

ASX RR1 ASX ANNOUNCEMENT

19 February 2025

41M AT 2.01G/T AU FROM SURFACE AT MURCHISON SOUTH GOLD PROJECT

HIGHLIGHTS

- RC drilling from the first two (2) holes at the Murchison South gold project has intersected high grade gold, providing initial validation of historical drilling results
- Significant assay results include (down hole widths):
 - 25PFRC001 (Hole 1)
 41m @ 2.01 g/t from surface; including
 15m @ 2.01 g/t from 2m, and
 5m @ 10.01 g/t from 36m
 - 25PFRC002 (Hole 2)
 22m @ 0.70 g/t from 33m; including
 10m @ 1.05 g/t from 33m, and
 1m @1.61 g/t from 45m
- A total of fourteen holes were drilled for 1463m at an average depth of 104m, at the Blue Heaven deposit
- Results from the first two drill holes align with the interim mineralisation analysis completed by Mining Plus, with the holes having intercepted the main rock types and showing a well-defined weathering profile
- Assays from the remaining 12 holes are due next week

Reach Resources Limited (ASX: RR1 & RR1OA) ("Reach" or "the Company") is pleased to announce assay results from the first two (2) of fourteen (14), RC drill holes at the Company's 100% owned Murchison South gold project, near Payne's Find, in the gold rich Murchison Mineral Field W.A (see Figure 1). The initial results broadly support the interim mineralisation model developed by Mining Plus, with high-grade mineralisation consistently associated with quartz veins within hornblende gneiss.

Commenting on the results CEO Jeremy Bower said:

"These fantastic initial results give us a great start towards validation of the historic drilling and resource model at our Blue Heaven deposit. We have hit some high-grade shallow gold intervals, which align with the model, which is very encouraging, and we now eagerly await assays from the remaining 12 holes so we can get a complete understanding of our project."

REACH RESOURCES LIMITED

ASX RR1 ASX ANNOUNCEMENT

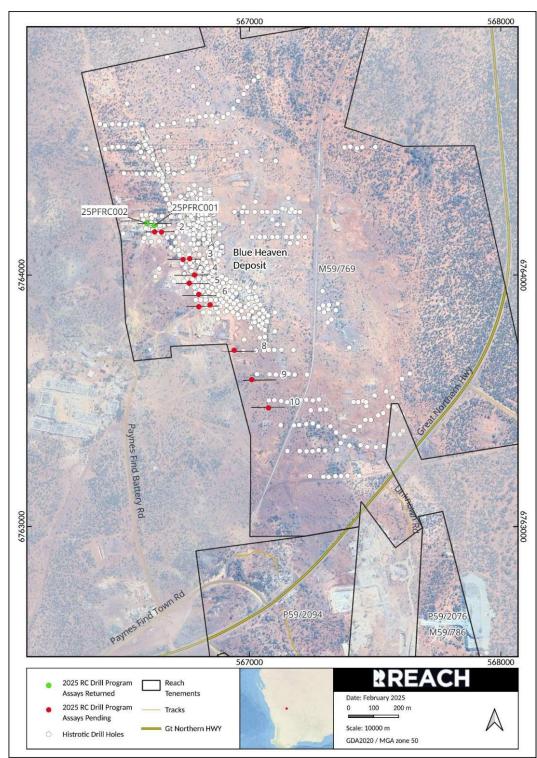


Figure 1: Murchison South Gold Project showing the Blue Heaven deposit with current and historic drilling.

The drill program comprised 14 RC holes for a total of 1463m at an average depth of 104m and collection of 1588 samples for assay. This announcement relates to the first two (2) drill holes only (Refer to JORC Table 1 Appendix A for full results and collar table from holes 25PFRC001 & 25PFRC002).

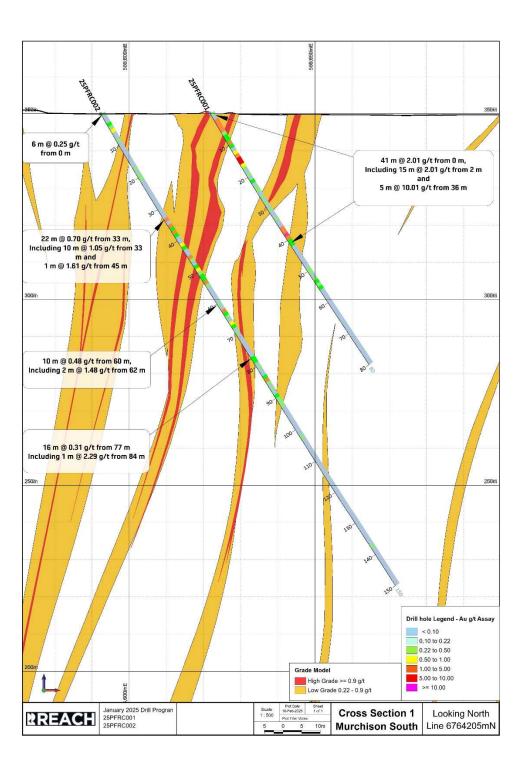


Figure 2: Cross Section.

ASX RR1 ASX ANNOUNCEMENT

The weathering zone is not intercepted in this cross-section but appears further south from Section 3 (Figure 1). Cross-Section 1 (Figure 2) displays multiple high-grade zones that broadly align with the existing model. Low-grade zones (yellow) envelop the high-grade mineralisation and correlate well with the new drilling.

Once all the drilling results have been received, Mining Plus will have sufficient data to interrogate the results before integrating them into their model. This will guide the next steps in optimizing pit designs at the Blue Heaven deposit and additionally will help determine the number and locations of planned diamond drill holes, which will be the source of sample material for the required metallurgical testing and geotechnical analysis.

Key Next Steps

- Receipt of remaining assay results
- Mining plus continue their independent mining review
- Metallurgical test work
- Negotiations with mining contractors and processors

This announcement has been authorised by the Board of Reach Resources Limited

For further information please contact:

Jeremy Bower

Chief Executive Officer Level 4, 216 St Georges Terrace Perth, 6000 W.A *jeremy@reachresources.com.au*

-ENDS-

About Reach Resources Limited

Reach Resources is a critical mineral explorer with a large portfolio of tenements in the resource rich Gascoyne Mineral Field. Recent and historical exploration results have confirmed the presence of Lithium, REE, Niobium and Manganese across the Company's land holdings.

However, the Company is distinct from other pure explorers by also having an Inferred Gold Resource at Payne's Find and an investment in a downstream patented technology that recycles the rare earth elements from the permanent magnets required in electric vehicles, wind turbines, hard disk drives and MRI machines (REEcycle Inc.).

Competent Person's Statement

Information in this announcement that relates to exploration results is based on and fairly represents information and supporting documentation prepared and compiled by Mr David Tsiokos, who is a Member of the Australian Institute of Geoscientists. Mr Tsiokos is the Principal Geologist for Reach Resources Limited employed on a full-time basis. Mr Tsiokos has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person, as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Tsiokos consents to the inclusion in the announcement of the matters based on this information in the form and context in which it appears.

No New Information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

Forward Looking Statement

This report contains forward looking statements concerning the projects owned by Reach Resources Limited. If applicable, statements concerning mining reserves and resources may also be deemed to be forward looking statements in that they involve estimates based on specific assumptions. Forwardlooking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward looking statements as a result of a variety of risks, uncertainties and other factors. Forward looking statements are based on management's beliefs, opinions and estimates as of the dates the forward looking statements are made and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

	HOLE_ID	FROM	TO	INTERVAL (m)	FA-Au-ppm	Significant Intercepts (Minimum grade 0.25g/t, consecutive Internal waste 2m, overall grade =>1g/t)
	25PFRC001	0	41	41	2.01	15 m @ 2.01 g/t from 2 m, and 5 m @ 10.01 g/t from 36 m
	25PFRC002	0	6	6	0.252	
	25PFRC002	33	55	22	0.7001	10 m @ 1.05 g/t from 33 m and 1 m @ 1.61 g/t from 45 m
	25PFRC002	60	70	10	0.4837	2 m @ 1.48 g/t from 62 m
\geq	25PFRC002	77	93	16	0.31	1 m @ 2.29 g/t from 84 m
	25PFRC003	Assays pen	ding			
	25PFRC004	Assays pen	ding			
	25PFRC005 Assays pending					
	25PFRC006 Assays pending					
	25PFRC007	Assays pen	ding			
2	25PFRC008	Assays pen	ding			
	25PFRC009	Assays pen	ding			
5	25PFRC010	Assays pen	ding			
))	25PFRC011	Assays pen	ding			
\leq	25PFRC012	Assays pen	ding			
)	25PFRC013	Assays pen	ding			
P	25PFRC014	Assays pen	ding			
22	Caption: Lov	ver cut-off 0	.1pp	m Au, Minimum I	ength 2m, Int	ernal dilution 2m, Min. grade of final composite 0.5ppm, Max. waste 2m, no top-cut

D	Prospect	HoleType	HoleStatus	TotalDepth_m	Dip	Azi_True	Company	LeaseID	Surv_GridID	Surv_East	Surv_North
	Blue Heaven	RC	DR	80.0	-60.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566621.81	6764197.789
	Blue Heaven	RC	DR	150.0	-60.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566592.39	6764205.337
	Blue Heaven	RC	DR	59.0	-60.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566650.317	6764170.841
	Blue Heaven	RC	DR	120.0	-62.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566622.663	6764171.978
	Blue Heaven	RC	DR	80.0	-60.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566762.531	6764064.947
	Blue Heaven	RC	DR	115.0	-63.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566735.938	6764062.088
	Blue Heaven	RC	DR	110.0	-60.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566781.66	6764000.417
	Blue Heaven	RC	DR	137.0	-62.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566760.286	6763967.647
	Blue Heaven	RC	DR	100.0	-64.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566798.208	6763923.371
	Blue Heaven	RC	DR	70.0	-64.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566843.499	6763881.546
	Blue Heaven	RC	DR	110.0	-64.0	90.0	RR1	M59/769	GDA2020_MGA Zone 50	566798.412	6763874.399
	Blue Heaven	RC	DR	100.0	-62.0	60.0	RR1	M59/769	GDA2020_MGA Zone 50	566939.291	6763701.138
	Blue Heaven	RC	DR	100.0	-62.0	60.0	RR1	M59/769	GDA2020_MGA Zone 50	567008.656	6763584.564
	Blue Heaven	RC	DR	132.0	-62.0	60.0	RR1	M59/769	GDA2020_MGA Zone 50	567075.461	6763472.118

Murchison South Blue Heaven Collar Id January 2025

Appendix 1: Table 1 Murchison South - JORC 2012 Sampling Techniques and Data.

Criteria	JORC 2012 Explanation	Commentary
Sampling Techniques	The nature and quality of sampling should be clearly defined, with specific reference to the techniques used, such as cut channels, random chips, or specialized industry-standard measurement tools that are suitable for the minerals being investigated. Examples of such tools include downhole gamma sondes or handheld XRF instruments. These examples should not be viewed as an exhaustive list, as the term "sampling" encompasses a wide range of methods depending on the type of exploration and the minerals targeted.	11 definition and 3 exploration drill holes were drilled at Murchison South and were sampled by an RC rig, using a cyclone and cone splitter into two calico bags, one was sent to the lab with the sample number printed on it, the other has the meter number written on it and stored in reserve. Each calico bag was put onto the same chute throughout the drilling program. Samples were collected at 1m intervals to collect a ~2.5kg sample. The reject sample was collected by bucket and piled into rows of 10 or 20. 1588 samples from 14 drill holes were assayed for Au using fire assay method (FA50/OE04), 492 samples were tested for Au using photon assay method, and 995 samples were tested for Ag, As, Bi, Cu, Pb, S, Sb, Te, Zn using 4 acid ICPOES or ICPMS at Intertek labs Perth.
	It is essential to outline the measures taken to ensure the representativity of the samples, ensuring that they accurately reflect the mineralization present. This includes proper procedures for sample collection, handling, and processing. Additionally, all measurement tools or systems used must be appropriately calibrated to meet industry standards, and the calibration process should be clearly documented to confirm the reliability and accuracy of the data.	
	The determination of mineralization, which is material to the public report, should also be included. In cases where standard industry methods are followed, a straightforward description may suffice, such as "reverse circulation drilling was used to obtain 1-meter samples, from which 3 kg was pulverized to produce a 30 g charge for fire assay." However, where more complex sampling challenges exist— such as with coarse gold that may present inherent sampling issues—additional details may be required to explain how these challenges were addressed. For unusual commodities or mineralization types, such as submarine nodules, more detailed information on the sampling methods should be disclosed to ensure the clarity	
	and reliability of the report. Include reference to measures taken to ensure representativity samples and the appropriate calibration of any measurement tools or systems used.	Sampling for geochemical analysis was continuous down the length of each hole with 1 sample collected every meter. The cyclone was cleaned after every 6m rod. A geologist was supervising drilling at all times. The calico bag sent for assay was placed on the same chute on the cone splitter throughout the program. The samples were weighed at regular intervals. The drill head was lifted off when the sample was taken to minimise smearing.
	Aspects of the determination of mineralisation that are Material to the Public Report.	Low-grade mineralization is defined as ≥0.22 ppm Au, while high- grade mineralization is ≥0.9 ppm Au, based on statistical analysis of historical assay results conducted by Mining Plus.
Drilling Technique	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	A truck mounted RC percussion rig (OX SR 72) was utilized from surface to end of hole. This rig was used to drill all 14 drill holes. All RCholes were down-hole surveyed using a North Seeking Gyro (multi- shot) every ten meters. Holes were drilled at -60° to -64° and aligned using a sighting compass and a Garmin GPS65s. The azimuth is 090° or 060°.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recoveries were visually assessed and documented for each meter.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	The cyclone and sample return hose were cleaned and cleared after every rod. Sample recovery was monitored by the geologist per meter interval. Both calico bags were weighed at regular intervals to monitor consistency in sample recovery. Sample recovery was excellent overall.

	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	This study will be completed once all the assays are returned.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature.	Qualitative codes and descriptions were used to record geological data such as lithology, weathering, regolith, colour, chip percentage, texture, alteration, veins, minerals, prior to sampling.
	Core photography	Chip trays are photographed.
	The total length and percentage of the relevant intersections logged.	The total lengths of all holes have been geologically logged.

Criteria	JORC 2012 Explanation	Commentary
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	No core was collected.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	All pulp samples were prepared with standard crush then pulverisation techniques at Intertek Maddington (methods SP91, SP05 (for samples over 3kg)
	Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.	No sub sampling was done
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	A total of 55 field duplicate samples were inserted through the assay batch at a rate of about 1 in 26 samples or 3.8% of the total samples. 1 in 20 were taken in mineralisation and 1 in 40 were taken in waste. Duplicate performance is yet to be determined.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Crystal size of the granite is broadly uniform in the biotite granite 1- 3mm. Samples were cone split to ensure even distribution of grain sizes. 2.5-3kg samples are appropriate for this grain size.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	1588 samples from 14 drill holes were assayed for Au using fire assay method (FA50/OE04), 492 samples were tested for Au using photon assay method, and 995 samples were tested for Ag, As, Bi, Cu, Pb, S, Sb, Te, Zn using 4 acid ICPOES or ICPMS at Intertek labs Perth.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	A total of 55 certified reference standards, and 15 blanks were inserted evenly throughout the assay batch and at mineralised zones determined by the geologist. In addition to this, Intertek Genalysis has also included standard, duplicates and blanks to monitor the performance of the laboratory. The QAQC analysis is yet to be completed.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Results reviewed by the Principal Geologist, the CEO and board personnel.

The use of twinned holes.	No holes in this program have been twinned. Some historic holes are in close proximity to the holes drilled in this program to compare
Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	historic results with this program. Primary data is stored both in its source electronic form. Assay data is retained in both the original certificate (.pdf) form, where available, and the csv files received from the laboratory. Primary data was entered in the field into a portable logging device using standard drop-down codes. At this early stage, text data files are exported and stored in a database on the company server which is backed-up to cloud-based storage each day. Micromine software is used to check and validate drill-hole data.
Discuss any adjustment to assay data.	Assay data for Au is reported in parts per million (ppm) or the equivalent measurement of grams per ton (g/t). Ag, As, Bi, Cu, Pb, S, Sb, Te, Zn are given in ppm

Criteria	JORC 2012 Explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The collar positions were surveyed by dGPS using Survey control: GPS base set on SSM NIN72, with check to SSM NIN132 and a Trimble R10 in RTK mode in GDA2020, Zone 50 datum. dGPS locations are accurate to 20mm hoizontal and 30mm vertical relative to Survey Control.
	Specification of the grid system used.	GDA2020 Zone 50 datum.
	Quality and adequacy of topographic control.	Relative level was recorded from the dGPS
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The drill holes were positioned in areas considered to be most effective in validating the interim mineralisation model. Within the identified mineralised zone the drill holes were approximately positioned 30m spacing between drill holes and 50m spacing between drill lines.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill spacing and distribution was advised by Mining Plus Consultants in order to be used to validate historic drilling based on an interim mineralisation model and deemed sufficient to establish the degree of geological and grade continuity appropriate for resource estimation.
	Whether sample compositing has been applied.	Sample compositing was not applied

Criteria	JORC 2012 Explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drill orientation for the validation holes was consistent with most of the historic drilling and the interim mineralisation model (090°). However, the model varies in orientation and the angle of intercept differs between drill lines. This is most pronounced in drill lines 1 and 2 (25PFRC001-004) where the angle of intercept is ~65°, this increases to ~80° (near perpendicular) in drill lines 3 – 7 (25PFRC005- 011). The exploration holes targeted the Primrose fault at 060° and are approximately perpendicular to this structure.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	This will be assessed once all assays are returned
Sample security	The measures taken to ensure sample security.	Samples were packed into polyweave bags immediately after logging and cable tied shut. The samples were then put into bulka bags at the end of the day. Bulka bags were freighted to Intertek labs using a private courier.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits or reviews have yet been completed

Appendix 1: Table 2 Murchison South - JORC 2012 Reporting of Exploration Results

Criteria	JORC 2012 Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Murchison South drilling is located within M59/769 situated at Paynes Find, 340km NNE of Perth. M59/769 is 100% owned by Cervantes Gold PTY LTD which is a wholly owned subsidiary of Reach Resources Ltd.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	There are no known impediments to operating on this tenement.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Gold was first discovered at Paynes Find in 1911, leading to mining operations that continued until 1982. Several companies have since explored the area. Falcon Australia Limited (1987) conducted drilling programs targeting historical workings, including Carnation and Blue Heaven. Kirkwood Gold NL (1996–1998) drilled multiple holes on M59/10 and M59/244. Hallmark Mining Limited (2002) undertook drilling to test high-grade gold shoots below old workings. Paynes Find Gold Ltd (2011–2012) consolidated the tenements, conducted geological mapping, and completed a 3,800m RC drilling program, identifying gold-bearing quartz reefs. CSA Global and Ravensgate (2013–2015) performed structural and geological reviews, including the interpretation of mineralization controls.
Geology	Deposit type, geological setting and style of mineralisation.	The Archean greenstone rocks at Paynes Find comprise interlayered basaltic and dacitic metavolcanic sequences, with subordinate banded iron formations and ultramafic schists. These units have been intruded by strongly deformed granitoids, and the metamorphic grade ranges from upper greenschist to lower amphibolite facies. While the rocks are generally foliated, relic primary textures are commonly preserved. The basaltic metavolcanics include amygdaloidal lava, tuff, conglomerate, and differentiated flows with thin basal ultramafic horizons. Dacitic metavolcanics consist of massive amygdaloidal lava, banded and crystal tuff, and agglomerate. A hornblende-biotite-quartz-oligoclase tonalite gneiss at Paynes Find serves as the primary host for gold mineralization. The dominant host rock for auriferous quartz veins is a hornblende-biotite-quartz-feldspar gneiss, which exhibits a weak to strong foliation striking 300°–340° and dipping steeply westward at 60°–80°. The foliation maintains a relatively consistent N-S trend.

	Gold-bearing quartz veins are oriented roughly north-south, parallel to the dominant foliation, and dip steeply to the southwest with a consistent plunge direction. The mineralized shear zones are tight, reaching up to 2 meters in width, with limited rock alteration. Auriferous quartz veins occasionally split and display boudinage, with high-grade shoots extending along strike for up to 10 meters.
	Additional gold mineralization occurs along sheared contacts between mafic/ultramafic units and the gneissic rocks of the Paynes Find prospect. Late-stage pegmatite intrusions, locally known as "bars," crosscut the shear zones, displacing some of the quartz lodes.

Criteria	JORC 2012 Explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of survey information for all Material drill holes:	Refer to the tables in this announcement
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No data aggregation methods have been applied
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been applied
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	As reported above - Drill orientation for the validation holes was consistent with most of the historic drilling and the interim mineralisation model (090°). However, the model varies in orientation and the angle of intercept differs between drill lines. This is most pronounced in drill lines 1 and 2 (25PFRC001-004) where the angle of intercept is ~65°, this increases to ~80° (near perpendicular) in drill lines 3 – 7 (25PFRC005-011). The exploration holes targeted the Primrose fault at 060° and are approximately perpendicular to this structure. Until the interim mineralisation model is updated the true thickness on a cross section will not be fully understood and therefore 'down hole length' widths will be reported here.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Cross sections of significant zones and a plan view map showing these sections are given in this announcement. Results are returned only for the first cross section (Cross section 1).
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	See text and tables to this announcement
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater,	No other studies have been completed yet.

Criteria	JORC 2012 Explanation	Commentary
	geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step- out drilling).	Diamond drilling is planned for metallurgical testwork

Full results

Legend

X - Not detectable

XX - Not assayed

	HoleID	From	То	Sample ID	Au-ppm-PA-1	Au-ppm-PA-2	Au-ppm-FA	Ag-ppm	As-ppm	Bi-ppm	Cu-ppm	Pb-ppm	S-ppm	Sb-ppm	Te-ppm	Zn-ppm
	25PFRC001	0	1	M100001	0.1	0.11	0.127	0.05	4	0.37	227.7	50.1	216	0.15	Х	50
	25PFRC001	1	2	M100002	0.1	0.08	0.072	0.15	5.6	0.18	224	64.2	79	0.16	Х	50
	25PFRC001	2	З	M100003	2.49	1.84	3.278	0.17	62.7	3.95	382	449.5	162	0.18	0.3	55
	25PFRC001	3	4	M100004	3.13	3.08	3.172	0.12	67.7	0.68	366.2	217.6	131	0.16	Х	81
	25PFRC001	4	5	M100005	1.37	1.56	1.458	0.12	15.2	0.84	221.1	118.2	119	0.16	Х	54
	25PFRC001	5	6	M100006	1.81	1.99	2.563	0.16	76.9	1.12	328.7	173.1	543	0.08	Х	44
	25PFRC001	6	7	M100007	0.2	0.17	0.14	0.07	11.8	0.96	215.4	73.9	77	Х	Х	101
	25PFRC001	7	8	M100008	0.34	0.31	0.336	0.05	5	0.12	53.1	34.7	62	0.1	Х	56
	25PFRC001	8	9	M100009	0.28	0.26	0.296	Х	11.7	0.27	95.7	45	Х	0.09	Х	53
(1)	25PFRC001	9	10	M100010	1.17	1.27	1.205	Х	3.7	0.11	52.4	51	51	0.06	Х	62
GD	25PFRC001	10	11	M100011	0.19	0.19	0.214	Х	9.3	0.31	156.1	53.7	158	0.07	Х	75
20	25PFRC001	11	12	M100012	0.09	0.12	0.099	0.11	4.4	0.22	102.2	74.2	62	0.08	Х	60
69	25PFRC001	12	13	M100013	0.88	0.91	0.876	0.12	8.7	1.4	90.7	39.1	87	0.08	Х	408
	25PFRC001	13	14	M100014	1.1	1.03	1.014	0.45	10.5	14.92	76.8	108.9	177	0.16	0.3	626
	25PFRC001	14	15	M100015	7.81	8.01	9.452	3.49	9.8	2.86	152.1	258.1	Х	0.09	Х	565
	25PFRC001	15	16	M100016	5.39	5.23	5.42	0.59	15.4	11.24	294.8	1423.4	Х	0.13	0.2	1058
	25PFRC001	16	17	M100017	0.6	0.58	0.661	0.29	8.9	0.95	248.5	700	Х	0.07	Х	503
60	25PFRC001	17	18	M100018	0.15	0.13	0.152	0.23	7.2	0.42	117.8	51	Х	0.09	Х	216
((10)	25PFRC001	18	19	M100019	0.05	0.06	0.068	0.19	6.6	0.22	46	31.2	Х	0.07	Х	79
	25PFRC001	19	20	M100020	0.1	0.09	0.101	0.18	7.7	0.35	68.9	42.1	Х	0.05	Х	61
	25PFRC001	20	21	M100021	0.09	0.05	0.085	0.2	8.3	0.56	98.3	32.7	Х	0.08	Х	65
	25PFRC001	21	22	M100022	0.19	0.2	0.256	0.31	12.4	0.3	163.7	219.1	Х	0.08	Х	83
()	25PFRC001	22	23	M100023	0.05	0.08	0.087	0.3	12.4	0.15	108.5	71.7	Х	0.09	Х	52
\bigcirc	25PFRC001	23	24	M100024	0.12	0.13	0.168	0.31	11.7	0.19	146.6	105.6	Х	0.09	Х	47
20	25PFRC001	24	25	M100027	0.08	0.1	0.114	0.26	12.8	0.27	116.8	42.9	Х	0.11	Х	44
60	25PFRC001	25	26	M100028	0.06	0.05	0.051	0.21	6.9	0.21	76.2	30	189	0.1	Х	37
	25PFRC001	26	27	M100029	0.09	0.07	0.11	0.12	5.3	0.21	46.2	18.3	186	0.11	Х	37
	25PFRC001	27	28	M100031	0.03	Х	0.016	0.1	4.2	0.14	38.1	19.3	Х	0.1	Х	40
	25PFRC001	28	29	M100032	XX	XX	0.139	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC001	29	30	M100033	XX	XX	0.079	XX	XX	XX	XX	XX	XX	XX	XX	XX

	25PFRC001	30	31	M100034	XX	XX	0.137	XX	XX	ХХ	XX	ХХ	XX	XX	XX	ХХ
	25PFRC001	31	32	M100035	XX	XX	0.035	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ
	25PFRC001	32	33	M100036	XX	XX	0.052	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ
	25PFRC001	33	34	M100037	XX	XX	0.105	ХХ	XX	XX	ХХ	ХХ	ХХ	ХХ	XX	XX
	25PFRC001	34	35	M100038	XX	XX	0.057	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ
	25PFRC001	35	36	M100039	XX	XX	0.045	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ
\geq	25PFRC001	36	37	M100040	XX	XX	3.494	ХХ	XX	XX	ХХ	ХХ	ХХ	ХХ	XX	XX
	25PFRC001	37	38	M100041	XX	XX	2.116	4.42	8.4	8.43	1596.2	155.6	12561	0.07	0.3	69
	25PFRC001	38	39	M100042	XX	XX	42.677	2.59	10.3	37.77	715.5	117.4	5634	0.1	1.4	73
	25PFRC001	39	40	M100043	XX	XX	1.31	1.55	7.3	4.94	955	124.6	11453	0.07	0.2	69
	25PFRC001	40	41	M100044	XX	XX	0.44	1.78	8.6	4.56	258.6	393.7	3795	0.07	Х	65
()	25PFRC001	41	42	M100045	XX	XX	0.222	0.31	2.8	0.74	176.6	55	2723	0.06	Х	51
	25PFRC001	42	43	M100046	XX	XX	0.035	0.1	2.7	0.47	51.4	32.5	520	0.09	Х	54
	25PFRC001	43	44	M100047	XX	XX	0.092	0.2	2.1	0.34	98	26.7	1263	0.08	Х	51
(115)	25PFRC001	44	45	M100048	XX	XX	0.073	0.26	2.7	0.34	102	28.2	993	0.1	Х	51
(JP)	25PFRC001	45	46	M100049	XX	XX	0.025	0.11	2.6	0.24	55.2	22.4	718	0.08	Х	52
20	25PFRC001	46	47	M100052	XX	XX	0.039	0.19	2	0.3	123.9	22.1	1661	0.07	Х	41
99	25PFRC001	47	48	M100053	XX	XX	0.014	0.19	2.5	0.24	132.7	20.8	2015	0.07	Х	42
	25PFRC001	48	49	M100054	XX	XX	0.019	0.18	2.6	0.26	143.8	12.9	2325	0.06	Х	43
	25PFRC001	49	50	M100055	XX	XX	0.152	0.3	2.3	0.43	288.2	13	4615	0.1	Х	42
	25PFRC001	50	51	M100056	XX	XX	0.136	0.18	2.1	0.27	167.2	12.6	2133	0.12	Х	44
	25PFRC001	51	52	M100057	XX	XX	0.037	0.14	2.1	0.23	136.9	11.6	2178	0.08	Х	41
	25PFRC001	52	53	M100058	XX	XX	0.13	0.23	2	0.3	277.5	19.5	4194	0.11	Х	42
((U))	25PFRC001	53	54	M100059	XX	XX	0.24	0.18	2.2	0.38	212.8	21.8	3718	0.1	Х	40
	25PFRC001	54	55	M100060	XX	XX	0.122	0.14	1.2	0.28	199.5	8.6	3432	0.08	Х	36
(25PFRC001	55	56	M100061	XX	XX	0.238	0.12	1.4	0.26	128.3	8.9	2050	0.09	Х	36
	25PFRC001	56	57	M100062	XX	XX	0.035	0.09	1.7	0.16	82	8	1282	0.12	Х	36
\bigcirc	25PFRC001	57	58	M100063	XX	XX	0.058	0.23	2.4	0.24	219.1	11.1	4448	0.08	Х	43
	25PFRC001	58	59	M100064	XX	XX	0.006	0.06	2.2	0.08	15.2	8.7	178	0.13	Х	41
20	25PFRC001	59	60	M100065	XX	XX	Х	0.09	2.3	0.05	27.1	7.7	96	0.16	Х	43
$\bigcirc \mathcal{I}$	25PFRC001	60	61	M100066	XX	XX	0.008	0.08	2.7	0.08	30.7	8.5	310	0.13	Х	43
	25PFRC001	61	62	M100067	XX	XX	0.037	0.19	2.7	0.17	99.6	9.5	322	0.15	Х	46
<u>a</u> b	25PFRC001	62	63	M100068	XX	XX	0.008	0.13	3.3	0.17	62.2	12	591	0.14	Х	49
(())	25PFRC001	63	64	M100069	XX	XX	0.012	0.14	2.8	0.16	78.7	10.8	969	0.13	Х	48
	25PFRC001	64	65	M100070	XX	XX	0.025	0.16	2.5	0.29	160.7	15.5	2083	0.13	Х	44

	25PFRC001	65	66	M100071	XX	XX	0.006	0.06	1.9	0.1	34.6	10	349	0.13	x	46
	25PFRC001	66	67	M100072	XX	XX	X	0.06	1.9	0.06	39.1	8.7	369	0.14	X	47
	25PFRC001	67	68	M100073	ХХ	ХХ	Х	0.08	2.4	0.07	45.1	9.8	294	0.22	х	51
	25PFRC001	68	69	M100074	ХХ	ХХ	Х	XX	ХХ	XX	XX	XX	XX	XX	ХХ	XX
	25PFRC001	69	70	M100077	ХХ	XX	0.018	ХХ	ХХ	XX	ХХ	XX	XX	ХХ	ХХ	ХХ
	25PFRC001	70	71	M100078	ХХ	XX	0.085	XX	XX	XX	ХХ	ХХ	XX	ХХ	XX	XX
\geq	25PFRC001	71	72	M100079	XX	XX	0.044	XX	XX	XX	XX	ХХ	XX	XX	XX	XX
	25PFRC001	72	73	M100080	ХХ	XX	0.008	XX	XX	XX	XX	ХХ	XX	XX	XX	XX
	25PFRC001	73	74	M100081	XX	XX	Х	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC001	74	75	M100082	XX	XX	0.016	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC001	75	76	M100083	XX	XX	0.024	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC001	76	77	M100084	XX	XX	0.024	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC001	77	78	M100085	XX	XX	Х	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC001	78	79	M100086	XX	XX	0.006	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC001	79	80	M100087	XX	XX	Х	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	0	1	M100088	XX	XX	0.106	0.11	4.4	0.26	76.2	17.4	125	0.16	Х	53
	25PFRC002	1	2	M100089	XX	XX	0.061	0.15	2.3	0.1	81.5	16.5	61	0.12	Х	42
	25PFRC002	2	3	M100090	XX	XX	0.053	0.1	3.1	0.07	57.4	10.4	Х	0.16	Х	88
	25PFRC002	3	4	M100091	XX	XX	0.332	0.08	2.7	0.06	39.5	7.4	Х	0.19	Х	102
	25PFRC002	4	5	M100092	XX	XX	0.126	0.06	3.3	0.06	30.5	6.9	Х	0.13	Х	101
	25PFRC002	5	6	M100093	XX	XX	0.834	0.09	3.2	0.2	38.5	11.8	Х	0.11	Х	97
	25PFRC002	6	7	M100094	XX	XX	0.063	Х	2.3	0.32	8	2.3	Х	0.19	Х	116
	25PFRC002	7	8	M100095	XX	XX	0.033	Х	1.9	1.44	127.5	2.4	Х	0.06	Х	73
	25PFRC002	8	9	M100096	XX	XX	0.111	Х	2.3	0.49	9.8	12.5	Х	0.1	Х	63
	25PFRC002	9	10	M100099	XX	XX	0.018	Х	1.4	1.22	65.7	2.9	Х	Х	Х	60
	25PFRC002	10	11	M100100	XX	XX	0.018	Х	1.4	1.2	47.1	4.2	Х	0.08	Х	66
	25PFRC002	11	12	M100101	XX	XX	0.081	X	1.4	1.59	51.8	7.9	X	0.11	Х	76
	25PFRC002	12	13	M100102	XX	XX	0.022	X	1	1.37	42.4	24.6	X	0.08	Х	95
	25PFRC002	13	14	M100103	XX	XX	0.022	X	1.9	1.34	63.1	24.6	X	0.09	Х	183
	25PFRC002	14	15	M100104	XX	XX	0.025	X	1.8	1.32	87.8	12.4	X	0.07	Х	132
	25PFRC002	15		M100105	XX	XX	0.015	X	2.8	1.51	93.1	16.7	X	0.09	Х	233
	25PFRC002			M100106	XX	XX	0.049	X	3.7	2.01	133.3	48.5	X	0.06	X	227
	25PFRC002			M100107	XX	XX	0.139	X	3.1	1.02	98.2	13.1	X	0.07	X	179
	25PFRC002			M100108	XX	XX	0.045	X	4.2	2.09	125.9	1.9	X	0.07	Х	76
	25PFRC002	19	20	M100109	XX	XX	0.157	0.25	3.8	0.9	210.5	62	Х	0.13	Х	43

	25PFRC002	20	21	M100110	XX	XX	0.191	0.24	5.7	0.47	138.8	69.6	Х	0.08	x	48
	25PFRC002	20	22	M100111	XX	XX	0.094	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	22	23	M100112	XX	XX	0.034	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	23	24	M100113	XX	XX	0.022	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	24	25	M100114	XX	XX	0.025	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	25	26	M100115	XX	XX	0.016	XX	XX	XX	XX	XX	XX	XX	XX	XX
>	25PFRC002	26	27	M100116	XX	ХХ	0.029	ХХ	XX	ХХ	XX	ХХ	ХХ	ХХ	ХХ	XX
	25PFRC002	27	28	M100117	XX	ХХ	0.008	ХХ	XX	ХХ	XX	ХХ	ХХ	ХХ	ХХ	XX
	25PFRC002	28	29	M100118	XX	XX	0.01	ХХ	XX	ХХ	XX	ХХ	ХХ	ХХ	ХХ	ХХ
	25PFRC002	29	30	M100119	XX	XX	Х	XX	XX	ХХ	XX	ХХ	ХХ	ХХ	ХХ	ХХ
	25PFRC002	30	31	M100120	Х	Х	0.006	0.09	4.5	0.09	1.7	8.2	Х	0.1	Х	51
	25PFRC002	31	32	M100121	Х	Х	0.012	0.12	5.7	0.09	3.2	10.2	Х	0.1	Х	61
	25PFRC002	32	33	M100122	х	Х	0.008	0.15	6.5	0.09	3.2	10.5	х	0.13	Х	65
	25PFRC002	33	34	M100123	2.82	4.05	4.956	1.48	32.1	1.07	18.6	44.6	Х	0.13	Х	53
	25PFRC002	34	35	M100124	0.03	0.02	0.046	0.26	9	0.16	77.5	76.7	Х	0.12	Х	59
	25PFRC002	35	36	M100125	1.15	1.41	1.577	18.08	33.3	5.78	2192.5	174.3	787	0.12	Х	122
	25PFRC002	36	37	M100126	0.24	0.35	0.298	0.61	29.7	2.04	160.4	122.7	Х	0.19	Х	70
	25PFRC002	37	38	M100127	2.33	2.18	1.847	1.05	154.7	3.69	266.4	289.2	3455	0.21	Х	136
	25PFRC002	38	39	M100128	0.29	0.34	0.418	0.66	143.9	0.49	380.5	236.6	822	0.13	Х	375
	25PFRC002	39	40	M100129	0.04	0.08	0.051	0.37	35.2	0.42	187.8	71.8	1010	0.11	Х	238
	25PFRC002	40	41	M100130	0.06	0.07	0.083	0.19	32.6	0.49	87.3	47.8	2871	0.13	Х	189
	25PFRC002	41	42	M100131	0.84	0.78	0.952	0.5	433.2	8.45	255.2	124.2	6591	0.13	0.4	604
	25PFRC002	42	43	M100132	0.18	0.21	0.262	0.2	68.6	1.13	183.2	27.2	4235	0.08	Х	217
	25PFRC002	43	44	M100133	0.03	0.04	0.03	0.16	6.9	0.17	162.9	74.5	1839	0.07	Х	317
	25PFRC002	44	45	M100136	Х	0.02	0.02	0.34	7.3	0.34	58.8	80.1	252	0.08	Х	431
	25PFRC002	45	46	M100137	1.65	1.03	1.611	3.57	55.6	7.72	608.7	769	6168	0.1	0.3	1322
	25PFRC002	46	47	M100138	0.08	0.14	0.142	0.3	22.6	0.7	107.8	258.6	3254	0.06	Х	193
	25PFRC002	47	48	M100139	0.04	Х	0.015	0.21	6.1	0.23	47.5	97.8	826	0.12	Х	170
	25PFRC002	48	49	M100140	0.6	0.5	0.345	0.23	32.3	0.45	83.9	47.3	1731	0.11	Х	81
	25PFRC002	49	50	M100141	0.81	0.75	0.819	0.79	46.1	3.01	308.7	54.9	7866	0.09	Х	71
	25PFRC002	50	51		0.07	0.07	0.153	0.31	12.5	0.49	104.4	38.8	2531	0.16	Х	79
	25PFRC002	51		M100143	0.39	0.3	0.265	0.28	12.6	0.58	104.6	35.8	3127	0.2	Х	56
	25PFRC002	52		M100144	0.4	0.2	0.28	0.67	13.2	3.82	131.7	80.4	3373	0.18	Х	46
	25PFRC002	53		M100145	0.56	1.03	1.043	1.13	23.1	3.89	123	221.5	2918	0.18	Х	44
	25PFRC002	54	55	M100146	0.33	0.34	0.19	0.69	10.5	1.56	220.5	176.5	6494	0.09	Х	53

	25PFRC002	55	56	M100147	0.02	0.05	0.04	0.38	8.2	0.47	174.4	68.7	4355	0.09	X	45
	25PFRC002	56	57	M100148	0.11	0.09	0.063	0.18	6.7	0.33	67.7	51	1635	0.15	Х	41
	25PFRC002	57	58	M100149	0.02	0.03	0.023	0.14	6.5	0.3	58.8	46.1	1433	0.11	Х	42
	25PFRC002	58	59	M100150	0.14	0.13	0.097	0.4	7.3	0.84	164.8	60.4	4916	0.1	Х	42
	25PFRC002	59	60	M100152	XX	XX	0.031	ХХ	XX	XX	ХХ	ХХ	ХХ	ХХ	XX	XX
	25PFRC002	60	61	M100153	ХХ	XX	0.161	ХХ	XX	XX	ХХ	ХХ	ХХ	ХХ	XX	XX
\geq	25PFRC002	61	62	M100154	XX	XX	0.072	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	62	63	M100155	XX	XX	2.586	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	63	64	M100156	XX	XX	0.37	ХХ	XX	XX	ХХ	XX	XX	XX	XX	XX
	25PFRC002	64	65	M100157	XX	XX	0.139	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	65	66	M100158	XX	XX	0.051	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	66	67	M100159	XX	XX	0.696	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	67	68	M100160	XX	XX	0.482	0.87	21.9	1.95	608.3	130.2	6808	0.08	Х	57
	25PFRC002	68	69	M100161	XX	XX	0.094	0.36	6.1	0.56	308	66.6	2933	0.1	Х	48
	25PFRC002	69	70	M100162	XX	XX	0.186	0.25	3.4	0.49	200.2	32.5	2779	0.1	Х	47
	25PFRC002	70	71	M100163	XX	XX	0.052	0.13	3.4	0.21	54.1	22	474	0.11	Х	56
	25PFRC002	71	72	M100164	XX	XX	0.016	0.16	2.3	0.23	113	23.4	836	0.1	Х	49
	25PFRC002	72	73	M100165	XX	XX	0.017	0.09	1.8	0.22	79	19	1111	0.08	Х	46
	25PFRC002	73	74	M100166	XX	XX	0.005	0.08	1.7	0.26	55.2	16.7	583	0.07	Х	53
	25PFRC002	74	75	M100167	XX	XX	0.028	0.35	1.9	0.49	362.1	41.8	5584	0.09	Х	397
	25PFRC002	75	76	M100168	XX	XX	0.021	0.33	3	0.59	230.9	61.7	11691	0.09	Х	260
	25PFRC002	76	77	M100169	XX	XX	0.019	0.13	2	0.26	85.3	20.6	1470	0.1	Х	83
	25PFRC002	77	78	M100170	XX	XX	0.488	0.15	2	0.93	95	16.6	1247	0.09	0.4	47
	25PFRC002	78	79	M100171	XX	XX	0.316	0.63	2.9	1.3	367.4	17.8	4778	0.1	0.2	50
	25PFRC002	79	80	M100174	XX	XX	0.023	0.17	5.6	0.31	116.8	23.4	1708	0.09	Х	49
	25PFRC002	80	81	M100175	XX	XX	0.172	0.26	6.5	1.04	296.7	49.7	5676	0.18	Х	44
	25PFRC002	81	82	M100176	XX	XX	0.066	0.2	2.2	0.62	214.9	30.7	3964	0.07	Х	45
	25PFRC002	82	83	M100177	XX	XX	0.061	0.14	1.8	0.33	97.9	14.3	1447	0.16	Х	55
	25PFRC002	83	84	M100178	XX	XX	0.225	0.19	1.9	0.75	215.4	12	3228	0.11	0.3	44
	25PFRC002	84	85	M100179	XX	XX	2.29	0.34	2	6.35	259.8	9.8	2908	0.15	2.6	42
	25PFRC002	85		M100180	XX	XX	0.187	0.1	2.4	0.47	84.4	9.6	1104	0.12	X	53
	25PFRC002			M100181	XX	XX	0.082	0.11	2.2	0.35	70.7	10.7	780	0.18	X	48
	25PFRC002			M100182	XX	XX	0.122	0.09	1.4	0.33	142.1	8.3	2321	0.12	X	38
	25PFRC002			M100183	XX	XX	0.057	0.08	2	0.2	107.5	9.7	1603	0.1	X	41
	25PFRC002	89	90	M100184	XX	XX	0.399	0.16	1.6	0.72	262.5	8.9	4164	0.08	0.4	37

	25PFRC002	90	91	M100185	XX	ХХ	0.103	0.1	1.4	0.29	152.8	7.6	2368	0.11	x	39
	25PFRC002	91	92	M100186	XX	XX	0.188	0.08	1.4	0.18	92.1	8	1188	0.11	X	43
	25PFRC002	92	93	M100187	XX	XX	0.181	0.16	1.1	0.28	290.9	7.3	4640	0.12	X	37
	25PFRC002	93	94	M100188	XX	XX	0.075	0.08	1.6	0.21	148.2	7.3	2089	0.18	X	36
	25PFRC002	94	95	M100189	XX	XX	0.081	0.09	1.2	0.15	153.6	7.3	2392	0.14	X	37
	25PFRC002	95	96	M100190	XX	XX	0.081	0.07	1.3	0.13	99.4	7.7	1481	0.14	X	39
>	25PFRC002	96	97	M100191	ХХ	XX	0.039	X	2	0.09	51	8.3	770	0.15	х	44
	25PFRC002	97	98	M100192	ХХ	ХХ	0.096	0.07	2.4	0.2	99.2	8.3	1631	0.14	х	41
	25PFRC002	98	99	M100193	XX	XX	0.086	0.07	2.7	0.2	107.4	8.7	1780	0.15	Х	40
	25PFRC002	99	100	M100194	XX	ХХ	0.018	0.06	3.2	0.11	42.9	10	519	0.2	Х	48
	25PFRC002	100	101	M100195	XX	XX	0.026	XX	XX	XX	XX	XX	XX	ХХ	XX	XX
	25PFRC002	101	102	M100196	XX	ХХ	0.021	XX	XX	XX	XX	XX	XX	ХХ	XX	XX
	25PFRC002	102	103	M100197	XX	XX	0.135	XX	XX	XX	XX	XX	XX	ХХ	XX	XX
	25PFRC002	103	104	M100198	XX	XX	0.014	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	104	105	M100201	XX	XX	0.012	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	105	106	M100202	XX	XX	0.025	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	106	107	M100203	XX	XX	0.011	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	107	108	M100204	XX	XX	0.008	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	108	109	M100205	XX	XX	Х	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	109	110	M100206	XX	XX	0.007	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	110	111	M100207	XX	XX	0.006	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	111	112	M100208	XX	XX	0.067	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	112	113	M100209	XX	XX	0.007	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	113	114	M100210	XX	XX	0.012	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	114	115	M100211	XX	XX	0.009	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	115	116	M100212	XX	XX	0.033	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002			M100213	XX	XX	0.029	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002			M100214	XX	XX	0.022	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	118	119	M100215	XX	XX	0.007	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002			M100216	XX	XX	0.028	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002			M100217	XX	XX	0.02	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002				XX	XX	0.041	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002				XX	XX	0.008	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002		-		XX	XX	0.023	XX	XX	XX	XX	XX	XX	XX	XX	XX
	25PFRC002	124	125	M100223	XX	XX	0.014	XX	XX	XX	XX	XX	XX	XX	XX	XX

25PFRC002	125	126	M100224	XX	XX	0.015	XX								
25PFRC002	126	127	M100225	XX	XX	0.01	XX								
25PFRC002	127	128	M100226	XX	XX	0.021	XX								
25PFRC002	128	129	M100227	XX	XX	0.031	XX	ХХ	ХХ	ХХ	XX	XX	XX	XX	XX
25PFRC002	129	130	M100228	ХХ	ХХ	0.03	XX	ХХ	ХХ	ХХ	XX	XX	XX	XX	XX
25PFRC002	130	131	M100229	XX	XX	0.013	XX	XX	ХХ	ХХ	XX	XX	ХХ	XX	XX
25PFRC002	131	132	M100230	XX	XX	0.009	XX	ХХ	ХХ	ХХ	XX	XX	ХХ	XX	XX
25PFRC002	132	133	M100231	ХХ	ХХ	0.013	XX	ХХ	XX						
25PFRC002	133	134	M100232	ХХ	ХХ	0.005	XX	ХХ	XX						
25PFRC002	134	135	M100233	ХХ	ХХ	0.009	ХХ	ХХ	ХХ	ХХ	XX	XX	ХХ	XX	XX
25PFRC002	135	136	M100234	XX	XX	0.008	XX	XX	XX	XX	XX	XX	ХХ	XX	XX
25PFRC002	136	137	M100235	ХХ	ХХ	0.006	ХХ	ХХ	ХХ	ХХ	XX	XX	ХХ	XX	XX
25PFRC002	137	138	M100236	ХХ	ХХ	0.185	XX	ХХ	ХХ	ХХ	XX	XX	ХХ	XX	XX
25PFRC002	138	139	M100237	ХХ	ХХ	0.009	XX	ХХ	XX	XX	XX	XX	ХХ	XX	XX
25PFRC002	139	140	M100238	XX	XX	0.007	XX								
25PFRC002	140	141	M100239	XX	ХХ	Х	XX	ХХ	XX	ХХ	XX	XX	XX	XX	XX
25PFRC002	141	142	M100240	ХХ	ХХ	Х	ХХ	XX	XX						
25PFRC002	142	143	M100241	ХХ	ХХ	0.006	XX	XX	XX	ХХ	XX	XX	ХХ	XX	XX
 25PFRC002	143	144	M100242	ХХ	ХХ	0.025	ХХ	ХХ	ХХ	ХХ	ХХ	XX	ХХ	XX	XX
25PFRC002	144	145	M100243	ХХ	ХХ	0.04	ХХ	XX	ХХ	ХХ	XX	XX	ХХ	XX	XX
25PFRC002	145	146	M100244	ХХ	ХХ	0.015	ХХ	XX	XX						
25PFRC002	146	147	M100245	ХХ	ХХ	0.009	ХХ	ХХ	ХХ	ХХ	ХХ	XX	ХХ	XX	XX
25PFRC002	147	148	M100246	ХХ	ХХ	0.016	ХХ	XX							
25PFRC002	148	149	M100247	ХХ	ХХ	0.009	ХХ	XX	ХХ						
25PFRC002	149	150	M100248	ХХ	ХХ	0.028	XX	XX	ХХ	ХХ	XX	ХХ	ХХ	XX	XX
Logond															·

Legend

X - Not detectable

XX - Not assayed