>contractor unknown.<br>Detween 25 m and 50 m most likely completed<br>DDH003 - handheld<br>GPS.       SVL     RC     2008     27     DGPS (RTK)<br>assumed -<br>contractor unknown.<br>DEtween 25 m and 50 m most likely completed<br>DDH003 - handheld<br>GPS.       SVL     RC     2008     27     DGPS (RTK)<br>assumed -<br>contractor unknown.<br>RC041, 045, 049, 052)     Downhole Surveys Australia using a Flexit SmartTool<br>assumed -<br>mutilishot camera at 25m intervals (no downhole surveys for<br>contractor unknown.<br>RC041, 045, 049, 052)       SVL     RC     2008     27     DGPS (RTK)<br>assumed -<br>contractor unknown.<br>RC041, 045, 049, 052)     Downhole Surveys Australia using a Flexit SmartTool<br>assumed -<br>mutilishot camera at 25m intervals (no downhole surveys for<br>contractor unknown.<br>RC041, 045, 049, 052)       SVL     RC     2009     69     Edica 900/1200<br>(original sources<br>files). Other holes<br>assumed to be<br>same.     BORPS RTK by<br>Direct Systems<br>using a LS-16 Multishot camera surveys at 30 m intervals<br>obs 3085, 086       SVL     DD     2011     27     27     Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS S mty)     Holes 5-16 Multishot camera surveys at 30 m intervals<br>by dfiling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 03) (31)       SVL     RC     2011     141     DGPS RTK by<br>Direct Systems using a DMU 401/500 magnetic<br>systems using a DH1/500 magnetic downhole<br>surveys for DDH024, 03) (31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7  |          |                       | SVL  | RC           | 2007 | 19        |                    |                                                                       |    |
| SVL     DD     2008     4     DP001-002, 004<br>DGPS assumed -<br>contractor unknown.<br>DDH003 - handheld<br>GPS     Sigle and multishot camera surveys at intervals<br>contractor unknown.<br>DDH003 - handheld<br>gPS     Sigle and multishot camera surveys at intervals<br>between 25 m and 50 m most likely completed<br>by Well Drilling.<br>GPS       SVL     RC     2008     27     DGPS (RTK)<br>assumed -<br>contractor unknown.<br>contractor unknown.<br>Contractor unknown.     Downhole Surveys Australia using a Flexit SmartTool<br>multishot camera at 25m intervals (no downhole surveys for<br>contractor unknown.       SVL     RC     2009-<br>2010     27     Moles with DGPS<br>RTK by Direct<br>Systems using a<br>Leica 900/1200<br>(original sources<br>same to be<br>same.     Direct Systems using a DS-HA Northseeker Gyro in open<br>hele at intervals of 10 m. Not all holes were able to be<br>same.       SVL     DD     2011     27     DGPS RTK by<br>Direct Systems<br>assumed to be<br>same.     Holes 5-15 Multishot camera surveys at 30 m intervals<br>(original sources<br>files). Other holes<br>assumed to be<br>same.       SVL     DD     2011     27     DGPS RTK by<br>Direct Systems<br>using a Leica<br>(013, 30 - Handheld<br>GPS only)     Holes 5-15 Multishot camera surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-31 Single shot surveys<br>by at 90m (No<br>downhole surveys for DDH024,<br>013, 30 - Handheld<br>GPS only)       SVL     RC     2011     141     DGPS RTK by<br>Direct Systems<br>using a Leica<br>000(200 (DDH025<br>013, 30 - Handheld<br>GPS only)       SVL     RC     2011     141     DGPS RTK by<br>Direct Systems<br>using a Leica<br>000(200 (PCC14).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |          |                       |      |              |      |           | contractor unknown |                                                                       |    |
| SVL<br>SVLDD<br>PD20084contractor unknown.<br>DDH003 - handheld<br>GPS,between 25 m and 50 m most likely completed<br>by Well Drilling.SVL<br>SVL<br>RCRC<br>2008207DGPS (RTK)<br>assumed -<br>contractor unknown.<br>RC041, 045, 049, 052)Downhole Surveys Australia using a Flexit SmartTool<br>multishot camera at 25m intervals (no downhole surveys for<br>contractor unknown.<br>RC041, 045, 049, 052)SVL<br>SVLRC<br>2009-<br>20102009-<br>6943 holes with DGPS<br>RTK by Direct<br>Systems using a<br>Leica 900/1200<br>(roiginal sources<br>files). Other holes<br>assumed to be<br>same.Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>surveys to BCH. No downhole surveys for RC077, 078,<br>083, 085, 086SVL<br>SVLDD201127DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012)<br>(013, 30 - Handheld<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first surveys at 900 (No<br>downhole surveys for DDH024, 030, 031)SVL<br>SVL<br>SVLRC<br>20112011141Direct Systems<br>using a Leica<br>purct Systems using a DMU 9011/500 magnetic to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 |          |                       |      |              |      | 1         | DDH001-002, 004    |                                                                       |    |
| SVLRC200827DCPS (RTK)<br>assumed -<br>contractor unknownDownhole Surveys Australia using a Flexit SmartTool<br>multishot camera at 25m intervals (no downhole surveys for<br>RC041, 045, 049, 052)SVLRC2009<br>201069Direct Systems using a<br>Leica 900/1220<br>(original sources<br>same.Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>same.SVLDD201127DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (Crogers on Lances<br>(Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>same.SVLDD201127DGPS RTK by<br>Direct Systems<br>Uring 1 sources<br>(ODDH012,<br>013, 30 - Handheid<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Beflex camera mostly at 30m<br>intervals of 10 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (PC218)RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DM 101/500 magnetic downhole<br>systems using a DM 101/500 magnetic downhole<br>systems using a DM 101/500 magnetic downhole<br>systems using a DM 101/500 magnetic downhole<br>intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4  |          |                       |      |              |      |           |                    |                                                                       |    |
| SVL     RC     2008     27     DCPS (RTK)<br>assumed -<br>contractor unknown<br>RC041, 045, 049, 052)     Downhole surveys Australia using a Flexit SmartTool<br>multishot camera at 25m intervals (no downhole surveys for<br>RC041, 045, 049, 052)       SVL     RC     2009-<br>2010     69     43 holes with DCPS<br>RTK by Direct<br>Systems using a<br>Leica 900/1200<br>(original source<br>assumed to be<br>same.     Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>surveyed to BCH. No downhole surveys for RC077, 078,<br>083, 085, 086       SVL     PC     2011     27     DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012,<br>013, 30 - Handheld<br>GPS only)       SVL     PC     2011     271     27       SVL     PC     2011     27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F  |          |                       | SVL  | DD           | 2008 | 4         |                    |                                                                       |    |
| SVLRC200827assumed -<br>contractor unknown<br>RC041, 045, 049, 052)multishot camera at 25m intervals (no downhole surveys for<br>RC041, 045, 049, 052)SVLRC2009-<br>201069Fitce (Systems using a<br>Leica 900/1200<br>(original sources<br>files). Other holes<br>assumed to be<br>same.Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>surveyed to BOH. No downhole surveys for RC077, 078,<br>083, 085, 086SVLDD2011277DGPS RTK by<br>Uricet Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheil<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>ompleted by AED Drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900(1/200 (DPC18-<br>OU (PC218-<br>Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals. Not all holes were able to be<br>instrument at 5 m intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |          |                       |      |              |      |           |                    |                                                                       |    |
| SVLRC2009-<br>201069Contractor unknown<br>At 3 holes with DGPS<br>RTK by Direct<br>Systems using a<br>Leica 900/1200<br>(original sources)<br>files). Other holes<br>assumed to be<br>same.Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>surveyed to BOH. No downhole surveys for RC077, 078,<br>083, 085, 086SVLRC201127DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>by drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DMU 9011/500 magnetic downhole<br>instrument at 5 m intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |          |                       |      |              |      |           |                    | Downhole Surveys Australia using a Flexit SmartTool                   |    |
| SVLRC2009-<br>20106943 holes with DGPS<br>RTK by Direct<br>Systems using a<br>Leica 900/1200<br>(original sources<br>files). Other holes<br>assumed to be<br>same.Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>surveyed to BOH. No downhole surveys for RC077, 078,<br>083, 085, 086SVLDD201127DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (CDH012-<br>013, 20 - Handheld<br>GPS only)RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DMU 9011/500 magnetic downhole<br>Systems using a DMU 9011/500 magnetic downhole<br>sinstrument at 5 m intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |          |                       | SVL  | RC           | 2008 | 27        |                    |                                                                       |    |
| SVLRC2009-<br>201069RTK by Direct<br>Systems using a<br>Leica 900/1200<br>(original sources<br>files). Other holes<br>assumed to be<br>same.Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>surveyed to BOH. No downhole surveys for RC077, 078,<br>083, 085, 086SVLDD201127DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |          |                       |      |              |      |           |                    | RC041, 045, 049, 052)                                                 |    |
| SVLRC2009-<br>201069Systems using a<br>Leica 900/1200<br>(original sources<br>files). Other hole<br>assumed to be<br>same.Direct Systems using a DS-HA Northseeker Gyro in open<br>hole at intervals of 10 m. Not all holes were able to be<br>surveyed to BOH. No downhole surveys for RC077, 078,<br>083, 085, 086SVLDD201127DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys of DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. Not all holes were able to be<br>surveyed to BOH. No downhole surveys at 30 m intervals<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900(100 (DC010)RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |          |                       |      |              |      |           |                    |                                                                       |    |
| SVLRC201069(original sources<br>files). Other holes<br>assumed to be<br>same.surveyed to BOH. No downhole surveys for RC077, 078,<br>083, 085, 086SVLDD201127DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 1        |                       |      |              |      |           | , ,                |                                                                       |    |
| SVLDD201127DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DMU 9011/500 magnetic downhole<br>instrument at 5 m intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |          |                       | SVL  | RC           |      | 69        |                    |                                                                       |    |
| SVLDD201127DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DMU 9011/500 magnetic downhole<br>instrument at 5 m intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |          |                       |      |              | 2010 |           |                    |                                                                       |    |
| SVLDD201127DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>using a Leica<br>00/1200 (RC 218-RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DMU 9011/500 magnetic downhole<br>instrument at 5 m intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |          |                       |      |              |      |           | ,                  | ,,                                                                    |    |
| SVLDD201127Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)Direct Systems<br>using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)Holes 5-15 Multishot camera surveys at 30 m intervals<br>completed by AED Drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (DC218-RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DMU 9011/500 magnetic downhole<br>instrument at 5 m intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          |                       |      |              |      |           |                    |                                                                       |    |
| SVLDD201127using a Leica<br>900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)completed by AED Drilling. Holes 15-31 Single shot surveys<br>by drilling company using a Reflex camera mostly at 30m<br>intervals but up to 70 m. Some holes first survey at 90m (No<br>downhole surveys for DDH024, 030, 031)SVLRC2011141DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (PC 248-RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m.RC221-270 - Direct<br>Systems using a DMU 9011/500 magnetic downhole<br>instrument at 5 m intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |          |                       |      |              |      |           |                    |                                                                       |    |
| SVL       DD       2011       27       900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)       by drilling company using a Reflex camera mostly at 30m         SVL       RC       2011       141       900/1200 (DDH012-<br>013, 30 - Handheld<br>GPS only)       by drilling company using a Reflex camera mostly at 30m         SVL       RC       2011       141       DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (RC218-<br>000/1200 (RC218-       RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m. RC221-270 - Direct<br>Systems using a DMU 9011/500 magnetic downhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |          |                       | 0."  |              | 0044 | 07        |                    |                                                                       |    |
| SVL     RC     2011     141     141     DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (PC218)     RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m.     RC221-270 - Direct<br>Systems using a DMU 9011/500 magnetic downhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |          |                       | SVL  | טט           | 2011 | 27        | 900/1200 (DDH012-  |                                                                       |    |
| SVL       RC       2011       141       DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (PC218)       RC127-219 - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m.       RC221-270 - Direct<br>Systems using a DMU 9011/500 magnetic downhole<br>instrument at 5 m intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |          |                       |      |              |      |           |                    |                                                                       |    |
| SVL       RC       2011       141       141       DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (RC218-<br>000/1200 (RC218-<br>000/100) (RC200) (RC218-<br>000/100) (RC200) |    |          |                       |      |              |      |           | ,                  | RC127-219 - Direct Systems using a DS-HA Northseeker                  |    |
| SVL KC 2011 141 using a Leica instrument at 5 m intervals. Not all holes were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |          |                       |      |              |      |           |                    |                                                                       |    |
| ano/1200 (RC218 Instrument at 5 m intervals. Not all noies were able to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ς  |          |                       | SVL  | RC           | 2011 | 141       |                    |                                                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2  |          |                       |      |              |      |           |                    |                                                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7  |          |                       |      | 1            |      | I         |                    | Surveyed to DOTI. (NO downhole Surveys IOLING 127, 131,               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |          |                       |      |              |      |           |                    |                                                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |          |                       |      |              |      |           |                    |                                                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |          |                       |      |              |      |           |                    |                                                                       |    |

#### Commentary

|     |           |                      |    | CO                                                                                         | mmentary                                                                                                                                                                                                                                                                                                                                                  |
|-----|-----------|----------------------|----|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |           |                      |    | 219 - Handheld GPS<br>only)                                                                | 134, 136, 139, 146, 147, 151, 154-160, 167, 181, 184, 196-<br>200, 210, 218, 235-236, 248-249, 256,                                                                                                                                                                                                                                                       |
| SVL | RC_<br>DD | Aug-<br>Sept<br>2011 | 3  | DGPS RTK by<br>Direct Systems<br>using a Leica<br>900/1200 (RCD220 -<br>Handheld GPS only) | Precollar - Direct Systems using a DS-HA Northseeker<br>Gyro in open hole at intervals of 10 m for RCD128 and 20<br>m intervals for RCD129, 220. Diamond tails - no downhole<br>surveys.                                                                                                                                                                  |
| SVL | RC        | Mar,<br>2013         | 13 | Handheld GPS<br>(Garmin eTREX)                                                             | Single shot camera surveys completed at 50 m intervals by<br>Competitive Drilling (No downhole surveys for RC271a,<br>None for 271b, 283, 289-290 but short holes)                                                                                                                                                                                        |
| SVL | RC/D<br>D | Mar,<br>2013         | 10 | Handheld GPS<br>(Garmin eTREX)                                                             | Precollars - Single shot camera surveys completed at 50m<br>intervals by Competitive Drilling, except RCD278 completed<br>at 30m intervals. Diamond tails - Single shot camera<br>surveys at mostly 50 m intervals but down to 20 m intervals<br>by AMWD Drilling (RCD279, 282 no surveys). Note: some<br>surveys not recovered from missing drill plods. |

#### **Historic Collars**

- All Planet (DC) collar locations were sourced from Minview dataset and cross checked with maps. BH007-008 were sourced from historic maps. UG drillholes BH001-006 were sourced from maps and corrected to match the UG workings model. Local grid/s poorly understood and historically documented; thus, these collars may have an error of up to 10m, with some outliers. Surface drillholes RL assigned from Webbs\_5m\_DEM.
- Surveys: surveys were sourced from historic reports, sections, tables, plans. No downhole data exists. Collar azimuths
  were reported as magnetic. A Magnetic Declination Conversion with Time was completed for all drillholes (10.3 deg for
  1963 holes, 10.5 deg for 1969/70 holes) Grid Convergence (0.7 deg).
- Metadata: A file noting EOH/RC-DD m/Drill Company/Rig /Hole Size/Date etc was compiled from historic reports. All drillhole lengths were reported in ft. and converted to meters. Good information exists for GNSW BH series drillholes.
   Poor data on PM DC drillholes.

#### **Topographic Control**

- A 5 m DEM topographic surface was derived from a 2017 ortho-topographic survey, using a Leica Airborne Digital Sensor (vertical accuracy of (+/-) 0.9 m on bare open ground and horizontal accuracy of (+/-) 1.25 m. at 95% Confidence Interval).
- A review of 313 drillholes with DGPS or GPS as historic survey method for RL and the 5 m DEM RL by Global Ore found that the average difference was 0.8 m. This gave confidence that the 2017 5 m DEM RL was accurate within reasonable tolerance given the parameters of the survey.
- Based on the above conclusion, 28 GPS drillholes were assigned Regional RL from 5m DEM, as these were not able to be DGPS surveyed, to create a more accurate, uniform surface for modelling.

Voids

Verification of Underground workings was assisted by reports and level plans from McGuire (1962). Location of level plans
was leverage from 2010 work by SVL. Additionally, this was verified against the void comments captured in available SVL
logs and adjusted where applicable.

Criteria

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                 | <ul> <li>Geology         <ul> <li>Drill spacing along the strike of the Webbs lode is on approximately 50 m spacing and is spaced down dip at approximately 30 m to 80 m. At Webbs North drill spacing is variable between 20 m and 80 m both down dip and along strike and at Webbs South drill spacing is between 20 m and 80 m both down dip and along strike</li> </ul> </li> <li>Geochemistry         <ul> <li>Silver, copper, lead, and zinc were routinely assayed by appropriate methods during all sampling campaigns however large portions of drillholes were not sampled leaving some mineralised intersections open.</li> <li>No compositing has occurred except in limited instances detailed above</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                              | E  |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>Outcrop mapping and structural logging of the limited diamond core holes (DD:RC hole approximate ratio is 1:10) shows sulphide sheeted veining has preferred orientations of ESE (115°)&gt; ENE (060°)&gt;NNE (025°) with mineralisation at Webbs North dipping near vertically and at Webbs South steeply to the west (approx. 80-85°).</li> <li>Angled drillholes are mainly orientated WNW or lesser ESE directed at azimuths around 110° or 290°. The orientation of the veins to the drill core axis has introduced some sampling bias of the vein set, due the drill direction, which has the potential to cause over and under estimation of grade in some drill holes.</li> <li>The materiality of this has been minimised through geological modelling and estimation methodology and will be evaluated with drill holes placed to optimally test the veinlet orientations during a drill program planned at the project for Q3 2025.</li> </ul>                                                                                                                                                                                                    | ER |
| Sample<br>security                                                  | • The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>There is no specific information reported on sample security for historical campaigns. DD core drilled by SVL in 2010 is recorded as being dispatched from the rig to TNT couriers in Glen Innes then to ALS Brisbane.</li> <li>2021 Check Assays were transported to Brisbane by Company personal then dispatched to ALS Brisbane</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ER |
| Audits or<br>reviews                                                | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                            | <ul> <li>No historical review or audit by companies that have conducted the historical drilling is documented or reported.</li> <li>Extensive validation has taken place of the Webbs database with assay, collar, survey and metadata validation from source logs, digital data, annual reports and plans and MRE reports along with a significant relogging exercise, core sample density measurement campaign and detailed surface mapping.</li> <li>Validation of data focused on the SVL database with assay, collar, survey and metadata validation from source logs, digital data, annual reports and plans and MRE reports along with a Significant relogging exercise, core sample density measurement campaign and detailed surface mapping.</li> <li>Validation of data focused on the SVL database with assay, collar, survey and metadata validation from source logs, digital data, annual reports and plans and MRE reports along with a Significant relogging exercise, core sample density measurement campaign and detailed surface mapping.</li> <li>Validation highlighted the complex and often incomplete nature of historical data.</li> </ul> | E  |

# Section 2 Reporting of Exploration Results

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | СР |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Mineral<br>tenement<br>and land<br>tenure status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The Webbs deposit is located approximately 10 km north of Emmaville within the New England Orogen on tenement number EL5674 (at 29.35°S, 151.55°E).</li> <li>EL5674 was acquired 100% by Thomson Resources in January 2021 and later in the year EL5674 was transferred from Silver Mines Limited to Webbs Resources Pty Ltd which is a wholly owned subsidiary of Thomson Resources Ltd.</li> <li>EL5674 covers 12km<sup>2</sup> area and is granted until 13 January 2029.</li> </ul> | ER |

| Criteria JORC Code explanation                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | СР |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                    | <ul> <li>EL5674 is not subject to Native Title claim. Heritage assessments conducted by previous owners found no artefacts or sites of Aboriginal cultural heritage within the area surveyed; approximate. Historical (non-indigenous) cultural heritage sites and objects have been identified and locations defined.</li> <li>On 9 July 2007, following the completion of the RTN process for Minister's consent, consent was granted to the holder of EL5674 allowing the holder to conduct prospecting on land or waters where native title exists.</li> <li>There are no national parks or wilderness conservation areas overlapping the tenement.</li> <li>Land parcels are dominantly freehold with the remainder crown land. There are agreements in place to conduct exploration activities on both the crown and freehold land.</li> <li>There are no overriding royalties.</li> </ul> |    |
| Exploration       • Acknowledgment and appraisal of exploration by other parties.         done by       • parties. | <ul> <li>Silver mineralisation at Webb's was discovered in 1884</li> <li>From 1884 to 1901 approximately 55,000 t of ore was mined at an average grade of at least 23 oz/t Ag. At Webb's Main, mining reached 210 m below surface and extracted a high-grade south-plunging chute. Numerous shafts, some up to 50</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                    | <ul> <li>mining reached 210 m below surface and extracted a high grade south-planging chate. Numerous sharts, some up to 50 m deep, and smaller prospecting pits occur along the 2 km long trend</li> <li>In 1946-47 Zinc Corporation conducted mapping, sampling, costeaning and metallurgy.</li> <li>Between 1962-1965 a private venture re-developed the main workings and there was minor production from</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                                                                                                    | <ul> <li>underground, old dumps, and tailings material.</li> <li>In 1962-63 the Geological Survey of New South Wales provided drilling aid for eight diamond core drillholes drilled from surface and underground positions. Underground sampling and surveying were also undertaken. Sampling on the southern end 650' level returned composite grades of 72-75 oz./t Ag, 2.6% Cu, 2.4% Pb, 10% Zn, 4.5% As and 2.9% Sb.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                                                                                                    | <ul> <li>In 1969 Planet Management and Phoenix Mines NL conducted an exploration program which included geological mapping,<br/>Induced Polarisation (IP), follow-up diamond core and percussion drilling in 40 drillholes. Planet Management reported<br/>several narrow high-grade drill intersections. These were mostly from Webbs South where a 50 m deep exploration shaft<br/>was also sunk.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ER |
|                                                                                                                    | <ul> <li>No further work was undertaken until 2000, when Australian Geoscientists and Polymetals conducted metallurgy of the dumps and other sampling.</li> <li>In 2003 Mt Conqueror Minerals NL purchased the project and conducted sampling, mapping and estimated a resource from historical data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                                                                                                    | <ul> <li>In 2006 Silver Mines Ltd acquired the project and conducted numerous drilling campaigns, totaling approximately 33,990 m from 313 drillholes. Extensive IP surveys, ground Electromagnetic (EM) surveys, mapping, metallurgical test work and sampling were also undertaken.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| <b>Geology</b> • Deposit type, geological setting and style of mineralisation.                                     | <ul> <li>The project was placed on care and maintenance in 2016 until 2021 when it was purchased by Thomson Resources</li> <li>The Webbs deposit is a silver-base metal structurally hosted fracture vein system within the New England Fold Belt which comprises a Palaeozoic fore-arc and volcanic chain to the west, a fore-arc basin in the centre and a subduction complex to the east</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                                                                                                    | <ul> <li>The dominant feature in the general area is the Upper Permian Mole Granite which is mapped as a granite/granodiorite</li> <li>The batholith formed between 270 Ma and 225 Ma along an Andean-type active continental margin and consists of several individual plutons that intruded in several pulses into a complex crustal association of the New England Fold Belt, now recognized as an orogenic wedge sequence.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ER |
|                                                                                                                    | • The New England Batholith is comprised of upper Palaeozoic to Triassic intrusive rocks, subdivided into magmatic "suites". The Mole Granite is a typical example of the youngest post-deformational intrusion of leucocratic alkali feldspar granites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |

|                                                                                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                     | C |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Locally, the main lithology is silicified and altered black shale which has undergone pervasive silica sericite alteration.</li> <li>Within this sequence, numerous dipping lines of lode are developed, typically forming prominent variably iron-stained outcrops up to 15 metres wide and traceable for 1.7 kilometres.</li> </ul>                                                                                 |   |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Emplacement of mineralised lodes is structurally and /or chemically controlled.                                                                                                                                                                                                                                                                                                                                                |   |
| Drill hole<br>Information                                                        | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | • A drill hole table is included below in Appendix 1                                                                                                                                                                                                                                                                                                                                                                           | E |
| Data<br>aggregation<br>methods                                                   | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Simple weighted averages were used across the narrow mineralisation widths</li> <li>A complex grade capping exercise was carried out for each domain. This process is detailed in Section 3</li> <li>The mineralisation is polymetallic with silver, copper, zinc, and lead. Silver Metal equivalent values were estimated using long term metal prices and estimated recoveries as described in Section 3</li> </ul> |   |
|                                                                                  | <ul> <li>high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                | E |
| Relationship<br>between<br>mineralisatio<br>n widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                                                                   | <ul> <li>True width has been estimated where possible</li> <li>The average direction of mineralised veins is at a small angle to the overall mineralised lode as described above under "Orientation".</li> </ul>                                                                                                                                                                                                               | E |
| Diagrams                                                                         | <ul> <li>Appropriate maps and sections (with scales) and<br/>tabulations of intercepts should be included for any<br/>significant discovery being reported These should<br/>include, but not be limited to a plan view of drill hole<br/>collar locations and appropriate sectional views.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maps and sections are provided below in Appendix 1                                                                                                                                                                                                                                                                                                                                                                             | E |
| Balanced                                                                         | <ul> <li>Where comprehensive reporting of all Exploration<br/>Results is not practicable, representative reporting of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The table provided in Appendix 1 is comprehensive                                                                                                                                                                                                                                                                                                                                                                              | E |

| <ul> <li>Protected to work mikeding reporting of Subjection</li> <li>Other subjection doro, if meaningful and material allocation of the subject model of the mining fully adding the reporting handing fully completed above the work completed.</li> <li>Other subjection doro, if meaningful and material allocation on mice during material and gravity and two stage factation on the during material and gravity and two stage factation on the during that an emotyrite reported to a non-magnetic fractional and with a subjection of the during that an emotyrite report of the during that an emotyrite report of the anomageneous fractional and with a subjection on the during.</li> <li>Bunch Minageneri (1986) completed at a out of the subjection on the during factation with 93.6 kg of the terms handing and the subject on the material and gravity prometalization with 93.6 kg of the terms handing and the subject on the material and the subject on the material and the subject on the material and the subject on the subject on the material and the subject on the subject</li></ul>                                                                                                                                                            | Criteria      | JORC Code explanation                              | Commentary                                                                                                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Other exploration data, <i>if</i> meaningful and material, substances substances should be reploration data, <i>if</i> meaningful and material, substances specification on the dump material, all derived from the Webbs UG mine over 50 years and method of treatment, metallargical test work succoducted on 'igit tailings or mine dump material, all derived from the Webbs UG mine over 50 years and method of treatment, metallargical test rosults, bud explosible at two-stage floatation mine dump material and gravity and two stage floatation on jg tailings. A grecoverises were \$7.7% and 70.5% respectively.</li> <li>Planet Management (1569) completed a magnetic separation test on 'crushed ore' finding that arsenopytic reported to an on-magnetic fractional onlog with galana. All ores subplices on mine dump material and gravity and two stage floatation on jg tailings. A grecoverises were \$7.7% and 70.5% respectively.</li> <li>Planet Management (1569) completed a magnetic separation test on 'crushed ore' finding that arsenopytic reported to an on-magnetic fractional onlog with galana. All ores subplice from using a form and the subplice from the Webbs UG mine angenet fraction on surface at magnetic fraction and prove that angenet (1569) completed on 'tresh Ore' obtained from UG above the 250' level &amp; 'Composite Ore' obtained from surface at magnetic fraction and sufface of an least one fraction and stage to fast and the response of the response of the rows was completed on 'tresh ore and stage response on surface or an least ore stage floatation exerces of a least one form and the rows was completed on the subplice floatation. Bud subplice floatation and and prove the rows and and trash the response on surface or an least ore stage floatation. Bud subplice floatation for the 'trash and ber recovereis (90.5% response).</li> <li>Metcon – Floatation Test work (2001) – A single composite sample was used for multielement analysis, grind staing and size fraction analysis. XD, Automated Mineralog(2002) – A single co</li></ul>                                                                                                                                            |               |                                                    |                                                                                                                                                |  |
| exploration<br>data         geological observations: graphysical survey result; buik<br>data         age. Historic reports provide relatively datalid accounts of the work completed.         age. Historic reports provide relatively datalid accounts of the work completed.           geodemical survey result; buik<br>datasity, granudwater, geodetichical on<br>substances.         age. Historic reports provide relatively datalid accounts of the work completed.         age. Historic reports provide relatively datalide accounts of the work completed.           with a substances.         age. Historic reports provide relatively datalide accounts of the work completed.         age. Historic reports provide relatively datalide accounts of the work completed.           with a substances.         Planet Management (1969) completed a magnetic sparation test on "crushed ore" finding that arsenopyrite reported to<br>a non-magnetic fraction along with galena. All other sulphilde ore minerais reported to the magnetic fraction with 98.6%<br>of the terthandrite.           Work metalizingical test work was completed on "Fresh Ore" obtained from UG above the 250" level & "composite Ore" obtained from<br>surface mine dumps.           Modern Metaliurgical test work         Rolation test work was completed on amples fram oid "jg" tallings (2:10 mm<br>diameter) and gravel to cobles work include differon underground extraction. Both types of samples had<br>been exposed on surface frant test work (2009) - Folsation test work was usancessful in producing<br>reasonable recoveries.           Metcon and Ammiter - Quantitative Mineralogy (2009) - A single composite sample was used form utilement analysis,<br>gravit sing and size recoveries.         Metcon and Ammiter - Quantitative Mineralogy (2009) - A single c                                                                                                                                                                                                                                                                                                                                                                                                  | Other         |                                                    | Historical Metallurgical test work                                                                                                             |  |
| data       geochemical survey result; buk samples - size and<br>method of treatment; mediung/acti ser result; buk<br>density, groundwater, geotechnical and rock<br>characteristics; potential deleterious or contaminating<br>substances.       - State Corp (1346) (completed a two-stage fibration on mine dump material and gravity and two stage fibration englis tailings.<br>A recoveries were 97.7% and 70.5% respectively.         • Rate Management (1369)       - State Management (1369)       - State                                                                                                                                                                                                                                    | substantive   | should be reported including (but not limited to): | Most historical test work was conducted on 'jig' tailings or mine dump material, all derived from the Webbs UG mine over 50 years              |  |
| <ul> <li>and the of irreadment; metallurgical test results; buik density, groundwater, geatechnical and gravity and 70.5% respectively.</li> <li>Planet Management (1969) completed a magnetic separation test on 'crushed ore' finding that arsenopying response of the terthedrite.</li> <li>Planet Management (1969) 1970). Test work included, floatation gravity, prometallurgical test work, pertology, and mineralogy. Work was completed on "fresh Ore' obtained from UG above the 250" level &amp; 'Composite Ore' obtained from usarface on the magnetic factor on the dimension of the state of the terthedrite.</li> <li>Modern Metallurgical test work</li> <li>Modern Metallurgical test work as conducted by SVL between 2008 and 2013. This work used samples from old 'git talings, 2-10 mm diameter and gravity and the state of the terthedrite.</li> <li>Modern Metallurgical test work</li> <li>Hoston Metallurgical test work as between software of the state of the</li></ul>                                                                                                                                                                     |               |                                                    | ago. Historic reports provide relatively detailed accounts of the work completed.                                                              |  |
| <ul> <li>Merendo of treatment, metabulagion test Paults, point density, point density, groundwater, geotechnical and row services of constructivities, potential detections or contaminating substances.</li> <li>Planet Management (1969) completed a magnetic sepactively.</li> <li>Planet Management (1969) completed a magnetic fraction gravity, pyrometallurgical test work, petrology, and mineralogy. Work was completed on Fresh Ore' obtained from UG above the 250 level &amp; Composite Ore' obtained from surface mine dumps.</li> <li>Meden Metallurgical test work</li> <li>Planet Management (1969) Completed a magnetic sepacitively.</li> <li>Planet Management (1969) Completed a magnetic sepacitively.</li> <li>Meden Metallurgical test work</li> <li>Planet Management (1969) Completed a magnetic sepacitively.</li> <li>Metabolical test work was consulted by VS ubetween 2008 and 2013. This work used samples from old 'jig' talings (2-10 mm diameter) and gravel to cobble sized rocks from surface dumps derived from underground extraction. Both types of samples had been esposed on surface for at least 45 years.</li> <li>Metaon Frattavit (2008) – Floation test work (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XBD. Automated Mineralog(1000) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XBD. Automated Mineralog(2010) – A single composite sample was used form unitelements on the dem effective's graves and there is a completed on two samples using selective depression methods with the aim of generating (Cu-Ag, Ag-Pa and 2 concentrate, Test work (2010) – KCl sighter test work was completed to determine whether areanopyrite and gate mannels from concentrate. Test wo</li></ul>                                                                                                                                                                                            | data          |                                                    | • Zinc Corp (1946) completed a two-stage flotation on mine dump material and gravity and two stage flotation on jig tailings.                  |  |
| <ul> <li>Planet Management (1396) completed a magnetic separation test on 'trushed ore' finding that arsenopyrite reported to a non-magnetic fraction along with galena. All other sulphile ore minerais reported to the magnetic fraction with 98.6% of the tetrahedrite.</li> <li>Robertson Research (1969-1970). Test work included, floatation gravity, prometallurgical test work, petrology, and mineralogy. Vork was completed on Tresh Ore' obtained from UG above the 250' level &amp; 'Composite Ore' obtained from surface mine dunps.</li> <li>Modern Metallurgical test work</li> <li>Robertson Research (1969-1970). Test work included, floatation gravity, prometallurgical test work, petrology, and mineralogy. Vork was completed to Tresh Ore' obtained from UG above the 250' level &amp; 'Composite Ore' obtained from surface mine dunps.</li> <li>Modern Metallurgical test work</li> <li>Robertson Research (1969-1970). Test work included production of a bulk suphile rougher concentrate, as well as selective floatation test. work included production of a bulk suphile rougher concentrate, as well as selective floatation. Bits Work Mass completed floatation rest. Work included production of a bulk suphile rougher concentrate, as well as helpe incoveries (91.7% and 100%). The selective floatation work was unsuccessful in producing reasonable recoveries (91.7% and 100%). The selective floatation work was unsuccessful in producing reasonable recoveries (91.7% and 100%). The selective floatation work was completed to determine whether arsenopytite micral social denamination analysis, RAD, Automated Mineralogical Analysis (AAA) and specific gravity test work.</li> <li>Optimet - Rougher Floatation Test work (2010) - Etst work (2010) – KCI sighter test work was completed to determine whether arsenopytite micral social be reposed.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCI) Test work (2010) – KCI sighter test work was unable to effectively sparate annenopytite micral social be aprovided in</li></ul>                                                                                                                                                                    |               |                                                    |                                                                                                                                                |  |
| <ul> <li>substances.</li> <li>a non-magnetic fraction along with galena. All other sulphide ore minerals reported to the magnetic fraction with 98.6% of the tetrahedrite.</li> <li>Robertson Research (1959-1970). Test work included, floatation gravity, pyrometallurgical test work, petrology, and mineralogy. Work was completed on "Fresh Ore" obtained from UG above the 250' level &amp; 'Composite Ore' obtained from surface mine dumps.</li> <li>Modern Metallurgical test work</li> <li>Floatation test-work was conducted by SVD between 2008 and 2013. This work used samples from old 'igi' tailings (2-10 mm diameter) and gravel to cobble sized rocks from surface dumps derived from underground extraction. Both types of samples had been exposed on surface for at least 45 years.</li> <li>Mettorn - Floatation Test work (2008)Floatation test work included production of a bulk sulphide rougher concentrate, as well as selective floatation. Bulk sulphide floatation results produced high recoveries (90%) for Ag. Cu, 2n and 73% for Pb, but also high As and Sb recoveries (91.7% and 100%). The selective floatation work was unsuccessful in producing reasonable recoveries.</li> <li>Mettorn and Ammite - Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sing and size fraction analysis, XRO, Automated Mineralogia Inalysis (AMA) and specific gravity test work.</li> <li>Optimet - Rougher Floatation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-4g, &amp;Pb and 2n concentrate. Test work on lump rock from old surface sumps achieved a favorable floation response.</li> <li>Dowmer EDI-Mineral Technologies - Kelesy Centrifug Jig (KI) and specific gravity test work was unable to effectively separate arsenopyrite and galean minerals.</li> <li>All S Chemex - Cyanide (MI) solubility (2010) – Tour samples of jig tailings were sonth to a determine whether arenopyrite minerals from tetrahedrit</li></ul>                                                                                                                                                                              |               |                                                    | • Planet Management (1969) completed a magnetic separation test on 'crushed ore' finding that arsenopyrite reported to                         |  |
| <ul> <li>Robertson Research (1969-1970). Test work included, floatation gravity, pyrometallurgical test work, petrology, and mineralogy. Work was completed on "Fresh Dre' obtained from UG above the 250" level &amp; "Composite Dre' obtained from surface mine dumps.</li> <li>Modern Metallurgical test work</li> <li>Floatation test-work was conducted by SV between 2008 and 2013. This work used samples from old 'ig' tailings (2-10 mm diameter) and gravel to cobble sized rocks from surface dumps derived from underground extraction. Both types of samples had been exposed on surface for at least 45 years.</li> <li>Metcon – Floatation Test work (2008) – Floatation test work included production of a bulk sulphide rougher concentrate, as well as selective floatation. Bulk sulphide floatation results produced high recoveries (90%) for Ag. Cu, 2 nad 73% for Pb, but also high As and Sb recoveries (91.7% and 100%). The selective floatation work was unsuccessful in producing reasonable recoveries.</li> <li>Metcon and Ammitec – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XBD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and 2n concentrates. Test work on lump rock from old surface sump achieved a favourable floatation resonse.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KC) Test work was completed to determine whether arsenopyrite and galean aminerals (roub 80% pasing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that providue Ag gravity addition. The choiranded samples were gleached using the Ecolead<sup>3</sup> Process. A cyaride soluble silver assay was performed on the Ecolead leach product. Results has</li></ul>                                                                                                                                                           |               |                                                    | a non-magnetic fraction along with galena. All other sulphide ore minerals reported to the magnetic fraction with 98.6%                        |  |
| <ul> <li>mineralogy. Work was completed on 'Fresh Ore' obtained from UG above the 250' level &amp; 'Composite Ore' obtained from surface mine dumps.</li> <li>Modern Metallurgical test work</li> <li>Floatation test-work was conducted by SVL between 2008 and 2013. This work used samples from oid 'jg' tailings (2-10 mm diameter) and gravel to cobble sizer tocks from surface dumps derived from underground extraction. Both types of samples had been exposed on surface for at least 45 years.</li> <li>Metton – Floatation Test work (2008) – Floatation test work included production of a bulk sulphide floatation. Bulk sulphide floatation esuits produced ligh recoveries (90%) for A<sub>6</sub>, O<sub>42</sub>, C and 73% for P<sub>6</sub>, but also high As and Sb recoveries (91.7% and 100%). The selective floatation work was unsuccessful in producing reasonable recoveries.</li> <li>Metcon and Ammitec – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Floation Test work (2010) – Test work (2010) – Kol sighter test work was completed to determine whether arsenopyrite and galena minerals from test-bering turk-A<sub>64</sub>, A<sub>67</sub>Pb and 2n concentrates. Test work on lump rock from old surface sump achieved a favourable floatation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCJ) Test work (2015) – KO sighter test work was completed to determine whether arsenopyrite and galena minerals from terahedrite minerals.</li> <li>ALSG Chemes - Cyanide (CIN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemes where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 thr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon –</li></ul>                                                                                                                                |               |                                                    | of the tetrahedrite.                                                                                                                           |  |
| Surface mine dumps.         Modern Metallurgical test work         Floatation test-work was conducted by SVL between 2008 and 2013. This work used samples from old "jig' tailings (2-10 mm diameter) and gravel to cobble sized rocks from surface dumps derived from underground extraction. Both types of samples had been exposed on surface for at least 45 years. <ul> <li>Metcon – Flotation Test work (2008) –Flotation test work included production of a bulk sulphide roomentrate, as well as selective flotation. Bulk sulphide flotation results produced high recoveries (590%) for Ag, Cu, 2n and 73% for Pb, but also high As and Sb recoveries (91.7% and 100%). The selective flotation work was unsuccessful in producing reasonable recoveries.</li> <li>Metcon and Ammeter – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work no lump rock from old surface sumps achieved a favourable flotation response.</li> <li>Downer ED-Minner alternhougher animerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of ig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (ulwerised to 80% passing 75 un') samples. All songbles were test hor bottler noled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 50 to 50 ass.</li> </ul> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed wi</li>                                                                                                                                                                                                                                                                                                                                                                 |               |                                                    | • Robertson Research (1969-1970)- Test work included, floatation gravity, pyrometallurgical test work, petrology, and                          |  |
| Surface mine dumps         Modern Metallurgical test work         Floatation test-work was conducted by SVL between 2008 and 2013. This work used samples from old 'jig' tailings (2-10 mm diameter) and gravel to cobile sized rocks from surface dumps derived from underground extraction. Both types of samples had been exposed on surface for at least 45 years.         • Metcon – Flotation Test work (2008) – Flotation test work included production of a bulk sulphide roopent concentrate, as well as selective flotation. Bulk sulphide flotation results produced high recoveries (990%) for Ag. (Cu, 2n and 73% for Pb, but also high As and Sb recoveries (91.7% and 100%). The selective flotation work was unsuccessful in producing reasonable recoveries.         • Metcon and Ammeter – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.         • Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps achieved a favourable flotation response.         • Downer EDM-Mineral Technologies - Relsey Centrifugal Ig (KCI) – KCI sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silve-basing tetrahedrite. KCI test work was unable to effectively separatel Technologies - Relsey Centrifugal Ig (KCI) – KCI sighter test work was unable to effectively separated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.         • ALS Chemex - Cyanated Za hr CN leach. Results based on assayed head versus ta                                                                                                                                                                                                                                                                                                                                                                           |               |                                                    | mineralogy. Work was completed on 'Fresh Ore' obtained from UG above the 250' level & 'Composite Ore' obtained from                            |  |
| <ul> <li>Floatation test-work was conducted by SVL between 2008 and 2013. This work used samples from oid 'iig' tailings (2-10 mm diameter) and gravel to cobble sized rocks from surface dumps derived from underground extraction. Both types of samples had been exposed on surface for at least 45 years.</li> <li>Metcon – Flotation Test work (2008) – Flotation test work included production of a bulk sulphide rougher concentrate, as well as selective floatation. Bulk sulphide flotation nesults produced high recoveries (&gt;90%) for Ag, Cu, Zn and 73% for Pb, but also high As and Sb recoveries (91.7% and 100%). The selective floatation work was unsuccessful in producing reasonable recoveries.</li> <li>Metcon and Ammtec – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps achieved a favourable floation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCI) Test work (2010) – KCI sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCI test work was unable to effectively separate arrsenopyrite and galena minerals from tetrahedrine timerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were the nol No bitter rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN solubile Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tes</li></ul>                                                                                                                                                                     | ))            |                                                    |                                                                                                                                                |  |
| <ul> <li>diameter) and gravel to cobble sized rocks from surface dumps derived from underground extraction. Both types of samples had been exposed on surface for at least 45 years.</li> <li>Metcon – Flotation Test work (2008) –Flotation test work included production of a bulk sulphide rougher concentrate, as well as selective floatation. Bulk sulphide floatation results produced high recoveries (&gt;90%) for Ag. Cu, Zn and 73% for Pb, but also high As and Sb recoveries (91.7% and 10%). The selective floatation work was unsuccessful in producing reasonable recoveries.</li> <li>Metcon and Ammtec – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Floatation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work no lump rock from old surface sumps achieved a favourable floation response.</li> <li>Downer EDI-Mineral TechnologiesKelesy Centrifugal Jig (KCI) Test work (2010) – KCI sighter test work was completed to dfermine whether arsenopyrite minerals could be rejected from silve-foraring terahedrite. KCI test work was unable to effectively separate arsenopyrite minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of Jig tailings were sen to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottler rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon -Ecotechnology Trails (2011) – Two sopt EcoTench chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZine<sup>®</sup> Process and then leached u</li></ul>                                                                                                                                                               |               |                                                    | Modern Metallurgical test work                                                                                                                 |  |
| <ul> <li>been exposed on surface for at least 45 years.</li> <li>Metcon – Flotation Test work (2008) – Flotation test work included production of a bulk sulphide rougher concentrate, as well as selective flotation. Bulk sulphide flotation results produced high recoveries (&gt;30%) for Ag. Cu, Zn and 73% for Pb, but also high As and Sb recoveries (91.7% and 100%). The selective flotation work was unsuccessful in producing reasonable recoveries.</li> <li>Metcon and Ammtee – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps achieved a favourable flotation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCI) Test work (2010) – KCI sighter test work was completed to determine whether arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A (21-0 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottler oiled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoLead<sup>P</sup> Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Gu_P, Dy, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Cor</li></ul>                                                                                                                                                                |               |                                                    | Floatation test-work was conducted by SVL between 2008 and 2013. This work used samples from old 'jig' tailings (2-10 mm                       |  |
| <ul> <li>Metcon – Flotation Test work (2008) –Flotation test work included production of a bulk sulphide rougher concentrate, as well as selective floatation. Bulk sulphide flotation results produced high recoveries (&gt;90%) for Ag, Cu, Zn and 73% for Pb, but also high As and Sb recoveries (91.7% and 100%). The selective flotation work was unsuccessful in producing reasonable recoveries.</li> <li>Metcon and Ammete – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps achieved a favourable flotation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCI) Test work (2010) – KCI sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCI test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CIV) Solubility (2010) – Four samples. All samples. All samples were then to No totte rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon - Ecotechnology Trailis (2011) – Two spot EcoTech chlorination tests were performed with supplementary subplur addition. The chlorinated samples were sent to cho ether dusing the EcoLead* Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the CU, P, D, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <l< td=""><td></td><td></td><td>diameter) and gravel to cobble sized rocks from surface dumps derived from underground extraction. Both types of samples had</td><td></td></l<></ul> |               |                                                    | diameter) and gravel to cobble sized rocks from surface dumps derived from underground extraction. Both types of samples had                   |  |
| <ul> <li>well as selective floatation. Bulk sulphide flotation results produced high recoveries (&gt;90%) for Ag, Cu, Zn and 73% for Pb, but also high As and 5b recoveries (91.7% and 10%). The selective flotation work was unsuccessful in producing reasonable recoveries.</li> <li>Metcon and Ammtec – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps achieved a favourable flotation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCI) Test work (2010) – KCI sighter test work was completed to determine whether arsenopyrite and galena minerals from tetrahedrite. KCI test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN solubile Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc* Process and then leached using the EcoLead* Process. A cyanide solubiles and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to unde</li></ul>                                                                                                                                                                         | ))            |                                                    | been exposed on surface for at least 45 years.                                                                                                 |  |
| <ul> <li>but also high As and Sb recoveries (91.7% and 100%). The selective flotation work was unsuccessful in producing reasonable recoveries.</li> <li>Metcon and Ammtec – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps achieved a favourable flotation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCI) Test work (2010) – KCI sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCI test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon - Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc<sup>®</sup> Process and then leached using the EcoLead<sup>®</sup> Process. A cyanide soluble silver and Sw ere solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                         |               |                                                    | • Metcon – Flotation Test work (2008) – Flotation test work included production of a bulk sulphide rougher concentrate, as                     |  |
| <ul> <li>reasonable recoveries.</li> <li>Metcon and Ammtec – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps achieved a favourable flotation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCI) Test work (2010) – KCI sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCI test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTenc chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                             |               |                                                    | well as selective floatation. Bulk sulphide flotation results produced high recoveries (>90%) for Ag, Cu, Zn and 73% for Pb,                   |  |
| <ul> <li>Metcon and Ammtec – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis, grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Z concentrates. Test work on lump rock from old surface sumps achieved a favourable flotation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCI) Test work (2010) – KCJ sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCJ test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc<sup>®</sup> Process and then leached using the EcoLead* Process. A cyanide soluble isilver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                  | ))            |                                                    | but also high As and Sb recoveries (91.7% and 100%). The selective flotation work was unsuccessful in producing                                |  |
| <ul> <li>grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.</li> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps achieved a favourable flotation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCI) Test work (2010) – KCI sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCI test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoZinc* Process and then leached using the EcoLead* Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                    | reasonable recoveries.                                                                                                                         |  |
| <ul> <li>Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps achieved a favourable flotation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCJ) Test work (2010) – KCJ sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCJ test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process. A cyanide soluble silver assay was performed on the EcoLead product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7             |                                                    | • Metcon and Ammtec – Quantitative Mineralogy (2009) – A single composite sample was used for multielement analysis,                           |  |
| <ul> <li>methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps achieved a favourable flotation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCI) Test work (2010) – KCI sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCI test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and 5b were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathcal{O}$ |                                                    | grind sizing and size fraction analysis, XRD, Automated Mineralogical Analysis (AMA) and specific gravity test work.                           |  |
| <ul> <li>achieved a favourable flotation response.</li> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCJ) Test work (2010) – KCJ sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCJ test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc<sup>®</sup> Process and then leached using the EcoLead<sup>®</sup> Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                    | • Optimet – Rougher Flotation Test work (2010) – Test work was completed on two samples using selective depression                             |  |
| <ul> <li>Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCJ) Test work (2010) – KCJ sighter test work was completed to determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCI test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                    | methods with the aim of generating Cu-Ag, Ag-Pb and Zn concentrates. Test work on lump rock from old surface sumps                             |  |
| <ul> <li>determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCJ test work was unable to effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                    | achieved a favourable flotation response.                                                                                                      |  |
| <ul> <li>effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.</li> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split<br/>into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled<br/>with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged<br/>from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur<br/>addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process.<br/>A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of<br/>the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7             |                                                    | • Downer EDI-Mineral Technologies - Kelsey Centrifugal Jig (KCJ) Test work (2010) – KCJ sighter test work was completed to                     |  |
| <ul> <li>ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ))            |                                                    | determine whether arsenopyrite minerals could be rejected from silver-bearing tetrahedrite. KCJ test work was unable to                        |  |
| <ul> <li>into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                    | effectively separate arsenopyrite and galena minerals from tetrahedrite minerals.                                                              |  |
| <ul> <li>with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                    | • ALS Chemex - Cyanide (CN) Solubility (2010) – Four samples of jig tailings were sent to ALS Chemex where they were split                     |  |
| <ul> <li>from 56 to 85%.</li> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                    | into an 'A' (2-10 mm diameter) and 'B' (pulverised to 80% passing 75 um) samples. All samples were then CN bottle rolled                       |  |
| <ul> <li>Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process. A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.</li> <li>Core Process Engineering Metallurgical test work (2013)</li> <li>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                    | with an accelerated 24 hr CN leach. Results based on assayed head versus tail grades indicated that CN soluble Ag ranged                       |  |
| addition. The chlorinated samples were leached using the EcoZinc® Process and then leached using the EcoLead® Process.<br>A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of<br>the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.<br><b>Core Process Engineering Metallurgical test work (2013)</b><br>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )             |                                                    | from 56 to 85%.                                                                                                                                |  |
| A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of<br>the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.<br>Core Process Engineering Metallurgical test work (2013)<br>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                    | Metcon – Ecotechnology Trails (2011) – Two spot EcoTech chlorination tests were performed with supplementary sulphur                           |  |
| the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved. Core Process Engineering Metallurgical test work (2013) SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                    | addition. The chlorinated samples were leached using the EcoZinc <sup>®</sup> Process and then leached using the EcoLead <sup>®</sup> Process. |  |
| Core Process Engineering Metallurgical test work (2013)<br>SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                    | A cyanide soluble silver assay was performed on the EcoLead leach product. Results indicated that approximately 90% of                         |  |
| SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                    | the Cu, Pb, Zn, As and Sb were solubilised and over 93% of the silver from the de-metallised tailings was dissolved.                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                    | Core Process Engineering Metallurgical test work (2013)                                                                                        |  |
| Conceptual Process Study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                    | SVL commissioned Core Process Engineering Pty Ltd in collaboration with HRL Testing and Metallurgy Pty Ltd to undertake a                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathcal{D}$ |                                                    | Conceptual Process Study.                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I I           |                                                    |                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                    |                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                    |                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                    |                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                    |                                                                                                                                                |  |

| Criteria JORC Code explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | СР |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                | Test work was completed on two composite samples. Samples were blended, split and sub sampled at HRL testing before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                | commencement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                | <ul> <li>Webbs North composite – 260 kg made up from 186 x 1 m interval samples from 33 drillholes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                | <ul> <li>Head Grade: 273 g/t Ag, 0.35% Cu, 1.31% Pb, 1.47% Zn. 1.43% As, 2.0% S</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                | <ul> <li>Webbs South composite – 130 kg, from 144 x 1 m samples from 22 drillholes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                | <ul> <li>Head Grade: 287 g/t Ag, 0.2% Cu, 0.8% Pb, 1.5% Zn. 1.1% As, 1.8% S</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                | Metallurgical test work included:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                | Ore mineralogical characterisation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                | <ul> <li>Grind establishment test work to determine the grinding times to produce a grind size of 8-% passing 75 microns and 80%</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                | passing 212 microns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                | Bench and large-scale floatation tests to produce sulphide concentrates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                | <ul> <li>Ultrafine grinding of concentrates to 80% passing 10 microns for Albion Process™ tests feed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                | • Albion Process <sup>™</sup> tests - focused on developing appropriate oxidative leaching conditions to liberate refractory silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                | making it available for recovery using conventional cyanide leaching methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                | Environmental test work on bulk composite samples of RC and DD core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                | Processing engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                | Bench and large-scale floatation tests:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 20                             | • For the Webbs North sample five batches of 31 kg each (155 kg total) were floated in a 60 L cell, and for Webbs South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| $(( \bigcirc / \bigcirc))$     | sample two batches of 40 kg each were floated. The rougher / scavenger concentrate generated from these tests were cleaned and re-cleaned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                | <ul> <li>Test work consistently returned high silver recoveries in the range of 90-97% Ag with the final cleaned composites average</li> <li>2950 g/t Ag. A coarse primary grind and no regrinding ahead of cleaning stages were used.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                | <ul> <li>Flotation of Webbs North sample at a grind size of 80% passing 212 micron was effective at recovering 96% of Ag into a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                | rougher concentrate with a mass pull of 12% and recovering 92% Ag into the cleaner concentrate. The Webbs South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                | sample produced similar results recovering 97% Ag into a rougher concentrate with a mass pull of 16% and 83% Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                | recovery into a cleaner concentrate (see below).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                | Deposit Location Stream Mass Concentrate Grade Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                | Subject         Second String         %         Ag g/t         Zn %         Cu %         Pb %         As %         S %         Ag %         Zn %         Cu %         Pb %         As %         S %         Ag %         Zn %         Cu %         Pb %         As %         S %         Ag %         Zn %         Cu %         Pb %         As %         S %         Ag %         Zn %         Cu %         Pb %         As %         S %         Ag %         Zn %         Cu %         Pb %         As %         S %         We be be shown in the second seco |    |
|                                | Webbs North         Cleaner         6.8         3,666         18.5         4.3         12.0         12.8         23.6         91.6         86.1         84.0         62.5         60.9         80.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                | Webbs South         Rougher         16.3         1,687         8.7         1.1         4.4         6.7         11.3         96.7         94.2         93.9         89.0         94.9         90.7           Webbs South         Cleaner         7.7         3,270         18.0         2.1         8.2         10.7         22.0         83.0         91.0         86.0         78.0         72.0         83.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                | Rougher 14.2 1,907.5 9.6 1.9 6.1 7.3 12.5 96.3 91.2 92.0 80.7 81.1 87.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                | Cleaner 7.3 3,468 18.3 3.2 10.1 11.8 22.8 87.3 88.6 85.0 70.3 66.5 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| $\left(\frac{2}{2}\right)$     | • Flotation was also effective in recovering Zn, Pb, and Cu minerals. Average rougher concentrate recoveries were 91.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                | for zinc, 80.7% for lead and 92% for copper with grades of 9.6%, 6.1% and 1.9% retrospectively. Average cleaner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                | concentrate recoveries were 88.6% for zinc, 70.3% for lead and 85% for copper with grades of 18.3%, 3.2% and 10.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                | retrospectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| (())                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 7                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |

| Criteria     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | СР |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|              |                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Despite these impressive silver and base metal grades and recoveries, final concentrates contained high levels of arsenic (up to ~13%w/w). However, the head grades of the sample composites used for the test work indicate arsenic levels approximately double the average arsenic grade of the Webbs deposit.</li> <li>Arsenic rejection test work completed to date has been unsuccessful due to high silver losses.</li> <li>Further tests to investigate the arsenic grades produced in concentrates from more representative Webbs ore, the opportunity for blending concentrates with lower arsenic grades and the treatment of concentrates using hydrometallurgical means to valorise silver are recommended.</li> </ul> |    |
| Further work | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul> | <ul> <li>Resource confirmation drilling is planned to test the orientation/thickness of high-grade cross structures</li> <li>Surface mapping to assess potential lode extensions/additional lodes</li> <li>Exploration drilling within the mine footprint</li> <li>Relevant figures showing possible extensions are included at the end of this report</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           | ER |

# Section 3 Estimation and Reporting of Mineral Resources

# (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

| Criteria                     | JORC Code explanation                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | СР |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Database<br>integrity        | <ul> <li>Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.</li> <li>Data validation procedures used.</li> </ul> | <ul> <li>The data supplied included drillhole collar coordinates, downhole survey data, drillhole sample assays, geotechnical logging, and drillhole density measurements in Microsoft Excel format.</li> <li>The supplied data was validated by checking for:         <ul> <li>Duplicate drillhole collar coordinates</li> <li>Drillhole collar elevation difference to topography elevation</li> <li>Duplicate downhole survey depths</li> <li>Excessive azimuth / dip deviations</li> <li>Azimuth / dip measurements outside expected values,</li> <li>Overlapping intervals in assay data</li> <li>Assay values outside expected limits.</li> </ul> </li> <li>One DD (DDH030) and two RC drillholes (RC127, RC227) were excluded from the Webbs dataset due to unreasonable uncertainty in the position of the drillhole collars.</li> <li>The Webbs MRE was based on 344 drillholes totalling 35,561.8 m. For drillhole information, including collar tables and location, please refer to previous TMZ news release dated 06 April 2022</li> </ul> | ER |
| Site visits                  | <ul> <li>Comment on any site visits undertaken by the<br/>Competent Person and the outcome of those visits.</li> <li>If no site visits have been undertaken indicate why this<br/>is the case.</li> </ul>                                                     | The Competent Person has visited the site on multiple occasions to look at outcrops, old workings and possible new drill locations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ER |
| Geological<br>interpretation | <ul> <li>Confidence in (or conversely, the uncertainty of ) the geological interpretation of the mineral deposit.</li> <li>Nature of the data used and of any assumptions made.</li> </ul>                                                                    | <ul> <li>Mineralisation at Webbs is hosted in several steeply dipping zones of quartz-sericite-carbonate-chlorite altered meta-<br/>siltstone. The altered mineralisation bearing zones are 'bleached' due to the alteration assemblage and contrast sharply<br/>with the dark grey to black unaltered wall rock.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ER |

| Criteria                                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | СР |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                           | <ul> <li>The effect, if any, of alternative interpretations on<br/>Mineral Resource estimation.</li> <li>The use of geology in guiding and controlling Mineral<br/>Resource estimation.</li> <li>The factors affecting continuity both of grade and<br/>geology.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>From the data available (drillhole logs and assays) development of discrete mineralisation domains was not possible. Whilst the general trend of silver mineralisation strikes steeply north-south and is remarkably continuous over hundreds of metres, mineralisation within this corridor is sometimes discrete and discontinuous. Consequently, the alteration domains developed by Global Ore were used as the estimation domains to constrain drillhole samples and the block model. Several of the largest domains were further refined based on a 30 g/t silver equivalent cut-off. Generally, the alteration domains effectively delineate the boundary between mineralised and unmineralised material. There are areas where intersections of unmineralised material have been included. The inclusion of unmineralised zones in the alteration domain is not considered to have a material impact on the global grade estimation as these zones are supported by surrounding lower grade samples. Herein, the alteration domains are referred to as the mineralisation domains.</li> <li>The mineralisation domains will likely change with additional drilling however, the overall extent of mineralisation should remain unchanged.</li> <li>Once additional drilling has been completed, the unmineralised zones may be demarcated to improve the quality of the grade estimate.</li> <li>The Competent Person is confident in the geological interpretation and considers there to be low risk of alternate geological interpretations.</li> </ul>                                                                                                                                                        |    |
| Dimensions                                | • The extent and variability of the Mineral Resource<br>expressed as length (along strike or otherwise), plan<br>width, and depth below surface to the upper and<br>lower limits of the Mineral Resource.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>The north-south extent of the correlated mineralisation zones is 1,700 m. Whilst the individual mineralisation domains can range between 2 m to 15 m, the full east-west extent, which includes 2-3 mineralisation domains across, can be up to 30 m. From the drilling to date, mineralisation is observed to be continuous down to 500 m below the surface in the major domains, however more commonly, mineralisation extends to approximately 300 m below the surface.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ER |
| Estimation and<br>modelling<br>techniques | <ul> <li>The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.</li> <li>The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.</li> <li>The assumptions made regarding recovery of by-products.</li> <li>Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).</li> <li>In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.</li> <li>Any assumptions about correlation between variables.</li> <li>Description of how the geological interpretation was used to control the resource estimates.</li> </ul> | <ul> <li>Resource estimation was carried out using Datamine Studio RM software (version 1.10.100).</li> <li>Ordinary Kriging (OK) was used to estimate Ag, Cu, Pb, Zn, Sn, As, Sb and S into parent blocks with dimensions of 10 m along strike (northing), 2 m across strike (easting) and 5 m down dip (elevation). The block size was selected based on grade estimates on deposits with similar size, geometry, and mining assumptions and to also account for the configuration of the drillhole spacing, which, in most areas, mimics the block size. Blocks were sub-celled down to 0.5 mE by 2.5 mN by 2.5 mRL to accommodate changes in the geometry of the mineralisation and reflect the nuggety grade distribution downhole.</li> <li>Semi-variogram models for all elements within the main mineralisation domains (Domain 11, 22 and 31) were developed. There were insufficient samples in remaining domains to develop in robust semi-variogram models. The semi-variograms of the main mineralisation domains were applied to the smaller domains within their respective zones (North, Adit and South) on the basis that all mineralised zones are essentially geologically identical. The maximum range of continuity for Ag mineralisation (as suggested by semi-variogram) varied from between 40 m to 120 m along strike (north-south). The direction and maximum range may change as the drillhole spacing decreases.</li> <li>Grades were estimated in two phases. Phase one consisted of a high-grade restrictive search estimation technique, where blocks within 12.5 m of higher-grade samples were flagged as 'high-grade blocks' if they were above specified capping values shown below:</li> </ul> | ER |

|                         | Criteria              |
|-------------------------|-----------------------|
|                         |                       |
|                         |                       |
|                         |                       |
|                         |                       |
|                         |                       |
|                         |                       |
|                         |                       |
|                         | )                     |
|                         |                       |
| 6                       | 5                     |
| Q                       | 2                     |
| (7)                     | D)                    |
|                         | 7                     |
|                         | Ð                     |
|                         |                       |
|                         |                       |
| $\left[ \Omega \right]$ | D)                    |
| Ē                       |                       |
|                         | _                     |
| C                       | $\mathcal{D}$         |
|                         | Moisture              |
| (0)                     | D)                    |
|                         | Cut-off<br>parameters |
| a                       | 5                     |
|                         | リ                     |
| Ē                       | $\mathcal{D}$         |

#### JORC Code explanation

- Discussion of basis for using or not using grade cutting or capping.
- The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.

#### Commentary

| webbs capped grade values |      |    |     |    |     |    |     |     |     |      |     |     |     |     |     |    |
|---------------------------|------|----|-----|----|-----|----|-----|-----|-----|------|-----|-----|-----|-----|-----|----|
| Domain                    | 11   | 12 | 13  | 14 | 15  | 16 | 21  | 22  | 23  | 31   | 32  | 33  | 34  | 35  | 36  | 0  |
| Ag (ppm)                  | 1500 | -  | 500 | -  | 50  | 50 | 200 | -   | 500 | 2600 | 100 | 700 | 60  | 150 | 270 | 30 |
| Cu (%)                    | -    | -  | -   | -  | -   | -  | -   | 0.5 | 0.5 | 4    | -   | -   | -   | -   | -   | -  |
| Pb (%)                    | -    | -  | -   | 1  | 2.5 | -  | -   | 0.8 | 1   | 5    | -   | -   | -   | 1.5 | 1.5 | -  |
| Zn (%)                    | 5    | -  | 2   | -  | 0.6 | -  | -   | 0.8 | 0.8 | 10   | -   | -   | 0.8 | 1.2 | 1.2 | -  |

- Uncapped grades were then estimated into these flagged blocks using a three-pass search estimation.
- Phase two involved estimating capped grades shown above, into all blocks. A three-pass search estimation approach was
  used for phase two estimation.
- Typically pass one involved a search ellipse with a major, semi-major and minor range of approximately 20 m, 15 m and 2 m respectively. The number of samples required also depended on the variable being estimated with minimum required ranging from between two and four to a maximum between 10 and 12. Expansion factors of two times and three times were used for estimation passes two and three respectively. Grades were also estimated in unmineralised material (Domain 0) however only pass one was run to minimise grade smearing.
- Cell discretisation divided blocks into a grid of 4 (X) by 4 (Y) by 4 (Z) (total of 64 points).
- Dynamic anisotropy searching was used to estimate all mineralised domains. For the major domains (11, 31) mid-planes
  were created to mimic the strike and dip of the high-grade metal distributions within the domains. These planes were
  typically one third the size of the domains and overlapped where appropriate. These planes were then used to generate
  dynamic anisotropy dip and dip direction measurements to guide the searching. For the remainder of the domains, the
  dip and dip direction measurements were selected from the domain wireframes. The dynamic anisotropy was calculated
  using a circular IPD estimation method with a relatively small search for all instances.
- Over half the blocks in the major domains (Domain 11, 22 and 31) were estimated in the first two passes. In some instances, the mineralisation domains have been extensively developed along strike to provide exploration targets. Consequently, for these domains, there are a larger portion of un-estimated blocks (PASS = 0). These blocks are not reported in the Webbs estimation model.
- The estimation approach is considered appropriate for the style of mineralisation and the variability of the Ag grade.
- The grade estimates within each domain were validated visually by comparing drillhole composite grades to estimated
  grades in section, plan, and long-section. The mean, top-cut composite grade was compared to the mean estimated grade
  within each domain. Swath plots of drillhole composite grades against estimated grades were also developed and used to
  validate the block grade estimates. The swath plots showed the composite grade trends have been replicated by the grade
  estimates.
- Historical mining records for Webbs are not appropriate to use as a comparison as there is no way to verify all the material
  mined and processed exactly.

| Moisture              | • | Whether the tonnages are estimated on a dry basis or<br>with natural moisture, and the method of<br>determination of the moisture content. | • | Tonnage was estimated on a dry basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ER    |
|-----------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Cut-off<br>parameters | • | The basis of the adopted cut-off grade(s) or quality parameters applied.                                                                   | • | The Mineral Resource estimate (MRE) for Webbs polymetallic deposit as of March 2022 is shown in Table 1 of this report.<br>At the date of this report, the 2022 Webbs Mineral Resource is based on both indicated and inferred classified material<br>with a process route to produce a concentrate containing silver, copper, lead and zinc minerals.<br>The MRE is reported under the assumption of mining by an open pit method (not fully assessed). Only blocks at or above<br>30 g/t Ag have been reported. | ER/RV |

And a labor second and second a second

| Criteria         | JORC Code explanation                                                                                 | Commentary                                                                                                                                                                   | СР   |
|------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                  |                                                                                                       | A silver equivalent formula has also been calculated with the following assumptions:                                                                                         |      |
|                  |                                                                                                       | Metal grades of 1% per unit of ore.                                                                                                                                          |      |
|                  |                                                                                                       | • Indicative metal recoveries are averages based on 390kg of RC drill chips provided to Core Process Engineering Pty Ltd in                                                  |      |
|                  |                                                                                                       | 2013 are:                                                                                                                                                                    |      |
|                  |                                                                                                       | <ul> <li>87% recovery for silver</li> </ul>                                                                                                                                  |      |
|                  |                                                                                                       | <ul> <li>85% recovery for copper</li> </ul>                                                                                                                                  |      |
|                  |                                                                                                       | <ul> <li>70% recovery for lead</li> <li>20% recovery for lead</li> </ul>                                                                                                     |      |
|                  |                                                                                                       | <ul> <li>89% recovery for zinc</li> <li>Motal prices supported by the historical five years of price data to 2022 and information on motal price forecasts. Metal</li> </ul> |      |
|                  |                                                                                                       | Metal prices supported by the historical five years of price data to 2022 and information on metal price forecasts. Metal                                                    |      |
|                  |                                                                                                       | prices are in Australian dollars using an exchange rate of US\$ 0.73:<br><ul> <li>A\$38/ounce silver</li> </ul>                                                              |      |
|                  |                                                                                                       | <ul> <li>A\$38/ounce silver</li> <li>A\$13,699/tonne copper</li> </ul>                                                                                                       |      |
|                  |                                                                                                       | • A\$3,014/tonne lead                                                                                                                                                        |      |
|                  |                                                                                                       | <ul> <li>A\$4,110/tonne zinc</li> </ul>                                                                                                                                      |      |
| $\mathcal{D}$    |                                                                                                       | • The silver equivalent formula used the metal ratios and assays in g/t units resulting in the following formula:                                                            |      |
|                  |                                                                                                       | Silver equivalent calculation:                                                                                                                                               |      |
|                  |                                                                                                       |                                                                                                                                                                              |      |
| ))               |                                                                                                       | (AgEq) = Ag + 108.5 x Cu + 19.7 x Pb + 34.1 x Zn                                                                                                                             |      |
| I I              |                                                                                                       | Rapid Lithium notes that the current Australian dollar prices are well in excess of those used for the 2022 Mineral Resource                                                 |      |
|                  |                                                                                                       | Estimate. As at 20 May 2025 the spot prices are Ag price A\$50/oz, Cu price A\$14,850, Zn price A\$4,127/t, Pb price                                                         |      |
|                  |                                                                                                       | A\$3,040/t and Sn A\$50,860. In RLL's opinion all elements included in the metal equivalents calculation have a reasonable<br>potential to be recovered and sold.            |      |
| Mining factors • | Assumptions made regarding possible mining                                                            | <ul> <li>The Webbs resource estimate is considered a high-grade silver ± base metal deposit with good continuity and grades that</li> </ul>                                  |      |
| or assumptions   | nethods, minimum mining dimensions and internal                                                       | is comparable to other silver deposits around the world.                                                                                                                     |      |
| ))               | (or, if applicable, external) mining dilution. It is always                                           | <ul> <li>It is assumed that Webbs will be mined and processed simultaneously with the adjacent Conrad and Texas polymetallic</li> </ul>                                      |      |
|                  | necessary as part of the process of determining                                                       | deposits. Consequently, mining cost assumptions used to develop an optimised pit shell to report the Webbs Mineral                                                           |      |
|                  | reasonable prospects for eventual economic                                                            | Resource may be misleading at this stage of the project. Instead, the Mineral Resource has been reported from                                                                |      |
|                  | extraction to consider potential mining methods, but                                                  | topographic surface to a depth of 500 m. This depth coincides with the depth of historical underground mining and where                                                      | ER   |
| 1                | the assumptions made regarding mining methods and<br>parameters when estimating Mineral Resources may | drillhole density is low.                                                                                                                                                    |      |
|                  | not always be rigorous. Where this is the case, this                                                  | <ul> <li>In the Competent Person's opinion, these factors indicate that the Mineral Resource has reasonable prospects of eventual</li> </ul>                                 |      |
| 9                | should be reported with an explanation of the basis of                                                | economic extraction.                                                                                                                                                         |      |
|                  | the mining assumptions made.                                                                          | economic extraction.                                                                                                                                                         |      |
| Metallurgical •  | The basis for assumptions or predictions regarding                                                    | • A total of 260 kg of Webbs North composite made up of 186 x 1 m interval samples from 33 drillholes, and 130 kg of                                                         |      |
| factors or       | metallurgical amenability. It is always necessary as                                                  | Webbs South composite made up of 144 x 1 m interval samples from 22 drillholes, spatially representing the whole                                                             |      |
| assumptions      | part of the process of determining reasonable                                                         | deposit, have been used for the most current and comprehensive metallurgical testwork completed in 2013 by Core                                                              |      |
|                  | prospects for eventual economic extraction to                                                         | Process Engineering of the Core Group in Brisbane, QLD., Australia. The sample composition and testwork is described in                                                      |      |
|                  | consider potential metallurgical methods, but the assumptions regarding metallurgical treatment       | detail above in "Other substantive exploration data".                                                                                                                        |      |
| )                | processes and parameters made when reporting                                                          | • The metallurgical testwork consisted of rougher and cleaner flotation tests carried out in pilot-scale bulk flotation cell                                                 | ER/R |
| J.               | Mineral Resources may not always be rigorous. Where                                                   | equipment units which are easy to scale-up. The results of the testwork suggest saleable concentrates of silver with lead                                                    |      |
|                  | this is the case, this should be reported with an                                                     | and zinc credits are achievable.                                                                                                                                             |      |
|                  | explanation of the basis of the metallurgical                                                         | • Metal recoveries from the most current metallurgical tests suggest Ag, Cu, Pb and Zn recoveries of 87%, 85%, 70% and                                                       |      |
| 0                | assumptions made.                                                                                     | 89% respectively.                                                                                                                                                            |      |
| )                |                                                                                                       |                                                                                                                                                                              |      |
|                  |                                                                                                       |                                                                                                                                                                              |      |
|                  |                                                                                                       |                                                                                                                                                                              |      |
|                  |                                                                                                       |                                                                                                                                                                              |      |
|                  |                                                                                                       |                                                                                                                                                                              |      |
|                  |                                                                                                       |                                                                                                                                                                              |      |

| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | СР |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>The Competent Person recognises that more confidence will be gained with additional metallurgical test work and district<br/>scale metallurgical studies.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Environmental<br>factors or<br>assumptions | <ul> <li>Assumptions made regarding possible waste and<br/>process residue disposal options. It is always<br/>necessary as part of the process of determining<br/>reasonable prospects for eventual economic<br/>extraction to consider the potential environmental<br/>impacts of the mining and processing operation.<br/>While at this stage the determination of potential<br/>environmental impacts, particularly for a greenfields<br/>project, may not always be well advanced, the status<br/>of early consideration of these potential<br/>environmental impacts should be reported. Where<br/>these aspects have not been considered this should be<br/>reported with an explanation of the environmental<br/>assumptions made.</li> </ul> | <ul> <li>It has been assumed that waste rock from the open pit mine can be stacked on site. Sulphur grades have been estimated for this iteration of the block model.</li> <li>Processing has been assumed to take place at the Texas Project or at a suitable nearby processing facility.</li> <li>A preliminary Flora and Fauna Assessment was carried out by SVL. No Endangered Ecological Communities or Threatened species were identified as occurring within the EL area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ER |
| Bulk density                               | <ul> <li>Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.</li> <li>The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.</li> <li>Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.</li> </ul>                                                                                                                                                         | <ul> <li>A total of 759 density measurements were collected using the water immersion technique. Locations for the density measurements endeavoured to reflect a spatial and grade representation of the deposit. These density measurements were used to define in situ dry bulk density (DBD) for each resource model block.</li> <li>Competent pieces of DD core measuring approximately 0.1 m in length were selected to measure density. The density measurement on the piece of DD core was assigned to the entire sample interval. Oxidised / highly fractured core was shrink wrapped to improve accuracy.</li> <li>Duplicate density measurements were taken to assess the variability of density within a given sample interval. Results show majority of duplicate density measurements are within 10% of the original measurements.</li> <li>There were insufficient spatially representative density measurements to estimate density and the sum of As, Ag, Cu, Sn, Pb and Zn in %.</li> <li>Estimated arsenic and silver were converted to percent and a new attribute called "METSUM" was created, which was the sum of Cu, Pb, Zn, Sn, As and Ag (%). Depending on the METSUM value, the following formula was used to calculate density (t/m3) for each block:</li> <li>METSUM&gt;2.5%:         <ul> <li>Density = 2.6726 + 0.023 * (Cu + Zn + As + Pb + Sn + Ag)</li> <li>Whilst a direct statistical comparison between the calculated density in blocks and the measured density in DD core was not completed, visual comparison shows the calculated block density compares well with the measured density in DD core</li> </ul> </li> </ul> | ER |
| Classification                             | <ul> <li>The basis for the classification of the Mineral<br/>Resources into varying confidence categories.</li> <li>Whether appropriate account has been taken of all<br/>relevant factors (ie relative confidence in<br/>tonnage/grade estimations, reliability of input data,<br/>confidence in continuity of geology and metal values,<br/>quality, quantity and distribution of the data).</li> </ul>                                                                                                                                                                                                                                                                                                                                            | <ul> <li>The Webbs Mineral Resource includes indicated and inferred classifications in accordance with guidelines within the JORC Code 2012. Parameters considered included the distribution and orientation of drill data, confidence in interpreted geological continuity of the mineralised zones, and confidence in the resource block estimates.</li> <li>In general, blocks estimated in the first or second pass, that had 3 different drillholes informing the block, and an average distance of less than 20 m were classified as indicated. Blocks estimated in the third and second pass, that had 2 different drillholes informing the block, and an average distance to samples less than 40 m were classified as Indicated. Classification</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ER |

| Criteria JOR                                                                                                                                                                                                                                                                                                       | C Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | СР |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Competent Pers                                                                                                                                                                                                                                                                                                     | result appropriately reflects the<br>son's view of the deposit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>was also based on Ag grade, drillhole density and grade confidence. Depleted material was unclassified. Un-estimated blocks were not classified.</li> <li>A cut-off grade of 30 g/t Ag was used to report the Mineral Resource.</li> <li>Given the drillhole spacing, observed short range continuity of mineralisation and the orientation of drillholes, the Competent Person considers a combination of indicated and inferred classification appropriately reflects the level of confidence in the reported Mineral Resource.</li> <li>No external independent review was carried out.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| reviews Resource estimation                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • No external independent review was carried out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ER |
| relative<br>accuracy and co<br>estimate using<br>appropriate by<br>the application<br>procedures to of<br>resource within<br>approach is no<br>discussion of the<br>accuracy and co<br>• The statement<br>global or local<br>relevant tonna<br>technical and es<br>should include of<br>used.<br>• These statement | priate a statement of the relative<br>onfidence level in the Mineral Resource<br>an approach or procedure deemed<br>the Competent Person. For example,<br>on of statistical or geostatistical<br>quantify the relative accuracy of the<br>stated confidence limits, or, if such an<br>ot deemed appropriate, a qualitative<br>the factors that could affect the relative<br>onfidence of the estimate.<br>should specify whether it relates to<br>l estimates, and, if local, state the<br>ages, which should be relevant to<br>economic evaluation. Documentation<br>assumptions made and the procedures<br>the of relative accuracy and confidence<br>e should be compared with production<br>ailable. | The Competent Person considers that the classification is appropriate for the global resources. The estimate is constrained to interpretated mineralisation domains. The domains exhibit good continuity of mineralisation, whilst maintaining the orientation and geometry of observed geological features (alteration). Within the alteration domains, mineralisation is observed as discrete breccia / stockwork zones with short range continuity along its strike (north-east) but these zones are continuous along a north-south orientation. The location, thickness and grade of the mineralised zones as observed in the drillholes are reasonably predictable at the global scale and are reasonably consistent throughout the known extent of mineralisation. Local scale variations are consistent with the style of mineralisation but are not expected to have a material impact on the global resource estimate. Normal grade control processes should be sufficient to manage these variations. | ER |

# JORC CODE Tables – relating to the Conrad Mineral Resource Estimate

Section 1 Sampling Techniques and Data

# (Criteria in this section apply to all succeeding sections).

| Criteria               | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Competent Person |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> </ul> | <ul> <li>Drilling         The deposit has been drilled and sampled by diamond core (DD) and reverse circulation (RC) methods.     </li> <li>Drilling from 2003-2009 comprised 102 DD holes and 9 RC holes. The 102 DD holes included 51 holes cored and 51 holes with a RC pre-collar and DD tail (RCDD). This RCDD count also includes four redrills.     </li> <li>2010 Drilling included 6 core holes within the deposit and 21 RC holes along strike towards the southeast.</li> </ul> | ER               |
|                        | кероп.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |

| Criteria | JORC Code Explanation                                                                                                                                                              | Commentary                                                 |                                                                                                                        |                                                                                                        |                                                                                                                |                                                                                                                        |                                                                                                               | Competent Person |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------|
|          | <ul> <li>In cases where 'industry standard' work has been done this would be relatively<br/>simple (eg 'reverse circulation drilling was used to obtain 1m samples from</li> </ul> | Year                                                       | Туре                                                                                                                   | # Holes                                                                                                | RC m                                                                                                           | DD m                                                                                                                   | Total m                                                                                                       |                  |
|          | which 3kg was pulverised to produce a 30g charge for fire assay'). In other                                                                                                        | 2003                                                       | RCDD                                                                                                                   | 5                                                                                                      | 703.4                                                                                                          | 690.6                                                                                                                  | 1,394.0                                                                                                       |                  |
|          | cases more explanation may be required, such as where there is coarse gold<br>that has inherent sampling problems. Unusual commodities or mineralisation                           | 2003                                                       | DD                                                                                                                     | 1                                                                                                      |                                                                                                                | 457.1                                                                                                                  | 457.1                                                                                                         |                  |
|          | types (eg submarine nodules) may warrant disclosure of detailed information.                                                                                                       | 2006                                                       | RCDD                                                                                                                   | 14                                                                                                     | 1,255.4                                                                                                        | 2,186.9                                                                                                                | 3,442.25                                                                                                      |                  |
|          |                                                                                                                                                                                    | 2006                                                       | RC                                                                                                                     | 7                                                                                                      | 675.0                                                                                                          |                                                                                                                        | 675.0                                                                                                         |                  |
|          |                                                                                                                                                                                    | 2007                                                       | RCDD                                                                                                                   | 4                                                                                                      | 212.0                                                                                                          | 407.4                                                                                                                  | 619.4                                                                                                         |                  |
|          |                                                                                                                                                                                    | 2007                                                       | DD                                                                                                                     | 2                                                                                                      |                                                                                                                | 309.4                                                                                                                  | 309.4                                                                                                         |                  |
|          |                                                                                                                                                                                    | 2007                                                       | RCDD                                                                                                                   | 1                                                                                                      | 71                                                                                                             | 141.7                                                                                                                  | 212.7                                                                                                         |                  |
|          |                                                                                                                                                                                    | 2007                                                       | DD                                                                                                                     | 24                                                                                                     |                                                                                                                | 4,792.4                                                                                                                | 4,792.4                                                                                                       |                  |
|          |                                                                                                                                                                                    | 2008                                                       | RCDD                                                                                                                   | 27                                                                                                     | 1,731.0                                                                                                        | 5,605.2                                                                                                                | 7,336.2                                                                                                       |                  |
|          |                                                                                                                                                                                    | 2008                                                       | DD                                                                                                                     | 14                                                                                                     |                                                                                                                | 4,534.3                                                                                                                | 4,534.3                                                                                                       |                  |
|          |                                                                                                                                                                                    | 2008                                                       | RC                                                                                                                     | 2                                                                                                      | 158.0                                                                                                          |                                                                                                                        | 158.0                                                                                                         |                  |
|          |                                                                                                                                                                                    | 2009                                                       | DD                                                                                                                     | 10                                                                                                     |                                                                                                                | 1,547.4                                                                                                                | 1,547.4                                                                                                       |                  |
|          |                                                                                                                                                                                    | 2010                                                       | DD                                                                                                                     | 6                                                                                                      |                                                                                                                | 1,341.5                                                                                                                | 1,341.5                                                                                                       |                  |
|          |                                                                                                                                                                                    | 2010                                                       | RC                                                                                                                     | 21                                                                                                     | 2,070.0                                                                                                        |                                                                                                                        | 2,070.0                                                                                                       |                  |
|          |                                                                                                                                                                                    |                                                            | # Holes<br>includes                                                                                                    | 138                                                                                                    | 6,875.8                                                                                                        | 22,013.9                                                                                                               | 28,889.7                                                                                                      |                  |
|          |                                                                                                                                                                                    |                                                            | 4 redrills                                                                                                             |                                                                                                        |                                                                                                                | 22,010.0                                                                                                               | 20,000.1                                                                                                      |                  |
|          |                                                                                                                                                                                    | * <i>m at or</i><br>Sampling                               | riginal date of ho                                                                                                     | ole & may include                                                                                      | later extensions                                                                                               | 3                                                                                                                      |                                                                                                               |                  |
|          |                                                                                                                                                                                    | indus<br>inter<br>All RC drilling<br>from<br>colle<br>minc | stry standard pro-<br>cepts within the<br>was with a face<br>1 m (2003) to 1<br>cted by using a<br>prity of all sample | actice. Core sar<br>vein structure we<br>sampling hamm<br>m to 3 m (from 2<br>PVC pipe and "s          | nples numbered<br>ere core.<br>er. RC sampling<br>2006). A 1 kg to 2<br>pearing" the bulk<br>from the pre-coll | ar RC, 411 sample                                                                                                      | samples. Most<br>l intervals varying<br>e laboratory was<br>RC samples are a                                  |                  |
|          |                                                                                                                                                                                    | Pers<br>Withi                                              | on recognizes s<br>n the mineralisa                                                                                    | pearing is not be                                                                                      | st practice; RC s<br>onsequently, RC                                                                           | for assay analysis.<br>amples constitute<br>samples are consi                                                          | 6.5% of samples                                                                                               |                  |
|          |                                                                                                                                                                                    | batcl<br>sam<br>nom<br>Sam                                 | h was sent to O<br>ple weights were<br>inal 85% passin<br>ples over 3 kg v                                             | range). The samp<br>e less than 3 kg, t<br>g minus 75-micro                                            | bles were sorted<br>they were routing<br>ons in a Labtech<br>and then split to                                 | ominantly at Brisba<br>, oven-dried and w<br>ely jaw-crushed the<br>Essa LM5-type pu<br>generate a 3 kg s<br>oractice. | eighed. Where<br>en pulverised to a<br>lverising mill.                                                        |                  |
|          |                                                                                                                                                                                    | Samples were<br>dige:<br>routi<br>core<br>sam              | e routinely assay<br>st, ICP-AES finis<br>ne Au (30 g fire<br>holes were ass                                           | ved for Ag, Cu, Pl<br>sh) and Sn (30 g<br>assay, AAS finisl<br>ayed for In (4 aci<br>ed for In, Au (30 | b, Zn, As, Sb, Co<br>XRF). From 200<br>h) and Ta and W<br>d digest, ICP-MS<br>g fire assay, AA                 | o, Mo, Bi, and S (0<br>3 to mid-2006 ass<br>(XRF). In 2006 ap<br>5 finish). Subseque<br>S finish), and just 7          | 5 g aqua regia<br>aying also included<br>oproximately half the<br>ently, only selected<br>7 samples for Ga (4 |                  |

| Criteria                                                              | JORC Code Explanation                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Competent Pe |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
|                                                                       |                                                                                                                                                                                                                                                                                                                                   | Assays over 100 g/t Ag, 7.5% As and 1% Cu, Pb, Sn or Zn were re-assayed by an ore grade re-<br>analysis. The re-analysis was predominantly aqua regia digest (Ag, Cu, Pb, Zn) with some 4-<br>acid digest (all As, rare Ag, Pb, Zn) with an ICP-AES or AAS finish for both digests. Ore<br>grade Sn was re-assayed with ore grade XRF method.                                                                                                              |              |  |
|                                                                       |                                                                                                                                                                                                                                                                                                                                   | Assay techniques were industry standard practice.                                                                                                                                                                                                                                                                                                                                                                                                          |              |  |
|                                                                       |                                                                                                                                                                                                                                                                                                                                   | The DD holes and tails were mainly HQ2 and NQ2 size with rare HQ3 sizes.                                                                                                                                                                                                                                                                                                                                                                                   |              |  |
| Drilling<br>techniques                                                | <ul> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast,<br/>auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard<br/>tube, depth of diamond tails, face-sampling bit or other type, whether core is<br/>oriented and if so, by what method, etc).</li> </ul>               | Oriented core drilling was completed between 2006 and 2008 using various methods. A total of 50% of the core holes drilled were oriented. Within the Conrad lode where the deposit appears to be a single fissure vein, there is a low risk of misinterpretation of lode orientation and true width.                                                                                                                                                       | ER           |  |
|                                                                       |                                                                                                                                                                                                                                                                                                                                   | The RC holes and pre-collars were drilled with a face hammer ranging from 4.75 inch to 5.5 inch.                                                                                                                                                                                                                                                                                                                                                           |              |  |
|                                                                       |                                                                                                                                                                                                                                                                                                                                   | Core drill run recoveries have been recorded for all holes. Most core recovery intervals (97%) have recoveries > 90%.                                                                                                                                                                                                                                                                                                                                      |              |  |
|                                                                       | nature of the samples                                                                                                                                                                                                                                                                                                             | From 2008, Malachite also record the recovery of the assay interval, and this exists for over half of the core samples. Recording core sample recoveries assists to ensure the representative nature of the samples.                                                                                                                                                                                                                                       |              |  |
| Drill sample<br>recovery                                              |                                                                                                                                                                                                                                                                                                                                   | Core run recovery issues were encountered in two 2003 holes through the Conrad Lode, and<br>Malachite noted they adopted drilling procedures to maximise recovery. This included<br>selecting drill bits and fluid to achieve a steady penetration rate and stable holes, as well as<br>drilling short, controlled runs through target zones. Malachite noted that 8 holes drilled in<br>2007 to 2008 achieved core recovery < 90% though the target zone. |              |  |
|                                                                       |                                                                                                                                                                                                                                                                                                                                   | The majority of RC pre-collar and RC hole drilling recorded a visual sample recovery estimate (as a %), as well as sample moisture content (dry/wet).                                                                                                                                                                                                                                                                                                      | PLM/ER       |  |
| P                                                                     |                                                                                                                                                                                                                                                                                                                                   | Malachite noted auxiliary compressors were used during RC drilling to assist in keeping samples dry<br>and to maximise recovery, which was monitored visually.                                                                                                                                                                                                                                                                                             |              |  |
| 2                                                                     |                                                                                                                                                                                                                                                                                                                                   | Based on bivariate analysis, no correlation exists between recovery and grade.                                                                                                                                                                                                                                                                                                                                                                             |              |  |
| $\square$                                                             |                                                                                                                                                                                                                                                                                                                                   | Spot checks in the field and in the database show good correlation with Malachite recovery records.<br>Holes with minor discrepancies between recorded recoveries and actual core recovered<br>were corrected. There are a small number of holes without recovery information.                                                                                                                                                                             |              |  |
|                                                                       |                                                                                                                                                                                                                                                                                                                                   | The Competent Persons consider results of the core recovery is acceptable for use in the Mineral Resource estimate                                                                                                                                                                                                                                                                                                                                         |              |  |
| D                                                                     | <ul> <li>whether logging is qualitative of qualitative in nature. Core (or costean,<br/>channel, etc) photography.</li> </ul>                                                                                                                                                                                                     | Core and RC logging was undertaken on all holes and in detail to support appropriate Mineral<br>Resource estimation, mining studies and metallurgical studies.<br>All DD core was geotechnically logged, photographed and geologically logged noting lithology,<br>weathering, oxidation, veining, mineralisation and alteration. Geological logging was focused<br>on delineating unique geological intervals.                                            |              |  |
| Logging                                                               |                                                                                                                                                                                                                                                                                                                                   | Quantitative logging on RC and DD holes included veining and sulphide mineral percentages.                                                                                                                                                                                                                                                                                                                                                                 | ER           |  |
|                                                                       |                                                                                                                                                                                                                                                                                                                                   | Magnetic susceptibility measurements were taken on 1 m intervals on all RC samples and core.                                                                                                                                                                                                                                                                                                                                                               |              |  |
| The total length and percentage of the relevant intersections logged. | Additional structural and bulk density measurements were undertaken on selected core.<br>All RC samples were logged in 1 m intervals noting lithology, weathering, oxidation, veining,<br>mineralisation and alteration                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |  |
| Sub-sampling                                                          | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample</li> </ul>                                         | Core sampling was on geologically selected intervals, with Malachite noting boundaries were determined by discrete lithological, structural, mineralisation and/or alteration contacts. Spot checks in the field on core showed sampling was dominantly constrained to geological and mineralisation boundaries.                                                                                                                                           |              |  |
| techniques and<br>sample<br>preparation                               | <ul> <li>preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half</li> </ul> | Intervals ranged from 0.1 m to 3 m, averaging 1 m with sampling intervals smaller in the vein system.<br>Samples were also constrained in length to limit sample weight to under 5 kg.                                                                                                                                                                                                                                                                     | ER/PLM       |  |
|                                                                       |                                                                                                                                                                                                                                                                                                                                   | Core was cut in half (NQ or HQ core) or sometimes quartered (HQ), with a cutting line drawn to<br>indicate the highest cutting angle to the predominant vein orientation to maximise<br>representativity.                                                                                                                                                                                                                                                  |              |  |

|                           | JORC Code Explanation                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Competent Pe |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
|                           | sampling.                                                                                                                                                                                                                                                                                                              | Half core is industry standard practice. It appears no duplicate core sampling was undertaken.                                                                                                                                                                                                                                                                                                                                                                                                                         |              |  |  |
|                           | <ul> <li>Whether sample sizes are appropriate to the grain size of the material being<br/>sampled.</li> </ul>                                                                                                                                                                                                          | All RC drilling was with a face sampling hammer. RC sampling was over selected intervals with visible mineralisation or strong alteration. Intervals varied from 1 m (2003) to 1 m to 3 m (from 2006).                                                                                                                                                                                                                                                                                                                 |              |  |  |
|                           |                                                                                                                                                                                                                                                                                                                        | A 1 kg to 2 kg sample for the laboratory was collected by using a PVC pipe and "spearing" the bulk<br>sample bag.                                                                                                                                                                                                                                                                                                                                                                                                      |              |  |  |
|                           |                                                                                                                                                                                                                                                                                                                        | "Spear" sampling is assumed to be industry standard practice at that time when the emphasis was on core drilling. Some duplicate RC sampling was undertaken.                                                                                                                                                                                                                                                                                                                                                           |              |  |  |
|                           |                                                                                                                                                                                                                                                                                                                        | Whilst spear sampling is not typical industry practice today, The Competent Persons consider the use<br>of RC samples in the estimation process to be of low risk to the reported Mineral Resource<br>as RC samples make up 6.5% of mineralised samples                                                                                                                                                                                                                                                                |              |  |  |
|                           |                                                                                                                                                                                                                                                                                                                        | Sample sizes are considered appropriate for the mineralisation style                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |  |
|                           |                                                                                                                                                                                                                                                                                                                        | The laboratory samples were submitted to an accredited Laboratory (ALS Chemex) predominantly<br>Brisbane (a 2010 core batch was sent to Orange).                                                                                                                                                                                                                                                                                                                                                                       |              |  |  |
| Ð                         |                                                                                                                                                                                                                                                                                                                        | The samples were sorted, oven-dried and weighed. Where sample weights were less than 3 kg, they were jaw-crushed then pulverised to a nominal 85% passing minus 75-microns in a Labtech Essa LM5-type pulverising mill. Samples over 3 kg were jaw-crushed and then split to generate a 3 kg sub-sample for pulverising. Sample preparation is industry standard practice.                                                                                                                                             |              |  |  |
| $\mathbb{D}$              |                                                                                                                                                                                                                                                                                                                        | Samples were routinely assayed for Ag, Cu, Pb, Zn, As, Sb, Co, Mo, Bi, and S (0.5 g aqua regia digest, ICP-AES finish) and Sn (30 g XRF). From 2003 to mid-2006 assaying also included routine Au (30 g fire assay, AAS finish) and Ta and W (XRF). In 2006 approximately half the core holes were assayed for Indium (4 acid digest, ICP-MS finish). Subsequently, selected samples were assayed for Indium, Au (30g fire assay, AAS finish), and rare Ga (4 acid digest, ICP-MS finish) and Ge (specialised digest). |              |  |  |
| Ď                         | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory<br/>procedures used and whether the technique is considered partial or total.</li> </ul>                                                                                                                                               | Assays over 100 g/t Ag, 7.5% As and 1% Cu, Pb, Sn or Zn were re-assayed by an ore grade<br>reanalysis. The re-analysis was predominantly aqua regia digest (Ag, Cu, Pb, Zn) with some<br>4 acid digest (all As, rare Ag, Pb, Zn) with a ICP-AES or AAS finish for both digests. Ore<br>grade Sn was re-assayed with ore grade XRF method. Assay techniques were industry<br>standard practice.                                                                                                                         |              |  |  |
| Quality of assay data and | <ul> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the<br/>parameters used in determining the analysis including instrument make and</li> </ul>                                                                                                                                             | Commercial Laboratory internal QAQC at the time of sampling generally included standards, blanks<br>and pulp repeats.                                                                                                                                                                                                                                                                                                                                                                                                  | ER/PLM       |  |  |
| laboratory tests          | <ul> <li>model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | Malachite reported including commercial pulp standards (CRMs) from Geostats and blanks for each sample batch submitted to the laboratory to test for accuracy and precision. Standards and blanks were routinely plotted and reported in annual reports. Insertion rates of approximately 1 in 20 standard/geochemical sample was sometimes reported by Malachite. Malachite noted standards and blanks were reasonably accurate and precise in detailed memos in 2006 and 2008.                                       | EKIPLIN      |  |  |
|                           |                                                                                                                                                                                                                                                                                                                        | OREAS CRMs were sourced to monitor the accuracy and precision of tin analyses.                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |  |  |
|                           |                                                                                                                                                                                                                                                                                                                        | All elements for all standards were within 3 standard deviations of expected values with exception to<br>one lead result for GBM398-4C and one zinc result for GBM900-10. Given the robust results<br>of all other of CRM samples, The Competent Person consider these two discrepancies<br>immaterial to the quality of the drillhole assay data used for the Conrad Mineral Resource<br>estimate                                                                                                                     |              |  |  |
| $\mathcal{D}$             |                                                                                                                                                                                                                                                                                                                        | Between 2007 and 2010 field duplicates have been collected on RC chips only, The Competent<br>Person considers that the results of the duplicate samples suggest the sampling protocol<br>used for RC samples is repeatable.                                                                                                                                                                                                                                                                                           |              |  |  |
|                           |                                                                                                                                                                                                                                                                                                                        | Two pulp batches (114 in total) were submitted to Ultra Trace in 2007 and 2008 as a quality check on assays. Malachite noted some differences for certain grade intervals for some elements, however noted confidence can generally be placed in the ALS assays. 71 pulps were sized with all pulps >90% passing 75 μm.                                                                                                                                                                                                |              |  |  |
| Criteria                                    | JORC Code Explanation                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Competent Pe |  |  |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
|                                             |                                                                                                                                                                                                                                                                                                              | <ul> <li>Significant intersections from 15 core holes were check logged; lode intersections were generally observed to have sulphide content and mineralisation in core consistently reflect the tenor of assays in the database.</li> <li>Whilst twinned drillholes have not been collected by the historical owners, drillholes that intersect mineralisation near each other (within 9 m) have been observed. The Competent Person</li> </ul>                                                                                                                                                                                                                                                                                                 |              |  |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                              | note good grade correlation between the two drillhole intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |  |  |  |
| sampling and                                | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data</li> </ul>                                                          | Logging, sampling and assays were stored within an Access Database by Malachite.<br>This data was reviewed for gross errors and detailed spot checks on key holes, using original data<br>sources where possible. Validation included standard drill hole validation (overlapping<br>intervals, hole depths etc) as well as a review of hole location and downhole surveys. Minor<br>overlapping intervals were fixed. Downhole magnetic azimuths were given a revised paleo<br>magnetic declination (based on date drilled), a small however more accurate change from<br>the Malachite designated 11.5 degrees. Confidence ratings were assigned to downhole<br>surveys with azimuths and dips > 0.3 degrees/m and 0.2 degrees/m respectively. | ER/PLM       |  |  |  |  |
| Verification of<br>sampling and<br>assaying | <ul><li>storage (physical and electronic) protocols.</li><li>Discuss any adjustment to assay data.</li></ul>                                                                                                                                                                                                 | There were four drillholes with azimuth deviations > 1°/m. The mean azimuth deviation per metre for each hole was used to correct the intervals with azimuths > 1°/m. Given the alignment of mineralised intervals between the corrected holes and surrounding drillholes, The Competent Person consider this correction appropriate.                                                                                                                                                                                                                                                                                                                                                                                                            |              |  |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                              | Digital assays were obtained from ALS for drilling from 2006 onwards and these were compared to the original database. To ensure a complete database with consistent recording of lower detection limits, original and ore grade assays the later ALS assays were used alongside earlier 2003 database assays. No material discrepancies were found.                                                                                                                                                                                                                                                                                                                                                                                             |              |  |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                              | No adjustments to assay data were undertaken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |  |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                              | Validation highlighted the complex nature of historical data. This data was well organised and<br>documented with no material issues.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |  |  |  |  |
| 7                                           |                                                                                                                                                                                                                                                                                                              | Malachite drillhole collars were located by a registered surveyor using a DGPS using Map Grid of Australia (MGA) with elevations in Australian Height Datum (AHD).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |  |  |  |  |
| D                                           |                                                                                                                                                                                                                                                                                                              | Thomson's consultants undertook field checks of eight collar locations (two drill pads) in the field with<br>a handheld GPS and noted no material discrepancies in collar locations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                              | Review of hole locations against spreadsheets labelled as Surveyor files and recent LIDAR (+/- 0.9m) noted no material discrepancies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |  |  |  |  |
| Location of data                            | <ul> <li>Accuracy and quality of surveys used to locate drillholes (collar and down-hole<br/>surveys), trenches, mine workings and other locations used in Mineral<br/>Resource estimation.</li> </ul>                                                                                                       | Malachite used a local grid to achieve best intersections with mineralisation as there is oblique strike (NW-SE) of the deposit relative to the MGA94 grid. The MGA94 grid was rotated by 318.40 (-41.60 trig) to generate local azimuths and its east-west axis was oriented parallel to the strike of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                          | ER           |  |  |  |  |
| points                                      | <ul><li>Specification of the grid system used.</li><li>Quality and adequacy of topographic control.</li></ul>                                                                                                                                                                                                | Downhole surveys were recorded using either a single shot Eastman camera or a Reflex digital<br>survey tool at mainly 30 m (some 50 m) intervals. RC precollar drilling was noted by<br>Malachite to be variable with excessive dip and azimuth variations. Planned collars were<br>routinely rotated by 10 degrees to allow for this deflection.                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                              | Downhole surveys were assigned a revised paleo magnetic declination (based on date drilled) and confidence ratings were assigned to downhole surveys with azimuths and dips > 0.3 degrees/m and 0.2 degrees/m respectively. Deviating azimuths are believed to be mainly due to surveys in rods or magnetic pyrrhotite in the mineralised zone. Original survey data was not always available and was not reviewed however original logs were reviewed.                                                                                                                                                                                                                                                                                          |              |  |  |  |  |
| Data spacing and distribution               | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> </ul> | Drill spacing along the strike of the Conrad lode is on approximately 100 m spacing and is spaced down dip at approximately 50 m to 80 m. In the King Conrad Shoot drill spacing is variable between 20 m and 50 m both down dip and along strike. Drill spacing in the Greisen zone is typically 50 m both along strike and down dip.                                                                                                                                                                                                                                                                                                                                                                                                           | PLM/ER       |  |  |  |  |
| 5                                           | <ul> <li>Whether sample compositing has been applied.</li> </ul>                                                                                                                                                                                                                                             | The data spacing and distribution is considered sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource estimation and classification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |  |  |  |  |
| Orientation of data in relation             | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible<br/>structures and the extent to which this is known, considering the deposit type.</li> </ul>                                                                                                                           | The Conrad deposit strikes in a northwest-southeast orientation and was drilled generally in a<br>perpendicular orientation (northwest-southeast) to the structure. Drilling occurred from both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ER           |  |  |  |  |

| Criteria                   | JO | RC Code Explanation                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Competent Person |
|----------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| to geological<br>structure | -  | If the relationship between the drilling orientation and the orientation of key<br>mineralised structures is considered to have introduced a sampling bias, this<br>should be assessed and reported if material. | northeast and southwest directions, however a southwest to northeast orientation is considered the most effective drill direction to intersect the steeply southwest dipping structure. No issue was found in the angle of structure to core axis from the field checks, with the majority of veins occurring at a 45° to 90° angle to the core. Spot check logging has not identified any potential for sample bias due to orientation of drilling and structures. The MGA94 grid was rotated by 318.40° (-41.60 trig) to generate local azimuths |                  |
| Sample security            | •  | The measures taken to ensure sample security.                                                                                                                                                                    | Drillhole samples are placed in numbered calico sample bags which are subsequently placed in poly-<br>weave bags for transportation to the laboratory. The core remaining on site is not kept within<br>a secured enclosure.                                                                                                                                                                                                                                                                                                                       | ER               |
| Audits or<br>reviews       | •  | The results of any audits or reviews of sampling techniques and data.                                                                                                                                            | There has been several extensive assessments of the data collection processes and sampling and assaying approach. No material issues have been identified.                                                                                                                                                                                                                                                                                                                                                                                         | ER               |

Section 2 Reporting of Exploration Results Oriteria listed in the preceding section also apply to this section).

| Criteria                                      |   | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |                                                                                            | Competent Person |
|-----------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|
| Mineral tenement<br>and land tenure<br>status | • | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.<br>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | in no<br>Thomson Res<br>Mine<br>ongo<br>Conr<br>• EL<br>• EF<br>• Mi<br>• Mi<br>• Mi<br>• Mi<br>Rapid Lithium | rthern NSW.<br>cources acquired t<br>s purchased the<br>ing interest in the<br>ad deposit. Malac<br>.5977 covers 16 U<br>PL1050 covers 4 u<br>.5992 covers 12.1<br>.6040 covers 15.6<br>.6041 covers 11.5 | pproximately 25 km south of<br>he project from Silver Mines<br>project in 2015 from Malar<br>project via a 1% net smelte<br>hite Resources became Paci<br>nits and renewal is in progre<br>406 ha and is granted until 2028<br>ha and is granted until 2028<br>y material issues with third pace<br>Mineral<br>Group 1 | (finalised 31 March 2021).<br>chite Resources, Malachite<br>r return on all metals produ<br>fic Nickel Mines on Novemb<br>ss<br>ss<br>2028<br>28<br>3<br>arties which may impede cur<br>Area<br>16 Units<br>4 Units<br>0.121406 km <sup>2</sup> (12.1406 ha)<br>0.1563 km <sup>2</sup> (15.63 ha) | When Silver<br>retained an<br>iced from the<br>per 30, 2020.                               | ER               |
| Exploration done<br>by other parties          | - | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                            | explo<br>delin<br>cond<br>and 3<br>surfa<br>A small 2010 o<br>lode.<br>Mapping and s                          | oration and drilling<br>eating resources v<br>ucted over a 2.2 k<br>300 m depth, altho<br>ice.<br>diamond program s<br>sampling defined a                                                                 | Pacific Nickel Mines Ltd) acc<br>g at the project between 20<br>within the Conrad lode, King<br>cm strike length with most h<br>ugh the deepest hole interse<br>successfully defined shallow<br>another promising parallel vei<br>ucture that had been drilled h                                                       | 03 and 2010. The drilling w<br>Conrad lode and Greisen Z<br>ioles piercing the lodes betw<br>cted the Conrad lode almost<br>high-grade mineralisation at<br>in system, the Coopers lode,                                                                                                          | vas aimed at<br>cone and was<br>ween surface<br>500 m below<br>the Princess<br>100 m south | ER               |

| Criteria                                          | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Competent Per |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with no records. A 2010 RC program undertook shallow reconnaissance testing of structures<br>southeast of the resource area.                                                                                                                                                                                                                                                                                                                                                            |               |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The project was sold to Silver Mines Ltd in 2015.                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The Conrad deposit comprises two main ore bodies – Conrad/King Conrad Lode and the Greisen sheeted vein /stockwork disseminated zone.                                                                                                                                                                                                                                                                                                                                                   |               |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The mineralisation at Conrad is associated with a large northwest-southeast striking strike-slip fault<br>zone (Main Conrad structure) developed within the Late Permian to Early Triassic age Gilgai<br>Granite and extending into the adjacent Tingha Monzogranite.                                                                                                                                                                                                                   |               |
| Geology                                           | <ul> <li>Deposit type, geological setting and style of mineralisation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       | The Pb, Zn, Cu, Ag, Sn and In mineralisation within the Main Conrad structure is made up of northeast to southwest striking narrow (generally 0.5 to 2 m wide) sub-vertical, sulphide-rich quartz crustiform fissure veins or 'lodes' and minor broader disseminated and sulphide veinlet mineralisation hosted by altered granite (Greisen), with the former being the most economically important.                                                                                    | ER            |
| $\sum$                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The lode mineralisation is dominated by complex intergrowths of coarse sphalerite, galena,<br>chalcopyrite, cassiterite, locally stannite and a host of volumetrically minor silver sulfosalts<br>(dominated by tetrahedrite and argentite-acanthite) interstitial to coarse-grained quartz.<br>Sulphide gangue is dominated by paragenetically early arsenopyrite, pyrite, and locally,<br>pyrrhotite. This early assemblage appears to be replaced locally by base metal sulphides    |               |
| 15                                                | <ul> <li>A summary of all information material to the understanding of the exploration<br/>results including a tabulation of the following information for all Material<br/>drillholes:</li> </ul>                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ER            |
| Drillhole                                         | <ul> <li>easting and northing of the drillhole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of</li> </ul>                                                                                                                                                                                                                                                                                                                      | <ul> <li>A table of all drillhole collar information is included in Appendix 1 of this report.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               |               |
|                                                   | the drillhole collar<br>dip and azimuth of the hole                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Note that in order to manage space, only the highest 172 assays have been tabulated,<br/>these are all above 500 q/t Aq. There are a further 1.472 laboratory validated assays</li> </ul>                                                                                                                                                                                                                                                                                      |               |
|                                                   | <ul> <li>dip and azimuth of the noie</li> <li>down hole length and interception depth</li> </ul>                                                                                                                                                                                                                                                                                                                                                                        | above the cut off of 30 g/t Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| Ð                                                 | <ul> <li>hole length</li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul>                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| D                                                 | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be</li> </ul> | A simple weighted average has been used: as the Conrad lode is generally narrow this involves only<br>a few assays in any given intercept. For the Underground resource no cutting of high grades<br>has taken place as this level of selectivity is typically not achieved in underground mining. A<br>cut-off grade of 40 g/t AgEq and an optimised pit shell (at a revenue factor of 2.0) was used<br>to report the portion of the deposit likely to be mined using open pit methods |               |
| Data aggregation<br>methods                       | <ul> <li>shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                                                                                                                                                                                               | The Ag equivalent formula used the following metal prices, recovery and processing assumptions: Using an exchange rate of US\$0.73, Ag price A\$38/oz, Zn price A\$4,110/t, Pb price A\$3,014/t, Cu price A\$13,699/t, Sn price A\$41,096, recoveries of 90% for Ag, Pb, Zn, Cu and 70% for Sn.                                                                                                                                                                                         | ER            |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ag Equivalent (AgEq) was calculated using the formula AgEq = Ag g/t + 24.4*Pb(%) + 111.1*Cu(%) + 33.3*Zn(%) + 259.2*Sn(%) based on metal prices and metal recoveries into concentrate.                                                                                                                                                                                                                                                                                                  |               |
| Relationship<br>between                           | <ul> <li>These relationships are particularly important in the reporting of Exploration<br/>Results.</li> <li>If the geometry of the mineralisation with respect to the drillhole angle is known</li> </ul>                                                                                                                                                                                                                                                             | True widths for each drill hole intercept from a 3D geological wireframe have been calculated and are                                                                                                                                                                                                                                                                                                                                                                                   |               |
| mineralisation<br>widths and<br>intercept lengths | <ul> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                     | shown in the drill hole table.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ER            |

| Criteria                                 | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                             | Competent Persor |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Diagrams                                 | <ul> <li>Appropriate maps and sections (with scales) and tabulations of intercepts<br/>should be included for any significant discovery being reported These should<br/>include, but not be limited to a plan view of drillhole collar locations and<br/>appropriate sectional views.</li> </ul>                                                                                                                          | A collar plan of all collar locations and intercepts are provided in Appendix B, along with selected cros and long sections                                                                                            | ER               |
| Balanced reporting                       | <ul> <li>Where comprehensive reporting of all Exploration Results is not practicable,<br/>representative reporting of both low and high grades and/or widths should be<br/>practiced to avoid misleading reporting of Exploration Results.</li> </ul>                                                                                                                                                                     | All drill hole intercepts are shown in the drill hole table.                                                                                                                                                           | ER               |
| Other<br>substantive<br>exploration data | <ul> <li>Other exploration data, if meaningful and material, should be reported including<br/>(but not limited to): geological observations; geophysical survey results;<br/>geochemical survey results; bulk samples – size and method of treatment;<br/>metallurgical test results; bulk density, groundwater, geotechnical and rock<br/>characteristics; potential deleterious or contaminating substances.</li> </ul> | No other meaningful and material has been omitted from this report.                                                                                                                                                    | ER               |
| Further work                             | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                       | Further drilling to increase and better define the resource is in the planning stage. The Long section diagram included in this report shows a number of "shoots" that provide compelling targets for further drilling | ER               |

## Section 3 Estimation and Reporting of Mineral Resources

| Criteria listed in section 1, and where relevant in section | n 2 | 2, also | appl | y to | this | section | ). |
|-------------------------------------------------------------|-----|---------|------|------|------|---------|----|
|-------------------------------------------------------------|-----|---------|------|------|------|---------|----|

| Criteria                     | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Competent Persor |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Database<br>integrity        | <ul> <li>Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.</li> <li>Data validation procedures used.</li> </ul>                                                                                                                                                                                  | <ul> <li>The Competent person was supplied with drillhole collar coordinates, downhole survey data, drillhole sample assays, geotechnical logging and drillhole density measurements in Microsoft Excel format.</li> <li>The supplied data has been verified and cross-checked.</li> <li>Validation of the supplied data took place by checking for:         <ul> <li>Duplicate collar coordinates,</li> <li>Collar elevation difference to topography elevation</li> <li>Duplicate downhole survey depths,</li> <li>Azimuth / dip deviations &gt; 1° per metre,</li> <li>Azimuth / dip measurements outside expected values,</li> <li>Overlapping intervals in assay data,</li> <li>Assay values outside expected limits.</li> </ul> </li> <li>Based on the data validation, CMRD11 and CMRD08 were excluded due to doubt in their collar and / or downhole survey data.</li> </ul>                                                                                                                                                                                  | PLM              |
| Site visits                  | <ul> <li>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</li> <li>If no site visits have been undertaken indicate why this is the case.</li> </ul>                                                                                                                                                                                                                                              | A site visit to the Corrad deposit was not been completed by PLM due to Covid-19 restrictions at the time of reporting. ER has visited the site on multiple occasions to check outcrop, drill hole locations and general geology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PLM/ER           |
| Geological<br>interpretation | <ul> <li>Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.</li> <li>Nature of the data used and of any assumptions made.</li> <li>The effect, if any, of alternative interpretations on Mineral Resource estimation.</li> <li>The use of geology in guiding and controlling Mineral Resource estimation.</li> <li>The factors affecting continuity both of grade and geology.</li> </ul> | <ul> <li>The Conrad deposit contains four mineralised domains, a surrounding alteration domain and an internal waste domain.</li> <li>The main mineralised domain, the Conrad Lode, is easily identifiable in drill core as a crustiform banded quartz sulphide fissure vein/sulphide vein and consequently, was modelled guided by the geological logging. The Conrad Lode strikes towards the northwest and dips steeply (&gt;80°) towards the northeast and southwest as it anastomoses along strike.</li> <li>A Greisen zone exists in the northwest of the Project and lies approximately 30 m to the east of the Conrad Lode.</li> <li>At least two narrow veins (referred to as Greisen veins) exist that are analogous to the main Conrad Lode but are restricted to the northwest of the Project due to lack of drilling in the southeast of the Project.</li> <li>Surrounding the main Conrad Lode, Greisen and Greisen veins is a zone of alteration that contains discontinuous veinlets of mineralisation. Alteration is typically sericitic.</li> </ul> | PLM              |

| Criteria                 | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Competent Pers |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Leapfrog's "Vein Model" approach was used to develop a wireframe that was guided by the intervals logged typically as "Lode" or "Shear Zone".                                                                                                                                                                                                                                                                                                                                                                                                                              |                |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The Greisen was also easily identified in drill and was modelled using the same approach as the Conrad Lode.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A lower grade threshold of 20 g/t Ag was used to delineate the mineralisation boundary of the Greisen veins based on visual assessment of Ag grades downhole.                                                                                                                                                                                                                                                                                                                                                                                                              |                |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Within the Greisen zone exists a continuous zone of waste. This waste zone was domained based on sectional interpretation in Datamine's Studio RM.                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Whilst the northwest portion of the deposit is well drilled (drill intersections approximately 25 m apart),<br>the southeast portion of the deposit is typically drilled to approximately 100 m spacing.<br>Significant grade differences have been observed between drillhole intersections 80 m apart.<br>Consequently, extrapolation of the mineralisation wireframes was limited to no more than<br>80 m from the closest drillhole intersection.                                                                                                                      |                |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The Competent Person is confident in the geological interpretation and, given the historic mining and<br>areas of closer spaced drillhole intersections, considers there to be low risk of alternate<br>geological interpretations. The confidence in the position of the mineralised domains will<br>increase with an increase in drillhole information.                                                                                                                                                                                                                  |                |  |
| 16                       | The extent and variability of the Mineral Resource expressed as length (along     the set dependence of the set of t | The dimensions of the main Conrad Lode (as defined by the drillhole information) are 3,100 m in length,<br>500 m in depth and (on average) 1.8 m wide but down to 0.1 m wide and up to 11 m wide.<br>Mineralisation remains open along strike and at depth.                                                                                                                                                                                                                                                                                                                | DIM            |  |
| Dimensions               | strike or otherwise), plan width, and depth below surface to the upper and lower<br>limits of the Mineral Resource.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The Greisen Lode is 500 m in length and approximately 450 m in depth. The width of the Greisen Lode varies from approximately 1 m to > 20 m. Greisen mineralisation is open along strike and at depth.                                                                                                                                                                                                                                                                                                                                                                     | PLM            |  |
| $\mathcal{P}$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Resource estimation was carried out using Datamine's Studio RM software. A rotated block model (rotated -52° about the 'Z-axis') was created covering the extents of the mineralisation domains.                                                                                                                                                                                                                                                                                                                                                                           |                |  |
|                          | <ul> <li>The nature and appropriateness of the estimation technique(s) applied and key<br/>assumptions, including treatment of extreme grade values, domaining,<br/>interpolation parameters and maximum distance of extrapolation from data<br/>points. If a computer assisted estimation method was chosen include a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vein modelling approach was used for the Conrad Lode and two Greisen veins (Domain 10, 21 and 22 respectively) to estimate Ag, Cu, Pb, Sn, Zn, As, Sb and S metal (true width x grade) and true width was also estimated. Based on the results of a kriging neighbourhood analysis, a block size of 20 m along strike (northing) and 20 m down dip (elevation) was selected to estimate metal content. A single block representing the width of the vein was created (easting).                                                                                            |                |  |
| R                        | description of computer software and parameters used. <ul> <li>The availability of check estimates, previous estimates and/or mine production</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | From kriging neighbourhood analysis results, a block size of 20 mN by 1 mE by 20 mRL was selected for the Greisen Lode, Alteration and internal waste (Domain 20, 99 and 999 respectively).                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Estimation and modelling | <ul> <li>records and whether the Mineral Resource estimate takes appropriate account of such data.</li> <li>The assumptions made regarding recovery of by-products.</li> <li>Estimation of deleterious elements or other non-grade variables of economic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For the vein modelling, drillhole samples were flagged within the narrow vein domains (Domain 10, 21<br>and 22) and composited to the full width of the vein. The true width was calculated in<br>Datamine using the "Intersect Drillholes" function. The true width for each drillhole intersection<br>was merged with the full width composites to calculate composite metal values.                                                                                                                                                                                     | PLM            |  |
| techniques               | <ul> <li>significance (eg sulphur for acid mine drainage characterisation).</li> <li>In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drillhole samples within Domain 20, 99 and 999 (Greisen, alteration and internal waste) were composited to 1 m lengths based on the dominant drillhole sample length of 1 m.                                                                                                                                                                                                                                                                                                                                                                                               |                |  |
| $\mathcal{D}$            | <ul> <li>Any assumptions behind modelling of selective mining units.</li> <li>Any assumptions about correlation between variables.</li> <li>Description of how the geological interpretation was used to control the resource estimates.</li> <li>Discussion of basis for using or not using grade cutting or capping.</li> <li>The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Semi-variogram models were developed for composited Ag, Cu, Pb, Sn, Zn, As, Sb and S metal for<br>Domain 10. Semi-variogram models were developed for Ag g/t, Cu ppm, Pb ppm, Sn ppm,<br>Zn ppm, As ppm, Sb ppm and S% for Domain 20. There was insufficient sample information<br>for Domain 21 and 22 to develop robust semi-variogram models. Consequently, given the<br>geological similarities to Domain 10, the semi-variogram models developed for Domain 10<br>were used to weight composite samples when estimating metal and true width for Domain 21<br>and 22. |                |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Semi-variogram models for Domain 20 were used to weight composite samples from Domain 99 and 999 based on similar geological characteristics (Greisen-like mineralisation).                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All grades and metals were capped to minimise excessive grade extrapolation. The selection of a grade capping value was guided by test estimates, the location of higher grade outliers and the statistics for each grade / metal and domain.                                                                                                                                                                                                                                                                                                                              |                |  |

| Criteria   | JORC Code Explanation                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Competent Perso |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|            |                                                                                                                                                              | <ul> <li>Ordinary kriging (OK) was used to estimate Ag, Cu, Pb, Sn, Zn, As, Sb and S metal into Domain 10, 21 and 22 and Ag g/t, Cu ppm, Pb ppm, Sn ppm, Zn ppm, As ppm, Sb ppm and S% into Domain 20, 99 and 999. Three estimation passes were used for Domain 10 and 20, two passes for Domain 21 and 22 and a single pass for Domain 99 and 999 (to minimise grade smearing).</li> <li>The search ellipse for Pass 1 estimation of metal within Domain 10 involved (depending on the variable being estimated) a major, semi-major and minor range of between 50 m, 40 m and 30 m respectively and up to 150 m by 100 m by 40 m. The number of samples required also depended on the variable being estimated with minimum required ranging from three and six to a maximum between 12 and 24. The search size and sample criteria were selected based on optimal results of test estimates. Pass 2 doubled the search ellipse size and required a minimum of two samples and Pass 3 quadrupled the search ellipse size and required a minimum of two samples and a maximum of four. Most blocks were estimated in pass 1 or pass 2.</li> </ul> |                 |
|            |                                                                                                                                                              | The estimation approach is considered appropriate for the style of mineralisation and the variability of the grade and metal content observed in drillhole data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| 1D         |                                                                                                                                                              | The grade and metal estimates within each domain were validated visually by comparing drillhole composite grades to estimated grades in section, plan and long-section. The mean, declustered, top-cut composite grade was compared to the mean estimated grade within each domain. The statistical comparisons showed that all mean estimated grades for mineralisation are within 5% of the mean, declustered, top-cut drillhole composite grades with exception to copper, which was within 9%. Swath plots of drillhole composite grades against estimated grades were also developed and used to validate the block grade estimates. The swath plots showed the composite grade trends have been replicated by the grade estimates. No historical production data was available to further validate the estimated grades.                                                                                                                                                                                                                                                                                                                     |                 |
|            |                                                                                                                                                              | Estimated metal was converted to grades in Domain 10, 21 and 22 by dividing estimated metal by estimated true width.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| Moisture   | <ul> <li>Whether the tonnages are estimated on a dry basis or with natural moisture,<br/>and the method of determination of the moisture content.</li> </ul> | Tonnage was estimated on a dry basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PLM             |
|            |                                                                                                                                                              | <ul> <li>The Conrad Mineral Resource as of August 2021 is shown in Table ES.1. At the date of this report, the 2021 Conrad Mineral Resource is based on the Indicated and Inferred classification material with a process route based on zinc, lead, copper tin and silver recovery in a flotation concentrator, to generate separate lead, zinc and copper concentrates.</li> <li>It is reported under the assumption that both open pit and underground mining methods will likely be used. The portion of the resource likely to be mined using an open pit mining method has</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| Cut-off    |                                                                                                                                                              | been reported above an optimised pit shell (at a 2.0 revenue factor based on the likelihood that further drilling will convert Inferred material to a higher classification) and at or above 40 g/t Ag equivalent. The portion of the deposit likely to be mined using underground mining methods has been reported within zones that have observable continuity of structure and grade. No cut-off has been applied for reporting the underground portion of the deposit as this level of selectivity is typically not achieved in underground mining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| parameters | The basis of the adopted cut-off grade(s) or quality parameters applied.                                                                                     | The silver equivalent formula has been calculated with the following assumptions:<br>Metal grades of 1% per unit of ore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLM             |
| ħ          |                                                                                                                                                              | Whilst Metcon have provided indicative metal recoveries based on three drillhole samples, (Metcon, 2009a and Metcon, 2009b), The Competent Person has used more conservative recoveries until more detailed metallurgical testwork has been completed. Recoveries used for the Ag equivalent formula are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|            |                                                                                                                                                              | <ul> <li>90% recovery for silver, lead, copper and zinc</li> <li>70% recovery for tip</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| 15         |                                                                                                                                                              | <ul> <li>70% recovery for tin</li> <li>Metal prices supported by the historical five years of price data and information on metal price<br/>forecasts. Metal prices are in Australian dollars using an exchange rate of US\$ 0.73</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |

| Criteria                      | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         | Comm                                                                                                                                                                                                                                                                                                 | entary                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                               | Competent Pe |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - A\$38/ound                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                 | tonne copper                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - A\$3,014/to                                                                                                                                                                                                                                                                                   | onne lead                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - A\$4,110/to                                                                                                                                                                                                                                                                                   | onne zinc                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | – A\$41,096/                                                                                                                                                                                                                                                                                    | tonne tin                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The silver equivalent<br>following forr                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                         | he metal ratio                                                                                                                                                                                                                                                                                       | os as calculated in the                                                                                                                                                                                                                                                                                                                                                                                                       | e table below resulting in the                                                                                                                                                                                                                                                                                                                                                                                |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Silver Equivalent (AgE                                                                                                                                                                                                                                                                          | Eq) = Ag g/t + 2                                                                                                                                                                                                                                                                                        | 4.4*Pb(%) + ´                                                                                                                                                                                                                                                                                        | l11.1*Cu(%) + 33.3*Zı                                                                                                                                                                                                                                                                                                                                                                                                         | n(%) + 259.2*Sn(%)                                                                                                                                                                                                                                                                                                                                                                                            |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Element                                                                                                                                                                                                                                                                                         | Realised<br>price<br>(US\$)                                                                                                                                                                                                                                                                             | Unit                                                                                                                                                                                                                                                                                                 | Recovery (%)                                                                                                                                                                                                                                                                                                                                                                                                                  | Silver equivalent factor                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ag                                                                                                                                                                                                                                                                                              | 38                                                                                                                                                                                                                                                                                                      | A\$/oz                                                                                                                                                                                                                                                                                               | 90%                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pb                                                                                                                                                                                                                                                                                              | 3,014                                                                                                                                                                                                                                                                                                   | A\$/t                                                                                                                                                                                                                                                                                                | 90%                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.4                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cu                                                                                                                                                                                                                                                                                              | 13,698                                                                                                                                                                                                                                                                                                  | A\$/t                                                                                                                                                                                                                                                                                                | 90%                                                                                                                                                                                                                                                                                                                                                                                                                           | 111.1                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zn                                                                                                                                                                                                                                                                                              | 4,110                                                                                                                                                                                                                                                                                                   | A\$/t                                                                                                                                                                                                                                                                                                | 90%                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.3                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sn                                                                                                                                                                                                                                                                                              | 41,096                                                                                                                                                                                                                                                                                                  | A\$/t                                                                                                                                                                                                                                                                                                | 70%                                                                                                                                                                                                                                                                                                                                                                                                                           | 259.2                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2022 Mineral Resource<br>A\$14,850, Zn price A\$                                                                                                                                                                                                                                                | e Estimate. As<br>\$4,127/t, Pb pri                                                                                                                                                                                                                                                                     | at 20 May 20<br>ce A\$3,040/t a                                                                                                                                                                                                                                                                      | 25 the spot prices are<br>and Sn A\$50,860. In F                                                                                                                                                                                                                                                                                                                                                                              | xcess of those used for the<br>Ag price A\$50/oz, Cu price<br>&LL's opinion all elements<br>to be recovered and sold.                                                                                                                                                                                                                                                                                         |              |
|                               | <ul> <li>Assumptions made regarding possible mining methods, minimum mining</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                               | and an underground mine. If<br>and excavator / shovel at 5 m                                                                                                                                                                                                                                                                                                                                                  |              |
| Mining factors or assumptions | dimensions and internal (or, if applicable, external) mining dilution. It is always<br>necessary as part of the process of determining reasonable prospects for<br>eventual economic extraction to consider potential mining methods, but the<br>assumptions made regarding mining methods and parameters when estimating<br>Mineral Resources may not always be rigorous. Where this is the case, this<br>should be reported with an explanation of the basis of the mining assumptions<br>made. | jumbo for de<br>The Conrad Mineral R<br>information v<br>vein silver (+<br>In the Competent Per                                                                                                                                                                                                 | ch heights. The<br>velopment and<br>esource is a rel<br>with good conti<br>base metals) r                                                                                                                                                                                                               | underground<br>long hole sto<br>atively small s<br>nuity and grad<br>nines around<br>these factors                                                                                                                                                                                                   | mining will likely be co<br>ping for production.<br>ized polymetallic depo<br>des that are comparat<br>the world (La Colorad<br>indicate that the Miner                                                                                                                                                                                                                                                                       | mpleted using a single boom<br>osit (based on current drillhole<br>ole to other operating narrow                                                                                                                                                                                                                                                                                                              | PLM          |
|                               | necessary as part of the process of determining reasonable prospects for<br>eventual economic extraction to consider potential mining methods, but the<br>assumptions made regarding mining methods and parameters when estimating<br>Mineral Resources may not always be rigorous. Where this is the case, this<br>should be reported with an explanation of the basis of the mining assumptions                                                                                                 | jumbo for de<br>The Conrad Mineral R<br>information v<br>vein silver (+<br>In the Competent Per<br>prospects of<br>Based on the results fr<br>is amenable<br>Metcon's as<br>achieved wi<br>metallurgical<br>99% respect<br>with addition<br>Zn has been<br>recovery of 7<br>The Competent Perso | ch heights. The<br>velopment and<br>esource is a rel<br>with good conti<br>base metals) r<br>son's opinion, t<br>eventual econo<br>rom three metal<br>to a gravity pre<br>sessment sug<br>th Ag reportir<br>tests suggest<br>tively. The Con<br>al metallurgical<br>a assumed until<br>'0% for tin base | underground<br>long hole sto<br>atively small s<br>nuity and grav<br>nines around<br>these factors<br>pomic extractio<br>lurgical testwo<br>e-concentrate<br>gested saleal<br>ng to the Pt<br>Ag, Pb, Cu, S<br>npetent Persco<br>t est work. Co<br>more detaile<br>ad on metallur<br>rther investiga | mining will likely be co<br>ping for production.<br>ized polymetallic depo<br>des that are comparat<br>the world (La Colorad-<br>indicate that the Miner<br>n.<br>prk samples, mineralisa<br>(to allow for wall rock<br>ob concentrates of Co<br>concentrate. Metal<br>Sn and Zn recoveries<br>n recognises that mo<br>onsequently, a recover<br>d metallurgical testwo<br>gical test work is cons<br>ation is underway to as | mpleted using a single boom<br>sit (based on current drillhole<br>ble to other operating narrow<br>o mine in Mexico).<br>ral Resource has reasonable<br>ation from the Conrad deposit<br>dilution) and flotation circuit.<br>Cu, Pb, Sn and Zn can be<br>recoveries from the initial<br>of 94%, 97%, 96% 70% and<br>re confidence will be gained<br>y of 90% for Ag, Pb, Cu and<br>rk has been completed. The | PLM          |

| Criteria                                             | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Competent Per |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                      | stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Processing has been assumed to take place off site at an alternate operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry bulk density (DBD) was measured using the water immersion technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| Bulk density                                         | <ul> <li>Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.</li> <li>The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Unwaxed, competent pieces of drill core measuring approximately 0.1 m in length were selected to measure DBD. The DBD measurement on the piece of core was assigned to the entire sample interval.</li> <li>Some invalid DBD measurements were observed where the DBD values were outside expected ranges. To minimise the impact of high and low value outliers, only data within the 90<sup>th</sup></li> </ul>                                                                                                                                                                                                                                                                                                     | PLM           |
|                                                      | <ul> <li>differences between rock and alteration zones within the deposit.</li> <li>Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>confidence interval (CI) (upper and lower 5% of data removed) was used.</li> <li>Given some uncertainty in the quality of the DBD measurements, the Competent Person assigned the mean DBD (at the 90<sup>th</sup> CI) of measurements within each domain to the block model for the purposes reporting tonnage.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                           |               |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The Conrad Mineral Resource is assigned Indicated and Inferred classification in accordance with guidelines within the JORC Code 2012. Parameters considered included the distribution and density of drill data, confidence in interpreted geological continuity of the mineralised zones, and confidence in the resource block estimates. The interpretation is based on the geological observations of crustiform banded quartz sulphide fissure vein / sulphide vein.                                                                                                                                                                                                                                                      |               |
| Classification                                       | <ul> <li>The basis for the classification of the Mineral Resources into varying confidence categories.</li> <li>Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>In long-section, the slope of regression and kriging efficiency of the grade estimate, along with the distribution of the drillholes, was used to demarcate Indicated Mineral Resource. Typically, areas where slope of regression exceeded approximately 70%, kriging efficiency exceeded approximately 50% and drillhole spacing was less than 50 m were included in the Indicated demarcation.</li> <li>Blocks that were less than these criteria (slope of regression, kriging efficiency and drillhole spacing) and received a grade estimate, were assigned an Inferred Mineral Resource classification.</li> </ul>                                                                                             | PLM           |
| Þ                                                    | <ul> <li>Whether the result appropriately reflects the Competent Person's view of the deposit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No cut-off grade was applied to the portion of the deposit likely to be mined using underground<br>methods. Zones were demarcated where good continuity of structure and grade are observed<br>as they will more likely be mined than discontinuous zones defined by a nominal cut-off grade.<br>A cut-off grade of 40 g/t AgEq and an optimised pit shell (at a revenue factor of 2.0) was used to report                                                                                                                                                                                                                                                                                                                     |               |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the portion of the deposit likely to be mined using open pit methods.<br>The classification reflects the Competent Person's view of the deposit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| Audits or reviews                                    | <ul> <li>The results of any audits or reviews of Mineral Resource estimates.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No independent review was carried out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PLM           |
| Discussion of<br>relative<br>accuracy/<br>confidence | <ul> <li>Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.</li> <li>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</li> <li>These statements of relative accuracy and confidence of the estimate should be</li> </ul> | The Competent Person considers that the classification is appropriate for the global resources. The estimate is constrained to an interpretation of geological structure and mineralised zones that is moderately to well-defined by the drill hole data. The location, thickness and grade of the mineralized zones as observed in the drillholes are reasonably predictable at the global scale and are reasonably consistent throughout the known extent of mineralisation. Local scale variations due to local depositional environment are to be expected but are not expected to have a material impact on the global resource estimate. Normal grade control processes should be sufficient to manage these variations. | PLM           |



## **APPENDIX 1 WEBBS SILVER PROJECT Figures and Tables**

Figure 2: Webbs long Section





Figure 3: Webbs Silver Project. Plan view showing domains and drill traces (squares are 100m x 100m)

### Tables: Webbs Silver Project Drill Hole details and assays

This list is for all holes drilled at the Webbs Silver Project that intersected the model wireframes. All assays are in ppm (g/t). Some values are negative (e.g. -5): this is a result of the value being below the detection limit. For modelling the practice is to replaced these by a value, greater than zero, equal to half the detection limit.

Holes used in the comprehensive metallurgical testwork completed in 2013 by Core Process Engineering (see above) are annotated with "MET" in the last column.

| Hole      | MGA56E           | MGA56N  | RL  | Azi   | Dip | Depth | From | То    | Width | AgEQ | Ag   | Cu   | Pb    | Zn    | MET |
|-----------|------------------|---------|-----|-------|-----|-------|------|-------|-------|------|------|------|-------|-------|-----|
| 47_17_53  | <b>12</b> 358969 | 6752616 | 700 | 90.0  | 0.0 | 1     | 0    | 1     | 1     | 224  | 30   | 0    | 45000 | 31000 |     |
| 47_17_53  | <b>I3</b> 358966 | 6752612 | 700 | 195.0 | 0.0 | 4.5   | 0    | 4.5   | 4.5   | 62   | 19   | 0    | 1000  | 12000 |     |
| 47_17_53  | <b>4</b> 358974  | 6752625 | 700 | 295.0 | 0.0 | 1.5   | 0    | 1.5   | 1.5   | 158  | 30   | 0    | 27000 | 22000 |     |
| 47_17_53  | <b>15</b> 358968 | 6752612 | 700 | 15.0  | 0.0 | 3     | 0    | 3     | 3     | 147  | 30   | 0    | 16000 | 25000 |     |
| 47_17_53  | <b>46</b> 358970 | 6752620 | 700 | 210.0 | 0.0 | 3     | 0    | 3     | 3     | 79   | 30   | 0    | 6000  | 11000 |     |
| 47_17_534 | <b>17</b> 358972 | 6752620 | 700 | 210.0 | 0.0 | 3     | 0    | 3     | 3     | 119  | 30   | 0    | 16000 | 17000 |     |
| 47_17_53  | <b>18</b> 358965 | 6752605 | 700 | 205.0 | 0.0 | 3     | 0    | 3     | 3     | 85   | 30   | 0    | 7000  | 12000 |     |
| 47_17_53  | <b>19</b> 358962 | 6752599 | 700 | 200.0 | 0.0 | 2.5   | 0    | 2.5   | 2.5   | 52   | 19   | 0    | 1000  | 9000  |     |
| 47_17_53  | <b>50</b> 358959 | 6752592 | 700 | 190.0 | 0.0 | 2.5   | 0    | 2.5   | 2.5   | 86   | 30   | 0    | 6000  | 13000 |     |
| 47_17_53  | <b>51</b> 358957 | 6752585 | 700 | 210.0 | 0.0 | 3     | 0    | 3     | 3     | 134  | 30   | 0    | 6000  | 27000 |     |
| 47_17_53  | <b>52</b> 358961 | 6752597 | 700 | 17.0  | 0.0 | 2.5   | 0    | 2.5   | 2.5   | 184  | 30   | 0    | 26000 | 30000 |     |
| 47_17_53  | <b>35</b> 358960 | 6752593 | 700 | 190.0 | 0.0 | 3     | 0    | 3     | 3     | 109  | 30   | 0    | 21000 | 11000 |     |
| 47_17_53  | <b>54</b> 358956 | 6752582 | 700 | 35.0  | 0.0 | 3     | 0    | 3     | 3     | 69   | 30   | 0    | 4000  | 9000  |     |
| 47_17_53  | <b>55</b> 358959 | 6752596 | 700 | 85.0  | 0.0 | 1.5   | 0    | 1.5   | 1.5   | 95   | 30   | 0    | 7000  | 15000 |     |
| 62_055_0  | <b>3</b> 58956   | 6752583 | 700 | 110.0 | 0.0 | 0.915 | 0    | 0.915 | 0.915 | 45   | 19.8 | 600  | 2400  | 4000  |     |
| 62_055_0  | <b>)2</b> 358958 | 6752586 | 700 | 110.0 | 0.0 | 0.915 | 0    | 0.915 | 0.915 | 58   | 11.3 | 1600 | 4700  | 6000  |     |
| 62_055_0  | <b>3</b> 358960  | 6752590 | 700 | 110.0 | 0.0 | 0.915 | 0    | 0.915 | 0.915 | 98   | 30   | 2000 | 8000  | 9000  |     |
| 62_055_0  | <b>3</b> 58960   | 6752595 | 700 | 110.0 | 0.0 | 0.915 | 0    | 0.915 | 0.915 | 92   | 30   | 1200 | 6000  | 11000 |     |
| 62_055_0  | <b>3</b> 58962   | 6752600 | 700 | 110.0 | 0.0 | 1.22  | 0    | 1.22  | 1.22  | 97   | 30   | 1000 | 9400  | 11000 |     |
| 62_055_0  | <b>3</b> 58965   | 6752606 | 700 | 110.0 | 0.0 | 1.83  | 0    | 1.83  | 1.83  | 154  | 30   | 2200 | 18000 | 19000 |     |
| 62_055_0  | <b>3</b> 58970   | 6752619 | 704 | 110.0 | 0.0 | 0.915 | 0    | 0.915 | 0.915 | 121  | 30   | 1900 | 4500  | 18000 |     |
| 62_055_0  | <b>)8</b> 358965 | 6752607 | 679 | 110.0 | 0.0 | 3.05  | 0    | 3.05  | 3.05  | 80   | 30   | 1900 | 4400  | 6000  |     |
| $\sum$    |                  |         |     |       |     |       |      |       |       |      |      |      |       |       |     |

| Hole       | MGA56E | MGA56N  | RL  | Azi   | Dip | Depth | From | То     | Width  | AgEQ | Ag   | Cu    | Pb    | Zn    | MET |
|------------|--------|---------|-----|-------|-----|-------|------|--------|--------|------|------|-------|-------|-------|-----|
| 62_055_009 | 358968 | 6752615 | 680 | 110.0 | 0.0 | 2.135 | 0    | 2.135  | 2.135  | 140  | 30   | 3100  | 18000 | 12000 |     |
| 62_055_010 | 358969 | 6752618 | 679 | 110.0 | 0.0 | 2.592 | 0    | 2.5925 | 2.5925 | 131  | 30   | 3200  | 13000 | 12000 |     |
| 62_055_011 | 358978 | 6752636 | 679 | 115.0 | 0.0 | 3.05  | 0    | 3.05   | 3.05   | 156  | 30   | 3000  | 18000 | 17000 |     |
| 62_055_012 | 358974 | 6752619 | 665 | 115.0 | 0.0 | 1.678 | 0    | 1.6775 | 1.6775 | 151  | 30   | 3300  | 12000 | 18000 |     |
| 62_055_013 | 358975 | 6752621 | 665 | 115.0 | 0.0 | 1.373 | 0    | 1.3725 | 1.3725 | 79   | 30   | 1200  | 4200  | 8000  |     |
| 62_055_014 | 358981 | 6752617 | 648 | 135.0 | 0.0 | 2.745 | 0    | 2.745  | 2.745  | 111  | 30   | 800   | 5400  | 18000 |     |
| 62_055_015 | 358983 | 6752621 | 648 | 130.0 | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 37   | 22.7 | 400   | 1600  | 2000  |     |
| 62_055_016 | 358985 | 6752626 | 648 | 120.0 | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 20   | 11.3 | 400   | 600   | 1000  |     |
| 62_055_017 | 358985 | 6752633 | 648 | 90.0  | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 46   | 28.3 | 600   | 600   | 3000  |     |
| 62_055_018 | 358985 | 6752636 | 648 | 90.0  | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 59   | 30   | 600   | 2700  | 5000  |     |
| 62_055_019 | 358985 | 6752640 | 648 | 85.0  | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 145  | 30   | 1500  | 12000 | 22000 |     |
| 62_055_020 | 358984 | 6752643 | 648 | 85.0  | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 99   | 30   | 700   | 7100  | 14000 |     |
| 62_055_021 | 358984 | 6752646 | 649 | 85.0  | 0.0 | 2.44  | 0    | 2.44   | 2.44   | 155  | 30   | 1300  | 2700  | 31000 |     |
| 62_055_022 | 358996 | 6752677 | 645 | 295.0 | 0.0 | 2.745 | 0    | 2.745  | 2.745  | 327  | 30   | 8800  | 26100 | 44000 |     |
| 62_055_023 | 358997 | 6752682 | 645 | 290.0 | 0.0 | 2.745 | 0    | 2.745  | 2.745  | 194  | 30   | 2500  | 7000  | 36000 |     |
| 62_055_024 | 358994 | 6752720 | 648 | 110.0 | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 42   | 28.3 | 600   | 300   | 2000  |     |
| 62_055_025 | 358977 | 6752611 | 624 | 120.0 | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 61   | 28.3 | 1000  | 2200  | 5000  |     |
| 62_055_026 | 358982 | 6752620 | 619 | 120.0 | 0.0 | 1.373 | 0    | 1.3725 | 1.3725 | 16   | 8.5  | 300   | 600   | 1000  |     |
| 62_055_027 | 358985 | 6752625 |     | 110.0 | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 12   | 5.7  | 200   | 400   | 1000  |     |
| 62_055_028 | 358987 | 6752630 |     | 100.0 | 0.0 | 1.22  | 0    | 1.22   | 1.22   | 17   | 8.5  | 400   | 500   | 1000  |     |
| 62_055_029 | 358988 | 6752635 | 618 | 110.0 | 0.0 | 1.373 | 0    | 1.3725 | 1.3725 | 25   | 11.3 | 900   | 400   | 1000  |     |
| 62_055_030 | 358991 | 6752640 | 618 | 110.0 | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 21   | 11.3 | 400   | 900   | 1000  |     |
| 62_055_031 | 358991 | 6752645 | 618 | 90.0  | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 17   | 8.5  | 400   | 600   | 1000  |     |
| 62_055_032 | 358992 | 6752650 |     | 90.0  | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 18   | 11.3 | 200   | 400   | 1000  |     |
| 62_055_033 | 358992 | 6752655 | 618 | 95.0  | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 18   | 8.5  | 400   | 700   | 1000  |     |
| 62_055_034 | 358992 | 6752661 |     | 90.0  | 0.0 | 1.22  | 0    | 1.22   | 1.22   | 34   | 22.7 | 600   | 900   | 1000  |     |
| 62_055_035 | 358991 | 6752675 | 618 | 140.0 | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 494  | 30   | 14000 | 20000 | 80000 |     |
| 62_055_036 | 358994 | 6752677 |     | 140.0 | 0.0 | 1.373 | 0    | 1.3725 | 1.3725 | 201  | 30   | 1600  | 3700  | 43000 |     |
| 62_055_037 | 358998 | 6752681 | 616 | 135.0 | 0.0 | 1.83  | 0    | 1.83   | 1.83   | 387  | 30   | 2500  | 8000  | 92000 |     |
| 62_055_038 | 358998 | 6752681 | 616 | 135.0 | 0.0 | 2.135 | 0    | 2.135  | 2.135  | 75   | 22.7 | 400   | 3400  | 12000 |     |
|            |        |         |     |       |     |       |      |        | 1      |      |      |       |       |       |     |

|     | Hole       | MGA56E | MGA56N  | RL  | Azi   | Dip | Depth | From | То     | Width  | AgEQ | Ag | Cu    | Pb   | Zn    | MET |
|-----|------------|--------|---------|-----|-------|-----|-------|------|--------|--------|------|----|-------|------|-------|-----|
|     | 62_055_039 | 358963 | 6752581 | 553 | 290.0 | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 204  | 30 | 5000  | 2000 | 34000 |     |
|     | 62_055_040 | 358961 | 6752579 | 549 | 295.0 | 0.0 | 1.22  | 0    | 1.22   | 1.22   | 206  | 30 | 5400  | 700  | 34000 |     |
|     | 62_055_041 | 358978 | 6752608 | 560 | 110.0 | 0.0 | 2.135 | 0    | 2.135  | 2.135  | 346  | 30 | 5000  | 1200 | 76000 |     |
|     | 62_055_042 | 358950 | 6752547 | 535 | 120.0 | 0.0 | 1.22  | 0    | 1.22   | 1.22   | 245  | 30 | 7900  | 1600 | 37000 |     |
|     | 62_055_043 | 358951 | 6752549 | 534 | 115.0 | 0.0 | 1.525 | 0    | 1.525  | 1.525  | 282  | 30 | 8000  | 700  | 48000 |     |
|     | 62_055_044 | 358954 | 6752561 | 533 | 245.0 | 0.0 | 1.83  | 0    | 1.83   | 1.83   | 112  | 30 | 2800  | 3900 | 13000 |     |
| C   | 62_055_045 | 358953 | 6752563 | 532 | 230.0 | 0.0 | 3.355 | 0    | 3.355  | 3.355  | 151  | 30 | 2800  | 1200 | 26000 |     |
|     | 62_055_046 | 358948 | 6752543 | 535 | 135.0 | 0.0 | 1.678 | 0    | 1.6775 | 1.6775 | 289  | 30 | 11000 | 1600 | 40000 |     |
| C   | 62_055_047 | 358948 | 6752545 | 534 | 120.0 | 0.0 | 1.525 | 0    | 1.525  | 1.525  | 168  | 30 | 4700  | 700  | 25000 |     |
| C   | 62_055_048 | 358949 | 6752546 | 533 | 120.0 | 0.0 | 1.373 | 0    | 1.3725 | 1.3725 | 372  | 30 | 18000 | 1900 | 42000 |     |
|     | 62_055_049 | 358953 | 6752552 | 533 | 120.0 | 0.0 | 1.525 | 0    | 1.525  | 1.525  | 224  | 30 | 11000 | 1500 | 21000 |     |
|     | 62_055_050 | 358946 | 6752542 | 526 | 135.0 | 0.0 | 1.373 | 0    | 1.3725 | 1.3725 | 208  | 30 | 6000  | 1900 | 32000 |     |
| U   | 62_055_051 | 358947 | 6752543 | 526 | 130.0 | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 218  | 30 | 7000  | 1600 | 32000 |     |
| C A | 62_055_052 | 358949 | 6752546 | 526 | 120.0 | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 211  | 30 | 4600  | 900  | 38000 |     |
|     | 62_055_053 | 358953 | 6752552 | 527 | 120.0 | 0.0 | 0.915 | 0    | 0.915  | 0.915  | 493  | 30 | 14000 | 9000 | 86000 |     |
|     | 62_055_054 | 358955 | 6752556 | 527 | 130.0 | 0.0 | 1.22  | 0    | 1.22   | 1.22   | 120  | 30 | 4000  | 1100 | 13000 |     |
|     | 62_055_055 | 358956 | 6752557 | 527 | 245.0 | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 133  | 30 | 2400  | 800  | 22000 |     |
|     | 62_055_056 | 358960 | 6752572 | 526 | 135.0 | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 105  | 30 | 1800  | 2000 | 15000 |     |
|     | 62_055_057 | 358962 | 6752575 | 526 | 125.0 | 0.0 | 1.22  | 0    | 1.22   | 1.22   | 410  | 30 | 23000 | 600  | 38000 |     |
| 61  | 62_055_058 | 358963 | 6752576 | 527 | 110.0 | 0.0 | 2.745 | 0    | 2.745  | 2.745  | 168  | 30 | 4700  | 1000 | 25000 |     |
| Ga  | 62_055_059 | 358964 | 6752578 | 528 | 115.0 | 0.0 | 2.44  | 0    | 2.44   | 2.44   | 130  | 30 | 3200  | 1900 | 18000 |     |
| Ē   | 62_055_060 | 358965 | 6752583 | 529 | 120.0 | 0.0 | 2.745 | 0    | 2.745  | 2.745  | 209  | 30 | 7200  | 1000 | 29000 |     |
|     | 62_055_061 | 358967 | 6752588 | 529 | 115.0 | 0.0 | 3.965 | 0    | 3.965  | 3.965  | 204  | 30 | 5300  | 1900 | 33000 |     |
| Ē   | 62_055_062 | 358969 | 6752594 | 528 | 120.0 | 0.0 | 3.203 | 0    | 3.2025 | 3.2025 | 222  | 30 | 2600  | 1600 | 47000 |     |
|     | 62_055_063 | 358972 | 6752598 | 526 | 100.0 | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 171  | 30 | 3400  | 1000 | 30000 |     |
| AA  | 62_055_064 | 358972 | 6752601 | 526 | 100.0 | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 83   | 30 | 1900  | 800  | 9000  |     |
|     | 62_055_065 | 358972 | 6752601 | 526 | 105.0 | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 234  | 30 | 5100  | 1000 | 43000 |     |
|     | 62_055_066 | 358973 | 6752602 |     | 105.0 | 0.0 | 1.067 | 0    | 1.0675 | 1.0675 | 123  | 30 | 1200  | 800  | 23000 |     |
|     | 62_055_067 | 358976 | 6752610 | 526 | 125.0 | 0.0 | 2.288 | 0    | 2.2875 | 2.2875 | 251  | 30 | 7100  | 2100 | 41000 |     |
|     | 62_055_068 | 358978 | 6752612 | 526 | 126.0 | 0.0 | 1.373 | 0    | 1.3725 | 1.3725 | 285  | 30 | 5400  | 4600 | 55000 |     |
|     |            |        |         |     |       |     |       |      |        |        |      |    |       |      |       |     |

|          | Hole       | MGA56E | MGA56N  | RL  | Azi   | Dip | Depth | From | То      | Width   | AgEQ | Ag   | Cu    | Pb    | Zn    | MET |
|----------|------------|--------|---------|-----|-------|-----|-------|------|---------|---------|------|------|-------|-------|-------|-----|
|          | 62_055_069 | 358979 | 6752614 | 526 | 105.0 | 0.0 | 1.83  | 0    | 1.83    | 1.83    | 183  | 30   | 6400  | 1100  | 24000 |     |
|          | 62_055_070 | 358979 | 6752617 | 527 | 120.0 | 0.0 | 2.44  | 0    | 2.44    | 2.44    | 212  | 30   | 4100  | 700   | 40000 |     |
|          | 62_055_071 | 358981 | 6752620 | 527 | 110.0 | 0.0 | 1.22  | 0    | 1.22    | 1.22    | 199  | 30   | 5100  | 7500  | 29000 |     |
|          | 62_055_072 | 358983 | 6752622 | 526 | 115.0 | 0.0 | 1.22  | 0    | 1.22    | 1.22    | 78   | 30   | 800   | 1000  | 11000 |     |
|          | 62_055_073 | 358985 | 6752624 | 526 | 115.0 | 0.0 | 1.22  | 0    | 1.22    | 1.22    | 163  | 30   | 4900  | 800   | 23000 |     |
|          | 62_055_074 | 358986 | 6752627 | 525 | 110.0 | 0.0 | 0.915 | 0    | 0.915   | 0.915   | 76   | 30   | 1000  | 700   | 10000 |     |
| C        | 62_055_075 | 358978 | 6752607 | 521 | 35.0  | 0.0 | 0.915 | 0    | 0.915   | 0.915   | 359  | 30   | 5300  | 1300  | 79000 |     |
|          | 62_055_076 | 358978 | 6752607 | 518 | 35.0  | 0.0 | 0.915 | 0    | 0.915   | 0.915   | 133  | 30   | 2300  | 1300  | 22000 |     |
| C        | 62_055_077 | 358948 | 6752542 | 517 | 310.0 | 0.0 | 1.22  | 0    | 1.22    | 1.22    | 262  | 30   | 7200  | 2000  | 44000 |     |
| C        | 62_055_078 | 358948 | 6752542 | 516 | 310.0 | 0.0 | 0.915 | 0    | 0.915   | 0.915   | 159  | 30   | 3500  | 1100  | 26000 |     |
|          | 62_055_079 | 358948 | 6752543 | 515 | 310.0 | 0.0 | 1.296 | 0    | 1.29625 | 1.29625 | 124  | 30   | 2800  | 1100  | 18000 |     |
|          | 62_055_080 | 358951 | 6752546 | 514 | 300.0 | 0.0 | 1.373 | 0    | 1.3725  | 1.3725  | 285  | 30   | 7300  | 2500  | 50000 |     |
| U        | 62_055_081 | 358952 | 6752548 | 514 | 295.0 | 0.0 | 1.067 | 0    | 1.0675  | 1.0675  | 397  | 30   | 11100 | 2400  | 71000 |     |
| <u>A</u> | 62_055_082 | 358953 | 6752550 | 514 | 300.0 | 0.0 | 1.22  | 0    | 1.22    | 1.22    | 272  | 30   | 7600  | 1300  | 46000 |     |
|          | 62_055_083 | 358954 | 6752551 | 514 | 300.0 | 0.0 | 1.22  | 0    | 1.22    | 1.22    | 240  | 30   | 5300  | 1200  | 44000 |     |
|          | 62_055_084 | 358955 | 6752553 | 514 | 295.0 | 0.0 | 0.915 | 0    | 0.915   | 0.915   | 224  | 30   | 4800  | 1100  | 41000 |     |
|          | 62_055_085 | 358957 | 6752556 | 515 | 315.0 | 0.0 | 0.915 | 0    | 0.915   | 0.915   | 568  | 30   | 26000 | 1900  | 74000 |     |
|          | 62_055_086 | 358957 | 6752556 | 517 | 320.0 | 0.0 | 1.067 | 0    | 1.0675  | 1.0675  | 284  | 30   | 4000  | 3000  | 60000 |     |
|          | 62_055_087 | 358951 | 6752548 | 524 | 295.0 | 0.0 | 0.2   | 0    | 0.2     | 0.2     | 344  | 30   | 11600 | 1800  | 54000 |     |
| 61       | 62_055_088 | 358951 | 6752548 | 525 | 295.0 | 0.0 | 0.2   | 0    | 0.2     | 0.2     | 309  | 30   | 7700  | 2200  | 56000 |     |
| GU       | 62_055_089 | 358951 | 6752548 | 525 | 295.0 | 0.0 | 0.2   | 0    | 0.2     | 0.2     | 292  | 30   | 6900  | 1400  | 54000 |     |
| Ē        | 62_055_090 | 358951 | 6752548 | 525 | 295.0 | 0.0 | 0.2   | 0    | 0.2     | 0.2     | 293  | 30   | 7700  | 1200  | 52000 |     |
| 2        | 62_055_091 | 358957 | 6752556 | 515 | 315.0 | 0.0 | 0.2   | 0    | 0.2     | 0.2     | 262  | 30   | 7300  | 1600  | 44000 |     |
| Ē        | 62_055_092 | 358970 | 6752609 | 511 | 15.0  | 0.0 | 1.525 | 0    | 1.525   | 1.525   | 35   | 26.4 | 0     | 1000  | 2000  |     |
|          | 62_055_093 | 358971 | 6752608 | 511 | 15.0  | 0.0 | 1.525 | 0    | 1.525   | 1.525   | 176  | 30   | 2000  | 4000  | 34000 |     |
| RA       | 62_055_094 | 358972 | 6752608 | 511 | 15.0  | 0.0 | 1.22  | 0    | 1.22    | 1.22    | 55   | 29.5 | 900   | 900   | 4000  |     |
|          | 62_055_095 | 358973 | 6752608 | 15  | 15.0  | 0.0 | 0.686 | 0    | 0.68625 | 0.68625 | 337  | 30   | 2000  | 3000  | 82000 |     |
| 2        | 62_055_096 | 358974 | 6752607 |     | 15.0  | 0.0 | 1.449 | 0    | 1.44875 |         | 74   | 27.9 | 900   | 3000  | 9000  |     |
|          | 62_055_097 | 358975 | 6752607 | 511 | 15.0  | 0.0 | 0.686 | 0    | 0.68625 | 0.68625 | 224  | 30   | 900   | 21000 | 42000 |     |
|          | 62_055_098 | 358976 | 6752607 | 511 | 15.0  | 0.0 | 1.144 | 0    | 1.14375 | 1.14375 | 25   | 3.1  | 900   | 900   | 3000  |     |
|          |            |        |         |     |       |     |       |      |         |         |      |      |       |       |       |     |

|            | Hole       | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From  | То    | Width  | AgEQ | Ag   | Cu    | Pb    | Zn    | MET |
|------------|------------|--------|---------|-----|-------|-------|-------|-------|-------|--------|------|------|-------|-------|-------|-----|
| e          | 62_055_099 | 358977 | 6752608 | 526 | 15.0  | 0.0   | 1.525 | 0     | 1.525 | 1.525  | 311  | 30   | 2000  | 2000  | 75000 |     |
| e          | 62_055_100 | 358978 | 6752609 | 522 | 15.0  | 0.0   | 1.22  | 0     | 1.22  | 1.22   | 102  | 30   | 900   | 2000  | 17000 |     |
| e          | 62_055_101 | 358978 | 6752609 | 519 | 15.0  | 0.0   | 1.22  | 0     | 1.22  | 1.22   | 27   | 15.5 | 900   | 900   | 0     |     |
| E          | 62_055_102 | 358978 | 6752609 | 513 | 15.0  | 0.0   | 1.83  | 0     | 1.83  | 1.83   | 199  | 30   | 2000  | 30000 | 26000 |     |
| E          | 62_055_103 | 358945 | 6752574 | 682 | 100.0 | 0.0   | 1.2   | 0     | 1.2   | 1.2    | 235  | 30   | 7000  | 24000 | 24000 |     |
| 6          | 62_055_104 | 358943 | 6752558 | 682 | 100.0 | 0.0   | 1.2   | 0     | 1.2   | 1.2    | 235  | 30   | 7000  | 24000 | 24000 |     |
| E          | BH001      | 358953 | 6752555 | 527 | 168.0 | -66.0 | 48.8  | 25    | 44    | 19     | 91   | 22.8 | 759   | 3017  | 15838 |     |
| E          | BH002      | 358986 | 6752595 | 527 | 331.0 | -49.0 | 39.6  | 0     | 29.2  | 29.2   | 63   | 10.6 | 678   | 3430  | 11342 |     |
| E          | BH003      | 358983 | 6752592 | 527 | 233.5 | -38.0 | 44.5  | 23.6  | 26.8  | 3.2    | 111  | 21.8 | 400   | 2944  | 23175 |     |
| E          | вноо4      | 358992 | 6752646 | 618 | 291.0 | 0.0   | 24    | 10    | 12.8  | 2.8    | 21   | 0    | 1000  | 1000  | 2400  |     |
| E          | BH005      | 358970 | 6752601 | 618 | 286.0 | 0.0   | 63.7  | 31.1  | 31.7  | 0.6    | 239  | 30   | 11000 | 28000 | 10000 |     |
| 74         | BH006      | 358979 | 6752606 | 618 | 115.0 | 0.0   | 51.3  | 44.8  | 46    | 1.2    | 89   | 22.5 | 2275  | 18775 | 1525  |     |
| U J        | BH007      | 358902 | 6752430 | 701 | 95.0  | -45.0 | 97.5  | 68.9  | 75.3  | 6.4    | 46   | 19.4 | 100   | 2774  | 5748  |     |
| 2/7        | BH008      | 358975 | 6752736 | 717 | 114.0 | -54.0 | 89.6  | 73.2  | 78.6  | 5.4    | 99   | 30   | 1505  | 9286  | 10095 |     |
| $\bigcirc$ | CST001     | 359035 | 6752816 | 715 | 123.0 | 2.0   | 30.5  | 0     | 30.5  | 30.5   | 29   | 13.9 | 0     | 1000  | 3902  |     |
| - (        | CST002     | 359008 | 6752790 | 719 | 102.0 | 2.0   | 42.67 | 0     | 42.67 | 42.67  | 22   | 8.4  | 0     | 1000  | 3286  |     |
| - 0        | сятооз     | 359019 | 6752757 | 720 | 118.0 | 2.0   | 27.43 | 6.096 | 27.43 | 21.334 | 27   | 11.9 | 0     | 1000  | 3714  |     |
| C          | CST004     | 358987 | 6752718 | 722 | 103.0 | 2.0   | 30.48 | 15.24 | 30.48 | 15.24  | 40   | 19.1 | 0     | 2800  | 4400  |     |
| (          | CST005     | 358940 | 6752528 | 708 | 100.0 | 0.0   | 51.81 | 0     | 15.24 | 15.24  | 33   | 8.2  | 0     | 6600  | 3400  |     |
| 10         | СST006     | 358951 | 6752408 | 707 | 115.0 | 5.0   | 18.29 | 0     | 18.29 | 18.29  | 19   | 10.1 | 0     | 1000  | 2000  |     |
| 5          | СST006_69  | 358969 | 6752398 | 708 | 306.2 | 5.0   | 21.03 | 0     | 21.03 | 21.03  | 7    | 5.6  | 33    | 125   | 125   |     |
|            | CST007     | 358968 | 6752645 | 716 | 97.0  | 0.0   | 45.72 | 0     | 45.72 | 45.72  | 50   | 16.9 | 0     | 7533  | 5400  |     |
| (          | CST008     | 358900 | 6752417 | 701 | 116.0 | 0.0   | 12.19 | 0     | 12.19 | 12.19  | 16   | 3.7  | 0     | 1250  | 2750  |     |
|            | СST009     | 358984 | 6752682 | 723 | 111.0 | 5.0   | 21.34 | 0     | 21.34 | 21.34  | 25   | 9.7  | 0     | 1000  | 3857  |     |
| C          | CST012     | 358950 | 6752566 | 717 | 104.0 | 0.0   | 15.24 | 3.048 | 15.24 | 12.192 | 9    | 3.7  | 0     | 1000  | 1000  |     |
| 200        | CST013     | 358981 | 6752557 | 720 | 104.0 | 0.0   | 12.2  | 0     | 12.2  | 12.2   | 8    | 2.8  | 0     | 1000  | 1000  |     |
| J          | CST014     | 358950 | 6752630 | 723 | 121.0 | 0.0   | 33.53 | 0     | 33.53 | 33.53  | 44   | 22   | 0     | 7366  | 2182  |     |
| $\subset$  | CST015     | 358925 | 6752572 | 713 | 104.0 | 0.0   | 18.3  | 0     | 18.3  | 18.3   | 9    | 3.9  | 0     | 1000  | 1000  |     |
|            | CST016     | 359060 | 6752852 | 716 | 116.0 | 0.0   | 18.3  | 0     | 18.3  | 18.3   | 9    | 3.5  | 0     | 1000  | 1164  |     |
|            | ST017      | 359050 | 6752831 | 714 | 117.0 | 0.0   | 16    | 0     | 16    | 16     | 9    | 3.4  | 0     | 1000  | 1000  |     |

|    | Hole   | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth  | From   | То     | Width | AgEQ | Ag   | Cu     | Pb    | Zn    | MET |
|----|--------|--------|---------|-----|-------|-------|--------|--------|--------|-------|------|------|--------|-------|-------|-----|
|    | CST018 | 359052 | 6752810 | 720 | 202.0 | 5.0   | 24.4   | 0      | 24.4   | 24.4  | 26   | 14   | 0      | 4480  | 1000  |     |
|    | DC05   | 358966 | 6752527 | 713 | 305.2 | -61.0 | 56.4   | 43.1   | 47.2   | 4.1   | 30   | 30   | 0      | 0     | 0     |     |
|    | DC06   | 358970 | 6752701 | 722 | 128.0 | -65.0 | 166.27 | 144.7  | 145.5  | 0.8   | 30   | 30   | 0      | 0     | 0     |     |
|    | DC08   | 358967 | 6752479 | 702 | 309.0 | -60.0 | 54.9   | 27.1   | 29.6   | 2.5   | 30   | 30   | 0      | 0     | 0     |     |
| 7  | DC10   | 358929 | 6752028 | 721 | 304.0 | -63.0 | 50.3   | 39.8   | 39.9   | 0.1   | 30   | 30   | 0      | 0     | 0     |     |
|    | DC12   | 358877 | 6751783 | 712 | 306.0 | -60.0 | 44.71  | 11.4   | 17     | 5.6   | 135  | 30   | 2100   | 12367 | 16833 |     |
|    | DC13   | 358873 | 6751770 | 708 | 306.0 | -60.0 | 50.69  | 20.2   | 22.7   | 2.5   | 130  | 30   | 1400   | 7600  | 20600 |     |
|    | DC14   | 358863 | 6751749 | 709 | 305.0 | -60.0 | 52.48  | 20     | 24     | 4     | 150  | 30   | 3300   | 4000  | 22500 |     |
|    | DC15   | 358866 | 6751712 | 713 | 306.0 | -60.0 | 69.92  | 24     | 25.8   | 1.8   | 147  | 30   | 2500   | 6700  | 22500 |     |
| 2  | DC16   | 358864 | 6751684 | 717 | 305.0 | -60.0 | 79.25  | 28.21  | 30.1   | 1.89  | 165  | 30   | 1000   | 22400 | 23500 |     |
|    | DC17   | 358902 | 6751723 | 716 | 306.0 | -60.0 | 178.3  | 69.3   | 72.6   | 3.3   | 1294 | 30   | 105000 | 1600  | 35700 |     |
| 76 | DC21   | 358881 | 6751798 | 716 | 306.0 | -60.0 | 58.522 | 14.5   | 16.3   | 1.8   | 139  | 30   | 4100   | 5200  | 16000 |     |
|    | DC28   | 358912 | 6751905 | 720 | 305.0 | -60.0 | 108.93 | 4      | 4.2    | 0.2   | 30   | 30   | 0      | 0     | 0     |     |
| A  | DC30   | 358931 | 6752008 | 721 | 304.0 | -60.0 | 80.8   | 71     | 71.9   | 0.9   | 200  | 30   | 1700   | 31400 | 26200 |     |
| 78 | DC32   | 358866 | 6751650 | 717 | 305.0 | -55.0 | 106.38 | 48.2   | 51.8   | 3.6   | 136  | 30   | 2200   | 13500 | 16300 |     |
|    | DC34   | 358751 | 6751835 | 737 | 126.0 | -63.0 | 259.08 | 230.2  | 235    | 4.8   | 239  | 30   | 3200   | 1800  | 50200 |     |
| 3  | DDH001 | 359029 | 6752599 | 735 | 281.0 | -80.0 | 323    | 299.73 | 315.6  | 15.87 | 3    | 0.7  | 60     | 184   | 349   |     |
|    | DDH002 | 358914 | 6752594 | 710 | 95.0  | -80.0 | 402.2  | 200.52 | 271.2  | 70.68 | 23   | 5.4  | 123    | 847   | 4363  |     |
|    | DDH003 | 358879 | 6752551 | 705 | 90.0  | -70.0 | 195.1  | 31.2   | 35.1   | 3.9   | 31   | 14.7 | 332    | 1791  | 2695  |     |
|    | DDH004 | 359020 | 6752575 | 735 | 285.0 | -80.0 | 347.1  | 340.29 | 346.97 | 6.68  | 56   | 13.4 | 315    | 771   | 10962 |     |
| U  | DDH005 | 358951 | 6752099 | 730 | 289.0 | -61.5 | 120    | 87.5   | 108    | 20.5  | 5    | 3    | 36     | 140   | 347   |     |
|    | DDH006 | 358924 | 6752592 | 715 | 105.0 | -65.5 | 153.3  | 79     | 109    | 30    | 67   | 15.8 | 1509   | 4691  | 7626  |     |
|    | DDH007 | 358911 | 6751666 | 722 | 278.0 | -54.5 | 180    | 126.35 | 150    | 23.65 | 37   | 10.9 | 498    | 2668  | 4537  |     |
|    | DDH008 | 358899 | 6751881 | 719 | 279.5 | -65.3 | 105.1  | 17     | 42     | 25    | 32   | 11.6 | 389    | 2876  | 3092  |     |
|    | DDH009 | 358893 | 6751835 | 721 | 271.0 | -56.0 | 67.7   | 20     | 42.1   | 22.1  | 42   | 14.8 | 517    | 3451  | 4274  |     |
| T  | DDH010 | 358896 | 6751695 | 719 | 280.0 | -54.5 | 122.8  | 85     | 122.7  | 37.7  | 20   | 9.5  | 82     | 1479  | 1932  |     |
|    | DDH011 | 358926 | 6751849 | 725 | 268.0 | -61.0 | 120.1  | 87     | 108    | 21    | 84   | 17.9 | 2318   | 1513  | 11144 |     |
|    | DDH012 | 358938 | 6751890 | 726 | 273.0 | -56.0 | 132    | 67.28  | 88.82  | 21.54 | 74   | 21.2 | 1042   | 6918  | 8243  |     |
| 70 | DDH013 | 358877 | 6751780 | 712 | 288.0 | -55.5 | 103.1  | 19.2   | 29.7   | 10.5  | 168  | 28.8 | 3936   | 15344 | 19413 |     |
|    | DDH014 | 358924 | 6752592 | 715 | 124.5 | -72.0 | 90     | 55.15  | 65.7   | 10.55 | 129  | 26.7 | 2807   | 14488 | 12583 |     |

|             | Hole   | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From   | То     | Width | AgEQ | Ag   | Cu   | Pb    | Zn    | MET |
|-------------|--------|--------|---------|-----|-------|-------|-------|--------|--------|-------|------|------|------|-------|-------|-----|
|             | DDH015 | 358970 | 6752537 | 715 | 277.7 | -62.3 | 41.9  | 34     | 35.7   | 1.7   | 84   | 12.5 | 612  | 9534  | 13519 |     |
|             | DDH016 | 358879 | 6751766 | 708 | 280.0 | -70.0 | 117.5 | 50.9   | 113    | 62.1  | 126  | 16.5 | 3666 | 2822  | 18768 |     |
|             | DDH017 | 358928 | 6751661 | 722 | 270.0 | -55.0 | 216.7 | 151.25 | 195.67 | 44.42 | 100  | 16.6 | 1744 | 1093  | 18217 |     |
|             | DDH018 | 358926 | 6751848 | 725 | 280.0 | -55.0 | 143.2 | 78.3   | 97.41  | 19.11 | 58   | 15.8 | 1067 | 1579  | 8024  |     |
|             | DDH019 | 358892 | 6751778 | 712 | 278.0 | -50.0 | 57.4  | 35.2   | 55     | 19.8  | 100  | 17.8 | 1628 | 8191  | 14060 |     |
|             | DDH020 | 358898 | 6751776 | 712 | 278.0 | -62.0 | 138.3 | 75.7   | 107    | 31.3  | 95   | 19.4 | 838  | 4170  | 17083 |     |
| _           | DDH021 | 358921 | 6751893 | 722 | 299.0 | -55.0 | 83.6  | 21.1   | 54     | 32.9  | 13   | 5.6  | 199  | 932   | 877   |     |
|             | DDH022 | 358873 | 6751714 | 713 | 298.0 | -50.0 | 64.9  | 27     | 35     | 8     | 45   | 20.7 | 320  | 3539  | 3937  |     |
| -           | DDH023 | 358864 | 6751619 | 707 | 295.0 | -55.0 | 189.2 | 74.7   | 94.1   | 19.4  | 48   | 17.6 | 423  | 3862  | 5350  |     |
| $\subseteq$ | DDH024 | 358986 | 6752652 | 726 | 283.0 | -81.0 | 59.6  | 7.8    | 20.3   | 12.5  | 5    | 1.5  | 48   | 223   | 722   |     |
|             | DDH025 | 358996 | 6752650 | 727 | 265.0 | -78.0 | 46.6  | 22     | 46.6   | 24.6  | 18   | 6.9  | 143  | 1351  | 1961  |     |
|             | DDH026 | 358969 | 6752536 | 715 | 277.0 | -62.0 | 71.9  | 48.26  | 62.84  | 14.58 | 68   | 13.7 | 1571 | 7683  | 6619  |     |
| JL          | DDH027 | 358935 | 6752555 | 711 | 109.0 | -70.0 | 60.1  | 27.4   | 45.3   | 17.9  | 100  | 20.8 | 2145 | 12256 | 9344  |     |
| 1/          | DDH028 | 358927 | 6752565 | 711 | 273.0 | -50.0 | 66.2  | 31.9   | 41.66  | 9.76  | 6    | 2.6  | 161  | 49    | 440   |     |
|             | DDH029 | 358945 | 6752509 | 709 | 260.0 | -55.0 | 54.4  | 28     | 33.72  | 5.72  | 65   | 12.6 | 1278 | 8735  | 6326  |     |
|             | DDH030 | 358934 | 6752526 | 710 | 103.0 | -70.0 | 51.6  | 27.7   | 42.93  | 15.23 | 120  | 20   | 4083 | 11971 | 9511  |     |
|             | DDH031 | 358945 | 6752522 | 710 | 283.0 | -79.0 | 36.4  | 10.6   | 20.2   | 9.6   | 34   | 11.1 | 189  | 2733  | 4671  |     |
|             | PVC1   | 358956 | 6752267 | 714 | 11.0  | -60.0 | 48    | 28     | 32     | 4     | 34   | 23.9 | 124  | 1100  | 1901  |     |
|             | RC012  | 358883 | 6751765 | 708 | 278.9 | -68.2 | 111   | 0      | 111    | 111   | 59   | 10.9 | 1261 | 1530  | 9271  |     |
| 71          | RC013  | 358879 | 6751779 | 712 | 289.7 | -71.7 | 81    | 0      | 81     | 81    | 64   | 12.6 | 1561 | 2698  | 8494  |     |
| Уc          | RC014  | 358893 | 6751779 | 712 | 278.4 | -70.9 | 150   | 0      | 150    | 150   | 24   | 4.7  | 518  | 1550  | 3161  |     |
| =           | RC015  | 358891 | 6751797 | 716 | 285.1 | -71.1 | 87    | 0      | 87     | 87    | 13   | 5    | 179  | 534   | 1603  |     |
| _           | RC016  | 358903 | 6751795 | 716 | 273.3 | -70.0 | 156   | 0      | 156    | 156   | 25   | 7.1  | 225  | 1795  | 3476  |     |
| >           | RC017  | 358920 | 6751849 | 723 | 278.4 | -40.0 | 69    | 0      | 69     | 69    | 9    | 3.6  | 126  | 479   | 795   |     |
|             | RC018  | 358929 | 6751848 | 727 | 287.2 | -71.3 | 141   | 0      | 140    | 140   | 1    | 0.3  | 17   | 42    | 125   |     |
| 1/1         | RC019  | 358921 | 6751873 | 723 | 279.1 | -71.7 | 84    | 0      | 84     | 84    | 20   | 5.8  | 221  | 1887  | 2348  |     |
|             | RC020  | 358934 | 6751868 | 726 | 283.7 | -71.2 | 138   | 0      | 138    | 138   | 7    | 2.2  | 69   | 492   | 824   |     |
|             | RC021  | 358928 | 6751905 | 721 | 278.6 | -69.6 | 129   | 0      | 129    | 129   | 7    | 3.5  | 66   | 419   | 622   |     |
|             | RC022  | 358943 | 6751889 | 726 | 273.7 | -70.3 | 171   | 0      | 171    | 171   | 10   | 3.3  | 115  | 339   | 1264  |     |
|             | RC023  | 358893 | 6751723 | 715 | 268.9 | -72.6 | 174   | 0      | 174    | 174   | 10   | 3.8  | 90   | 412   | 1438  |     |

|    | Hole  | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From | То  | Width | AgEQ | Ag   | Cu   | Pb   | Zn    | MET |
|----|-------|--------|---------|-----|-------|-------|-------|------|-----|-------|------|------|------|------|-------|-----|
|    | RC024 | 358916 | 6751714 | 718 | 275.0 | -67.5 | 166   | 0    | 166 | 166   | 3    | 1    | 34   | 268  | 435   |     |
|    | RC025 | 358890 | 6751715 | 716 | 274.1 | -52.1 | 99    | 0    | 99  | 99    | 14   | 4.3  | 101  | 462  | 2351  |     |
|    | RC026 | 358907 | 6751695 | 720 | 288.0 | -75.0 | 136   | 0    | 136 | 136   | 4    | 1.4  | 34   | 281  | 415   |     |
|    | RC027 | 358875 | 6751766 | 708 | 267.9 | -68.9 | 90    | 0    | 90  | 90    | 104  | 18.5 | 3035 | 3102 | 13588 |     |
| 7  | RC028 | 358871 | 6751768 | 708 | 274.3 | -71.9 | 54    | 1    | 54  | 53    | 73   | 16   | 1307 | 4117 | 10198 |     |
|    | RC029 | 358873 | 6751783 | 712 | 277.0 | -75.0 | 15    | 0    | 15  | 15    | 29   | 8.3  | 386  | 924  | 4224  |     |
|    | RC030 | 358883 | 6751800 | 716 | 281.9 | -71.0 | 51    | 0    | 51  | 51    | 22   | 8.8  | 150  | 1039 | 2736  |     |
|    | RC031 | 358911 | 6752506 | 703 | 113.4 | -76.7 | 100   | 0    | 100 | 100   | 7    | 3.2  | 126  | 308  | 482   |     |
|    | RC032 | 358913 | 6752481 | 701 | 85.0  | -75.7 | 100   | 0    | 100 | 100   | 17   | 3    | 589  | 1455 | 1248  |     |
| _  | RC033 | 358914 | 6752481 | 701 | 84.6  | -58.8 | 60    | 0    | 60  | 60    | 20   | 5.6  | 459  | 2054 | 1638  |     |
|    | RC034 | 358894 | 6752480 | 699 | 86.0  | -74.8 | 150   | 0    | 150 | 150   | 8    | 2.7  | 116  | 739  | 791   |     |
|    | RC035 | 358912 | 6752506 | 703 | 107.6 | -53.5 | 50    | 0    | 50  | 50    | 12   | 4.2  | 316  | 594  | 914   |     |
|    | RC036 | 358913 | 6752530 | 704 | 101.6 | -54.0 | 50    | 0    | 50  | 50    | 5    | 2.1  | 67   | 353  | 468   |     |
|    | RC037 | 358912 | 6752531 | 704 | 101.7 | -76.9 | 100   | 0    | 100 | 100   | 2    | 0.6  | 32   | 140  | 217   |     |
|    | RC038 | 358891 | 6752506 | 700 | 114.1 | -73.6 | 55    | 0    | 55  | 55    | 3    | 1.2  | 48   | 92   | 192   |     |
|    | RC039 | 359034 | 6752829 | 714 | 106.4 | -53.7 | 54    | 0    | 54  | 54    | 19   | 6.4  | 240  | 1620 | 1967  |     |
| _  | RC040 | 359033 | 6752829 | 714 | 104.8 | -76.3 | 120   | 0    | 120 | 120   | 4    | 1.3  | 59   | 211  | 421   |     |
|    | RC041 | 359084 | 6752782 | 722 | 295.0 | -60.0 | 144   | 0    | 144 | 144   | 6    | 1.3  | 167  | 450  | 487   |     |
| _  | RC042 | 359064 | 6752789 | 720 | 280.5 | -58.4 | 100   | 0    | 100 | 100   | 6    | 2.2  | 93   | 410  | 591   |     |
| 11 | RC043 | 359056 | 6752766 | 722 | 278.5 | -58.5 | 96    | 0    | 96  | 96    | 7    | 2.9  | 78   | 451  | 739   |     |
| V  | RC044 | 359074 | 6752759 | 723 | 276.3 | -59.2 | 144   | 0    | 144 | 144   | 7    | 2.2  | 96   | 528  | 715   |     |
|    | RC045 | 358950 | 6752100 | 729 | 285.0 | -62.5 | 180   | 0    | 180 | 180   | 14   | 5    | 232  | 1233 | 1132  |     |
| _  | RC046 | 358970 | 6752086 | 733 | 279.5 | -59.9 | 144   | 0    | 144 | 144   | 4    | 1.6  | 47   | 314  | 407   |     |
|    | RC047 | 358947 | 6752070 | 730 | 272.3 | -62.9 | 174   | 0    | 174 | 174   | 8    | 3.4  | 75   | 557  | 843   |     |
|    | RC048 | 358947 | 6752070 | 730 | 268.0 | -70.0 | 222   | 0    | 222 | 222   | 4    | 1.5  | 64   | 218  | 343   |     |
| 7  | RC049 | 358919 | 6752023 | 721 | 278.0 | -70.0 | 144   | 0    | 144 | 144   | 13   | 6.5  | 157  | 833  | 890   |     |
|    | RC050 | 358913 | 6752052 | 722 | 265.6 | -69.4 | 132   | 1    | 132 | 131   | 3    | 1.1  | 44   | 174  | 380   |     |
|    | RC051 | 358905 | 6751913 | 717 | 285.4 | -60.6 | 144   | 0    | 144 | 144   | 6    | 2.8  | 36   | 499  | 507   |     |
| 7  | RC052 | 358894 | 6751886 | 719 | 285.0 | -70.0 | 144   | 0    | 144 | 144   | 7    | 3    | 55   | 539  | 637   |     |
|    | RC053 | 358893 | 6751886 | 719 | 279.6 | -60.3 | 144   | 0    | 144 | 144   | 4    | 1.7  | 34   | 231  | 338   |     |

|     | Hole  | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From | То  | Width | AgEQ | Ag   | Cu   | Pb    | Zn    | MET |
|-----|-------|--------|---------|-----|-------|-------|-------|------|-----|-------|------|------|------|-------|-------|-----|
|     | RC054 | 358906 | 6751852 | 723 | 271.7 | -58.2 | 144   | 0    | 144 | 144   | 10   | 3    | 97   | 440   | 1513  |     |
|     | RC055 | 358904 | 6751914 | 717 | 280.5 | -69.8 | 144   | 0    | 144 | 144   | 6    | 2.2  | 74   | 517   | 492   |     |
|     | RC056 | 358904 | 6751830 | 722 | 278.6 | -59.7 | 144   | 0    | 144 | 144   | 11   | 2.9  | 193  | 773   | 1409  |     |
| -   | RC057 | 358905 | 6751829 | 722 | 280.0 | -69.6 | 144   | 0    | 144 | 144   | 17   | 3.5  | 306  | 356   | 2857  |     |
| 1   | RC058 | 358905 | 6751691 | 720 | 288.3 | -55.5 | 124   | 115  | 124 | 9     | 37   | 21.6 | 269  | 1386  | 2722  |     |
|     | RC059 | 358882 | 6751820 | 719 | 291.2 | -56.4 | 48    | 4    | 25  | 21    | 35   | 15   | 377  | 3527  | 2562  |     |
|     | RC060 | 358883 | 6751819 | 719 | 289.1 | -74.8 | 72    | 19   | 70  | 51    | 46   | 15.9 | 308  | 3137  | 5997  |     |
|     | RC061 | 358957 | 6752122 | 729 | 287.3 | -56.1 | 129   | 69   | 129 | 60    | 11   | 6.6  | 81   | 591   | 740   |     |
| -   | RC062 | 358957 | 6752122 | 729 | 287.2 | -62.6 | 144   | 75   | 85  | 10    | 13   | 8.2  | 46   | 584   | 886   |     |
| _   | RC063 | 358969 | 6752128 | 729 | 292.0 | -54.5 | 114   | 90   | 111 | 21    | 20   | 11.3 | 133  | 1203  | 1508  |     |
|     | RC064 | 358974 | 6752150 | 726 | 291.1 | -55.0 | 114   | 89   | 104 | 15    | 6    | 3.5  | 79   | 294   | 448   |     |
|     | RC065 | 358952 | 6752172 | 723 | 287.5 | -55.9 | 78    | 19   | 60  | 41    | 20   | 9.6  | 255  | 1326  | 1603  |     |
|     | RC066 | 358953 | 6752172 | 723 | 284.7 | -75.2 | 150   | 80   | 96  | 16    | 2    | 0.7  | 69   | 32    | 166   |     |
| 1   | RC067 | 358909 | 6751665 | 722 | 284.9 | -55.3 | 162   | 114  | 162 | 48    | 45   | 15.2 | 720  | 1564  | 5606  |     |
|     | RC068 | 358915 | 6751644 | 723 | 288.8 | -55.0 | 185   | 60   | 73  | 13    | 94   | 23.7 | 73   | 17394 | 10273 |     |
|     | RC069 | 358909 | 6751917 | 717 | 331.8 | -59.7 | 60    | 30   | 40  | 10    | 98   | 25.7 | 1376 | 10419 | 10704 |     |
| _   | RC070 | 358909 | 6751917 | 717 | 330.1 | -67.3 | 102   | 35   | 45  | 10    | 64   | 26.2 | 1117 | 6321  | 3902  |     |
|     | RC071 | 358888 | 6751716 | 716 | 326.6 | -54.9 | 126   | 92   | 126 | 34    | 66   | 15   | 1223 | 1108  | 10460 |     |
|     | RC072 | 358870 | 6752385 | 699 | 111.8 | -54.6 | 150   | 109  | 128 | 19    | 13   | 12.7 | 45   | 15    | 31    |     |
| 71  | RC073 | 358912 | 6752269 | 713 | 112.6 | -54.3 | 51    | 33   | 45  | 12    | 17   | 2.2  | 170  | 1435  | 3075  |     |
| IJ, | RC075 | 358907 | 6751690 | 720 | 280.0 | -55.0 | 168   | 135  | 168 | 33    | 41   | 14   | 280  | 2207  | 5839  |     |
|     | RC076 | 358910 | 6751665 | 722 | 280.0 | -55.0 | 180   | 125  | 175 | 50    | 143  | 17.2 | 5526 | 1304  | 18592 |     |
| _   | RC078 | 358912 | 6751629 | 722 | 295.0 | -55.5 | 228   | 129  | 155 | 26    | 47   | 14.4 | 735  | 1052  | 6628  |     |
|     | RC079 | 358937 | 6752243 | 713 | 120.3 | -54.7 | 66    | 4    | 31  | 27    | 2    | 0    | 49   | 88    | 275   |     |
|     | RC080 | 358914 | 6752255 | 714 | 118.6 | -54.4 | 48    | 30   | 47  | 17    | 15   | 3.8  | 175  | 895   | 2326  |     |
|     | RC081 | 358921 | 6752215 | 717 | 119.9 | -53.6 | 60    | 19   | 42  | 23    | 11   | 9.9  | 31   | 106   | 255   |     |
|     | RC082 | 358925 | 6751626 | 723 | 298.4 | -53.9 | 216   | 140  | 180 | 40    | 34   | 10   | 426  | 1027  | 4970  |     |
|     | RC083 | 358912 | 6751619 | 722 | 301.5 | -55.0 | 216   | 155  | 195 | 40    | 42   | 12.5 | 640  | 985   | 5948  |     |
|     | RC084 | 358935 | 6751605 | 721 | 297.5 | -54.3 | 240   | 185  | 230 | 45    | 38   | 12.7 | 424  | 1179  | 5437  | М   |
|     | RC085 | 359096 | 6752911 |     |       |       | 102   | 30   | 40  | 10    | 3    | 1.2  | 106  | 123   | 238   |     |

|     | Hole  | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From | То   | Width | AgEQ | Ag   | Cu   | Pb   | Zn   | MET |
|-----|-------|--------|---------|-----|-------|-------|-------|------|------|-------|------|------|------|------|------|-----|
|     | RC087 | 359070 | 6752775 | 722 | 121.8 | -53.7 | 252   | 7    | 10   | 3     | -4   | -5   | 39   | 15   | 259  |     |
|     | RC089 | 359088 | 6752767 | 724 | 121.9 | -54.1 | 206   | 36   | 38   | 2     | -4   | -5   | -5   | 22   | 186  |     |
|     | RC090 | 358889 | 6752505 | 699 | 118.9 | -53.1 | 144   | 120  | 135  | 15    | 24   | 11   | 180  | 1940 | 1991 |     |
| -   | RC091 | 358889 | 6752505 | 699 | 120.6 | -70.0 | 216   | 190  | 216  | 26    | 7    | 2.9  | 54   | 554  | 819  |     |
| 1   | RC092 | 358915 | 6752532 | 704 | 114.9 | -53.6 | 144   | 30   | 60   | 30    | 21   | 6.1  | 401  | 2098 | 1870 | ME  |
|     | RC093 | 358886 | 6752479 | 698 | 114.1 | -54.4 | 189   | 109  | 118  | 9     | 15   | 9.2  | 92   | 554  | 1063 |     |
|     | RC094 | 358912 | 6752495 | 703 | 117.8 | -54.5 | 144   | 30   | 40   | 10    | 36   | 14.2 | 739  | 2367 | 2533 |     |
|     | RC095 | 358912 | 6752508 | 703 | 118.1 | -54.8 | 144   | 99   | 110  | 11    | 35   | 13.9 | 432  | 1337 | 3949 | M   |
|     | RC096 | 358947 | 6752509 | 708 | 114.7 | -54.1 | 66    | 1    | 66   | 65    | 1    | -2.3 | 68   | 373  | 439  |     |
| _   | RC097 | 358933 | 6752556 | 710 | 121.4 | -54.6 | 72    | 0    | 72   | 72    | 24   | 0.7  | 963  | 2229 | 2394 | M   |
|     | RC098 | 358932 | 6752557 | 710 | 120.9 | -77.9 | 144   | 0    | 144  | 144   | 34   | 4.4  | 928  | 3164 | 3948 | M   |
| 7   | RC099 | 358929 | 6752587 | 715 | 112.7 | -55.2 | 144   | 0    | 126  | 126   | 32   | 8    | 799  | 2594 | 2930 |     |
|     | RC100 | 358929 | 6752588 | 715 | 113.3 | -64.5 | 84    | 0    | 84   | 84    | 6    | -0.8 | 103  | 832  | 1332 |     |
| 1   | RC101 | 358975 | 6752656 | 724 | 122.1 | -56.5 | 78    | 0    | 22.8 | 22.8  | 15   | 1.6  | 210  | 1616 | 2355 |     |
|     | RC102 | 358984 | 6752659 | 725 | 117.0 | -54.6 | 78    | 0    | 78   | 78    | 8    | -1.2 | 197  | 1063 | 1461 | M   |
|     | RC103 | 358987 | 6752686 | 722 | 122.6 | -54.9 | 39    | 0    | 12   | 12    | 38   | 19.9 | 413  | 3087 | 2111 |     |
| _   | RC104 | 358986 | 6752686 | 722 | 124.7 | -77.0 | 87    | 28   | 80   | 52    | 39   | 11.7 | 414  | 4322 | 4298 | М   |
|     | RC105 | 358961 | 6752629 | 724 | 118.2 | -54.4 | 22    | 14   | 22   | 8     | 19   | -0.6 | 243  | 1916 | 3880 |     |
|     | RC106 | 358960 | 6752630 | 724 | 122.1 | -69.2 | 36    | 10   | 35   | 25    | 22   | 4.6  | 198  | 2604 | 2869 |     |
| 71  | RC107 | 358972 | 6752584 | 723 | 294.2 | -54.7 | 36    | 3    | 36   | 33    | 48   | 9.1  | 1061 | 4638 | 5226 | М   |
| IJ. | RC108 | 358973 | 6752583 | 723 | 291.2 | -75.5 | 55    | 7    | 18   | 11    | 44   | 11.2 | 909  | 6849 | 2741 | Μ   |
|     | RC109 | 358926 | 6752609 | 717 | 123.0 | -54.5 | 61.5  | 39   | 40   | 1     | 35   | 15.3 | 182  | 5430 | 2070 |     |
| _   | RC110 | 358925 | 6752609 | 717 | 123.5 | -74.4 | 162   | 129  | 160  | 31    | 62   | 18.4 | 941  | 2641 | 8141 | М   |
|     | RC111 | 358930 | 6752555 | 710 | 147.0 | -54.8 | 35    | 29   | 34   | 5     | 65   | 19.1 | 972  | 6291 | 6677 |     |
|     | RC112 | 358931 | 6752555 | 710 | 130.3 | -69.4 | 96    | 44   | 90   | 46    | 43   | 11.2 | 1131 | 3812 | 3438 | М   |
| 7   | RC113 | 358971 | 6752658 | 724 | 121.4 | -79.5 | 77    | 27   | 38   | 11    | 63   | 24.4 | 424  | 4970 | 7090 |     |
|     | RC114 | 358959 | 6752630 | 724 | 152.9 | -85.4 | 154   | 119  | 123  | 4     | 23   | 7.3  | 298  | 1817 | 2467 |     |
|     | RC115 | 359025 | 6752598 | 731 | 290.2 | -54.2 | 117   | 76   | 96   | 20    | 69   | 17.1 | 1442 | 7327 | 6481 | М   |
| 7   | RC116 | 359026 | 6752597 | 732 | 291.2 | -64.0 | 135   | 101  | 128  | 27    | 40   | 17.2 | 313  | 2616 | 4062 | М   |
|     | RC117 | 358975 | 6752582 | 723 | 274.0 | -68.0 | 26    | 0    | 1    | 1     | 14   | 7.6  | 417  | 220  | 376  |     |

|   | Hole  | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From | То  | Width | AgEQ | Ag   | Cu   | Pb    | Zn    | MET |
|---|-------|--------|---------|-----|-------|-------|-------|------|-----|-------|------|------|------|-------|-------|-----|
|   | RC118 | 358929 | 6752631 | 718 | 107.9 | -54.6 | 90    | 73   | 89  | 16    | 90   | 19.3 | 1406 | 7407  | 11941 | MET |
|   | RC119 | 358929 | 6752631 | 718 | 107.6 | -64.5 | 165   | 119  | 164 | 45    | 30   | 7.3  | 715  | 2282  | 3008  |     |
|   | RC120 | 359012 | 6752641 | 730 | 284.7 | -54.0 | 69    | 44   | 53  | 9     | 60   | 19   | 500  | 3856  | 8182  |     |
|   | RC121 | 359013 | 6752641 | 730 | 287.9 | -66.4 | 117   | 62   | 77  | 15    | 100  | 24   | 1858 | 9215  | 10989 | MET |
| - | RC122 | 358924 | 6752668 | 715 | 109.4 | -53.2 | 135   | 89   | 130 | 41    | 15   | 3.3  | 97   | 899   | 2570  |     |
|   | RC123 | 358923 | 6752668 | 715 | 109.4 | -63.7 | 231   | 173  | 210 | 37    | 63   | 17.7 | 1046 | 1045  | 9215  |     |
|   | RC124 | 358936 | 6752604 | 718 | 107.6 | -53.3 | 124   | 49   | 65  | 16    | 87   | 18.1 | 1391 | 10429 | 9780  | MET |
|   | RC125 | 358936 | 6752604 | 718 | 111.2 | -65.0 | 75    | 66   | 75  | 9     | 7    | -1.1 | 202  | 1184  | 1180  |     |
|   | RC126 | 359001 | 6752576 | 725 | 290.0 | -65.0 | 98    | 73   | 98  | 25    | 83   | 19.9 | 1146 | 8836  | 9726  | MET |
| _ | RC127 | 358889 | 6751632 | 719 | 294.4 | -55.0 | 180   | 172  | 180 | 8     | 175  | 30   | 6120 | 2100  | 21971 | MET |
|   | RC130 | 358886 | 6751722 | 714 | 291.2 | -50.2 | 78    | 54   | 64  | 10    | 108  | 27   | 2451 | 2213  | 14811 | MET |
|   | RC131 | 358872 | 6751770 | 709 | 282.4 | -50.0 | 54    | 10   | 23  | 13    | 78   | 25   | 897  | 7146  | 8545  | MET |
|   | RC132 | 358877 | 6751767 | 708 | 288.7 | -51.1 | 36    | 19   | 30  | 11    | 127  | 27.6 | 2081 | 7423  | 18363 | MET |
|   | RC133 | 358891 | 6751836 | 721 | 293.7 | -50.2 | 48    | 16   | 26  | 10    | 56   | 22.6 | 583  | 5442  | 4859  |     |
|   | RC134 | 358892 | 6751866 | 721 | 282.4 | -50.0 | 54    | 18   | 29  | 11    | 22   | 12.7 | 85   | 1115  | 1698  |     |
|   | RC135 | 358894 | 6751865 | 721 | 290.2 | -75.7 | 90    | 44   | 73  | 29    | 80   | 24.3 | 1268 | 2704  | 10871 | MET |
|   | RC137 | 358913 | 6752023 | 720 | 297.1 | -70.5 | 108   | 54   | 65  | 11    | 67   | 20.4 | 1852 | 4062  | 5337  |     |
|   | RC138 | 358912 | 6752023 | 719 | 293.4 | -60.6 | 42    | 20   | 29  | 9     | 6    | 2.8  | 71   | 231   | 440   |     |
|   | RC139 | 358925 | 6752015 | 721 | 102.4 | -45.0 | 90    | 20   | 46  | 26    | 15   | 7.9  | 100  | 932   | 1168  |     |
|   | RC140 | 358927 | 6752014 | 721 | 301.0 | -69.4 | 132   | 68   | 126 | 58    | 9    | 3.7  | 158  | 573   | 594   |     |
| Ų | RC141 | 358937 | 6752111 | 727 | 298.0 | -61.0 | 108   | 67   | 102 | 35    | 5    | 2.6  | 52   | 285   | 395   |     |
|   | RC142 | 358929 | 6752176 | 720 | 125.8 | -48.9 | 42    | 5    | 35  | 30    | 4    | 1.2  | 54   | 336   | 575   |     |
| _ | RC143 | 358945 | 6752477 | 704 | 117.3 | -50.4 | 54    | 15   | 50  | 35    | 4    | 2.5  | 52   | 185   | 290   |     |
|   | RC144 | 358941 | 6752495 | 706 | 122.2 | -50.9 | 42    | 14   | 40  | 26    | 1    | 0.4  | 34   | 59    | 171   |     |
|   | RC145 | 358990 | 6752631 | 727 | 296.6 | -50.8 | 13    | 0    | 13  | 13    | -3   | -5   | 24   | 79    | 454   |     |
| 7 | RC146 | 358995 | 6752629 | 728 | 282.4 | -60.0 | 26    | 4    | 26  | 22    | 5    | 1.8  | 36   | 268   | 718   |     |
|   | RC147 | 358988 | 6752652 | 727 | 282.4 | -50.0 | 30    | 2    | 30  | 28    | 29   | 9.2  | 239  | 2783  | 3412  |     |
|   | RC148 | 358992 | 6752649 | 727 | 294.8 | -50.7 | 30    | 2    | 30  | 28    | 25   | 8.5  | 182  | 2040  | 3183  |     |
| 1 | RC149 | 359001 | 6752674 | 725 | 299.1 | -51.8 | 36    | 0    | 36  | 36    | 20   | 6.8  | 245  | 1690  | 2227  |     |
|   | RC150 | 358995 | 6752677 | 724 | 300.5 | -50.9 | 30    | 5    | 30  | 25    | 21   | 8.5  | 205  | 1347  | 2346  |     |

|                   | Hole  | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From | То  | Width | AgEQ | Ag   | Cu   | Pb    | Zn   | MET |
|-------------------|-------|--------|---------|-----|-------|-------|-------|------|-----|-------|------|------|------|-------|------|-----|
|                   | RC151 | 359002 | 6752693 | 723 | 282.4 | -50.0 | 30    | 5    | 30  | 25    | 30   | 13.2 | 239  | 2666  | 2689 | MET |
|                   | RC152 | 359062 | 6752778 | 722 | 287.8 | -54.9 | 84    | 29   | 54  | 25    | 18   | 6.5  | 235  | 2064  | 1484 |     |
|                   | RC153 | 359049 | 6752793 | 720 | 282.3 | -54.9 | 36    | 6    | 23  | 17    | 35   | 10.1 | 975  | 2886  | 2418 |     |
|                   | RC154 | 359018 | 6752801 | 718 | 267.4 | -55.0 | 30    | 0    | 30  | 30    | -4   | -5   | 12   | 27    | 219  |     |
|                   | RC155 | 358954 | 6752811 | 712 | 269.0 | -50.0 | 66    | 42   | 50  | 8     | 0    | -1   | 30   | 4     | 102  |     |
|                   | RC156 | 358956 | 6752811 | 712 | 268.4 | -70.0 | 108   | 90   | 91  | 1     | -4   | -5   | -5   | -5    | 309  |     |
|                   | RC157 | 359132 | 6753156 | 735 | 93.0  | -50.0 | 54    | 6    | 7   | 1     | -3   | -5   | 61   | -5    | 415  |     |
|                   | RC158 | 359131 | 6753157 | 734 | 92.4  | -60.0 | 90    | 40   | 48  | 8     | 4    | -0.1 | 97   | 17    | 818  |     |
|                   | RC159 | 359169 | 6753271 | 742 | 92.4  | -50.0 | 54    | 39   | 41  | 2     | -2   | -5   | -5   | 121   | 813  |     |
| _                 | RC160 | 359168 | 6753271 | 742 | 92.4  | -70.0 | 102   | 22   | 29  | 7     | 2    | 1.2  | 58   | 15    | 172  |     |
|                   | RC161 | 359023 | 6752791 | 720 | 281.3 | -54.6 | 30    | 0    | 30  | 30    | 2    | -3.7 | 25   | 617   | 1197 |     |
|                   | RC162 | 359039 | 6752786 | 721 | 286.6 | -54.5 | 60    | 35   | 45  | 10    | 66   | 6.8  | 162  | 27255 | 1167 |     |
|                   | RC163 | 359008 | 6752780 | 719 | 280.3 | -50.2 | 30    | 19   | 24  | 5     | 10   | 2.7  | 83   | 707   | 1327 |     |
|                   | RC164 | 359019 | 6752777 | 720 | 277.6 | -49.6 | 30    | 1    | 30  | 29    | -1   | -5   | -5   | 122   | 1034 |     |
|                   | RC165 | 359036 | 6752774 | 721 | 280.8 | -50.4 | 72    | 0    | 11  | 11    | 27   | 10.3 | 111  | 2773  | 3084 |     |
|                   | RC166 | 359043 | 6752769 | 721 | 276.9 | -50.5 | 48    | 33   | 38  | 5     | 19   | 8.8  | 136  | 1609  | 1596 |     |
|                   | RC167 | 359023 | 6752834 | 713 | 92.4  | -50.0 | 72    | 50   | 61  | 11    | 6    | 2.3  | 48   | 495   | 769  |     |
|                   | RC169 | 358979 | 6752614 | 725 | 283.1 | -50.0 | 11    | 0    | 6   | 6     | 11   | 3.8  | 119  | 1201  | 1173 |     |
|                   | RC170 | 358914 | 6752534 | 705 | 111.7 | -66.4 | 90    | 61   | 69  | 8     | 27   | 13.8 | 406  | 1900  | 1437 |     |
| 71                | RC171 | 358913 | 6752534 | 705 | 111.1 | -72.7 | 138   | 120  | 132 | 12    | 17   | 7.9  | 167  | 1451  | 1397 |     |
| $\mathcal{Y}_{1}$ | RC172 | 358882 | 6752556 | 703 | 117.6 | -63.0 | 174   | 160  | 174 | 14    | 73   | 24.7 | 2111 | 1070  | 6917 | ME  |
| -                 | RC173 | 358918 | 6752669 | 713 | 110.6 | -67.1 | 240   | 0    | 240 | 240   | -2   | -3.9 | 80   | 96    | 300  |     |
| _                 | RC174 | 358953 | 6752555 | 715 | 286.7 | -50.1 | 30    | 0    | 30  | 30    | 7    | 0    | 143  | 809   | 1056 |     |
| -                 | RC175 | 358963 | 6752527 | 713 | 114.6 | -54.7 | 42    | 0    | 42  | 42    | -2   | -3.6 | 11   | 120   | 335  |     |
| _                 | RC176 | 358962 | 6752527 | 713 | 112.6 | -69.2 | 78    | 0    | 78  | 78    | 4    | -0.2 | 55   | 456   | 732  | ME  |
|                   | RC177 | 358953 | 6752528 | 712 | 289.8 | -49.7 | 36    | 0    | 36  | 36    | 19   | 0.4  | 370  | 2488  | 2862 | ME  |
| IJ                | RC178 | 358946 | 6752536 | 712 | 288.3 | -49.0 | 30    | 0    | 30  | 30    | 17   | -1.3 | 476  | 2410  | 2330 |     |
| _                 | RC179 | 358945 | 6752523 | 710 | 288.1 | -49.2 | 30    | 0    | 30  | 30    | 16   | 0.7  | 383  | 1931  | 2123 | ME  |
| 7                 | RC180 | 358947 | 6752519 | 710 | 280.8 | -49.7 | 30    | 0    | 20  | 20    | 41   | 9.1  | 649  | 3804  | 5119 | ME  |
|                   | RC182 | 358933 | 6752483 | 704 | 116.8 | -48.1 | 48    | 0    | 48  | 48    | -1   | -3.8 | 63   | 333   | 408  |     |

|                              | Hole  | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From | То  | Width | AgEQ | Ag   | Cu   | Pb   | Zn   | MET |
|------------------------------|-------|--------|---------|-----|-------|-------|-------|------|-----|-------|------|------|------|------|------|-----|
|                              | RC183 | 358927 | 6752485 | 703 | 117.4 | -50.0 | 30    | 0    | 30  | 30    | 13   | 2.5  | 329  | 1619 | 1218 |     |
|                              | RC184 | 358931 | 6752140 | 723 | 92.4  | -55.0 | 72    | 0    | 72  | 72    | -2   | -3.7 | 20   | 151  | 317  |     |
|                              | RC185 | 358914 | 6752179 | 718 | 113.4 | -48.9 | 48    | 0    | 48  | 48    | -3   | -4.7 | 36   | 120  | 366  |     |
|                              | RC186 | 358896 | 6752091 | 715 | 286.7 | -59.7 | 60    | 2    | 60  | 58    | -4   | -4.4 | -4   | 38   | 161  |     |
|                              | RC187 | 358904 | 6752121 | 717 | 111.6 | -49.9 | 60    | 12   | 60  | 48    | -1   | -3.7 | 20   | 277  | 488  |     |
|                              | RC189 | 358920 | 6752145 | 721 | 111.0 | -54.7 | 48    | 0    | 48  | 48    | 0    | -2.8 | 28   | 264  | 526  |     |
| _                            | RC190 | 358918 | 6752064 | 723 | 281.6 | -60.4 | 90    | 2    | 90  | 88    | -1   | -2.1 | 10   | 55   | 354  |     |
| _                            | RC191 | 358955 | 6752364 | 710 | 281.3 | -54.0 | 48    | 1    | 48  | 47    | 3    | -0.5 | 59   | 673  | 587  |     |
| -                            | RC192 | 358957 | 6752364 | 710 | 284.3 | -69.8 | 102   | 0    | 102 | 102   | 4    | -1.6 | 46   | 514  | 1069 |     |
| _                            | RC193 | 358965 | 6752404 | 707 | 283.9 | -60.1 | 48    | 1    | 48  | 47    | 2    | -2.4 | 59   | 675  | 786  |     |
|                              | RC194 | 358968 | 6752473 | 702 | 281.0 | -49.4 | 48    | 1    | 48  | 47    | -1   | -2.9 | 30   | 130  | 287  |     |
|                              | RC195 | 358957 | 6752560 | 716 | 111.2 | -48.8 | 36    | 0    | 36  | 36    | -2   | -3.6 | 26   | 121  | 389  |     |
|                              | RC196 | 358897 | 6752628 | 714 | 93.0  | -51.0 | 60    | 0    | 60  | 60    | -2   | -3.9 | 25   | 205  | 488  |     |
| 1                            | RC197 | 358896 | 6752628 | 714 | 93.0  | -71.0 | 72    | 0    | 72  | 72    | 6    | -2.9 | 42   | 769  | 1913 |     |
|                              | RC198 | 359101 | 6753038 | 732 | 93.0  | -51.0 | 54    | 1    | 54  | 53    | -1   | -3.8 | 38   | 194  | 494  |     |
| _                            | RC199 | 359099 | 6753039 | 732 | 93.0  | -73.0 | 90    | 0    | 90  | 90    | 0    | -3.1 | 49   | 287  | 475  |     |
| _                            | RC200 | 359081 | 6752998 | 727 | 93.0  | -51.5 | 66    | 0    | 66  | 66    | -2   | -4   | 40   | 126  | 297  |     |
|                              | RC201 | 359079 | 6752998 | 727 | 106.6 | -68.6 | 90    | 0    | 90  | 90    | -1   | -3.6 | 44   | 269  | 502  |     |
| _                            | RC202 | 358915 | 6751898 | 721 | 287.0 | -53.4 | 72    | 3    | 72  | 69    | 2    | -2.4 | 55   | 548  | 773  |     |
| 71                           | RC203 | 358916 | 6751897 | 721 | 287.1 | -69.0 | 78    | 2    | 78  | 76    | 41   | 6.8  | 544  | 4703 | 5541 | M   |
| $\mathcal{Y}_{\mathfrak{l}}$ | RC204 | 358915 | 6751931 | 715 | 284.8 | -59.8 | 48    | 3    | 48  | 45    | 14   | 0.5  | 409  | 1331 | 1774 | Μ   |
| -                            | RC205 | 358916 | 6751931 | 716 | 283.3 | -75.2 | 102   | 2    | 102 | 100   | 5    | -1.9 | 48   | 806  | 1543 |     |
| _                            | RC206 | 358868 | 6751934 | 707 | 278.5 | -49.3 | 60    | 1    | 60  | 59    | -4   | -5   | 1    | 98   | 224  |     |
| $\square$                    | RC207 | 358882 | 6751908 | 713 | 107.0 | -49.6 | 60    | 1    | 60  | 59    | 5    | -1.1 | 74   | 879  | 1097 |     |
|                              | RC208 | 358907 | 6751920 | 716 | 291.2 | -60.7 | 48    | 2    | 48  | 46    | 4    | -1.4 | 96   | 725  | 850  | M   |
| 1                            | RC209 | 358874 | 6751782 | 712 | 280.0 | -49.7 | 30    | 1    | 30  | 29    | 46   | 9.4  | 1628 | 3273 | 3578 | М   |
|                              | RC210 | 358881 | 6751800 | 716 | 279.2 | -52.6 | 60    | 2    | 60  | 58    | 8    | 0.1  | 112  | 1358 | 1197 |     |
|                              | RC211 | 358878 | 6751689 | 717 | 280.3 | -55.3 | 96    | 2    | 96  | 94    | 8    | 0    | 98   | 1041 | 1525 | Μ   |
|                              | RC212 | 358879 | 6751689 | 717 | 283.5 | -64.6 | 132   | 2    | 132 | 130   | 10   | -0.2 | 113  | 787  | 2164 | Μ   |
|                              | RC213 | 358867 | 6751709 | 713 | 283.1 | -60.7 | 66    | 3    | 66  | 63    | 20   | 6.7  | 202  | 1419 | 2352 |     |

|   | Hole  | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From | То  | Width | AgEQ | Ag   | Cu  | Pb   | Zn   | MET |
|---|-------|--------|---------|-----|-------|-------|-------|------|-----|-------|------|------|-----|------|------|-----|
|   | RC214 | 358873 | 6751718 | 713 | 309.1 | -54.9 | 72    | 5    | 72  | 67    | 28   | 5.1  | 503 | 923  | 4553 | MET |
|   | RC215 | 358882 | 6751697 | 717 | 281.2 | -51.3 | 90    | 39   | 90  | 51    | 16   | 2    | 206 | 1622 | 2535 | MET |
|   | RC216 | 358883 | 6751696 | 717 | 283.9 | -59.9 | 120   | 3    | 110 | 107   | 15   | 2.3  | 152 | 688  | 2699 |     |
|   | RC217 | 358924 | 6751662 | 722 | 287.3 | -59.9 | 72    | 1    | 72  | 71    | -5   | -5   | 2   | 3    | 120  |     |
| - | RC218 | 358880 | 6751575 | 717 | 278.2 | -50.6 | 132   | 3    | 132 | 129   | 2    | -2.5 | 55  | 426  | 898  |     |
|   | RC219 | 358919 | 6751826 | 722 | 288.6 | -57.6 | 114   | 1    | 114 | 113   | 10   | -2   | 534 | 418  | 1716 | MET |
| _ | RC222 | 358757 | 6751228 | 729 | 80.5  | -68.8 | 102   | 2    | 101 | 99    | -4   | -5   | 3   | 88   | 301  |     |
| _ | RC223 | 358756 | 6751204 | 729 | 92.5  | -56.8 | 48    | 2    | 48  | 46    | -2   | -3.1 | 23  | 83   | 233  |     |
| - | RC224 | 358755 | 6751204 | 729 | 91.2  | -68.8 | 54    | 0    | 34  | 34    | -1   | -2.9 | 20  | 231  | 506  |     |
| _ | RC225 | 358792 | 6751293 | 729 | 93.6  | -54.5 | 48    | 2    | 48  | 46    | -3   | -3.8 | 12  | 105  | 268  |     |
|   | RC226 | 358791 | 6751293 | 729 | 92.4  | -69.3 | 54    | 2    | 54  | 52    | 0    | -3.6 | 55  | 227  | 784  |     |
|   | RC227 | 358792 | 6751315 | 730 | 90.1  | -54.5 | 54    | 3    | 54  | 51    | -3   | -5   | 15  | 166  | 430  |     |
|   | RC228 | 358791 | 6751315 | 730 | 89.7  | -71.0 | 60    | 2    | 60  | 58    | -3   | -4   | 12  | 113  | 248  |     |
| 1 | RC229 | 358790 | 6751346 | 732 | 94.8  | -55.1 | 60    | 3    | 60  | 57    | -3   | -4.1 | 12  | 79   | 236  |     |
|   | RC230 | 358788 | 6751346 | 732 | 94.5  | -69.8 | 72    | 2    | 72  | 70    | -4   | -4.8 | 1   | 56   | 204  |     |
| _ | RC231 | 358786 | 6751382 | 730 | 95.9  | -54.9 | 78    | 4    | 78  | 74    | -3   | -4.4 | 3   | 130  | 320  |     |
|   | RC232 | 358785 | 6751382 | 730 | 97.0  | -70.4 | 78    | 3    | 78  | 75    | -2   | -3.6 | 9   | 127  | 335  |     |
|   | RC234 | 358803 | 6751465 | 718 | 94.5  | -55.2 | 54    | 2    | 54  | 52    | -4   | -5   | 6   | 116  | 289  |     |
|   | RC235 | 358945 | 6752522 | 721 | 273.0 | -52.0 | 144   | 0    | 144 | 144   | 10   | 1.1  | 123 | 947  | 1529 | MET |
| 1 | RC236 | 358885 | 6751722 | 714 | 273.0 | -62.0 | 126   | 0    | 126 | 126   | -1   | -4.3 | 20  | 296  | 711  |     |
| U | RC237 | 358891 | 6751851 | 721 | 274.8 | -53.8 | 48    | 0    | 48  | 48    | 6    | -1.4 | 44  | 1108 | 1473 |     |
|   | RC238 | 358994 | 6752651 | 727 | 286.4 | -65.3 | 78    | 9    | 33  | 24    | 36   | 3.4  | 497 | 4832 | 5243 | MET |
| _ | RC239 | 358898 | 6751904 | 717 | 297.4 | -54.7 | 102   | 18   | 30  | 12    | 48   | 9.7  | 282 | 8063 | 5578 | MET |
| - | RC242 | 358991 | 6752581 | 724 | 272.8 | -50.7 | 55    | 0    | 55  | 55    | 0    | -3.8 | 45  | 482  | 588  |     |
|   | RC243 | 358978 | 6752659 | 725 | 90.8  | -64.8 | 72    | 22   | 38  | 16    | 54   | 11.8 | 929 | 5369 | 6438 | MET |
| 1 | RC244 | 358915 | 6752669 | 712 | 104.8 | -57.9 | 192   | 143  | 161 | 18    | 35   | 13.7 | 472 | 2646 | 3202 | MET |
|   | RC245 | 359007 | 6752691 | 723 | 289.4 | -73.8 | 54    | 18   | 54  | 36    | 41   | 10.4 | 483 | 3247 | 5569 |     |
| _ | RC246 | 358981 | 6752671 | 723 | 99.2  | -50.5 | 30    | 15   | 30  | 15    | 41   | 2.6  | 408 | 2661 | 8303 |     |
|   | RC247 | 358980 | 6752672 | 723 | 100.1 | -71.6 | 108   | 25   | 59  | 34    | 55   | 11.4 | 799 | 5212 | 7292 | MET |
|   | RC248 | 358975 | 6752604 | 724 | 273.0 | -50.0 | 4     | 0    | 4   | 4     | -1   | -5   | 47  | 230  | 858  |     |

|     | Hole   | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From | То  | Width | AgEQ | Ag   | Cu   | Pb    | Zn    | MET |
|-----|--------|--------|---------|-----|-------|-------|-------|------|-----|-------|------|------|------|-------|-------|-----|
|     | RC249  | 358978 | 6752603 | 724 | 273.0 | -75.0 | 4     | 0    | 4   | 4     | 0    | -5   | 196  | 214   | 824   |     |
|     | RC250  | 358927 | 6752632 | 717 | 95.9  | -67.9 | 210   | 158  | 188 | 30    | 76   | 15.3 | 1957 | 1083  | 11005 |     |
|     | RC251  | 358923 | 6752632 | 717 | 98.4  | -70.3 | 210   | 18   | 29  | 11    | 27   | 9.1  | 342  | 2098  | 2932  |     |
| -   | RC252  | 358884 | 6752557 | 703 | 104.9 | -57.1 | 140   | 121  | 139 | 18    | 23   | 0.7  | 208  | 1250  | 5012  |     |
| 7   | RC253  | 358942 | 6752553 | 711 | 92.2  | -49.1 | 36    | 0    | 36  | 36    | 15   | 0.8  | 204  | 1741  | 2407  |     |
|     | RC254  | 358923 | 6752568 | 711 | 103.9 | -65.1 | 150   | 71   | 97  | 26    | 144  | 19.8 | 4730 | 14794 | 12894 | ME  |
|     | RC255  | 358918 | 6752592 | 714 | 111.1 | -53.1 | 150   | 5    | 150 | 145   | 4    | -2.5 | 98   | 749   | 1282  |     |
|     | RC256  | 358917 | 6752592 | 714 | 110.0 | -60.0 | 174   | 7    | 174 | 167   | 17   | 1.1  | 387  | 1519  | 2695  | ME  |
|     | RC257  | 358926 | 6752469 | 700 | 91.4  | -55.5 | 90    | 2    | 90  | 88    | 4    | -1.5 | 145  | 886   | 635   | ME  |
| _   | RC258  | 358961 | 6752477 | 703 | 93.4  | -54.9 | 48    | 2    | 48  | 46    | 1    | -2   | 27   | 349   | 516   |     |
|     | RC259  | 358928 | 6752505 | 706 | 100.0 | -55.1 | 42    | 0    | 21  | 21    | 9    | -0.3 | 145  | 1714  | 1340  | ME  |
| 1   | RC260  | 358956 | 6752527 | 712 | 271.9 | -59.3 | 54    | 1    | 54  | 53    | 9    | -0.8 | 252  | 1512  | 1196  |     |
|     | RC261  | 358970 | 6752557 | 719 | 273.2 | -59.5 | 60    | 2    | 60  | 58    | 15   | 0.3  | 384  | 2013  | 2021  | ME  |
|     | RC262  | 358972 | 6752556 | 719 | 275.0 | -69.1 | 102   | 2    | 102 | 100   | 11   | -0.7 | 248  | 1600  | 1792  | ME  |
|     | RC263  | 358963 | 6752569 | 719 | 279.5 | -54.0 | 48    | 2    | 48  | 46    | 7    | 0.2  | 96   | 929   | 1191  |     |
|     | RC264  | 358964 | 6752568 | 719 | 277.2 | -69.2 | 90    | 3    | 90  | 87    | 10   | -0.7 | 211  | 1587  | 1651  |     |
| _   | RC265  | 358937 | 6752513 | 709 | 275.2 | -59.9 | 54    | 3    | 54  | 51    | 2    | -2.7 | 65   | 660   | 730   |     |
|     | RC267  | 358921 | 6752016 | 720 | 241.3 | -65.1 | 84    | 0    | 83  | 83    | 5    | -1.4 | 99   | 711   | 1225  |     |
|     | RC268  | 358909 | 6751875 | 722 | 272.7 | -59.6 | 84    | 3    | 84  | 81    | 14   | 0.7  | 96   | 2383  | 2218  | ME  |
| 11  | RC269  | 358916 | 6751934 | 715 | 331.8 | -56.1 | 90    | 7    | 90  | 83    | 7    | 0.9  | 61   | 779   | 1060  |     |
| IJ, | RC270  | 358879 | 6751686 | 717 | 271.8 | -60.3 | 120   | 4    | 120 | 116   | 7    | -0.4 | 63   | 705   | 1429  | ME  |
|     | RC271  | 358922 | 6751661 | 721 | 276.0 | -61.0 | 156   | 6    | 156 | 150   | 1    | 0.2  | 14   | 73    | 270   |     |
| _   | RC274  | 358877 | 6752479 | 698 | 107.0 | -60.0 | 202   | 6    | 202 | 196   | 2    | 0.6  | 27   | 150   | 285   |     |
|     | RC277  | 358914 | 6751723 | 714 | 276.0 | -60.0 | 244   | 6    | 244 | 238   | 7    | 2.6  | 56   | 302   | 844   |     |
|     | RC285  | 358712 | 6751474 | 748 | 108.2 | -69.0 | 331   | 152  | 165 | 13    | 22   | 11.1 | 203  | 1221  | 1835  |     |
|     | RC286  | 358949 | 6751608 | 719 | 273.2 | -59.0 | 319   | 265  | 296 | 31    | 23   | 11.2 | 195  | 707   | 2300  |     |
|     | RC288  | 358929 | 6751851 | 726 | 281.2 | -70.0 | 169   | 137  | 157 | 20    | 23   | 6.8  | 245  | 1745  | 2874  |     |
| _   | RCD129 | 358897 | 6751656 | 721 | 291.7 | -66.5 | 336.4 | 32   | 40  | 8     | 68   | 25.1 | 452  | 7073  | 6928  |     |
| 7   | RCD220 | 358919 | 6751828 | 722 | 288.3 | -70.1 | 259.3 | 1    | 204 | 203   | -3   | -4.7 | 23   | 128   | 412   |     |
|     | RCD272 | 358935 | 6751606 | 721 | 273.0 | -55.0 | 245   | 131  | 137 | 6     | 31   | 19.6 | 192  | 1701  | 1621  |     |

|          | MGA56E | MGA56N  | RL  | Azi   | Dip   | Depth | From   | То    | Width | AgEQ | Ag   | Cu   | Pb   | Zn   | MET |
|----------|--------|---------|-----|-------|-------|-------|--------|-------|-------|------|------|------|------|------|-----|
| RCD273   | 358912 | 6751687 | 720 | 283.0 | -65.0 | 384.1 | 6      | 220   | 214   | 4    | 1    | 38   | 367  | 569  |     |
| RCD275   | 358925 | 6751640 | 720 | 267.0 | -60.0 | 238.8 | 195.45 | 228   | 32.55 | 36   | 16.1 | 791  | 1052 | 2624 |     |
| RCD276   | 358926 | 6751638 | 720 | 271.0 | -65.0 | 338.1 | 285    | 316.1 | 31.1  | 15   | 6.6  | 276  | 664  | 1325 |     |
| RCD278   | 358645 | 6751818 | 780 | 83.0  | -55.0 | 320   | 295.35 | 311   | 15.65 | 27   | 15   | 515  | 1219 | 1213 |     |
| RCD279   | 358647 | 6751810 | 780 | 93.0  | -60.0 | 430   | 323    | 338   | 15    | 22   | 11.8 | 197  | 742  | 1955 |     |
| RCD280   | 358641 | 6751818 | 780 | 83.0  | -60.0 | 449   | 349    | 362   | 13    | 22   | 9.8  | 210  | 616  | 2654 |     |
| RCD281   | 358649 | 6751714 | 782 | 90.0  | -57.0 | 335   | 283    | 294   | 11    | 45   | 17.5 | 1338 | 1801 | 2911 |     |
| RCD282   | 358642 | 6751734 | 782 | 74.0  | -47.0 | 334.1 | 306    | 312.8 | 6.8   | 23   | 12.5 | 220  | 780  | 1784 |     |
| RCD284   | 358638 | 6751735 | 782 | 67.0  | -55.0 | 366.6 | 322    | 334   | 12    | 33   | 20.3 | 403  | 2129 | 1169 |     |
| SMCST001 | 359035 | 6752816 | 715 | 124.0 | 2.0   | 30.5  | 10     | 24    | 14    | 40   | 23.8 | 338  | 5175 | 743  |     |
| SMCST002 | 359008 | 6752790 | 719 | 103.0 | 2.0   | 43    | 6      | 18    | 12    | 24   | 13.4 | 255  | 2742 | 651  |     |
| SMCST003 | 359019 | 6752757 | 720 | 81.0  | 2.0   | 30    | 12     | 23    | 11    | 48   | 25.5 | 283  | 8495 | 768  |     |
| SMCST004 | 358987 | 6752718 | 722 | 103.0 | 2.0   | 30    | 12     | 26    | 14    | 32   | 14.8 | 269  | 5949 | 885  |     |
| SMCST006 | 358951 | 6752408 | 707 | 115.0 | 5.0   | 21    | 4      | 13    | 9     | 13   | 6.2  | 84   | 1570 | 809  |     |
| SMCST009 | 358984 | 6752682 | 723 | 113.0 | 5.0   | 21    | 6      | 12    | 6     | 7    | 1.7  | 48   | 858  | 824  |     |
| SMCST018 | 359052 | 6752810 | 720 | 203.0 | 5.0   | 26    | 0      | 10    | 10    | 18   | 10.1 | 157  | 1505 | 956  |     |
| TRV001   | 358838 | 6751648 | 712 | 101.0 | 40.0  | 7     | 0      | 7     | 7     | 55   | 23.5 | 856  | 6770 | 2525 |     |
| TRV002   | 358841 | 6751657 | 712 | 101.0 | 40.0  | 8     | 0      | 8     | 8     | 41   | 20.6 | 482  | 4961 | 1607 |     |
| TRV003   | 358977 | 6752527 | 715 | 101.0 | 1.0   | 5     | 0      | 5     | 5     | 12   | 7.5  | 46   | 850  | 576  |     |
| TRV004   | 358968 | 6752453 | 703 | 96.0  | 1.0   | 4     | 0      | 4     | 4     | 18   | 11.8 | 58   | 1296 | 925  |     |
| TRV005   | 358923 | 6752091 | 721 | 101.0 | 1.0   | 9     | 4      | 9     | 5     | 28   | 17.5 | 141  | 3068 | 971  |     |
| TRV006   | 358884 | 6752106 | 716 | 101.0 | 5.0   | 13    | 0      | 13    | 13    | 0    | -0.1 | 13   | 30   | 67   |     |
| TRV007   | 358850 | 6751680 | 712 | 101.0 | 40.0  | 5     | 0      | 5     | 5     | 32   | 18.7 | 145  | 3731 | 1176 |     |
| TRV008   | 358856 | 6751699 | 712 | 101.0 | 40.0  | 7     | 0      | 7     | 7     | 25   | 14.4 | 131  | 3009 | 901  |     |
| TRV009   | 358858 | 6751768 | 709 | 101.0 | 40.0  | 10    | 0      | 10    | 10    | 47   | 25.4 | 473  | 6587 | 1029 |     |
| TRV010   | 358857 | 6751737 | 711 | 104.0 | 4.0   | 5     | 0      | 5     | 5     | 27   | 16.4 | 189  | 2629 | 867  |     |
| TRV011   | 358858 | 6751792 | 712 | 101.0 | 5.0   | 6     | 0      | 6     | 6     | 33   | 20.1 | 255  | 4155 | 593  |     |
|          | 358872 | 6751818 | 718 | 101.0 | 10.0  | 10    | 0      | 10    | 10    | 29   | 15.1 | 275  | 4290 | 695  |     |



## APPENDIX 2 CONRAD SILVER PROJECT Figures and Tables

Figure 4: Conrad Silver Project Plan view



Figure 5: Conrad Silver Project Long Section





Figure 6: Conrad Cross Section of the Borah Shoot



Figure 7: Conrad Cross Section of the Moore Shoot

# Table: True Width Drill Intersections from the Mineralised Shoots that define the reportable Conrad Underground Mineral Resource

This table contains all intersections within the mineralised shoots that define the reportable Underground portion of the Conrad Mineral Resource but does not include intersections that fall outside the shoots that were used for grade estimation.

| Hole    | MGA56E | MGA56N  | RL  | Depth  | Dip   | Azi   | From   | То     | Width | AgEQ | Ag    | Cu   | Pb    | Sn   | Zn    |
|---------|--------|---------|-----|--------|-------|-------|--------|--------|-------|------|-------|------|-------|------|-------|
| CERC005 | 311220 | 6683150 | 798 | 111    | -60   | 221.5 | 30     | 31     | 1.74  | 2    | 0.7   | 26   | 87    | 30   | 132   |
| CERC010 | 310739 | 6683549 | 793 | 90     | -60   | 221.5 | 49     | 52     | 1.89  | 54   | 22.4  | 1098 | 789   | 736  | 289   |
| CERC011 | 310665 | 6683599 | 786 | 78     | -65   | 219.5 | 43     | 46     | 1.55  | 96   | 50.6  | 1273 | 1621  | 1180 | 171   |
| CERC012 | 310596 | 6683680 | 782 | 117    | -60   | 221.5 | 91     | 92     | 0.68  | 48   | 24.7  | 1160 | 471   | 365  | 364   |
| CMDD01  | 309460 | 6684314 | 728 | 436.5  | -65   | 35.5  | 392.7  | 393.75 | 0.58  | 189  | 83.0  | 3021 | 1998  | 2846 | 1163  |
| CMDD02  | 309423 | 6684402 | 716 | 457.1  | -70   | 35.5  | 438    | 440.1  | 0.82  | 121  | 78.1  | 447  | 13734 | 120  | 277   |
| CMDD03  | 309765 | 6684101 | 787 | 289.5  | -62   | 34.5  | 258.6  | 267    | 5.25  | 241  | 79.4  | 4610 | 2731  | 4436 | 1412  |
| CMDD04  | 309866 | 6684045 | 794 | 276.5  | -66   | 35.5  | 245.3  | 246    | 0.42  | 292  | 182.0 | 1750 | 15600 | 2100 | 1580  |
| CMDD05  | 309957 | 6683963 | 784 | 253.4  | -50   | 35.5  | 215.2  | 218.4  | 1.67  | 56   | 9.4   | 116  | 5021  | 830  | 4350  |
| CMDD06  | 310079 | 6683918 | 776 | 138.1  | -50   | 35.5  | 101.6  | 105.6  | 2.26  | 135  | 45.5  | 1970 | 2267  | 2537 | 1525  |
| CMDD100 | 308908 | 6685079 | 653 | 104.1  | -50   | 220   | 89.32  | 89.74  | 0.35  | 452  | 184.0 | 1250 | 58600 | 1765 | 20700 |
| CMDD101 | 308909 | 6685079 | 653 | 121.9  | -62   | 209   | 108.52 | 109.4  | 0.56  | 119  | 37.6  | 536  | 6481  | 816  | 12316 |
| CMDD102 | 308880 | 6685117 | 648 | 131.6  | -55   | 219.5 | 112    | 118    | 4.20  | 94   | 35.8  | 162  | 6756  | 1254 | 3393  |
| CMDD103 | 308844 | 6685103 | 645 | 86.7   | -50   | 200   | 68     | 70     | 1.45  | 76   | 28.1  | 93   | 5135  | 999  | 3628  |
| CMDD104 | 310301 | 6683879 | 784 | 59.6   | -54   | 220   | 43     | 48     | 3.49  | 70   | 29.0  | 1005 | 2618  | 911  | 771   |
| CMDD105 | 310384 | 6683834 | 785 | 92.9   | -51   | 220   | 65     | 68.4   | 2.60  | 66   | 23.8  | 443  | 4238  | 856  | 2320  |
| CMDD106 | 310493 | 6683793 | 788 | 158.4  | -50   | 218.5 | 94     | 94.88  | 0.67  | 55   | 18.5  | 635  | 2350  | 842  | 1315  |
| CMDD107 | 310390 | 6683909 | 788 | 191.3  | -58   | 220   | 160    | 162.74 | 1.91  | 177  | 100.1 | 1180 | 9226  | 1357 | 3107  |
| CMDD108 | 310337 | 6683921 | 786 | 153.4  | -57.5 | 221.5 | 131.85 | 132.64 | 0.54  | 65   | 33.0  | 662  | 2729  | 686  | 862   |
| CMDD109 | 310214 | 6683934 | 781 | 77.3   | -62.5 | 221.5 | 57     | 60     | 1.59  | 160  | 54.0  | 3425 | 1811  | 2617 | 1317  |
| CMDD110 | 310430 | 6683892 | 788 | 242.5  | -61.5 | 221.5 | 181.47 | 182.43 | 0.63  | 112  | 73.0  | 868  | 4261  | 726  | 646   |
| CMDD111 | 310481 | 6683954 | 791 | 350.7  | -62   | 218.5 | 328.74 | 329.14 | 0.21  | 68   | 16.8  | 1720 | 166   | 1380 | 148   |
| CMDD112 | 310404 | 6683994 | 791 | 308.5  | -57   | 221.5 | 286.54 | 287.32 | 0.48  | 99   | 70.3  | 472  | 5300  | 451  | 82    |
| CMDD113 | 310259 | 6683974 | 788 | 209.1  | -66.5 | 221.5 | 184.1  | 186.7  | 1.23  | 791  | 508.0 | 3773 | 53295 | 4660 | 1711  |
| CMDD30  | 308869 | 6685078 | 650 | 144.35 | -68   | 181.5 | 89.7   | 91.4   | 0.84  | 345  | 133.4 | 998  | 44041 | 1536 | 17138 |



RAPID LITHIUM LTD Level 10, Kyle House, 27-31 Macquarie Place Sydney NSW 2000 ACN: 649292080

C

| Hole   | MGA56E | MGA56N  | RL  | Depth  | Dip   | Azi   | From   | То     | Width | AgEQ | Ag    | Cu    | Pb    | Sn    | Zn    |
|--------|--------|---------|-----|--------|-------|-------|--------|--------|-------|------|-------|-------|-------|-------|-------|
| CMDD31 | 308874 | 6685088 | 650 | 165.1  | -67   | 242.5 | 109    | 111    | 1.24  | 242  | 111.2 | 195   | 12580 | 2695  | 11245 |
| CMDD33 | 308904 | 6684980 | 663 | 247    | -65   | 37.5  | 42.4   | 45.2   | 1.26  | 183  | 74.9  | 793   | 21046 | 1246  | 5910  |
| CMDD34 | 308924 | 6684928 | 671 | 201.5  | -55   | 46.5  | 68.9   | 78.5   | 4.80  | 110  | 42.1  | 346   | 9601  | 1054  | 4863  |
| CMDD35 | 308933 | 6685075 | 654 | 229.6  | -65   | 249.5 | 158    | 160    | 1.06  | 171  | 66.3  | 367   | 17150 | 1258  | 8935  |
| CMDD36 | 308939 | 6685069 | 654 | 153.6  | -50   | 179.5 | 114    | 118.2  | 2.66  | 92   | 32.7  | 270   | 8990  | 868   | 4505  |
| CMDD37 | 308939 | 6685070 | 654 | 189.8  | -60   | 179.5 | 136.4  | 140    | 2.68  | 211  | 84.2  | 1242  | 19371 | 1658  | 8338  |
| CMDD38 | 308879 | 6685089 | 650 | 152    | -68   | 213.5 | 111    | 114    | 1.67  | 184  | 77.3  | 412   | 15269 | 1470  | 9299  |
| CMDD39 | 309004 | 6684905 | 666 | 76.5   | -58   | 61.5  | 63.7   | 70.9   | 3.44  | 199  | 72.5  | 931   | 12696 | 1482  | 15133 |
| CMDD40 | 309004 | 6684905 | 666 | 122.2  | -70.5 | 28.5  | 84.33  | 104    | 4.19  | 261  | 118.4 | 1007  | 27152 | 1467  | 9271  |
| CMDD41 | 309028 | 6684884 | 666 | 155.8  | -59   | 65.5  | 86     | 94.4   | 1.88  | 1    | 0.9   | 4     | 48    | 11    | 53    |
| CMDD42 | 309028 | 6684884 | 666 | 305.6  | -78   | 36.5  | 224    | 229    | 1.25  | 223  | 128.4 | 1432  | 9756  | 1931  | 3367  |
| CMDD43 | 309028 | 6684884 | 666 | 225    | -74   | 36.5  | 164    | 175    | 3.10  | 253  | 99.8  | 1889  | 12765 | 2649  | 12153 |
| CMDD44 | 309139 | 6684936 | 675 | 212.9  | -69   | 211.5 | 175.4  | 179    | 1.28  | 213  | 89.6  | 1657  | 12988 | 2029  | 8250  |
| CMDD45 | 309139 | 6684937 | 675 | 291    | -76   | 209.5 | 255    | 263.35 | 2.46  | 403  | 225.0 | 2726  | 25380 | 2656  | 7569  |
| CMDD46 | 309239 | 6684867 | 696 | 260.8  | -72   | 222.5 | 222    | 224    | 0.83  | 89   | 30.6  | 247   | 7685  | 712   | 6175  |
| CMDD47 | 309234 | 6684920 | 699 | 343.9  | -67   | 198.5 | 294    | 298    | 1.49  | 139  | 44.1  | 2733  | 2241  | 2282  | 2290  |
| CMDD48 | 308903 | 6684887 | 672 | 351    | -64   | 54.5  | 284    | 286    | 0.58  | 630  | 255.6 | 7439  | 25972 | 9335  | 5761  |
| CMDD49 | 309000 | 6684987 | 655 | 191.3  | -74   | 164.5 | 161    | 165.4  | 1.22  | 148  | 54.9  | 808   | 14210 | 1210  | 6534  |
| CMDD50 | 308998 | 6684986 | 655 | 125.4  | -58   | 180.5 | 83     | 86.17  | 1.86  | 1397 | 684.0 | 15158 | 67509 | 13451 | 22937 |
| CMDD51 | 309025 | 6684885 | 666 | 113.4  | -56   | 366.5 | 73.62  | 77     | 1.27  | 354  | 166.8 | 3194  | 19047 | 3272  | 9361  |
| CMDD52 | 309003 | 6684985 | 655 | 88.2   | -46   | 210.5 | 66.65  | 67.9   | 0.99  | 235  | 95.6  | 1607  | 25487 | 2114  | 3314  |
| CMDD53 | 309140 | 6684936 | 675 | 227.5  | -62   | 174.5 | 194.6  | 199.2  | 1.58  | 138  | 57.9  | 1090  | 3413  | 1446  | 7986  |
| CMDD54 | 309140 | 6684936 | 675 | 246    | -67   | 174.5 | 225.36 | 226.15 | 0.39  | 52   | 29.4  | 491   | 902   | 564   | 678   |
| CMDD55 | 309239 | 6684867 | 696 | 201    | -66   | 224.5 | 182.73 | 185    | 0.97  | 50   | 20.0  | 403   | 3220  | 539   | 1600  |
| CMDD70 | 309642 | 6684150 | 766 | 299.2  | -50   | 40.5  | 268.75 | 270.6  | 1.25  | 104  | 11.5  | 196   | 11866 | 1392  | 8792  |
| CMDD73 | 309642 | 6684150 | 766 | 403.18 | -63   | 40.5  | 375.49 | 376.35 | 0.26  | 123  | 53.7  | 1300  | 9900  | 1100  | 1790  |
| CMDD74 | 309642 | 6684149 | 766 | 500.6  | -70   | 40.5  | 441    | 442    | 0.60  | 445  | 278.0 | 3800  | 6860  | 4600  | 1410  |
| CMDD77 | 309641 | 6684150 | 766 | 509.9  | -67   | 12.5  | 482.35 | 484.79 | 1.14  | 163  | 72.6  | 1812  | 8339  | 1717  | 3312  |
| CMDD80 | 309952 | 6683963 | 784 | 320.6  | -69   | 40.5  | 291.8  | 294.18 | 1.06  | 123  | 80.2  | 352   | 8600  | 625   | 1048  |
| CMDD81 | 309316 | 6684546 | 687 | 226    | -50   | 10.5  | 200    | 202.16 | 1.43  | 450  | 102.7 | 3249  | 6397  | 4706  | 56033 |

CM CM

Level 10, Kyle House, 27-31 Macquarie Place, Sydney NSW 2000

| Hole    | MGA56E | MGA56N  | RL  | Depth  | Dip   | Azi   | From   | То     | Width | AgEQ | Ag    | Cu   | Pb    | Sn    | Zn    |
|---------|--------|---------|-----|--------|-------|-------|--------|--------|-------|------|-------|------|-------|-------|-------|
| CMDD82  | 310004 | 6684022 | 787 | 167.7  | -71.5 | 42.5  | 130.36 | 131    | 0.20  | 107  | 27.7  | 2040 | 484   | 2440  | 291   |
| CMDD83  | 309142 | 6685000 | 684 | 428.2  | -72   | 189.5 | 384.69 | 388.08 | 1.13  | 125  | 19.5  | 277  | 9645  | 1844  | 11055 |
| CMDD84  | 309316 | 6684544 | 687 | 336.4  | -65   | 10.5  | 311    | 313.06 | 0.83  | 271  | 145.5 | 309  | 41216 | 604   | 2226  |
| CMDD86  | 309141 | 6685000 | 684 | 392.5  | -72   | 231   | 332.44 | 334    | 0.65  | 780  | 286.5 | 8241 | 76800 | 8395  | 7505  |
| CMDD89  | 309142 | 6685000 | 684 | 377.3  | -65   | 176.5 | 327.88 | 333    | 1.84  | 159  | 60.9  | 969  | 14161 | 1245  | 7317  |
| CMDD94  | 309075 | 6685114 | 680 | 434.7  | -69.5 | 223.5 | 369    | 372.64 | 1.86  | 204  | 69.0  | 1141 | 14442 | 2101  | 11688 |
| CMDD97a | 308905 | 6684979 | 663 | 135.2  | -50   | 53.5  | 30     | 31.3   | 1.03  | 59   | 23.5  | 70   | 3301  | 701   | 3396  |
| CMDD98  | 309028 | 6685183 | 679 | 430.2  | -69   | 229.5 | 400.6  | 401    | 0.24  | 416  | 153.0 | 2450 | 39500 | 2300  | 25800 |
| CMDD99  | 308907 | 6685114 | 649 | 170.7  | -60   | 213.5 | 144.5  | 149    | 2.67  | 135  | 48.8  | 305  | 11063 | 1055  | 9582  |
| CMRC20  | 308915 | 6685026 | 658 | 78     | -56   | 267.5 | 63     | 65     | 0.99  | 204  | 88.9  | 751  | 24050 | 1313  | 5375  |
| CMRC21  | 308930 | 6685068 | 654 | 129    | -50   | 221.5 | 96     | 98     | 1.61  | 139  | 52.6  | 625  | 12870 | 783   | 8815  |
| CMRC22  | 308730 | 6685091 | 633 | 99     | -50   | 34.5  | 38     | 39     | 0.56  | 194  | 90.6  | 68   | 10500 | 2520  | 5990  |
| CMRC23  | 308815 | 6685105 | 643 | 105    | -57   | 216.5 | 45     | 49     | 2.59  | 230  | 104.5 | 293  | 17430 | 2485  | 7008  |
| CMRC24  | 308869 | 6685080 | 650 | 81     | -51   | 216.5 | 66     | 68     | 1.22  | 89   | 33.8  | 90   | 13695 | 456   | 3010  |
| CMRD07a | 308923 | 6684928 | 671 | 108    | -53   | 21.5  | 74     | 82     | 3.64  | 127  | 53.6  | 932  | 9166  | 858   | 6304  |
| CMRD08  | 308922 | 6684927 | 671 | 251.5  | -71   | 21.5  | 183.8  | 193    | 6.29  | 182  | 77.7  | 935  | 13681 | 1400  | 8590  |
| CMRD09  | 308997 | 6685076 | 650 | 243.7  | -60   | 201.5 | 159.7  | 175    | 11.50 | 122  | 42.0  | 438  | 9433  | 868   | 9563  |
| CMRD11  | 309005 | 6684984 | 654 | 262.6  | -66   | 135.5 | 218.8  | 224    | 3.40  | 452  | 212.5 | 4100 | 22239 | 5561  | 4466  |
| CMRD12  | 308998 | 6684989 | 654 | 225.8  | -66   | 175.5 | 110.1  | 113.33 | 1.35  | 875  | 313.3 | 9857 | 36304 | 12278 | 26284 |
| CMRD13  | 308905 | 6684887 | 672 | 282.3  | -57   | 36.5  | 183    | 187    | 2.47  | 607  | 278.5 | 7193 | 26079 | 6762  | 9916  |
| CMRD14  | 308904 | 6684886 | 672 | 501.95 | -65   | 17.5  | 274    | 277.1  | 0.96  | 81   | 26.6  | 209  | 6606  | 883   | 4719  |
| CMRD15  | 308921 | 6684926 | 671 | 251.5  | -50   | 353.5 | 113.3  | 122.3  | 3.06  | 192  | 71.7  | 633  | 14929 | 1153  | 15079 |
| CMRD16  | 308921 | 6684926 | 671 | 353.9  | -65   | 353.5 | 294    | 309    | 3.74  | 180  | 64.6  | 1102 | 19020 | 1289  | 8068  |
| CMRD17  | 309001 | 6684985 | 655 | 213.3  | -52   | 141.5 | 109.9  | 116.25 | 2.69  | 141  | 55.5  | 628  | 13208 | 1379  | 4395  |
| CMRD18  | 309765 | 6684096 | 787 | 273.4  | -55   | 34.5  | 248    | 256.6  | 5.30  | 108  | 40.3  | 2135 | 1673  | 1654  | 971   |
| CMRD19  | 310082 | 6683918 | 776 | 189.6  | -61   | 35.5  | 145    | 150.07 | 1.79  | 149  | 53.3  | 2575 | 2024  | 2678  | 712   |
| CMRD27  | 308923 | 6684927 | 671 | 195.2  | -68   | 21.5  | 136    | 144    | 2.38  | 119  | 44.0  | 457  | 12721 | 870   | 5681  |
| CMRD28  | 308923 | 6684926 | 671 | 189.6  | -68   | 44.5  | 139.7  | 148.1  | 2.77  | 160  | 67.6  | 1087 | 12352 | 938   | 8402  |
| CMRD28a | 308923 | 6684926 | 671 | 159.6  | -63   | 54.5  | 138    | 145.5  | 2.74  | 156  | 64.2  | 880  | 14099 | 1239  | 5913  |
| CMRD32  | 308730 | 6685044 | 634 | 212.7  | -59   | 34.5  | 145.55 | 145.91 | 0.17  | 971  | 659.2 | 1296 | 23539 | 5413  | 35208 |

| Hole    | MGA56E | MGA56N  | RL  | Depth  | Dip   | Azi   | From   | То     | Width | AgEQ | Ag    | Cu    | Pb    | Sn    | Zn    |
|---------|--------|---------|-----|--------|-------|-------|--------|--------|-------|------|-------|-------|-------|-------|-------|
| CMRD58  | 308872 | 6685079 | 650 | 78.95  | -51   | 216.5 | 63     | 66     | 2.12  | 157  | 79.6  | 205   | 9707  | 922   | 9123  |
| CMRD59  | 308905 | 6684979 | 663 | 64.25  | -69   | 39    | 48.5   | 56     | 2.08  | 283  | 104.7 | 1526  | 29435 | 1954  | 13324 |
| CMRD61  | 309322 | 6684502 | 691 | 393.5  | -70   | 36.5  | 369.03 | 370    | 0.43  | 159  | 56.4  | 1758  | 10545 | 1384  | 7840  |
| CMRD62  | 309238 | 6684877 | 697 | 250    | -51.5 | 161   | 226.33 | 228.6  | 0.87  | 110  | 34.8  | 1175  | 3248  | 833   | 10351 |
| CMRD63  | 309237 | 6684878 | 697 | 420.4  | -65   | 161   | 393    | 399.88 | 1.64  | 370  | 176.9 | 995   | 40068 | 1032  | 17860 |
| CMRD64  | 309237 | 6684877 | 697 | 327.4  | -61   | 161   | 298.6  | 304.6  | 1.79  | 279  | 148.3 | 471   | 33508 | 948   | 6415  |
| CMRD65  | 309866 | 6684041 | 794 | 330.5  | -70   | 35.5  | 287    | 290.7  | 1.34  | 784  | 504.8 | 4013  | 39883 | 5948  | 1001  |
| CMRD66  | 309861 | 6684040 | 793 | 231    | -53   | 52.5  | 210.45 | 213.14 | 1.71  | 87   | 20.6  | 836   | 3296  | 1774  | 2824  |
| CMRD67  | 310081 | 6683923 | 777 | 261    | -72.5 | 26.5  | 231    | 236    | 1.53  | 140  | 71.9  | 1467  | 7450  | 1324  | 1251  |
| CMRD68  | 310152 | 6683862 | 776 | 150    | -51.5 | 35.5  | 116.79 | 118.9  | 1.15  | 321  | 125.7 | 7635  | 7696  | 4014  | 541   |
| CMRD69  | 310150 | 6683860 | 776 | 252.2  | -69   | 35.5  | 228    | 235    | 2.07  | 236  | 101.1 | 3493  | 8981  | 3169  | 1002  |
| CMRD71  | 310149 | 6683858 | 776 | 388.6  | -74   | 35.5  | 365    | 365.74 | 0.17  | 43   | 30.2  | 199   | 2800  | 136   | 86    |
| CMRD72a | 309763 | 6684093 | 787 | 442.9  | -68.5 | 34.5  | 402    | 415    | 4.51  | 84   | 29.0  | 1077  | 2625  | 1431  | 1382  |
| CMRD75  | 308903 | 6685119 | 648 | 405.6  | -74   | 246.5 | 244    | 245    | 0.64  | 38   | 5.7   | 24    | 2440  | 755   | 2710  |
| CMRD76  | 309234 | 6684923 | 699 | 561.17 | -73   | 198   | 540    | 541.91 | 0.46  | 287  | 147.6 | 2160  | 16861 | 3015  | 2018  |
| CMRD78  | 309523 | 6684255 | 738 | 456.9  | -70   | 35.5  | 413    | 414.22 | 0.70  | 852  | 505.1 | 4315  | 55628 | 4181  | 20323 |
| CMRD79  | 309234 | 6684922 | 699 | 450.4  | -73.5 | 196.5 | 425.19 | 428    | 0.69  | 105  | 43.8  | 1365  | 9535  | 645   | 2452  |
| CMRD85  | 309316 | 6684540 | 687 | 338.7  | -68.5 | 8.5   | 332.5  | 334.55 | 0.94  | 192  | 79.2  | 883   | 9790  | 2381  | 7501  |
| CMRD87  | 308934 | 6685072 | 654 | 183.2  | -70   | 221.5 | 149    | 155    | 3.72  | 205  | 80.4  | 642   | 21275 | 1256  | 11032 |
| CMRD88  | 308935 | 6685073 | 654 | 242.3  | -80   | 219.5 | 177.45 | 180    | 1.26  | 216  | 92.4  | 679   | 17392 | 1497  | 11887 |
| CMRD90  | 310311 | 6683895 | 785 | 114.7  | -56   | 219   | 72.75  | 83     | 6.50  | 283  | 122.6 | 3897  | 5066  | 4437  | 1564  |
| CMRD91  | 310353 | 6683943 | 788 | 218.5  | -61   | 218   | 188    | 190.65 | 1.58  | 129  | 74.9  | 1553  | 5413  | 978   | 605   |
| CMRD92  | 310431 | 6683889 | 788 | 177.2  | -50   | 217.5 | 151    | 153    | 1.64  | 60   | 17.8  | 232   | 6300  | 520   | 3595  |
| CMRD93  | 310433 | 6683891 | 788 | 255.6  | -67   | 216.5 | 222.8  | 223.82 | 0.52  | 936  | 381.6 | 17553 | 20112 | 13635 | 1548  |
| CMRD95  | 308936 | 6685035 | 657 | 96.6   | -59   | 219   | 78.53  | 84     | 3.42  | 247  | 109.6 | 1474  | 22446 | 2008  | 6267  |
| CMRD96  | 308901 | 6684981 | 662 | 160.7  | -50   | 1.5   | 39     | 44     | 2.25  | 224  | 101.7 | 1112  | 18598 | 1389  | 9716  |

### Table: True Width Drill Intersections from the Conrad Greisen Zone

This table contains intersections across the full width of the Greisen Zone.

| Hole           | MGA56E | MGA56N  | RL  | Depth  | Dip | Azi   | From   | То     | Width | AgEQ | Ag   | Cu  | Pb    | Sn   | Zn    |
|----------------|--------|---------|-----|--------|-----|-------|--------|--------|-------|------|------|-----|-------|------|-------|
| CMDD100        | 308908 | 6685079 | 653 | 104.1  | -50 | 220   | 31     | 39.6   | 6.78  | 129  | 49.3 | 71  | 5363  | 1862 | 7234  |
| CMDD100        | 308908 | 6685079 | 653 | 104.1  | -50 | 220   | 39.95  | 58     | 13.55 | 192  | 82.9 | 122 | 9436  | 2492 | 8684  |
| CMDD101        | 308909 | 6685079 | 653 | 121.9  | -62 | 209   | 45     | 79     | 17.32 | 148  | 57.4 | 340 | 10809 | 1284 | 9199  |
| <b>CMDD102</b> | 308880 | 6685117 | 648 | 131.6  | -55 | 219.5 | 48     | 50     | 1.65  | 143  | 57.6 | 174 | 11300 | 1243 | 8165  |
| <b>CMDD102</b> | 308880 | 6685117 | 648 | 131.6  | -55 | 219.5 | 53.66  | 54.03  | 0.3   | 127  | 50.3 | 85  | 5680  | 1350 | 9290  |
| CMDD102        | 308880 | 6685117 | 648 | 131.6  | -55 | 219.5 | 57     | 59     | 1.47  | 94   | 36.3 | 63  | 4955  | 1258 | 4935  |
| CMDD103        | 308844 | 6685103 | 645 | 86.7   | -50 | 200   | 27     | 29     | 1.8   | 201  | 74.0 | 110 | 12990 | 2755 | 9690  |
| CMDD30         | 308869 | 6685078 | 650 | 144.35 | -68 | 181.5 | 7.6    | 16     | 3.92  | 148  | 63.6 | 115 | 7827  | 1894 | 6442  |
| CMDD30         | 308869 | 6685078 | 650 | 144.35 | -68 | 181.5 | 26.1   | 29     | 1.08  | 104  | 38.4 | 63  | 4694  | 1533 | 5761  |
| CMDD30         | 308869 | 6685078 | 650 | 144.35 | -68 | 181.5 | 32.1   | 64     | 9     | 123  | 36.6 | 175 | 8421  | 1678 | 7892  |
| CMDD35         | 308933 | 6685075 | 654 | 229.6  | -65 | 249.5 | 69.8   | 86.9   | 7.76  | 117  | 32.7 | 174 | 7416  | 1574 | 8708  |
| CMDD35         | 308933 | 6685075 | 654 | 229.6  | -65 | 249.5 | 92.8   | 99.4   | 3.51  | 247  | 83.0 | 591 | 26989 | 1943 | 14211 |
| CMDD38         | 308879 | 6685089 | 650 | 152    | -68 | 213.5 | 40.8   | 46     | 3.94  | 67   | 19.8 | 57  | 3271  | 938  | 5104  |
| CMDD38         | 308879 | 6685089 | 650 | 152    | -68 | 213.5 | 49     | 52     | 1.67  | 277  | 98.0 | 455 | 25194 | 4326 | 4547  |
| CMDD38         | 308879 | 6685089 | 650 | 152    | -68 | 213.5 | 60     | 66     | 3.01  | 137  | 32.8 | 202 | 11812 | 1781 | 9725  |
| CMDD38         | 308879 | 6685089 | 650 | 152    | -68 | 213.5 | 67.4   | 68     | 0.3   | 115  | 20.4 | 143 | 6290  | 2040 | 9460  |
| CMDD55         | 309239 | 6684867 | 696 | 201    | -66 | 224.5 | 147.35 | 147.91 | 0.27  | 41   | 36.0 | 0   | 500   | 100  | 100   |
| CMDD99         | 308907 | 6685114 | 649 | 170.7  | -60 | 213.5 | 73     | 86     | 8.12  | 102  | 29.1 | 324 | 6322  | 1097 | 8494  |
| CMDD99         | 308907 | 6685114 | 649 | 170.7  | -60 | 213.5 | 89     | 91     | 1.19  | 81   | 29.4 | 111 | 5665  | 893  | 4745  |
| CMDD99         | 308907 | 6685114 | 649 | 170.7  | -60 | 213.5 | 93.2   | 110    | 9.44  | 115  | 36.5 | 189 | 11332 | 990  | 7677  |
| CMRC21         | 308930 | 6685068 | 654 | 129    | -50 | 221.5 | 42     | 43     | 0.68  | 118  | 36.1 | 197 | 5850  | 1590 | 8920  |
| CMRC21         | 308930 | 6685068 | 654 | 129    | -50 | 221.5 | 45     | 46     | 0.68  | 91   | 31.1 | 197 | 4760  | 1085 | 6360  |
| CMRC21         | 308930 | 6685068 | 654 | 129    | -50 | 221.5 | 56     | 58     | 1.46  | 177  | 79.5 | 79  | 8100  | 2225 | 8045  |
| CMRC21         | 308930 | 6685068 | 654 | 129    | -50 | 221.5 | 63     | 79     | 9.55  | 122  | 39.6 | 101 | 8124  | 1836 | 6032  |
| CMRC24         | 308869 | 6685080 | 650 | 81     | -51 | 216.5 | 5      | 10     | 3.76  | 167  | 80.8 | 108 | 8060  | 2033 | 5791  |
| CMRC24         | 308869 | 6685080 | 650 | 81     | -51 | 216.5 | 12     | 13     | 0.99  | 57   | 17.4 | 33  | 1960  | 940  | 3840  |
| CMRC24         | 308869 | 6685080 | 650 | 81     | -51 | 216.5 | 20     | 38     | 12.08 | 173  | 67.7 | 100 | 11347 | 2391 | 6752  |

| Hole   | MGA56E | MGA56N  | RL  | Depth | Dip | Azi   | From   | То     | Width | AgEQ | Ag    | Cu  | Pb    | Sn   | Zn    |
|--------|--------|---------|-----|-------|-----|-------|--------|--------|-------|------|-------|-----|-------|------|-------|
| CMRC25 | 308902 | 6685118 | 648 | 96    | -51 | 216.5 | 58     | 64     | 3.44  | 102  | 29.7  | 166 | 6432  | 1158 | 8588  |
| CMRC25 | 308902 | 6685118 | 648 | 96    | -51 | 216.5 | 75     | 78     | 1.87  | 78   | 25.9  | 86  | 5593  | 918  | 5050  |
| CMRC25 | 308902 | 6685118 | 648 | 96    | -51 | 216.5 | 88     | 91     | 2.45  | 92   | 30.3  | 89  | 4987  | 1362 | 5390  |
| CMRC57 | 308869 | 6685081 | 650 | 46    | -51 | 216.5 | 7      | 15     | 3.82  | 159  | 73.2  | 142 | 8768  | 1896 | 6106  |
| CMRC57 | 308869 | 6685081 | 650 | 46    | -51 | 216.5 | 21     | 33     | 2.63  | 149  | 57.3  | 119 | 8438  | 1981 | 7381  |
| CMRC57 | 308869 | 6685081 | 650 | 46    | -51 | 216.5 | 35     | 39     | 3.53  | 236  | 90.0  | 204 | 17898 | 2972 | 10010 |
| CMRC60 | 308812 | 6685102 | 642 | 112   | -50 | 40    | 5      | 6      | 0.47  | 80   | 28.4  | 50  | 2460  | 957  | 6950  |
| CMRD09 | 308997 | 6685076 | 650 | 243.7 | -60 | 201.5 | 119.05 | 122.15 | 1.87  | 100  | 24.9  | 169 | 11556 | 899  | 7363  |
| CMRD09 | 308997 | 6685076 | 650 | 243.7 | -60 | 201.5 | 123.95 | 134.6  | 7.55  | 66   | 15.0  | 560 | 3796  | 865  | 4788  |
| CMRD15 | 308921 | 6684926 | 671 | 251.5 | -50 | 353.5 | 159    | 169    | 4.05  | 93   | 19.2  | 237 | 9155  | 931  | 8254  |
| CMRD15 | 308921 | 6684926 | 671 | 251.5 | -50 | 353.5 | 171    | 175    | 1.82  | 65   | 13.7  | 139 | 5693  | 699  | 5885  |
| CMRD15 | 308921 | 6684926 | 671 | 251.5 | -50 | 353.5 | 177    | 178    | 0.55  | 115  | 33.2  | 174 | 8600  | 1070 | 10400 |
| CMRD15 | 308921 | 6684926 | 671 | 251.5 | -50 | 353.5 | 180    | 206    | 12.18 | 80   | 17.7  | 243 | 6757  | 825  | 7377  |
| CMRD15 | 308921 | 6684926 | 671 | 251.5 | -50 | 353.5 | 208.4  | 208.9  | 0.1   | 305  | 123.0 | 471 | 24500 | 2670 | 16800 |
| CMRD58 | 308872 | 6685079 | 650 | 78.95 | -51 | 216.5 | 7      | 11     | 2.41  | 135  | 67.5  | 95  | 6966  | 1645 | 3843  |
| CMRD58 | 308872 | 6685079 | 650 | 78.95 | -51 | 216.5 | 14     | 16     | 1.42  | 99   | 41.3  | 45  | 4545  | 1420 | 4320  |
| CMRD58 | 308872 | 6685079 | 650 | 78.95 | -51 | 216.5 | 18     | 35     | 12.59 | 146  | 54.8  | 99  | 9136  | 2109 | 6158  |
| CMRD75 | 308903 | 6685119 | 648 | 405.6 | -74 | 246.5 | 154    | 156    | 0.85  | 257  | 120.0 | 917 | 23553 | 1298 | 11913 |
| CMRD87 | 308934 | 6685072 | 654 | 183.2 | -70 | 221.5 | 77     | 78     | 0.4   | 87   | 20.4  | 193 | 3390  | 593  | 12700 |
| CMRD87 | 308934 | 6685072 | 654 | 183.2 | -70 | 221.5 | 80     | 82     | 0.69  | 82   | 22.9  | 123 | 2960  | 921  | 8845  |
| CMRD87 | 308934 | 6685072 | 654 | 183.2 | -70 | 221.5 | 84     | 89     | 1.79  | 70   | 24.0  | 115 | 4622  | 721  | 4981  |
| CMRD87 | 308934 | 6685072 | 654 | 183.2 | -70 | 221.5 | 97     | 98     | 0.75  | 69   | 29.2  | 102 | 5810  | 408  | 4640  |
| CMRD87 | 308934 | 6685072 | 654 | 183.2 | -70 | 221.5 | 102    | 109    | 2.29  | 106  | 25.3  | 251 | 8643  | 997  | 10110 |
| CMRD87 | 308934 | 6685072 | 654 | 183.2 | -70 | 221.5 | 111    | 114    | 2.09  | 101  | 25.6  | 151 | 7657  | 1211 | 8267  |
| CMRD87 | 308934 | 6685072 | 654 | 183.2 | -70 | 221.5 | 118    | 137    | 7.5   | 133  | 34.9  | 438 | 13326 | 1176 | 10218 |
| CMRD88 | 308935 | 6685073 | 654 | 242.3 | -80 | 219.5 | 131    | 159    | 8.97  | 142  | 45.2  | 439 | 11036 | 1086 | 12000 |
| CMRD88 | 308935 | 6685073 | 654 | 242.3 | -80 | 219.5 | 161    | 168    | 2.72  | 185  | 61.5  | 770 | 14787 | 1557 | 12779 |
| CMRD96 | 308923 | 6684926 | 671 | 159.6 | -63 | 54.5  | 79     | 85     | 2.09  | 84   | 31.8  | 55  | 4342  | 1229 | 3993  |
| CMRD96 | 308901 | 6684981 | 662 | 160.7 | -50 | 1.5   | 86.56  | 97     | 4.92  | 112  | 31.4  | 155 | 7339  | 1512 | 7931  |

| Hole   | MGA56E | MGA56N  | RL  | Depth | Dip | Azi | From   | То  | Width | AgEQ | Ag   | Cu  | Pb    | Sn   | Zn    |
|--------|--------|---------|-----|-------|-----|-----|--------|-----|-------|------|------|-----|-------|------|-------|
| CMRD96 | 308901 | 6684981 | 662 | 160.7 | -50 | 1.5 | 100    | 112 | 4.79  | 152  | 37.7 | 449 | 16224 | 937  | 14311 |
| CMRD96 | 308901 | 6684981 | 662 | 160.7 | -50 | 1.5 | 114    | 126 | 5.44  | 122  | 37.6 | 294 | 11204 | 1140 | 8451  |
| CMRD96 | 308901 | 6684981 | 662 | 160.7 | -50 | 1.5 | 129    | 131 | 1.07  | 82   | 32.3 | 112 | 5275  | 577  | 6745  |
| CMRD96 | 308901 | 6684981 | 662 | 160.7 | -50 | 1.5 | 132.36 | 139 | 3.82  | 151  | 58.9 | 521 | 14554 | 1197 | 6939  |