Forrestania Resources Ltd Suite 2, 38 Colin Street West Perth WA 6005 **ASX: FRS** Phone +61 8 6391 0113 info@forrestaniaresources.com.au ACN 647 899 698 forrestaniaresources.com.au 9 May 2025 ## **ASX RELEASE** # Ada Ann 1m drilling results confirm high-grade gold, up to 26g/t Au. ## **Highlights:** - 1m drilling results from Ada Ann confirm high grade, including: - o AARC0029 7m @ 4.3g/t Au (from 72m), including 1m @ 25.6g/t Au - o AARC0028 3m @ 7.8g/t Au (from 74m), including 1m @ 22.2g/t Au - AARC0024 3m @ 5.9g/t Au (from 82m), including 1m @ 16g/t Au and 2m @ 3.6g/t Au (from 70m) - Mineralisation footprint <u>extended ~60m south & ~30m north</u> of historic mineralisation. - Mineralisation remains open at depth and along strike in both directions, with the strike of Au mineralisation increased to ~310m. - Significant FRS results from phase 1 drilling¹ at Ada Ann include: - o AARC0002 2m @ 10.7g/t Au (from 62m), including 1m @ 21g/t Au - O AARC0006 7m @ 2.1g/t Au (from 34m), including 1m @ 7.3g/t Au - AARC0020 6m @ 1.6g/t Au (from 62m), including 1m @ 5.8g/t Au - Historic drilling results (previously released¹) from Ada Ann include: - AA28 4m @ 12.8g/t Au (from 25m) - BR19 16m @ 2.6g/t Au (from 24m) - AA05 6m @ 6.5g/t Au (from 16m) Forrestania Resources Limited (ASX: FRS) ("FRS" or "the Company) is pleased to confirm the 1m results from the second phase of drilling at the Ada Ann prospect at the Bonnie Vale Project, near Coolgardie, in Western Australia's prolific Eastern Goldfields. Having already defined strong, consistent, high-grade Au results from the maiden drilling programme at Ada Ann, the Company is pleased to report continued exploration success with **further high-grade Au drilling results** from the Company's phase 2 drilling programme. ¹ ASX: FRS Ada Ann Au 1m drilling results & phase 2 drilling completed, 19th February 2025 #### Forrestania Resources' Chairman John Hannaford commented: "These 1m results from Ada Ann are highly significant, with grades up to 26g/t Au, underlining the high-grade potential of the system. Pleasingly, we are seeing some thickening of the mineralised zones at depth. The drill programme extended the known mineralised zones to the north and south and the prospect continues to remain open in all directions. We look forward to coming back to drilling at the Bonnie Vale project later in the year." **Figure 1.** Forrestania Resource's Bonnie Vale Project (E15/1632 & E15/1534) is in close proximity to major gold mines and deposits. Map includes simplified geological interpretation with WA Government magnetics. ASX: EVN Mungari lies ~5km to the east of the Bonnie Vale Project area. (ASX: EVN Mungari mine life taken from ASX: EVN Mungari mine life extended to 15 years - 5th June 2023; Mungari Mineral resource estimate figure of 5.9Moz & Rayjax Ore Reserve taken from ASX: EVN Mungari Mineral Resource & Ore Statement as at 31st December 2023 - 14th February 2024; ASX: FML Bonnie Vale mineral resource update, 26th September 2023.) ### Ada Ann – Phase 2 drilling programme The Company has recently received the 1m Au assay results from its phase 2 drilling programme (14 RC holes for 1017m) at the Ada Ann prospect. The drilling was designed to follow up on the results from phase 1 and to increase the mineralisation footprint to the north, south and at depth. The results from the Company's phase 2 drilling programme have confirmed consistent mineralised structures at Ada Ann, which include the **highest Au intercept** seen at Ada Ann from FRS drilling – **25.6g/t Au** (and the second highest ever intercepted at the prospect) confirming the high-grade potential at Ada Ann: | Hole_ID | From | То | Width | g/t Au | |--------------------------|--------------------------|-----------|--------|--------| | AA06 | 19 | 26 | 7 | 4.4 | | | includes | 1m @ 26.1 | g/t Au | | | AARC0029 | 72 | 79 | 7 | 4.3 | | | includes | 1m @ 25.6 | g/t Au | | | AARC0028 | 74 | 77 | 3 | 7.8 | | | includes | 1m @ 22.2 | g/t Au | | | AARC0002 | 62 | 64 | 2 | 10.7 | | | includes | 1m @ 21g | /t Au | | | AA27 | 41 | 45 | 4 | 7.3 | | | includes | 1m @ 20.2 | g/t Au | | | AA25 | 35 | 38 | 3 | 5.4 | | | includes | 1m @ 17.6 | g/t Au | | | BR22 | 24 | 34 | 10 | 2.3 | | | includes 1m @ 16.5g/t Au | | | | | AA04 | 4 | 11 | 7 | 5.0 | | includes 1m @ 16.2g/t Au | | | | | | AARC0024 | 82 | 85 | 3 | 5.9 | | includes 1m @ 16g/t Au | | | | | | AA05 | 16 | 22 | 6 | 6.5 | | | includes 1m @ 15.7g/t Au | | | | | AA49 | 14 | 16 | 2 | 8.1 | | | includes 1m @ 15.6g/t Au | | | | Table 1. Significant, high-grade 1m intercepts from the Ada Ann prospect (including FRS and historic drilling results). All intercepts are based on a cut-off grade of 0.3g/t Au allowing for internal dilution by two "waste" or sub-grade (<0.3g/t Au) samples. Drilling intercept widths are down-hole widths and not true widths. Holes with prefix AARC have been drilled by FRS. Samples were fire assayed and full FRS results and details can be seen within the JORC table and the supplementary data at the end of this announcement. Figure 2. Historic and recent downhole max results at the Ada Ann prospect with significant FRS phase 2 results indicated, along with location of cross and long sections (which can be seen below and within the supplementary data). Drilling results are down hole width and not true width. Encouragingly, the drilling programme has again returned consistent geological structures which has resulted in further consistent results confirming high-grade Au at depth, with open mineralisation in all directions. With the Au mineralisation continuing to extend north and south, the Company is hopeful of extending the mineralisation in both directions and increasing the strike extent with further drilling. Approximately 225m south of AARC0022 is an historic RC hole, this drill hole - AA14² is located within an area of shallow historic workings and returned highly anomalous, historic, composite values including: 4m @ 0.3g/t Au (from 0m), 4m @ 0.1g/t Au (from 4m) and 4m @ 0.1g/t Au (from 32m), but was never followed up (see Figure 3); only 1 hole was ever drilled within this 225m strike of which no historic values are available. Additionally, mineralisation has been extended ~30m to the north by the recent FRS drilling, with both AARC0034 and AARC0035 returning shallow, Au mineralisation. There is no evidence to suggest any historic drilling has ever taken place along strike to the north of the Company's recent drilling, leaving further opportunity to increase the strike length of the mineralisation. Given the low angle of the mineralised structure seen to date, with the Au mineralisation estimated to dip at approximately 25°-30°, the true width of the recent FRS drilling results are potentially very similar to the reported down-hole widths (the down-hole widths are estimated to be approximately ~98% of the true width, based on the 60° drill holes completed by FRS). This would suggest that the significant, high-grade down-hole drilling intercepts from the FRS drilling are close to the actual true width of the mineralisation. Combined with the high-grade intersections seen at depth, these results suggest a strong potential for mining at the Ada Ann prospect. ² ASX: FRS 222g/t Au rock chip at the Bonnie Vale Project, Eastern Goldfields, 18th November 2024 **Figure 3.** Image showing historic and FRS results along with the potential extension to Au mineralisation at Ada Ann, with historic drill holes AA14 shown ~225m south of AARC0022; AA14 shows highly anomalous Au values, close to historic workings. Only one historic hole is known to have been drilled between AARC0022 and AA14 with no assays available for that hole. **Figure 4.** Cross section (C-C'), looking north,~10m section view, showing interpreted geology and Au mineralisation of historic drilling (black text) and significant, recent FRS drilling (red text). Drilling results are down hole width and not true width. Figure 5. Cross section (D-D'), looking north, ~10m section view, showing interpreted geology and Au mineralisation of historic drilling (black text) and significant, recent FRS drilling (red text). Drilling results are down hole width and not true width. **Figure 6.** Cross section (D-D'), looking north, ~20m section view, showing interpreted geology and Au mineralisation of historic drilling. Drilling results are down hole width and not true width. **Figure 7.** Cross section (F-F'), looking north, ~5m section view, showing interpreted geology and Au mineralisation of historic drilling. Drilling results are down hole width and not true width. **Figure 8.** Long section (G-G') looking west at the Ada Ann deposit. Significant FRS drilling results in red text, historic drilling values in black. Drilling results are down hole width and not true width ## **Next steps** Following on from this announcement, the Company will now focus its attention on drilling at the Lady Lila prospect³, whilst continuing analysis and planning for further drilling at Ada Ann and the Bonnie Vale project. This announcement has been authorised for release by Forrestania Resources' Board. For further information please contact: John Hannaford Chairman Phone +61(0) 419 042 769 john@forrestaniaresources.com.au _..._ ³ ASX: FRS Lady Lila gold review and market update, 5th March 2025 #### **About Forrestania Resources Limited** Forrestania Resources Limited is an Australian resources company exploring for gold, copper and lithium in the Forrestania, Southern Cross and Eastern Goldfields regions of Western Australia. The company's Forrestania Project hosts gold and lithium prospects in close proximity to the historic Bounty gold mine, the Covalent Mt Holland Lithium Mine, and the operating Flying Fox, and Spotted Quoll nickel mines in the well-endowed southern Forrestania Greenstone Belt. The Eastern Goldfields tenements are located within the Norseman-Wiluna Greenstone Belt of the Yilgarn Craton, close to Coolgardie,
Menzies and Leonora. In total, this includes twelve Exploration Licences and four Exploration Licence Applications, covering a total area of ~1,000km². The tenements are predominately non-contiguous and scattered over 300km length, overlying or on the margins of greenstone belts. The Southern Cross Project is located in the Southern Cross Greenstone Belt and has significant potential for gold mineralisation. #### Competent person's statement The information in this report that relates to exploration results is based on and fairly represents information compiled by Mr. Ashley Bennett. Mr. Bennett is the Exploration Manager of Forrestania Resources Limited and is a member of the Australian Institute of Geoscientists. Mr. Bennett has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Bennett consents to the inclusion in this report of the matters based on information in the form and context in which they appear. #### **Disclosure** The information in this announcement is based on the following publicly available ASX announcements and Forrestania Resources IPO, which is available from https://www2.asx.com.au/ The Company confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning the relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements. #### Cautionary statement regarding values & forward-looking information The figures, valuations, forecasts, estimates, opinions and projections contained herein involve elements of subjective judgment and analysis and assumption. Forrestania Resources does not accept any liability in relation to any such matters, or to inform the Recipient of any matter arising or coming to the company's notice after the date of this document which may affect any matter referred to herein. Any opinions expressed in this material are subject to change without notice, including as a result of using different assumptions and criteria. This document may contain forward-looking statements. Forward-looking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "expect", and "intend" and statements than an event or result "may", "will", "should", "could", or "might" occur or be achieved and other similar expressions. Forwardlooking information is subject to business, legal and economic risks and uncertainties and other factors that could cause actual results to differ materially from those contained in forward-looking statements. Such factors include, among other things, risks relating to property interests, the global economic climate, commodity prices, sovereign and legal risks, and environmental risks. Forward-looking statements are based upon estimates and opinions at the date the statements are made. Forrestania Resources undertakes no obligation to update these forward-looking statements for events or circumstances that occur subsequent to such dates or to update or keep current any of the information contained herein. The Recipient should not place undue reliance upon forward-looking statements. Any estimates or projections as to events that may occur in the future (including projections of revenue, expense, net income and performance) are based upon the best judgment of Forrestania Resources from information available as of the date of this document. There is no guarantee that any of these estimates or projections will be achieved. Actual results will vary from the projections and such variations may be material. Nothing contained herein is, or shall be relied upon as, a promise or representation as to the past or future. Forrestania Resources, its affiliates, directors, employees and/or agents expressly disclaim any and all liability relating or resulting from the use of all or any part of this document or any of the information contained herein. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. If any geochemical sampling data is reported in this announcement, it is not intended to support a mineral resources estimation. Any drilling widths given in this announcement are down-hole widths and do not represent true widths. # Appendix 1 – JORC TABLE 1 Section 1 Sampling Techniques and Data | Criteria | JORC Code Explanation | Commentary | |---------------------|---|---| | Sampling techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | All FRS (AARC0001- AARC0035) were completed by RC drilling. Topdrill were the drilling contractor and utilized a Schramm C685. Industry standard practices were applied to the drilling programme and sampling. Representative 4m composite samples were taken from the spoil piles, with a hand size aluminium scoop. These samples were collected in a numbered calico bag, recorded by FRS staff and submitted to ALS Kalgoorlie (sample sizes were approximately 1.5kg up to 2.5kg were collected). 1m single splits were also taken off the rig (in numbered calico bags) from the cone splitter and may be submitted to the lab at a later
date, based on the results from the 4m composites. The details of these samples were recorded by FRS geologists. Regular air and manual cleaning of the rig cyclone was undertaken to remove potential contaminants. The 4m composite samples were submitted to ALS Kalgoorlie; these samples were then trucked to ALS Perth, Canning Vale. AARC0022-AARC0035: All samples (both 4m composites and 1m samples) were submitted for Au analysis using Au-AA25 methodology (fire assay) which uses a fire assay fusion FA-FUS03, with an AAS finish. AARC0001-AARC0021: Samples were submitted for Au analysis using AuMe-TL43 (aqua regia); Aqua regia digestion of 25g sample, followed by trace Au and multi-element analyses by ICP-MS and ICP-AES. 1m samples were submitted for Au analysis using Au-AA25 methodology (fire assay) which uses a fire assay fusion FA-FUS03, with an AAS finish. Historical drilling at Ada Ann: Holes with AA1-AA51 were completed by RC drilling, 1m samples were laid on the ground and samples that were thought to be mineralized were sent for assay, some were composited and some were not; other metre intervals that were not interpreted to be mineralized were not assayed. Samples are believed to have been assayed by Aqua Regia techniques at Kalgoorlie assay laboratories. Laboratory documentation for all the assays is not available. <li< td=""></li<> | | Criteria | JORC Code Explanation | Commentary | |--------------------|---|---| | | · · · · · · · · · · · · · · · · · · · | (as presumably would-have been the case with Stockwell's origin | | | | samples) as many of the samples were cemented into hard masses, som | | | | were wet and the cost of drying pulverising and splitting the samples wa | | | | not thought to be warranted. Instead as representative a sample as possib | | | | was obtained by breaking up the samples and scoop sampling througho | | | | the sample | | | | Holes BR1-19 were completed by RAB drilling, drill samples were | | | | collected over a 2m interval, via a cyclone, a representative sample was | | | | taken using a pipe, composited to 6m samples and sent to Genalysis for | | | | fire assay. Historical reports suggest that any sample returning a 6m | | | | composite value >0.1g/t Au had the corresponding 2m samples submitte | | | | to Genalysis for fire assay, but not all of these 2m assays are available. | | | | Holes BR20-24 were also completed by RAB drilling, one metre samples | | | | were collected and then speared, composited over four metre intervals | | | | and submitted to Genalysis for gold analysis by AAS (50gm charge). | | | | Intervals returning greater than 0.25g/t gold were resampled on a one | | | | metre basis and re-assayed, using the same technique. | | | | Holes BR25-29 were drilled by RC; one metre samples were collected at | | | | then speared, composited over four metre intervals and submitted to | | | | Genalysis for gold analysis by AAS (50gm charge). Intervals returning | | | | greater than 0.25g/t gold were resampled on a one metre basis and re- | | | | assayed, using the same technique. | | | | Holes with prefix AXRC were completed by Amex Resources and the holes with the prefix AXRC were completed by Axrc were completed | | | | holes were drilled by RC. No other details regarding sampling and | | | | assaying techniques are given in the ASX release and only those results | | | | announced by AMEX Resources are utilized here. A number of AXRC | | | | holes in the cross sections and maps have no known drilling results as AMEX did not release full assay data. | | | | For any FRS rock chip/percussion samples: A representative sample wa | | | | taken of any outcrops sampled by FRS and the location GPS'd. For | | | | samples taken from historic spoil piles, a mineralized zone was identified | | | | by FRS geologists, a representative sample was then taken of this zone | | | | and the location GPS'd. Initially, all samples were sampled by ALS for | | | | "Trace Level Au by aqua regia extraction with ICP-MS finish. 25g nomin | | | | sample weight (Au-TL43); a number of these results were over the | | | | detection limit and as such, these were re-assayed for Au by 25g Aqua | | | | Regia Digestion - Overrange analysis of digested sample (Au-AROR43) | | lling techniques • | Drill type (e.g. core, reverse circulation, open- hole | All FRS (AARC0001- AARC0035) were completed by RC drilling; RC | | | hammer, rotary air blast, auger, Bangka, sonic, etc.) and | drilling was typically undertaken using a 5 1/4" hammer bit. | | | details (e.g. core diameter, triple or standard tube, depth | | | Criteria | JORC Code Explanation | Commentary | |--|--
---| | | of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). | Holes at Ada Ann were drilled using both RAB and RC rigs (see above for details); due to the historic nature of the reporting, the only details about the Rigs utilised are available for AA52-AA58 which were completed using Mole Pioneer rig with a 4.5 inch sampling hammer and a Schramm rig with a 5 inch face sampling hammer and BR1-19 which utilized a Warman drill rig operated by Westralian Diamond Drilling, BR20-24 drilled with a Mole Pioneer rig from Westralian Diamond Drillers of Boulder. This rig proved unsatisfactory in the hard ground encountered at relatively shallow depths and a Warman RC rig was used for holes BRC25-29 | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | For all FRS drilling, all percussion sample recoveries were noted in the sampling and geological logs. No significant issues were noted for sample recoveries. Moisture was also logged, but no wet samples were recorded during the programme. No known sampling bias is known to have taken place and no known relationship exists between grade and sample recovery, although given the coarse nature of the gold at Ada Ann; this may have a negative effect on the | | D)
5 | | assay values returned. No known sample bias has been noted in any WAMEX reports for the historic drilling and Ada Ann. For all of the historic drilling at Ada Ann, recovery details are unknown, however site visits have determined that most samples appear to be consistent in size. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. | All of the drilled percussion chips from the FRS RC programmes were geologically logged by a qualified geologist to a level of detail that could support a mineral resource estimation, mining studies and metallurgical studies. The drilling was logged on site with every metre studied and logge and exported to the Company database. Qualitative logging included lithology, alteration and textures; quantitative logging including sulphide and other mineral percentages. Additionally, each holes was photographed. Full geological logs are unavailable for the historic holes at Ada Ann but data has been retrieved and digitized (where possible) from historic logs and sections and details of the logging practice is unknown but assumed to be industry practice. Historic logging data located on historic WAMEX reports has been transferred to the Company database. FRS geologists have entered geological data from the historic logs into the Company database. | | Sub-sampling techniques and sample preparation | If core, whether cut or sawn and whether quarter, half or
all core taken. If non-core, whether riffled, tube sampled, | AARC0022-AARC0035): Representative 4m composite samples were taken throughout the programme. These composite samples were assayed. | | Criteria | JORC Code Explanation | Commentary | |--|---|---| | | rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | for gold by fire assay (Au-AA25 methodology). When the assays were returned, the 1m samples of the mineralised zones were sent to ALS for fire assay (Au-AA25 methodology). • (AARC0001-AARC0021): Representative 4m composite samples were taken throughout the programme. These samples were assayed for gold, by aqua regia. Aqua regia digestion of 25g sample, followed by trace Au and multi-element analyses by ICP-MS and ICP-AES. Samples were sampled dry. When the assays were returned, the 1m samples of the mineralised zones were sent to ALS for fire assay (Au-AA25 methodology). • RC samples were split using a rig mounted cone splitter, at 1m intervals, to obtain a sample for assay of approximately 3-5kg. • The sampling detailed above is considered industry standard and is believed to be representative of the material collected. • CRMs (certified reference material) was used for QAQC purposes. Industry CRM standards were inserted every 20-30 samples and internal QAQC reviews indicate that all CRMs were within acceptable ranges. • For the drilling completed at Ada Ann by BHP Utah, Gindalbie Gold and A Stockwell, the sample preparation (if given in historic WAMEX reports) is detailed within the JORC table. In general, composite samples were taken during most drilling programmes and 1m split samples were taken within mineralized areas, after results had been returned. This is standard industry practice. There is no mention in the historic reports of wet samples. | | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | For all FRS drilling programmes, CRMs (certified reference material) was used for QAQC purposes for the composite samples. Industry CRM standards were inserted approximately every 20-30 samples. For all FRS drilling programmes, CRMs (certified reference material), blank material and duplicates were used for QAQC purposes for the 1m samples. This material was inserted on a
regular basis – approximately every 10-20 samples. ALS insert industry blanks, standards and duplicates into their analysis and no issues were noted with their results. At Ada Ann for the AA52-AA58 holes: Samples were collected every one metre by splitting a 2-3 kg sample off after passing the one metre drill volume through the rig cyclone. Four metre composites were scoop sampled from the splitter reject for all portions of the holes except for the zones of interest, in which the individual metre sample was submitted for assay. Samples were submitted to-Amdel Laboratories Kalgoorlie for gold | | Criteria | JORC Code Explanation | Commentary | |---------------------------------------|--|--| | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | analysis by Aqua Regia techniques with a LLD of 0.02ppm Au. No details QAQC are given. For AA1-AA52, The 1m sampling was performed by 'scoop sampling the bagged individual drill samples still on site, with both individual and composite samples being taken. It was not possible to riffle split the samples (as presumably would-have been the case with Stockwell's original samples) as many of the samples were cemented into hard masses, some were wet and the cost of drying pulverising and splitting the samples was not thought to be warranted. Instead as representative a sample as possible was obtained by breaking up the samples and scoop sampling throughout the sample. Some 150 samples were submitted to Amdel Laboratories. No QAQC details are given for this or the original composite sampling. For the BR holes: Drill samples over a 2 metre interval were collected via cyclone; a representative sample was taken utilising a pipe, composited: over 6 metres, bagged and submitted to Genalysis to be analysed for gold using fire assay techniques. Any 6 metre composite sample which returned an assay value greater than 0.1ppm Au was resample which returned an assay value greater than 0.1ppm Au was resample by collecting the three corresponding 2m samples and submitted to Genalys to be analysed for gold using fire assay techniques. No details of QAQC are given in the WAMEX report but industry standard is assumed. A number of holes within the drilling programme were designed to both test the northern and southern extension of the prospect and the mineralisation at depth. The holes were designed to step out from the known and FRS drilling. Significant intersections from the FRS drilling programme have been validated by the FRS Exploration Manager. All logging was completed on site, whilst drilling using a Toughbook on an excel based logging template. Once complete, this template was sent to the Company database administrator and entered into the Company (access) database. | | Criteria | JORC Code Explanation | Commentary | |---|--|--| | | | administrator. All primary data was collected on spread sheets which have been validated for errors and included in the Company's Access database. Assay data has not been adjusted from WAMEX report data, with the exception of coordinates which have been adjusted from historic grids. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | All of the recent FRS drilling have had their collars GPS'd using a handheld GPS (AARC0001-AARC0021 have had their collars dgps'd). All collar details are available in the supplementary data tables below. All holes were downhole surveyed by Topdrill using an industry standard gyro tool. Many of the historic holes at Ada Ann have had their collar locations origina approximated from historic WAMEX reports and associated maps. These he locations have been verified in the field, where possible dgps'd and the collar locations have then been updated, if required. Many collars were missing due to the historic pits removing them. The location of these has been approximated based on known locations, holes, other reference points. Down hole, historic surveys at Ada Ann are unknown. All images relating to drill holes at Ada Ann have the original planned or reported dip and azimuth. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | The FRS drill holes have been strategically placed to test mineralisation extensions and to test the potential extent of the mineralisation at depth. The holes were also designed based on environmental and POW limitations. 4m composite samples have been taken throughout the most recent FRS drill programmes. The historic samples at Ada Ann were originally composited over various down hole lengths from 2-5m; any mineralized zones were then 1m sampled and assayed. At this stage, the data is not being used to create a mineral resource, further drilling will be required. | | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | The FRS drilling programme was drilled to the west at
-60 in order to test the mineralisation at a perpendicular angle. The orientation of drilling and sampling is not anticipated to have any significant biasing effects. The majority of historic drill holes reported in this announcement at Ada Ann are generally angled to the west and are interpreted (according to WAMEX reports and previous ASX announcements) to have intersected the mineralised structures approximately perpendicular to their dip. The relationship of the historic holes between the drilling orientation and the orientation of key mineralised structures is not considered to have | | Criteria | JORC Code Explanation | Commentary | |-------------------|---|--| | | | introduced a sampling bias. | | Sample security | The measures taken to ensure sample security. | All 4m composite sample calico bags were collected in green bags which
were sealed and taken by FRS geologists to ALS Kalgoorlie, for shipment to
ALS Perth. | | | | All 1m sample calico bags were subsequently collected in green bags which
were sealed and taken by FRS geologists to ALS Kalgoorlie, for shipment to
ALS Perth. | | | | It is presumed that there was adequate sample security measures
undertaken for the historic drilling reported at Ada Ann and Bonnie Vale
North. | | | | All samples taken by FRS were handled only by FRS geologists or
contractors to FRS before they were taken to ALS. | | Audits or reviews | The sampling methods being used are industry standard | All sampling methods completed by FRS are industry standard practice. | | | practice. | No audit or review has been completed on the work reported in this
announcement. | |))
)) | | The historic data that was located within WAMEX has been compiled and
loaded into the Forrestania Resources' database with validations where
possible, but no audits were undertaken on the historic work with the
exception of verifying the location of the historic drill holes (where possible). | Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections) | Criteria | JORC Code Explanation | Commentary | |--|--|--| | Mineral tenementand land tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The data in this announcement relates to FRS drilling and historic drilling completed on exploration licence: E15/1632. E15/1632 and E15/1534 are part of an option agreement between Outback Minerals Pty Ltd and Forrestania Resources Limited. The tenements are held securely and no impediments to obtaining a licence to operate have been identified. | | Criteria | JORC Code Explanation | Commentary | |------------------------------|---|---| | Exploration by other parties | Acknowledgment and appraisal of exploration by other parties. | The Ada Ann prospect has had the following work reported in WAMEX, known work completed includes: Loaming operations in the late .1970's led to the sinking of a shallow vertical sha on GML 15/6729 from which a short crosscut east intersects an auriferous quart vein dipping ~ 60° east (Fey, 1989). The recorded gold production of-60 tonne at 1.25g/t Au was reported to have come from trenches and pits adjacent to the shaft. Emu Hill held Prospecting Licences P15/96 and P15/97 as part of a Prospectus. These tenements enclosed the present tenement Emu Hill conducted limited surface and underground rock chip and quartz vein sampling and then relinquished the tenements. Coolgardie Mining Associates re-pegged P15/96 and P15/97 as P15/1440 and P15/1439 respectively as part of their Prospectus. Coolgardie Mining Associates also conducted surface and underground chip sampling. They also established a baseline some 400 metres long through the area of workings, which was used for drilling by subsequent operators. They then relinquished the tenements. During April 1988 BHP-UTAH Minerals International (BHP) under an option to purchase the tenements from a Mr D Skett, drilled 19 RAB holes (BRO1-19) for 573 metres in the vicinity of the workings using the baseline established by Coolgardie Mining Associates. The drilling was performed with a Warman drill ric operated by Westralian Diamond Drilling of Boulder WA. The drilling was undertaken along fences approximately 40 metres apart, with an average of three holes, spaced ten metres apart, completed on each fence. All holes were planned at 60° dip to 295°. Drilling targetted the flat east dipping shezone. Drill samples over a two metre interval were collected via a cyclone; a representative sample was taken utilising a pipe, composited over six metres, bagged and submitted to Genalysis to be analysed for gold by AAS. Any six met composite sample returning an assay value greater than 0.1 ppm Au was resampled by collecting the | • P Fey conducted follow up drilling to the BHP drilling in October and November 1988. In the period 23-25 October 1988 five RAB holes (BR20-24) for 210 metres were drilled with a Mole Pioneer rig from Westralian Diamond Drillers of Boulder. This rig proved unsatisfactory in the hard ground encountered at relatively | Criteria | JORC Code Explanation | Commentary | |-----------|---
--| | | | shallow depths and a Warman RC rig was used for holes BRC25-29 totalling 263 metres, drilled between 16-21 November 1988. For all holes except BR20-21 (2 metre samples), one metre samples were collected and then speared, composited over four metre intervals and submitted to Genalysis for gold analysi by AAS (50gm charge). Intervals returning greater than 0.25g/t gold were resampled on a one metre basis and re-assayed, using the same technique. Significant gold mineralisation was found associated with zones of epidotisation and quartz veining (Fey, 1989). The presence of coarse gold was again demonstrated by the considerable spread in the value of repeat assays and free gold was again panned. • This drilling demonstrated that the strike of the flat east dipping shear was in fact more north-south than the north-easterly direction assumed by BHP. • In 1993 A Stockwell pegged cancelled GML's 15/6729 "Ada Ann", and 15/6718 as P15/3443. Stockwell mounted an RC drill programme to follow up intersection from the BHP and Fey drilling programmes. • Holes AA01-51 were completed by Stockwell for 1892 metres over the central portion of the mineralisation, delineated by previous operators. A few holes were also completed further south near old pits and costeans. None of the holes were systematically sampled, Stockwell sampling only those portions of the holes he thought would assay. Samples are believed to have been assayed by Aqua Regia techniques at Kalgoorlie assay laboratories. Laboratory documentation for all the assays is not available. This drilling highlighted the presence of steeper quartz vein hosted mineralisation in the hanging wall of the flat east dipping shear as we as intersecting mineralisation in the flat shear itself. • Following completion of the drilling Stockwell commenced a small mining operation on the steep east dipping quartz veins intersected by the drilling. A small pit was dug to a depth of six metres from which 150 tonnes averaging 7 g/t Au was treated at the Kintore mill of M Pavlinovich (p | | gy • Depo | sit type, geological setting and style of mineralisation. | The Bonnie Vale project area is located approximately 12km north of Coolgardie within the Eastern Goldfields Super Terrane of Western Australia's Yilgarn Crator The project area is made up predominantly of the felsic volcanics of the Black Flag Group, ultramafics of the Hampton Hill Formation which forms part of the Kalgoorlie Group and the Powder Sill Gabbro. | | Criteria | JORC Code Explanation | Commentary | |-----------------------------|---|---| | | | Ada Ann is thought to be composed of an ultramafic and shear zone hosted by a basalt. It sits within the Hampton Hill Formation, in close proximity to a geological contact with the Black Flag Group. Additionally, the Kunanalling Shear runs approximately north-west through E15/1534. The drilling results suggest a gently (east) dipping, shear hosted gold system with contact mineralisation on the footwall and hanging wall basalts and schists (respectively). | | Drill hole Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception dept, hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | All material information is summarised in the Tables and Figures included in the body of the announcement and/or within the supplementary data. The supplementary information is available at the end of this announcement, followin the JORC table. Historical drilling WAMEX reports: A49504, A2523, A25113, A28449, A109745, A58256 and A54843 were used to confirm data for this report; data includes areas that were previously mapped during historic activities. ASX (Amex Resources) Gold drill intercepts at Ada Ann 8th April 2008. Additional information was found in the AMEX Resources quarterly report for June 2008 and the Aurelian Resources IPO prospectus 2012. The location of historic drilling is based on historical reports and their underlying data. Data for some drill holes, including assay information, hole depth and collar details are missing from some of the historic WAMEX reports. Composite assay grades for AXRC holes have been included, even when the collar locations are unknown as they have previously been released to the ASX: None of the AXRC holes have been used in the cross sections within this announcement. The historic Amex Resources announcement can be found here: https://www.asx.com.au/asxpdf/20080408/pdf/318gn138jg5j59.pdf Several holes at Ada Ann, with AA and BR as a prefix have had their coordinates and collar locations estimated based on historic maps within WAMEX reports an the historic collars located at the Ada Ann prospect that correspond and correla with the collar position on the maps. These have been recorded on a GPS and entered into the FRS database. | | Data aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g.
cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the | All significant intersections that are reported in this announcement are based on 0.3g/t Au cut-off grade, allowing for internal dilution by two "waste" or sub-grade samples. No metal equivalent values have been reported. | | Criteria | JORC Code Explanation | Commentary | |--|---|---| | | procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | | | Relationship between mineralisation widths and intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | Historic reports suggest mineralisation dips at -30 to the east and all hole completed by FRS, to date (with the exception of AARC0015) were drilled west at -60 in order to test the mineralisation at a perpendicular angle. Down hole lengths are reported in this announcement, true width is not rein this announcement but given the angle of mineralisation (historically reand the angle of drilling, the down hole width and true width are potential lengths. Further drilling is required to determine the true geometry of the minerali with respect to the drill hole angle. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of
intercepts should be included for any significant discovery
being reported These should include, but not be limited to a
plan view of drill hole collar locations and appropriate
sectional views. | Appropriate maps with scale are included within the body of the accompandocument. Geological sections have been created from the Company's geological loboth recent and historic drilling. Other geological maps are courtesy of DMIRS, 1:500000 interpreted bed geology of WA. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is
not practicable, representative reporting of both low and high
grades and/or widths should be practiced to avoid misleading
reporting of Exploration Results. | Representative reporting has been made in the body of the announcement assay results are available within the supplementary data. All of the available assay intersections for the historic holes with prefix AA and AXRC holes have previously been reported in ASX announcements, FRS: https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/f 02793925-6A1202059 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/f 02805177-6A1206868 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/f 02667890-6A1150921 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/f 02914458-6A1252000 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/f 02902433-6A1246689 | | Criteria | JORC Code Explanation | Commentary | |------------------------------------|---|---| | | | https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02927787-6A1256834&v=7bc42bd11d853ed5e8c28f2ffcd6a069ee5cd6b4 Due to historic, selective sampling, not every metre has been assayed or sampled from the historic holes. Representative reporting of significant intersections is also included in the body of the announcement and in the supplementary data. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | WAMEX reports: A49504, A2523, A25113, A28449, A109745, A58256 and A54843 were used to confirm data for this report. An additional WAMEX report by Outback Minerals was also used for the KSRC holes (the WAMEX report number is unknown as it has only recently been submitted), Also used as reference material and for data: ASX (Amex Resources) Gold drill intercepts at Ada Ann 8 th April 2008. | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | The company is hopeful of completing further exploration drilling in the near future to continue to confirm the extent of the mineralisation. Further exploration work is also planned across the tenement and regionally across the Bonnie Vale project area. | # Supplementary data Table 2: Collar locations for phase 2, FRS, completed RC drill holes at Ada Ann, MGA94_51. | Hole_ID | Max_Depth | NAT_East | NAT_North | NAT_RL | Azimuth | Dip | |----------|-----------|----------|-----------|--------|---------|-----| | AARC0022 | 60 | 321852 | 6591268 | 377 | -60 | 269 | | AARC0023 | 96 | 321942 | 6591274 | 376 | -60 | 268 | | AARC0024 | 108 | 321963 | 6591303 | 377 | -61 | 270 | | AARC0025 | 72 | 321973 | 6591369 | 376 | -61 | 271 | | AARC0026 | 90 | 321928 | 6591581 | 376 | -60 | 270 | | Hole_ID | Max_Depth | NAT_East | NAT_North | NAT_RL | Azimuth | Dip | |----------|-----------|----------|-----------|--------|---------|-----| | AARC0027 | 96 | 321947 | 6591533 | 376 | -60 | 270 | | AARC0028 | 93 | 321960 | 6591496 | 376 | -61 | 268 | | AARC0029 | 114 | 321973 | 6591369 | 376 | -60 | 270 | | AARC0030 | 36 | 321828 | 6591326 | 376 | -60 | 270 | | AARC0031 | 60 | 321810 | 6591345 | 376 | -60 | 270 | | AARC0032 | 48 | 321857 | 6591328 | 376 | -61 | 270 | | AARC0033 | 42 | 321826 | 6591527 | 377 | -60 | 270 | | AARC0034 | 42 | 321841 | 6591579 | 376 | -61 | 271 | | AARC0035 | 60 | 321879 | 6591579 | 376 | -60 | 270 | Table 3: Ada Ann, phase 2 FRS drilling results showing all sample results for Au. Table shows down hole width and not true width. | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0022 | 0 | 1 | 0.02 | | AARC0022 | 1 | 2 | 0.01 | | AARC0022 | 2 | 3 | 0.01 | | AARC0022 | 3 | 4 | 0.01 | | AARC0022 | 4 | 5 | <0.01 | | AARC0022 | 5 | 6 | <0.01 | | AARC0022 | 6 | 7 | <0.01 | | AARC0022 | 7 | 8 | <0.01 | | AARC0022 | 8 | 9 | 0.01 | | AARC0022 | 9 | 10 | 0.02 | | AARC0022 | 10 | 11 | 0.60 | | AARC0022 | 11 | 12 | <0.01 | | AARC0022 | 12 | 13 | <0.01 | | AARC0022 | 13 | 14 | 0.33 | | AARC0022 | 14 | 15 | 0.01 | | AARC0022 | 15 | 16 | 0.01 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0022 | 16 | 17 | 0.02 | | AARC0022 | 17 | 18 | 0.01 | | AARC0022 | 18 | 19 | 0.01 | | AARC0022 | 19 | 20 | <0.01 | | AARC0022 | 20 | 21 | <0.01 | | AARC0022 | 21 | 22 | <0.01 | | AARC0022 | 22 | 23 | 0.01 | | AARC0022 | 23 | 24 | <0.01 | | AARC0022 | 24 | 28 | 0.07 | | AARC0022 | 28 | 29 | 0.05 | | AARC0022 | 29 | 30 | <0.01 | | AARC0022 | 30 | 31 | 0.03 | | AARC0022 | 31 | 32 | 0.07 | | AARC0022 | 32 | 33 | 0.09 | | AARC0022 | 33 | 34 | 0.20 | | AARC0022 | 34 | 35 |
0.19 | | AARC0022 | 35 | 36 | 0.93 | | AARC0022 | 36 | 37 | 1.24 | | AARC0022 | 37 | 38 | 0.03 | | AARC0022 | 38 | 39 | 0.05 | | AARC0022 | 39 | 40 | 0.03 | | AARC0022 | 40 | 41 | 0.02 | | AARC0022 | 41 | 42 | 0.02 | | AARC0022 | 42 | 43 | 0.01 | | AARC0022 | 43 | 44 | 0.01 | | AARC0022 | 44 | 48 | 0.01 | | AARC0022 | 48 | 52 | 0.01 | | AARC0022 | 52 | 56 | 0.01 | | AARC0022 | 56 | 60 | 0.04 | | AARC0023 | 0 | 4 | 0.01 | | AARC0023 | 4 | 8 | 0.01 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0023 | 8 | 12 | 0.01 | | AARC0023 | 12 | 16 | 0.01 | | AARC0023 | 16 | 20 | 0.01 | | AARC0023 | 20 | 24 | 0.01 | | AARC0023 | 24 | 28 | 0.01 | | AARC0023 | 28 | 32 | <0.01 | | AARC0023 | 32 | 36 | 0.01 | | AARC0023 | 36 | 40 | 0.01 | | AARC0023 | 40 | 44 | 0.01 | | AARC0023 | 44 | 45 | 0.01 | | AARC0023 | 45 | 46 | 0.01 | | AARC0023 | 46 | 47 | 0.01 | | AARC0023 | 47 | 48 | 0.01 | | AARC0023 | 48 | 49 | 0.01 | | AARC0023 | 49 | 50 | 0.01 | | AARC0023 | 50 | 51 | 0.01 | | AARC0023 | 51 | 52 | 0.01 | | AARC0023 | 52 | 53 | 0.05 | | AARC0023 | 53 | 54 | 0.01 | | AARC0023 | 54 | 55 | 0.01 | | AARC0023 | 55 | 56 | 0.01 | | AARC0023 | 56 | 57 | 0.01 | | AARC0023 | 57 | 58 | 0.01 | | AARC0023 | 58 | 59 | 0.01 | | AARC0023 | 59 | 60 | 0.01 | | AARC0023 | 60 | 61 | 0.34 | | AARC0023 | 61 | 62 | 0.02 | | AARC0023 | 62 | 63 | 0.03 | | AARC0023 | 63 | 64 | 0.05 | | AARC0023 | 64 | 65 | 0.15 | | AARC0023 | 65 | 66 | 0.08 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0023 | 66 | 67 | 0.01 | | AARC0023 | 67 | 68 | 0.02 | | AARC0023 | 68 | 72 | <0.01 | | AARC0023 | 72 | 76 | <0.01 | | AARC0023 | 76 | 80 | 0.02 | | AARC0023 | 80 | 84 | <0.01 | | AARC0023 | 84 | 88 | <0.01 | | AARC0023 | 88 | 92 | 0.01 | | AARC0023 | 92 | 96 | <0.01 | | AARC0024 | 0 | 4 | 0.01 | | AARC0024 | 4 | 8 | <0.01 | | AARC0024 | 8 | 12 | <0.01 | | AARC0024 | 12 | 16 | <0.01 | | AARC0024 | 16 | 20 | 0.01 | | AARC0024 | 20 | 24 | 0.01 | | AARC0024 | 24 | 28 | 0.01 | | AARC0024 | 28 | 32 | 0.03 | | AARC0024 | 32 | 36 | 0.02 | | AARC0024 | 36 | 40 | 0.01 | | AARC0024 | 40 | 44 | 0.01 | | AARC0024 | 44 | 48 | 0.01 | | AARC0024 | 48 | 49 | 0.01 | | AARC0024 | 49 | 50 | 0.01 | | AARC0024 | 50 | 51 | 0.01 | | AARC0024 | 51 | 52 | 0.01 | | AARC0024 | 52 | 53 | 0.01 | | AARC0024 | 53 | 54 | 0.01 | | AARC0024 | 54 | 55 | 0.81 | | AARC0024 | 55 | 56 | 0.01 | | AARC0024 | 56 | 57 | 0.92 | | AARC0024 | 57 | 58 | 0.02 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0024 | 58 | 59 | <0.01 | | AARC0024 | 59 | 60 | 0.01 | | AARC0024 | 60 | 64 | 0.01 | | AARC0024 | 64 | 65 | <0.01 | | AARC0024 | 65 | 66 | <0.01 | | AARC0024 | 66 | 67 | 0.04 | | AARC0024 | 67 | 68 | 0.01 | | AARC0024 | 68 | 69 | <0.01 | | AARC0024 | 69 | 70 | 0.01 | | AARC0024 | 70 | 71 | 2.90 | | AARC0024 | 71 | 72 | 4.38 | | AARC0024 | 72 | 73 | 0.16 | | AARC0024 | 73 | 74 | 0.05 | | AARC0024 | 74 | 75 | 0.04 | | AARC0024 | 75 | 76 | 0.02 | | AARC0024 | 76 | 77 | 0.01 | | AARC0024 | 77 | 78 | 0.22 | | AARC0024 | 78 | 79 | 0.02 | | AARC0024 | 79 | 80 | 0.22 | | AARC0024 | 80 | 81 | 0.19 | | AARC0024 | 81 | 82 | 0.19 | | AARC0024 | 82 | 83 | 15.95 | | AARC0024 | 83 | 84 | 1.13 | | AARC0024 | 84 | 85 | 0.68 | | AARC0024 | 85 | 86 | <0.01 | | AARC0024 | 86 | 87 | 0.04 | | AARC0024 | 87 | 88 | 0.02 | | AARC0024 | 88 | 89 | 0.25 | | AARC0024 | 89 | 90 | <0.01 | | AARC0024 | 90 | 91 | 0.02 | | AARC0024 | 91 | 92 | <0.01 | | Hole_ID | From | То | Au_ppm | |----------|------|-----|--------| | AARC0024 | 92 | 96 | 0.01 | | AARC0024 | 96 | 100 | 0.01 | | AARC0024 | 100 | 104 | 0.01 | | AARC0024 | 104 | 108 | <0.01 | | AARC0025 | 0 | 4 | 0.01 | | AARC0025 | 4 | 8 | <0.01 | | AARC0025 | 8 | 12 | <0.01 | | AARC0025 | 12 | 16 | 0.01 | | AARC0025 | 16 | 20 | 0.01 | | AARC0025 | 20 | 24 | 0.01 | | AARC0025 | 24 | 28 | 0.01 | | AARC0025 | 28 | 32 | 0.01 | | AARC0025 | 32 | 36 | 0.02 | | AARC0025 | 36 | 40 | 0.01 | | AARC0025 | 40 | 44 | <0.01 | | AARC0025 | 44 | 48 | <0.01 | | AARC0025 | 48 | 52 | 0.02 | | AARC0025 | 52 | 56 | 0.01 | | AARC0025 | 56 | 60 | 0.01 | | AARC0025 | 60 | 64 | 0.01 | | AARC0025 | 64 | 68 | 0.01 | | AARC0025 | 68 | 72 | 0.03 | | AARC0026 | 0 | 4 | 0.01 | | AARC0026 | 4 | 8 | 0.01 | | AARC0026 | 8 | 12 | 0.01 | | AARC0026 | 12 | 13 | 0.01 | | AARC0026 | 13 | 14 | 0.01 | | AARC0026 | 14 | 15 | 0.01 | | AARC0026 | 15 | 16 | <0.01 | | AARC0026 | 16 | 17 | 0.01 | | AARC0026 | 17 | 18 | 0.18 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0026 | 18 | 19 | 0.03 | | AARC0026 | 19 | 20 | 0.26 | | AARC0026 | 20 | 21 | 0.07 | | AARC0026 | 21 | 22 | 0.04 | | AARC0026 | 22 | 23 | 0.07 | | AARC0026 | 23 | 24 | 0.03 | | AARC0026 | 24 | 28 | 0.01 | | AARC0026 | 28 | 32 | 0.02 | | AARC0026 | 32 | 36 | <0.01 | | AARC0026 | 36 | 40 | <0.01 | | AARC0026 | 40 | 44 | <0.01 | | AARC0026 | 44 | 48 | <0.01 | | AARC0026 | 48 | 52 | <0.01 | | AARC0026 | 52 | 53 | <0.01 | | AARC0026 | 53 | 54 | <0.01 | | AARC0026 | 54 | 55 | <0.01 | | AARC0026 | 55 | 56 | <0.01 | | AARC0026 | 56 | 60 | <0.01 | | AARC0026 | 60 | 64 | 0.01 | | AARC0026 | 64 | 68 | 0.01 | | AARC0026 | 68 | 69 | 0.01 | | AARC0026 | 69 | 70 | <0.01 | | AARC0026 | 70 | 71 | 0.01 | | AARC0026 | 71 | 72 | <0.01 | | AARC0026 | 72 | 73 | 0.01 | | AARC0026 | 73 | 74 | 0.01 | | AARC0026 | 74 | 75 | 0.01 | | AARC0026 | 75 | 76 | 0.01 | | AARC0026 | 76 | 80 | 0.01 | | AARC0026 | 80 | 84 | 0.01 | | AARC0026 | 84 | 88 | <0.01 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0026 | 88 | 90 | <0.01 | | AARC0027 | 0 | 4 | <0.01 | | AARC0027 | 4 | 8 | <0.01 | | AARC0027 | 8 | 12 | <0.01 | | AARC0027 | 12 | 16 | <0.01 | | AARC0027 | 16 | 20 | <0.01 | | AARC0027 | 20 | 24 | 0.01 | | AARC0027 | 24 | 28 | 0.01 | | AARC0027 | 28 | 32 | <0.01 | | AARC0027 | 32 | 36 | <0.01 | | AARC0027 | 36 | 40 | <0.01 | | AARC0027 | 40 | 44 | 0.01 | | AARC0027 | 44 | 48 | 0.01 | | AARC0027 | 48 | 49 | 0.01 | | AARC0027 | 49 | 50 | <0.01 | | AARC0027 | 50 | 51 | 0.01 | | AARC0027 | 51 | 52 | 0.01 | | AARC0027 | 52 | 56 | 0.01 | | AARC0027 | 56 | 60 | 0.01 | | AARC0027 | 60 | 64 | <0.01 | | AARC0027 | 64 | 68 | 0.01 | | AARC0027 | 68 | 72 | 0.01 | | AARC0027 | 72 | 73 | <0.01 | | AARC0027 | 73 | 74 | 0.04 | | AARC0027 | 74 | 75 | 0.08 | | AARC0027 | 75 | 76 | <0.01 | | AARC0027 | 76 | 77 | 0.14 | | AARC0027 | 77 | 78 | 6.29 | | AARC0027 | 78 | 79 | 0.35 | | AARC0027 | 79 | 80 | 0.13 | | AARC0027 | 80 | 81 | 0.03 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0027 | 81 | 82 | 0.01 | | AARC0027 | 82 | 83 | 0.01 | | AARC0027 | 83 | 84 | 0.01 | | AARC0027 | 84 | 88 | <0.01 | | AARC0027 | 88 | 92 | 0.01 | | AARC0027 | 92 | 96 | 0.01 | | AARC0028 | 0 | 4 | 0.01 | | AARC0028 | 4 | 8 | 0.02 | | AARC0028 | 8 | 12 | <0.01 | | AARC0028 | 12 | 16 | 0.01 | | AARC0028 | 16 | 20 | 0.01 | | AARC0028 | 20 | 24 | 0.01 | | AARC0028 | 24 | 28 | 0.01 | | AARC0028 | 28 | 32 | 0.01 | | AARC0028 | 32 | 36 | 0.01 | | AARC0028 | 36 | 40 | 0.02 | | AARC0028 | 40 | 44 | 0.02 | | AARC0028 | 44 | 48 | 0.01 | | AARC0028 | 48 | 52 | 0.01 | | AARC0028 | 52 | 56 | 0.01 | | AARC0028 | 56 | 60 | 0.02 | | AARC0028 | 60 | 64 | 0.02 | | AARC0028 | 64 | 65 | 0.01 | | AARC0028 | 65 | 66 | 0.01 | | AARC0028 | 66 | 67 | 0.06 | | AARC0028 | 67 | 68 | 0.10 | | AARC0028 | 68 | 69 | <0.01 | | AARC0028 | 69 | 70 | <0.01 | | AARC0028 | 70 | 71 | 0.01 | | AARC0028 | 71 | 72 | 0.01 | | AARC0028 | 72 | 73 | 0.02 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0028 | 73 | 74 | 0.01 | | AARC0028 | 74 | 75 | 22.20 | | AARC0028 | 75 | 76 | 0.92 | | AARC0028 | 76 | 77 | 0.30 | | AARC0028 | 77 | 78 | 0.08 | | AARC0028 | 78 | 79 | 0.10 | | AARC0028 | 79 | 80 | 0.08 | | AARC0028 | 80 | 81 | 0.05 | | AARC0028 | 81 | 82 | 0.03 | | AARC0028 | 82 | 83 | 0.01 | | AARC0028 | 83 | 84 | 0.01 | | AARC0028 | 84 | 88 | 0.01 | | AARC0028 | 88 | 93 | 0.03 | | AARC0029 | 0 | 4 | 0.02 | | AARC0029 | 4 | 8 | 0.01 | | AARC0029 | 8 | 12 | 0.01 | | AARC0029 | 12 | 16 | 0.01 | | AARC0029 | 16 | 20 | 0.01 | | AARC0029 | 20 | 24 | 0.02 | | AARC0029 | 24 | 28 | 0.06 | | AARC0029 | 28 | 32 | 0.02 | | AARC0029 | 32 | 36 | 0.02 | | AARC0029 | 36 | 40 | 0.02 | | AARC0029 | 40 | 44 | <0.01 | | AARC0029 | 44 | 48 | 0.02 | | AARC0029 | 48 | 52 | <0.01 | | AARC0029 | 52 | 56 | 0.01 | | AARC0029 | 56 | 60 | 0.02 | | AARC0029 | 60 | 64 | 0.02 | | AARC0029 | 64 | 68 | 0.01 | | AARC0029 | 68 | 69 | 0.02 | | Hole_ID | From | То | Au_ppm | |----------|------|-----|--------| | AARC0029 | 69 | 70 | 0.02 | | AARC0029 | 70 | 71 | 0.08 | | AARC0029 | 71 | 72 | 0.02 | | AARC0029 | 72 | 73 | 25.60 | | AARC0029 | 73 | 74 | 0.68 | | AARC0029 | 74 | 75 | 0.06 | | AARC0029 | 75 | 76 | 2.61 | | AARC0029 | 76 | 77 | 0.24 | | AARC0029 | 77 | 78 | 0.05 | | AARC0029 | 78 | 79 | 0.76 | | AARC0029 | 79 | 80 | 0.02 | | AARC0029 | 80 | 81 | <0.01 | | AARC0029 | 81 | 82 | 0.01 | | AARC0029 | 82 | 83 | 0.01 | | AARC0029 | 83 | 84 | 0.01 | | AARC0029 | 84 | 88 | 0.01 | | AARC0029 | 88 | 92 | 0.04 | | AARC0029 | 92 | 96 | 0.03 | | AARC0029 | 96 | 97 | 0.35 | | AARC0029 | 97 | 98 | <0.01 | | AARC0029 | 98 | 99 | 0.08 | | AARC0029 | 99 | 100 | <0.01 | | AARC0029 | 100 | 104 | 0.04 | | AARC0029 | 104 | 105 | <0.01 | | AARC0029 | 105 | 106 | 0.01 | | AARC0029 | 106 | 107 | <0.01 | | AARC0029 | 107 | 108 | 0.02 | | AARC0029 | 108 | 112 | 0.01 | | AARC0029 | 112 | 114 | 0.01 | | AARC0030 | 0 | 4 | 0.03 | | AARC0030 | 4 | 5 | 0.01 | | Hole_ID | From | То | Au_ppm | | | |----------|------|----|--------|--|--| | AARC0030 | 5 | 6 | 0.01 | | | | AARC0030 | 6 | 7 | 0.01 | | | | AARC0030 | 7 | 8 | 0.02 | | | | AARC0030 | 8 | 9 | 4.11 | | | | AARC0030 | 9 | 10 | 0.02 | | | | AARC0030 | 10 | 11 | 0.11 | | | | AARC0030 | 11 | 12 | 0.04 | | | | AARC0030 | 12 | 13 | 0.06 | | | | AARC0030 | 13 | 14 | 0.01 | | | | AARC0030 | 14 | 15 | 0.03 | | | | AARC0030 | 15 | 16 | <0.01 | | | | AARC0030 | 16 | 20 | 0.01 | | | | AARC0030 | 20 | 24 | 0.01 | | | | AARC0030 |
24 | 25 | <0.01 | | | | AARC0030 | 25 | 26 | <0.01 | | | | AARC0030 | 26 | 27 | <0.01 | | | | AARC0030 | 27 | 28 | 0.01 | | | | AARC0030 | 28 | 29 | <0.01 | | | | AARC0030 | 29 | 30 | 0.01 | | | | AARC0030 | 30 | 31 | 0.03 | | | | AARC0030 | 31 | 32 | 0.02 | | | | AARC0030 | 32 | 36 | 0.02 | | | | AARC0031 | 0 | 4 | 0.02 | | | | AARC0031 | 4 | 8 | 0.01 | | | | AARC0031 | 8 | 12 | 0.02 | | | | AARC0031 | 12 | 16 | 0.02 | | | | AARC0031 | 16 | 20 | 0.02 | | | | AARC0031 | 20 | 24 | 0.02 | | | | AARC0031 | 24 | 28 | 0.03 | | | | AARC0031 | 28 | 32 | 0.01 | | | | AARC0031 | 32 | 36 | 0.01 | | | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0031 | 36 | 40 | 0.01 | | AARC0031 | 40 | 41 | <0.01 | | AARC0031 | 41 | 42 | 0.01 | | AARC0031 | 42 | 43 | 0.11 | | AARC0031 | 43 | 44 | 0.11 | | AARC0031 | 44 | 48 | 0.02 | | AARC0031 | 48 | 52 | 0.02 | | AARC0031 | 52 | 53 | <0.01 | | AARC0031 | 53 | 54 | 0.01 | | AARC0031 | 54 | 55 | <0.01 | | AARC0031 | 55 | 56 | <0.01 | | AARC0031 | 56 | 60 | 0.02 | | AARC0032 | 0 | 4 | 0.01 | | AARC0032 | 4 | 8 | 0.01 | | AARC0032 | 8 | 12 | 0.01 | | AARC0032 | 12 | 13 | <0.01 | | AARC0032 | 13 | 14 | <0.01 | | AARC0032 | 14 | 15 | 0.01 | | AARC0032 | 15 | 16 | <0.01 | | AARC0032 | 16 | 17 | <0.01 | | AARC0032 | 17 | 18 | <0.01 | | AARC0032 | 18 | 19 | 0.01 | | AARC0032 | 19 | 20 | <0.01 | | AARC0032 | 20 | 21 | <0.01 | | AARC0032 | 21 | 22 | <0.01 | | AARC0032 | 22 | 23 | 0.02 | | AARC0032 | 23 | 24 | 0.01 | | AARC0032 | 24 | 25 | 0.02 | | AARC0032 | 25 | 26 | 0.05 | | AARC0032 | 26 | 27 | 0.02 | | AARC0032 | 27 | 28 | 0.05 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0032 | 28 | 29 | 0.07 | | AARC0032 | 29 | 30 | 0.03 | | AARC0032 | 30 | 31 | 0.02 | | AARC0032 | 31 | 32 | 0.09 | | AARC0032 | 32 | 36 | 0.05 | | AARC0032 | 36 | 40 | 0.02 | | AARC0032 | 40 | 44 | 0.01 | | AARC0032 | 44 | 48 | 0.01 | | AARC0033 | 0 | 1 | 0.14 | | AARC0033 | 1 | 2 | 0.05 | | AARC0033 | 2 | 3 | 0.04 | | AARC0033 | 3 | 4 | 0.03 | | AARC0033 | 4 | 5 | 0.04 | | AARC0033 | 5 | 6 | 0.09 | | AARC0033 | 6 | 7 | 0.08 | | AARC0033 | 7 | 8 | 0.01 | | AARC0033 | 8 | 9 | 0.02 | | AARC0033 | 9 | 10 | 0.01 | | AARC0033 | 10 | 11 | 0.01 | | AARC0033 | 11 | 12 | 0.01 | | AARC0033 | 12 | 16 | 0.02 | | AARC0033 | 16 | 20 | 0.02 | | AARC0033 | 20 | 24 | 0.02 | | AARC0033 | 24 | 28 | 0.02 | | AARC0033 | 28 | 32 | 0.01 | | AARC0033 | 32 | 36 | <0.01 | | AARC0033 | 36 | 40 | <0.01 | | AARC0033 | 40 | 42 | <0.01 | | AARC0034 | 0 | 4 | 0.02 | | AARC0034 | 4 | 8 | <0.01 | | AARC0034 | 8 | 12 | 0.01 | | | • | | | | | |----------|------|----|--------|--|--| | Hole_ID | From | То | Au_ppm | | | | AARC0034 | 12 | 13 | 0.01 | | | | AARC0034 | 13 | 14 | <0.01 | | | | AARC0034 | 14 | 15 | 0.24 | | | | AARC0034 | 15 | 16 | 0.11 | | | | AARC0034 | 16 | 17 | 0.43 | | | | AARC0034 | 17 | 18 | 0.13 | | | | AARC0034 | 18 | 19 | 0.13 | | | | AARC0034 | 19 | 20 | 0.03 | | | | AARC0034 | 20 | 21 | 0.02 | | | | AARC0034 | 21 | 22 | 0.04 | | | | AARC0034 | 22 | 23 | 0.12 | | | | AARC0034 | 23 | 24 | 0.05 | | | | AARC0034 | 24 | 28 | 0.02 | | | | AARC0034 | 28 | 32 | 0.01 | | | | AARC0034 | 32 | 36 | 0.01 | | | | AARC0034 | 36 | 40 | 0.01 | | | | AARC0034 | 40 | 42 | <0.01 | | | | AARC0035 | 0 | 4 | 0.01 | | | | AARC0035 | 4 | 8 | 0.01 | | | | AARC0035 | 8 | 12 | <0.01 | | | | AARC0035 | 12 | 16 | 0.01 | | | | AARC0035 | 16 | 20 | 0.01 | | | | AARC0035 | 20 | 24 | <0.01 | | | | AARC0035 | 24 | 28 | <0.01 | | | | AARC0035 | 28 | 29 | 0.04 | | | | AARC0035 | 29 | 30 | 0.05 | | | | AARC0035 | 30 | 31 | 0.14 | | | | AARC0035 | 31 | 32 | 0.07 | | | | AARC0035 | 32 | 33 | 0.05 | | | | AARC0035 | 33 | 34 | 0.01 | | | | AARC0035 | 34 | 35 | <0.01 | | | | | | Hole | _ID | From | То | Au_ppm | |----------|---------------|--------------|---------|--------|---------------|------------| | | | AARC | 0035 | 35 | 36 | 0.01 | | | | AARC | 0035 | 36 | 37 | <0.01 | | | | AARC | 0035 | 37 | 38 | 0.03 | | | | AARC | 0035 | 38 | 39 | 0.12 | | | | AARC | 0035 | 39 | 40 | 0.03 | | | | AARC | 0035 | 40 | 44 | 0.06 | | | | AARC | 0035 | 44 | 45 | 0.02 | | | | AARC | 0035 | 45 | 46 | 0.05 | | | | AARC | 0035 | 46 | 47 | 0.07 | | | | AARC | 0035 | 47 | 48 | 0.02 | | | | AARC | 0035 | 48 | 49 | 2.36 | | | | AARC | 0035 | 49 | 50 | 0.17 | | | | AARC | 0035 | 50 | 51 | 0.02 | | | | AARC | 0035 | 51 | 52 | 0.02 | | | | AARC | 0035 | 52 | 53 | 0.05 | | | | AARC | 0035 | 53 | 54 | 0.04 | | | | AARC | 0035 | 54 | 55 | 0.02 | | | | AARC | 0035 | 55 | 56 | <0.01 | | | | AARC | 0035 | 56 | 60 | 0.01 | | s for pı | reviously rep | orted, (phas | se 1) F | RS, RO | C drill holes | s at Ada A | | _ | Hole_ID | Max_Depth | | East | NAT_North | NAT_RL | | Hole_ID | Max_Depth | NAT_East | NAT_North | NAT_RL | Azimuth | Dip | |----------|-----------|----------|-----------|--------|---------|-----| | AARC0001 | 84 | 321900 | 6591322 | 376 | -61 | 270 | | AARC0002 | 96 | 321938 | 6591326 | 375 | -61 | 271 | | AARC0003 | 60 | 321851 | 6591392 | 376 | -61 | 268 | | AARC0004 | 84 | 321897 | 6591387 | 375 | -61 | 268 | | AARC0005 | 96 | 321949 | 6591390 | 375 | -60 | 270 | | AARC0006 | 84 | 321891 | 6591445 | 376 | -60 | 273 | | AARC0007 | 96 | 321935 | 6591433 | 376 | -60 | 265 | | AARC0008 | 84 | 321901 | 6591466 | 377 | -61 | 273 | | Hole_ID | Max_Depth | NAT_East | NAT_North | NAT_RL | Azimuth | Dip | |----------|-----------|----------|-----------|--------|---------|-----| | AARC0009 | 90 | 321922 | 6591462 | 376 | -60 | 272 | | AARC0010 | 72 | 321916 | 6591486 | 377 | -60 | 271 | | AARC0011 | 54 | 321860 | 6591538 | 378 | -61 | 270 | | AARC0012 | 66 | 321887 | 6591525 | 378 | -60 | 270 | | AARC0013 | 72 | 321912 | 6591509 | 377 | -60 | 271 | | AARC0014 | 78 | 321929 | 6591519 | 377 | -60 | 269 | | AARC0015 | 42 | 321810 | 6591455 | 377 | -90 | 0 | | AARC0016 | 36 | 321825 | 6591495 | 378 | -61 | 269 | | AARC0017 | 48 | 321854 | 6591484 | 377 | -60 | 269 | | AARC0018 | 54 | 321872 | 6591482 | 377 | -60 | 270 | | AARC0019 | 60 | 321889 | 6591487 | 377 | -60 | 268 | | AARC0020 | 72 | 321935 | 6591496 | 376 | -60 | 269 | | AARC0021 | 60 | 321874 | 6591458 | 377 | -60 | 272 | Table 5: Ada Ann, phase 1 FRS drilling results showing all sample results for Au. Table shows down hole width and not true width. | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0001 | 0 | 4 | <0.01 | | AARC0001 | 4 | 8 | <0.01 | | AARC0001 | 8 | 12 | <0.01 | | AARC0001 | 12 | 16 | <0.01 | | AARC0001 | 16 | 20 | <0.01 | | AARC0001 | 20 | 24 | <0.01 | | AARC0001 | 24 | 28 | <0.01 | | AARC0001 | 28 | 32 | <0.01 | | AARC0001 | 32 | 36 | 0.02 | | AARC0001 | 36 | 40 | 0.04 | | AARC0001 | 40 | 44 | 0.06 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0001 | 44 | 45 | 0.02 | | AARC0001 | 45 | 46 | 0.03 | | AARC0001 | 46 | 47 | 0.04 | | AARC0001 | 47 | 48 | 0.04 | | AARC0001 | 48 | 49 | 0.03 | | AARC0001 | 49 | 50 | 0.11 | | AARC0001 | 50 | 51 | 0.11 | | AARC0001 | 51 | 52 | 0.05 | | AARC0001 | 52 | 53 | 0.02 | | AARC0001 | 53 | 54 | 0.03 | | AARC0001 | 54 | 55 | 0.02 | | AARC0001 | 55 | 56 | 0.01 | | AARC0001 | 56 | 60 | <0.01 | | AARC0001 | 60 | 64 | <0.01 | | AARC0001 | 64 | 68 | 0.03 | | AARC0001 | 68 | 72 | <0.01 | | AARC0001 | 72 | 76 | 0.01 | | AARC0001 | 76 | 80 | <0.01 | | AARC0001 | 80 | 84 | <0.01 | | AARC0002 | 0 | 4 | <0.01 | | AARC0002 | 4 | 8 | <0.01 | | AARC0002 | 8 | 12 | <0.01 | | AARC0002 | 12 | 16 | <0.01 | | AARC0002 | 16 | 20 | <0.01 | | AARC0002 | 20 | 24 | 0.03 | | AARC0002 | 24 | 28 | <0.01 | | AARC0002 | 28 | 32 | <0.01 | | AARC0002 | 32 | 36 | 0.01 | | AARC0002 | 36 | 40 | 0.04 | | AARC0002 | 40 | 44 | 0.01 | | AARC0002 | 44 | 48 | <0.01 | | Hole_ID | From To | | Au_ppm | |----------|---------|----|--------| | AARC0002 | 48 | 52 | 0.01 | | AARC0002 | 52 | 56 | 0.01 | | AARC0002 | 56 | 57 | 0.02 | | AARC0002 | 57 | 58 | 0.06 | | AARC0002 | 58 | 59 | 0.01 | | AARC0002 | 59 | 60 | 0.02 | | AARC0002 | 60 | 61 | 0.01 | | AARC0002 | 61 | 62 | 0.02 | | AARC0002 | 62 | 63 | 21.00 | | AARC0002 | 63 | 64 | 0.48 | | AARC0002 | 64 | 65 | 0.24 | | AARC0002 | 65 | 66 | 0.08 | | AARC0002 | 66 | 67 | 0.09 | | AARC0002 | 67 | 68 | 0.06 | | AARC0002 | 68 | 72 | 0.02 | | AARC0002 | 72 | 76 | 0.01 | | AARC0002 | 76 | 80 | 0.04 | | AARC0002 | 80 | 84 | 0.01 | | AARC0002 | 84 | 88 | 0.01 | | AARC0002 | 88 | 92 | 0.01 | | AARC0002 | 92 | 96 | <0.01 | | AARC0003 | 0 | 4 | <0.01 | | AARC0003 | 4 | 8 | 0.01 | | AARC0003 | 8 | 12 | <0.01 | | AARC0003 | 12 | 16 | <0.01 | | AARC0003 | 16 | 20 | 0.01 | | AARC0003 | 20 | 24 | 0.02 | | AARC0003 | 24 | 28 | 0.05 | | AARC0003 | 28 | 32 | 0.02 | | AARC0003 | 32 | 33 | 0.02 | | AARC0003 | 33 | 34 | 0.03 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0003 | 34 | 35 | 0.04 | | AARC0003 | 35 | 36 | 0.02 | | AARC0003 | 36 | 37 | 0.08 | | AARC0003 | 37 | 38 | 1.49 | | AARC0003 | 38 | 39 | 0.03 | | AARC0003 | 39 | 40 | 0.01 | | AARC0003 | 40 | 41 | 0.01 | | AARC0003 | 41 | 42 | 0.01 | | AARC0003 | 42 | 43 | 0.08 | | AARC0003 | 43 | 44 | 0.01 | | AARC0003 | 44 | 48 | <0.01 | | AARC0003 | 48 | 52 | <0.01 | | AARC0003 | 52 | 56 | 0.02 | | AARC0003 | 56 | 60 | 0.01 | | AARC0004 | 0 | 4 | 0.01 | | AARC0004 | 4 | 8 | <0.01 | | AARC0004 | 8 | 12 | <0.01 | | AARC0004 | 12 | 16 | <0.01 | | AARC0004 | 16 | 20 | <0.01 | | AARC0004 | 20 | 24 | <0.01 | | AARC0004 | 24 | 28 | <0.01 | | AARC0004 | 28 | 32 | <0.01 | | AARC0004 | 32 | 33 | 0.01 | | AARC0004 | 33 | 34 | 0.01 | | AARC0004 | 34 | 35 | 0.01 | | AARC0004 | 35 | 36 | 0.01 | | AARC0004 | 36 | 37 | -0.01 | | AARC0004 | 37 | 38 | 0.01 | | AARC0004 | 38 | 39 | 0.54 | | AARC0004 | 39 | 40 | 0.01 | | AARC0004 | 40 | 41 | 0.02 | | | Hole_ID | From | То | Au_ppm | |----------|----------|------|----|--------| | | AARC0004 | 41 | 42 | 0.02 | | | AARC0004 | 42 | 43 | 0.05 | | | AARC0004 | 43 | 44 | 0.07 | | | AARC0004 | 44 | 45 | 2.11 | | | AARC0004 | 45 | 46 | 2.95 | | 1 | AARC0004 | 46 | 47 | 0.40 | | | AARC0004 | 47 | 48 | 0.12 |
| AΑ | ARC0004 | 48 | 49 | 0.15 | | Α | ARC0004 | 49 | 50 | 0.07 | | | AARC0004 | 50 | 51 | 0.01 | | Ī | AARC0004 | 51 | 52 | 0.02 | | | AARC0004 | 52 | 56 | 0.05 | | 1 | AARC0004 | 56 | 60 | 0.05 | | | AARC0004 | 60 | 64 | 0.02 | | | AARC0004 | 64 | 68 | 0.01 | | Α | ARC0004 | 68 | 72 | 0.01 | | Α | ARC0004 | 72 | 76 | <0.01 | | A | ARC0004 | 76 | 80 | 0.01 | | A | ARC0004 | 80 | 84 | <0.01 | | A | ARC0005 | 0 | 4 | 0.01 | | | AARC0005 | 4 | 8 | <0.01 | | Ĺ | AARC0005 | 8 | 12 | <0.01 | | <u> </u> | ARC0005 | 12 | 16 | <0.01 | | 1 | AARC0005 | 16 | 20 | <0.01 | | L | AARC0005 | 20 | 24 | <0.01 | | L | AARC0005 | 24 | 28 | 0.01 | | Α | ARC0005 | 28 | 32 | <0.01 | | A/ | ARC0005 | 32 | 36 | <0.01 | | AA | RC0005 | 36 | 40 | 0.01 | | A | ARC0005 | 40 | 44 | <0.01 | | A/ | ARC0005 | 44 | 48 | <0.01 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0005 | 48 | 52 | 0.01 | | AARC0005 | 52 | 56 | 0.01 | | AARC0005 | 56 | 60 | 0.02 | | AARC0005 | 60 | 64 | 0.01 | | AARC0005 | 64 | 65 | 0.04 | | AARC0005 | 65 | 66 | 0.02 | | AARC0005 | 66 | 67 | 0.12 | | AARC0005 | 67 | 68 | 0.04 | | AARC0005 | 68 | 69 | 0.74 | | AARC0005 | 69 | 70 | 3.94 | | AARC0005 | 70 | 71 | 0.10 | | AARC0005 | 71 | 72 | 0.02 | | AARC0005 | 72 | 73 | 0.09 | | AARC0005 | 73 | 74 | 0.01 | | AARC0005 | 74 | 75 | 0.02 | | AARC0005 | 75 | 76 | 0.02 | | AARC0005 | 76 | 80 | 0.06 | | AARC0005 | 80 | 84 | 0.01 | | AARC0005 | 84 | 88 | 0.01 | | AARC0005 | 88 | 92 | 0.05 | | AARC0005 | 92 | 96 | 0.01 | | AARC0006 | 0 | 4 | <0.01 | | AARC0006 | 4 | 8 | <0.01 | | AARC0006 | 8 | 12 | < 0.01 | | AARC0006 | 12 | 16 | <0.01 | | AARC0006 | 16 | 20 | 0.02 | | AARC0006 | 20 | 24 | 0.02 | | AARC0006 | 24 | 25 | 0.08 | | AARC0006 | 25 | 26 | 0.06 | | AARC0006 | 26 | 27 | 0.08 | | AARC0006 | 27 | 28 | 0.05 | | Hol | le_ID | From | То | Au_ppm | |-----|-------|------|----|--------| | AAR | C0006 | 28 | 29 | 0.19 | | AAR | C0006 | 29 | 30 | 0.67 | | AAR | C0006 | 30 | 31 | 0.06 | | AAR | C0006 | 31 | 32 | 0.04 | | AAR | C0006 | 32 | 33 | 0.09 | | AAR | C0006 | 33 | 34 | 0.12 | | AAR | C0006 | 34 | 35 | 0.58 | | AR | C0006 | 35 | 36 | 0.58 | | AAR | C0006 | 36 | 37 | 2.77 | | AAR | C0006 | 37 | 38 | 1.00 | | AAR | C0006 | 38 | 39 | 1.94 | | AAR | C0006 | 39 | 40 | 0.85 | | AAR | C0006 | 40 | 41 | 7.28 | | AAR | C0006 | 41 | 42 | 0.19 | | ۱AR | C0006 | 42 | 43 | 0.02 | | AR | C0006 | 43 | 44 | 0.10 | | ۱AR | C0006 | 44 | 45 | 0.06 | | AAR | C0006 | 45 | 46 | 0.04 | | AAR | C0006 | 46 | 47 | 0.12 | | AR | C0006 | 47 | 48 | 0.10 | | AAR | C0006 | 48 | 49 | 0.03 | | AAR | C0006 | 49 | 50 | 0.02 | | AAR | C0006 | 50 | 51 | 0.32 | | ιAR | C0006 | 51 | 52 | 0.46 | | AAR | C0006 | 52 | 53 | 0.08 | | AAR | C0006 | 53 | 54 | 0.02 | | AAR | C0006 | 54 | 55 | 0.01 | | | C0006 | 55 | 56 | 0.02 | | | C0006 | 56 | 60 | 0.02 | | | C0006 | 60 | 64 | <0.01 | | ۱R | C0006 | 64 | 68 | <0.01 | | | Hole_ID | From | То | Au_ppm | |-----|----------|------|----|--------| | | AARC0006 | 68 | 72 | <0.01 | | | AARC0006 | 72 | 76 | <0.01 | | | AARC0006 | 76 | 80 | <0.01 | | | AARC0006 | 80 | 84 | <0.01 | | | AARC0007 | 0 | 4 | <0.01 | | | AARC0007 | 4 | 8 | <0.01 | | | AARC0007 | 8 | 12 | <0.01 | | 1 | AARC0007 | 12 | 16 | <0.01 | | Α | ARC0007 | 16 | 20 | 0.01 | | | AARC0007 | 20 | 24 | <0.01 | | | AARC0007 | 24 | 28 | <0.01 | | | AARC0007 | 28 | 32 | 0.01 | | | AARC0007 | 32 | 36 | 0.02 | | | AARC0007 | 36 | 40 | 0.02 | | | AARC0007 | 40 | 44 | 0.01 | | | AARC0007 | 44 | 45 | 0.02 | | 1 | AARC0007 | 45 | 46 | 0.02 | | AA | ARC0007 | 46 | 47 | 0.02 | | Α | ARC0007 | 47 | 48 | 0.01 | | Α/ | ARC0007 | 48 | 49 | 0.03 | | 1 | AARC0007 | 49 | 50 | 0.02 | | | AARC0007 | 50 | 51 | 0.57 | | | AARC0007 | 51 | 52 | 0.03 | | | AARC0007 | 52 | 53 | 0.03 | | | AARC0007 | 53 | 54 | 0.11 | | | AARC0007 | 54 | 55 | 1.32 | | L | AARC0007 | 55 | 56 | 0.02 | | L | AARC0007 | 56 | 57 | 0.02 | | AA | RC0007 | 57 | 58 | 0.04 | | AAI | RC0007 | 58 | 59 | 0.03 | | AA | RC0007 | 59 | 60 | 0.08 | | | Hole_ID | From | То | Au_ppm | |----|----------|------|----|--------| | | AARC0007 | 60 | 61 | 0.04 | | | AARC0007 | 61 | 62 | 0.03 | | | AARC0007 | 62 | 63 | 0.16 | | | AARC0007 | 63 | 64 | 0.03 | | | AARC0007 | 64 | 68 | 0.01 | | | AARC0007 | 68 | 72 | 0.05 | | | AARC0007 | 72 | 76 | 0.01 | | A/ | ARC0007 | 76 | 80 | 0.06 | | A/ | ARC0007 | 80 | 84 | 0.02 | | A | ARC0007 | 84 | 88 | <0.01 | | | AARC0007 | 88 | 92 | <0.01 | | | AARC0007 | 92 | 96 | <0.01 | | | AARC0008 | 0 | 4 | <0.01 | | | AARC0008 | 4 | 8 | <0.01 | | | AARC0008 | 8 | 12 | <0.01 | | , | AARC0008 | 12 | 16 | <0.01 | | Α | ARC0008 | 16 | 20 | <0.01 | | Α | ARC0008 | 20 | 24 | <0.01 | | F | AARC0008 | 24 | 28 | 0.02 | | A | AARC0008 | 28 | 32 | 0.03 | | L | AARC0008 | 32 | 33 | 0.02 | | | AARC0008 | 33 | 34 | 0.03 | | | AARC0008 | 34 | 35 | 0.02 | | | AARC0008 | 35 | 36 | 0.03 | | | AARC0008 | 36 | 37 | 0.04 | | | AARC0008 | 37 | 38 | 0.10 | | Δ | ARC0008 | 38 | 39 | 0.20 | | A | ARC0008 | 39 | 40 | 0.07 | | AΑ | ARC0008 | 40 | 41 | 0.02 | | Α | ARC0008 | 41 | 42 | 0.09 | | AA | ARC0008 | 42 | 43 | 0.07 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0008 | 43 | 44 | 1.19 | | AARC0008 | 44 | 45 | 0.70 | | AARC0008 | 45 | 46 | 0.38 | | AARC0008 | 46 | 47 | 0.05 | | AARC0008 | 47 | 48 | 0.18 | | AARC0008 | 48 | 49 | 1.08 | | AARC0008 | 49 | 50 | 0.39 | | AARC0008 | 50 | 51 | 0.03 | | AARC0008 | 51 | 52 | 0.68 | | AARC0008 | 52 | 53 | 0.04 | | AARC0008 | 53 | 54 | 0.01 | | AARC0008 | 54 | 55 | 0.01 | | AARC0008 | 55 | 56 | 0.02 | | AARC0008 | 56 | 60 | 0.02 | | AARC0008 | 60 | 64 | 0.01 | | AARC0008 | 64 | 68 | 0.01 | | AARC0008 | 68 | 72 | <0.01 | | AARC0008 | 72 | 76 | <0.01 | | AARC0008 | 76 | 80 | <0.01 | | AARC0008 | 80 | 84 | <0.01 | | AARC0009 | 0 | 4 | 0.01 | | AARC0009 | 4 | 8 | <0.01 | | AARC0009 | 8 | 12 | <0.01 | | AARC0009 | 12 | 16 | <0.01 | | AARC0009 | 16 | 20 | <0.01 | | AARC0009 | 20 | 24 | 0.01 | | AARC0009 | 24 | 28 | 0.02 | | AARC0009 | 28 | 32 | 0.01 | | AARC0009 | 32 | 36 | 0.01 | | AARC0009 | 36 | 40 | 0.02 | | AARC0009 | 40 | 44 | 0.01 | | | Hole_ID | From | То | Au_ppm | |----|----------|------|----|--------| | | AARC0009 | 44 | 48 | 0.05 | | | AARC0009 | 48 | 49 | 0.04 | | | AARC0009 | 49 | 50 | 0.04 | | | AARC0009 | 50 | 51 | 0.05 | | | AARC0009 | 51 | 52 | 0.05 | | | AARC0009 | 52 | 53 | 0.40 | | | AARC0009 | 53 | 54 | 4.94 | | | AARC0009 | 54 | 55 | 0.08 | | | AARC0009 | 55 | 56 | 0.03 | | | AARC0009 | 56 | 57 | 0.07 | | | AARC0009 | 57 | 58 | 0.49 | | | AARC0009 | 58 | 59 | 0.02 | | | AARC0009 | 59 | 60 | 0.04 | | | AARC0009 | 60 | 64 | 0.03 | | | AARC0009 | 64 | 68 | 0.01 | | | AARC0009 | 68 | 72 | 0.01 | | | AARC0009 | 72 | 76 | <0.01 | | L | AARC0009 | 76 | 80 | <0.01 | | L | AARC0009 | 80 | 84 | <0.01 | | | AARC0009 | 84 | 88 | <0.01 | | | AARC0009 | 88 | 90 | <0.01 | | | AARC0010 | 0 | 4 | 0.01 | | | AARC0010 | 4 | 8 | <0.01 | | | AARC0010 | 8 | 12 | <0.01 | | | AARC0010 | 12 | 16 | <0.01 | | | AARC0010 | 16 | 20 | <0.01 | | | AARC0010 | 20 | 24 | <0.01 | | L | AARC0010 | 24 | 28 | 0.01 | | A | ARC0010 | 28 | 32 | 0.01 | | A | ARC0010 | 32 | 33 | <0.01 | | AA | RC0010 | 33 | 34 | 0.02 | | u_ppm | |-------| | 0.01 | | 0.01 | | 0.02 | | 0.01 | | 0.01 | | 0.02 | | 0.10 | | 0.10 | | 0.02 | | 0.08 | | 2.41 | | 0.08 | | 0.02 | | 0.50 | | 0.03 | | 0.02 | | 0.03 | | 0.09 | | 0.06 | | 0.49 | | 0.99 | | 2.21 | | 0.06 | | 0.04 | | 0.02 | | 0.02 | | 0.01 | | 0.01 | | 0.02 | | 0.01 | | <0.01 | | | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0011 | 8 | 12 | <0.01 | | AARC0011 | 12 | 16 | <0.01 | | AARC0011 | 16 | 20 | <0.01 | | AARC0011 | 20 | 21 | 0.05 | | AARC0011 | 21 | 22 | 0.13 | | AARC0011 | 22 | 23 | 0.02 | | AARC0011 | 23 | 24 | 0.01 | | AARC0011 | 24 | 25 | 0.09 | | AARC0011 | 25 | 26 | 0.06 | | AARC0011 | 26 | 27 | 0.35 | | AARC0011 | 27 | 28 | 0.08 | | AARC0011 | 28 | 29 | 0.06 | | AARC0011 | 29 | 30 | 0.15 | | AARC0011 | 30 | 31 | 0.02 | | AARC0011 | 31 | 32 | 0.01 | | AARC0011 | 32 | 36 | 0.01 | | AARC0011 | 36 | 40 | 0.02 | | AARC0011 | 40 | 44 | 0.02 | | AARC0011 | 44 | 48 | <0.01 | | AARC0011 | 48 | 52 | <0.01 | | AARC0011 | 52 | 54 | <0.01 | | AARC0012 | 0 | 4 | <0.01 | | AARC0012 | 4 | 8 | <0.01 | | AARC0012 | 8 | 12 | <0.01 | | AARC0012 | 12 | 16 | <0.01 | | AARC0012 | 16 | 20 | <0.01 | | AARC0012 | 20 | 24 | 0.01 | | AARC0012 | 24 | 28 | 0.02 | | AARC0012 | 28 | 29 | 0.05 | | AARC0012 | 29 | 30 | 0.04 | | AARC0012 | 30 | 31 | 0.05 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0012 | 31 | 32 | 0.07 | | AARC0012 | 32 | 33 | 0.06 | | AARC0012 | 33 | 34 | 0.07 | | AARC0012 | 34 | 35 | 0.26 | | AARC0012 | 35 | 36 | 0.33 | | AARC0012 | 36 | 37 | 0.18 | | AARC0012 | 37 | 38 | 0.07 | | AARC0012 | 38 | 39 | 0.06 | | AARC0012 | 39 | 40 | 0.01 | | AARC0012 | 40 | 41 | 0.02 | | AARC0012 | 41 | 42 | <0.01 | | AARC0012 | 42 | 43 | <0.01 | | AARC0012 | 43 | 44 | <0.01 | | AARC0012 | 44 | 48 | <0.01 | | AARC0012 | 48 | 52 | 0.01 | | AARC0012 | 52 | 56 | <0.01 | | AARC0012 | 56 | 60 | <0.01 | | AARC0012 | 60 | 64 | <0.01 | | AARC0012 | 64 | 66 | <0.01 | | AARC0013 | 0 | 4 | 0.01 | | AARC0013 | 4 | 8 | <0.01 | | AARC0013 | 8 | 12 | <0.01 | | AARC0013 | 12 | 16 | <0.01 | | AARC0013 | 16 | 20 | <0.01 | | AARC0013 | 20 | 24 | <0.01 | | AARC0013 | 24 | 28 | 0.03 | | AARC0013 | 28 | 32 | 0.01 | | AARC0013 | 32 | 36 | 0.01 | | AARC0013 | 36 | 40 | 0.01 | | AARC0013 | 40 | 41 | 0.01 | | AARC0013 | 41 | 42 | < 0.01 | | _ | | | | |--------|----|------|----------| | Au_ppn | То | From | Hole_ID | | 0.03 | 43 | 42 | AARC0013 | | 0.07 | 44 | 43 | AARC0013 | | 1.20 | 45 | 44 | AARC0013 | | 0.04 | 46 | 45 | AARC0013 | | 0.04 | 47 | 46 | AARC0013 | | 0.01 | 48 | 47 | AARC0013 | | 0.01 | 49 | 48 | AARC0013 | | 0.03 | 50 | 49 | AARC0013 | | 0.30 | 51 | 50 | AARC0013 | | 0.01 | 52 | 51 | AARC0013 | | <0.01 | 53 | 52 | AARC0013 | | 0.02 | 54 | 53 | AARC0013 | | <0.01 | 55 | 54 | AARC0013 | | <0.01 | 56 | 55 | AARC0013 | | <0.01 | 60 | 56 | AARC0013 |
| <0.01 | 64 | 60 | AARC0013 | | <0.01 | 68 | 64 | AARC0013 | | <0.01 | 72 | 68 | AARC0013 | | 0.01 | 4 | 0 | AARC0014 | | <0.01 | 8 | 4 | AARC0014 | | <0.01 | 12 | 8 | AARC0014 | | <0.01 | 16 | 12 | AARC0014 | | <0.01 | 20 | 16 | AARC0014 | | <0.01 | 24 | 20 | AARC0014 | | 0.01 | 28 | 24 | AARC0014 | | 0.01 | 32 | 28 | AARC0014 | | 0.01 | 36 | 32 | AARC0014 | | 0.01 | 40 | 36 | AARC0014 | | 0.03 | 44 | 40 | AARC0014 | | <0.01 | 45 | 44 | AARC0014 | | | | | | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0014 | 46 | 47 | 0.01 | | AARC0014 | 47 | 48 | 0.02 | | AARC0014 | 48 | 49 | <0.01 | | AARC0014 | 49 | 50 | 0.01 | | AARC0014 | 50 | 51 | 0.09 | | AARC0014 | 51 | 52 | 0.04 | | AARC0014 | 52 | 53 | 0.03 | | AARC0014 | 53 | 54 | 0.04 | | AARC0014 | 54 | 55 | 0.02 | | AARC0014 | 55 | 56 | 0.71 | | AARC0014 | 56 | 57 | 0.01 | | AARC0014 | 57 | 58 | <0.01 | | AARC0014 | 58 | 59 | <0.01 | | AARC0014 | 59 | 60 | 0.01 | | AARC0014 | 60 | 61 | 0.22 | | AARC0014 | 61 | 62 | 3.98 | | AARC0014 | 62 | 63 | 0.55 | | AARC0014 | 63 | 64 | 0.09 | | AARC0014 | 64 | 65 | 0.08 | | AARC0014 | 65 | 66 | 0.02 | | AARC0014 | 66 | 67 | 0.02 | | AARC0014 | 67 | 68 | <0.01 | | AARC0014 | 68 | 72 | <0.01 | | AARC0014 | 72 | 76 | <0.01 | | AARC0014 | 76 | 78 | <0.01 | | AARC0015 | 0 | 4 | 0.02 | | AARC0015 | 4 | 8 | <0.01 | | AARC0015 | 8 | 12 | <0.01 | | AARC0015 | 12 | 16 | <0.01 | | AARC0015 | 16 | 20 | <0.01 | | AARC0015 | 20 | 24 | 0.03 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0015 | 24 | 28 | 0.01 | | AARC0015 | 28 | 29 | 0.01 | | AARC0015 | 29 | 30 | 0.03 | | AARC0015 | 30 | 31 | 0.01 | | AARC0015 | 31 | 32 | 0.01 | | AARC0015 | 32 | 33 | 1.18 | | AARC0015 | 33 | 34 | 0.01 | | AARC0015 | 34 | 35 | <0.01 | | AARC0015 | 35 | 36 | 0.01 | | AARC0015 | 36 | 37 | 0.01 | | AARC0015 | 37 | 38 | <0.01 | | AARC0015 | 38 | 39 | <0.01 | | AARC0015 | 39 | 40 | 0.02 | | AARC0015 | 40 | 42 | 0.02 | | AARC0016 | 0 | 1 | 4.89 | | AARC0016 | 1 | 2 | 0.16 | | AARC0016 | 2 | 3 | 0.05 | | AARC0016 | 3 | 4 | 0.04 | | AARC0016 | 4 | 5 | 0.04 | | AARC0016 | 5 | 6 | 0.03 | | AARC0016 | 6 | 7 | 0.07 | | AARC0016 | 7 | 8 | 0.02 | | AARC0016 | 8 | 12 | <0.01 | | AARC0016 | 12 | 16 | <0.01 | | AARC0016 | 16 | 20 | <0.01 | | AARC0016 | 20 | 24 | 0.02 | | AARC0016 | 24 | 28 | 0.01 | | AARC0016 | 28 | 32 | <0.01 | | AARC0016 | 32 | 36 | <0.01 | | AARC0017 | 0 | 4 | 0.03 | | AARC0017 | 4 | 8 | 0.06 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0017 | 8 | 9 | 0.01 | | AARC0017 | 9 | 10 | <0.01 | | AARC0017 | 10 | 11 | 0.01 | | AARC0017 | 11 | 12 | 0.03 | | AARC0017 | 12 | 13 | <0.01 | | AARC0017 | 13 | 14 | 0.20 | | AARC0017 | 14 | 15 | 1.64 | | AARC0017 | 15 | 16 | 2.50 | | AARC0017 | 16 | 17 | 0.42 | | AARC0017 | 17 | 18 | 0.31 | | AARC0017 | 18 | 19 | 0.08 | | AARC0017 | 19 | 20 | 0.11 | | AARC0017 | 20 | 21 | 0.25 | | AARC0017 | 21 | 22 | 0.20 | | AARC0017 | 22 | 23 | 2.80 | | AARC0017 | 23 | 24 | 0.07 | | AARC0017 | 24 | 25 | 0.01 | | AARC0017 | 25 | 26 | 0.02 | | AARC0017 | 26 | 27 | 0.05 | | AARC0017 | 27 | 28 | 0.01 | | AARC0017 | 28 | 32 | 0.02 | | AARC0017 | 32 | 36 | 0.01 | | AARC0017 | 36 | 40 | 0.01 | | AARC0017 | 40 | 44 | 0.01 | | AARC0017 | 44 | 48 | 0.01 | | AARC0018 | 0 | 4 | 0.02 | | AARC0018 | 4 | 8 | <0.01 | | AARC0018 | 8 | 12 | 0.01 | | AARC0018 | 12 | 13 | 0.02 | | AARC0018 | 13 | 14 | 0.01 | | AARC0018 | 14 | 15 | 0.02 | | | | | | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0018 | 15 | 16 | 0.01 | | AARC0018 | 16 | 17 | 0.01 | | AARC0018 | 17 | 18 | 0.17 | | AARC0018 | 18 | 19 | 0.72 | | AARC0018 | 19 | 20 | 0.91 | | AARC0018 | 20 | 21 | 0.05 | | AARC0018 | 21 | 22 | 0.05 | | AARC0018 | 22 | 23 | 0.04 | | AARC0018 | 23 | 24 | 0.02 | | AARC0018 | 24 | 25 | 0.01 | | AARC0018 | 25 | 26 | 0.08 | | AARC0018 | 26 | 27 | 0.06 | | AARC0018 | 27 | 28 | 0.08 | | AARC0018 | 28 | 29 | 0.16 | | AARC0018 | 29 | 30 | 1.27 | | AARC0018 | 30 | 31 | 0.04 | | AARC0018 | 31 | 32 | 0.09 | | AARC0018 | 32 | 33 | 0.04 | | AARC0018 | 33 | 34 | 0.09 | | AARC0018 | 34 | 35 | 0.14 | | AARC0018 | 35 | 36 | 0.27 | | AARC0018 | 36 | 40 | 0.02 | | AARC0018 | 40 | 44 | 0.01 | | AARC0018 | 44 | 48 | 0.01 | | AARC0018 | 48 | 52 | <0.01 | | AARC0018 | 52 | 54 | 0.01 | | AARC0019 | 0 | 4 | 0.01 | | AARC0019 | 4 | 8 | <0.01 | | AARC0019 | 8 | 12 | <0.01 | | AARC0019 | 12 | 16 | <0.01 | | AARC0019 | 16 | 20 | 0.01 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0019 | 20 | 24 | 0.01 | | AARC0019 | 24 | 25 | 0.01 | | AARC0019 | 25 | 26 | 0.02 | | AARC0019 | 26 | 27 | 0.03 | | AARC0019 | 27 | 28 | 0.01 | | AARC0019 | 28 | 29 | 0.05 | | AARC0019 | 29 | 30 | 0.04 | | AARC0019 | 30 | 31 | 0.08 | | AARC0019 | 31 | 32 | 0.40 | | AARC0019 | 32 | 33 | 0.47 | | AARC0019 | 33 | 34 | 1.39 | | AARC0019 | 34 | 35 | 0.70 | | AARC0019 | 35 | 36 | 0.46 | | AARC0019 | 36 | 37 | 0.48 | | AARC0019 | 37 | 38 | 0.22 | | AARC0019 | 38 | 39 | 0.05 | | AARC0019 | 39 | 40 | 0.15 | | AARC0019 | 40 | 41 | 0.12 | | AARC0019 | 41 | 42 | 0.46 | | AARC0019 | 42 | 43 | 0.03 | | AARC0019 | 43 | 44 | 0.03 | | AARC0019 | 44 | 45 | 0.04 | | AARC0019 | 45 | 46 | 0.04 | | AARC0019 | 46 | 47 | 0.06 | | AARC0019 | 47 | 48 | 0.01 | | AARC0019 | 48 | 52 | 0.01 | | AARC0019 | 52 | 56 | 0.01 | | AARC0019 | 56 | 60 | <0.01 | | AARC0020 | 0 | 4 | 0.01 | | AARC0020 | 4 | 8 | 0.01 | | AARC0020 | 8 | 12 | <0.01 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0020 | 12 | 16 | <0.01 | | AARC0020 | 16 | 20 | <0.01 | | AARC0020 | 20 | 24 | <0.01 | | AARC0020 | 24 | 28 | <0.01 | | AARC0020 | 28 | 32 | 0.01 | | AARC0020 | 32 | 36 | <0.01 | | AARC0020 | 36 | 40 | <0.01 | | AARC0020 | 40 | 44 | <0.01 | | AARC0020 | 44 | 48 | 0.01 | | AARC0020 | 48 | 52 | 0.03 | | AARC0020 | 52 | 56 | 0.02 | | AARC0020 | 56 | 57 | 0.01 | | AARC0020 | 57 | 58 | 0.01 | | AARC0020 | 58 | 59 | <0.01 | | AARC0020 | 59 | 60 | 0.01 | | AARC0020 | 60 | 61 | 0.01 | | AARC0020 | 61 | 62 | 0.02 | | AARC0020 | 62 | 63 | 1.64 | | AARC0020 | 63 | 64 | 5.84 | | AARC0020 | 64 | 65 | 0.30 | | AARC0020 | 65 | 66 | 0.06 | | AARC0020 | 66 | 67 | 0.02 | | AARC0020 | 67 | 68 | 1.92 | | AARC0020 | 68 | 69 | 0.02 | | AARC0020 | 69 | 70 | 0.02 | | AARC0020 | 70 | 71 | 0.01 | | AARC0020 | 71 | 72 | 0.02 | | AARC0021 | 0 | 4 | 0.02 | | AARC0021 | 4 | 8 | 0.01 | | AARC0021 | 8 | 12 | 0.01 | | AARC0021 | 12 | 16 | 0.03 | | Hole_ID | From | То | Au_ppm | |----------|---|---|--| | AARC0021 | 16 | 17 | 0.02 | | AARC0021 | 17 | 18 | 0.03 | | AARC0021 | 18 | 19 | 0.04 | | AARC0021 | 19 | 20 | 0.06 | | AARC0021 | 20 | 21 | 0.16 | | AARC0021 | 21 | 22 | 0.37 | | AARC0021 | 22 | 23 | 0.26 | | AARC0021 | 23 | 24 | 0.14 | | AARC0021 | 24 | 25 | 0.10 | | AARC0021 | 25 | 26 | 0.07 | | AARC0021 | 26 | 27 | 0.04 | | AARC0021 | 27 | 28 | 0.04 | | AARC0021 | 28 | 29 | 0.02 | | AARC0021 | 29 | 30 | 0.04 | | AARC0021 | 30 | 31 | 0.41 | | AARC0021 | 31 | 32 | 0.03 | | AARC0021 | 32 | 33 | 0.18 | | AARC0021 | 33 | 34 | 0.08 | | AARC0021 | 34 | 35 | 0.85 | | AARC0021 | 35 | 36 | 0.04 | | AARC0021 | 36 | 37 | 0.04 | | AARC0021 | 37 | 38 | 0.03 | | AARC0021 | 38 | 39 | 0.02 | | AARC0021 | 39 | 40 | 0.02 | | AARC0021 | 40 | 41 | 0.40 | | AARC0021 | 41 | 42 | 0.61 | | AARC0021 | 42 | 43 | 0.10 | | AARC0021 | 43 | 44 | 0.30 | | AARC0021 | 44 | 45 | 0.03 | | AARC0021 | 45 | 46 | 0.03 | | AARC0021 | 46 | 47 | 0.03 | | | AARCO021 | AARCO021 16 AARCO021 17 AARCO021 19 AARCO021 20 AARCO021 21 AARCO021 21 AARCO021 22 AARCO021 23 AARCO021 24 AARCO021 25 AARCO021 26 AARCO021 27 AARCO021 27 AARCO021 28 AARCO021 29 AARCO021 30 AARCO021 30 AARCO021 31 AARCO021 32 AARCO021 32 AARCO021 33 AARCO021 33 AARCO021 34 AARCO021 35 AARCO021 35 AARCO021 36 AARCO021 37 AARCO021 37 AARCO021 38 AARCO021 39 AARCO021 39 AARCO021 40 AARCO021 41 AARCO021 42 AARCO021 42 AARCO021 43 AARCO021 44 AARCO021 44 AARCO021 44 | AARCOO21 16 17 AARCOO21 17 18 AARCOO21 19 20 AARCOO21 20 21 AARCOO21 21 22 AARCOO21 22 23 AARCOO21 23 24 AARCOO21 24 25 AARCOO21 25 26 AARCOO21 26 27 AARCOO21 27 28 AARCOO21 27 28 AARCOO21 28 29 AARCOO21 29 30 AARCOO21 29 30 AARCOO21 30 31 AARCOO21 30 31 AARCOO21 31 32 AARCOO21 32 33 AARCOO21 33 34 AARCOO21 34 35 AARCOO21 35 36 AARCOO21 36 37 AARCOO21 37 38 AARCOO21 38 39 AARCOO21 39 40 AARCOO21 40 41 AARCOO21 41 42 AARCOO21 42 43 AARCOO21 44 45 | | Hole_ID | From | То | Au_ppm | |----------|------|----|--------| | AARC0021 | 47 | 48 |
0.01 | | AARC0021 | 48 | 49 | 0.04 | | AARC0021 | 49 | 50 | 0.02 | | AARC0021 | 50 | 51 | 0.02 | | AARC0021 | 51 | 52 | 0.05 | | AARC0021 | 52 | 56 | <0.01 | | AARC0021 | 56 | 60 | <0.01 | Table 7: All significant intercepts from Ada Ann (including historic drilling results) along with grams per metre. Intercepts are based on a cut-off grade of 0.3g/t Au allowing for internal dilution by two "waste" or sub-grade (<0.3g/t Au) samples. Drilling intercept widths are down-hole widths and not true widths. | Hole_ID | Depth_From | Depth_To | IntervalWidth | Grade | Gram/metre | |----------|------------|----------|---------------|-------|------------| | AA28 | 25 | 29 | 4 | 12.80 | 51.2 | | BR19 | 24 | 40 | 16 | 2.64 | 42.2 | | AA05 | 16 | 22 | 6 | 6.45 | 38.7 | | AA04 | 4 | 11 | 7 | 5.01 | 35.1 | | AA45 | 8 | 20 | 12 | 2.68 | 32.2 | | AA06 | 19 | 26 | 7 | 4.40 | 30.8 | | AARC0029 | 72 | 79 | 7 | 4.29 | 30.0 | | AA27 | 41 | 45 | 4 | 7.34 | 29.4 | | AXRC10 | 42 | 46 | 4 | 7.28 | 29.1 | | AA20 | 25 | 31 | 6 | 4.50 | 27.0 | | AA24 | 14 | 18 | 4 | 6.70 | 26.8 | | AXRC09 | 40 | 44 | 4 | 5.90 | 23.6 | | AARC0028 | 74 | 77 | 3 | 7.81 | 23.4 | | BR22 | 24 | 34 | 10 | 2.28 | 22.8 | | AARC0002 | 62 | 64 | 2 | 10.74 | 21.5 | | AA25 | 17 | 24 | 7 | 2.99 | 20.9 | | AA46 | 4 | 18 | 14 | 1.44 | 20.2 | | Hole_ID | Depth_From | Depth_To | IntervalWidth | Grade | Gram/metre | |----------|------------|----------|---------------|-------|------------| | AA10 | 40 | 47 | 7 | 2.74 | 19.2 | | AA06 | 32 | 37 | 5 | 3.63 | 18.2 | | AARC0024 | 82 | 85 | 3 | 5.92 | 17.8 | | AA49 | 14 | 16 | 2 | 8.08 | 16.2 | | AA25 | 35 | 38 | 3 | 5.37 | 16.1 | | AARC0006 | 34 | 41 | 7 | 2.14 | 15.0 | | BR04 | 14 | 28 | 14 | 1.06 | 14.8 | | AA17 | 28 | 34 | 6 | 2.30 | 13.8 | | AA54 | 41 | 46 | 5 | 2.65 | 13.3 | | BR05 | 0 | 6 | 6 | 2.19 | 13.1 | | AA01 | 15 | 23 | 8 | 1.56 | 12.5 | | AXRC10 | 29 | 33 | 4 | 3.12 | 12.5 | | AA57 | 48 | 53 | 5 | 2.47 | 12.4 | | AA12 | 66 | 69 | 3 | 4.03 | 12.1 | | AA34 | 8 | 20 | 12 | 0.99 | 11.9 | | BR28 | 31 | 37 | 6 | 1.93 | 11.6 | | AA22 | 32 | 36 | 4 | 2.63 | 10.5 | | AA18 | 41 | 45 | 4 | 2.47 | 9.9 | | AARC0020 | 62 | 68 | 6 | 1.63 | 9.8 | | AA02 | 23 | 29 | 6 | 1.62 | 9.7 | | AXRC05 | 27 | 29 | 2 | 4.83 | 9.7 | | AXRC07 | 21 | 22 | 1 | 9.42 | 9.4 | | AA43 | 28 | 30 | 2 | 4.58 | 9.2 | | BR15 | 24 | 26 | 2 | 4.15 | 8.3 | | AA24 | 30 | 33 | 3 | 2.70 | 8.1 | | AA20 | 17 | 20 | 3 | 2.58 | 7.7 | | AA03 | 29 | 39 | 10 | 0.73 | 7.3 | | AARC0024 | 70 | 72 | 2 | 3.64 | 7.3 | | AA05 | 30 | 31 | 1 | 6.83 | 6.8 | | AA02 | 40 | 42 | 2 | 3.34 | 6.7 | | AARC0027 | 77 | 79 | 2 | 3.32 | 6.6 | | Hole_ID | Depth_From | Depth_To | IntervalWidth | Grade | Gram/metre | |----------|------------|----------|---------------|-------|------------| | BR23 | 29 | 37 | 8 | 0.77 | 6.2 | | AA38 | 15 | 20 | 5 | 1.22 | 6.1 | | AA19 | 43 | 48 | 5 | 1.15 | 5.8 | | AXRC16 | 27 | 31 | 4 | 1.42 | 5.7 | | AARC0004 | 44 | 47 | 3 | 1.82 | 5.5 | | AARC0009 | 52 | 54 | 2 | 2.67 | 5.3 | | BR02 | 4 | 14 | 10 | 0.52 | 5.2 | | AA04 | 23 | 25 | 2 | 2.56 | 5.1 | | BR28 | 42 | 44 | 2 | 2.50 | 5.0 | | AARC0016 | 0 | 1 | 1 | 4.89 | 4.9 | | AARC0017 | 14 | 18 | 4 | 1.22 | 4.9 | | AA12 | 42 | 43 | 1 | 4.80 | 4.8 | | AARC0005 | 68 | 70 | 2 | 2.34 | 4.7 | | AARC0008 | 43 | 52 | 9 | 0.52 | 4.7 | | AA16 | 35 | 37 | 2 | 2.32 | 4.6 | | AA32 | 37 | 39 | 2 | 2.30 | 4.6 | | AARC0014 | 61 | 63 | 2 | 2.27 | 4.5 | | AA09 | 46 | 47 | 1 | 4.51 | 4.5 | | BR02 | 18 | 22 | 4 | 1.07 | 4.3 | | AA43 | 17 | 19 | 2 | 2.12 | 4.2 | | AARC0030 | 8 | 9 | 1 | 4.11 | 4.1 | | AA44 | 21 | 23 | 2 | 2.04 | 4.1 | | BR24 | 22 | 28 | 6 | 0.68 | 4.1 | | AARC0019 | 31 | 37 | 6 | 0.65 | 3.9 | | AARC0010 | 53 | 56 | 3 | 1.23 | 3.7 | | AA29 | 31 | 35 | 4 | 0.88 | 3.5 | | AA03 | 46 | 47 | 1 | 3.51 | 3.5 | | BR29 | 15 | 16 | 1 | 3.50 | 3.5 | | BR25 | 16 | 20 | 4 | 0.86 | 3.4 | | AA15 | 39 | 43 | 4 | 0.85 | 3.4 | | AA58 | 58 | 62 | 4 | 0.83 | 3.3 | | Hole_ID | Depth_From | Depth_To | IntervalWidth | Grade | Gram/metre | |----------|------------|----------|---------------|-------|------------| | AA56 | 47 | 49 | 2 | 1.57 | 3.1 | | AA37 | 16 | 20 | 4 | 0.77 | 3.1 | | AARC0010 | 44 | 48 | 4 | 0.75 | 3.0 | | AA08 | 29 | 30 | 1 | 2.97 | 3.0 | | AARC0017 | 22 | 23 | 1 | 2.80 | 2.8 | | AA55 | 50 | 51 | 1 | 2.76 | 2.8 | | BR07 | 22 | 26 | 4 | 0.68 | 2.7 | | BR28 | 52 | 56 | 4 | 0.68 | 2.7 | | AA40 | 18 | 21 | 3 | 0.82 | 2.5 | | AA52 | 16 | 20 | 4 | 0.61 | 2.4 | | AARC0035 | 48 | 49 | 1 | 2.36 | 2.4 | | AAA130 | 34 | 38 | 4 | 0.57 | 2.3 | | AA49 | 7 | 11 | 4 | 0.56 | 2.2 | | AARC0022 | 35 | 37 | 2 | 1.09 | 2.2 | | AA33 | 40 | 44 | 4 | 0.54 | 2.2 | | AA47 | 4 | 8 | 4 | 0.52 | 2.1 | | AXRC16 | 34 | 35 | 1 | 2.05 | 2.1 | | AA10 | 52 | 54 | 2 | 1.02 | 2.0 | | AA20 | 11 | 14 | 3 | 0.68 | 2.0 | | BR05 | 18 | 20 | 2 | 0.98 | 2.0 | | AA04 | 35 | 36 | 1 | 1.93 | 1.9 | | AA23 | 15 | 16 | 1 | 1.91 | 1.9 | | AA12 | 54 | 55 | 1 | 1.88 | 1.9 | | AA53 | 33 | 37 | 4 | 0.46 | 1.8 | | AA54 | 53 | 54 | 1 | 1.76 | 1.8 | | BR29 | 24 | 26 | 2 | 0.88 | 1.8 | | AARC0024 | 54 | 57 | 3 | 0.58 | 1.7 | | AA58 | 44 | 48 | 4 | 0.42 | 1.7 | | AARC0018 | 18 | 20 | 2 | 0.82 | 1.6 | | BR26 | 26 | 29 | 3 | 0.54 | 1.6 | | AAA149 | 22 | 26 | 4 | 0.40 | 1.6 | | Hole_ID | Depth_From | Depth_To | IntervalWidth | Grade | Gram/metre | |----------|------------|----------|---------------|-------|------------| | AAA149 | 38 | 42 | 4 | 0.40 | 1.6 | | AARC0003 | 37 | 38 | 1 | 1.49 | 1.5 | | AARC0021 | 40 | 44 | 4 | 0.35 | 1.4 | | AA21 | 20 | 21 | 1 | 1.33 | 1.3 | | AARC0007 | 54 | 55 | 1 | 1.32 | 1.3 | | AA37 | 8 | 12 | 4 | 0.32 | 1.3 | | AARC0018 | 29 | 30 | 1 | 1.27 | 1.3 | | AA05 | 41 | 42 | 1 | 1.23 | 1.2 | | AA16 | 25 | 28 | 3 | 0.41 | 1.2 | | AARC0013 | 44 | 45 | 1 | 1.20 | 1.2 | | AA56 | 59 | 60 | 1 | 1.18 | 1.2 | | AARC0015 | 32 | 33 | 1 | 1.18 | 1.2 | | BR27 | 17 | 19 | 2 | 0.57 | 1.1 | | BR08 | 30 | 32 | 2 | 0.52 | 1.0 | | AARC0022 | 10 | 14 | 4 | 0.23 | 0.9 | | AA35 | 18 | 20 | 2 | 0.45 | 0.9 | | AARC0021 | 34 | 35 | 1 | 0.85 | 0.9 | | BR06 | 12 | 14 | 2 | 0.42 | 0.8 | | AARC0006 | 50 | 52 | 2 | 0.39 | 8.0 | | AARC0014 | 55 | 56 | 1 | 0.71 | 0.7 | | AARC0006 | 29 | 30 | 1 | 0.67 | 0.7 | | AA31 | 43 | 44 | 1 | 0.66 | 0.7 | | AXRC03 | 17 | 19 | 2 | 0.30 | 0.6 | | AA17 | 41 | 42 | 1 | 0.58 | 0.6 | | AA09 | 35 | 36 | 1 | 0.57 | 0.6 | | AARC0007 | 50 | 51 | 1 | 0.57 | 0.6 | | AARC0004 | 38 | 39 | 1 | 0.54 | 0.5 | | AA18 | 34 | 35 | 1 | 0.49 | 0.5 | | AARC0009 | 57 | 58 | 1 | 0.49 | 0.5 | | AARC0019 | 41 | 42 | 1 | 0.46 | 0.5 | | AARC0034 | 16 | 17 | 1 | 0.43 | 0.4 | | Hole_ID | Depth_From | Depth_To | IntervalWidth | Grade | Gram/metre | |----------|------------|----------|---------------|-------|------------| | AARC0021 | 30 | 31 | 1 | 0.41 | 0.4 | | AARC0021 | 21 | 22 | 1 | 0.37 | 0.4 | | AARC0011 | 26 | 27 | 1 | 0.35 | 0.4 | | AARC0029 | 96 | 97 | 1 | 0.35 | 0.4 | | AARC0023 | 60 | 61 | 1 | 0.34 | 0.3 | | AARC0012 | 35 | 36 | 1 | 0.33 | 0.3 | | AARC0013 | 50 | 51 | 1 | 0.30 | 0.3 | Table 8: All historic collar locations the at Ada Ann prospect (previously released), MGA94_51. | Hole_ID | Hole Type | Max_Depth | NAT_East | NAT_North | NAT_RL | Azimuth | Dip | |---------|-----------|-----------|----------|-----------|--------|---------|-----| | AA01 | RC | 26 | 321857 | 6591434 | 376 | 270 | -60 | | AA02 | RC | 47 | 321869 | 6591429 | 376 | 270 | -60 | | AA03 | RC | 51 | 321881 | 6591427 | 376 | 270 | -60 | | AA04 | RC | 41 | 321855 | 6591424 | 375 | 270 | -60 | | AA05 | RC | 47 | 321868 | 6591419 | 376 | 270 | -60 | | AA06 | RC | 52 | 321876 | 6591416 | 377 | 270 | -60 | | AA07 | RC | 16 | 321850 | 6591402 | 376 | 270 | -60 | | AA08 | RC | 47 | 321861 | 6591394 | 378 | 270 | -60 | | AA09 | RC | 51 | 321871 | 6591402 | 376 | 270 | -60 | | AA10 | RC | 63 | 321884 | 6591401 | 377 | 270 | -60 | | AA11 | RC | 16 | 321902 | 6591400 | 376 | 270 | -60 | | AA12 | RC | 86 | 321924 | 6591366 | 376 | 255 | -60 | | AA13 | RC | 69 | 321913 | 6591346 | 376 | 255 | -60 | | AA14 | RC | 57 | 321807 | 6591037 | 374 | 255 | -60 | | AA15 | RC | 62 | 321885 | 6591421 | 374 | 270 | -60 | | AA16 | RC | 45 | 321856 | 6591411 | 373 | 270 | -60 | | AA17 | RC | 51 | 321867 | 6591409 | 376 | 270 | -60 | | Hole_ID | Hole Type | Max_Depth | NAT_East | NAT_North | NAT_RL | Azimuth | Dip | |---------|-----------|-----------|----------|-----------|--------|---------|-----| | AA18 | RC | 58 | 321890 | 6591429 | 376 | 270 | -60 | | AA19 | RC | 63 | 321896 | 6591410 | 376 | 270 | -60 | | AA20 | RC | 33 | 321857 | 6591424 | 375 | 0 | -90 | | AA21 | RC | 33 | 321861 | 6591423 | 376 | 0 | -90 | | AA22 | RC | 49 | 321865 | 6591419 | 374 | 0 | -90 | | AA24 | RC | 45 | 321858 | 6591411 | 376 | 0 | -90 | | AA25 | RC | 45 | 321863 | 6591411 | 376 | 0 | -90 | | AA26 | RC | 27 | 321867 | 6591411 | 376 | 0 | -90 | | AA27 | RC | 51 | 321898 | 6591362 | 376 | 255 | -60 | | AA28 | RC | 33 | 321869 | 6591411 | 376 | 0 | -90 | | AA29 | RC | 40 | 321865 | 6591353 | 378 | 0 | -90 | | AA31 | RC | 51 | 321866 | 6591390 | 377 | 0 | -90 | | AA32 | RC | 51 | 321875 | 6591389 | 377 | 0 | -90 | | AA33 | RC | 51 | 321885 | 6591387 | 375 | 0 | -90 | | AA34 | RC | 20 | 321833 | 6591438 | 373 | 0 | -90 | | AA35 | RC | 20 | 321840 | 6591441 | 377 | 0 | -90 | | AA36 | RC | 20 | 321850 | 6591439 | 376 | 0 | -90 | | AA37 | RC | 20 | 321855 | 6591441 | 376 | 0 | -90 | | AA38 | RC | 20 | 321860 | 6591441 | 376 | 0 | -90 | | AA39 | RC | 21 | 321835 | 6591409 | 376 | 270 | -60 | | AA40 | RC | 21 | 321840 | 6591409 | 376 | 270 | -60 | | AA41 | RC | 21 | 321846 | 6591407 | 376 | 270 | -60 | | AA42 | RC | 21 | 321859 | 6591410 | 376 | 270 | -60 | | AA43 | RC | 30 | 321832 | 6591403 | 376 | 0 | -90 | | AA44 | RC | 33 | 321838 | 6591401 | 376 | 0 | -90 | | AA45 | RC | 30 | 321821 | 6591447 | 376 | 0 | -90 | | AA46 | RC | 36 | 321821 | 6591446 | 378 | 200 | -60 | | AA47 | RC | 30 | 321823 | 6591439 | 377 | 270 | -60 | | AA48 | RC | 39 | 321827 | 6591438 | 377 | 270 | -60 | | Hole_ID | Hole Type | Max_Depth | NAT_East | NAT_North | NAT_RL |
Azimuth | Dip | |---------|-----------|-----------|----------|-----------|--------|---------|-----| | AA49 | RC | 24 | 321840 | 6591438 | 375 | 210 | -60 | | AA51 | RC | 30 | 321882 | 6591357 | 373 | 185 | -60 | | AA52 | RC | 50 | 321852 | 6591520 | 377 | 270 | -60 | | AA53 | RC | 51 | 321883 | 6591496 | 376 | 272 | -60 | | AA54 | RC | 65 | 321889 | 6591432 | 376 | 0 | -90 | | AA55 | RC | 65 | 321901 | 6591410 | 376 | 0 | -90 | | AA56 | RC | 70 | 321894 | 6591398 | 375 | 0 | -90 | | AA57 | RC | 70 | 321901 | 6591386 | 375 | 0 | -90 | | AA58 | RC | 80 | 321924 | 6591362 | 375 | 0 | -90 | | AAA111 | RC | 30 | 321831 | 6591498 | 373 | 300 | -70 | | AAA112 | RC | 30 | 321819 | 6591496 | 377 | 300 | -70 | | AAA113 | RC | 30 | 321833 | 6591519 | 376 | 300 | -70 | | AAA130 | RC | 60 | 321899 | 6591418 | 376 | 0 | -90 | | AAA133 | RC | 38 | 321844 | 6591476 | 373 | 0 | -90 | | AAA147 | RC | 36 | 321849 | 6591475 | 377 | 0 | -90 | | AAA149 | RC | 45 | 321864 | 6591469 | 373 | 0 | -90 | | AXRC01 | RC | 48 | 321855 | 6591342 | 377 | 0 | -90 | | AXRC02 | RC | 54 | 321864 | 6591350 | 376 | 0 | -90 | | AXRC03 | RC | 48 | 321844 | 6591357 | 376 | 0 | -90 | | AXRC04 | RC | 48 | 321852 | 6591358 | 373 | 0 | -90 | | AXRC05 | RC | 48 | 321862 | 6591359 | 377 | 0 | -90 | | AXRC06 | RC | 48 | 321872 | 6591359 | 376 | 0 | -90 | | AXRC07 | RC | 48 | 321845 | 6591366 | 373 | 0 | -90 | | AXRC08 | RC | 48 | 321853 | 6591368 | 377 | 0 | -90 | | AXRC09 | RC | 48 | 321862 | 6591369 | 376 | 0 | -90 | | AXRC10 | RC | 50 | 321862 | 6591406 | 376 | 360 | -90 | | AXRC16 | RC | 42 | 321856 | 6591474 | 376 | 0 | -90 | | BR01 | RAB | 20 | 321842 | 6591465 | 376 | 290 | -60 | | BR02 | RAB | 25 | 321853 | 6591462 | 376 | 290 | -60 | | Hole_ID | Hole Type | Max_Depth | NAT_East | NAT_North | NAT_RL | Azimuth | Dip | |---------|-----------|-----------|----------|-----------|--------|---------|-----| | BR03 | RAB | 30 | 321863 | 6591458 | 376 | 290 | -60 | | BR04 | RAB | 36 | 321851 | 6591433 | 376 | 290 | -60 | | BR05 | RAB | 20 | 321859 | 6591428 | 376 | 290 | -60 | | BR06 | RAB | 22 | 321816 | 6591401 | 376 | 290 | -60 | | BR07 | RAB | 32 | 321827 | 6591400 | 376 | 290 | -60 | | BR08 | RAB | 36 | 321837 | 6591395 | 376 | 290 | -60 | | BR09 | RAB | 29 | 321787 | 6591371 | 376 | 290 | -60 | | BR10 | RAB | 17 | 321804 | 6591364 | 376 | 290 | -60 | | BR11 | RAB | 24 | 321820 | 6591358 | 376 | 290 | -60 | | BR12 | RAB | 35 | 321831 | 6591347 | 376 | 290 | -60 | | BR13 | RAB | 34 | 321789 | 6591282 | 376 | 290 | -60 | | BR14 | RAB | 35 | 321811 | 6591278 | 376 | 290 | -60 | | BR15 | RAB | 26 | 321849 | 6591521 | 376 | 290 | -60 | | BR16 | RAB | 34 | 321874 | 6591552 | 376 | 290 | -60 | | BR17 | RAB | 38 | 321883 | 6591547 | 376 | 290 | -60 | | BR18 | RAB | 40 | 321897 | 6591537 | 376 | 290 | -60 | | BR19 | RAB | 40 | 321868 | 6591425 | 376 | 290 | -60 | | BR20 | RAB | 48 | 321871 | 6591537 | 376 | 295 | -60 | | BR21 | RAB | 46 | 321866 | 6591520 | 376 | 292 | -60 | | BR22 | RAB | 40 | 321866 | 6591492 | 376 | 305 | -60 | | BR23 | RAB | 46 | 321858 | 6591448 | 376 | 292 | -60 | | BR24 | RAB | 30 | 321885 | 6591434 | 376 | 290 | -60 | | BR25 | RC | 48 | 321846 | 6591499 | 376 | 290 | -60 | | BR26 | RC | 50 | 321867 | 6591515 | 376 | 290 | -60 | | BR27 | RC | 45 | 321849 | 6591455 | 376 | 290 | -60 | | BR28 | RC | 72 | 321862 | 6591435 | 376 | 290 | -60 | | BR29 | RC | 48 | 321834 | 6591418 | 376 | 298 | -60 | Table 9: Full Au drilling results from historic hole AA14. Drilling intercept widths are down hole width and not true width. | Hole_ID | Depth_From | Depth_To | Au_ppm | |---------|------------|----------|--------| | AA14 | 0 | 4 | 0.29 | | AA14 | 4 | 8 | 0.14 | | AA14 | 8 | 12 | 0.04 | | AA14 | 12 | 16 | 0.03 | | AA14 | 16 | 20 | 0.02 | | AA14 | 20 | 24 | 0.03 | | AA14 | 24 | 28 | 0.03 | | AA14 | 28 | 32 | 0.02 | | AA14 | 32 | 36 | 0.11 | | AA14 | 36 | 40 | 0.03 | | AA14 | 40 | 44 | 0.02 | | AA14 | 44 | 48 | 0.07 | | AA14 | 48 | 52 | 0.02 | | AA14 | 52 | 57 | 0.04 | Figure 9. Cross section (A-A'), looking north, ~10m section view, showing interpreted geology and Au mineralisation of historic drilling. Drilling results are down hole width and not true width. Figure 10. Cross section (B-B'), looking north, ~10m section view, showing interpreted geology and Au mineralisation of historic drilling. Drilling results are down hole width and not true width.