

LITHIUM DISCOVERY EXTENDED WITH EXCEPTIONAL 86.9-METRE INTERCEPT AT RED MOUNTAIN, USA

Red Mountain Project delivers the thickest and one of the highest-grade intersections to date, as the discovery continues to grow

Key Highlights

- Strong lithium mineralisation returned in assays for drillhole RMDD002, which intersected:
 - 86.9m @ 1,470ppm Li from 18.3m, including 32.1m of high-grade mineralisation @ 2,050ppm Li from 46.2m.
- RMDD002 marks the thickest intercept recorded to date at Red Mountain.
- Mineralisation successfully extended 375m north of previous northernmost intersections in holes RMRC002 & 003.
- Lithium mineralisation remains open down-dip to the east and along strike to the north.
- Outstanding results strenghten the foundation for a maiden Mineral Resource Estimate in 2025.

Astute Metals NL (ASX: ASE) ("ASE", "Astute" or "the Company") is pleased to report assay results from the second of two holes from its inaugural diamond drilling campaign at the 100%-owned Red Mountain Lithium Project in Nevada, USA. Drill-hole RMDD002 has returned an outstanding thick intersection of some of the highest-grade lithium mineralisation seen to date at the Project, intersecting:

• <u>86.9m @ 1,470ppm Li / 0.78% Lithium Carbonate Equivalent¹ (LCE)</u> from 18.3m, including an

internal high-grade zone grading <u>32.1m @ 2,050ppm Li / 1.09% LCE</u> from 46.2m

The identification of thick, lithium mineralisation in the northernmost drill-hole at Red Mountain highlights the immense scale of the project, with strong lithium mineralisation now intersected in all drill-holes now spanning a north-south strike extent of over 5km and surface sample geochemistry indicating further potential to the north, south and west of the current drilled extents^{7,9} (Figure 4).

Of particular significance in hole RMDD002 is the presence of an internal 32.1m zone of very high-grade lithium mineralisation averaging 2,050ppm Li. The identification of substantially higher-grade lithium mineralisation in this hole, as well as that in the previously announced diamond drill hole RMDD001, indicates strong potential for further high-grade zones to be discovered at Red Mountain.

With all results for the recent diamond drilling now received, the Company is finalising geological mapping ahead of planning and permitting for the next round of drilling at the Project, which will be conducted at the earliest opportunity in the 2025 field season.

Astute Chairman, Tony Leibowitz, said:

"Like all great discoveries, Red Mountain continues to grow and improve the more we drill. The manifest scale and high tenor of mineralisation are testament to Red Mountain being one of the most important recent US lithium discoveries. This drill hole is the latest in a succession of thirteen, all of which intersected strong lithium mineralisation, establishing a solid foundation for a maiden mineral resource estimate to be advanced rapidly in 2025."

Background

Located in central-eastern Nevada (Figure 5), the Red Mountain Project was staked by Astute in August 2023.

The Project area has broad mapped tertiary lacustrine (lake) sedimentary rocks known locally as the Horse Camp Formation². Elsewhere in the state of Nevada, equivalent rocks host large lithium deposits (see Figure 5) such as Lithium Americas' (NYSE: LAC) 62.1Mt LCE Thacker Pass Project³, American Battery Technology Corporation's (OTCMKTS: ABML) 15.8Mt LCE Tonopah Flats deposit⁴ and American Lithium (TSX.V: LI) 9.79Mt LCE TLC Lithium Project⁵.

Astute has completed substantial surface sampling campaigns at Red Mountain, which indicate widespread lithium anomalism in soils and confirmed lithium mineralisation in bedrock with some exceptional grades of up to 4,150ppm Li^{2,8} (Figure 4).

The Company's maiden drill campaign at Red Mountain comprised 11 RC drill holes for 1,518m over a 4.6km strike length. This campaign was highly successful with strong lithium mineralisation intersected in every hole drilled⁹. Two diamond drill holes have been drilled at the project.

Scoping leachability testwork on mineralised material from Red Mountain indicates high leachability of lithium of up to 98%, varying with temperature, acid strength and leaching duration¹⁰.

Other attractive Project characteristics include the presence of outcropping claystone host-rocks and close proximity to infrastructure, including the Project being immediately adjacent to the Grand Army of the Republic Highway (Route 6), which links the regional mining towns of Ely and Tonopah.

Results

Hole RMDD002 successfully intersected an 86.9m thick zone of lithium mineralised clay-bearing mudstone, sandstone, tuff and limestone, from 18.3m to 105.2m down-hole. The best grades were developed in the most clay-rich zones, which exhibit a desiccated and cracked appearance in drill core once dry (Figure 2). An internal very high-grade zone of 32.1m graded 2,050ppm Li, with a maximum single sample grade of 3,850ppm Li from 59.4-61.5m (195-201.7ft), which is the drill sample with the highest lithium grade achieved to date at the project.

Figure 1. RMDD002 interpretative cross section, lithium geochemistry and (50-110m off-section) rock chip samples

Interpretation

The two northernmost holes drilled as part of the maiden Red Mountain RC drilling campaign, RMRC002 and RMRC003, intersected thin zones of near-surface lithium mineralisation. It was interpreted at the time that these two holes 'clipped' the edge of a zone of lithium bearing clay-rich rocks that was likely to thicken towards the east (see 'open' arrow in Figure 3)⁹. RMDD002 was designed to test this interpretation and, in addition, extend the mineralisation 375m further north beneath an extrapolated zone of strong rock chip sample results (Figure 1).

The technical team's success in extending the mineralisation further to the north has provided another 375m of strike of the main zone of lithium mineralisation, with a full 86.9m intersection – the thickest intersection achieved to date at the project.

Surface sampling data indicates that further potential extends at least another 1km north along strike from RMDD002, and interpreted dip of the prospective stratigraphy to the east indicates excellent down-dip potential.

Figure 2. High-grade clay rich RMDD002 drill-core from 48.8-50.3m (160-165ft) which assayed 3,280ppm Li.

Figure 3. RMRC002-003 interpretative cross section, lithium geochemistry and select rock chip samples.

Hole ID	Easting (NAD83)	Northing (NAD83)	RL	Dip (°)	Azimuth (°)	Depth (m)
RMDD001	637549	4286147	1726	-50	270	243.84
RMDD002	637186	4290574	1709	-50	270	182.88

 Table 1. Drill-hole collar details

Figure 4. Drill-hole locations and intersections, and gridded soil sample geochemistry over aerial image.

Next Steps

Areas of potential lithium mineralisation identified to the north and down-dip to the east of RMDD002 will be tested in future drill campaigns at Red Mountain. The Company is currently in the process of finalising geological mapping undertaken at the Red Mountain Project. This work will be finalised and integrated with surface sampling data to assist in refining the Company's drilling plans.

The Company intends to then proceed with planning and permitting the next round of drilling at the Project, to be conducted at the earliest opportunity in the 2025 field season.

About Lithium Carbonate Equivalent (LCE)

Unlike spodumene concentrate, which is a feedstock, Lithium Carbonate is a downstream product that may be used directly in battery production or converted to other battery products such as lithium hydroxide.

The Benchmark Mineral Intelligence Lithium Carbonate China Index priced lithium carbonate product at US $10,134/t^6$ as of 10 January 2025.

Lithium carbonate is the product of many of the most advanced lithium clay projects around the world, including Lithium Americas' (NYSE: LAC) 62.1Mt LCE Thacker Pass Project³, which is currently under construction. Accordingly, exploration results for Red Mountain have been reported as both the standard parts-per-million (ppm) and as % Lithium Carbonate Equivalent (LCE)¹.

A full table of assay results is provided in Appendix 2.

Figure 5. Location of Astute Lithium Projects, and Nevada lithium deposits.

Lithium Carbonate Equivalent wt%(LCE) has been calculated from Lithium parts-per-million (ppm) by the formula LCE = Li (ppm) x 5.323 /10,000 2 ASX: ASE 27 November 2023 'Outstanding Rock-Chip Assays at Red Mountain Project'

3 NYSE: LAC 31 December 2024 Updated NI 43-101 Technical Report for the Thacker Pass Project

4 OTCMKTS: ABML 26 February 2023 'Technical Report Summary for The Tonopah Flats Lithium Project, Esmeralda.'

- 5 TSX.V: LI 17 March 2023 'Tonopah Lithium Claims project NI 43-101 technical report Preliminary Economic Assessment'
- 6 Source: Benchmark Mineral Intelligence Lithium Carbonate China Index 12/06/2024
- 7 ASX: ASE 16 December 2024 'Major new zones of Lithium Mineralisation at Red Mountain Project'
- 8 ASX: ASE 8 July 2024 'High-grade rock chip assays extend prospective lithium horizon at Red Mountain Project, USA'
 9 ASX: ASE 7 August 2024 'Red Mountain confirmed as significant lithium discovery following receipt of final assays'
- ASX: ASE 7 August 2024 Rea Mountain confirmed as significant lithium discovery following rec 10 ASX: ASE 9 December 2024 'Positive initial metallurgical results from Red Mountain'

Authorisation

This announcement has been authorised for release by the Board of Astute.

Astute Metals NL Interactive Investor Hub

Engage with Astute Metals through accessing reports, presentations, interviews and other Company content.

Ask questions and browse responses to other investors' questions

Click on <u>https://astutemetals.com/auth/signup</u> and follow the prompts to sign up

More Information

Matt Healy Executive Director & CEO <u>mhealy@astutemetals.com</u> +61 (0) 431 683 952 Nicholas Read Media & Investor Relations <u>nicholas@readcorporate.com.au</u> +61 (0) 419 929 046

Competent Persons

The information in this report that relates to Sampling Techniques and Data (Section 1) is based on information compiled by Mr. Matthew Healy, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM Member number 303597). Mr. Healy is a full-time employee of Astute Metals NL and is eligible to participate in a Loan Funded Share incentive plan of the Company. Mr. Healy has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Healy consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Reporting of Exploration Results (Section 2) is based on information compiled by Mr. Richard Newport, principal partner of Richard Newport & Associates – Consultant Geoscientists. Mr. Newport is a member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person under the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Newport consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialisedindustry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheldXRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensuresample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation tu are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, suchas where there is coarse gold that has inherentsampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Triple-tube HQ diamond drilling was undertaken for drill sample collection. Samples were collected on a nominal 5-foot basis or sampled to geological boundaries based on lithological logging. Samples were photographed, half-cored, and despatched to an external lab by an external contractor. Claystone hosted lithium deposits are thought to form as a result of the weathering of lithium-bearing volcanic glass within tertiary-aged tuffaceous lacustrine sediments of the mapped Ts3 unit. Inputs of lithium from geothermal sources have also been proposed.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- holehammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Triple tube HQ drilling methods employed. Core was oriented where possible, although the soft nature of the lithology precluded this for the most part.
Drill sample recovery	 Method of recording and assessing core andchip sample recoveries and results assessed. Measures taken to maximise sample recoveryand ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gainof fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative innature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevantintersections logged. 	Sample recovery established by recovery logging and dry sample weights undertaken by independent laboratory prior to sample preparation and analysis Poor drill core recovery at surface. Instances of poor recovery are not expected tomaterially impact interpretation of results Drill core for the entire hole was logged for lithology bycompany geologists Logging is qualitative Photography of drill core undertaken by contractors in Elko prior to delivery to external laboratory

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparatio n	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotarysplit, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparationtechnique. Quality control procedures adopted for all sub-sampling stages to maximise representivityof samples. Measures taken to ensure that the sampling isrepresentative of the in-situ material collected,including for instance results for field duplicate/second-half sampling.	Core half cored at a third part contractor facility in Elko, and submitted to ALS Laboratories in Elko for preparation and analysis.
Quality of assay data and laboratory tests	 Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial ortotal. For geophysical tools, spectrometers, handheldXRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precisionhave been established. 	Samples analysed by method ME-MS41 which is an ICP-MS method employing an aqua-regia digest. Aqua-regia is not considered a 'total' digest for many elements however is considered fit for purpose for lithium and has been used extensively by other parties exploring for lithium claystone deposits in the USA. Assay quality was monitored using pulp blanks, as well as certified reference materials (CRMs) at a range of lithium grades. Pulp blank results indicated no material contamination of samples from sample preparation or during the analytical process. CRM results were within 3 standard deviations of certified values. No material systematic bias nor other accuracy related issues were identified.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Sample intervals to be assigned a unique sample identification number prior to sample despatch Lithium-mineralised claystone Certified Reference Materials (standards), pulp blanks and coarse blanks to be inserted into the sample stream at regular intervals to monitor lab accuracy and potential contamination during sample prep and analysis
Location of data points	Accuracy and quality of surveys used to locatedrill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Drill collar locations determined using hand- held GPS with location reported in NAD83 UTM Zone 11. Expected hole location accuracy of +/- 10m Downhole survey data yet to be validated. For the purposes of drill sections, drill holes have been plotted at the setup azimuth of 270° (Grid). This is not expected to make a material difference to interpretation of results.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the MineralResource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Drill spacing is appropriate for early exploration purposes 5-foot sample interval, or to geological boundaries where appropriate, widely adopted as standard practice in drilling in the USA.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Claystone beds are regionally shallow-dipping at ~20°-45° to the east and varying locally across the Project with some evidence of faulting and potential folding
Sample security	The measures taken to ensure sample security.	Samples stored at secure yard and shed located in township of Currant until delivered by staff or contractors to the core processing contractors at Elko, and then to ALS lab at Elko, NV
Audits or reviews	The results of any audits or reviews of samplingtechniques and data.	Not applicable

Section 2 - Reporting of Exploration Results

	Criteria	JORC Code explanation	Commentary		
	Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Red Mountain Claims held in 100% Astute subsidiary Needles Holdings Inc. Claims located on Federal (BLM) Land Drilling conducted on claims certified by the Bureau of Land Management (BLM)		
0	Exploration done by other parties	Acknowledgment and appraisal of exploration byother parties.	No known previous lithium exploration conducted at Red Mountain Exploration conducted elsewhere in Nevada by other explorers referenced in announcement body text		
	Geology	Deposit type, geological setting and style of mineralisation.	The principal target deposit style is claystone hosted lithium mineralisation. Claystone hosted lithium deposits are thought to form as a result of the weathering of lithium-bearing volcanic glass within tertiary-aged tuffaceous lacustrine sediments of the mapped Ts3 unit. Lacustrine environments formed as a result of extensional tectonic regime that produced 'basin and range' topography observed across the stateof Nevada. Inputs of lithium from geothermal sources have also been proposed.		
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drillhole locations, orientations and drilled depths are tabulated in body report		
	Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shownin detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Intersections, where quoted are weighted by length. Lengths originally recorded in feet are quoted to the nearest 10cm. Rounding is conducted to 3 significant figures A 500ppm Li cut-off was used to quote headline intersections, with allowance for 5ft of internal dilution by lower grade material. Low grade mineralisation (300-500ppm Li) is present outside of the quoted intersections Intersections are quoted in both lithium ppm and as wt% Lithium Carbonate Equivalent (LCE). LCE is calculated as LCE = Li (ppm) x 5.323 / 10,000, as per industry conventions.		

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary		
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	Insufficient information available due to early exploration status, although interpretation to date is that intersections in this hole		
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	approximate true width.		
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width notknown').			
Diagrams	Appropriate maps and sections (with scales) andtabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included in ASX announcement		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This release describes all relevant information		
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysicalsurvey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This release describes all relevant information		
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions orlarge-scale step-out drilling).	Drill results demonstrate further work at the Red Mountain project is warranted.		
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.			

APPENDIX 2 – Red Mountain Drilling Sample Assay Table

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)	Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMDD002	0	3.9	24.3	0.01	RMDD002	225.4	230	1625	0.86
RMDD002	3.9	9.5	48.3	0.03	RMDD002	230	235	1475	0.79
RMDD002	9.5	15	26.5	0.01	RMDD002	235	241	436	0.23
RMDD002	15	20	120	0.06	RMDD002	241	247.4	773	0.41
RMDD002	20	25	258	0.14	RMDD002	247.4	252.2	1500	0.80
RMDD002	25	30	220	0.12	RMDD002	252.2	257	2300	1.22
RMDD002	30	35	237	0.13	RMDD002	257	260.6	725	0.39
RMDD002	35	40	133	0.07	RMDD002	260.6	264.4	1050	0.56
RMDD002	40	45	75.4	0.04	RMDD002	264.4	270	1590	0.85
RMDD002	45	50	146.5	0.08	RMDD002	270	275	1715	0.91
RMDD002	50	55	284	0.15	RMDD002	275	280	2380	1.27
RMDD002	55	60	420	0.22	RMDD002	280	285	1980	1.05
RMDD002	60	65	938	0.50	RMDD002	285	290	359	0.19
RMDD002	65	70.5	932	0.50	RMDD002	290	295	821	0.44
RMDD002	70.5	76.6	1915	1.02	RMDD002	295	300	935	0.50
RMDD002	76.6	80	1525	0.81	RMDD002	300	305	1180	0.63
RMDD002	80	85	468	0.25	RMDD002	305	310	1130	0.60
RMDD002	85	90	904	0.48	RMDD002	310	315	1080	0.57
RMDD002	90	96	522	0.28	RMDD002	315	320	1125	0.60
RMDD002	96	102.3	262	0.14	RMDD002	320	325	1225	0.65
RMDD002	102.3	105.5	1035	0.55	RMDD002	325	330	697	0.37
RMDD002	105.5	109.5	1535	0.82	RMDD002	330	335	1480	0.79
RMDD002	109.5	115	2130	1.13	RMDD002	335	340	1505	0.80
RMDD002	115	120	1115	0.59	RMDD002	340	345	1240	0.66
RMDD002	120	125	780	0.42	RMDD002	345	348.7	386	0.21
RMDD002	125	130	1285	0.68	RMDD002	348.7	352	241	0.13
RMDD002	130	135	807	0.43	RMDD002	352	355.5	432	0.23
RMDD002	135	140	860	0.46	RMDD002	355.5	360	504	0.27
RMDD002	140	145.5	404	0.22	RMDD002	360	365	455	0.24
RMDD002	145.5	151.6	1265	0.67	RMDD002	365	370	243	0.13
RMDD002	151.6	155	3130	1.67	RMDD002	370	375	195.5	0.10
RMDD002	155	160	2960	1.58	RMDD002	375	380	187.5	0.10
RMDD002	160	165	3280	1.75	RMDD002	380	385	206	0.11
RMDD002	165	170	2710	1.44	RMDD002	385	390	75.2	0.04
RMDD002	170	175	2650	1.41	RMDD002	390	395	60.4	0.03
RMDD002	175	180	2510	1.34	RMDD002	395	400	143	0.08
RMDD002	180	186	2770	1.47	RMDD002	400	404.4	120	0.06
RMDD002	186	190.5	2890	1.54	RMDD002	404.4	409.5	299	0.16
RMDD002	190.5	195	2240	1.19	RMDD002	409.5	415	219	0.12
RMDD002	195	201.7	3850	2.05	RMDD002	415	420	341	0.18
RMDD002	201.7	206	1535	0.82	RMDD002	420	425.3	417	0.22
RMDD002	206	211	1105	0.59	RMDD002	425.3	430	205	0.11
RMDD002	211	215	79.2	0.04	RMDD002	430	435	198.5	0.11
RMDD002	215	220	1275	0.68	RMDD002	435	440	129	0.07
RMDD002	220	225.4	1815	0.97	RMDD002	440	445	180.5	0.10

APPENDIX 2 – Red Mountain Drilling Sample Assay Table

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMDD002	445	450	176.5	0.09
RMDD002	450	455	157.5	0.08
RMDD002	455	460	132.5	0.07
RMDD002	460	464	242	0.13
RMDD002	464	470	364	0.19
RMDD002	470	475	333	0.18
RMDD002	475	480	503	0.27
RMDD002	480	485	847	0.45
RMDD002	485	490	200	0.11
RMDD002	490	495	295	0.16
RMDD002	495	500	535	0.28
RMDD002	500	505	339	0.18
RMDD002	505	510	354	0.19
RMDD002	510	515	488	0.26
RMDD002	515	520	388	0.21
RMDD002	520	525	319	0.17
RMDD002	525	530	219	0.12
RMDD002	530	535	428	0.23
RMDD002	535	538.8	301	0.16
RMDD002	538.8	542	93.3	0.05
RMDD002	542	545	126	0.07
RMDD002	545	550	162.5	0.09
RMDD002	550	555	201	0.11
RMDD002	555	560	100.5	0.05
RMDD002	560	565	78.4	0.04
RMDD002	565	570	93.8	0.05
RMDD002	570	575	83.1	0.04
RMDD002	575	580	300	0.16
RMDD002	580	585	256	0.14
RMDD002	585	590	114	0.06
RMDD002	590	595	258	0.14
RMDD002	595	600	219	0.12