ASX Announcement 28 January 2025 ASX: GAL # Targets Advanced for Drilling at the Fraser Range Project ### **Highlights** - Review and interpretation of electro-magnetic (EM) data identifies four new sulphide targets for drill testing at Galileo's Fraser Range Project - New targets complement the existing EM target at the Easterly Prospect¹ - Target positions are associated with structural and geological features interpreted from magnetic data - Modelled EM conductivities range from 1,140S to 3,700S with model depths starting between 120 and 300 metres below surface - Drill testing of the Fraser Range targets is scheduled for the second quarter of 2025 - Norseman Project drilling on schedule to commence in first quarter (anticipated start date in late February) - One metre assays from Norseman drill program expected to be returned in February² Galileo Mining Ltd (ASX: GAL, "Galileo" or the "Company") is pleased to announce the results of a target generation review of electro-magnetic (EM) survey data from the Fraser Range region of Western Australia. Galileo Managing Director Brad Underwood commented; "Our Fraser Range project is situated along strike of the known resources in the region – the Nova nickel-copper mine, the Silver Knight deposit, and the Mawson deposit (Figure 3). As such this is an excellent location to be exploring for new discoveries in an underdeveloped mineral province. Our targets are all based on a combination of geophysical EM surveying and geological ¹ See ASX Announcement dated 30th August 2021 ² See ASX Announcement dated 24th December 2024 interpretation of magnetic data. And as no basement outcrop exists in the area, these targets represent a new generation of undercover prospects which are now ready for drill testing. At the same time work is progressing at our Norseman palladium/platinum project with the next round of drilling scheduled to commence in late February. This program will include infill drilling of Mission Sill results announced in December and new drilling within the 12km of strike at the prospect. Follow up assays from the 2024 drilling, including fire assays for palladium, platinum, and rhodium, are expected to be received in February. These new assays will help us understand the most likely areas for economic mineralisation and will assist drill targeting for upcoming programs. We look forward to the next round of assays, our upcoming drill programs, and a successful year of exploration at all our projects in 2025." The location of targets selected for drill testing are shown in Figures 2 and 3 with the modelled EM parameters contained in Table 1. Figure 1 shows an idealised schematic of the EM surveying technique used to search for undercover sulphide deposits in the Fraser Range. The sources of conductive anomalies can include economic sulphide mineralisation, barren sulphide mineralisation, graphite, and hypersaline water in geological structures. Drill testing is required to determine whether any conductor represents economic mineralisation. Based on current prioritisation of targets, the previously reported Green Moon prospect has not been selected for drill testing. Figure 1 – Idealised EM survey schematic of undercover target generation in the Fraser Range. Table 1: Modelled conductor properties (conductivity units in Siemens). | Prospect | Conductivity | Dimensions | Depth to Top | Dip (deg) | |----------------|--------------|--------------|--------------|-------------------| | Easterly | 1,140 S | 750m by 130m | 165m | ~20-30 E | | Westerly | 1,200 S | 400m by 200m | 120m | ~35-45 WSW | | Kitchener (K1) | 1,680 S | 780m by 150m | 300m | ~55-65 E | | Kitchener (K2) | 3,700 S | 150m by 150m | 175m | ~80 W to vertical | | Kitchener (K3) | 1,480 S | 740m by 480m | 200m | ~80-85 ESE | Figure 2 – Location of Fraser Range prospects for drill testing over TMI magnetic image. Figure 3 – Galileo Fraser Range Project area with prospects for drilling – Galileo prospects are along strike of the Nova Mine Site, Silver Knight Deposit and the Mawson Deposit. # **About Galileo Mining:** Galileo Mining Ltd (ASX: GAL) is focussed on the exploration and development of PGE (palladium-platinum), nickel, copper, and cobalt resources in Western Australia. GAL's tenements near Norseman are highly prospective for new discoveries as shown by the Callisto deposit. GAL also has Joint Ventures with the Creasy Group over tenements in the Fraser Range which are prospective for nickel-copper sulphide deposits similar to the operating Nova mine. #### Norseman (100% GAL) The wholly owned Norseman project contains the Callisto Discovery and adjacent regional prospects Jimberlana and Mission Sill with potential for palladium, platinum, nickel, copper, cobalt, and rhodium mineralisation. Galileo's tenure at Norseman comprises mining, exploration, and prospecting licenses covering a total area of 255 km². The Callisto deposit was discovered in 2022 and is the first deposit of its type identified in Australia, analogous in mineralisation style to the Platreef deposits found in South Africa. An initial Mineral Resource Estimate was reported in 2023 with 17.5 Mt @ 1.04g/t 4E¹, 0.20% Ni, 0.16% Cu (2.3g/t PdEq² or 0.52% NiEq³). Table 2 - Callisto Deposit Maiden Mineral Resource Estimate (JORC 2012) (see ASX announcement: 2 October 2023) | Reporting | | Mass | | | | G | rades | | | | | | | | Metal ac | cumula | tions | | | | |--|-----------|-------|-------|-------|-------|-------|-------|------|-------|------|-------|-------|-------|-------|----------|--------|-------|-------|------|-------| | Criteria | JORC | (Mt) | Pd | Pt | Au | Rh | Ni | Cu | PdEa | NiEg | 4E | Pd | Pt | Au | Rh | Ni | Cu | PdEa | NiEa | 4E | | criterio | | () | (ppm) | (ppm) | (ppm) | (ppm) | (%) | (%) | (ppm) | (%) | (ppm) | (Koz) | (Koz) | (Koz) | (Koz) | (Kt) | (Kt) | (Koz) | (Kt) | (Koz) | | | Indicated | 7.96 | 0.92 | 0.16 | 0.048 | 0.030 | 0.22 | 0.19 | 2.5 | 0.58 | 1.16 | 235.3 | 41.5 | 12.4 | 7.8 | 17.3 | 14.9 | 639 | 45.8 | 296.9 | | Above
60mRL and
cut-off >
0.5g/t PdEq | Inferred | 8.76 | 0.74 | 0.14 | 0.043 | 0.025 | 0.19 | 0.14 | 2.0 | 0.47 | 0.94 | 207.2 | 38.6 | 12.1 | 7.0 | 16.3 | 12.3 | 576 | 41.3 | 264.9 | | | Sub total | 16.72 | 0.82 | 0.15 | 0.046 | 0.027 | 0.20 | 0.16 | 2.3 | 0.52 | 1.04 | 442.5 | 80.1 | 24.5 | 14.8 | 33.6 | 27.1 | 1,216 | 87.1 | 561.8 | | Below
60mRL and
cut-off >
1.5g/t PdEq | Inferred | 0.76 | 0.78 | 0.13 | 0.036 | 0.027 | 0.19 | 0.14 | 2.1 | 0.49 | 0.97 | 18.9 | 3.2 | 0.9 | 0.7 | 1.4 | 1.1 | 51 | 3.7 | 23.6 | | 15 | Total | 17.48 | 0.82 | 0.15 | 0.045 | 0.027 | 0.20 | 0.16 | 2.3 | 0.52 | 1.04 | 461.4 | 83.3 | 25.3 | 15.4 | 35.0 | 28.2 | 1,267 | 91 | 585.4 | #### Metal equivalent price assumptions of Callisto Resource released on 2nd October 2023 Based on metallurgical test work completed to date, the Company believes that Callisto's mineralisation is amenable to concentration using a conventional crushing, milling and flotation process and has Reasonable Prospects for Eventual Economic Extraction. Metallurgical recovery assumptions used for metal equivalent value calculations were: Pd - 82%, Pt - 78%, Au - 79%, Rh - 63%, Ni - 77%, Cu - 94% Metal price assumptions, based on 12 month calculated averages to 11th September 2023, were used for metal equivalent values: Pd – US\$1,600/oz, Pt – US\$975/oz, Au – US\$1,870/oz, Rh – US\$9,420/oz, Ni - US23,800/t, Cu – US\$8,420/t. Based on metallurgical test work completed to date, the Company believes that all metals included in the metal equivalent calculation have a reasonable potential to be recovered and sold. #### Fraser Range (67% GAL / 33% Creasy Group JV) Galileo is actively exploring for magmatic massive sulphide- nickel-copper deposits across its Fraser Range tenements covering over 670km² of highly prospective ground in the Albany-Fraser Orogen. The project is well positioned within the nickel-copper bearing Fraser Range Zone, with the Nova-Bollinger mine located between 30km and 90km from Galileo tenure. ¹4E = Palladium (Pd) + Platinum (Pt) + Gold (Au) + Rhodium (Rh) expressed in g/t ² PdEq (Palladium Equivalent) = Pd (g/t) + 0.580 x Pt (g/t) + 1.13 x Au (g/t) + 4.52 x Rh (g/t) + 4.34 x Ni (%) + 1.88 x Cu (%) ³ NiEq (Nickel equivalent) = Ni % + 0.230 x Pd (g/t) + 0.133 x Pt (g/t) + 0.259 x Au (g/t) + 1.04 x Rh (g/t) + 0.432 x Cu (%) ## **Competent Person Statement** The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Brad Underwood, a Member of the Australasian Institute of Mining and Metallurgy, and a full time employee of Galileo Mining Ltd. Mr Underwood has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Underwood consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The information in this report that relates to Galileo's Mineral Resource for the Callisto Deposit is from a previous report released to the ASX by Galileo Mining (2nd October 2023) based on information complied by Paul Hetherington, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Hetherington has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Hetherington consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Mr Hetherington has advised that this consent remains in place for subsequent releases by Galileo of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent. With regard to the Company's ASX Announcements referenced in the above Announcement, the Company is not aware of any new information or data that materially affects the information included in the Announcements. Authorised for release by the Galileo Board of Directors. Investor information: phone Galileo Mining on + 61 8 6285 5622 or email info@galmining.com.au Media: David Tasker Chapter One Advisors E: dtasker@chapteroneadvisors.com.au T: +61 433 112 936 # Appendix 1: Galileo Mining Ltd – Fraser Range Project JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.) | | pling Techniques and Data (Criteria in this section | | |------------------------|---|---| | Criteria | JORC Code explanation | Commentary | | Sampling techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | No drilling was completed in this phase of works. GEM Geophysics Pty Ltd was contracted to complete the Moving Loop Electromagnetic (MLEM) survey. MLEM survey data was collected with 400m loops using a Smartem V system and Jesse Deeps SQUID receiver in a 400m offset Slingram configuration. Z, X and Y component data were collected at a base frequency of 0.5Hz. Maxwell software was utilised to process and model the MLEM data. Modelling and interpretation of the EM survey geophysical data was undertaken by Southern Geoscience Consultants and by Terra Resources | | Drilling
techniques | Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). | No drilling was completed in this phase of works | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | No drilling was completed in this phase of works. | | Logging Sub- | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | No drilling was completed in this phase of works. No drilling was completed in this phase. | | sampling | If core, whether cut or sawn and whether
quarter, half or all core taken. | No drilling was completed in this phase
of works. | | Criteria | JORC Code explanation | Commentary | |--|---|---| | techniques
and sample
preparation | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | | | Quality of
assay data
and
laboratory
tests | grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | No drilling was completed in this of works. | | Verification
of sampling
and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | No drilling was completed in this of works. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | No drilling was completed in this of works. Co-ordinates are in GDA94 datur Zone 51. Topographic control has an accu of 2m based on detailed satellite imagery derived DTM or on laser altimeter data collected from aeromagnetic surveys | | Data spacing
and
distribution | Data spacing for reporting of Exploration
Results. Whether the data spacing and distribution is
sufficient to establish the degree of geological
and grade continuity appropriate for the Mineral
Resource and Ore Reserve estimation
procedure(s) and classifications applied. | No drilling was completed in this of works. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | No drilling was completed in this phas of works. No quantitative measurements of mineralised zones/structures exist. | | Sample
security | The measures taken to ensure sample security. | Chain of Custody is managed by the Company's geophysical field contractor and geophysical consultants. The data is transferred daily and is QA/QC checked by a qualified geophysicist | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | Continuous improvement internal
reviews of sampling techniques and
procedures are ongoing. No external
audits have been performed. | ### Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|--|---| | Mineral
tenement
and land
tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The Fraser Range Project comprises seven granted exploration licenses, covering 672km² Kitchener JV tenement E28/2064 (67% NSZ Resources Pty Ltd, 33% Great Southern Nickel Pty Ltd). Kitchener tenements E28/2912, E28/2949, E28/2797 (100% NSZ Resources Pty Ltd) Yardilla JV tenements: E63/1539, E63/1623, E63/1624 (67% FSZ Resources Pty Ltd, 33% Dunstan Holdings Pty Ltd) NSZ Resources Pty Ltd & FSZ Resources Pty Ltd are wholly owned subsidiaries of Galileo Mining Ltd. Great Southern Nickel Pty Ltd and Dunstan Holdings Pty Ltd are entities of Mark Creasy The Kitchener Area is approximately 250km east of Kalgoorlie on vacant crown land and on the Boonderoo Pastoral Station. The Yardilla Area is approximately 90km east of Norseman on vacant crown land and on the Fraser Range Pastoral Station. Both the Kitchener Area and the Yardilla Area are 100% covered by the Ngadju Native Title Determined Claim. The tenements are in good standing and there are no known impediments to exploration. | | Exploration done by other parties | Acknowledgment and appraisal of
exploration by other parties. | Not applicable, no relevant previous exploration by
other parties. | | Criteria | JORC Code explanation | Commentary | |--|---|--| | Geology | Deposit type, geological setting
and style of mineralisation. | The target geology is indicative of magmatic nickel-copper sulphide mineralisation hosted in or associated with mafic-ultramafic intrusions within the Fraser Complex of the Albany-Fraser Orogeny. The underlying unweathered lithology is granulite facies metamorphosed and partially retrogressed sedimentary, mafic and ultramafic igneous rocks as determined by petrographic work. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | No drilling reported | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | No assays reported | | Relationship
between
mineralisatio
n widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. | No drilling reported | | Criteria | JORC Code explanation | Commentary | |------------------------------------|---|--| |]
]
]
() | If it is not known and only the down
hole lengths are reported, there
should be a clear statement to this
effect (eg 'down hole length, true
width not known'). | | | Diagrams | Appropriate maps and sections
(with scales) and tabulations of
intercepts should be included for
any discovery being reported
These should include, but not be
limited to a plan view of drill hole
collar locations and appropriate
sectional views. | Refer to Figures in body of report | | Balanced
reporting | Where comprehensive reporting of
all Exploration Results is not
practicable, representative
reporting of both low and high
grades and/or widths should be
practiced to avoid misleading
reporting of Exploration Results. | All available relevant information is presented. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Detailed 50m line spaced aeromagnetic data has been used for interpretation of underlying geology and targeting of areas for ongoing work. Aeromagnetic data was collected using a Geometrics G-823 Caesium vapor magnetometer an average flying height of 30m. MLEM Details (GEM Geophysics): Transmitter Loop 400x400m. Station Spacing: 100m or 200m. Line Spacing: 400m, 200m or 100m. Configuration: Slingram Rx 200m from loop edge. Base Frequency: 0.5Hz Stacking to ensure very low noise levels Minimum 2 readings per station or more where 2 readings are in poor agreement. Receiver: SMARTEM 24 Antenna: Jessy Deeps HT SQUID. Components: X, Y, Z. Modelling and interpretation of the EM survey geophysical data was undertaken by Southern Geoscience Consultants and by Terra Resources | | Further wo | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is | Drill testing of modelled EM conductors |