

INVESTMENT PROTECTION AGREEMENT WITH THE ECUADOR GOVERNMENT ON CHALLENGER'S EL GUAYABO PROJECT

Challenger Gold Limited (ASX: **CEL**) ("**CEL**" or the "**Company**") is pleased to announce it has entered into an Investment Protection Agreement ("IPA" or "the Agreement") with the Government of Ecuador for its 100% owned El Guayabo Project ("El Guayabo" or "the Project"). Under the terms of the IPA, the Government of Ecuador has granted CEL legal protections including stability of the regulatory framework, resolution of disputes through international arbitration, and protection of CEL's investment.

The IPA covers US\$75 million in investment from CEL encompassing expenditures from CEL's initial acquisition of the project in 2019 and expenditure incurred until the end of 2027. It has an initial term of 8 years and is renewable. Key incentives and protections under the IPA include:

- Regulatory stability and protection from changes to the current legal framework
- The legal framework at the time of execution will continue to apply if the terms are more favourable to the project owner than any potential new framework
- The IPA guarantees rights including non-discriminatory treatment, property protection, and legal certainty
- International arbitration, should there be any disputes in relation to the Project, with the seat
 of arbitration in London under the rules of the International Chamber of Commerce

Commenting on the Investment Protection Agreement, CEL Managing Director, Mr Kris Knauer, said

"The completion of the Investment Protection Agreement is a significant development for the Project..

The IPA provides certainty with respect to the legal framework governing the Project, including stable mining regulations and fiscal terms, and security of title and investment for the term of the agreement. Additionally, it provides protection from all forms of confiscation and a mechanism for international arbitration should there be any disputes related to the project.

The IPA is also timely given recent corporate action in Ecuador as we take steps to monetise our Ecuador assets following the significant resource upgrade from 4.5 million ounce¹ to 9.1 million ounces^{1,2,3}. "

- ¹ Reported on total project basis attributable resource to CEL of 6.9Moz AuEq
- ² Reported as Gold Equivalent (AuEq) values for requirements under the JORC Code see page 4 ³ Refer to CEL's ASX Release dated 9 April 2024

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005 Directors Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

The IPA is timely given the recent 100% increase in Mineral Resource Estimate at CEL's Ecuador projects resources to 9.1 Moz AuEq^{1,2} (Refer ASX Release dated 9 April 2024). This resource increase creates an asset with significant scale with the project now containing one of the larger undeveloped gold resources in South America. Additionally, the Company notes significant recent corporate activities amongst companies with assets in Ecuador including the takeover of Lumina Gold Corp the owner of the Cangrejos Project which adjoins CEL's projects in Ecuador.

Figure 1 - Location Map CEL's Ecuador Projects

Australian Level 1 100 Haveloo West Perth

Issued Capital

1.690m shares

161.0m options

49.5m perf rights

Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005 Directors Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director Contact T: +61 8 6385 2743 E: admin@challengerex.com

Challenger Gold Limited

ACN 123 591 382

ASX: CEL

CEL's Ecuador Projects

On 9 April 2025 CEL announced the Mineral Resource Estimate ("MRE") at its Ecuador projects had increased from **4.5 to 9.1 million ounces gold equivalent**¹. The combined 9.1 Moz MRE at El Guayabo (CEL 100%) and Colorado V (CEL 50%) increasing to **570.3 mt at 0.50 g/t AuEq** (0.36 g/t Au, 2.2 g/t Ag, 0.07% Cu, 9.7 ppm Mo) for **9.1Moz AuEq** (refer Table 1).

The 9.1 Moz MRE included;

- a total maiden MRE of **4.4 million ounces gold equivalent**¹ at a grade of **0.50 g.t AuEq**¹ (0.35 g/t Au, 2.2 g/t Ag, 0.08% Cu,14.3 ppm Mo) for the Colorado V Project (CEL 50%); and an
- updated MRE of 4.7 million ounces gold equivalent¹ at 0.50 g/t AuEq¹ (0.38 g/t Au, 2.3 g/t Ag, 0.06% Cu, 7.5 ppm Mo) at the adjoining 100% owned El Guayabo Project

Net attributable resources to CEL across both projects are 6.9 Moz AuEq¹ - 431 mt at 0.50 g/t AuEq¹ (0.37 g/t Au, 2.3 g/t Ag, 0.07% Cu, 10 ppm Mo).

The upgrade positions CEL's Ecuador projects an asset of significance with several commercial advantages including.

- **Significant Scale:** The 100% increase in resources to 9.1 Moz AuEq creates a significant asset with the project now containing one of the larger undeveloped gold resources in South America.
- **Exploration Upside:** The 9.1 Moz resource is based on drilling at five of the fifteen regionally significant Au-Cu in soil anomalies located across the project. All thirteen Au-Cu soil anomalies drilled by the Company have returned significant mineralisation.
- High-grade core enhances economics: 2.1 million ounces at 1.0 g/t AuEq, including 1.2 million ounces at 1.2 g/t AuEq provides opportunities for early production and strong early cash flow.
- Strategic Location: Adjacent to Lumina Gold's 20.5Moz⁴ Cangrejos project, which secured a \$300M streaming deal with Wheaton Precious Metals in 2023 and is currently subject to a takeover offer – validating the district's potential
- Infrastructure Advantage: Located 35km from a deepwater port with existing power, water and road access and located on granted Mining Leases – significantly reducing future development costs.
- Monetisation Strategy to Unlock Value: The completion of this resource allows CEL to move forward with the previously announced monetization process and unlock the value in our Ecuador assets. Value realization/ Monetization options include:
 - TSX listing of Ecuador assets (where similar projects trade at premium valuations);
 - Outright sale to generate immediate cash for Hualilan development;
 - Strategic partnership/farm-in with major mining company.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005 Directors Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Recent Corporate Transactions in Ecuador

Lumina Gold Corp. (TSXV: LUM) has announced that it has entered into an arrangement agreement (the "Arrangement Agreement"), pursuant to which CMOC Group Limited will acquire all of the issued and outstanding common shares of Lumina (the "Lumina Shares"), in exchange for C\$1.27 per Lumina Share. The takeover values Lumina Gold at \$581 million Canadian dollars.

Lumina Gold Corp is focused on the Cangrejos project located in El Oro Province, southwest Ecuador. In 2023, Lumina completed a Pre-Feasibility Study for the Project, which is the largest primary gold deposit in Ecuador. Cangrejos has Indicated and Inferred resources of 20.5Moz Au, 31.1Moz Ag and 2,649Mlbs Cu⁴.

The Cangrejos Project is located immediately to the north of CEL's El Guayabo and Colorado V Projects in Ecuador (Figure 1). Cangrejos, El Guayabo, and Colorado V have similar geology, surface footprint, and mineralisation style, and are interpreted as being part of the same system.

⁴Source Lumina Gold website www.luminagold.com

This ASX release was approved by the Board of Directors.

For further information contact:

Investor Enquiries	Media Enquiries	US/Argentina Enquiries
Kris Knauer	Jane Morgan	Sergio Rotondo
Managing Director		Executive Vice Chairman
+61 411 885 979	+ 61 405 555 618	+1 646 462 9273
kris.knauer@challengergold.com	jm@janemorganmanagement.com.au	sergio.rotindo@challengergold.com

Previous announcements referred to in this release include:

The Mineral Resource Estimate for the Hualilan Gold Project was first announced to the ASX on 1 June 2022 and updated 29 March 2023. The Mineral Resource Estimate for the El Guayabo Project was first announced to the ASX on 14 June 2023 and updated on 9 April 2025. The Company confirms it is not aware of any information or assumptions that materially impacts the information included in that announcement and that the material assumptions and technical parameters underpinning the Mineral Resource Estimate continue to apply and have not materially changed.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

ADDITIONAL INFORMATION

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND MINERAL RESOURCES

The information that relates to sampling techniques and data, exploration results, geological interpretation and Mineral Resource Estimate has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results and Mineral Resources. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

FORWARD LOOKING STATEMENTS

The announcement may contain certain forward-looking statements. Words 'anticipate', 'believe', 'expect', 'forecast', 'estimate', 'likely', 'intend', 'should', 'could', 'may', 'target', 'plan', 'potential' and other similar expressions are intended to identify forward-looking statements. Indication of, and guidance on, future costings, earnings and financial position and performance are also forward-looking statements.

Such forward looking statements are not guarantees of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of Challenger Gold Ltd, its officers, employees, agents and associates, which may cause actual results to differ materially from those expressed of implied in such forward-looking statements. Actual results, performance, or outcomes may differ materially from any projections or forward-looking statements or the assumptions on which those statements are based.

You should not place any undue reliance on forward-looking statements and neither. Challenger nor its directors, officers, employees, servants or agents assume any responsibility to update such information. The stated Production Targets are based on the Company's current expectations of future results or events and should not be relied upon by investors when making investment decisions. Further evaluation work and appropriate studies are required to establish sufficient confidence that this target will be met.

Financial numbers, unless stated as final, are provisional and subject to change when final grades, weight and pricing are agreed under the terms of the offtake agreement. Figures in this announcement may not sum due to rounding.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant original market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,690m shares 161.0m options 49.5m perf rights

Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Domain	Category	Mt	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	AuEq (g/t)	AuEq (Mozs)
El Guayabo Concessions	(CEL 100%)							
US\$2000 optimised shell > 0.3 g/t AuEq	Inferred	240	0.36	2.4	0.06	8.0	0.48	3.74
Below US\$20000 shell >0.4 g/t AuEq	Inferred	52	0.44	1.9	0.07	9.0	0.57	0.96
Total MRE (El Guayabo)	Inf	292	0.38	2.3	0.06	8.2	0.50	4.67
Total Colorado V Concessio	n (CEL 50%)							
US\$2000 optimised shell > 0.3 g/t AuEq	Indicated	56.5	0.35	2.3	0.08	11.0	0.49	0.89
US\$2000 optimised shell > 0.3 g/t AuEq	Inferred	185.5	0.32	2.1	0.08	16.0	0.48	2.84
Below US\$2000 shell >0.4 g/t AuEq	Inferred	36.1	0.49	2.3	0.06	11.0	0.61	0.71
Total MRE (Colorado V)	Ind + Inf	278.1	0.35	2.2	0.08	14.3	0.50	4.44
Combined Project (El Guayo	tbo and Colo	rado V oi	n a 100% b	asis)				
US\$2000 optimised shell > 0.3 g/t AuEq	Indicated	56	0.35	2.3	0.08	11.0	0.49	0.89
US\$2000 optimised shell > 0.3 g/t AuEq	Inferred	426	0.34	2.3	0.07	9.6	0.34	6.6
Below US\$2000 shell >0.4 g/t AuEq	Inferred	88	0.46	2.1	0.07	9.6	0.59	1.7
, 10 E q								
Grand Total	Ind + Inf	570	0.36	2.2	0.07	9.7	0.36	9.1
					0.07	9.7	0.36	9.1
Grand Total					0.07 0.08	9.7 11.0	0.36 0.49	9.1 0.45
Grand Total Attributable to CEL (El Guay US\$2000 optimised shell	vabo 100% ai	nd Colora	udo V 50%)					
Grand Total Attributable to CEL (El Guay US\$2000 optimised shell > 0.3 g/t AuEq US\$2000 optimised shell	Jabo 100% a	nd Colora 28	udo V 50%) 0.35	2.3	0.08	11.0	0.49	0.45

Table 1 : Mineral Resource Estimate - Ecuador projects on a 100% and net attributable basis

¹ Gold Equivalent (AuEq) values - Requirements under the JORC Code

Assumed commodity prices for the calculation of AuEq is Au US\$1800 Oz, Ag US\$22 Oz, Cu US\$9,000/t, Mo US\$44,080/t

 Metallurgical recoveries are estimated to be Au (85%), Ag (60%), Cu (85%) Mo (50%) across all ore types (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.

- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x 0.012222] + [Cu (%) x 1.555] + [Mo (%) x 4.480026]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005

Directors Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

JORC Code, 2012 Edition – Table 1 Report Template

Section 1: Sampling Techniques and Data -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality Diamond drilling produced core that was sawed in half with one half sent to the laboratory for assaying per industry standards and the remaining core retained on site. Cu assays above 2% were not re-assayed using a technique calibrated to higher value Cu results hence the maximum reported assay for copper is 2%. All core samples were analysed using a standard fire assay with atomic absorption finish on a 30 g charge (30 g
llenger Gold Limited 1123 591 382 : CEL	Issued CapitalAustralian Registered1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	

Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	on Comr	nentary
Criteria	JORC Code explanation	n Com Colora • •	totaling 1,094.29m were collected. Sampling was done for Au analysis by fire assay of a 30g charge and 4 element 4-acid digest with ICP_AES determination. Field mapping (creek traverse) by CEL includes collection of rock chip samples for assay for Au by fire assa with AAS determination and gravimetric determination for values > 10 g/t Au and assay for 48 elements I acid digest with ICP-MS determination. Rock chip samples are taken so as to be as representative as pos the exposure being mapped. do V: Soil sampling: A database of 4,495 soil analyses has been provided by Goldking Mining Company S.A. (GK information has been provided on the method of sample collection or assay technique. The soil analyses replicate samples and second split analyses. Pulps have been securely retained by Goldking Mining Com and have been made available to CEL for check assay. Check assaying is planned, including repeat sampli Rock chip sampling during regional mapping has been done on selected exposures. Sampling involves tai kg of rock using a hammer from surface exposures that is representative of the exposure. Selected intervals of drill core have been cut longitudinally and half core were submitted for gold determ at GK's on-site laboratory prior to CEL's involvement with the Project. Re-sampling of the core by CEL involves taking ¼ core (where the core has previously been sampled) or ½ (where the core has not previously been sampled). The core is cut longitudinally and sample intervals of meters have been collected for analysis. ZKO-1 and ZK1-3 have been analysed for gold by fire assay (30g) ICP determination and other elements by 4 acid digest with ICP-AES finish (36 elements) at SGS del Peru SAZKO-1, SAZKO-2, SAZK2-1, ZKO-2, ZKO-5, ZK1-5, ZK1-6, ZK2-1, ZK3-1, ZK3-4, ZK13-1 and ZK18-1 have bee analysed for gold by fire assay (30g) with ICP determination and other elements by 4 acid digest with combined ICP-AES and ICP-AES finish (50 elements) at SGS del Peru SACC. Samples from other holes have analysed for gold by fire as
23 591 382 1,690m shares Level 1	• Australian Registered Office Level 1	Peru. Underground development has been mapped and channel sampled. Channel samples have been taken be cutting a horizontal channel of approximately 5 cm width and 4 cm depth into the walls at a nominal heig 1m above the ground. The channel cuts were made with an angle grinder mounted with a diamond blad Samples were extracted from the channel with a hammer and chisel to obtain a representative sample we similar weight per metre as would be obtained from a drill core sample. Analysis of the samples has been by ALS Laboratories in Peru using the same preparation and analysis as has been used for drill core sample Directors Contact Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743	
CEL	161.0m options 49.5m perf rights	100 Havelock Street West Perth WA 6005	Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director

www.challengerex.com

 $\overline{\Box}$

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (eg core, reverse circulat, hole hammer, rotary air blast, aug sonic, etc) and details (eg core dia or standard tube, depth of diamon face-sampling bit or other type, wh is oriented and if so, by what meth 	Bangka, • Diamond core drilling from surface collecting HQ core (standard tube). The core is not oriented. eter, triple Historic Drilling: tails, El Guayabo: ther core • Diamond core drilling HQ size from surface and reducing to NQ size as necessary. The historical records do not
Drill sample recovery	 Method of recording and assessing chip sample recoveries and results Measures taken to maximise samp and ensure representative nature of samples. Whether a relationship exists betwee recovery and grade and whether servery and grade and whether servery and preferent loss/gain of fine/coarse material. 	 Core run lengths recovered are recorded against the drillers depth markers to determine core recovery. Core sample recovery is high using standard HQ and NQ drilling No relationship between sample recovery and grade has been observed. Historic Drilling: El Guayabo: In a majority of cases core recovery was 100%.
nallenger Gold Limited IN 123 591 382 IX: CEL	1,690m shares Level 1 161.0m options 100 Hav	Registered Office Directors Contact Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 kck Street Mr Kris Knauer, MD and CEO E: admin@challengerex.com n WA 6005 Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Pert Hacket Non Exec Director

Mr Brett Hackett Non Exec Director

www.challengerex.com

17

Criteria	JORC Code explanation	Commentary							
Logging	 Whether core and chip samples higeologically and geotechnically lo level of detail to support appropri Resource estimation, mining studimetallurgical studies. Whether logging is qualitative or in nature. Core (or costean, channiphotography. 	gged to a wher ate Mineral Peer ies and 100% Prog quantitative below nel, etc.)	 100% of all core including all relevant intersections are logged Progress of current and historic El Guayabo and Colorado V drill core re-logging and re-sampling is summariz 						
	 The total length and percentage c 	Historic EL Guay	yabo Drilling		Core		Total		
	relevant intersections logged.	Hole ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples		
		GY-01	249.2	Complete	Complete	Partial	25		
		GY-01	243.2	Complete	Complete	Partial	88		
		GY-03	295.99	Pending	Complete	Pending	00		
		GY-04	172.21	Pending	Complete	Pending			
		GY-05	258.27	Partial	Complete	Partial	56		
		GY-06	101.94	Pending	Complete	Pending	50		
		GY-07	127.0	Pending	Complete	Pending			
		GY-08	312.32	Pending	Complete	Pending			
		GY-09	166.25	Pending	Complete	Pending			
		GY-10	194.47	missing core	missing core	missing core			
		GY-10 GY-11	241.57	Complete	Complete	Partial	84		
		GY-11 GY-12	255.7	Partial	Complete	Pending	07		
		GY-12 GY-13	340.86	missing core	missing core	missing core			
		GY-14	309.14	missing core	missing core	missing core			
		GY-14 GY-15	251.07	missing core	missing core	missing core			
		GY-16	195.73	missing core	missing core	missing core			
		GY-10 GY-17	280.04	Complete	Complete	Partial	36		
		GY-17 GY-18	160.35	Pending	Complete	Pending			
		GY-19	175.42	Pending	Complete	Pending			
		Logged (m)	1,043.71	Re-logged	complete	Samples Submitted	289		
		Total (m)	4,185.01	Odin Drilled			200		
		JDH-01	236.89	missing core	missing core	missing core			
		JDH-02	257.62	missing core	missing core	missing core			
		JDH-03	260.97	missing core	missing core	missing core			
		JDH-04	219.00	missing core	missing core	missing core			
		JDH-05	210.37	missing core	missing core	missing core			
nger Gold Limited 23 591 382 EL	1,690m sharesLevel 1161.0m options100 Ha	velock Street Mr K Perth WA 6005 Mr Si Dr Sc Mr Fl Mr Pi	ctors duardo Elsztain, Non-Exec. I ris Knauer, MD and CEO ergio Rotondo, Exec. Vice Cl onia Delgado, Exec. Director etcher Quinn, Non-Exec. Di ini Althaus , Non Exec Direc rett Hackett Non Exec Direc	E: admin@chal nair rector tor					

JORC Code explanation

Criteria

Total (m)	3,245.18	Newmont Drill	ed		
Logged (m)	1,038.09	Re-logged		Samples Submitted	263
JDH-14	239.32	Complete	Complete	Partial	30
JDH-13	239.33	Complete	Complete	Partial	21
JDH-12	124.08	Complete	Complete	Partial	22
JDH-11	217.99	Pending	Complete	Pending	
JDH-10	221.64	Complete	Complete	Partial	43
JDH-09	256.70	Complete	Complete	Partial	49
JDH-08	352.74	missing core	missing core	missing core	
JDH-07	105.79	missing core	missing core	missing core	
JDH-06	302.74	Complete	Complete	Partial	98

CEL El Guayabo Drill Hole Processing Completed during Drill Camp #1, Phase #1 2021-2022

			Core		Total
Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
GYDD-21-001	800.46	Complete	Complete	Complete	581
GYDD-21-002	291.70	Complete	Complete	Complete	204
GYDD-21-002A	650.58	Complete	Complete	Complete	282
GYDD-21-003	723.15	Complete	Complete	Complete	545
GYDD-21-004	696.11	Complete	Complete	Complete	513
GYDD-21-005	632.05	Complete	Complete	Complete	445
GYDD-21-006	365.26	Complete	Complete	Complete	258
GYDD-21-007	651.80	Complete	Complete	Complete	407
GYDD-21-008	283.68	Complete	Complete	Complete	214
GYDD-21-009	692.67	Complete	Complete	Complete	517
GYDD-21-010	888.60	Complete	Complete	Complete	620
GYDD-21-011	314.46	Complete	Complete	Complete	227
GYDD-21-012	797.65	Complete	Complete	Complete	588
GYDD-21-013	517.45	Complete	Complete	Complete	388
GYDD-22-014	783.60	Complete	Complete	Complete	546
GYDD-22-015	368.26	Complete	Complete	Complete	265
GYDD-22-016	469.75	Complete	Complete	Complete	314
Logged (m)	9,927.23			Samples Submitted	6,915
Total Drilled (m)	9,927.23				

>	
	C A A
	,

Challenger Gold Limited ACN 123 591 382 ASX: CEL

1,690m shares 161.0m options 49.5m perf rights

Issued Capital

Australian Registered Office Level 1 100 Havelock Street

West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Contact E: admin@challengerex.com

(1)	
	Ch
	ACI AS

JORC Code explanation

Commentary

•		0	Core		Total
Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
GYDD-22-017	860.75	Complete	Complete	Complete	601
GYDD-22-018	734.05	Complete	Complete	Complete	534
GYDD-22-019	861.05	Complete	Complete	Complete	632
GYDD-22-020	750.00	Complete	Complete	Complete	544
GY2DD-22-001	776.40	Complete	Complete	Complete	520
GYDD-22-021	812.85	Complete	Complete	Complete	596
GYDD-22-022	702.85	Complete	Complete	Complete	514
GYDD-22-023	795.55	Complete	Complete	Complete	573
GYDD-22-024	650.00	Complete	Complete	Complete	466
GYDD-22-025	1194.05	Complete	Complete	Complete	881
GYDD-22-026	1082.45	Complete	Complete	Complete	803
GYDD-22-027	875.35	Complete	Complete	Complete	658
GYDD-22-028	521.20	Complete	Complete	Complete	364
GYDD-22-029	528.95	Complete	Complete	Complete	382
GYDD-22-030	691.20	Complete	Complete	Complete	506
GYDD-23-031	696.40	Complete	Complete	Complete	486
GYDD-23-032	781.45	Complete	Complete	Complete	586
GYDD-23-033	565.85	Complete	Complete	Complete	387
GYDD-23-034	413.65	Complete	Complete	Complete	307
GYDD-23-035	381.85	Complete	Complete	Complete	258
GYDD-23-036	767.45	Complete	Complete	Complete	573
GYDD-23-037	823.10	Complete	Complete	Complete	607
GYDD-23-038	651.80	Complete	Complete	Complete	466
GYDD-23-039	812.40	Complete	Complete	Complete	598
GYDD-23-040	352.40	Complete	Complete	Complete	255
GYDD-23-041	779.00	Complete	Complete	Complete	543
GYDD-23-042	746.40	Complete	Complete	Complete	528
GYDD-23-043	742.15	Complete	Complete	Complete	556
Logged (m)	20,350.60			Samples Submitted	14,724
Total Drilled (m)	20,350.60				

CEL El Guayabo Drill Hole Processing Completed during Drill Camp #1, Phase # 2 2022-2023

Colorado V:

• Core has been logged for lithology, alteration, mineralisation and structure. Where possible, logging is

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005 DirectorsContactMr Eduardo Elsztain, Non-Exec. ChairT: +61 8 6385 2743Mr Kris Knauer, MD and CEOE: admin@challengerex.comMr Sergio Rotondo, Exec. Vice ChairDr Sonia Delgado, Exec. DirectorMr Fletcher Quinn, Non-Exec. DirectorMr Fletcher Quinn, Non-Exec. DirectorMr Brett Hackett Non Exec DirectorMr Brett Hackett Non Exec Director

www.challengerex.com

0

Criteria	JORC Code explanation	n Cor	nmentary					
			quantita	tive.				
					ng and re-sampling	is summarized be	low:	
		Hist	oric Colorado	00	.8 and 10 samping			
				5		Core		Total
			Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
			ZK0-1	413.6	Complete	Complete	Samples Submitted	281
			ZK0-2	581.6	Complete	Complete	Samples Submitted	388
			ZK0-3	463.0	Complete	Complete	Samples Submitted	330
			ZK0-4	458.0	Complete	Complete	Samples Submitted	350
			ZK0-5	624.0	Complete	Complete	Samples Submitted	482
			ZK1-1	514.6	Complete	Complete	Samples Submitted	288
			ZK1-2	403.1	Complete	Complete	Not Re-Sampled	
			ZK1-3	425.0	Complete	Complete	Samples Submitted	279
			ZK1-4	379.5	Complete	Complete	Samples Submitted	267
			ZK1-5	419.5	Complete	Complete	Samples Submitted	266
			ZK1-6	607.5	Complete	Complete	Samples Submitted	406
			ZK1-7	453.18	Complete	Complete	Samples Submitted	370
			ZK1-8	556.0	Complete	Complete	Not Re-Sampled	
			ZK1-9	220.0	Complete	Complete	Samples Submitted	140
			ZK2-1	395.5	Complete	Complete	Samples Submitted	320
			ZK3-1	372.48	Complete	Complete	Samples Submitted	250
			ZK3-1A	295.52	Pending	Pending	Pending	
			ZK3-2	364.80	Complete	Complete	Samples Submitted	235
			ZK3-4	322.96	Complete	Complete	Samples Submitted	156
			ZK4-1	434.0	Complete	Complete	Not Re-sampled	
			ZK4-2	390.5	Complete	Complete	Not Re-sampled	
			ZK4-3	650.66	Complete	Complete	Not Re-sampled	
			ZK4-4	285.0	Complete	Complete	Not Re-sampled	
			ZK5-1	321.90	Complete	Complete	Not Re-sampled	
			ZK5-2	321.0	Complete	Complete	Not Re-sampled	
			ZK5-3	446.5	Complete	Complete	Not Re-sampled	
			ZK5-4	508.0	Complete	Complete	Not Re-sampled	
			ZK5-5	532.0	Complete	Complete	Samples Submitted	378
			ZK6-1	552.6	Complete	Complete	Not Re-sampled	
			ZK6-2	531	Complete	Complete	Not Re-sampled	
			ZK10-1	454.0	Complete	Complete	Samples Submitted	229
			ZK10-2	318.82	Complete	Complete	Samples Submitted	206
nger Gold Limited	Issued Capital	Australian Registered Office	Directors		Contact			
3 591 382	1,690m shares	Level 1		do Elsztain, Non-Exec.				
iL	161.0m options 49.5m perf rights	100 Havelock Street West Perth WA 6005		auer, MD and CEO Rotondo, Exec. Vice (E: admin@chall	engerex.com		
	Sister por rights		0	Delgado, Exec. Directo				
				er Quinn, Non-Exec. D				
			A. D	have Ner Dire D	stor			

Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

iteria	JORC Code explanatio	n	Commentary					
			ZK10-3	331.52	Complete	Complete	Samples Submitted	220
			ZK11-1	237.50	Complete	Complete	Not Re-sampled	
			ZK12-1	531.50	Complete	Complete	Not Re-sampled	
			ZK12-2	510.6	Complete	Complete	Not Re-sampled	
			ZK13-1	394.0	Complete	Complete	Samples Submitted	246
			ZK13-2	194.0	Complete	Complete	Not Re-sampled	
			ZK16-1	324.0	Complete	Complete	Samples Submitted	212
			ZK16-2	385.83	Complete	Complete	Samples Submitted	223
			ZK18-1	410.5	Complete	Complete	Samples Submitted	286
			ZK19-1	548.60	Complete	Complete	Not Re-sampled	
			ZK100-1	415.0	Complete	Complete	Not Re-sampled	
			ZK103-1	524.21	Complete	Complete	Not Re-sampled	
			ZK105-1	404.57	Complete	Complete	Not Re-sampled	
			ZK205-1	347.0	Complete	Complete	Samples Submitted	211
			SAZK0-1A	569.1	Complete	Complete	Samples Submitted	396
			SAZK0-2A	407.5	Complete	Complete	Samples Submitted	260
			SAZK2-1	430.89	Complete	Complete	Samples Submitted	195
			SAZK2-2	354.47	Complete	Complete	Not Re-Sampled	
			CK2-1	121.64	missing core	missing core	missing core	
			CK2-2	171.85	missing core	missing core	missing core	
			CK2-3	116.4	missing core	missing core	missing core	
			CK2-4	146.12	missing core	missing core	missing core	
			CK2-5	357.56	Complete	Complete	Complete	
			CK2-6	392.56	Complete	Complete	Complete	
			CK3-1	185.09	missing core	missing core	missing core	
			CK3-2	21.75	missing core	missing core	missing core	
			CK3-3	138.02	missing core	missing core	missing core	
			CK5-1	273.56	Complete	Complete	Not Re-Sampled	
			CK5-2	273.11	Complete	Complete	Not Re-Sampled	
			CK13-1	227.1	Complete	Complete	Not Re-Sampled	
			CK13-2	231.16	Complete	Complete	Not Re-Sampled	
			CK13-3	197.06	Complete	Complete	Not Re-Sampled	
			CK13-4	176.57	Complete	Complete	Not Re-Sampled	
			CK13-5	184.70	Complete	Complete	Not Re-Sampled	
			CK21-1	143.47	Complete	Complete	Not Re-Sampled	
			Logged (m)	25,315.07	Re-logged	23,498	Samples Submitted	7,894
			Total (m)	24,414.20	Core Shack	•	•	

Chall ACN 123 591 382 ASX: CEL

1,690m shares 161.0m options 49.5m perf rights

100 Havelock Street

West Perth WA 6005

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO

T: +61 8 6385 2743 E: admin@challengerex.com

Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

		Tota	l (m)	26,528.26	Drilled			
			. /	-,				
		CEL Co	olorado V Drill	Hole Processir	g Completed durir	ng Drill Camp #1,	2022:	
						Core		Total
D			Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
		CV	/DD-22-001	533.20	Complete	Complete	Complete	398
		CV	/DD-22-002	575.00	Complete	Complete	Complete	412
		CV	/DD-22-003	512.40	Complete	Complete	Complete	384
		CV	/DD-22-004	658.95	Complete	Complete	Complete	478
		CV	/DD-22-005	607.15	Complete	Complete	Complete	456
		CV	/DD-22-006	600.70	Complete	Complete	Complete	427
		CV	/DD-22-007	808.00	Complete	Complete	Complete	602
		CV	/DD-22-008	535.70	Complete	Complete	Complete	306
		CV	/DD-22-009	890.80	Complete	Complete	Complete	668
		CV	/DD-22-010	890.20	Complete	Complete	Complete	645
		CV	/DD-22-011	672.50	Complete	Complete	Complete	481
		CV	/DD-22-012	756.70	Complete	Complete	Complete	556
		CV	/DD-22-013	752.45	Complete	Complete	Complete	467
		CV	/DD-22-014	863.40	Complete	Complete	Complete	642
		CV	/DD-22-015	758.35	Complete	Complete	Complete	558
		CV	/DD-22-016	558.45	Complete	Complete	Complete	380
		CV	/DD-22-017	746.05	Complete	Complete	Complete	540
		Logg	ged (m)	11,720.00			Samples Submitted	8,400
		Tota	l (m)	11,720.00				
		CEL Co	olorado V Drill	Hole Processir	g Completed durir	ng Drill Camp #2,	2024	
						Core		Total
			Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
		CV	/DD-24-018	451.16	Complete	Complete	Complete	265
		CV	/DD-24-019	621.69	Complete	Complete	Complete	364
		CV	/DD-24-020	591.85	Complete	Complete	Complete	342
		CV	/DD-24-021	295.80	Complete	Complete	Complete	171
		CV	/DD-24-022	600.37	Complete	Complete	Complete	356
		CV	/DD-24-023	656.53	Complete	Complete	Complete	377
		CV	/DD-24-024	711.60	Complete	Complete	Complete	418
Challenger Gold Limited ACN 123 591 382	Issued Capital 1,690m shares	Australian Registered Office Level 1	Directors Mr Eduardo	Elsztain, Non-Exec.	Contact Chair T: +61 8 6385 2	743		
ASX: CEL	161.0m options	100 Havelock Street		uer, MD and CEO	E: admin@chall			
	49.5m perf rights	West Perth WA 6005		otondo, Exec. Vice C				
				gado, Exec. Directo Quinn, Non-Exec. D				
				aus , Non Exec Direc				
			Mr Brott Hav	-kott Non Exoc Diro	tor			

Mr Brett Hackett Non Exec Director

Commentary

Criteria

JORC Code explanation

Criteria	JORC Code explanation	Commentary						
		CVDD-24-025 CVDD-24-026 CVDD-24-027 CVDD-24-028 CVDD-24-029 CVDD-24-030 CVDD-24-031 CVDD-24-032 Logged (m)	745.34 668.22 568.30 754.04 700.10 700.99 402.53 731.51 9,200.03	Complete Complete Complete Complete Complete Complete Complete	Complete Complete Complete Complete Complete Complete Complete	Complete Complete Complete Complete Complete Complete Complete Samples Submitted	440 392 328 443 401 412 231 436 5,376	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	and the ot saw to pre- The location representa The sample Historic: El Guayabo: Core was of All drilling Sample prinominal – then sent nominal 5 Measures the histori the repeat The use of mineralise CEL ¼ core inserted in retained for	ing, all core is con- ther retained for pare two ¼ cor- pare two ¼ cor- cor of the cut is ative sample. e preparation t was core drillin eparation was a 10 mesh (ca 2r for analysis for pare to ensure cal documentar cal document	r future reference. e duplicates. marked on the cor echnique is approp nd saw and half con ag as such this is no appropriate and of nm), then 250 g of gold by standard f on limit. e that the sampling tion however a pro- nal assay results e length is appropriate to be expected done by cutting th sent for preparation ince. The sample s	Where duplicate e by the geologist priate for the mate re was taken of relevant good quality. Eac chips were split o ire assay on a 30 g g is representative ogram of re-assayi riate for deposits of d. e core with a diam on and analysis. N ize is appropriate	lly into two halves. One e samples are taken, ¼ co that logged the core to erial being sampled h 1-3 m sample of half c ut and pulverized. A sub charge with an atomic a of the in-situ material c ng was undertaken by O of finely disseminated m hond saw. Standards (Cf No duplicate samples we for the style of mineralis n and a 500 g sub-sampl	ore is cut using a diar ensure the cut create ore was dried, crushe -sample of the pulp v absorption finish with ollected is not outlin din which demonstra ineralisation where le RM) and blanks were re taken and ¼ core sation observed.	mond es a ed to a was h a ed in ated ong was
Challenger Gold Limited ACN 123 591 382 ASX: CEL	Issued CapitalAustralian Registered1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	Mr Eduardo Mr Kris Kna Mr Sergio R Dr Sonia De Mr Fletcher Mr Pini Alth	Elsztain, Non-Exec. uer, MD and CEO otondo, Exec. Vice C Igado, Exec. Directo Quinn, Non-Exec. D aus , Non Exec Direc ckett Non Exec Direc	E: admin@chal hair r irector :tor				

www.challengerex.com

 $\overline{(7)}$

Criteria	JORC Code explanation	Commentary
		 chips are collected from surface expose in creeks. Sampling is done so as to represent the material being mapped. The sample size is appropriate for the grain size of the material being sampled. Colorado V: No information is available on the method/s that have been used to collect the soil samples. Selected intervals of drill core have been cut longitudinally using a diamond saw and ½ core has been sampled. Sample intervals range from 0.1m to 4.5m with an average length of 1.35m. The size of the samples is appropriate for the mineralisation observed in the core. Re-sampling of the core involves cutting of ¼ core (where previously sampled) or ½ core where not previously sampled. ¼ or ½ core over intervals of 1-3 metres provides an adequate sample size for the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appr assaying and laboratory prod whether the technique is con total. For geophysical tools, spectro handheld XRF instruments, e parameters used in determin including instrument make a reading times, calibrations for their derivation, etc. Nature of quality control pro (eg standards, blanks, duplic laboratory checks) and whet levels of accuracy (ie lack of precision have been establish 	 CEL: Camp #1, Phase#1 All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Sub-samples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample. Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses. 6 different CRM pulp samples have been submitted with the core samples. All 6 are certified for Au, 2 are certified for Ag, 5 are certified for Cu, 1 is certified for Fe and 3 are certified for Mo. For Au, of 222 CRM pulp analyses, 215 are within +/- 2 SD (97%) For Ag, of 54 CRM pulp analyses, 125 are within +/- 2 SD (99%)
aallenger Gold Limited N 123 591 382 X: CEL	1,690m shares 161.0m options	Atralian Registered Office Directors Contact el 1 Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Havelock Street Mr Kris Knauer, MD and CEO E: admin@challengerex.com st Perth WA 6005 Mr Sergio Rotondo, Exec. Vice Chair E: admin@challengerex.com Mr Fletcher Quinn, Non-Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director

	Cinteria	
	D	
\bigcirc		
05		
(D		
	Challenger Gold Limited ACN 123 591 382 ASX: CEL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights
\bigcup	www.challengere	ex.com

Criteria

JORC Code explanation

Australian Registered Office

Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Briet Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengerex.com

www.challengerex.com

C

JORC Code explanation

CEL: Camp #1, Phase#2

- All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Subsamples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample.
- Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses.
- 7 different CRM pulp samples have been submitted with the core samples. All 7 are certified for Au, 3 are certified for Ag, All 7 are certified for Cu, 1 is certified for Fe and 4 are certified for Mo.
- For Au, of 453 CRM pulp analyses, 445 are within +/- 2 SD (98%)
- For Ag, of 155 CRM pulp analyses, 150 are within +/- 2 SD (97%)
- For Cu, of 453 CRM pulp analyses, 444 are within +/- 2 SD (98%)
- For Mo, of 286 CRM pulp analyses, 272 are within +/- 2 SD (95%)

Contact

- For Fe, of 2 CRM pulp analyses, All are within +/- 2 SD (100%)
- 228 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 11 samples returned Au values of >5 ppb (up to 9 ppb) indicating only mild instrument calibration or contamination during fire assay.
- 671 ¼ core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo
 have been analysed. The duplicate sample analyses follow very closely the original analyses providing assurance
 that the sample size and technique is appropriate.

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1

> 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director

www.challengerex.com

0

JORC Code explanation

SGS- CRM1- Au (ppm) - mean +/-2SD	505 - CRM1 - Cu(10 - mean +/- 250	
	2,8	
· · · · · · · · · · · · · · · · · · ·	2.8	
	2.0	
a 30 40 40 50 500 50		
SG5 - CRM2 - Au (ppm) - mean +/-250	SGS- CRM2-Ga (%) - mean +/-2SD	
	137	
	131	
March and the second second		
nere se la serie de la ser La serie de la s		
······································		
	151	
	565- 08M4-Qz (%) -mean #/-250	SGS - CRM4- Ag (ppm) - mean +/- 25D
SGS- CRM4 - Au (ppm) - main +/- 25D	10	part - strater og (gang - melili 4/- 250
	1.0	110
· · ·		
· · · · · · · · · · · · · · · · · · ·	10	140
	1.0	10.00
		a 4 10 14 20 24 20
505 - CRM5 - A u (ppm) - mean +/-25D	SGS- CRMS- Ga (%)- mean +/-2SD	SGS - CRMS - Ag (ppm) - mean +/- 2SD
	120	
	14	
	144	
10 20 10 40 60 40 70 80 40	3 33 33 33 43 43 43 73 33 40	a 13 33 50 40 40 40 70
SGS- CRM6 - Au (ppm) - mean +/-2SD	SGS - CRM6 - Cu (%) - maan +/- 2SD	
	1.00	
• • • • • • • • • • • • • • • • • • •	111	
1		
	10	
	2.0	
a 10 10 10 10 10 10 10 10 10 10 10 10 10	δ.47 δ.42 δ.42 δ.42 δ.42 δ.42 δ.43 δ.43 δ.43 δ.43 δ.43 δ.43 δ.43 δ.43	
565- CIM7 -Au (spm) - main 1/- 20	14	
	1 2 U 12 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	
	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
505- 0007 - Au (gpm) - maas 4/- 200	568-C007-Cur(Q)-meat (/ 250 568-C007-Cur(Q)-meat (/ 250 568-C007-Cur(Q)-meat (/ 250 569-Cur(Q)-meat	
505- 0007 - Au (gpm) - maas 4/- 200	565-CM7-Cu/Q-mean// 320	
505-0047-Au (ppm) - maas 4/-200	585-50M7-5u/50-mear // 280	
505- 0107 -Au (gen) - maar 4/- 200	565-CM7-Cu/Q-mean// 320	
303-0047 - Au (ppr) - maan V-250	565 - CDM7 - Cur/G - mean 1/ 250	505 - 01416 - Aglgant - maar 1/- 20
305-0007-Au (gam) -maar (f- 20 • • • • • • • • • • • • • • • • • • •	1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56 - 03/6 - Ag(prt) -max 1/- 20
905-0047-Juc (gam) - man (J-20)	1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56 - 0545 Ag(pert -man 1/- 50)
505-0007-Au (spri) - maat 1/-202	1 300-0000-02-(0)0-max 1/-300 1 0	565 - 00065 - Aglgand - must 1/- 200
305-0007-54 (gam)-maar (f-20)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
505-01017-5ur (spm) -main 1/- 20 + 505-02018-5ur (spm) -main 1/- 20 505-02018-5ur (spm) - main 1/- 20 + + + + + + + + + + + + + + + + + + +	1 1 0	NIE
S05-0007-Au (spm) - main 1/- 20 • • • • • • • • • • • • • • • • • • •	1 1 0	

	SGS- CRM2- Mo(10 - mkan +/-2SD
	SGS- ORM4- Mo(1Q -mean 4/-25D
••••	
	120
ие	
<u>10</u> 40	
	505 - CRM7-Fe (%) - main + / 250
	565- 00M8-Mo (N)-maan +/- 250
*.	137 137 137 ***

565- CRM1 - Mo (%) - mean +/- 250

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,690m shares 161.0m options 49.5m perf rights

Australian Registered Office

Level 1 100 Havelock Street West Perth WA 6005

Directors Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengerex.com

www.challengerex.com

 $\overline{(7)}$

Challenge ACN 123 S ASX: CEL

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,690m shares 161.0m options 49.5m perf rights

Australian Registered Office

Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengerex.com

SGS - CRM Blank - Au (ppb)

Historic:

- The nature, quality and appropriateness of the assaying and laboratory procedures used by Newmont and Odin are still in line with industry best practice with appropriate QA/QC and chain of custody and are considered appropriate.
- Available historical data does not mention details of geophysical tools as such it is believed a geophysical campaign was not completed in parallel with the drilling campaign.
- Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality. Later Odin undertook a reassaying program of the majority of the higher-grade sections which confirmed the repeatability.
- Given the above, it is considered acceptable levels of accuracy and precision have been established
- CEL ¼ and ½ core samples were prepared for assay at SGS Del Ecuador S.A.in Quito, Ecuador with analysis completed by in Lima at SGS del in Peru S.A.C and by ALS Laboratories in Quito with analysis completed by ALS in Vancouver, Canada. Samples were crushed and a 500g sub-sample was pulverized to 85% passing 75 µm. The technique provides for a near total analysis of the economic elements of interest.
- CEL rock chip samples were prepared for assay at ALS Laboratories (Quito) with analysis being completed at ALS Laboratories (Peru). The fire assay and 4-acid digest provide for near-total analysis of the economic elements of interest. No standards or blanks were submitted with the rock chip samples.

Criteria

Criteria	JORC Code explanation	Comm	entary	
		Colorad CEL: Car • • • • • • • • • • • • • • • • •	mp #1, Phase#1 All drill core collected by CEL ha to 85% passing 75 micron at the SGS for Au by Fire Assay (30g) v samples of the pulps are also as (including Cu, Mo, Ag, Zn, Pb, S Samples submitted by CEL inclu (QAQC) on the accuracy and pro- 8 different CRM pulp samples h certified for Ag, 7 are certified f For Au, of 352 CRM pulp analys For Ag, of 134 CRM pulp analys For Cu, of 338 CRM pulp analys For Fe, of 15 CRM pulp analyse 162 samples of pulp that are kn samples returned Au values of 3 contamination during fire assay 474 ¼ core duplicate samples h	have been submitted with the core samples. All 8 are certified for Au, 3 are for Cu, 1 is certified for Fe and 4 are certified for Mo. ses, 346 are within +/- 2 SD (98%) ses, 127 are within +/- 2 SD (95%) ses, 324 are within +/- 2 SD (96%) vses, 187 are within +/- 2 SD (95%) ses, all are within +/- 2 SD (100%) hown to have a blank Au value have been included with the samples submitted. >5 ppb (up to 11 ppb) indicating only mild instrument calibration or y. have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo cate sample analyses follow very closely the original analyses providing assurance
allenger Gold Limited N 123 591 382 K: CEL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005	Directors Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director	Contact T: +61 8 6385 2743 E: admin@challengerex.com

Criteria	JORC Code explanation	Comn	nentary			
			555- CMI-As (ppr) - max +252	555- CBM I-Ca (%)-mem +# 250		555-03Mi-Ma(N)-mean +/ 200
			561-01M0-As (pps)-mean /-320	555-CBM3-Cs (N)-mman-/-250		525-CBN2-Ma(%)-maan //-280
				555-CBM3-Gg(N)-mem +) 250	565- CIMJ-Agigani-man 4- 586	10 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 0
			SGL-CRM4-Asigpm:-mark/220	565-03M4-Ca (pm) - m an //-250		252 - CDMI-Ma (N-max v)-250
			SG5-CIM5-Ar(gen)- im an 4/-230	555-CM1-C(N)-mem +250	56-0305-Agg 3)-mmm/-210	
			SGS: CIME-As (pert) -reven (-) 310	555-00M6-02 (N-mmar 4-250)		
			561-0107-As (pert) - man /- 150	555-CBM7-Cc/N-mem (+720		201-CIN/T-F#(%)-mean % 200
			• •			
nger Gold Limited 13 591 382	Issued Capital 1,690m shares	Australian Registered Office	Directors Mr Eduardo Elsztain, Non-Exec			1
L	161.0m options 49.5m perf rights	100 Havelock Street West Perth WA 6005	Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice (Dr Sonia Delgado, Exec. Directt Mr Fletcher Quinn, Non-Exec. D Mr Pini Althaus, Non Exec Dire Mr Brett Hackett Non Exec Dire	or Director ctor	com	

www.challengerex.com

 $\overline{\Box}$

Criteria

JORC Code explanation

Historic:

• No information is available on the methods used to analyse the historic soil or drill core samples. Assay results are not provided in this report.

Soil samples have been analysed by GK for Au, Cu, Ag, Zn, Pb, As, Mn, Ni, Cr, Mo, Sn, V, Ti, Co, B, Ba, Sb, Bi and Hg. Pulps have been securely retained and check assaying is planned.

- Drill core was partially assayed for gold only with assays undertaken by Goldking's on site laboratory
- CEL samples of drill core re-sampled by CEL. Blanks and CRM (standards) were added to the batches to check sample preparation and analysis.

3 separate CRM's were included in the batches sent for analysis. All three have certified Au values. The results of the analysis of the CRM are shown below. With a few exceptions, the CRM has returned results within +/- 2 SD of the certified reference value. There is no bias in the results returned from either SGS or ALS laboratories. CRM3 analyses by fire assay at SGS did not include overlimit (>10 g/t).

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,690m shares 161.0m options 49.5m perf rights

Australian Registered Office

Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengerex.com

www.challengerex.com

 $\overline{(}$

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,690m shares 161.0m options 49.5m perf rights

Australian Registered Office

Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengerex.com

- No duplicate samples have been submitted. .
- Two different blanks have been included randomly within the sample batches. A CRM blank with a value of ٠ <0.01 ppm (10 ppb) Au was used initially. More recent batches have used a blank gravel material which has no certified reference value. The results are shown below. The first 4 gravel blanks show elevated Au values which is believed to be due to contamination of the blank prior to submission and not due to laboratory contamination. With one exception, the blanks have returned values below 10 ppb.

JORC Code explanation

Commentary

 sampling and either independent or alternative company personnel. The use of twinned holes. Samples from significant intersections have not been checked by a second laboratory. No holes have be twinned. Data from logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and assaying is compiled into a database at the Project and is backed up in a secure logging and as	JORC Code explanation	Commentary
 Verification of sampling and assaying The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. CEL Drilling (El Guayabo and Colorado V): Samples from significant intersections have not been checked by a second laboratory. No holes have be twinned Deta from logging and assaying is compiled into a database at the Project and is backed up in a secure late. Data from logging and assaying is compiled into a database at the Project and is backed up in a secure late. Data around performs the sections with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a scree fire analysis based on a pulverized sample with a mass of about 5 kg. Additionally, Odin re-assayed the r the higher-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data was sourced from scanned copies of original drill logs and in some cases original paper copies of as sheets are available. This data is currently stored in a drop box data base with the original sheld on site. No adjustments to assay data were made. 		
 Verification of significant intersections by either independent or alternative company personnel. The verification of significant intersections by personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, adta storage (physical and electronic) protocols. Discuss any adjustment to assay data. CEL Drilling (El Guayabo and Colorado V): Samples from significant intersections have not been checked by a second laboratory. No holes have be twinned. Data from logging and assaying is compiled into a database at the Project and is backed up in a secure lo CEL GIS personnel and company geologists check and verify the data. No adjustments are made to any assay data. Historic: El Guayabo All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screet fire analysis based on a pulverized sample with a mass of about 5 kg. Additionally, Odin re-assayed the r the higher-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data assay data were made. 		
 Verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. CEL Drilling (El Guayabo and Colorado V): Samples from significant intersections have not been checked by a second laboratory. No holes have be twinned. Data from logging and assaying is compiled into a database at the Project and is backed up in a secure to CEL GIS personnel and company geologists check and verify the data. No adjustments are made to any assay data. Historic: El Guayabo: All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screef fire analysis based on a pulverized sample with a mass of about 5 kg. Additionally, Odin re-assayed the r the higher-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data was sourced from scanned copies of original drill logs and in some cases original paper copies of as sheets are available. This data is currently stored in a drop box data base with the originals held on site. No adjustments to assay data were made. 		0 10 20 30 40 50 60 70 80 50 ALS - Cement Blank - Au (ppm)
 sampling and assaying either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Historic: El Guayabo: All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a scree fire analysis based on a pulverized sample with a mass of about 5 kg. Additionally, Odin re-assayed the righer-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data was sourced from scanned copies of original drill logs and in some cases original paper copies of as sheets are available. This data is currently stored in a drop box data base with the originals held on site. 		
format from the Laboratory and entered into a Project database for analysis. There has been no adjustr the data.	 The use of twinned holes. Documentation of primary data, data e 	• Data from logging and assaying is compiled into a database at the Project and is backed up in a secure locati CEL GIS personnel and company geologists check and verify the data. No adjustments are made to any of the data is the project and is backed up in a secure location of the data.

Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

www.challengerex.com

17

Criteria	JORC Code explanation	Commentary
		 Colorado V: There is no information available on the verification of sample and assay results. No assay data is provided in this report. Soil replicate samples and second split assay results have been provided but not fully analysed at this stage. Of the 4,495 soil samples in the GK database, 166 are replicate samples and 140 are second split re-analyses. 37 samples have no coordinates in the database. The remaining 4,152 have analyses for all 19 elements indicated above. Significant intersections have been internally checked against the assay data received. The data received has been archived electronically and a database of all drill information is being developed. There is no adjustment of the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	
		 Historic: El Guayabo: Newmont undertook survey to located drill holes in accordance with best practice at the time. No formal check surveying has been undertaken to verify drill collar locations at this stage Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 Quality of topographic control appears to be+ - 1 meter which is sufficient for the exploration activities undertaken. Rock chip samples have been located using topographic maps with the assistance of hand-held GPS. Colorado V: Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 No information is available on the collar and down-hole survey techniques used on the Colorado V concession. Rock chip sample locations are determined by using a handheld GPS unit which is appropriate for the scale of the mapping program being undertaken.
nallenger Gold Limited IN 123 591 382 X: CEL	Issued CapitalAustralian Registered1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	I Office Directors Contact Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary	
Data spacing and distribution	 Data spacing for reporting of Results. Whether the data spacing a sufficient to establish the defand grade continuity appropriation Mineral Resource and Ore Reprocedure(s) and classification Whether sample composition applied. 	 A JORC compliant Mineral Resource has not been estimated A JORC compliant Mineral Resource has not been estimated Sample compositing was not used Sample compositing was not used 	
Orientation of data in relation to geological structure	 Whether the orientation of unbiased sampling of possib the extent to which this is kn the deposit type. If the relationship between orientation and the orientat mineralised structures is con introduced a sampling bias, assessed and reported if mage 	 Drill pads are located in the best possible location to ensure there is no bias introduct topography and existing infrastructure. The steep terrain and thick vegetation often to place a drill collar. The drilling on of key sidered to have his should be 	
Sample security	- The measures taken to ensu security.	 All CEL samples are held in a secure compound from the time they are received from are loaded onto a courier truck to be taken to the laboratory. The logging and sampi gated compound that has day and night security. Samples are sealed in bags and the weave bags for transport Historic: El Guayabo: Newmont sent all its field samples to the Bondar Clegg sample preparation facility in there, approximately 100 grams of pulp for each sample was air freighted to the Bon absorbed by ALS-Chemex) in Vancouver, for analysis. There is no record of any special security of the samples during transport either between the field and Quito, or betw However, Newmont did insert its own standards at 25 sample intervals as a control of CEL samples are kept in a secure location and prepared samples are transported with securely by registered couriers. Details of the sample security and chain of custody a for future audits. 	ing is done in a fenced and en packed in secure poly Quito for preparation. From dar Clegg laboratory (now al steps to monitor the een Quito and Vancouver. on analytical quality. n appropriate paperwork, are kept at the Project office
enger Gold Limited 123 591 382 CEL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	 GK analysed samples in an on-site laboratory. It is understood that the samples have Australian Registered Office Level 1 Directors Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Bett Hackett Non Exec Director 	e remained on site at all

Criteria	JORC Code explanation	Commentary
		 times. CEL have collected samples at the core shed at El Guayabo and secured the samples in polyweave sacks for transport by courier to SGS Laboratories in Guayaquil for preparation. SGS in Guayaquil courier the prepared sample pulps to SGS in Peru for analysis. Photographs and documentation are retained to demonstrate the chain of custody of the samples at all stages.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 CEL drilling (El Guayabo and Colorado V): There has been no audit or review of the sampling techniques and data Historic: El Guayabo: The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office

Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Section 2: Reporting of Exploration Results -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary					
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The El Guayabo (Code. 225) mining concession is located within El Oro Province. The concession is held by Torata Mining Resources S.A (TMR S.A) and was granted in compliance with the Mining Act ("MA") in on April 27, 2010. Thare no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness or national park issues. The mining title grants the owner an exclusive right to perform mining activities, including, exploration, exploitation and processing of minerals over the area covered by the prior title for a period of 25 years, renewable for a further years. Under its option agreement, the owner has been granted a negative pledge (which is broadly equivalent to a fixed and floating charge) over the concession. In addition, a duly notarized Irrevocable Promise to Transfer execute by TMR S.A in favor of AEP has been lodged with the Ecuador Mines Department. The Colorado V mining concession (Code No. 3363.1) located in Bellamaria, Santa Rosa, El Oro, Ecuador was granted compliance with the Mining Act ("MA") in on July 17, 2001. It is adjacent to El Guayabo concession to the north. The concession is held by Goldking Mining Company S.A. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The El Guayabo 2 (Code. 300964) mining concession is located Torata parish, Santa Rosa canton, El Oro province, Ecuador. The concession is held by T Mr. Segundo Ángel Marín Gómez and Mrs. Hermida Adelina Freire Jaramillo ai was granted in compliance with the Mining Act ("MA") on 29April 29, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. 					
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	 El Guayabo: Previous exploration on the project has been undertaken by Newmont and Odin from 1994 to 1997. This included surface pit and rock chip geochemistry, followed by the drilling of 33 drill holes for a total of 7605.52 meters) to evaluate the larger geochemical anomalies. The collection of all exploration data by Newmont and Odin was of a high standard and had appropriate sampling techniques and intervals, adequate QA/QC and custody procedures, and appropriate duplicates and blanks used for determining assay precision and accuracy. The geological interpretation of this data, including core logging and follow up geology was designed and directed by in-country inexperienced geologists. It appears to have been focused almost exclusively for gold targeting surface gold anomalies or the depth extensions of higher-grade gold zones being exploited by the artisanal miners. The geologic logs for all drill holes did not record details that would have been typical, industry standards for porphyry copper 					
lenger Gold Limited 123 591 382 CEL	Issued CapitalAustralian Registered Of1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	DirectorsContactMr Eduardo Elsztain, Non-Exec. ChairT: +61 8 6385 2743Mr Kris Knauer, MD and CEOE: admin@challengerex.comMr Sergio Rotondo, Exec. Vice ChairE: admin@challengerex.comMr Sonia Delgado, Exec. DirectorMr Fletcher Quinn, Non-Exec. DirectorMr Pini Althaus , Non Exec DirectorKr Brett Hackett Non Exec Director					

Criteria	JORC Code explanation	Commentary
		 exploration at that time. Several holes which ended in economic mineralisation have never been followed up. In short, important details which would have allowed the type of target to be better explored were missed which in turn presents an opportunity to the current owner. Colorado V: All exploration known has been completed by GK. Drilling has been done from 2016 to 2019. 56 drill holes, totaling 21,471.83m have been completed by GK. El Guayabo 2: Exploration work undertaken by the previous owner was limited to field mapping and sampling including assaying of a small number of samples for gold, silver, copper, lead and zinc. The report is only available in Spanish and assays were
Geology	- Deposit type, geological setting and style of mineralisation.	 conducted in a local laboratory in Ecuador with the majority of this work undertaken in 2017. It is believed that the El Guayabo, El Guayabo 2, and Colorado V concessions contain a "Low Sulfide" porphyry gold copper system and intrusive-related gold. The host rocks for the intrusive complex is metamorphic basement and Oligocene – Mid-Miocene volcanic rocks. This suggests the intrusions are of a similar age to the host volcanic sequence, which also suggests an evolving basement magmatic system. Intrusions are described in the core logs as quartz diorite and dacite. Mineralization has been recognized in: Steeply plunging breccia bodies (up to 200 m in diameter) associated with intrusive diorites emplaced in the metamorphic host rock. Porphyry style veins and stockwork as well as late Quartz/Calcite/sulfide veins and veinlets Disseminated pyrite and pyrrhotite in the intrusions and in the metamorphic host rock near the intrusions.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why 	El Guayabo Historic drill hole information is provided below.
enger Gold Limited 123 591 382 CEL	Issued CapitalAustralian Registered Of1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	fice Directors Contact Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

	this is the case.		DRILLHOLE	EAST	NODTH						
					NORTH	ELEVATION	AZIMU TH	DIP	FINAL	DRILLED	
			CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEPTHP	BY	
			DDHGY 01	628928.09	9605517.20	839.01	360	-90.0	249.20	Odin	
			DDHGY 02	629171.15	9606025.55	983.16	360.0	-90.0	272.90	Odin	
			DDHGY 03	629041.84	9606312.81	1063.37	305.0	-60.0	295.94	Odin	
			DDHGY 04	629171.68	9606025.18	983.2	125.0	-60.0	172.21	Odin	
			DDHGY 05	628509.21	9606405.29		145.0	-60.0	258.27	Odin	
			DDHGY 06	629170.56	9606025.97		305.0	-60.0	101.94	Odin	
			DDHGY 07	629170.81	9606025.80		305.0	-75.0	127.00	Odin	
			DDHGY 08	628508.95	9606405.74		145.0	-75.0	312.32	Odin	
			DDHGY 09	629171.22	9606025.88		45.0	-75.0	166.25	Odin	
			DDHGY 10	629170.77	9606025.24		225.0	-75.0	194.47	Odin	
			DDHGY11	628507.97	9606405.33		160.0	-60.0	241.57	Odin	
			DDHGY 12	629087.18	9606035.53		125.0 320.0	-60.0 -65.0	255.7	Odin Odin	
			DDHGY 13 DDHGY 14	629242.46 629242.27	9605975.42 9605975.64		320.0	-65.0	340.86 309.14	Odin	
			DDHGY 14 DDHGY 15	629242.27	9605975.64		320.0	-75.0	251.07	Odin	
			DDHGY 15	629194.67	9606044.44		320.0	-60.0	195.73	Odin	
			DDHGY17	629122.31	9606058.64		125.0	-82.0	280.04	Odin	
			DDHGY 18	628993.10	9606035.45		140.0	-60.0	160.35	Odin	
			DDHGY 19	629087.23	9606034.98		45.0	-53.0	175.41	Odin	
			DRILLHOLE	EAST (X)	NORTH (N)	ELEVATION (m.a.s.l)	AZIMUTH (°)	DIP (°)	FINAL DEP THP	DRILLED	
			JDH01	627185.78	9606463.27		280.0	-60.0	236.89	Newmont	
			JDH02	627260.37	9606353.12	921.56	280.0	-45.0	257.62	2 Newmont	
			JDH03	627191.61	9606200.35	952.82	280.0	-45.0	260.97	7 Newmont	
			JDH04	627429.81	9606324.00		280.0	-45.0		Newmont	
			JDH05	627755.97	9606248.70		280.0	-45.0		Newmont	
			JDH06	628356.37	9606416.13		150.0	-45.0		1 Newmont	
			JDH07	628356.37	9606416.13		150.0	-75.0		Newmont	
			JDH08	628356.37	9606416.13		150.0	-60.0		1 Newmont	
			JDH09	628507.01	9606408.43		150.0	-45.0		Newmont	
			JDH10	628897.96	9606813.62		270.0	-45.0		1 Newmont	
			JDH11	628878.64	9606674.39		270.0	-45.0		Newmont	
			JDH12	629684.61 629122.61	9606765.31 9606058.49		150.0 125.0	-60.0 -60.0		3 Newmont 3 Newmont	
			JDH13 JDH14	628897.15	9605562.77		90.0	-60.0		2 Newmont	
				020001110	0000002.11	002.00	00.0	10.0	200.02		
			Historic Colora								
		ł	Hole ID	East	: (m)	North (m)	Elevatio			ip Final dept ۰۱	h Driller
		-	71/0 1	6262-		0600000000	204 452	(°)		°)	Chandone 7
			ZKO-1			9608992.99				60 413.60	Shandong Zh
		2	ZK0-2	62637	78.705	9608992.99	204.452	2 221	8	82 581.60	Shandong Zh
ger Gold Limited 591 382	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Offi Level 1 100 Havelock Street West Perth WA 6005	Mr Ec Mr Kr Mr Se Dr So	c tors duardo Elsztain, ris Knauer, MD a ergio Rotondo, E nia Delgado, Ex etcher Quinn, N	and CEO Exec. Vice Chair rec. Director	E: admin@	385 2743 @challengerex.cor	n			

Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Comment	ary						
		ZK0-3	626475.236	9609095.444	197.421	221	-75	463.00	Shandong Zhac
		ZK0-4	626476.119	9609098.075	197.225	221	-90	458.00	Shandong Zhao
		ZK0-5	626475.372	9609100.909	197.17	300	-70	624.00	Shandong Zha
		ZK1-1	626310.629	9608865.923	226.385	61	-70	514.60	Shandong Zha
		ZK1-2	626313.901	9608867.727	226.494	150	-70	403.10	Shandong Zha
		ZK1-3	626382.401	9608894.404	229.272	61	-70	425.00	Shandong Zha
		ZK1-4	626502.206	9608982.539	227.333	61	-70	379.50	Shandong Zha
		ZK1-5	626497.992	9608979.449	227.241	241	-70	419.50	Shandong Zha
		ZK1-6	626500.813	9608979.367	227.315	180	-70	607.50	Shandong Zha
		ZK1-7	626498.548	9608979.541	227.28	241	-82	453.18	Shandong Zha
		ZK1-8	626501.094	9608980.929	227.208	61	-85	556.00	Shandong Zha
		ZK1-9	626416.4	9609040.6	202.416	203	-23	220.00	Lee Mining
		ZK2-1	626329.859	9609005.863	213.226	221	-90	395.50	Shandong Zha
		ZK3-1	628295.833	9608947.769	309.987	279	-38	372.48	
		ZK3-1-A	626416.4	9609040.6	202.416	179	-29	295.52	Lee Mining
		ZK3-2	628295.833	9608947.769	309.987	205	-30	364.80	
		ZK3-4	628295.833	9608947.769	309.987	170	-30	322.96	
		ZK4-1	626281.066	9609038.75	224.176	221	-90	434.00	Shandong Zh
		ZK4-2	626281.066	9609038.75	224.176	221	-70	390.50	Shandong Zh
		ZK4-3	626386.498	9609186.951	225.517	221	-70	650.66	Shandong Zh
		ZK4-4	626287.7817	9609031.298	215	215	-05	285.00	
		ZK5-1	626377.846	9608790.388	273.43	221	-78	321.90	Shandong Zh
		ZK5-2	626377.539	9608793.769	273.542	41	-78	319.00	Shandong Zh
		ZK5-3	626383.556	9608800.999	273.622	330	-70	446.50	Shandong Zha
		ZK5-4	626383.556	9608800.999	273.622	330	-78	508.00	Shandong Zh
		ZK5-5	626432.795	9608847.735	242.572	61	-70	532.00	Shandong Zha
		ZK6-1	626230.28	9609020.202	260.652	221	-70	552.60	Shandong Zh
		ZK6-2	626165.623	9608991.594	271.928	221	-70	531.00	Shandong Zh
		ZK10-1	626700.8538	9609675.002	126.617	221	-53	454.00	Lee Mining
		ZK10-2	626744.7	9609711	110.817	310	-30	318.82	
		ZK10-3	626744.7	9609711	110.817	310	-60	331.52	
		ZK11-1	626446.263	9608705.238	290.028	221	-78	237.50	Shandong Zha
		ZK12-1	626088.326	9609034.197	314.552	221	-70	531.50	Shandong Zh
		ZK12-2	626019.538	9608961.409	294.649	221	-70	510.60	Shandong Zha
		ZK13-1	627763.877	9609906.484	197.899	180	-70	394.00	Shandong Zha
		ZK13-2	627757.925	9609713.788	234.34	0	-70	194.00	Shandong Zha
		ZK16-1	626432.95	9609539.705	207.288	153	-45	330.00	
ger Gold Limited	Issued Capital	Australian Registered Office D	lirectors	Contact					
3 591 382	1,690m shares		Ir Eduardo Elsztain, Non-Exec.						
L	161.0m options		Ir Kris Knauer, MD and CEO		allengerex.com				

Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director

www.challengerex.com

49.5m perf rights

West Perth WA 6005

 $\overline{\Box}$

Criteria	JORC Code explanation	C	Commentary							
		ZK	16-2	626432.95	9609539.705	207.288	183	-45	394.00	
		ZK	18-1	627123.327	9609846.268	142.465	180	-70	410.50	Shandong Zhao
		ZK	19-1	626753.271	9608802.634	386.627	221	-70	548.60	Shandong Zhao
			100-1	626170.882	9608923.778	251.177	131	-70	415.00	Shandong Zhao
		ZK	103-1	628203.1453	9607944.85	535.324	215	-53	524.21	Lee Mining
		ZK	105-1	628172.5923	9607826.055	541.244	183	-54	404.57	Lee Mining
		ZK	205-1	626257.123	9608795.904	243.297	160	-70	347.00	Shandong Zha
		SA	ZK0-1A	627477.062	9609865.618	217.992	180	-70	569.10	Shandong Zha
		SA	ZKO-2A	627468.807	9609805.054	213.63	180	-70	407.50	Shandong Zha
		SA	ZK2-1	627330.0126	9609556.466	201.145	76	-05	430.89	Lee Mining
		SA	ZK2-2	627330.0126	9609556.466	201.145	62	-05	354.47	Lee Mining
		CK	2-1	626328.573	9609000.856	216.798	221	-45	121.64	Shandong Zhao
		CK	2-2	626328.573	9609000.856	216.798	251	-45	171.85	Shandong Zhao
		CK	2-3	626328.573	9609000.856	216.798	191	-45	116.40	Shandong Zhao
		СК	2-4	626328.573	9609000.856	216.798	221	-70	146.12	Shandong Zhao
		CK	2-5	626254.4315	9608931.693	190.593	342	-05	357.56	Lee Mining
		СК	2-6	626298.1066	9608961.819	203.231	332	-18	392.56	Lee Mining
		CK	3-1	626359.641	9608859.373	205.96	20	-15	185.09	Shandong Zha
		CK	3-2	626359.641	9608859.373	205.96	163	00	21.75	Shandong Zhao
		CK	3-3	626359.641	9608859.373	205.96	50	-15	138.02	Shandong Zhao
		CK	5-1	626460.1233	9608906.592	202.124	194	-74	273.56	Lee Mining
		CK	5-2	626457.0999	96089.8.4999	202.126	251	-69	273.11	Lee Mining
		CK	13-1	626610.0642	9608838.445	202.556	41	-05	227.10	Lee Mining
		CK	13-2	626610.0642	9608838.445	202.556	41	-40	231.16	Lee Mining
		CK	13-3	626605.2307	9608833.471	202.556	221	-59	197.06	Lee Mining
		CK	13-4	626604.0848	9608836.544	203.013	209	-45	176.57	Lee Mining
		CK	13-5	626607.5245	9608832.296	203.013	136	-45	184.70	Lee Mining
		СК	21-1	626693.536	9608691.062	204.927	41	00	143.47	Lee Mining
		C	L: El Guavabo	Project (Guayabo	Concession). Carr	np #1. Phase #	1. Drill Hole	Informatio	n	
			ole ID	East (m)	North (m)	Elevation	Azimuth	Dip	Final depth	Driller
							(°)	(°)		-
		G	YDD-21-001	628893.56	9606473.61	1074.98	330	-60	800.46	CEL
			YDD-21-002	629648.12	9606889.41	913.03	330	-60	291.70	CEL
			YDD-21-002A	629648.91	9606888.00	913.71	330	-60	650.58	CEL
							149	-60		
enger Gold Limited 23 591 382 EL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	G Australian Registered Office Level 1 100 Havelock Street		628613.31 ors ardo Elsztain, Non-Exec. Knauer, MD and CEO		1031.61 2743 allengerex.com	149	-60	723.15	CEL

Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Ch AC

www.challengerex.com

 $\overline{\Box}$

Criteria	JORC Code explanation	Comme	entary						
		GYDD-21	-004 628612.169	9606605.66	1031.91	330	-60	696.11	CEL
		GYDD-21	-005 628433.90	9606380.35	962.07	329	-60	632.05	CEL
		GYDD-21	-006 628435.80	9606380.46	962.58	100	-60	365.26	CEL
		GYDD-21	-007 628087.05	9606555.24	840.093	150	-60	651.80	CEL
		GYDD-21	-008 628435.62	9606377.74	962.24	150	-60	283.68	CEL
		GYDD-21	-009 628932.60	9606035.43	987.81	100	-60	692.67	CEL
		GYDD-21	-010 628088.44	9606552.79	839.92	180	-60	888.60	CEL
		GYDD-21	-011 628987.88	9606169.64	1018.56	330	-60	314.46	CEL
		GYDD-21	-012 628844.64	9605438.73	870.24	129	-60	797.65	CEL
		GYDD-21		9605725.52	901.76	190	-60	517.45	CEL
		GYDD-22		9605761.53	955.53	100	-60	783.60	CEL
		GYDD-22		9606377.19	961.88	150	-72	368.26	CEL
		GYDD-22	-016 628267.60	9606450.31	872.25	150	-62	469.75	CEL
		CEL: El Gu	uayabo Project (Guayabo	Concession), Car	np #1, Phase i	#2 Drill Hole I	nformatior	ı	
		Hole ID	East (m)	North (m)	Elevation	Azimuth	Dip	Final depth	Driller
						(°)	(°)	-	
		GYDD-22-	017 627096.13	9605850.15	885.89	225	-60	860.75	CEL
		GYDD-22-	018 627408.50	9606259.17	961.10	150	-60	734.05	CEL
		GYDD-22-	019 627018.22	9606591.53	860.80	075	-60	861.05	CEL
		GYDD-22-	020 627410.33	9606261.79	961.50	225	-60	750.00	CEL
		GY2DD-22	-001 627271.92	9604368.13	496.50	100	-60	776.40	CEL
		GYDD-22-	629039.50	9605861.33	893.20	330	-60	812.85	CEL
		GYDD-22-	022 628988.58	9606167.81	1017.10	150	-60	702.85	CEL
		GYDD-22-		9606272.80	1045.70	150	-60	795.55	CEL
		GYDD-22-	024 628971.40	9606104.67	1003.00	150	-60	650.00	CEL
		GYDD-22-	025 629055.83	9606277.30	1045.50	330	-60	1194.05	CEL
		GYDD-22-	026 628949.34	9606571.90	1062.60	345	-60	1082.45	CEL
		GYDD-22-	027 628725.86	9606619.12	1047.88	150	-60	875.35	CEL
		GYDD-22-	028 628488.59	9606449.24	961.82	150	-75	521.20	CEL
		GYDD-22-	029 628391.57	9606502.21	904.05	150	-65	528.95	CEL
		GYDD-22-	030 628723.89	9606622.50	1047.60	330	-60	691.20	CEL
		GYDD-23-		9606591.85	988.40	150	-60	696.40	CEL
		GYDD-23-	628669.96	9606599.34	1030.39	150	-60	781.45	CEL
		GYDD-23-		9606457.68	891.75	150	-70	565.85	CEL
		GYDD-23-		9606432.20	987.21	150	-70	413.65	CEL
23 591 382	Issued Capital 1,690m shares 161.0m options	Australian Registered Office Level 1 100 Havelock Street	Directors Mr Eduardo Elsztain, Non-Exec Mr Kris Knauer, MD and CEO	E: admin@ch	5 2743 nallengerex.com				
enger Gold Limited 23 591 382 EL	1,690m shares	Level 1	Mr Eduardo Elsztain, Non-Exec	:. Chair T: +61 8 638 E: admin@cł Chair					

Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Com	mentary							
		GYDD-2	23-035 628	235.55 9	606391.22	879.35	150	-60	381.85 C	EL
		GYDD-2	23-036 628	588.16 9	606460.88	975.68	330	-70		EL
		GYDD-2	23-037 628	958.10 9	605809.79	900.54	330	-60	823.10 C	EL
		GYDD-2	23-038 628	191.89 9	606645.00	753.18	150	-55	651.80 C	EL
		GYDD-2	3-039 628	752.96 9	605770.05	954.41	150	-60	812.40 C	EL
		GYDD-2	23-040 628	702.92 9	9606813.34	1040.18	150	-60	352.40 C	EL
		GYDD-2	23-041 6287	788.051 9	605899.887	955.430	150	-60	779.00 C	EL
		GYDD-2			605803.955		150	-60	746.40 C	EL
		GYDD-2	23-043 628	544.25 9	606848.97	898.569	150	-60	742.15 C	EL
			Guayabo Project (annels taken with					nel Informatio	n	
					and with ≥3 Start	Start	Start	End	End	End
		Chan			ist (m)	North (m)	Elev. (m)	East (m)	North (m)	Elev (m
				-	097.60	9605892.67	903.12	629181.25	9606057.67	901.51
					9168.77	9606038.20	904.26	628712.25	9606253.44	909.94
					3530.10	9606353.27	912.15	628599.15	9606318.08	911.16
					3555.19	9606336.81	912.18	628542.18	9606318.23	911.8
					3865.19	9605519.64	854.70	628846.18	9605528.57	856.1
					8835.51	9605533.39	856.63	628833.43	9605557.20	856.62
					3832.16	9605532.92	856.91	628825.05	9605525.92	857.30
					3564.61	9606364.46	1049.49	628555.37	9606328.29	1049.4
					3552.80	9606332.35	1050.46	628548.87	9606324.18	1046.3
					3561.98	9606365.72	1049.34	628554.31	9606367.91	1049.2
			-		3551.58	9606368.66	1049.47	628545.99	9606360.99	1049.5
					3544.56	9606363.81	1049.49	628534.71	9606365.51	1049.4
					3398.56	9606395.53	935.10	628409.97	9606378.08	935.62
					3411.32	9606375.14	936.55	628427.64	9606332.55	938.5
					3408.71	9606350.56	937.75	628408.64	9606338.95	937.7
					3409.45	9606371.16	936.23	628399.49	9606359.55	936.23
					3382.51	9606385.53	932.07	628405.02	9606347.10	932.4
					3381.30	9606380.33	932.37	628379.97	9606376.57	932.37
					3313.38	9606349.71	938.80	628332.64	9606305.96	940.42
					3331.99	9606305.98	938.32	628330.44	9606303.38	938.40
					3330.98	9606301.14	938.32	628327.57	9606286.57	938.73
llenger Gold Limited	Issued Capital	Australian Registered Office	Directors		Contact					
N 123 591 382 X: CEL	1,690m shares 161.0m options 49.5m perf rights	Level 1 100 Havelock Street West Perth WA 6005	Mr Eduardo Elsztai Mr Kris Knauer, Ml Mr Sergio Rotondc Dr Sonia Delgado, Mr Fletcher Quinn,	D and CEO , Exec. Vice Chair Exec. Director	T: +61 8 638 E: admin@o	85 2743 challengerex.com				

Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

www.challengerex.com

 $\overline{\Box}$
Criteria	JORC Code explanation	Comr	nentary							
		CSBQ	_B3-004	GY-A	628337.64	9606329.71	938.05	628331.74	9606329.82	938.
		CSBQ	_B4-001	GY-A	628422.11	9606586.27	870.15	628451.59	9606526.64	871.
		CSBQ	_B4-002	GY-A	628451.08	9606524.96	873.05	628451.39	9606501.29	873.
		CSBQ	B5-001	GY-A	628428.63	9606546.08	881.50	628433.71	9606519.76	881
		CSBQ	_B5-002	GY-A	628436.61	9606517.10	883.53	628452.93	9606508.75	883
		CSBQ	B5-003	GY-A	628455.26	9606508.65	885.18	628455.20	9606505.13	885
		CSBQ	_B6-001	GY-A	628447.83	9606540.96	896.64	628458.78	9606525.44	896
		CSBQ	_B6-002	GY-A	628465.44	9606521.09	896.71	628466.74	9606510.56	895
		CSBQ	_B7-001	GY-A	628386.49	9606612.65	846.41	628458.70	9606503.47	849
		CSBQ	W1-001	GY-A	628399.20	9606316.75	988.08	628404.71	9606303.52	989
		CSBQ	W1-002	GY-A	628403.16	9606310.69	990.37	628410.63	9606314.06	995
		CSBQ	W2-001	GY-A	628428.50	9606259.40	1010.13	628435.75	9606258.32	101
		CSBQ	VW2-002	GY-A	628433.37	9606249.96	1002.97	628440.28	9606273.91	100
		CSBQ	NW3-001	GY-A	628414.95	9606318.02	1002.80	628424.22	9606318.24	100
		CSBQ	5U1-001	GY-A	628565.84	9606365.44	1049.16	628582.34	9606368.81	104
		CSBQ	SU2-001	GY-A	628408.04	9606355.42	975.92	628396.24	9606327.32	980
		CSBQ	SU2-002	GY-A	628396.98	9606325.26	982.04	628397.54	9606318.52	985
		CSBQ	SU3-001	GY-A	628560.54	9606332.95	1083.39	628556.62	9606332.24	107
		CSBQ	SU4-001	GY-A	628558.11	9606345.78	1074.65	628541.63	9606343.34	107
		CSBQ	SU5-001	GY-A	628541.03	9606341.08	1079.20	628538.01	9606338.92	108
		CSBQ	SU6-001	GY-A	628534.31	9606336.20	1081.68	628527.14	9606329.21	107
		CSBQ	SU7-001	GY-A	628358.48	9606388.92	929.74	628381.26	9606387.28	932
		CSBQ	SU7-002	GY-A	628383.26	9606387.28	932.55	628387.70	9606390.76	933
		CSCAI	RE1-001	GY-B	628956.41	9606217.05	1006.45	628940.83	9606237.35	100
		CSCAI	RE1-002	GY-B	628938.74	9606238.51	1006.49	628939.27	9606259.47	100
		CSCAI	RE1-003	GY-B	628939.49	9606261.21	1006.62	628915.78	9606345.10	100
		CSCAI	RE1-004	GY-B	628914.42	9606346.93	1007.88	628910.31	9606351.80	100
		CSCAI	RE1-005	GY-B	628916.02	9606346.93	1007.18	628915.79	9606385.70	100
		CSCA	'A1-001	GY-C	628983.70	9605271.31	734.41	629024.77	9605325.90	737
		CSCA	'A1-002	GY-C	629027.04	9605328.41	737.28	629005.63	9605347.74	737
		CSCA	'A1-003	GY-C	629003.19	9605348.90	737.42	628971.71	9605386.76	738
		CSCH	DN-001	GY-C	628931.52	9605592.50	843.93	628922.57	9605615.45	844
		CSCH	DR-001	GY-C	628971.99	9605585.96	808.18	628967.66	9605599.28	808
		CSCH	DR-002	GY-C	628963.93	9605607.64	808.78	628957.03	9605640.25	809
		CSCH	DR-003	GY-C	628965.92	9605595.69	808.30	628954.73	9605585.23	809
nger Gold Limited 23 591 382 EL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005	Mr Kris Knau	Elsztain, Non-Ex er, MD and CEC tondo, Exec. Vic	E: admir	6385 2743 @challengerex.com				

Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

www.challengerex.com

 $\overline{\mathbf{n}}$

Criteria	JORC Code explanation	Com	mentary							
		CSDU	JRA-001	GY-A	628227.90	9606366.15	870.94	628233.65	9606367.67	871.
		CSDU	JRA-002	GY-A	628237.73	9606367.79	871.76	628278.47	9606372.36	872.
		CSDU	JRA-003	GY-A	628280.86	9606371.10	872.76	628305.14	9606377.74	873.
		CSDU	JRA-004	GY-A	628305.96	9606377.17	875.03	628306.13	9606377.16	876
		CSDU	JRA-005	GY-A	628305.70	9606375.49	875.08	628305.91	9606375.48	876
		CSDU	JRA-006	GY-A	628304.83	9606371.55	874.71	628298.41	9606328.41	875
		CSDU	JRA-007	GY-A	628300.06	9606326.34	876.77	628296.81	9606306.71	877
		CSDU	JRA-008	GY-A	628305.06	9606379.60	875.23	628305.17	9606379.54	876
		CSDU	JRA-009	GY-A	628306.80	9606381.81	875.00	628306.92	9606381.75	876
		CSDU	JRA-010	GY-A	628307.66	9606383.85	875.60	628307.65	9606383.78	876
		CSDU	JRA-021	GY-A	628306.04	9606409.45	875.49	628281.99	9606414.99	875
		CSFI	GR1-001	GY-A	628568.54	9606315.41	1065.39	628568.60	9606329.94	106
		CSFI	GR2-001	GY-A	628533.86	9606298.18	1047.65	628547.66	9606319.06	104
		CSFI	GR2-002	GY-A	628546.11	9606315.43	1051.72	628543.82	9606317.34	105
		CSL1	0085-001	GY-A	628924.38	9606395.12	128.14	628918.80	9606398.91	120
		CSL1	0085-003	GY-A	628910.03	9606407.35	119.40	628907.59	9606408.57	11
		CSL1	0085-005	GY-A	628786.96	9606621.50	1083.67	628786.16	9606622.66	108
		CSL1	0085-MN1	GY-A	628823.95	9606562.44	1129.24	628801.53	9606546.52	113
		CSL9	535-001	GY-A	628388.50	9606197.56	966.61	628419.90	9606167.91	993
		CSL9	535-002	GY-A	628421.91	9606168.51	994.28	628436.20	9606159.54	100
		CSL9	535-003	GY-A	628435.86	9606152.93	1008.82	628441.86	9606146.64	101
		CSL9	535-004	GY-A	628444.51	9606145.38	1015.92	628448.52	9606136.99	102
		CSL9	535-005	GY-A	628449.94	9606134.61	1025.30	628454.36	9606125.46	103
		CSL9	535-MN1	GY-A	628401.26	9606190.25	972.52	628466.82	9606150.77	97
		CSL9	635-001	GY-A	628620.51	9606012.31	1104.81	628615.82	9606019.52	111
		CSL9	635-002	GY-A	628526.97	9606151.03	1079.13	628534.14	9606159.13	107
		CSL9	635-004	GY-A	628525.73	9606232.56	1037.22	628523.80	9606241.00	102
		CSL9	735-001	GY-A	628705.59	9606073.41	1091.45	628694.25	9606079.04	110
		CSL9	735-003	GY-A	628622.83	9606221.70	1101.10	628624.15	9606219.05	110
		CSL9	735-004	GY-A	628624.92	9606215.99	1102.80	628627.37	9606201.02	110
		CSL9	870-001	GY-A	628593.17	9606538.97	1008.91	628626.52	9606425.27	100
		CSL9	870-002	GY-A	628623.03	9606476.82	1015.56	628632.96	9606461.94	101
			870-004	GY-A	628635.18	9606459.58	1024.76	628638.45	9606459.48	102
			870-005	GY-A	628638.91	9606456.92	1024.96	628642.80	9606446.01	102
			870-006	GY-A	628643.94	9606445.83	1028.21	628650.33	9606433.99	103
nger Gold Limited 23 591 382 EL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005	Mr Kris Knau	ilsztain, Non-Ex er, MD and CEO ondo, Exec. Vic	E: admir	: 6385 2743 n@challengerex.com				

Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

www.challengerex.com

(7)

Criteria	JORC Code explanation	Commentary							
		CSL9870-007	GY-A	628653.72	9606431.36	1032.67	628657.39	9606408.96	1052.
		CSL9870-008	GY-A	628656.18	9606407.94	1054.04	628657.81	9606401.96	1061
		CSL9870-009	GY-A	628659.13	9606397.48	1067.50	628660.39	9606395.61	1070
		CSL9870-010	GY-A	628662.78	9606394.96	1073.58	628663.53	9606390.03	1078
		CSL9870-012	GY-A	628673.93	9606383.83	1095.35	628680.17	9606379.95	1104
		CSL9870-014	GY-A	628683.02	9606377.25	1110.43	628692.34	9606371.68	112
		CSL9870-016	GY-A	628700.52	9606372.66	1131.44	628703.77	9606366.06	114
		CSL9870-017	GY-A	628706.01	9606363.64	1146.60	628711.57	9606361.22	115
		CSL9870-018	GY-A	628696.28	9606344.63	1150.57	628701.30	9606322.31	117
		CSL9970-001	GY-A	628685.08	9606600.30	1031.67	628696.64	9606576.19	105
		CSL9970-002	GY-A	628698.96	9606572.06	1059.20	628700.26	9606569.75	106
		CSL9970-003	GY-A	628702.13	9606565.81	1066.98	628705.71	9606562.16	107
		CSL9970-004	GY-A	628707.62	9606561.27	1075.29	628737.76	9606561.59	109
		CSL9970-005	GY-A	628738.79	9606560.57	1096.01	628741.18	9606547.27	111
		CSL9970-008	GY-A	628729.96	9606504.43	1144.07	628737.17	9606494.79	114
		CSL9970-009	GY-A	628750.90	9606478.28	1157.94	628755.74	9606471.35	11
		CSSALI-001	GY-A	629670.78	9607005.76	869.65	629675.67	9606990.81	87
		CSSALI-003	GY-A	629679.90	9606979.99	870.86	629681.97	9606951.09	87
		CSSALI-004	GY-A	629679.77	9606952.89	872.27	629676.74	9606948.38	87
		CSSALI-005	GY-A	629673.30	9606950.55	872.35	629655.94	9606941.79	87
		CSSALI-007	GY-A	629651.46	9606938.95	872.57	629550.37	9606896.35	87
		CSTINO-001	GY-A	629119.86	9606777.84	946.21	629138.76	9606671.07	94
		CSTINO-002	GY-A	629136.64	9606668.16	949.01	629153.42	9606643.44	94
		CSTINO-004	GY-A	629155.57	9606640.24	949.47	629164.64	9606625.11	94
		CSTINO-005	GY-A	629135.08	9606670.05	948.29	629044.73	9606523.90	94
		CSINDI1-001	GY-A	628196.08	9606683.90	735.22	628239.76	9606704.20	73
		CSINDI1-003	GY-A	628243.79	9606704.06	736.22	628341.62	9606746.58	73
		CSINDI1-004	GY-A	628344.90	9606749.17	737.82	628361.73	9606763.00	73
		CSINDI1-005	GY-A	628364.80	9606763.28	737.91	628385.38	9606769.00	73
		CSINDI1-006	GY-A	628389.28	9606769.33	737.99	628598.03	9606692.87	74
		CSINDI1-007	GY-A	628599.47	9606691.89	741.22	628671.25	9606673.90	74
		CSINDI2-001	GY-A	628226.78	9606632.59	744.27	628235.83	9606625.31	74
		CSINDI2-003	GY-A	628235.38	9606620.79	744.29	628225.57	9606613.70	74

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1

100 Havelock Street

West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair

T: +61 8 6385 2743 E: admin@challengerex.com

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	n Con	nmentary							
		CEL: I	El Guayabo P	roject (Colorado V	Concession), C	Camp #1, Drill	Hole Inform	ation		
		Hole	-		North (m)	Elevation	Azimuth (°)	Dip (°)	Final depth	Driller
		CVD	D-22-001	626891.522	9609246.373	199.393	300	-60	533.20	CEL
			D-22-002	627198.352	9609719.449	198.970	120	-60	575.00	CEL
		CVD	D-22-003	626894.633	9609244.452	199.514	120	-60	512.40	CEL
		CVD	D-22-004		9609873.677	203.018	120	-60	658.95	CEL
			D-22-005	626893.119	9609246.715	199.383	030	-65	607.15	CEL
			D-22-006	627698.461	9609900.275	180.879	300	-60	600.70	CEL
			D-22-007	626419.745	9609344.874	264.563	120	-60	808.00	CEL
		CVD	D-22-008	627444.177	9610249.652	191.069	120	-60	535.70	CEL
			D-22-009	626664.672	9609635.445	179.594	120	-60	890.80	CEL
			D-22-010	626436.552	9609542.080	244.110	120	-60	890.20	CEL
			D-22-011	628295.444	9610306.768	156.815	300	-60	672.50	CEL
			D-22-012	627329.632	9607382.048	524.050	315	-60	756.70	CEL
			D-22-013	626906.497	9609603.539	174.956	120	-60	752.45	CEL
			D-22-014	627294.523	9607344.459	518.531	115	-60	863.40	CEL
			D-22-015	625799.563	9605232.572	428.500	280	-60	758.35	CEL
		CVE	D-22-016	627053.570	9607990.935	377.253	140	-60	558.45	CEL
		CVD	D-22-017	625582.100	9605073.535	384.291	150	-60	746.05	CEL
		CEL: I	El Guayabo P	roject (Colorado V	Concession), (Camp #2, Drill	Hole Inform	ation		
		Hole	e ID	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	Final depth	Driller
		CV	DD-24-018	626756.130	9609472.110	196.67	300	-60	451.16	CEL
		CV	DD-24-019		9609470.050	196.70	120	-60	621.69	CEL
			DD-24-020		9609348.636	216.89	300	-60	591.85	CEL
			DD-24-021		9609341.020	266.50	300	-60	295.80	CEL
			DD-24-022		9609270.323	209.48	120	-60	600.37	CEL
			DD-24-023 DD-24-024		9609454.167 9609351.912	307.80 217.28	120 120	-60 -60	656.53 711.60	CEL CEL
			DD-24-024 DD-24-025		9609351.912	321.08	120	-60 -60	745.34	CEL
			DD-24-025 DD-24-026		9609346.168	217.02	120	-60	668.22	CEL
			DD-24-027		9609164.892	321.72	120	-60	568.30	CEL
			DD-24-028		9609498.669	275.66	120	-60	754.04	CEL
		CV	DD-24-029	627079.855	9609627.040	197.34	120	-60	700.10	CEL
			DD-24-030		9609821.518	191.45	120	-60	700.99	CEL
1ger Gold Limited 3 591 382 L	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005	Mr Kris Kı Mr Sergio Dr Sonia l Mr Fletch	s do Elsztain, Non-Exec. Cl nauer, MD and CEO PRotondo, Exec. Vice Cha Delgado, Exec. Director er Quinn, Non-Exec. Dire (thaus , Non Exec Director	E: admin@c air ector	5 2743 hallengerex.com				

Crite
D
Data aggr meth
Challenger G ACN 123 591 3 ASX: CEL
ASX: CEL
www.ch

Criteria	JORC Code explanation	Commentary							
		CVDD-24-031 CVDD-24-032	627390.602 626228.211	9609683.495 9609359.043	230.02 350.71	120 120	-60 -60	402.53 731.51	CEL CEL
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Minimum cut Aggregate int bottom cut or consistent na grade results over half of th only 20% of th over one third Au Eq assume Molybdenum Metallurgical factors have b the Au Eq is: A CEL confirms 	of grade of 0.2 g ercepts have be f 0.5 g/t Au Equi- ture of the mine does not have a he intercept com he intercept incl d includes gold g es a gold price of price of US\$40, recovery factors been applied in of Au (g/t) + (Ag (g/ that it is the con	ed to derive the w g/t Au Equivalent en reported with l valent has been us ralisation the imp large impact. For prises gold grades udes grades betwe rades in excess of USD 1,780/oz, a s 500/t s for gold, silver, co calculating the Auf (t) x 22/1780) + (1 npany's opinion the covered and sold	(AuEq) was u higher grade sed to detern act of the agg example, in t s in excess of een 0.2 and C ² 2 g/t Au. silver price of opper, and M Eq at this earl .68604 x Cu (sed for deten inclusions to hine the hig gregation of he intercep 1 g/t Au USD 22 /oz olybdenum y stage of ti %) + (7.0762	ermining int o demonstri- her-grade in high-grade t of 156m @ , a copper p are assume he Project, 1 12 x Mo (%)	ate the impact of nclusions. Given t e results and long 2.6 g.t Au in ho price of USD 9,650 ed to be equal. N hence the formul)).	he generally er lengths of low le GGY-02: 0 /t, and a o metallurgical a for calculating
		A cut-off grade of development with consistent with a l Significant Historia	up to 10 metres arge low-grade	s of internal dilution nineralized system	on below cut- n. Intersectio	off allowab	le for the re a different	eporting of signific	cant intercepts,

Level 1 100 Havelock Street West Perth WA 6005

 Mr Eduardo Elsztain, Non-Exec. Chair
 T: +61 8 6385 2743

 Mr Kris Knauer, MD and CEO
 E: admin@challengerex.com

 Mr Sergio Rotondo, Exec. Vice Chair
 E: admin@challengerex.com

 Dr Sonia Delgado, Exec. Director
 Mr Fletcher Quinn, Non-Exec. Director

 Mr Pini Althaus , Non Exec Director
 Mr Brett Hackett Non Exec Director

161.0m options

49.5m perf rights

 $\overline{\Box}$

	Drillhole		Minerali	sed Inte	Total	Gol	d	Ag	Cu	Au Equiv	Azimuth	Incl	TD
	(#)		From	То	(m)	(g/1	t)	(g/t)	(%)	(g/t)	(deg)	(deg)	(m)
	JDH-001	from	183	190.6	7.6 m (@ 0.	3 g/tAu +		not assayed	n/a	280	-60	236.9
	JDH-002	from	7.6	152.9	145.3 m (ລ 0.	4 g/tAu +		not assayed	n/a	280	-45	257.5
	5511 002	and	199	243		_	4 g/tAu +		not assayed	n/a	200	15	LUTIU
	JDH-003	from	35.95	71.6			5 g/tAu +		not assayed	n/a	280	-45	261
		and	120.4	254.6		-	4 g/tAu +		not assayed	n/a			
		inc	146.81	224.08		_	5 g/tAu +		not assayed	n/a			
	JDH-004	from	3.96	21.95	18.0 m (a 0.	4 g/tAu +		not assayed	n/a	280	-45	219
		and		120.42		-	4 g/tAu +		not assayed	n/a			
		and	150.9	203.7	52.8 m (@ 0.	7 g/tAu +		not assayed	n/a			
	JDH-005	from	5.2	81.4	76.2 m (@ 0.	4 g/tAu +		not assayed	n/a	280	-45	210.4
		and	169.7	208.5		_	2 g/tAu +		not assayed	n/a			
	JDH-006	from	17.99	89.6	71.6 m (@ 0.	2 g/tAu +	2.0	g/tAg + 0.10 % Cu	0.42	150	-45	302.7
		and	164.8	281			-		g/tAg + 0.40 % Cu				
		inc	227.8	281.09	53.3 m (@ 1.	2 g/tAu +	13.2	g/tAg + 0.62 % Cu	2.39			
	JDH-007	from	39.7	84.45	44.8 m (@ 0.	3 g/tAu +	1.4	g/tAg + 0.04 % Cu	0.38	150	-75	105.8
	JDH-008	from	104.7	136.7	32.0 m (a 0.	1 q/tAu +	3.6	y/tAg + 0.13 % Cu	0.41	150	-60	352.7
		and	249.08						g/tAg + 0.21 % Cu				
		and	291.76	316.15	24.4 m (@ 0 .	5 g/tAu +	9.2	g/tAg + 0.34 % Cu	1.13			
	JDH-009	from	10.3	122.03	111.7 m (@ 0.	7 g/tAu +	14.6	y/tAg + 0.58 % Cu	1.85	150	-45	256.7
		inc	34.6	91.54	56.9 m (@ 0.	2 g/tAu +	19.1	g/t Ag + 0.82 % Cu	1.80			
		and	201.4	205.4	4.0 m (@ 11.	4 g/tAu +	9.7	g/tAg + 0.01 % Cu	11.54			
		and	255.1	eoh	1.5 m (@ 0 .	7 g/tAu +	1.5 g	g/tAg + 0.02 % Cu	0.75			
	JDH-10	from	1.5	50.9	49.4 m (@ 0 .	5 g/tAu +	2.5	g/tAg + 0.09 % Cu	0.68	270	-45	221.6
		and	90.54	119	28.5 m (@ 0 .	2 g/tAu +	3.0	g/tAg + 0.10 % Cu	0.40			
		and	140	203	81.6 m (@ 0 .	4 g/tAu +	1.3 g	g/tAg + 0.07 % Cu	0.53			
	JDH-011	from	100.7	218	117.3 m (@ 0 .	4 g/tAu +	4.6	g/tAg + 0.10 % Cu	0.62	270	-45	218.0
	JDH-012	from	12.2	53.96	41.8 m (@ 0.	6 g/tAu +	6.5	g/tAg + 0.02 % Cu	0.67	150	-60	124.1
	JDH-013	from	53.35	69.6	16.3 m (@ 0.	5 q/tAu +	1.2	y/tAg + 0.01 % Cu	0.48	150	-60	239.3
		and	89.9	154.9	65.0 m (@ 1.	4 g/tAu +	2.8	g/tAg + 0.06 % Cu	1.53			
		inc	114.32	142.76	28.4 m (@ 2.	8 g/tAu +	4.9	g/tAg + 0.10 % Cu	3.03			
	JDH-014	from	26.96	75.69	48.7 m (@ 0.	4 g/tAu +	5.2	g/tAg + 0.10 % Cu	0.63	90	-60	239.4
		and	85.84	116.32	30.5 m (@ 0.	2 g/tAu +	4.2	g∕tAg + 0.1 % Cu	0.42			
		and	128.52	175.3	46.8 m (@ 0.	5 g/tAu +	3.3	g/tAg + 0.08 % Cu	0.63			
		and	179.35	217.98	38.6 m (@ 0 .	1 g/tAu +	2.5	g/tAg + 0.08 % Cu	0.26			

Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

www.challengerex.com

17

	Significant in	tersections from Historic a	nd Re-as	ayed drill	core from El	Guayabo d	Irill holes:		
	Drill hole				Total	Au	Ag	Cu	Au Eq
	(#)		From	То	(m)	(g/t)	(g/t)	(%)	(g/t)
	GY-001	historical intercept	139	249.2	110.2m	0.4	1.1	0.06	0.5
		(re-assayed section)	141	177	36.0m	0.54	2.30	0.08	0.7
		(original assays)	'	'	36.0m	0.56	1.51	0.08	0.7
		(re-assayed section)	205	236	31.0m	0.19	0.89	0.03	0.3
		(original assays)	'	'	31.0m	0.21	0.13	0.03	0.3
	GY-002	historical intercept	9.7	166	156.3m	2.6	9.7	0.16	3.0
		(re-assayed section)	40	102	62.0m	5.22	21.33	0.25	5.9
		(original assays)	'	'	62.0m	4.83	19.96	0.23	5.5
		historical intercept	114	166	52.0m	1.3	3.3	0.18	1.6
		(re-assayed section)	114	171	57.0m	1.20	3.44	0.18	1.5
		(original assays)	'	1	57.0m	1.24	3.53	0.17	1.6
	GY-005	historical intercept	12	162	150.0m	0.4	11.0	0.30	1.0
		(re-assayed section)	10	60	50.0m	0.45	19.23	0.33	1.2
		(original assays)	'	'	50.0m	0.51	21.74	0.44	1.5
		(re-assayed section)	64	98	34.0m	0.10	5.25	0.16	0.4
		(original assays)	1	(34.0m	0.84	6.22	0.16	1.2
		(re-assayed section)	132	162	30.0m	0.10	6.35	0.33	0.7
		(original assays)	'	'	30.0m	0.07	6.18	0.31	0.7
	GY-011	historical intercept	14	229	215.0m	0.2	9.6	0.36	0.9
		(re-assayed section)	14	126	112.0m	0.17	10.89	0.30	0.8
		(original assays)	('	112.0m	0.18	11.73	0.36	0.9
		(re-assayed section)	166	206	40.0m	0.09	5.08	0.22	0.5
		(original assays)	1	(40.0m	0.09	4.90	0.22	0.5
		(re-assayed section)	218	231	13.0m	0.22	8.52	0.41	1.0
		(original assays)	('	13.0m	0.34	19.48	0.96	2.2
	GY-017	historical intercept	69	184	115.0m	0.5	2.1	0.03	0.5
		(re-assayed section)	94	129	35.0m	0.45	2.76	0.04	0.6
		(original assays)	1	'	35.0m	0.30	4.01	0.03	0.4
		(re-assayed section)	206	258	52.0m	0.37	2.00	0.06	0.5
		(original assays)	('	52.0m	0.26	1.42	0.06	0.4
	JDH-006	historical intercept	17.99	89.6	71.6m	0.2	2.0	0.10	0.4

ASX: CEL

1,690m shares 161.0m options 49.5m perf rights

100 Havelock Street

West Perth WA 6005

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	iry							
			(re-assayed section)	10.3	81.3	71.0m	0.18	1.38	0.03	0.2
			(original assays)	'	1	71.0m	0.20	1.59	0.07	0.
			historical intercept	164.8	281	116.2m	0.6	8.9	0.40	1.4
			(re-assayed section)	150.6	281.1	130.5m	0.26	7.21	0.26	0.
			(original assays)	((130.5m	0.42	8.02	0.36	1.
		JDH-009	historical intercept	10.3	122	111.7m	0.7	14.6	0.58	1.
			(re-assayed section)	6.7	107.8	101.1m	0.21	13.80	0.36	1
			(original assays)	'	1	101.1m	0.22	15.08	0.59	1
		JDH-10	historical intercept	1.5	50.9	49.4m	0.5	2.5	0.09	0
			(re-assayed section)	15.2	50.9	35.7m	0.44	2.88	0.10	0
			(original assays)	'	'	35.7m	0.41	2.96	0.10	0
			historical intercept	140	203	81.6m	0.4	1.3	0.07	0
			(re-assayed section)	150.5	203.4	52.9m	0.36	1.34	0.07	0
			(original assays)	((52.9m	0.39	1.24	0.06	0
		JDH-012	historical intercept	12.2	53.96	41.8m	0.6	6.5	0.02	0
			(re-assayed section)	18.3	54	35.7m	0.68	7.62	0.02	0
			(original assays)	((35.7m	0.69	7.36	0.02	0
		JDH-013	historical intercept	89.9	154.9	65.0m	1.4	2.8	0.06	1
			(re-assayed section)	112.3	155	42.7m	2.11	2.84	0.05	2
			(original assays)	'	1	42.7m	2.00	3.70	0.08	2
		JDH-014	historical intercept	26.96	75.69	48.7m	0.4	5.2	0.10	0
			(re-assayed section)	27	61.5	34.5m	0.64	5.99	0.13	0
			(original assays)	'	1	34.5m	0.52	6.25	0.13	0
			historical intercept	128.52	175.3	46.8m	0.46	3.3	0.08	0
			(re-assayed section)	140.7	167.2	26.5m	0.26	2.24	0.07	0
			(original assays)	'	'	26.5m	0.65	2.91	0.08	0

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office

Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Contact

JORC Code explanation

Hole_id	From	То	Interval	Au (g/t)	Ag (g/t)	Cu (ppm)	Mo (ppm)	Comment
	(m)	(m)	(m)					
ZK0-1	9.4	37.5	28.1	0.4	1.0			
and	66.5	89.5	23.0	0.9	4.7			
and	105.7	129.7	24.0	0.3	1.0			
and	167.5	214.0	46.5	0.4	7.1			
ZK1-3	46.0	103.7	57.7	0.5	1.9			
inc	56.0	85.7	29.7	0.8	3.1			
from	127.0	163.0	36.0	0.5	3.5			
and	290.5	421.0	130.5	0.5	3.1			
inc	302.5	380.5	78.0	0.7	3.5			
ZK1-5	211.4	355.0	145.6	1.5	1.7			
inc	253.0	340.0	87.0	2.1	1.9			
ZK0-2	13.3	108.2	94.9	0.3	1.7			
inc	75.7	108.2	32.5	0.4	2.6			
and	172.7	193.1	20.4	0.3	2.1			
and	225.0	376.4	151.4	0.9	3.8			
inc	227.0	361.0	134.0	1.0	4.1			
inc	227.0	290.0	63.0	1.6	5.1			
ZK3-4	26	38	12	0.3	1.5	513	5	
and	50	114	64	0.2	1.5	549	5	
inc	86	88	2	1.5	1.4	458	3	1 g/t Au cut of
and	180	250	70	0.2	1.6	777	3	
ZK3-1	49.5	112.5	63	0.1	1.7	654	5	
inc	94.5	96	1.5	1.5	1.4	3126	7	1 g/t Au cut of
and	94.5	174	79.5	0.1	2	662	4	
inc	171	172.5	1.5	1.4	2.6	771	7	1 g/t Au cut of
SAZK0-1	31.2	90.8	59.6	0.2	1.4	392	3	
and	131.5	179.5	48	0.1	4.3	824	6	
and	229.8	292.8	63	0.2	1	325	8	
and	319	490.8	171.8	0.2	1.5	616	12	

Historic: Significant intersections from Colorado V drill hole results from re-sampling of available core:

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1 100 Havelock Street

West Perth WA 6005

Directors Mr Eduardo Elsztain, Non-Exec. Chair

Contact r T: +61 8 6385 2743 E: admin@challengerex.com

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

www.challengerex.com

 $\overline{(7)}$

Criteria	JORC Code explanation	Com	mentary							
		inc	352	446.5	94.5	0.3	2.4	996	15	1 g/t Au cut off
		SAK2	-1 66.5	275	208.5	0.3	1.5	626	5	
		inc	122	185	63	0.6	2.1	825	3	1 g/t Au cut off
		and	225.5	227	1.5	1.6	1.4	638	2	1 g/t Au cut off
		and	288.5	330.5	42	0.2	2	454	1	
		inc	288.5	291.5	3	1.3	5.6	1136	1	1 g/t Au cut off
		SAZK	0-2 0	80.7	80.7	0.4	1.9	478	3	
		inc	30.7	51.2	20.5	1	2.5	460	5	1 g/t Au cut off
		and	136	148	12	0.6	0.4	61	14	
		inc	137.5	140.5	3	1.4	0.3	10	4	1 g/t Au cut off
		and	200.5	403.8	203.3	0.3	1.3	588	15	Hole ends in mineralisation
		inc	293.5	399.3	105.8	0.5	1.3	635	16	
		inc	214	215.5	1.5	1.8	2.1	681	12	1 g/t Au cut off
		inc	344.5	399.3	54.8	0.7	1.5	767	12	0.
		inc	361.8	366.3	4.5	5.5	0.8	502	61	1 g/t Au cut off
		and	397.8	399.3	1.5	1.3	2.3	770	2	1 g/t Au cut off
		ZK1-	13 46.2	73.2	27	0.1	0.8	306	1	
		and	140	141.5	1.5	1.9	0.7	236	1	1 g/t Au cut off
		and	161	196	35	0.1	1.4	391	2	
		ZKO-	5 6.1	19.8	13.7	0.2	1.3	313	10	
			46.3	130.1	83.8	0.5	1.2	356	7	
		inc	67	118	51	0.7	1.4	409	5	0.5 g/t Au cut off
		inc	75.7	76.8	1.1	1.2	1.4	483	2	1 g/t Au cut off
		and	80.7	81.7	1	1.8	2.2	549	4	1 g/t Au cut off
		and	93.7	94.7	1	13.9	3.4	354	7	1 g/t Au cut off
		and	146.5	296.5	150	0.2	1	310	3	
		and	370	371.5	1.5	0.9	5.2	1812	3	
		and	414.3	415.8	1.5	1.2	0.3	127	1	
		and	560.5	562	1.5	2.3	0.6	189	2	
		and	596	598.2	2.2	1.7	2.1	391	4	
		and	607	608.5	1.5	2	0.8	190	2	
		ZK18	-1 NSI							
		ZKO-	4 3.70	458.00	454.30*	0.20	1.3	0.04	5.9	
		inc	42.60	154.25	111.65	0.39	1.9	0.05	7.6	0.5 g/t AuEq cut of
ger Gold Limited 3 591 382 L	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005	Directors Mr Eduardo Elszt Mr Kris Knauer, M Mr Sergio Rotono	ID and CEO	E: admin(9385 2743 @challengere	x.com			

Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

JORC Code explanation

Commentary

Commenta	ur y							
inc	69.70	97.20	27.50	0.66	1.7	0.05	8.6	1.0 g/t AuEq cut off
ZK10-1	25.02	151.00	125.98	0.16	1.1	0.06	17.9	0.1 g/t AuEq cut off
and	309.00	326.00	17.00	0.16	0.91	0.07	6.1	0.1 g/t AuEq cut off
and	354.02	451.00	96.98*	0.17	1.2	0.06	15.8	
inc	435.02	451.00	15.98*	0.32	1.8	0.07	2.6	
ZK16-2	19.00	267.31	248.31	0.33	2.7	0.07	2.6	0.1 g/t AuEq cut off
inc	140.00	254.00	114.00	0.53	2.9	0.09	3.3	0.5 g/t AuEq cut off
inc	224.00	254.00	30.00	0.85	3.6	0.12	3.4	1.0 g/t AuEq cut off

* Mineralisation to end of hole

Historic: Significant intersections from Colorado V channel sample results from underground exposure

Channel_id	From (m)	Interval	AuEq (g/t)	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	Comment
		(m)						
Main Adit	0.0	264.0	0.42	0.30	2.1	0.05	9.4	0.1 g/t AuEq cut off
inc	0.0	150.0	0.60	0.46	2.4	0.07	9.8	0.5 g/t AuEq cut off
inc	0.0	112.0	0.71	0.55	2.7	0.08	9.3	1 g/t AuEq cut off
and	276.0	32.0	0.29	0.21	1.4	0.04	5.1	0.1 g/t AuEq cut off
Main Adit	20.0	39.1	0.30	0.28	2.3	0.03	4.5	0.1 g/t AuEq cut off
(west								
drive)								
and	74.0	56.0	0.69	0.64	1.8	0.01	2.8	0.5 g/t AuEq cut off
inc	84.0	46.0	0.81	0.76	2.1	0.01	3.0	1.0 g/t AuEq cut off

CEL: Guayabo and Colorado V Concessions Camp 1, Phase #1 & Phase #2 Drilling Intercepts:

Contact

T: +61 8 6385 2743

E: admin@challengerex.com

A cut-off grade of 0.1 g/t Au was used to report the assays of core samples with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated (e.g. 0.2g/t Au Eq, 0.5g/t AuEq, 1.0g/t AuEq, 10.0g/t AuEq).

CEL: Significant intersections from El Guayabo Project (Guayabo Concession)_Camp #1, Phase #1 Drilling completed

Drill										
Hole	From	То	Interval	Gold	Ag	Cu	Мо	AuEq	Comments	Total intercept
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		(gram metres)
GYDD-									0.1 g/t cut-off	
21-001	16.2	800.5	784.3	0.2	1.6	0.1	12.0	0.4	0.1 g/t cut-on	282.4
inc	167.5	548.0	380.5	0.3	2.0	0.1	18.4	0.5	1.0 g/t cut-off	178.8

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1 100 Havelock Street

West Perth WA 6005

e Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director

iteria	JORC Code explanation	Comme	ntary									
		inc	359.5	548.0	188.5	0.4	2.4	0.1	29.5	0.6	1.0 g/t cut-off	115.0
		inc	403.0	431.0	28.0	0.5	6.9	0.2	104.4	1.0	1.0 g/t cut-off	26.6
		inc	403.0	424.0	21.0	0.8	3.0	0.2	138.9	1.1	1.0 g/t cut-off	22.9
		and	468.5	498.5	30.0	0.8	2.6	0.2	24.8	1.1	1.0 g/t cut-off	31.8
		GYDD- 21-002	85	131.5	46.5	0.32	3.99	0.04	5.72	0.4	0.1 g/t cut-off	20.0
		incl.	112	114.3	2.3	1.33	33.17	0.12	5.1	2.0	1.0 g/t cut-off	4.5
		incl.	129.75	131.5	1.75	2.05	7.36	0.01	1.29	2.2	1.0 g/t cut-off	3.8
		and	279.45	306.5	27.05	1.49	0.82	0.02	2.21	1.5	0.1 g/t cut-off	41.4
		incl.	305	306.5	1.5	19.16	1.89	0.03	3.21	19.2	10.0 g/t cut- off	28.8
		and	378.5	392	13.5	0.44	0.21	0.01	1.45	0.5	0.1 g/t cut-off	6.2
		and	447.9	448.8	0.9	0.74	4.85	0.06	1.92	0.9	0.1 g/t cut-off	0.8
		and	499.8	557.8	58	0.14	0.3	0.01	1.53	0.2	0.1 g/t cut-off	9.3
		incl.	547.8	554.8	7	0.39	0.21	0.01	1.74	0.4	0.5 g/t cut-off	2.9
		incl.	554.1	554.8	0.7	1.06	0.2	0.01	1.08	1.1	1.0 g/t cut-off	0.8
		GYDD-										
		21-003	71.85	191.06	119.2	0.4	0.8	0.0	2.2	0.5	0.1 g/t cut-off	53.9
		inc	76.35	153.56	77.2	0.5	0.5	0.0	1.1	0.6	1.0 g/t cut-off	45.6
		inc	76.35	102.56	26.2	1.1	0.9	0.0	1.7	1.1	1.0 g/t cut-off	29.3
		inc	101.80	102.56	0.8	20.6	4.9	0.0	0.6	20.7	10.0 g/t cut	15.7
		and	356.50	371.50	15.0	0.3	0.4	0.0	5.0	0.4	0.1 g/t cut-off	5.3
		inc	361.00	362.50	1.5	1.0	0.5	0.0	3.9	1.1	1.0 g/t cut-off	1.6
		and	575.80	597.20	21.4	0.1	2.6	0.1	57.7	0.3	0.1 g/t cut-off	6.7
		and	662.20	723.15	61.0	0.1	0.9	0.0	24.5	0.2	0.1 g/t cut-off	12.3
		GYDD-									0.1 g/t out off	
		21-004	37.10	375.75	338.7	0.2	1.0	0.0	6.5	0.3	0.1 g/t cut-off	84.7
		inc	223.46	375.75	152.3	0.2	1.3	0.0	7.3	0.3	0.1 g/t cut-off	50.0
		inc	348.75	375.75	27.0	0.5	1.8	0.0	7.3	0.6	1.0 g/t cut-off	16.9
		and	613.50	646.50	33.0	0.2	0.6	0.1	18.7	0.3	0.1 g/t cut-off	8.6
		inc	639.00	646.50	7.5	0.5	0.5	0.0	10.7	0.5	1.0 g/t cut-off	4.1
		GYDD- 21-005	16.10	597.75	581.7	0.3	0.9	0.0	2.5	0.3	0.1 g/t cut-off	194.3
		inc	389.80	478.15	88.4	0.6	1.8	0.1	1.5	0.8	1.0 g/t cut-off	66.7
		inc	476.50	478.15	1.7	25.1	1.8	0.0	4.0	25.2	10.0 g/t cut	41.5
		and	567.34	597.75	30.4	1.4	0.9	0.0	5.1	1.5	1.0 g/t cut-off	45.6
		inc	592.59	597.75	5.2	7.1	2.0	0.0	3.9	7.2	1.0 g/t cut-off	36.9
		inc	596.15	597.15	1.0	22.0	3.9	0.0	10.9	22.2	10 g/t cut-off	22.2

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1

100 Havelock Street

West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair

T: +61 8 6385 2743 E: admin@challengerex.com

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Con	nmentary										
		GYD	D-									/	
		21-0	06 3.	.30 32	13.10	309.8	0.2	6.3	0.2	3.0	0.7	0.1 g/t cut-off	207.1
		inc			76.50	259.1	0.2	7.3	0.2	3.3	0.8	0.1 g/t cut-off	195.9
												based on	
		inc	74	.40 27	76.50	202.1	0.3	6.5	0.3	3.6	0.8	lithology	165.7
		inc	74	.40 10	07.40	33.0	0.3	15.5	0.5	3.7	1.3	1.0 g/t cut-off	43.4
		and	231	1.90 28	85.50	53.6	0.7	8.8	0.4	1.1	1.5	1.0 g/t cut-off	81.7
		GYD 21-0	85	.30 9	4.00	8.7	0.4	3.6	0.1	4.6	0.6	1.0 g/t cut-off	5.5
		and	149	9.50 50	09.60	360.1	0.1	0.9	0.1	9.6	0.3	0.2 g/t cut off	95.1
		inc	253	3.50 26	65.50	12.0	0.4	2.0	0.1	10.3	0.5	1.0 g/t cut-off	6.1
		and	309	9.50 32	16.70	7.2	0.4	2.6	0.2	16.6	0.8	0.5 g/t cut-off	5.7
		and	450	0.20 49	93.20	43.0	0.4	1.0	0.1	21.3	0.6	0.5 g/t cut-off	24.1
		and	628	8.77 65	51.80	23.0	0.1	0.7	0.4	5.5	0.2	0.2 g/t cut-off	4.6
		inc	649	9.25 65	51.80	2.6	0.6	2.4	0.1	2.1	0.8	EOH	1.9
		GYD 21-0	5	.30 26	63.10	257.8	0.8	7.9	0.3	1.5	1.4	0.1 g/t cut-off	361.0
		inc	184	4.10 26	63.10	79.0	2.4	17.5	0.7	1.6	3.8	1.0 g/t cut-off	298.6
		inc	209	9.40 26	63.10	53.7	3.5	23.9	0.9	1.7	5.3	5.0 g/t cut-off	285.7
		inc	248	8.80 25	55.60	6.8	16.9	50.1	1.9	1.6	20.6	10 g/t cut-off	104.2
		GYD 21-0	0	.00 69	92.70	692.7	0.2	2.0	0.1	7.7	0.3	EOH	191.9
		inc	220	0.50 44	41.00	220.5	0.3	4.3	0.1	8.7	0.6	0.5 g/t cut-off	128.3
		inc	282	2.80 30	03.50	20.7	0.3	16.5	0.3	5.5	1.0	0.5 g/t cut-off	20.5
		inc	359		39.50	80.5	0.5	1.3	0.2	5.8	0.9	1.0 g/t cut-off	68.8
		inc			71.00	12.0	1.4	3.1	0.2	6.3	1.7	1.0 g/t cut-off	20.1
		and			39.50	41.5	0.5	7.2	0.2	5.7	1.0	1.0 g/t cut-off	41.0
		inc		1.20 43	39.50	18.3	0.9	14.4	0.5	5.3	1.8	1.0 g/t cut-off	33.4
		GYD 21-0	70	0.20 88	80.10	809.9	0.2	1.1	0.1	11.9	0.3	0.2 g/t cut-off	227.6
		inc			36.30	412.1	0.2	1.2	0.1	14.0	0.4	0.2 g/t cut-off	153.7
		inc			36.30	217.6	0.3	1.6	0.1	19.9	0.5	0.5 g/t cut-off	102.9
		inc			58.40	38.7	0.5	1.8	0.1	8.4	0.7	1.0 g/t cut-off	28.6
		and			36.30	68.2	0.4	2.2	0.1	31.8	0.7	1.0 g/t cut-off	45.4
		and			80.10	298.5	0.1	1.0	0.0	10.3	0.2	0.2 g/t cut-off	61.8
		inc		0.00 66	60.50	10.5	0.5	3.3	0.1	16.9	0.7	1.0 g/t cut-off	6.9
		GYD 21-0	11 ^{3.}		10.90	307.9	0.5	2.4	0.0	13.6	0.6	0.2 g/t cut-off	191.5
		inc	13	.00 2	1.00	8.0	0.7	12.4	0.1	2.0	0.9	0.5 g/t cut-off	7.3
nger Gold Limited 23 591 382 L	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005	Mr Kris	ors Jardo Elsztai S Knauer, MI gio Rotondo	D and CEO		Contact T: +61 8 6385 E: admin@cha		m				

Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

and	156.05	258.90	102.9	1.1	2.7	0.0	19.1	1.2	0.5 g/t cut-off	122.7
inc	156.05	213.05	57.0	1.7	3.6	0.0	9.0	1.8	1.0 g/t cut-off	104.3
GYDD-	2.00	226.84	224.8	0.3	2.4	0.0	2.7	0.4	0.2 g/t cut-off	83.6
	2 00	44 50	42 5	0.6	23	0.0	19	07	1.0 g/t cut-off	31.1
									-	8.4
				-					-	8.1
										4.6
										6.4
									-	23.1
			55.5		0.7	0.0	3.6	0.4		20.4
GYDD-	33.60	164.50	130.9	0.2	4.2	0.1	5.7	0.4	0.2 g/t cut-off	51.4
21-013 inc	33.60	95.75	62.2	0.3	5.2	0.1	8.5	0.5	1.0 g/t cut-off	32.4
inc		74.75	13.5	0.8		0.1			-	13.8
and	189.15	517.45	328.3	0.2	2.2	0.1	23.3	0.4	EOH	114.9
inc	341.04	432.00	91.0	0.4	1.7	0.1	32.3	0.6	0.5 g/t cut-off	55.3
inc	341.04	350.00	9.0	0.9	1.7	0.0	7.9	1.0	1.0 g/t cut-off	8.9
and	412.14	430.14	18.0	0.7	2.2	0.1	35.7	0.9	1.0 g/t cut-off	17.0
GYDD-										
22-014	15.30	609.80	594.50	0.16	2.22	0.05	7.34	0.28	0.1 g/t cut off	164.7
inc	538.50	609.80	71.30	0.50	2.67	0.07	14.28	0.66	1.0 g/t cut off	46.9
inc	556.50	584.30	27.80	1.14	4.43	0.12	27.61	1.43	1.0 g/t cut off	39.6
GYDD-										
22-015	3.00	308.70	305.70	0.15	4.65	0.15	1.54	0.46	0.1 g/t cut off	141.7
incl.	87.10	146.90	59.80	0.19	7.06	0.25	1.48	0.69		41.2
and	257.65	304.90	47.25	0.38	6.74	0.25	1.30	0.89	1.0 g/t cut off	42.1
inc	257.65	275.65	18.00	0.40	9.81	0.35	1.37	1.11	1.0 g/t cut off	20.0
and	289.90	304.90	15.00	0.57	7.73	0.31	1.20	1.19	1.0 g/t cut off	17.8
GYDD-										
22-016	68.00	333.42	265.42	0.29	2.90	0.08	2.93	0.47	0.1 g/t cut off	123.5
inc	225.80			0.51		0.16				92.0
inc				0.61	8.45	0.25	1.86	1.13		33.9
and	225.80	256.80	31.00	0.73	6.10	0.17	2.05	1.09	1.0 g/t cut off	44.1
CEL: Signi	ificant inter	sections f	rom El Gua	yabo Proj	ect (Guaya	abo Conce	ession)_Ca	amp #1,	Phase #2 Drilling co	ompleted
	21-012 inc and and and and and and and inc GYDD- 21-013 inc inc and inc and GYDD- 22-014 inc inc and GYDD- 22-014 inc inc and GYDD- 22-014 inc and GYDD- 22-015 incl. and GYDD- 22-015 incl. and GYDD- 22-016 inc and	21-012 2.00 inc 2.00 inc 2.00 and 31.00 and 339.94 and 464.20 and 464.20 and 669.60 inc 677.10 GYDD- 33.60 21-013 33.60 inc 33.60 inc 341.04 inc 341.04 inc 341.04 inc 341.04 inc 341.04 inc 341.04 and 412.14 GYDD- 22-014 22-014 15.30 inc 538.50 inc 556.50 GYDD- 22-015 22-015 3.00 incl. 87.10 and 257.65 and 289.90 GYDD- 22-016 22-016 68.00 inc 258.80 inc 258.0	21-012 2.00 226.84 inc 2.00 6.50 and 31.00 38.50 and 31.00 38.50 and 464.20 491.90 and 669.60 741.60 inc 677.10 732.60 GYDD- 21-013 33.60 95.75 inc 61.25 74.75 and 189.15 517.45 inc 341.04 432.00 inc 341.04 350.00 and 189.15 517.45 inc 341.04 350.00 and 189.15 517.45 inc 341.04 350.00 and 189.15 517.45 inc 341.04 350.00 and 12.14 430.14 GYDD- 22.014 15.30 609.80 inc 538.50 609.80 inc 556.50 inc 257.65 304.90 inc 257.65 and 289.90 304.90 inc 257.65	21-012 2.00 226.84 224.8 inc 2.00 64.50 42.5 inc 2.00 38.50 7.5 and 31.00 38.50 7.5 and 339.94 365.60 25.7 and 464.20 491.90 27.7 and 669.60 741.60 72.0 inc 677.10 732.60 55.5 GYDD- 21-013 33.60 164.50 130.9 inc 31.04 432.00 91.0 inc 61.25 74.75 13.5 and 189.15 517.45 32.8.3 inc 341.04 432.00 91.0 inc 341.04 350.00 9.0 and 12.91.4 430.14 18.0 GYDD- 22-014 15.30 609.80 71.30 inc 538.50 609.80 71.30 inc 527.65 304.90 47.25 inc 257.65 304.90 47.25 inc 257.65	21-012 2.00 226.84 224.8 0.3 inc 2.00 44.50 42.5 0.6 inc 2.00 6.50 4.5 1.8 and 31.00 38.50 7.5 0.9 and 331.00 38.50 7.5 0.1 and 464.20 491.90 27.7 0.1 and 669.60 741.60 72.0 0.3 inc 67.710 732.60 55.5 0.3 inc 63.25 74.75 13.5 0.8 and 189.15 517.45 328.3 0.2 inc 341.04 432.00 9.0 0.9 and 412.14 430.14 18.0 0.7 GYDD- 22-014 15.30 609.80 71.30 0.50 inc 541.04 430.00 9.0 0.9 and 412.14 430.14 18.0 0.7 GYDD- 22-014 15.30 609.80 71.30 0.50 0.15 inc 257.65 3	21-012 2.00 226.84 224.8 0.3 2.4 inc 2.00 44.50 42.5 0.6 2.3 inc 2.00 6.50 4.5 1.8 0.8 and 31.00 38.50 7.5 0.9 6.5 and 339.94 365.60 25.7 0.1 2.2 and 669.60 741.60 72.0 0.3 0.8 inc 677.10 732.60 55.5 0.3 0.7 GYDD- 21-013 33.60 164.50 130.9 0.2 4.2 inc 61.25 74.75 13.5 0.8 8.3 and 189.15 517.45 328.3 0.2 2.2 inc 341.04 350.00 9.0 0.9 1.7 and 412.14 430.14 180.0 0.7 2.2 inc 534.50 609.80 71.30 0.50 2.67 inc 538.50 609.80 71.30 0.50 2.67 inc 538.50	21-012 2.00 226.84 224.8 0.3 2.4 0.0 inc 2.00 44.55 42.5 0.6 2.3 0.0 inc 2.00 6.50 44.5 1.8 0.8 0.0 and 339.94 365.60 25.7 0.1 2.2 0.0 and 464.20 491.90 27.7 0.1 2.2 0.0 and 669.60 741.60 72.0 0.3 0.8 0.0 inc 677.10 732.60 55.5 0.3 0.7 0.0 GYDD- 21-013 33.60 164.50 130.9 0.2 4.2 0.1 inc 63.60 95.75 62.2 0.3 5.2 0.1 inc 34.04 432.00 91.0 0.4 1.7 0.1 inc 341.04 432.00 91.0 0.4 1.7 0.1 inc 341.04 430.0 90.0 90 0.17 0.2 0.17 inc 545.50 584.30 27.80 <td>21.012 220.0 228.84 224.8 0.3 2.4 0.0 2.7 inc 2.00 44.50 42.5 0.6 2.3 0.0 1.9 inc 2.00 6.50 4.5 1.8 0.0 1.8 and 33.00 38.50 7.5 0.9 6.5 0.0 1.8 and 464.20 91.90 27.7 0.1 2.2 0.0 2.3 and 464.20 91.90 27.7 0.1 2.6 0.0 3.6 GYDD- 72.0 0.3 0.8 0.0 3.6 GYDD- 33.60 164.50 130.9 0.2 4.2 0.1 5.7 inc 33.60 95.75 13.5 0.8 8.3 0.1 6.0 and 18915 517.45 328.3 0.2 2.2 0.1 32.3 inc 341.04 432.00 91.0 0.4 1.7 0.1 32.3 inc 536.50 584.30 27.80 1.14 4.43 0.</td> <td>21-012 2.00 226.84 224.8 0.3 2.4 0.0 2.7 0.4 inc 2.00 44.50 42.5 0.6 2.3 0.0 1.9 0.7 inc 2.00 6.50 4.5 1.8 0.8 0.0 1.8 1.9 and 31.00 38.50 7.5 0.9 6.5 0.0 1.8 1.1 and 464.20 491.90 27.7 0.1 2.6 0.0 2.2 0.3 inc 677.10 73.26 55.5 0.3 0.7 0.0 3.6 0.4 finc 61.25 74.75 13.5 0.8 8.3 0.1 6.0 1.0 and 189.15 51.74 328.3 0.2 2.2 0.1 8.5 0.5 inc 61.25 74.75 13.5 0.8 8.3 0.1 6.0 1.0 and 189.15 51.745 328.3 0.2 2.2 0.1 35.7 0.9 GVD- 22.014 15.30</td> <td>21.012 20.0 226.84 224.8 0.3 2.4 0.0 2.7 0.4 0.2 g/r cut-off inc 2.00 44.50 42.5 0.6 2.3 0.0 1.9 0.7 1.0 g/r cut-off and 31.00 38.50 7.5 0.9 6.5 0.0 1.8 1.1 1.0 g/r cut-off and 464.20 491.90 27.7 0.1 2.6 0.0 2.3 0.2 0.2 g/r cut-off and 669.60 741.60 72.0 0.3 0.8 0.0 3.2 0.3 0.2 g/r cut-off inc 677.10 732.60 55.5 0.3 0.7 0.0 3.6 0.4 1.0 g/r cut-off inc 631.50 747.5 33.5 0.8 8.3 0.1 5.7 0.4 0.2 g/r cut-off inc 631.51 517.45 328.3 0.2 2.2 0.1 8.5 0.5 1.0 g/r cut-off inc 341.04 350.0 9.0 0.9 1.7 0.1 32.3 0.6 0.5 g/r cut-off</td>	21.012 220.0 228.84 224.8 0.3 2.4 0.0 2.7 inc 2.00 44.50 42.5 0.6 2.3 0.0 1.9 inc 2.00 6.50 4.5 1.8 0.0 1.8 and 33.00 38.50 7.5 0.9 6.5 0.0 1.8 and 464.20 91.90 27.7 0.1 2.2 0.0 2.3 and 464.20 91.90 27.7 0.1 2.6 0.0 3.6 GYDD- 72.0 0.3 0.8 0.0 3.6 GYDD- 33.60 164.50 130.9 0.2 4.2 0.1 5.7 inc 33.60 95.75 13.5 0.8 8.3 0.1 6.0 and 18915 517.45 328.3 0.2 2.2 0.1 32.3 inc 341.04 432.00 91.0 0.4 1.7 0.1 32.3 inc 536.50 584.30 27.80 1.14 4.43 0.	21-012 2.00 226.84 224.8 0.3 2.4 0.0 2.7 0.4 inc 2.00 44.50 42.5 0.6 2.3 0.0 1.9 0.7 inc 2.00 6.50 4.5 1.8 0.8 0.0 1.8 1.9 and 31.00 38.50 7.5 0.9 6.5 0.0 1.8 1.1 and 464.20 491.90 27.7 0.1 2.6 0.0 2.2 0.3 inc 677.10 73.26 55.5 0.3 0.7 0.0 3.6 0.4 finc 61.25 74.75 13.5 0.8 8.3 0.1 6.0 1.0 and 189.15 51.74 328.3 0.2 2.2 0.1 8.5 0.5 inc 61.25 74.75 13.5 0.8 8.3 0.1 6.0 1.0 and 189.15 51.745 328.3 0.2 2.2 0.1 35.7 0.9 GVD- 22.014 15.30	21.012 20.0 226.84 224.8 0.3 2.4 0.0 2.7 0.4 0.2 g/r cut-off inc 2.00 44.50 42.5 0.6 2.3 0.0 1.9 0.7 1.0 g/r cut-off and 31.00 38.50 7.5 0.9 6.5 0.0 1.8 1.1 1.0 g/r cut-off and 464.20 491.90 27.7 0.1 2.6 0.0 2.3 0.2 0.2 g/r cut-off and 669.60 741.60 72.0 0.3 0.8 0.0 3.2 0.3 0.2 g/r cut-off inc 677.10 732.60 55.5 0.3 0.7 0.0 3.6 0.4 1.0 g/r cut-off inc 631.50 747.5 33.5 0.8 8.3 0.1 5.7 0.4 0.2 g/r cut-off inc 631.51 517.45 328.3 0.2 2.2 0.1 8.5 0.5 1.0 g/r cut-off inc 341.04 350.0 9.0 0.9 1.7 0.1 32.3 0.6 0.5 g/r cut-off

161.0m options 49.5m perf rights

100 Havelock Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

	Drill Hole	From	То	Interval	Gold	Ag	Cu	Мо	AuEq	Comments	Total interce (gran
	(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		metre
	GYDD- 22-017	8.00	110.12	102.12	0.22	1.13	0.01	1.30	0.26	0.1 g/t AuEq cut off	26.1
	incl.	8.00	70.40	62.40	0.30	1.57	0.02	1.30	0.36	0.1 g/t AuEq cut off	22.2
	incl.	9.50	24.50	15.00	0.71	3.65	0.04	2.43	0.82	1.0 g/t AuEq cut off	12.
	and	153.96	172.03	18.07	0.47	2.63	0.02	1.82	0.53	1.0 g/t AuEq cut off	9.6
	and	380.75	382.75	2.00	1.21	0.46	0.02	1.30	1.25	1.0 g/t AuEq cut off	2.5
	and	406.06	443.82	37.76	0.25	0.54	0.02	1.26	0.29	1.0 g/t AuEq cut off	10.
	and	521.25	686.65	165.40	0.21	0.73	0.04	2.85	0.28	0.1 g/t AuEq cut off	45.
	incl.	544.50	552.00	7.50	0.43	1.26	0.54	1.61	0.54	0.5 g/t AuEq cut off	4.0
	and	591.00	621.25	30.25	0.45	0.86	0.03	1.22	0.52	0.5 g/t AuEq cut off	15.
	and	644.65	652.15	7.50	0.49	1.43	0.10	1.87	0.68	0.5 g/t AuEq cut off	5.3
	and	667.15	668.65	1.50	1.18	0.41	0.01	0.70	1.21	1.0 g/t AuEq cut off	1.
	and	818.50	821.00	2.50	0.43	2.84	0.91	0.58	0.62	0.5 g/t AuEq cut off	1.
	GYDD- 22-018	4.00	734.05	730.05	0.14	0.67	0.03	5.85	0.21	0.1 g/t AuEq cut off	151
	incl.	4.00	315.71	311.71	0.20	0.73	0.03	7.37	0.25	0.1 g/t AuEq cut off	79
	incl.	4.00	60.00	56.00	0.53	0.66	0.02	5.67	0.57	1.0 g/t AuEq cut off	31
	incl.	32.00	60.00	28.00	0.82	0.78	0.02	5.83	0.86	1.0 g/t AuEq cut off	24
	and	129.00	130.50	1.50	1.96	0.26	0.01	2.50	1.98	1.0 g/t AuEq cut off	3.
	and	177.30	178.80	1.50	1.12	1.11	0.05	5.60	1.20	1.0 g/t AuEq cut off	1.
	and	243.30	244.80	1.50	1.05	1.28	0.04	4.50	1.13	1.0 g/t AuEq cut off	1.
	and	383.25	388.65	5.40	0.14	1.45	0.09	3.20	0.32	0.1 g/t AuEq cut off	1.
	and	423.15	434.40	11.25	0.24	0.84	0.03	6.58	0.31	0.1 g/t AuEq cut off	3.
	and	583.90	626.50	42.60	0.44	0.95	0.06	5.43	0.55	1.0 g/t AuEq cut off	23
	and	698.30	701.30	3.00	0.51	0.54	0.04	1.68	0.59	0.5 g/t AuEq cut off	1.
	GYDD- 22-019	77.30	855.50	778.20	0.23	0.58	0.01	0.79	0.26	0.1 g/t AuEq cut off	202
	incl.	77.30	92.10	14.80	0.30	3.75	0.02	3.30	0.38	0.1 g/t AuEq cut off	5.
	and	292.30	570.00	277.70	0.33	0.75	0.01	2.59	0.36	0.1 g/t AuEq cut off	100
	incl.	328.13	499.47	171.34	0.46	0.89	0.01	2.13	0.49	1.0 g/t AuEq cut off	84
	incl.	328.13	426.50	98.37	0.63	0.64	0.01	2.34	0.66	1.0 g/t AuEq cut off	64
	incl.	328.13	334.92	6.79	1.87	4.70	0.07	1.28	2.05	1.0 g/t AuEq cut off	13
	and	384.47	426.50	42.03	0.85	0.36	0.01	3.08	0.87	1.0 g/t AuEq cut off	36
	incl.	384.47	408.50	24.03	1.30	0.46	0.02	3.54	1.34	1.0 g/t AuEq cut off	32
	and	463.50	465.00	1.50	1.51	4.49	0.02	1.90	1.60	1.0 g/t AuEq cut off	2.4

Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

ACN 123 591 382 ASX: CEL

1,690m shares 161.0m options 49.5m perf rights Level 1 100 Havelock Street

West Perth WA 6005

T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director

Criteria	JORC Code explanation	Commen	itary									
		and	497.04	499.47	2.43	3.13	24.21	0.16	2.51	3.70	1.0 g/t AuEq cut off	9.
		and	538.50	540.00	1.50	2.13	5.89	0.13	2.30	2.42	1.0 g/t AuEq cut off	3.
		and	688.20	855.50	167.30	0.40	0.53	0.02	3.67	0.45	0.5 g/t AuEq cut off	74
		incl.	688.20	839.00	150.80	0.43	0.56	0.02	3.09	0.48	0.5g/t AuEq cut off	71
		incl.	796.50	839.00	42.50	1.31	1.20	0.05	2.35	1.42	1.0 g/t AuEq cut off	60
		incl.	796.50	819.00	22.50	2.26	1.94	0.08	2.36	2.42	1.0 g/t AuEq cut off	54
		GYDD- 22-020	0.00	12.00	12.00	0.31	0.53	0.02	4.55	0.35	0.1 g/t AuEq cut off	4.
		and	69.72	75.72	6.00	0.69	0.69	0.02	3.47	0.74	1.0 g/t AuEq cut off	4.
		and	95.17	242.80	147.63	0.18	1.02	0.02	5.45	0.23	0.5g/t AuEq cut off	33
		incl.	119.17	200.79	81.62	0.20	1.09	0.03	6.24	0.26	1.0 g/t AuEq cut off	21
		and	290.50	445.50	155.00	0.13	1.70	0.05	3.65	0.24	0.1 g/t AuEq cut off	37
		incl.	292.00	299.50	7.50	0.46	3.75	0.16	4.06	0.78	0.5g/t AuEq cut off	5.
		and	385.00	433.50	48.50	0.19	2.59	0.08	4.59	0.35	0.1g/t AuEq cut off	16
		incl.	385.00	409.50	24.50	0.22	2.83	0.08	5.55	0.39	0.5g/t AuEq cut off	9.
		and	623.50	750.00	126.50	0.28	0.98	0.04	5.73	0.37	0.1g/t AuEq cut off	47
		incl.	635.50	661.00	25.50	0.75	1.81	0.09	2.88	0.92	0.5g/t AuEq cut off	23
		incl.	637.00	652.00	15.00	1.03	2.24	0.12	3.54	1.27	1.0 g/t AuEq cut off	19
		incl.	729.00	731.00	2.00	0.94	1.24	0.08	3.50	1.10	1.0 g/t AuEq cut off	2.
		GYDD- 22-021	5.20	646.00	640.80	0.11	1.88	0.06	9.45	0.25	0.1g/t AuEq cut off	15
		incl.	56.13	339.70	283.57	0.14	2.04	0.07	6.22	0.29	0.5g/t AuEq cut off	83
		incl.	56.13	129.30	73.17	0.19	2.14	0.09	8.30	0.38	0.5g/t AuEq cut off	27
		and	703.00	760.00	57.00	0.11	0.96	0.04	14.35	0.20	0.1g/t AuEq cut off	11
		GYDD- 22-022	0.00	702.85	702.85	0.16	2.75	0.05	6.65	0.29	0.1g/t AuEq cut off	20
		incl.	23.90	52.00	28.10	0.18	30.43	0.04	1.44	0.63	1.0 g/t AuEq cut off	17
		and	278.20	395.80	117.60	0.22	3.16	0.09	5.67	0.42	0.1 g/t AuEq cut off	49
		incl.	292.40	307.75	15.35	0.43	4.27	0.09	5.95	0.65	0.5g/t AuEq cut off	9.
		incl.	352.00	365.70	13.70	0.29	4.60	0.16	3.29	0.62	0.5g/t AuEq cut off	8
		incl.	378.18	385.30	7.12	0.59	2.50	0.11	8.98	0.82	0.5g/t AuEq cut off	5.
		and	446.50	523.60	77.10	0.42	2.74	0.12	5.68	0.67	1.0 g/t AuEq cut off	51
		incl.	446.50	450.53	4.03	2.14	5.01	0.19	7.16	2.52	1.0 g/t AuEq cut off	10
		and	492.20	520.60	28.40	0.63	3.59	0.18	9.96	0.99	1.0 g/t AuEq cut off	28
		GYDD- 22-023	15.50	795.55	780.05	0.18	2.07	0.04	6.36	0.31	0.1 g/t AuEq cut off	24
		incl.	15.50	305.70	290.20	0.34	2.70	0.04	5.11	0.45	0.1 g/t AuEq cut off	13
		incl.	35.00	44.00	9.00	0.95	1.20	0.03	0.76	1.02	1.0 g/t AuEq cut off	9.
		incl.	144.70	161.20	16.50	0.73	3.21	0.06	7.09	0.87	1.0 g/t AuEq cut off	14

1,690m shares 161.0m options 49.5m perf rights

100 Havelock Street

West Perth WA 6005

Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director

riteria	JORC Code explanation	Commen	tary									
		and	195.30	196.80	1.50	0.79	56.00	0.03	1.80	1.53	1.0 g/t AuEq cut off	2.3
		and	222.80	277.00	54.20	0.73	4.72	0.07	10.75	0.91	0.5g/t AuEq cut off	49.
		incl.	224.30	252.70	28.40	1.05	3.45	0.05	7.54	1.17	1.0 g/t AuEq cut off	33.
		and	441.50	557.85	116.35	0.35	3.97	0.08	4.39	0.54	0.1 g/t AuEq cut off	62.
		incl.	461.00	462.50	1.50	0.99	13.40	0.22	4.50	1.53	1.0 g/t AuEq cut off	2.3
		incl.	510.60	545.85	35.25	0.74	6.76	0.14	6.64	1.06	1.0 g/t AuEq cut off	37.
		GYDD- 22-024	10.10	648.25	638.15	0.30	2.07	0.13	10.53	0.55	0.1 g/t AuEq cut off	351
		incl.	10.10	53.70	43.60	0.19	3.17	0.02	3.16	0.26	0.1 g/t AuEq cut off	11.
		and	94.80	118.80	24.00	0.17	0.39	0.03	11.41	0.23	0.1 g/t AuEq cut off	5.5
		and	144.80	146.30	1.50	7.89	2.85	0.02	2.10	7.96	1.0 g/t AuEq cut off	11.
		and	332.16	648.25	316.09	0.49	3.31	0.24	14.53	0.95	0.1 g/t AuEq cut off	298
		OR	344.00	648.25	304.25	0.50	3.37	0.25	14.46	0.98	0.1 g/t AuEq cut off	296
		incl.	332.16	487.00	154.84	0.92	5.72	0.45	18.96	1.76	0.1 g/t AuEq cut off	272
		incl.	344.00	452.50	108.50	1.28	7.78	0.62	20.00	2.44	1.0 g/t AuEq cut off	264
		incl.	369.25	418.75	49.50	2.36	13.96	1.13	26.35	4.45	1.0 g/t AuEq cut off	220
		OR	369.25	423.43	54.18	2.20	12.91	1.04	24.70	4.14	1.0 g/t AuEq cut off	224
		GY2DD- 22-001	191.00	202.20	11.20	0.74	14.46	0.01	2.26	0.94	0.5 g/t AuEq cut off	10.
		and	290.40	291.30	0.90	1.26	2.56	0.00	1.20	1.30	1.0 g/t AuEq cut off	1.2
		and	403.10	492.50	89.40	0.13	6.71	0.01	3.13	0.22	0.5 g/t AuEq cut off	19.
		incl.	403.10	412.80	9.70	0.41	15.24	0.01	1.84	6.06	0.5 g/t AuEq cut off	58.
		and	592.60	596.68	4.08	0.85	120.96	0.01	4.05	2.37	0.1 g/t AuEq cut off	9.7
		GYDD-									0.1 g/t AuEq cut off	
		22-025	4.0	EOH	1190.0	0.2	1.3	0.1	12.6	0.3		357
		Incl.	4.0	515.1	511.1	0.3	2.1	0.1	11.9	0.4	0.1 g/t AuEq cut off	204
		Incl.	65.0	434.5	369.5	0.3	2.2	0.1	13.3	0.5	0.1 g/t AuEq cut off	184
		Incl.	65.0	243.3	178.8	0.5	2.4	0.1	8.8	0.6	0.3 g/t AuEq cut off	107
		Incl.	65.0	166.0	101.0	0.6	2.8	0.1	5.9	0.8	1.0 g/t AuEq cut off	80.
		Incl.	65.0	101.0	36.0	0.8	2.5	0.1	5.1	0.9	1.0 g/t AuEq cut off	32.
		GYDD-									1 g/t AuEq cut off	
		22-026	93.3	94.5	1.3	231.3	10.7	0.0	1.8	231.5		301
		and	94.5	1045.1	960.0	0.1	1.4	0.1	14.7	0.3	0.1 g/t AuEq cut off	212
		Incl.	208.5	563.6	355.1	0.2	1.9	0.1	24.3	0.4	0.1 g/t AuEq cut off	142
		and	208.5	239.0	30.5	0.4	5.3	0.1	26.6	0.6	1.0 g/t AuEq cut off	18.
		Incl.	377.5	416.0	38.5	0.4	1.4	0.1	32.4	0.6	1.0 g/t AuEq cut off	23.
		GYDD-									0.1 g/t AuEq cut off	-
		22-027	0.0	eoh	871.9	0.2	1.3	0.0	14.2	0.3	0,	261
		Incl.	92.6	367.9	275.3	0.3	1.8	0.0	8.3	0.4	0.1 g/t AuEq cut off	110

Challenger Gold ACN 123 591 382 ASX: CEL

1,690m shares 161.0m options 49.5m perf rights Level 1

100 Havelock Street

West Perth WA 6005

Mr Eduardo Elsztain, Non-Exec. Chair

T: +61 8 6385 2743 E: admin@challengerex.com

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

riteria	JORC Code explanation	Commen	tary									
		Incl.	92.6	106.0	13.4	0.6	3.0	0.1	31.8	0.8	1.0 g/t AuEq cut off	10.2
		and	202.6	270.5	67.9	0.5	3.2	0.1	7.7	0.6	1.0 g/t AuEq cut off	40.
		and	302.0	317.8	15.8	0.6	0.5	1.4	0.0	0.6	1.0 g/t AuEq cut off	40.
		and	360.0	367.9	7.9	0.8	5.3	0.0	2.8	0.9	1.0 g/t AuEq cut off	6.8
		GYDD-									0.1 g/t AuEq cut off	
		22-028	4.5	379.7	375.2	0.2	2.5	0.1	1.6	0.4		150
		Incl.	4.5	23.3	18.8	0.7	1.2	0.0	4.7	0.7	1.0 g/t AuEq cut off	14.
		and	172.3	366.6	194.3	0.2	3.4	0.1	1.3	0.5	0.1 g/t AuEq cut off	87.
		and	318.0	366.6	48.6	0.5	6.4	0.3	1.1	1.0	1.0 g/t AuEq cut off	48.
		GYDD-									0.1 g/t AuEq cut off	
		22-029	7.0	389.2	382.2	0.2	2.7	0.1	2.0	0.3		114
		Incl.	153.3	360.5	207.3	0.2	3.8	0.1	2.2	0.5	0.1 g/t AuEq cut off	103
		Incl.	192.3	226.8	34.5	0.2	8.3	0.2	3.5	0.7	1.0 g/t AuEq cut off	24.
		and	342.2	360.5	18.3	0.6	4.4	0.2	1.6	1.0	1.0 g/t AuEq cut off	18.
		GYDD-									0.1 g/t AuEq cut off	
		22-030	0.0	eoh	689.5	0.2	1.4	0.1	9.0	0.3		234
		Incl.	75.4	393.0	317.7	0.4	1.2	0.1	15.0	0.5	0.1 g/t AuEq cut off	158
		Incl.	76.9	80.6	6.0	1.5	1.7	0.0	7.3	1.6	1.0 g/t AuEq cut off	9.8
		and	280.5	334.5	54.0	0.9	1.7	0.1	13.6	1.0	1.0 g/t AuEq cut off	54.
		and	370.5	393.0	22.5	1.1	1.7	0.1	9.1	1.3	1.0 g/t AuEq cut off	29.
		GYDD-									0.1 g/t AuEq cut	
		23-031	1.0	532.0	531.0	0.2	0.5	0.0	1.2	0.3		159
		Incl.	1.0	24.9	23.9	0.9	0.5	0.1	0.8	0.9	1 g/t AuEq cut	21.
		and	152.6	185.7	33.1	0.5	1.5	0.0	1.7	0.6	1 g/t AuEq cut	19.
		and	292.1	308.1	16.0	0.6	0.5	0.0	1.5	0.6	1 g/t AuEq cut	9.6
		GYDD-										
		23-032	0.0	781.5	781.5	0.2	1.3	0.0	8.6	0.3		212
		Incl.	120.3	377.2	257.0	0.4	1.8	0.0	6.5	0.5		122
		Incl.	120.3	270.7	150.5	0.6	2.4	0.0	7.9	0.7		100
		Incl.	120.3	188.3	68.1	1.0	3.6	0.1	9.3	1.1		77.
		and	162.7	188.3	25.7	1.7	5.3	0.1	13.9	1.9		48.
		GYDD-										
		23-033	7.0	449.2	442.2	0.2	2.1	0.1	3.7	0.3		125
		Incl.	164.3	411.9	247.6	0.2	3.0	0.1	4.6	0.4		99.
		Incl.	216.2	367.6	151.4	0.2	4.0	0.1	4.1	0.5		70.
		Incl.	216.8	225.0	8.2	0.5	11.8	0.1	1.6	0.7		6.1
		and	264.3	290.0	25.8	0.4	4.9	0.2	7.8	0.7		18.
		and	335.0	364.6	29.6	0.3	5.8	0.2	1.8	0.6		18.

Challenger Gold L ACN 123 591 382 ASX: CEL

ssued Capital 1,690m shares 161.0m options 49.5m perf rights

Austi Level 1

100 Havelock Street

West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director

Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

T: +61 8 6385 2743 E: admin@challengerex.com

Criteria	JORC Code explanation	Commen	tary								
		GYDD-									
		23-034	108.9	273.5	164.6	0.2	3.8	0.2	1.3	0.6	94.4
		Incl.	161.6	182.6	21.0	0.5	3.5	0.2	1.1	0.9	18.3
		and	224.2	250.9	26.7	0.3	7.0	0.3	1.4	1.0	26.3
		and	375.2	411.2	36.0	0.5	0.8	0.0	1.1	0.5	19.
		GYDD-									
		23-035	0.0	268.7	268.7	0.1	0.7	0.0	4.6	0.2	55.
		Incl.	55.8	84.0	28.2	0.4	1.0	0.0	1.4	0.4	12.
		and	240.5	255.2	14.7	0.4	1.1	0.1	6.0	0.5	7.7
		GYDD-									
		23-036	65.9	67.4	1.5	2.9	1.7	0.0	0.8	2.9	4.4
		and	80.9	99.8	19.0	0.7	1.7	0.0	1.5	0.7	13.
		and	189.9	767.5	577.6	0.1	1.0	0.0	4.5	0.2	123
		Incl.	189.9	353.2	163.3	0.3	0.8	0.0	2.4	0.4	63.
		Incl.	189.9	253.3	63.4	0.6	0.7	0.0	1.2	0.7	42.
		GYDD-									
		23-037	0.0	767.2	767.2	0.1	1.4	0.0	12.7	0.2	149
		Incl.	81.9	183.7	101.8	0.2	1.9	0.0	4.3	0.3	32.
		Incl.	150.7	173.2	22.5	0.3	2.1	0.1	3.4	0.5	11.
		and	390.5	438.8	48.3	0.1	2.5	0.1	16.4	0.3	14.
		GYDD-									
		23-038	157.7	235.3	77.6	0.1	2.0	0.1	1.1	0.3	20.
		Incl.	212.2	235.3	23.1	0.2	2.0	0.1	1.1	0.4	9.8
		and	321.9	483.3	161.4	0.1	2.1	0.1	2.7	0.3	40.
		Incl.	321.9	376.5	54.7	0.2	3.4	0.1	3.3	0.4	21.9
		Incl.	360.3	376.5	16.2	0.5	4.5	0.1	4.0	0.8	12.3
		GYDD-									
		23-039	4.6	809.9	805.3	0.5	1.6	0.0	4.2	0.6	470
		Incl.	4.6	551.3	546.7	0.7	2.0	0.1	3.5	0.8	429.
		Incl.	4.6	235.8	231.2	1.4	2.5	0.1	3.7	1.5	351
		Incl.	108.0	117.9	9.9	1.0	3.3	0.0	2.5	1.1	10.
		and	190.5	202.8	12.3	21.4	1.5	0.0	1.9	21.5	263.
		Incl.	190.5	192.0	1.5	172.3	8.0	0.0	1.3	172.4	258.
		GYDD-									
		23-040									
		GYDD-									
		23-041									
		GYDD-									
		23-042									
ger Gold Limited	Issued Capital Australiar	Registered Office	Directors			Contact					

49.5m perf rights

West Perth WA 6005

Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

JORC Code explanation	GYDD-	entary									
	23-043										
	CEL: Sign	ificant intersectio	ns from El	Guayabo F	Project (G	iuayabo C	oncessio	n) Phase #	1-#2 Cha	annels completed	
				,	, ,			-		•	Tota
											interce
		From		Interval	Gold	Ag	Cu	Мо	AuEq		(gran
	Channe	l ID (m)	To (m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)	Comments	meter
	CSADRI-0	01 0.00	187.00	187.0	0.357	1.983	0.063	4.502	0.5	0.5 g/t cut off	91.8
	inc	2.00	62.00	60.0	0.355	2.912	0.127	5.945	0.6	0.5 g/t cut off	36.6
	inc	22.00	36.00	14.0	0.524	2.847	0.150	10.909	0.8	0.5 g/t cut off	11.5
	inc	102.00	108.00	6.0	0.693	2.573	0.078	2.693	0.9	0.5 g/t cut off	5.1
	inc	154.00	183.00	29.0	0.861	3.635	0.063	7.062	1.0	1.0 g/t cut off	29.5
	inc	154.00	167.00	13.0	1.439	6.688	0.106	10.254	1.7	1.0 g/t cut off	22.2
	inc	173.00	181.00	8.0	0.608	1.700	0.043	4.445	0.7	0.5 g/t cut off	5.6
	CSADRI-0	02 0.00	136.00	136.0	0.434	1.533	0.033	3.277	0.5	0.5 g/t cut off	69.4
	inc	10.00	16.00	6.0	0.744	2.420	0.050	3.853	0.9	0.5 g/t cut off	5.2
	inc	40.00	54.00	14.0	0.651	2.196	0.052	3.011	0.8	0.5 g/t cut off	10.8
	inc	84.00	112.00	28.0	1.060	1.552	0.038	4.386	1.1	1.0 g/t cut off	32.1
	and	186.00	310.00	124.0	0.171	0.882	0.025	5.863	0.2	0.1 g/t cut off	28.4
	and	497.20	513.20	16.0	0.610	0.440	0.021	1.878	0.7	0.5 g/t cut off	10.4
	CSADRI-0		73.50	73.5	0.270	3.002	0.087	2.108	0.5	0.5 g/t cut off	33.5
	inc	22.00	27.60	5.6	0.169	10.711	0.480	2.085	1.1	1.0 g/t cut off	6.2
	inc	65.50	71.50	6.0	1.122	2.937	0.043	2.953	1.2	1.0 g/t cut off	7.4
	CSADRI-0		25.00	25.0	0.344	6.334	0.143	2.202	0.7	0.5 g/t cut off	16.6
	inc	0.00	6.00	6.0	0.922	6.087	0.135	1.937	1.2	1.0 g/t cut off	7.4
	inc	20.50	23.50	3.0	0.432	22.255	0.465	2.040	1.5	1.0 g/t cut off	4.5
	CSTINO-0		111.30	111.3	0.278	1.055	0.018	4.962	0.3	0.1 g/t cut off	36.2
	CSTINO-0		25.67	22.8	0.360	1.907	0.029	4.937	0.4	0.1 g/t cut off	10.0
	inc	2.82	7.01	4.2	1.605	3.023	0.056	3.384	1.7	1.0 g/t cut off	7.3
	CSTINO-0		19.37	19.4	0.042	1.272	0.042	3.892	0.1	0.1 g/t cut off	2.5
	CSTINO-0		174.40	174.4	1.093	1.889	0.038	4.774	1.2	1.0 g/t cut off	206.4
	inc	2.12	8.18	6.1	13.43	7.846	0.059	2.872	13.6	10.0 g/t cut off	82.5
	inc inc	30.13 68.03	36.12 74.27	6.0	4.139 1.277	5.592 2.550	0.081 0.035	2.506 4.128	4.3 1.4	1.0 g/t cut off 1.0 g/t cut off	26.0 8.6
		68.03 148.49	74.27 156.58	6.2 8 1	1.277 5.939	2.550 3.354	0.035		1.4 6.1	5.0 g/t cut off	
	inc CSSALI-00		156.58	8.1 16.7	5.939 0.194	3.354	0.059	5.072 2.584	0.1	0.1 g/t cut off	49.2 4.4
	CSSALI-00		79.28	69.4	0.194	5.546 7.948	0.014	2.584 3.794	0.3	0.1 g/t cut off	4.4 23.1
	inc	31.76	63.35	31.6	0.155	7.948 14.174	0.047	5.363	0.5	0.5 g/t cut off	23.1 17.4
		51.70	03.33	51.0	0.250	14.1/4	0.008	5.505	0.5		17.4

161.0m options 49.5m perf rights

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Comm	entary									
		inc	51.70	61.42	9.7	0.202	35.702	0.153	4.352	0.9	0.5 g/t cut off	8.
		CSCAYA	1-001 30.00	78.30	48.3	0.235	0.964	0.020	3.401	0.3	0.1 g/t cut off	13
		CSCAYA	1-002 0.00	32.00	32.0	0.989	2.676	0.030	3.471	1.1	1.0 g/t cut off	34
		CSCAYA	1-003 0.00	56.30	56.3	0.272	1.582	0.042	9.314	0.4	0.1 g/t cut off	2
		inc	28.00	48.00	20.0	0.352	1.993	0.048	13.609	0.5	0.5 g/t cut off	9
		CSCHON	- 001 0.00	26.67	26.7	0.278	3.026	0.027	5.517	0.4	0.1 g/t cut off	9
		CSCHOR	R-001 0.00	15.87	15.9	0.138	3.068	0.037	4.758	0.2	0.1 g/t cut off	
		CSCHOR	R-002 9.95	35.12	25.2	0.215	4.541	0.048	2.040	0.4	0.1 g/t cut off	:
		inc	9.95	13.97	4.0	0.929	14.603	0.153	1.396	1.4	1.0 g/t cut off	!
		CSCHOR	R-003 0.00	17.99	18.0	1.026	8.422	0.037	6.311	1.2	1.0 g/t cut off	2
		inc	8.02	15.96	7.9	2.007	13.955	0.048	2.957	2.3	1.0 g/t cut off	1
		CSBARR	- 001 0.00	23.10	23.1	0.363	0.964	0.036	3.136	0.4	0.1 g/t cut off	1
		CSBARR	- 004 0.00	26.40	26.4	0.263	2.908	0.040	6.480	0.4	0.1 g/t cut off	
		inc	13.80	24.90	11.1	0.451	3.917	0.042	2.370	0.6	0.5 g/t cut off	
		CSBARR	- 005 0.00	12.00	12.0	0.188	1.532	0.025	9.233	0.3	0.1 g/t cut off	
		CSBQCU	1-001 0.00	39.10	39.1	0.220	14.129	0.037	1.042	0.5	0.5 g/t cut off	:
		inc	0.00	8.00	8.0	0.340	15.700	0.038	0.928	0.6	0.5 g/t cut off	
		inc	34.00	38.00	4.0	0.253	33.725	0.072	1.294	0.8	0.5 g/t cut off	
		CSBQCU	1-002 0.00	12.00	12.0	0.423	17.840	0.108	1.448	0.8	0.5 g/t cut off	
		CSBQCU	1-003 0.00	10.00	10.0	0.295	16.046	0.038	1.022	0.6	0.5 g/t cut off	
		CSBQCU	1-004 0.00	4.00	4.0	0.120	4.830	0.015	0.780	0.2	0.2 g/t cut off	
		CSBQCU	1-005 0.00	11.20	11.2	0.594	12.531	0.062	0.906	0.9	0.5 g/t cut off	
		CSBQCU	1-006 0.00	12.00	12.0	0.315	16.168	0.062	1.170	0.6	0.5 g/t cut off	
		CSBQSU	1-001 0.00	19.00	19.0	0.298	1.572	0.026	1.373	0.4	0.2 g/t cut off	
		CSBQSU	2-001 12.00	38.00	26.0	0.785	1.961	0.009	1.657	0.8	0.5 g/t cut off	:
		CSBQSU	2-002 0.00	9.00	9.0	12.44	11.057	0.019	1.250	12.6	10.0 g/t cut off	1
		CSBQSU	3-001 0.00	7.50	7.5	6.980	6.423	0.017	1.033	7.1	5.0 g/t cut off	!
		CSBQNV	V1-002 0.00	17.40	17.4	3.164	6.031	0.024	2.587	3.3	1.0 g/t cut off	!
		inc	0.00	12.00	12.0	0.661	1.685	0.009	1.537	0.7	0.5 g/t cut off	
		CSBQNV	V2-001 0.00	12.65	12.7	0.977	20.993	0.100	1.742	1.4	1.0 g/t cut off	
		CSBQNV		26.73	26.7	0.202	6.268	0.064	1.090	0.4	0.2 g/t cut off	-
		CSFIGR1		17.39	17.4	0.881	4.933	0.066	1.220	1.1	1.0 g/t cut off	-
		inc	10.21	15.60	5.4	2.169	5.654	0.064	1.361	2.3	1.0 g/t cut off	
		CSFIGR2		29.48	29.5	0.674	30.075	0.243	1.889	1.5	1.0 g/t cut off	
		inc	18.17	27.65	9.5	1.585	79.153	0.525	2.420	3.5	1.0 g/t cut off	:
		CSFIGR2		5.23	5.2	1.805	85.161	1.986	2.357	6.2	5.0 g/t cut off	3
		CSCARE		24.00	24.0	0.083	0.345	0.032	10.317	0.1	0.1 g/t cut off	
		CSCARE		25.20	25.2	0.144	1.401	0.038	12.310	0.2	0.2 g/t cut off	
		CSCARE		94.40	94.4	0.137	4.255	0.079	15.214	0.3	0.2 g/t cut off	Э
ger Gold Limited 3 591 382	Issued Capital 1,690m shares	Australian Registered Office	Directors Mr Eduardo Elsztain,		Contac		'					

161.0m options 49.5m perf rights

West Perth WA 6005

Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director

Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary										
		CSCARE1-005	29.70	46.90	17.2	0.178	1.694	0.022	22.333	0.3	0.2 g/t cut off	4.
		CSBQLB1-001	0.00	23.00	23.0	0.091	0.707	0.064	5.033	0.2	0.2 g/t cut off	4
		CSBQLB1-004	0.00	13.51	13.5	0.166	5.356	0.068	1.599	0.3	0.2 g/t cut off	Z
		CSBQLB1-005	0.00	17.54	17.5	0.625	3.237	0.008	3.453	0.7	0.5 g/t cut off	1
		inc	5.98	11.99	6.0	1.287	3.814	0.024	2.395	1.4	1.0 g/t cut off	-
		CSBQLB2-001	0.00	35.32	35.3	0.312	2.390	0.031	8.106	0.4	0.2 g/t cut off	1
		CSBQLB2-002	0.00	5.97	6.0	0.859	0.792	0.044	5.197	0.9	0.5 g/t cut off	
		inc	0.00	3.97	4.0	1.200	0.678	0.043	4.514	1.3	1.0 g/t cut off	
		CSBQSU7-001	0.00	25.41	25.4	0.418	0.362	0.021	10.423	0.5	0.5 g/t cut off	1
		inc	6.15	10.27	4.1	1.914	0.255	0.032	4.097	2.0	1.0 g/t cut off	
		CSBQSU7-002	0.00	7.97	8.0	0.175	0.486	0.029	3.196	0.2	0.2 g/t cut off	
		CSDURA-001	0.00	7.90	7.9	0.073	0.299	0.039	2.503	0.1	0.1 g/t cut off	
		CSDURA-002	0.00	43.20	43.2	0.225	0.942	0.026	1.996	0.3	0.2 g/t cut off	
		CSDURA-003	0.00	27.30	27.3	0.226	2.378	0.035	3.109	0.3	0.2 g/t cut off	
		CSDURA-004	0.00	2.20	2.2	0.433	12.748	0.098	1.565	0.8	0.5 g/t cut off	
		CSDURA-005	0.00	1.90	1.9	1.284	46.937	0.666	1.342	3.0	1.0 g/t cut off	
		CSDURA-006	0.00	45.80	45.8	1.268	4.751	0.030	5.324	1.4	1.0 g/t cut off	e
		inc	2.00	19.80	17.8	2.499	7.144	0.038	7.507	2.7	1.0 g/t cut off	4
		CSDURA-007	0.00	22.20	22.2	0.553	3.227	0.015	2.636	0.6	0.5 g/t cut off	2
		CSDURA-008	0.00	2.20	2.2	0.328	4.038	0.019	1.245	0.4	0.2 g/t cut off	
		CSDURA-009	0.00	1.90	1.9	4.859	38.324	0.312	1.096	5.9	5.0 g/t cut off	1
		CSDURA-010	0.00	2.20	2.2	4.835	10.733	0.197	0.907	5.3	5.0 g/t cut off	1
		CSDURA-011	0.00	1.60	1.6	1.625	50.569	0.284	1.173	2.7	1.0 g/t cut off	
		CSDURA-012	0.00	1.00	1.0	0.477	7.270	0.054	1.160	0.7	0.5 g/t cut off	
		CSDURA-013	0.00	1.30	1.3	0.146	6.860	0.076	1.750	0.4	0.2 g/t cut off	
		CSDURA-014	0.00	1.00	1.0	1.090	3.110	0.017	1.370	1.2	1.0 g/t cut off	
		CSDURA-015	0.00	1.30	1.3	0.995	6.510	0.008	1.280	1.1	1.0 g/t cut off	
		CSDURA-016	0.00	1.10	1.1	1.188	8.130	0.019	1.610	1.3	1.0 g/t cut off	
		CSDURA-017	0.00	1.10	1.1	1.286	16.500	0.062	1.610	1.6	1.0 g/t cut off	
		CSDURA-018	0.00	1.10	1.1	0.719	14.700	0.101	2.160	1.1	1.0 g/t cut off	
		CSDURA-019	0.00	1.10	1.1	18.65	49.100	0.447	0.850	20.0	10.0 g/t cut off	2
		CSDURA-020	0.00	1.20	1.2	0.416	4.950	0.037	0.950	0.5	0.5 g/t cut off	
		CSDURA-021	0.00	26.70	26.7	0.333	1.294	0.041	1.175	0.4	0.2 g/t cut off	1
		CSBQLB3-001	0.00	63.90	63.9	0.321	2.029	0.034	5.873	0.4	0.2 g/t cut off	2
		CSBQLB3-004	0.00	7.80	7.8	0.199	1.094	0.018	6.632	0.2	0.2 g/t cut off	
		CSBQLB4-001	3.70	78.80	75.1	0.169	0.920	0.016	1.475	0.2	0.2 g/t cut off	1
		CSBQLB4-002	0.00	25.80	25.8	0.328	2.596	0.038	2.135	0.4	0.2 g/t cut off	1

ACN 123 591 382 ASX: CEL

1,690m shares 161.0m options 49.5m perf rights Level 1 100 Havelock Street

West Perth WA 6005

E: admin@challengerex.com

Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Mr Kris Knauer, MD and CEO

Criteria	JORC Code explanation	Com	mentary										
		CSBQ	LB5-002	1.90	22.90	21.0	0.638	0.874	0.013	2.03	7	0.7 0.5 g/t cut off	14
		CSBQ	LB5-003	0.00	5.30	5.3	1.057	1.378	0.019	2.31	5	1.1 1.0 g/t cut off	5
		CSBQ	LB6-001	1.52	23.56	22.0	2.625	1.998	0.023	1.19	3	2.7 1.0 g/t cut off	59
		CSBQ	LB6-002	0.00	13.37	13.4	5.267	5.282	0.098	1.73	2	5.5 5.0 g/t cut off	73
		CSBQ	LB7-001	58.84	156.82	98.0	0.365	2.315	0.017	1.14	2	0.4 0.2 g/t cut off	42
		inc		85.70	103.68	18.0	0.926	5.884	0.020	1.30	0	1.0 1.0 g/t cut off	18
		CSL98	370-001	8.07	131.82	123.7	0.295	0.609	0.012	1.35	1	0.3 0.2 g/t cut off	4
		inc		84.35	124.81	40.5	0.587	0.874	0.010	1.63	8	0.6 0.5 g/t cut off	2
		CSL98	370-002	0.00	18.37	18.4	0.337	0.252	0.008	1.19		0.4 0.2 g/t cut off	e
			370-005	0.00	15.74	15.7	0.837	0.555	0.006	1.74		0.9 0.5 g/t cut off	1
			70-002	0.00	3.57	3.6	1.445	2.065	0.012	1.50		1.5 1.0 g/t cut off	5
			70-004	16.09	38.62	22.5	0.243	0.627	0.018	4.34		0.3 0.2 g/t cut off	e
			70-005	0.00	22.93	22.9	0.941	1.881	0.019	47.20		1.0 1.0 g/t cut off	2
			70-008	0.00	16.27	16.3	0.289	0.216	0.017	10.88		0.3 0.2 g/t cut off	5
			70-009	0.00	12.57	12.6	0.209	0.176	0.027	5.38		0.3 0.2 g/t cut off	3
			35-002	0.00	3.56	3.6	0.512	0.074	0.011	0.88		0.5 0.5 g/t cut off	1
			35-001	0.00 0.00	15.86 15.69	15.9 15.7	0.749	1.378 4.938	0.005 0.018	0.91 1.44		0.8 0.5 g/t cut off 1.8 1.0 g/t cut off	1
			35-002	0.00	10100	1017	1.736		0.010			210 210 8, 1041 011	2
		CEL: S	ignificant i	ntersectio	ons from El	l Guayabo I	Project (Co	olorado V	Conces	sion)_Ca	mp #1,	, Phase #1 drilling com	plete
											AuE		То
		Dri	ll Hole	From	То	Interval	Gold	Ag	Cu	Мо	q	Comments	inter
													(gra
			(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		met
			-22-001	4.50	533.20	528.70	0.30	2.30	0.09	13.22	0.49	1.0 g/t cut off	26
		incl.		4.50	401.60	397.10	0.34	2.76	0.11	14.31	0.56	1.0 g/t cut off	22
		incl.		6.00	114.00	108.00	0.42	2.83	0.13	15.75	0.68	1.0 g/t cut off	73
		and		166.60	296.80	130.20	0.42	3.33	0.12	15.55	0.67	1.0 g/t cut off	87
		incl.		273.50	284.30	10.80	2.51	14.93	0.35	9.16	3.29	1.0 g/t cut off	35
			-22-002	5.00	575.00	570.00	0.21	1.99	0.08	11.43	0.38	0.1 g/t cut off	21
		incl.		14.00	320.70	306.70	0.22	2.27	0.12	13.59	0.45	0.5 g/t cut off	13
		incl.		174.65	199.50	24.85	0.40	4.54	0.25	53.36	0.91	1.0 g/t AuEq cut off	22
		incl.		309.30	319.20	9.90	0.97	6.14	0.26	15.83	1.50	1.0 g/t AuEq cut off	14
		and		387.10	396.20	9.10	0.75	6.91	0.14	8.93	1.08	1.0 g/t AuEq cut off	9
		incl.		490.20	504.20	14.00	0.77	1.29	0.03	24.72	0.85	1.0 g/t AuEq cut off	11
			-22-003	2.5	eoh	509.90	0.24	1.41	0.07	31.30	0.4	0.1 g/t AuEq cut off	203
		incl.		2.5	246.5	244.00	0.36	1.76	0.09	44.80	0.6	0.5 g/t AuEq cut off	146
		incl.		2.5	159.4	156.90	0.44	1.76	0.10	54.70	0.7	1.0 g/t AuEq cut off	109
		incl.		2.5	75.8	73.30	0.55	1.81	0.11	59.10	0.8	1.0 g/t AuEq cut off	58.
nger Gold Limited	Issued Capital 1,690m shares	Australian Registered Office Level 1	Director		Non-Exec. Cha	Contact air T: +61 8							

49.5m perf rights

West Perth WA 6005

Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary										
		incl.	66.3	75.8	9.50	0.85	1.40	0.13	146.00	1.2	1.0 g/t AuEq cut off	11
		CVDD-22-004	203	eoh	456.20	0.13	0.91	0.05	10.90	0.25	0.1 g/t AuEq cut off	114
		incl.	443.9	649.3	205.40	0.19	1.00	0.06	11.10	0.3	0.5 g/t AuEq cut off	61.
		incl.	448.4	504.5	56.10	0.23	1.13	0.07	8.30	0.4	1.0 g/t AuEq cut off	22.
		incl.	593	602	9.00	0.58	0.87	0.04	6.70	0.7	1.0 g/t AuEq cut off	6.
		CVDD-22-005	8.1	572.2	564.10	0.21	2.30	0.09	44.10	0.4	0.1 g/t AuEq cut off	225
		incl.	8.1	286.1	278.00	0.30	3.21	0.11	68.20	0.6	0.5 g/t AuEq cut off	16
		incl.	25.8	154.5	128.70	0.39	3.36	0.11	112.10	0.7	1.0 g/t AuEq cut off	90.
		CVDD-22-006	96.4	600.7	504.3	0.31	1.43	0.07	1.8	0.3	0.1 g/t AuEq cut off	151
		incl.	97.9	374.0	276.1	0.25	1.54	0.07	1.9	0.4	1.0 g/t AuEq cutoff	110
		incl.	200.2	209.1	8.9	0.63	1.24	0.07	1.1	0.8	1.0 g/t AuEq cutoff	7.:
		and	257.9	374.0	116.1	0.39	2.56	0.14	2.0	0.5	1.0 g/t AuEq cutoff	58.
		incl.	257.9	288.9	31.0	0.32	3.99	0.16	1.4	0.6	1.0 g/t AuEq cutoff	18
		and	365.0	374.0	9.0	1.51	1.98	0.22	1.7	1.9	1.0 g/t AuEq cutoff	17
		CVDD-22-007	73.9	806.1	732.2	0.20	1.16	0.04	8.1	0.3	0.1 g/t AuEq cut off	219
		incl.	251.0	589.3	338.3	0.30	1.49	0.06	6.8	0.4	1.0 g/t AuEq cutoff	135
		incl.	251.0	498.2	247.2	0.37	1.72	0.06	5.8	0.5	1.0 g/t AuEq cutoff	123
		incl.	251.0	301.7	50.7	0.78	1.79	0.06	5.1	0.9	1.0 g/t AuEq cutff	45
		and	422.5	438.3	15.8	0.62	1.59	0.06	4.0	0.7	1.0 g/t AuEq cutoff	11
		CVDD-22-008	129.8	179.2	49.5	0.20	0.66	0.02	1.3	0.25	0.1 g/t AuEq cut off	12
		and	431.1	448.8	17.7	0.15	1.18	0.05	4.0	0.25	0.1 g/t AuEq cut off	4.
		CVDD-22-009	1.0	195.4	194.4	0.12	1.22	0.04	11.1	0.2	0.1 g/t AuEq cut off	38.
		and	259.3	397.8	136.5	0.08	1.15	0.06	12.4	0.2	0.1 g/t AuEq cut off	27
		and	812.5	886.5	74.3	0.10	0.56	0.04	13.0	0.2	0.1 g/t AuEq cut off	14
		CVDD-22-010	114.5	888.4	773.9	0.27	1.30	0.06	11.8	0.4	0.1 g/t AuEq cut off	309
		incl.	182.3	585.1	402.8	0.40	1.65	0.08	10.9	0.6	1.0 g/t AuEq cut off	241
		incl.	182.3	482.1	299.8	0.50	1.83	0.09	11.7	0.7	1.0 g/t AuEq cut off	209
		incl.	182.3	363.2	180.9	0.73	2.43	0.11	9.5	1.0	1.0 g/t AuEq cut off	180
		incl.	182.3	244.7	62.4	1.53	2.70	0.12	7.0	1.8	1.0 g/t AuEq cut off	112
		CVDD-22-011	168.25	174.25	6.00	0.07	0.77	0.07	15.18	0.21	0.1 g/t AuEq cut off	1.
		and	194.45	201.95	7.50	0.06	0.70	0.06	11.53	0.17	0.1 g/t AuEq cut off	1.
		and	363.20	455.00	91.80	0.13	0.56	0.04	4.03	0.20	0.1 g/t AuEq cut off	18
		incl.	363.20	367.70	4.50	0.33	0.62	0.05	11.91	0.42	0.1 g/t AuEq cut off	1.
		and	397.70	433.70	36.00	0.24	0.61	0.04	3.03	0.32	0.1 g/t AuEq cut off	11
		CVDD-22-012	46.12	48.75	2.63	0.63	1.89	0.02	1.92	0.68	0.1 g/t AuEq cut off	1.
		and	123.85	153.85	30.00	0.17	1.03	0.01	1.78	0.20	0.1 g/t AuEq cut off	5.9
		and	215.44	239.44	24.00	0.19	4.70	0.01	1.86	0.26	0.1 g/t AuEq cut off	6.2
		and	413.87	429.69	15.82	0.23	0.58	0.00	1.54	0.24	0.1 g/t AuEq cut off	3.
		CVDD-22-013	227.00	472.75	245.75	0.16	1.37	0.01	2.65	0.20	0.1 g/t AuEq cut off	48.

161.0m options 49.5m perf rights

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commer	ntary									
		incl.	265.00	291.00	26.00	0.20	2.50	0.01	1.32	0.25	0.1 g/t AuEq cut off	6.4
		and	319.00	333.00	14.00	0.23	4.16	0.02	2.91	0.31	0.1 g/t AuEq cut off	4.3
		and	366.40	367.40	1.00	1.56	1.19	0.01	1.80	1.59	1.0 g/t AuEq cut off	1.
		and	396.00	449.90	53.90	0.27	2.02	0.01	2.47	0.28	0.1 g/t AuEq cut off	15.
		incl.	434.50	435.90	1.40	1.72	11.00	0.08	0.90	1.99	1.0 g/t AuEq cut off	2.
		and	731.70	733.20	1.50	0.30	0.39	0.01	1425.6	1.32	1.0 g/t AuEq cut off	1.
		CVDD-22-	014 59.65	65.85	6.20	1.13	1.30	0.01	1.80	1.15	0.1 g/t AuEq cut off	7.
		and	171.20	172.10	0.90	11.63	16.10	0.03	1.60	11.9	1.0 g/t AuEq cut off	10
		and	198.20	216.00	17.80	0.44	1.18	0.01	1.94	0.48	0.1 g/t AuEq cut off	8.
		incl.	210.20	215.25	5.05	0.90	1.33	0.01	1.83	0.94	1.0 g/t AuEq cut off	4.
		and	256.80	271.15	14.35	1.17	4.73	0.03	2.22	1.28	1.0 g/t AuEq cut off	18
		and	344.65	346.15	1.50	1.46	0.39	0.01	1.60	1.48	1.0 g/t AuEq cut off	2.
		and	401.10	405.60	4.50	4.58	9.62	0.02	1.76	4.73	1.0 g/t AuEq cut off	21
		and	486.70	506.20	19.50	0.39	0.71	0.01	2.79	0.41	0.1 g/t AuEq cut off	8.
		incl.	504.70	506.20	1.50	3.04	4.11	0.03	1.70	3.14	1.0 g/t AuEq cut off	4.
		and	605.10	606.60	1.50	1.11	2.53	0.01	1.40	1.16	1.0 g/t AuEq cut off	1.
		and	687.60	693.60	6.00	0.71	3.66	0.01	1.56	0.77	1.0 g/t AuEq cut off	4.
		and	845.60	846.33	0.73	8.59	4.57	0.00	1.80	8.65	1.0 g/t AuEq cut off	6.
		CVDD-22-	015 9.10	757.57	748.47	0.10	0.42	0.04	9.15	0.17	0.1 g/t AuEq cut off	127
		incl.	23.20	23.80	0.60	2.24	6.04	0.22	16.30	2.70	1.0 g/t AuEq cut off	1.
		and	77.40	233.69	156.29	0.13	0.75	0.06	17.80	0.25	0.5 g/t AuEq cut off	39
		OR	77.40	291.75	214.35	0.13	0.68	0.06	18.05	0.24	0.1 g/t AuEq cut off	51
		incl.	169.62	171.12	1.50	0.97	0.64	0.06	8.40	1.09	1.0 g/t AuEq cut off	1.
		and	364.20	365.70	1.50	0.88	1.11	0.15	8.40	1.15	1.0 g/t AuEq cut off	1.
		and	440.70	442.20	1.50	1.25	0.71	0.05	0.80	1.35	1.0 g/t AuEq cut off	2.
		and	646.57	648.07	1.50	5.96	0.22	0.02	1.50	6.00	1.0 g/t AuEq cut off	8.
		CVDD-22-	016 10.80	81.00	70.20	0.42	7.15	0.01	4.08	0.53	0.5 g/t AuEq cut off	37
		incl.	10.80	22.80	12.00	0.58	5.86	0.02	2.14	0.68	1.0 g/t AuEq cut off	8.
		and	36.30	48.70	12.40	1.48	18.52	0.01	14.33	1.74	1.0 g/t AuEq cut off	21
		and	275.00	515.90	240.90	0.11	2.26	0.02	3.34	0.16	0.1 g/t AuEq cut off	39
		incl.	312.50	326.00	13.50	0.14	5.42	0.04	5.66	0.27	0.1 g/t AuEq cut off	3.
		and	397.50	436.50	39.00	0.20	2.60	0.01	2.44	0.26	0.1 g/t AuEq cut off	9.
		CVDD-22-	017 20.30	301.50	281.20	0.08	0.62	0.05	4.56	0.17	0.1 g/t AuEq cut off	47
		incl.	53.20	54.70	1.50	0.33	4.75	0.43	2.90	1.13	1.0 g/t AuEq cut off	1.
		and	167.95	221.50	53.55	0.14	0.88	0.06	8.94	0.25	0.1 g/t AuEq cut off	13.
		and	388.50	445.50	57.00	0.10	0.36	0.03	3.01	0.16	0.1 g/t AuEq cut off	8.
		incl.	388.50	390.00	1.50	1.17	0.20	0.01	1.00	1.19	1.0 g/t AuEq cut off	1.
		and	648.10	664.60	16.50	0.02	1.19	0.10	1.32	0.21	0.1 g/t AuEq cut off	3.
er Gold Limited	Issued Capital	Australian Registered Office	Directors	Non Ever Ch	Contact	t 6385 2743						
71 JÖZ	1,690m shares	Level 1	Mr Eduardo Elsztain,	NOTI-EXEC. Ch		6385 2743						

Ch ACN 123 591 382 ASX: CEL

1,690m shares 161.0m options 49.5m perf rights Level 1 100 Havelock Street

West Perth WA 6005

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary CEL: Significant i	ntersectio	ons from El	Guayabo P	roject (C	olorado V	Conces	sion) Car	np #2, d	Irilling completed	
		Drill Hole	From	То	Interval	Au	Ag	Cu	Mo	AuE q	Comments	To [.] Inter
		(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		Gra Met
		CVDD-24-018	386.3	438.3	52.0	0.24	0.85	0.08	2.3	0.39	0.1 g/t AuEq cutoff	20
		inc and	394.3 429.0	405.0 438.3	10.7 9.3	0.45 0.31	0.87 1.25	0.08 0.15	2.2 2.3	0.59 0.59	0.5 g/t AuEq cutoff 0.5 g/t AuEa cutoff	6
		CVDD-24-019	122.6	619.5	496.9	0.16	1.68	0.08	19.1	0.32	0.1 g/t AuEq cutoff	15
		incl.	145.9	154.0	8.0	0.30	9.14	0.23	19.2	0.81	1.0 g/t AuEq cutoff	(
		and inc inc	299.0 299.0 325.0	512.8 351.0 345.0	213.8 52.0 20.0	0.23 0.41 0.63	1.79 2.49 2.89	0.09 0.12 0.15	13.9 9.3 7.8	0.42 0.65 0.93	0.5 g/t AuEq cutoff 0.5 g/t AuEq cutoff 1.0 g/t AuEq cutoff	8 3 1
		and	510.8	512.8	2.0	3.11	3.93	0.16	6.9	3.44	1.0 g/t AuEq cutoff	
		CVDD-24-020	0.0	573.7	573.7	0.24	1.92	0.08	10.8	0.40	0.1 g/t AuEq cutoff	2
		inc	0.0	339.3	339.3	0.29	2.50	0.10	14.4	0.49	0.5 g/t AuEq cutoff	1
		inc	15.9	49.7	33.8	0.30	6.17	0.13	14.4	0.61	1.0 g/t AuEq cutoff	2
		inc	70.1	83.9	13.8	0.42	2.63	0.11	16.8	0.66	0.5 g/t AuEq cutoff	9
		and	119.6	218.2	98.6	0.40	2.26	0.10	19.1	0.61	0.5 g/t AuEq cutoff	e
		inc	162.8	218.2	55.4	0.45	2.21	0.11	12.1	0.67	0.5 g/t AuEq cutoff	3
		and	260.6	269.4	8.8	0.30	2.03	0.18	11.2	0.63	0.5 g/t AuEq cutoff	!
		and	546.9	561.7	14.8	0.46	1.75 0.66	0.05	2.6 1.7	0.57	0.5 g/t AuEq cutoff	1
		CVDD-24-021 and <u>and</u>	118.5 199.1 247.9	126.5 219.1 271.2	8.0 20.0 23.3	0.24 0.27 0.29	0.66 0.91 0.76	0.02 0.01 0.01	1.7 1.4 1.4	0.27 0.31 0.31	0.1 g/t AuEq cutoff 0.1 g/t AuEq cutoff 0.1 g/t AuEq cutoff	
		CVDD-24-022	0.0	599.1	599.1	0.23	1.43	0.06	17.7	0.36	0.1 g/t AuEq cutoff	2
		inc	128.7	143.0	14.3	0.35	1.80	0.06	3.9	0.48	0.5 g/t AuEq cutoff	
		and	170.8	230.5	59.7	0.38	1.35	0.06	5.8	0.51	0.5 g/t AuEq cutoff	3
		inc	170.8	212.3	41.4	0.43	1.66	0.07	5.3	0.58	0.5 g/t AuEq cutoff	2
		and	284.8	294.8	10.0	0.49	2.12	0.07	12.2	0.65	0.5 g/t AuEq cutoff	
		and	387.2	509.2	122.0	0.28	1.73	0.10	37.7	0.50	0.5 g/t AuEq cutoff	e
		inc	387.2	398.0	10.8	0.54	3.30	0.11	51.0	0.81	0.5 g/t AuEq cutoff	
		inc	433.9	450.3	16.5	0.37	1.77	0.11	31.9	0.59	0.5 g/t AuEq cutoff	
		inc	477.3	509.2	31.9	0.32	2.23	0.15	60.2	0.64	0.5 g/t AuEq cutoff	2
		and	549.6	565.3	15.7	0.56	3.22	0.13	23.3	0.83	0.5 g/t AuEq cutoff	1
		CVDD-24-023	52.3	56.3	4.0	1.59	2.44	0.05	0.7	1.7	0.1 g/t AuEq cut off	(
			247.3	400.3	152.9	0.28	1.34	0.04	1.1	0.4	0.1 g/t AuEq cut off	5
		inc	260.5	268.5	8.0	0.74	0.94	0.01	0.6	0.8	0.5 g/t AuEq cut off	6

ACN 123 591 382 ASX: CEL

1,690m shares 161.0m options 49.5m perf rights

100 Havelock Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO

Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

T: +61 8 6385 2743 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary										
		and	292.8	342.0	49.2	0.40	1.87	0.06	1.2	0.5	0.5 g/t AuEq cut off	2
		inc	300.8	308.8	8.0	0.63	2.64	0.07	1.6	0.8	0.5 g/t AuEq cut off	
		and	318.8	324.8	6.0	0.66	2.02	0.07	1.1	0.8	0.5 g/t AuEq cut off	
		and	385.9	395.1	9.2	0.52	2.69	0.11	1.5	0.7	0.5 g/t AuEq cut off	
			462.2	655.0	192.8	0.22	1.61	0.07	5.0	0.4	0.1 g/t AuEq cut off	
		inc	478.2	530.2	52.0	0.38	1.47	0.06	2.3	0.5	0.5 g/t AuEq cut off	
		and	613.8	645.2	31.5	0.27	2.81	0.12	6.2	0.5	0.5 g/t AuEq cut off	
		CVDD-24-024	0.0	711.6	711.6	0.25	1.77	0.07	16.5	0.4	0.1 g/t AuEq cut off	:
		inc	0.0	401.1	401.1	0.32	2.13	0.07	12.5	0.5	0.5 g/t AuEq cut off	:
		inc	0.0	210.9	210.9	0.41	2.85	0.08	13.9	0.6	0.5 g/t AuEq cut off	:
		inc	4.0	53.5	49.5	0.52	2.35	0.07	8.3	0.7	0.5 g/t AuEq cut off	
		and	120.6	210.9	90.4	0.46	4.10	0.12	18.4	0.7	0.5 g/t AuEq cut off	
		inc	138.6	167.8	29.3	0.80	6.81	0.19	17.0	1.2	1.0 g/t AuEq cut off	
		and	274.4	313.9	39.5	0.47	2.01	0.09	10.3	0.7	0.5 g/t AuEq cut off	
		CVDD-24-025	176.3	406.7	230.4	0.19	1.00	0.03	3.7	0.3	0.1 g/t AuEq cut off	
		inc	176.3	187.7	11.4	0.42	0.47	0.02	3.3	0.5	0.5 g/t AuEq cut off	
		and	245.8	254.1	8.2	0.33	0.94	0.03	3.5	0.4	0.5 g/t AuEq cut off	
		and	328.4	344.7	16.3	0.40	1.70	0.04	5.4	0.5	0.5 g/t AuEq cut off	
			565.9	587.8	21.9	0.24	0.86	0.04	13.2	0.3	0.1 g/t AuEq cut off	
			613.8	667.4	53.6	0.20	1.69	0.06	4.8	0.3	0.1 g/t AuEq cut off	
		CVDD-24-026	0.0	657.3	657.3	0.23	2.31	0.10	23.8	0.4	0.1 g/t AuEq cut off	
		inc	0.0	537.6	537.6	0.25	2.60	0.11	19.2	0.5	0.5 g/t AuEq cut off	
		inc	42.1	103.0	60.9	0.29	4.54	0.13	8.8	0.6	0.5 g/t AuEq cut off	
		inc	69.0	96.5	27.5	0.41	4.80	0.15	8.7	0.7	0.5 g/t AuEq cut off	
		and	149.8	203.5	53.7	0.31	2.98	0.12	10.3	0.6	0.5 g/t AuEq cut off	
		and	243.7	298.1	54.4	0.31	2.39	0.12	18.5	0.6	0.5 g/t AuEq cut off	
		and	348.4	408.4	60.0	0.28	2.72	0.15	30.0	0.6	0.5 g/t AuEq cut off	
		and	430.6	457.5	26.9	0.36	2.01	0.12	34.0	0.6	0.5 g/t AuEq cut off	
		and	610.7	620.7	10.0	0.35	1.30	0.11	32.2	0.6	0.5 g/t AuEq cut off	
		CVDD-24-027	250.3	552.9	302.6	0.21	1.36	0.05	4.4	0.3	0.1 g/t AuEq cut off	
		inc	250.3	448.6	198.3	0.27	1.58	0.05	5.7	0.4	0.5 g/t AuEq cut off	
		inc	263.3	397.5	134.2	0.33	2.05	0.07	7.2	0.5	0.5 g/t AuEq cut off	
		inc	263.3	287.2	23.9	0.48	3.46	0.15	8.3	0.8	0.5 g/t AuEq cut off	
		inc	263.3	269.3	6.0	1.44	11.10	0.44	14.8	2.3	1.0 g/t AuEq cut off	
		and	317.5	323.8	6.3	0.55	1.12	0.04	1.8	0.6	0.5 g/t AuEq cut off	

ACN 123 591 382

Issued Capital 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1 100 Havelock Street

West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

		Commentary										
		and	346.0	372.7	26.8	0.49	3.31	0.09	13.3	0.7	0.5 g/t AuEq cut off	
		CVDD-24-028	52.3	754.0	701.7	0.29	1.74	0.05	6.8	0.4	0.1 g/t AuEq cut off	
		inc	52.3	513.3	461.0	0.35	2.08	0.06	3.1	0.5	0.5 g/t AuEq cut off	
		inc	52.3	297.1	244.8	0.42	2.62	0.06	2.0	0.6	0.5 g/t AuEq cut off	
		inc	137.6	241.2	103.6	0.66	2.92	0.07	2.1	0.8	0.5 g/t AuEq cut off	
		inc	137.6	162.0	24.4	1.02	2.54	0.06	2.0	1.1	1.0 g/t AuEq cut off	
		and	174.0	188.6	14.6	0.88	3.02	0.07	1.9	1.0	0.5 g/t AuEq cut off	
		and	205.6	241.2	35.6	0.76	3.92	0.09	2.5	1.0	0.5 g/t AuEq cut off	
		and	588.3	596.6	8.3	0.70	5.38	0.12	16.3	1.0	0.5 g/t AuEq cut off	
		and	617.8	625.0	7.2	0.32	2.64	0.09	18.8	0.5	0.5 g/t AuEq cut off	
		and	740.4	748.9	8.5	0.91	1.10	0.05	11.6	1.0	0.5 g/t AuEq cut off	
		CVDD-24-029	0	276.6	276.6	0.25	1.47	0.06	13.7	0.25	0.1 g/t AuEq cutoff	
		inc	10.4	48.2	37.8	0.29	4.02	0.1	6.4	0.51	0.5 g/t AuEq cutoff	
		and	254.4	272.6	18.2	0.29	1.32	0.06	50.1	0.45	0.5 g/t AuEq cutoff	
		and	383.2	467.2	84	0.2	0.9	0.03	11	0.27	0.1 g/t AuEq cutoff	
		and	508.4	679.1	170.7	0.15	0.71	0.02	13.3	0.21	0.1 g/t AuEq cutoff	
		inc	631.1	647.1	16	0.35	0.63	0.02	17.8	0.4	0.5 g/t AuEq cutoff	
		CVDD-24-030	34	45.4	11.4	0.25	2.73	0.1	12.4	0.47	0.1 g/t AuEq cutoff	
		and	153.5	298.9	145.4	0.15	1.48	0.07	18.8	0.29	0.1 g/t AuEq cutoff	
		inc	255.2	277.1	21.9	0.53	3.95	0.21	68.5	0.99	0.5 g/t AuEq cutoff	
		and	403.8	428.2	24.4	0.36	1.06	0.03	13.7	0.44	0.1 g/t AuEq cutoff	
		inc	403.8	405.8	2	3.59	0.79	0.03	1.9	3.65	1.0 g/t AuEq cutoff	
		CVDD-24-031	2.7	402.5	399.8	0.27	1.54	0.06	8.7	0.4	0.1 g/t AuEq cutoff	
		inc	2.7	248.9	246.2	0.36	1.56	0.07	11.7	0.51	0.1 g/t AuEq cutoff	
		inc	40.9	206	165.1	0.43	1.47	0.08	12.7	0.58	0.5 g/t AuEq cutoff	
		inc	145.5	206	60.6	0.66	1.83	0.07	17.9	0.82	0.5 g/t AuEq cutoff	
		inc	184.3	206	21.8	1.3	2.01	0.08	32.9	1.47	1.0 g/t AuEq cutoff	
		CVDD-24-032	34.2	36.7	2.5	0.32	2.42	0.04	2.3	0.42	0.5 g/t AuEq cutoff	
		and	109.3	117.3	8	0.19	1.84	0.02	1.4	0.25	0.5 g/t AuEq cutoff	
		and	208.1	212.1	4	0.15	3.89	0.02	2.3	0.23	0.5 g/t AuEq cutoff	
		and	226.2	239.2	13	2.63	6.02	0.09	1.2	2.85	0.5 g/t AuEq cutoff	
		and	461.6	467.6	6	0.25	0.53	0.02	2.1	0.29	0.5 g/t AuEq cutoff	
		and	576.2	613.3	37.2	0.12	1.06	0.04	4.6	0.2	0.5 g/t AuEq cutoff	
Relationship between mineralisation	- These relationships are - particularly important in	The geometry of the breccia hosted hosted mineralisation is sub-vertica		ation appe	ears to be p	redomina	ntly near	-vertical	pipes wh	nile the g	eometry of the intrusive	e

Mr Eduardo Elsztain, Non-Exec. Chair

Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett Non Exec Director

Mr Kris Knauer, MD and CEO

T: +61 8 6385 2743

E: admin@challengerex.com

www.challengerex.com

1,690m shares

161.0m options

49.5m perf rights

Level 1

100 Havelock Street

West Perth WA 6005

 $\overline{(7)}$

Criteria	JORC Code explanation	Commentary
	appropriate sectional views.	
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- The reporting is fair and representative of what is currently understood to be the geology and controls on mineralisation at the project.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	El Guayabo: Quantec Geophysical services conducted a SPARTAN Broadband Magnetotelluric and TITAN IP/EMAP surveys completed February 3rd to April 1st, 2019 over the El Guayabo property by Quantec Geoscience Ltd. on behalf of AAR Resources. The survey covered 16 square kilometersa with data collected on 300m 3D spacing on a gride oriented at 10 degerees and 100 degerees. The grid was moved 10 degrees so the survey could be orineted perpendicu;lar to the main geological srtuctures. The survey involved a total of 205 Magnetotelluric (MT) sites and 2 test TITAN IP/EMAP profiles were surveyed The final survey results to which will be delivered will consist of : • Inversion 2D products • 2D model sections (for each line) of the: • DC resistivity model; • IP chargeability model using the DC resistivity model as a reference; • IP chargeability model using a half-space resistivity model as a reference; • MT(EMAP) resistivity model; • Joint MT+DC resistivity model; IP chargeability model using the MT+DC resistivity model; • Inversion 3D products • 3D MT model; • Cross-sections and Elevation Plan maps of the 3D MT models;
		Figures showing Survey Locations and Results are included in the boidy of this release
		DCIP INVERSION PROCEDURES DCIP is an electrical method that uses the injection of current and the measurement of voltage difference along with its rate of decay to determine subsurface resistivity and chargeability respectively. Depth of investigation is mainly controlled by the array geometry but may also be limited by the received signal (dependent on transmitted current) and ground resistivity. Chargeability is particularly susceptible to data with a low signal-to-noise ratio. The differences in penetration depth between DC resistivity and chargeability are a function of relative property contrasts and relative signal-to-noise levels between the two measurements. A detailed introduction to DCIP is given in Telford, et al. (1976). The primary tool for evaluating data is
allenger Gold Limited N 123 591 382 K: CEL	Issued CapitalAustralian Registered Of1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	

Criteria	JORC Code explanation	Commentary
		through the inversion of the data in two or three dimensions. An inversion model depends not only on the data collected, but also on the associated data errors in the reading and the "model norm". Inversion models are not unique and may contain "artefacts" from the inversion process. The inversion model may not accurately reflect all the information apparent in the actual data. Inversion models must be reviewed in context with the observed data, model fit, and with an understanding of the model norm used. The DC and IP inversions use the same mesh. The horizontal mesh is set as 2 cells between electrodes. The vertical mesh is designed with a cell thickness starting from 20 m for the first hundred metres to accommodate the topographic variation along the profiles, and then increases logarithmically with depth. The inversions were generally run for a maximum of 50 iterations. The DC data is inverted using an unconstrained 2D inversion with a homogenous half-space of average input data as starting model. For IP inversions, the apparent chargeability \Box is computed by carrying out two DC resistivity forward models with conductivity distributions $\sigma(xi, zj)$ and $(1-\eta)\sigma(xi, zj)$ (Oldenburg and Li, 1994), where (xi, zj) specifies the location in a 2D mesh. The conductivity distributions used in IP inversions can be the inverted DC model or a half space of uniform conductivity. Two IP inversions uses a homogeneous half-space resistivity model as the reference model and is labelled the IP dcref model. The second IP inversion uses a homogeneous half-space resistivity model as the reference model and is labelled IP hsref model. The second IP inversion uses a homogeneous half-space of the second IP inversion are presented on the digital archived attached to this report.
		MAGNETOTELLURIC INVERSIONS The Magnetotelluric (MT) method is a natural source EM method that measures the variation of both the electric (E) and magnetic (H) field on the surface of the earth to determine the distribution at depth of the resistivity of the underlying rocks. A complete review of the method is presented in Vozoff (1972) and Orange (1989). The measured MT impedance Z, defined by the ratio between the E and H fields, is a tensor of complex numbers. This tensor is generally represented by an apparent resistivity (a parameter proportional to the modulus of Z) and a phase (argument of Z). The variation of those parameters with frequency relates the variations of the resistivity with depth, the high frequencies sampling the sub-surface and the low frequencies the deeper part of the earth. However, the apparent resistivity and the phase have an opposite behaviour. An increase of the phase indicates a more conductive zone than the host rocks and is associated with a decrease in apparent resistivity. The objective of the inversion of MT data is to compute a distribution of the resistivity of the surface that explains the variations of the MT parameters, i.e. the response of the model that fits the observed data. The solution however is not unique and different inversions must be performed (different programs, different conditions) to test and compare solutions for artefacts versus a target anomaly. An additional parameter acquired during MT survey is the Tipper. Tipper parameters Tzx and Tzy (complex numbers) represent the transfer function between the vertical magnetic field and the horizontal X (Tzx), and Y (Tzy) magnetic fields respectively (as the impedance Z represent the transfer function between the electric and magnetic fields). This tipper is a 'local' effect, mainly defined by the lateral contrast of the resistivity. Consequently, the tipper can be used to estimate the geological strike direction. Another important use of the tipper is to display its components as vectors, name
hallenger Gold Limited CN 123 591 382 SX: CEL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Office Directors Contact Level 1 Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 100 Havelock Street Mr Kris Knauer, MD and CEO E: admin@challengerex.com West Perth WA 6005 Mr Sergio Rotondo, Exec. Vice Chair Director Mr Fletcher Quinn, Non-Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director Mr Brett Hackett Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation		Commentary				
			vectors. The induction vectors (defined be Angle convention will point to conductive The depth of investigation is determined individual sounding may easily exceed 2 the array is comparable to the depth of The inversion model is dependent on the models are not unique, may contain an information apparent in the actual data. The user must understand the model no For this project, 2D inversions were perf direction is perpendicular to the profile of field); no TE mode (cross line E-field) we The 2D inversions were performed using assuming 10% and 5% error for the ress component Z. No static shift of the data The 3D inversion was carried out using a the measured data from 10 kHz to 0.01 f impedance tensors (Zxx, Zxy, Zyx, and Z The measured tipper data (Tzx, Tzy) wer homogenous half space with resistivity mesh with 75 m x 75 m cell size was use cover the first 4 km. Padding cells were a 3D inversion was run for a maximum of In addition a total of 129 samples distri chargeability properties (Chargeability N Sample Core IP Tester, manufactured by only as first order estimate, and not as "a subject to some errors (i.e. wrong size o Colorado V: Exploration Target: An Exploration Target for two mineralize soil anomalies, drill hole geological and a	e zones. The tipper is then a god l primarily by the frequency cor 0 km. However, the data can o investigation. he data, but also on the associa rtefacts of the inversion proce Inversion models need to be re- rm used and evaluate whether ormed on the TITAN/EMAP pro- for all sites: the TM mode is the re used in the 2D inversions. g the TM-mode resistivity and p istivity and phase respectively, has been applied on the data. the CGG RLM-3D inversion code km. All MT sites from this currer sub sample of the MT data with tz with a nominal 4 frequencies yy) were used as input data with a of 100 Ohm-m was used as the ed in horizontal directions in the added in each direction to acco 50 iterations. buted along 12 holes were ana A and Susceptibility (SCPT 0.00 c Instrumentation GDD Inc. It sh ubsolute" (true) value as reading f the core entered in the equipt	od mapp intent of i ated dat ess and i eviewed the moo ofiles dat en define phase da , which i e. The 31 ent surve th a maxi s per dec th an assoc e startin, e resistiv mmodat alysed to D1 SI). Th hould be gs by the ment).	bing tool to delineatu the measurement. I confidently interpret a errors and the me may not therefore in context with the del is geologically pl ta. For each profile, ed by the inline E-fie ata interpolated at 6 is equivalent to 5% D inversions of the 1 ey were used for the imum of 24 frequen cade. At each site, tl sociated error set to 0. g model for this 3D vity model. The vert te the inversion for 1 o measure the resiss he equipment used e noted that these m field crew were not	e more conductive zones. Depth estimates from any ded when the aperture of odel norm. The inversion accurately reflect all the observed data, model fit. ausible. we assume the strike eld (and cross line H- frequencies per decade, error on the impedance MT data were completed a 3D inversion. cies at each site covering he complete MT complex o 5% on each parameter. A MT inversion. A uniform ical mesh was defined to poundary conditions. The tivity (Rho (Ohm*m) and for the analyses was the neasures should be taken repeated and potentially ade using surface gold in
			Exploration Target Anomaly A	U	Jnit	Low estimate	High Estimate
hallenger Gold Limited CN 123 591 382 SX: CEL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Offic Level 1 100 Havelock Street West Perth WA 6005	e Directors Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director	Contact T: +61 8 6385 2743 E: admin@challengerex.com			

Criteria	JORC Code explanation	C	commentary			
			Surface area (100 ppb Au in soil envelope):	m ²	250000	250000
			Depth	m	400	400
			Bulk Density	kg/m ³	2600	2750
			Tonnage	Mt	260	275
			Grade Au	g/t	0.4	0.7
			Grade Ag	g/t	1.5	2.5
			tonnage above cut-off	%	70%	90%
			Contained Au	Moz	2.3	5.6
			Contained Ag	Moz	8.8	3 19.
			Exploration Target Anomaly B	Unit	Low estimate	High Estimate
			Surface area (100 ppb Au in soil envelope):	m²	175000	175000
			Depth	m	400	400
			Bulk Density	kg/m ³	2600	2750
			Tonnage	Mt	182	193
			Grade Au	g/t	0.4	0.7
			Grade Ag	g/t	1.5	2.5
			% Tonnage above cut-off	%	70%	90%
			Contained Au	Moz	1.6	3.9
			Contained Ag	Moz	6.1	13.9
		_	Total of Target A & B	Unit	Low estimate	High Estimate
			Tonnage	Mt	442	468
			Contained Au	Moz	4.0	9.5
			Contained Ag	Moz	14.9	33.8
		e N	vertically to the surface. The surface projection of th gold-in-soil anomaly contour. This area has been use	lating the Exploration n estimated by proju- te intersections in the to estimate the h n used as an estimate expected to extend.	poin Target. ecting drill hole gold ecting drill hole gold orizontal extent of t e of the depth that The mineralization	in the estimation of significant intersecti es with the 100 ppb / he mineralization. an open pit and at Colorado V is
enger Gold Limited 23 591 382 EL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005	Directors Contact Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO E: admin@challengeres Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director			

www.challengerex.com

17

Criteria	JORC Code explanation	Commentary
		 from surface. Bulk Density: The bulk density is based on geological observations of the rocks that host the mineralization. Typical bulk densities for these rock types are in the range used. Gold and Silver grades: The gold and silver grade range has been estimated from the weighted average and median sample grades and deviations from mean from drill core and underground panel sampling. Proportion of tonnage above cut-off grade: These values are estimates based on drill hole intersection grade continuity down-hole assuming that not all of the Target volume, if sampled would be above the economic cut-off grade.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Drill test priority targets identified through exploration reported previously on both the EL Guayabo and Colorado V targets, centered on surface soil and rock chip sampling, underground channel sampling and previously completed drilling which has been relogged and resampled. Interpretation of magnetic survey data following calibration with drilling. Undertake additional IP and/or EM surveys subject to a review of the appropriateness of the techniques and calibration with drill hole data.

Challenger Gold Limited	
ACN 123 591 382	
ASX: CEL	

Issued Capital 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office

Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengerex.com

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation			Commentary				
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 			The database includes both drilling completed by previous explorers, drill holes recently completed by the Company and underground channel samples completed by the Company.				
				Drill core from historic drilling has been recently re-logged and re-sampled. These data are transcribed by the database / GIS team into a database held on site at EMSA offices in Totara, Ecuador. Only the drill hole collar and down-hole survey from the historic data has been directly transcribed from the historic data. All other data is newly generated.				
				Phase 2) are trans logging is captured team. Final assay	channel samples and drill holes completed by the Company (Phase 1 and cribed into the same database as the historic data. Drill hole collar, survey, d directly into MS Excel and peer reviewed before being given to the database data received from the labs is reviewed (blanks, duplicates and standards) the database. Backup copies of all data are retained in separate files.			
				The drill hole data is backed up and is updated periodically.				
Site visits	the outcome of those	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 		CEL representatives have visited from 2019, during early-stage exploration and drilling. Early site visits were undertaken to review the progress of exploration prior to drilling and to review historic drill core. The most recent site visit was in June 2022 to review the geology, drilling program, collection of data, sampling procedures, sample submission and exploration program Competent Persons that completed the NI-43-101 report for presentation to the TSX complete site visits in early 2024 in preparation for completing that report and undertaking the Foreign Resource Estimate according to Canadian NI43-101 reporting standards.				
Geological interpretation- Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. - Nature of the data used and of any assumptions made. - The effect if any of alternative interpretations on Mineral Resource estimation. - The use of geology in guiding and controlling Mineral Resource estimation. - The factors affecting continuity both of grade and geology.		The geological interpretation and understanding of the controls on mineralisation has been used to model the geometry of the mineralised system. El Guayabo is a high-level porphyry intrusive and intrusive-related breccia complex with mineralisation controlled by regional scale and local scale fault-fracture zones and lithology contacts. Multiple pulses of mineralisation ar evident in the alteration and vein overprinting relationships. Given the available data and understanding of the geological controls on mineralisation, the Competent Person has confidence in the geological model that has been used to constrain the high grade and low grade mineralised domains. At the El Guayabo deposits, continuity of grade between drill holes is determined by the						
Challenger Gold Limited ACN 123 591 382 ASX: CEL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Level 1 100 Havelock Street West Perth WA 6005	Mr Kris Knaue Mr Sergio Roto Dr Sonia Delga	lsztain, Non-Exec. Chair er, MD and CEO ondo, Exec. Vice Chair ado, Exec. Director	Contact T: +61 8 6385 2743 E: admin@challengerex.com			

Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

www.challengerex.com

(

Criteria	JORC Code explanation	Commentary						
		intensity of fracturing, the host rock conta contacts). The high-grade mineralised do techniques using a nominal cut-off grade mineralised intersections, joined betweer structure. The Low-grade domain surrou Leapfrog to build a 0.2 g/t AuEq isosurface NW with a nominal range of 200m. No alternative interpretations have been Estimate.	mains have be over a 2.0 me n holes using t nding the high e, following th	een built using tre interval of he AuEq grade -grade has be le main NE to	g explicit wire 0.7 – 1.0 g/t e, geology an een generate ENE strike, d	eframe AuEq nd controlli d using lipping stee		
Dimensions	- The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource.	The Foreign Mineral Resource consists of 3 sub-parallel mineralisation domains. - GY-A has a NE strike of 0.9 kilometres dipping NW at 80 degrees, width of 0.4 kilometres an is estimated to a depth of 650 metres below surface. - GY-B has a NE strike of 0.5 kilometres, dipping NW at 80 degrees, width of 0.2 kilometres ar is estimated to a depth of 400 metres below surface. - GY-C has a ENE strike of 0.8 kilometres, dipping NNW at 80 degrees, width of 0.2 kilometres and is estimated to a depth of 450 metres below surface. All 3 domains remain open in all directions.						
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. 	 The Foreign Resource Estimate was made for Au Ag, Cu and Mo being the elements of economic interest. A 2 metre composite length in the high-grade domain and a 3 metre composite length in the low-grade domain was selected after reviewing the composite statistics. A statistical analysis was undertaken on the sample composites top cuts for Au, Ag, Cu and composites for each domain. The top-cut values were chosen by assessing the high-end distribution of the grade population within each domain and selecting the value above while the distribution became erratic. The following table shows the top cuts applied to each group of the grade population within the same shows the top cuts applied to each group of the grade population. 						
	- The assumptions made regarding recovery of by-products.	Domain	Au (ppm)	Ag (ppm)	Cu (%)	Mo (ppm		
	- Estimation of deleterious elements or other non-grade variables of	High-grade (GY-A)	4.00	25	1.25	4		
	economic significance (eg sulphur for acid mine drainage	High-grade (GY-B, GY-C)	4.00	15	1.00	4		
	characterisation). In the case of block model interpolation the block size in relation to 	Low-grade (GY-A,)	1.50	8	0.70	3		
	 In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	Low-grade (GY-B, GY-C)	1.25	5	0.15			
Challenger Gold Limited ACN 123 591 382 ASX: CEL	161.0m options100 Havelock StreetMr Kris Kr49.5m perf rightsWest Perth WA 6005Mr Sergio	Gontact do Elsztain, Non-Exec. Chair anauer, MD and CEO Rotondo, Exec. Vice Chair Delgado, Exec. Director						
Criteria	JORC Code explanation	Commentary						
-----------------------	---	--						
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	Geostatistical modelling and variography for each domain and each variable were completed in Leapfrog Edge v5.1.2 and block modelling was undertaken in Leapfrog Geo software. A block model was set up with a parent cell size of 10m (E) x 10m (N) x 10m (RL). Variables in each domain were estimated using Ordinary Kriging. The orientation of the search ellipse and variogram model was controlled using surfaces designed to reflect the local orientation of the mineralized structures. An oriented "ellipsoid" search for each domain was used to select data for interpolation. Estimation search ellipse ranges were adjusted for each element in each domain based on the variogram ranges. Validation checks included statistical comparison between drill sample grades and Ordinary Kriging block estimate results for each domain. Visual validation of grade trends for each element along the drill sections was also completed in addition to swath plots comparing drill sample grades and model grades on a range of northings. These checks show good correlation between estimated block grades and drill sample grades. CEL completed a Mineral Resource Estimation that was reported to the ASX on 14 June 2024. No production records are available to provide comparisons.						
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	Tonnage is estimated on a dry basis.						
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The following metals and metal prices have been used to report gold grade equivalent (AuEq) for the Foreign Mineral Resource: Au US\$ 1600/ oz, Ag US\$19.50/oz, Cu 3.00 US\$/ lb (US\$ 6,614/ t) and Mo US\$ 53,000/ t.						
		No metallurgical test work has been completed on the mineralisation at El Guayabo. The Foreign Resource Estimate assumes all metals will have equivalent recovery. Accordingly, the formula used for Au Equivalent in the Foreign Resource Estimate is: AuEq g/t = Au g/t + (Ag g/t x 0.012188) + (Cu % x 1.29) + (Mo % x 10.3).						

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office Level 1 100 Havelock Street

West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Brett Hackett Non Exec Director

Contact

Criteria	JORC Code explanation	Commentary		
		The Foreign Resource Estimate is reported to a cut-off grade of 0.30 ppm AuEq. Under this scenario, blocks with a grade above the 0.30 g/t Au Eq cut off are considered to have reasonable prospects of mining by open pit methods.		
Mining factors or assumptions	 Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determini reasonable prospects for eventual economic extraction to conside potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resou may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumpti- made. 	rces		
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extracti to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters ma when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation the basis of the metallurgical assumptions made. 	2		
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extracti to consider the potential environmental impacts of the mining an processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this sho be reported with an explanation of the environmental assumption made. 	tailings disposal. No detailed environmental impact studies have been completed.		
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry frequency of the measurements the nature size and 	The Company has collected 379 specific gravity (SG) measurements from drill core, which have been used to estimate block densities for the Resource Estimate. Measurements we determined on a dry basis by measuring the difference in sample weight in		
hallenger Gold Limited CN 123 591 382 SX: CEL	161.0m options 100 Havelock Street Mr Kri 49.5m perf rights West Perth WA 6005 Mr Se Dr Sou Mr Fle Mr Pir Mr Br	ors Contact Jardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 s Knauer, MD and CEO E: admin@challengerex.com gio Rotondo, Exec. Vice Chair E: admin@challengerex.com ia Delgado, Exec. Director treft tcher Quinn, Non-Exec. Director i Althaus , Non Exec Director tt Hackett Non Exec Director treft		

Criteria	JORC Code explanation	Commentary
	 representativeness of the samples. The bulk density for bulk material must have been measured methods that adequately account for void spaces (vugs poro moisture and differences between rock and alteration zones the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	sity etc) average SG was applied for the whole block model to estimate the density.
Classification	 The basis for the classification of the Mineral Resources into confidence categories. Whether appropriate account has been taken of all relevant (ie relative confidence in tonnage/grade estimations reliabili input data confidence in continuity of geology and metal val quality quantity and distribution of the data). Whether the result appropriately reflects the Competent Per view of the deposit. 	NI-43-101 which has resource categories that are similar to the JORC categories. The classification level is based upon semi-qualitative assessment of the geological understanding of the deposit, geological and mineralisation continuity, drill hole spacing, QC results, search and interpolation parameters and an analysis of available density information. The estimation search strategy was undertaken in one pass with classification of the Foreign
Audits or reviews	- The results of any audits or reviews of Mineral Resource estin	<i>mates.</i> The Foreign Mineral Resource estimate has not been independently audited or reviewed. CEL intends to review the Foreign Mineral Resource Estimate and update it to JORC reporting standards.
Discussion of	- Where appropriate a statement of the relative accuracy and	There is sufficient confidence in the data quality, drilling methods and analytical results that
relative accuracy/	confidence level in the Mineral Resource estimate using an a	
confidence	 or procedure deemed appropriate by the Competent Person. example the application of statistical or geostatistical proced quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appro- qualitative discussion of the factors that could affect the rela- accuracy and confidence of the estimate. The statement should specify whether it relates to global or estimates and if local state the relevant tonnages which shour relevant to technical and economic evaluation. Documentatis should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data where and 	No production data is available for comparison with block grades.
hallenger Gold Limited CN 123 591 382 SX: <mark>CEL</mark>	1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	Directors Contact Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair E: admin@challengerex.com Dr Sonia Delgado, Exec. Director Hr Fletcher Quinn, Non-Exec. Director Mr Prott Hausr, Non Exec Director Hr Prott Hausr, the New Force Functor

Section 3 Estimation and Reporting of Mineral Resources for El Guayabo Mineral Resource Estimate

West Perth WA 6005

(Criteria listed	l in th	e precedino	a section	also	apply to	this	section.)

Criteria	JORC Code explanation	Commentary		
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral 	The database includes both drilling completed by previous explorers, drill holes recently completed by the Company and underground channel samples completed by the Company.		
	Resource estimation purposes. - Data validation procedures used.	Drill core from historic drilling has been recently re-logged and re-sampled. These data are transcribe by the database / GIS team into a database held on site at EMSA offices in Totara, Ecuador. Only the hole collar and down-hole survey from the historic data has been directly transcribed from the historic data. All other data is newly generated.		
		Logging data from channel samples and drill holes completed by the Company (Phase 1 and Phase 2) transcribed into the same database as the historic data. Drill hole collar, survey, logging is captured directly into MS Excel and peer reviewed before being given to the database team. Final assay data received from the labs is reviewed (blanks, duplicates and standards) and then added to the database Back up copies of all data is retained in separate files.		
		The drill hole data is backed up and is updated periodically.		
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The Competent Person has undertaken site visits from 2019, during early-stage exploration and drillir Early site visits were undertaken to review the progress of exploration prior to drilling and to review historic drill core. The most recent site visit was in June 2022 to review the geology, drilling program, collection of data, sampling procedures, sample submission and exploration program.		
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. 	The geological interpretation and understanding of the controls on mineralisation has been used to model the geometry of the mineralised system. El Guayabo is a high-level porphyry intrusive and intrusive-related breccia complex with mineralisation controlled by regional scale and local scale fault fracture zones and lithology contacts. Multiple pulses of mineralisation are evident in the alteration vein overprinting relationships.		
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	Given the available data and understanding of the geological controls on mineralisation, the Competer Person has confidence in the geological model that has been used to constrain the high grade and low grade mineralised domains. At the El Guayabo deposits, continuity of grade between drill holes is determined by the intensity of		
		fracturing, the host rock contacts (particularly intrusive – metamorphic sediment contacts). The high grade mineralised domains have been built using explicit wireframe techniques using a nominal cut-c grade over a 2.0 metre interval of $0.7 - 1.0$ g/t AuEq mineralised intersections, joined between holes		

Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

www.challengerex.com

49.5m perf rights

Criteria	JORC Code explanation	Commentary					
Dimensions	- The extent and variability of the Mineral Resource	grade has been generated using Leapfrog to bu strike, dipping steeply NW with a nominal rang No alternative interpretations have been gene	using the AuEq grade, geology and controlling structure. The Low-grade domain surrounding the his grade has been generated using Leapfrog to build a 0.2 g/t AuEq isosurface, following the main NE t strike, dipping steeply NW with a nominal range of 200m. No alternative interpretations have been generated that form the basis for a Mineral Resource Estir The Mineral Resource consists of 3 sub-parallel zones.				
Dimensions	- The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan wid and depth below surface to the upper and lower limits of the Mineral Resource.	 GY-A has a NE strike of 0.9 kilometres dipping I to a depth of 650 metres below surface. GY-B has a strike of 0.5 kilometres, dipping NW a depth of 400 metres below surface. GY-C has a ENE strike of 0.8 kilometres, dipping 	 GY-A has a NE strike of 0.9 kilometres dipping NW at 80 degrees, width of 0.4 kilometres and to a depth of 650 metres below surface. GY-B has a strike of 0.5 kilometres, dipping NW at 80 degrees, with of 0.2 kilometres and is e a depth of 400 metres below surface. GY-C has a ENE strike of 0.8 kilometres, dipping NNW at 80 degrees, with of 0.2 kilometres a estimated to a depth of 450 metres below surface. All 3 zones remain open in all directions. 				
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and/or mine production records and whether the Miner Resource estimate takes appropriate account of such details. 	A statistical analysis was undertaken on the sar composites for each domain. The top-cut value the grade population within each domain and s ata. erratic. The following table shows the top cuts	ne to compare to mparisons. domain and a 3 r osite statistics. mple composites es were chosen selecting the val	o the current F metre compos s top cuts for J by assessing t ue above whic	Resource esti ite length in Au, Ag, Cu ar he high-end	the low-grad nd Mo distribution o	
	- Estimation of deleterious elements or other non-grade	Domain	Au (ppm)	Ag (ppm)	Cu (%)	Mo (ppm)	
	variables of economic significance (eg sulphur for acid	High-grade (GY-A, GY-B)	10	70		200	
	mine drainage characterisation).	High-grade (GY-C)	11	70	-	150	
	- In the case of block model interpolation the block size in		10	-		-	
	relation to the average sample spacing and the search	Low-grade (GY-C)	8	-	-	-	
	 employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was us to control the resource estimates. Discussion of basis for using or not using grade cutting and the second second		e of 10m (E) x 10 the low-grade d	omains.			
lenger Gold Limited 123 591 382 CEL	Issued CapitalAustralian Registered Office1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	Directors Contact Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Bret H Jacket Mone Exec Director Mr Bret H Jacket Mone Exec Director	1				

Criteria	JORC Code explanation	Commentary
	 capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	Variables in each domain were estimated using Ordinary Kriging. The orientation of the search ellipse and variogram model was controlled using surfaces designed to reflect the local orientation of the mineralized structures.
		An oriented "ellipsoid" search for each domain was used to select data for interpolation. Estimation search ellipse ranges were adjusted for each element in each domain based on the variogram ranges.
		Validation checks included statistical comparison between drill sample grades and Ordinary Kriging block estimate results for each domain. Visual validation of grade trends for each element along the drill sections was also completed in addition to swath plots comparing drill sample grades and model grades on a range of northings. These checks show good correlation between estimated block grades and drill sample grades.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	Tonnage is estimated on a dry basis.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The following metals and metal prices have been used to report gold grade equivalent (AuEq): Au US\$ 1800 / oz Ag US\$22 /oz, Cu US\$ 9,000 /t and Mo US 44,080/t. Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from similar projects in Ecuador. No metallurgical test work has been completed on the mineralisation at El Guayabo. For the AuEq calculation average metallurgical recovery is estimated as 85% for gold, 60% for silver, 85% for Cu and 50% for Mo. Accordingly, the formula used for Au Equivalent is: AuEq = Au g/t + (Ag g/t x 0.01222 x [60/85]) + (Cu % x [90/57.8778] x {85/85]) + (Mo % x 440.8/57.8778) [50/85], or AuEq = Au g/t + (Ag g/t x 0.008627) + (Cu % x 1.555) + (Mo % x 4.480)
		Based on the break-even grade for an optimised pit shell for gold equivalent, a AuEq cut-off grade of 0.3 ppm is used to report the resource within an optimised pit shell run at a gold price of US\$1,800 per ounce and allowing for Ag, Cu and Mo credits. Under this scenario, blocks with a grade above the 0.30 g/t Au Eq cut off are considered to have reasonable prospects of mining by open pit methods. A AuEq cut-off grade of 0.40 ppm was used to report the resource beneath the optimised pit shell run as these blocks are considered to have reasonable prospects of future mining by bulk underground methods.

Mr Eduardo Elsztain, Non-Exec. Chair

Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Mr Kris Knauer, MD and CEO

T: +61 8 6385 2743

E: admin@challengerex.com

www.challengerex.com

1,690m shares

161.0m options

49.5m perf rights

Level 1

100 Havelock Street

West Perth WA 6005

ACN 123 591 382

ASX: CEL

Criteria	JORC Code explanation	Commentary		
Mining factors or assumptions-Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining Mineral methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.The Resource mining. A sur model that way surface mined e Aug e \$44 e Core e \$44 e \$44 e \$44 e \$44 e \$44 e \$44 e \$44 e \$44 e \$44 e \$46 e \$47.5 <		 he Resource estimate has assumed that near surface mineralisation would be amenable to open pit hining. A surface mine optimiser has been used to determine the proportion of the Resource Estimate nodel that would be amenable to eventual economic extraction by open pit mining methods. The urface mine optimiser used the following parameters with prices in USD: Au price of \$1,800 per oz, Ag price of \$22 per oz, Cu price of \$9,000 per tonne and Mo price o \$44,080 per tonne Average metallurgical recoveries of 85 % for Au, 60 % for Ag and 85 % for Cu and 50 % for Mo Ore and waste mining cost of \$2.00 per tonne Processing cost of \$7.60 per tonne GA cost of \$0.80 per tonne Refining, transport and marketing of \$60 / oz of AuEq Royalty net of transport cost – 3% NSR - \$52.20/oz AuEq. 47.5° overall pit slopes locks above a 0.30 g/t AuEq within the optimised open pit shell are determined to have reasonable rospects of future economic extraction by open pit mining and are included in the Resource estimate of the second state of the resource estimate of the resource estimate of the resource		
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 No metallurgical test work has been completed on the El Guayabo mineralisation. <i>f</i> Metallurgical assumptions are based on recovery by floatation of separate Cu-Au-Ag and Mo concentrates as is proposed for similar projects in Ecquador with transport and shipping of the concentrates from ports nearby to the Project. The following assumptions are based on test work reported by Lumina Gold at the nearby Cangrejos Project, which is part of the same intrusive complete El Guayabo. Gold – 85% (Lumina Gold PFS) Copper – 85% (PFS recovery is 79% but this is based on a mix of fresh (87%) and part oxidised (50%) whereas there is minimal oxidised material at El Guayabo - Lumina 43-101 report June 2022) Silver – 60% (PFS recovery is 55% but this is based on a mix of fresh (60%) and part oxidised (50%) whereas these is minimal oxidised material at El Guayabo) - Lumina 43-101 report June 2022) Molybdenum – 50% (Lumina 43-101 report June 2022) 		
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing 	It is considered that there are no significant environmental factors which would prevent mining.		
lenger Gold Limited 123 591 382 CEL	1,690m shares Level 1 161.0m options 100 Havelock Street 49.5m perf rights West Perth WA 6005	Directors Contact Vir Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Vir Kris Knauer, MD and CEO E: admin@challengerex.com Vir Sergio Rotondo, Exec. Vice Chair E: admin@challengerex.com Or Sonia Delgado, Exec. Director Vir Fletcher Quinn, Non-Exec. Director Vir Pietcher Quinn, Non-Exec Director Vir Pietcher Vice Vice Vice Vice Vice Vice Vice Vice		

Criteria	JORC Code explanation	Commentary
	operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	The Company has collected 379 specific gravity (SG) measurements from drill core, which have been user to estimate block densities for the Resource Estimate. Measurements we determined on a dry basis by measuring the difference in sample weight in water and weight in air. The SG values across the different rock types and mineralisation styles are stable and so an average SG was applied for the whole block model to estimate the density. Of the SG values measure the range is 1.83 to 3.63 g/cc. The average value is 2.74 g/cc and the median value is 2.73 g/cc. A bulk density value of 2.73 g/cc (2,730 kg/m3) was applied to the blocks to estimate tonnage.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The Mineral Resource has been classified based on the guidelines specified in the JORC Code. The classification level is based upon semi-qualitative assessment of the geological understanding of the deposit, geological and mineralisation continuity, drill hole spacing, QC results, search and interpolation parameters and an analysis of available density information. The estimation search strategy was undertaken in one pass with classification of the resource into Inferred. The potential open pit resource was constrained within an optimised pit shell run using a gold price of \$1,800 per ounce. Blocks inside the pit shell were reported above a AuEq cut-off grade of 0.30 ppm and blocks outside the pit shell were reported above a AuEq cut-off grade of 0.40 ppm. The Resource Estimate is classified 100% Inferred. The Competent Person has reviewed the result and determined that these classifications are appropriate given the drill hole spacing, domain constraints and confidence in the geology, data and results from drilling.
Audits or reviews	- The results of any audits or reviews of Mineral Resource estimates.	The Mineral Resource estimate has not been independently audited or reviewed.

Challenger Gold ACN 123 591 382 ASX: CEL

1,690m shares 161.0m options 49.5m perf rights Level 1 100 Havelock Street West Perth WA 6005

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data where available. 	 There is sufficient confidence in the data quality, drilling methods and analytical results that they can be relied upon for the estimation technique applied. No alternative techniques have been applied to test the accuracy of the estimate. The approach and procedure applied is deemed appropriate given the confidence limits and Resource Category applied. The main factors which could affect relative accuracy are: domain boundary extent and assumptions orientation of the controlling structure grade continuity and range modelling composite top cuts. No production data is available for comparison with block grades.

Section 3 Estimation and Reporting of Mineral Resources for Colorado V Mineral Resource Estimate

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	, ,	Commentary		
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 		The database includes both drilling completed by previous explorers, drill holes recently completed by the Company and underground channel samples completed by the Company. Drill core from historic drilling has been recently re-logged and re-sampled. These data are transcribed by the database / GIS team into a database held on site at EMSA offices in Totara, Ecuador. Only the dr hole collar and down-hole survey from the historic data has been directly transcribed from the historic data. All other data is newly generated.		
			Logging data from channel samples and drill holes completed by the Company (Phase 1 and Phase 2 transcribed into the same database as the historic data. Drill hole collar, survey, logging is captured directly into MS Excel and peer reviewed before being given to the database team. Final assay data received from the labs is reviewed (blanks, duplicates and standards) and then added to the databa Back up copies of all data is retained in separate files.		
nger Gold Limited 23 591 382 EL	Issued Capital 1,690m shares 161.0m options 49.5m perf rights	Australian Registered Office Level 1 100 Havelock Street West Perth WA 6005	Directors Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director	Contact T: +61 8 6385 2743 E: admin@challengerex.com	

Criteria	JORC Code explanation	Commentary		
		 Early site visits were undertaken to review the progress of exploration prior to drilling and to review historic drill core. The most recent site visit was in June 2022 to review the geology, drilling program, collection of data, sampling procedures, sample submission and exploration program. The geological interpretation and understanding of the controls on mineralisation has been used to model the geometry of the mineralised system. Colorado V (CV-A and CV-B soil geochemical anomaly) a high-level porphyry intrusive and intrusive-related breccia complex with mineralisation controlled by regional scale and local scale fault-fracture zones and lithology contacts. Multiple pulses of mineralisation are evident in the alteration and vein overprinting relationships. Given the available data and understanding of the geological controls on mineralisation, the Competen Person has confidence in the geological model that has been used to constrain the mineralised domain 		
Site visits	 Comment on any site visits undertaken by the Competen Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 			
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Minera Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geolog 			
Dimensions	- The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan widt and depth below surface to the upper and lower limits of the Mineral Resource.	The Mineral Resource consists of 2 zones. h CV-A has a NE strike of 0.8 kilometres dipping NW at 80 degrees, width of 0.4 kilometres and is estimated		
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and we the Minere and the set of the set	 Estimation was made for Au Ag, Cu and Mo being the elements of economic interest. No previous Resource Estimation has been done to compare to the current Resource Estimate. No production records are available to provide comparisons. A 2 metre composite length was selected after reviewing the composite statistics. A statistical analysis was undertaken on the sample composites top cuts for Au, Ag, Cu and Mo composites for each domain. The top-cut values were chosen by assessing the high-end distribution the grade population within each domain and selecting the value above which the distribution becar 		
lenger Gold Limited 123 591 382 CEL	1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	Directors Contact Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Prini Althaus , Non Exec Director Mr Prini Althaus , Non Exec Director Mr Prini Althaus , Non Exec Director		

Chai ACN ASX:

	Criteria	JORC Code explanation	Commentary
		Resource estimate takes appropriate account of such data. - The assumptions made regarding recovery of by-products.	erratic. The following table shows the top cuts applied to each group
		- Estimation of deleterious elements or other non-grade	Domain Au (ppm) Ag (ppm) Cu (%) Mo (ppm)
		variables of economic significance (eg sulphur for acid	NE striking Domain 100 3 150
		mine drainage characterisation).	NW striking Domain 200 5 20 - 30
D		 In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. 	Block modelling was undertaken in Surpac™ V6.6 software.
		 Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	A block model was set up with a parent cell size of 20m (E) x 20m (N) x 20m (RL).
			Variography was carried out using Leapfrog Edge software on composited data from each of the domains for each variable.
			Variables in each domain were estimated using Ordinary Kriging. The orientation of the search ellipse and variogram model was controlled using surfaces designed to reflect the local orientation of the mineralized structures.
			An oriented "ellipsoid" search for each domain was used to select data for interpolation. Estimation search ellipse ranges were adjusted for each element in each domain based on the variogram ranges.
			Validation checks included statistical comparison between drill sample grades and Ordinary Kriging block estimate results for each domain. Visual validation of grade trends for each element along the drill sections was also completed in addition to swath plots comparing drill sample grades and model grades on a range of northings. These checks show good correlation between estimated block grades and drill sample grades.
	Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	Tonnage is estimated on a dry basis.
	Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	The following metals and metal prices have been used to report gold grade equivalent (AuEq): Au US\$ 1800 / oz Ag US\$22 /oz, Cu US\$ 9,000 /t and Mo US 44,080/t.
			Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from similar projects in Ecuador. No metallurgical test work has been completed on the mineralisation at Colorado V. For the AuEq calculation average metallurgical recovery is estimated as 85% for gold, 60% for silver, 85%
			for Cu and 50% for Mo.
			Accordingly, the formula used for Au Equivalent is:
	lenger Gold Limited 123 591 382 CEL	1,690m sharesLevel 1Mr E161.0m options100 Havelock StreetMr K49.5m perf rightsWest Perth WA 6005Mr SDr SuDr SuMr F	ctors Contact duardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 ris Knauer, MD and CEO E: admin@challengerex.com ergio Rotondo, Exec. Vice Chair 5: admin@challengerex.com onia Delgado, Exec. Director Etcher Quinn, Non-Exec. Director ini Althaus, Non Exec Director 5

Criteria	JORC Code explanation	Commentary
		AuEq = Au g/t + (Ag g/t x 0.01222 x [60/85]) + (Cu % x [90/57.8778] x {85/85]) + (Mo % x 440.8/57.8778) x [50/85], or
		AuEq = Au g/t + (Ag g/t x 0.008627) + (Cu % x 1.555) + (Mo % x 4.480)
		An AuEq cut-off grade of 0.30 ppm is used to report the resource within an optimised pit shell run at a gold price of US\$2,000 per ounce, Ag US\$24 and allowing for Cu and Mo credits. Under this scenario, blocks with a grade above the 0.30 g/t Au Eq cut off are considered to have reasonable prospects of mining by open pit methods. A AuEq cut-off grade of 0.40 ppm was used to report the resource beneath the optimised pit shell run as these blocks are considered to have reasonable prospects of future mining by a bulk underground mining method.
Mining factors or assumptions	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicabl external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential minin methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.	f model that would be amenable to eventual economic extraction by open pit mining methods. The surface mine optimiser used the following parameters with prices in USD:
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding	No metallurgical test work has been completed on the Colorado V mineralisation. of Metallurgical assumptions are based on recovery by floatation of separate Cu-Au-Ag and Mo concentrates as is proposed for similar projects in Ecuador with transport and shipping of the concentrates from ports nearby to the Project. The following assumptions are based on test work reported by Lumina Gold at the nearby Cangrejos Project, which is part of the same intrusive complex as
llenger Gold Limited 123 591 382 : CEL	1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	Directors Contact Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair E: admin@challengerex.com Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Prott Haus, Non Exec Director Mr Prott Hauskat Non Exec Director

C A

Criteria	JORC Code explanation	Commentary
	metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Colorado V. Gold – 85% (Lumina Gold PFS) Copper – 85% (PFS recovery is 79% but this is based on a mix of fresh (87%) and part oxidised (50%) whereas there is minimal oxidised material at Colorado V - Lumina 43-101 report June 2022) Silver – 60% (PFS recovery is 55% but this is based on a mix of fresh (60%) and part oxidised (50%) whereas these is minimal oxidised material at Colorado V) - Lumina 43-101 report June 2022) Molybdenum – 50% (Lumina 43-101 report June 2022)
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part op the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	f Mining is assumed to be crush, grind, gravity and sequential flotation with appropriate waste dump and tailings disposal. No detailed environmental impact studies have been completed.
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the natur size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 to estimate block densities for the Resource Estimate. Measurements we determined on a dry basis by measuring the difference in sample weight in water and weight in air. The SG values across the different rock types and mineralisation styles are stable and so an average SG was applied for the whole block model to estimate the density. The average and the median value is 2.73 g/cc. A bulk density value of 2.73 g/cc (2,730 kg/m3) was applied to the blocks to estimate tonnage.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity 	The Mineral Resource has been classified based on the guidelines specified in the JORC Code as Indicated and Inferred based on the guidelines specified in the JORC Code. The classification level is based upon semi-qualitative assessment of the geological understanding of the deposit, geological and mineralisation continuity, drill hole spacing, QC results, search and interpolation parameters. The Colorado V deposit was sampled by drilling at nominal 100m spacing along strike. The central part of the northern domain has been infilled providing the confidence to upgrade this area to Indicated
enger Gold Limited 123 591 382 CEL	1,690m sharesLevel 1161.0m options100 Havelock Street49.5m perf rightsWest Perth WA 6005	Directors Contact Mr Eduardo Elsztain, Non-Exec. Chair T: +61 8 6385 2743 Mr Kris Knauer, MD and CEO E: admin@challengerex.com Mr Sergio Rotondo, Exec. Vice Chair E: admin@challengerex.com Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Fletcher Quinn Secure Director Mr Brett Hackett Non Exec Director Fletcher Quinn Secure Director

Criteria	JORC Code explanation	Commentary
	and distribution of the data). - Whether the result appropriately reflects the Competent Person's view of the deposit.	category. The potential open pit resource was constrained within an optimised pit shell run using a gold price of US\$2,000 per ounce. Blocks inside the pit shell were reported above a AuEq cut-off grade of 0.30 ppm and blocks outside the pit shell were reported above a AuEq cut-off grade of 0.40 ppm. The Competent Person has reviewed the result and determined that these classifications are appropriat given the drill hole spacing, domain constraints and confidence in the geology, data and results from drilling.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	The Mineral Resource estimate has not been independently audited or reviewed.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data where available. 	 There is sufficient confidence in the data quality, drilling methods and analytical results that they can be relied upon for the estimation technique applied. No alternative techniques have been applied to test the accuracy of the estimate. The approach and procedure applied is deemed appropriate given the confidence limits and Resource Category applied. The main factors which could affect relative accuracy are: domain boundary extent and assumptions orientation of the controlling structure grade continuity and range modelling composite top cuts. No production data is available for comparison with block grades.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,690m shares 161.0m options 49.5m perf rights Australian Registered Office

Level 1 100 Havelock Street West Perth WA 6005

Directors

Mr Eduardo Elsztain, Non-Exec. Chair Mr Kris Knauer, MD and CEO Mr Sergio Rotondo, Exec. Vice Chair Dr Sonia Delgado, Exec. Director Mr Fletcher Quinn, Non-Exec. Director Mr Pini Althaus , Non Exec Director Mr Brett Hackett Non Exec Director

Contact T: +61 8 6385 2743 E: admin@challengerex.com