

8 January 2025

HAFNIUM PRICE SURGE DRIVES EXPANSION OF JOKIKANGAS PROJECT, FINLAND

FURTHER INFORMATION

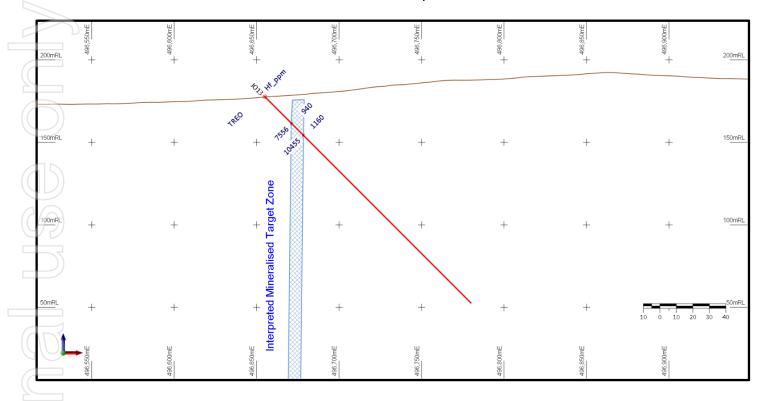
The Company has been requested to provide the following further information relating to the abovenamed announcement made on 6 January 2025.

1. Drill hole collar details and appropriate sectional views.

Drill hole collar details, which were reported in the JORC Code Table 1 to the Company's announcement, based on UTM Zone 35N are as follows:

HOLE_ID	NORTH UT	EAST UTM	FINAL_DEPTH	RL	DATE	AZIMUTH	DIP
JOKIKANGAS-001	7111504	498886.2	148.8	1000	1984	305	-53
JOKIKANGAS-002	7111216	499274.1	126.5	1000	1984	305	-53
JOKIKANGAS-003	7111345	499088.1	158.3	1000	1984	305	-50
JOKIKANGAS-004	7110591	500214.7	190.3	1000	1984	305	-51
JOKIKANGAS-005	7110792	500457.6	194.2	1000	1984	307	-53
JOKIKANGAS-006	7110572	498958.2	228.6	1000	1984	306	-47
JOKIKANGAS-007	7109980	498388.4	157.7	1000	1984	317	-63
JOKIKANGAS-008	7110922	497731.7	151.4	1000	1984	90	-47
JOKIKANGAS-009	7110922	497548.8	57.5	1000	1984	90	-49
JOKIKANGAS-010	7111181	497143.9	188.7	1000	1984	54	-45
JOKIKANGAS-011	7110821	496424	182	1000	1984	90	-41
JOKIKANGAS-012	7110837	496584.2	128	1000	1984	90	-45
JOKIKANGAS-013	7111215	496655.1	177	1000	1984	90	-45
JOKIKANGAS-014	7110489	499070.2	124	1000	1984	306	-54
KATAJAKANGAS-001	7111117	503056.5	85.02	1000	1973	23	-39
KATAJAKANGAS-002	7110485	503211.5	203.1	1000	1983	23	-59
KATAJAKANGAS-003	7110450	503355.4	156.5	1000	1983	23	-68
KATAJAKANGAS-006	7111551	501127.3	178.9	1000	1984	360	-68
KATAJAKANGAS-009	7110597	502462.8	203.1	1000	1984	22	-64
KATAJAKANGAS-010	7110462	501652.1	202.6	1000	1984	360	-50
KONTIOAHO-001	7113371	500207.7	137.45	1000	1980	306	-54
KONTIOAHO-002	7113371	500207.7	137.45	1000	1980	306	-54
KONTIOAHO-003	7112008	501656.1	210.7	1000	1984	45	-70
KONTIOAHO-004	7112216	501865	144.3	1000	1984	45	-64
KONTIOAHO-005	7113096	501177.3	159	1000	1984	52	-63
KONTIOAHO-006	7112741	499572.9	148	1000	1984	297	-51
KONTIOAHO-007	7113021	500062.7	184.6	1000	1984	305	-56
KONTIOAHO-012	7112985	501035.3	131.5	1000	1985	52	-54
KONTIOAHO-014	7112701	500247.7	233.7	1000	1984	306	-72
OTM11004	7114575	3502320	67.9	1000	2011	40	-65
OTM11007	7116220	3501523	57.85	1000	2011	40	-65
OTM11008	7116930	3500505	101.8	1000	2011	305	-60
OTM11009	7116675	3500675	111.05	1000	2011	305	-60
OTM11010	7112845	3496550	69.95	1000	2011	290	-45
OTM11011	7114480	3498640	85.55	1000	2011	270	-45
OTM11012	7114704	3498628	113.9	1000	2011	270	-45

Level 2, 66 Hunter Street, Sydney NSW 2000 Australia



As announced, 'the previously reported assay results were often based on narrow intervals sampled for academic purposes, resulting in limited intersection intervals being reported.' Thus, sectional views of the previously reported assay results have limited relevance.

Nevertheless, the westernmost drill hole, JO013, is depicted in section below:

JO013 has reported a near surface mineralised zone which is considered likely to continue along strike and at depth. Resampling of this drill core over a broader interval will be completed in 2025.

2. Further details to be included in the JORC Code Table 1.

An updated JORC Code Table 1 is attached to this announcement.

3. A cross reference and a streamline statement to previously reported results.

Reference in the previously reported results is a reference to the Company's ASX announcement 'Prospech identifies High-Grade Rare Earth Oxides and Hafnium over 4km strike at Jokikangas Project, Finland' dated 11 April 2023.

The information reported in that announcement is current as of the date of this announcement and the Competent Person confirms that he is not aware of any new information or data that materially affects that information.

For further information, please contact.

Jason Beckton Managing Director Prospech Limited +61 (0)438 888 612

Competent Person's Statement

The information in this Report that relates to Exploration Results is based on information compiled by Mr Jason Beckton, who is a Member of the Australian Institute of Geoscientists. Mr Beckton, who is Managing Director of the Company, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Beckton consents to the inclusion in this Report of the matters based on the information in the form and context in which it appears.

This announcement has been authorised for release to the market by the Managing Director.

TO DEN TOUSIED IOL pjn12465

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	The Finnish government facility in Loppi houses the historical core. The core is of BQ and AQ sizes. Historical core was sampled by the Geological Survey of Finland (GTK) geologists and the assay results being reported are based on narrow intervals sampled for academic purposes, resulting in limited intersection intervals being reported. Prospech is not aware of the sampling techniques and is not relying on the sampling details as the the complete core is to be relogged, sampled and samples taken by Prospech geologists for assaying. Sampling techniques by Prospech will be reported when the sampling and assaying over wider intervals, building on the narrow sections of significant grades of hafnium and niobium already identified in the Jokikangas drill core, is undertaken by the Company. Based on the Company's extensive logging and sampling of historic drill core preserved by GTK from the Company's Korsnäs project, validated by confirmatory results from drilling by the Company, the quality of sampling, logging, assay data and laboratory tests conducted by GTK is considered reliable.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond HQ, NQ and BQ drilling.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The historical drilling was conducted by GTK geologists and the assay results being reported are based on narrow intervals sampled for academic purposes, resulting in limited intersection intervals being reported. Prospech is not aware of the drill sample recovery methods and measures to maximise sample recovery and is not relying on these details as the the complete core is to be relogged, sampled and samples taken by Prospech geologists for assaying. Drill sample recovery details will be reported when the sampling and assaying over wider intervals, building on the narrow sections of significant grades of hafnium and niobium already identified in the Jokikangas drill core, is undertaken by the Company. Based on the Company's extensive logging and sampling of historic drill core preserved by GTK from the Company's Korsnäs project, validated by confirmatory results from drilling by the Company, the quality of sampling, logging, assay data and laboratory tests conducted by GTK is considered reliable.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	The historical drilling was conducted by GTK geologists and the assay results being reported are based on narrow intervals sampled for academic purposes, resulting in limited intersection intervals being reported. Prospech is not aware of the logging details and is not relying on these details as the the complete core is to be relogged, sampled and samples taken by Prospech geologists for assaying. Logging details will be reported when the sampling and assaying over wider intervals, building on the narrow sections of significant grades of hafnium and niobium already identified in the Jokikangas drill core, is undertaken by the Company. Based on the Company's extensive logging and sampling of historic drill core preserved by GTK from the Company's Korsnäs project, validated by confirmatory results from drilling by the Company, the quality of sampling, logging, assay data and laboratory tests conducted by GTK is considered reliable.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Historical core was sampled by GTK geologists and the assay results being reported are based on narrow intervals sampled for academic purposes, resulting in limited intersection intervals being reported. Prospech is not aware of the sub-sampling techniques and is not relying on the sub-sampling details as the the complete core is to be relogged, sampled and samples taken by Prospech geologists for assaying. Sub-sampling techniques by Prospech will be reported when the sampling and assaying over wider intervals, building on the narrow sections of significant grades of hafnium and niobium already identified in the Jokikangas drill core, is undertaken by the Company. Based on the Company's extensive logging and sampling of historic

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	drill core preserved by GTK from the Company's Korsnäs project, validated by confirmatory results from drilling by the Company, the quality of sampling, logging, assay data and laboratory tests conducted by GTK is considered reliable.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie	Core is mostly stored in the Loppi relogging facility and mostly is o order to be reviewed. Veracity of collar location cannot be completed in the field and is record based, with most unlogged holes (not reported here) only having rudimentary North, East and Elevation data. Based on the Company's extensive logging and sampling of historidrill core preserved by GTK from the Company's Korsnäs project, validated by confirmatory results from drilling by the Company, the quality of assay data and laboratory tests conducted by GTK is considered reliable.
	lack of bias) and precision have been established.	
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Historical core was sampled by GTK geologists for assaying by an accredited laboratory in Finland and the assay results being reported are based on narrow intervals sampled for academic purposes, resulting in limited intersection intervals being reporter Prospech is not aware of the sampling techniques and is not relyin on the sampling details as the the complete core is to be relogged sampled and samples taken by Prospech geologists for assaying. Assaying was conducted by an accredited laboratory in Finland. Sampling techniques by Prospech will be reported when the sampling and assaying over wider intervals, building on the narrow sections of significant grades of hafnium and niobium already identified in the Jokikangas drill core, is undertaken by the Company. If needed, these results will be followed up by drilling Prospech to validate the data from the historical drill core as was conducted by the Company at the Korsnäs project. Based on the Company's extensive logging and sampling of histor drill core preserved by GTK from the Company's Korsnäs project, validated by confirmatory results from drilling by the Company, the quality of sampling, logging, assay data and laboratory tests conducted by GTK is considered reliable.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Hole locations determined from historical records and converted ETRS-TM35FIN projection (EPSG:3067).
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Historical core was sampled by GTK geologists and the assay resulting reported are based on narrow intervals sampled for acader purposes, resulting in limited intersection intervals being reported. Data spacing and distribution is not sufficient to establish the degree of geological and grade continuity for Mineral Resource and Ore Reserve estimation procedures and classification. Prospech is not aware whether sample compositing has been applied and is not relying on any of these details as the the complete core is to be relogged, sampled and samples taken by Prospech geologists for assaying. Data spacing and distribution by Prospech will be reported when the sampling and assaying over wider intervals, building on the narrow sections of significant grad of hafnium and niobium already identified in the Jokikangas drill core, is undertaken by the Company. Based on the Company's extensive logging and sampling of histor drill core preserved by GTK from the Company's Korsnäs project, validated by confirmatory results from drilling by the Company, the quality of sampling, logging, assay data and laboratory tests conducted by GTK is considered reliable.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The assay results being reported are based on narrow intervals sampled for academic purposes, resulting in limited intersection intervals being reported. Prospech is not aware whether the orientation of sampling and drilling introduced a bias or not and is not relying on these details the the complete core is to be relogged, sampled and samples taken by Prospech geologists for assaying. Data orientation will be reported when the sampling and assaying over wider intervals, building on the narrow sections of significant grades of hafnium a niobium already identified in the Jokikangas drill core, is undertained by the Company and, if needed, drilling by Prospech to validate the data from the historical drill core as was conducted by the Comparat the Korsnäs project.

Criteria	JORC Code explanation	Commentary
		Given the narrow intervals sampled and reported, no bias is believed to be introduced by the sampling method. Based on the Company's extensive logging and sampling of historic drill core preserved by GTK from the Company's Korsnäs project, validated by confirmatory results from drilling by the Company, the quality of sampling, logging, assay data and laboratory tests conducted by GTK is considered reliable.
Sample security	The measures taken to ensure sample security.	Samples were collected by GTK personnel, bagged and immediately dispatched to the accredited laboratory in Finland by independent courier.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of the data management system have been carried out.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary									
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	Jokikangas Exploration Permit, ML2021:0017: 350Ha Honkamäki Exploration Permit Application, ML2023:0015: 1,860Ha Honkamäki 2 Reservation Notification, VA2023:0038: 4,852Ha See Figure 2 in the Company's announcement dated 6 January 202									
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The area of Otanmäki – Jokikangas has been mapped, boulder sampled and drilled by private companies including Rautaruuki Oy and Outokumpu Oy from 1981. In 2020 the project was subject to core resampling by the Finnish Geological Survey (GTK) and University of Oulo, utilising ALS Chemex Laboratory in Outokumpu, Finland (Karenlampi et al 2020).									
Geology	Deposit type, geological setting and style of mineralisation.	The Otanmäki REE area is composed of diverse rock types such as granite gneisses, granites, alkali gneisses, quartz-feldspar schists, amphibolites, and mica schists. The formation of REE-bearing minerals in this area is associated with hydrothermal alteration of the host rocks caused by the intrusion of gabbros and anorthosites in the Otanmäki region.									
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Drill Hole Collar Information (All UTM Zone 35N):									
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such	Assay results, refer below to Appendix 1. A minimum sample length is 0.4m generally but can be as low as 0.15m is observed in historical sampling.									

Criteria	JORC Code explanation	Commentary
	aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Mineralisation is mesothermal contact related between intrusives of Paleoproterozoic age.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The location and results received for some drill-core samples are displayed in the attached maps and/or tables. Coordinates are UTM Zone 35N.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Results for all samples collected in the past are displayed on the attached maps and/or tables.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No metallurgical or bulk density tests were conducted at the project by Prospech.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Prospech's initial task will be to gather data for all historic drill holes within the three tenements and identify the physical locations of the core. Arrangements will then be made to inspect the core and, where appropriate, collect samples for assaying.

Section 1 Appendix – Assays of Rare Earth Oxides to date collated from historic drilling.

To be resampled at			DERTH TO		1-202	5-03	D-202	Nadaga	5202	F202	Cdaga	Thanks we	D-202	U-202	5-202	T202	whatea	1,,202	W202	TREO		art.	nh	
HOLE_ID		DEPTH_FROM			La2O3_ppm	CeO2_ppm	Pr2O3_ppm	Nd2O3_ppm	Sm2O3_ppm	Eu2O3_ppm	Gd2O3_ppm		Dy2O3_ppm	Ho2O3_ppm			Yb2O3_ppm	Lu2O3_ppm	Y2O3_ppm			Nb_ppm		
JOKIKANGAS-001	J001	97.30	97.65	0.35	11.7	175.7	23.4	46.6	11.6	23.2	11.5	0.0	0.0	0.0	11.4	0.0	0.0	0.0	203.2	518	30.0	190.0	300.0	460.0
JOKIKANGAS-001	J001	130.00	133.30	3.30	0.0	35.1	0.0	11.7	23.2	23.2	0.0	0.0	0.0	0.0	0.0	0.0	11.4	0.0	203.2	308	30.0	150.0	240.0	410.0
JOKIKANGAS-004	JO04	74.9	76.2	1.30	11.7	140.5	23.4	46.6	34.8	34.7	11.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	101.6	405	30.0	50.0	150.0	490.0
JOKIKANGAS-004	JO04	76.4	77.4	1.00	11.7	128.8	23.4	46.6	34.8	34.7	11.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	101.6	393	30.0	50.0	180.0	430.0
JOKIKANGAS-004	JO04	115.85	116.85	1.00	11.7	128.8	11.7	58.3	23.2	23.2	11.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	114.3	383	20.0	60.0	170.0	410.0
JOKIKANGAS-004	JO04	117	118.6	1.60	0.0	128.8	11.7	46.6	23.2	46.3	11.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	101.6	370	30.0	60.0	160.0	430.0
JOKIKANGAS-004	JO04	179.8	180.8	1.00	46.9	222.5	35.1	93.3	34.8	34.7	23.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	127	617	30.0	90.0	210.0	550.0
JOKIKANGAS-004	JO04	180.95	181.95	1.00	23.5	152.2	11.7	58.3	34.8	46.3	23.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	127	477	20.0	60.0	200.0	430.0
JOKIKANGAS-005	JO05	80.95	81.95	1.00	0.0	152.2	11.7	46.6	104.4	104.2	80.7	34.5	34.4	11.5	68.6	0.0	0.0	0.0	152.4	801	10.0	120.0	200.0	460.0
JOKIKANGAS-005	JO05	82.07	83.5	1.43	0.0	140.5	11.7	46.6	92.8	92.6	69.2	23.0	11.5	0.0	22.9	0.0	0.0	0.0	127	638	0.0	70.0	200.0	390.0
JOKIKANGAS-005	JO05	178.3	179.3	1.00	23.5	187.4	35.1	58.3	92.8	92.6	57.7	11.5	0.0	0.0	68.6	11.4	0.0	0.0	12.7	652	10.0	60.0	230.0	480.0
JOKIKANGAS-005	JO05	179.75	180.7	0.95	0.0	163.9	23.4	46.6	81.2	81.1	57.7	11.5	0.0	0.0	22.9	0.0	0.0	0.0	114.3	603	10.0	40.0	230.0	390.0
JOKIKANGAS-011	J011	54.10	54.30	0.20	93.8	234.2	35.1	93.3	232.0	208.4	196.0	115.1	114.8	11.5	365.8	91.4	57.0	79.6	177.8	2106	100.0	130.0	160.0	830.0
JOKIKANGAS-012	JO12	26.90	27.10	0.20	23.5	187.4	23.4	93.3	69.6	34.7	46.1	0.0	68.9	22.9	194.3	0.0	0.0	0.0	939.8	1704	60.0	140.0	80.0	670.0
JOKIKANGAS-012	JO12	42.25	42.65	0.40	492.7	1124.2	140.4	466.4	243.6	162 1	253.7	92.1	183.7	11.5	182.9	79.9	68.3	68.2	939.8	4509	130.0	310.0	80.0	1610.0
JOKIKANGAS-013	JO13	22.60	23.10	0.50	1255.1	2751.9	327.6	1131.0	313.2	92.6	369.0	34.5	195.2	0.0	22.9	0.0	34.2	0.0	1028.7	7556	940.0	710.0	120.0	12500.0
JOKIKANGAS-013	JO13 JO13	32.80	33.10	0.80	1642.2	3583.3	456.3	1539.1	475.6		541.9	126.6	321.4	0.0	45.7	91.4	113.9		1320.8	10455	1160.0	1640.0	80.0	6000.0
	00.0									196.9								0.0			1160.0			0000.0
KATAJAKANGAS-002 KATAJAKANGAS-002		73.200	74.200			187.4	93.6	151.6	23.2	11.6	46.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.8	599 24448		80.0	200.0	430.0
KATAJAKANGAS-00.		74.200 74.400	74.400 75.400			9438.3 152.2	193.4 93.6	4092.7 139.9	B23.6 11.6	57.9	1095.4 23.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3441.7 114.3	546		4700.0 50.0	60.0	11300.0 410.0
KATAJAKANGAS-00		8.100	9.200			140.5	23.4	46.6	34.8	46.3	23.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	101.6	416		60.0	150.0	410.0
KATAJAKANGAS-003		9.200	9.350			5655.9	690.3	2402.0	533.6	69.5	645.7	34.5	310.0	0.0	171.5	0.0	113.9	0.0	2197.1	15346		2980.0	120.0	24700.0
KATAJAKANGAS-003		9.350	10.850			222.5	23.4	70.0	34.8	57.9	23.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	127	582		100.0	180.0	610.0
KATAJAKANGAS-003		56,300	57.330			128.8	23.4	46.6	34.8	23.2	11.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	101.6	370		40.0	170.0	360.0
KATAJAKANGAS-003		57.330	57.500			3278.8	421.2	1387.5	301.6	57.9	369.0	0.0	160.7	0.0	68.6	0.0	22.8	0.0	1155.7	8690		2030.0	100.0	4690.0
KATAJAKANGAS-003		57.500	58.500			128.8	23.4	46.6	23.2	23.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	101.6	347		50.0	170.0	400.0
KATAJAKANGAS-003		103.650				46.8	0.0	11.7	46.4	34.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	88.9	229		20.0	140.0	160.0
KATAJAKANGAS-00	06 KA06	30.000	32.000			138.2	16.1	62.3	11.5	2.7	9.5	1.3	7.3	1.3	3.7	0.5	3.1	0.4	40.894	369	8.8	40.8	165.3	338.5
KATAJAKANGAS-009	9 KA09	100.450	101.900	1.450	11.7	140.5	23.4	58.3	34.8	34.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	101.6	405		50.0	170.0	390.0
KONTIOAHO-001	KO01	73.330	73.730	0.400	76.2	151.3	18.4	69.7	13.3	2.7	11.4	1.8	9.5	1.8	4.9	0.6	3.6	0.5	51.816	418	9.8	65.9	142.2	371.4
KONTIOAHO-001	KO01	78.200	81.700	3.500	0.0	11.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	12		10.0		8.0
KONTIOAHO-001	KO01	81.700	87.100	5.400	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0		10.0	230.0	90.0
KONTIOAHO-001	KO01	87.100	91.600	4.500	82.1	726.0	0.0	291.5	69.6	34.7	57.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	304.8	1566		370.0	320.0	1780.0
KONTIOAHO-001	KO01	104.450	108.250	3.800	340.2	690.9	0.0	268.2	81.2	34.7	69.2	0.0	23.0	0.0	0.0	0.0	0.0	0.0	317.5	1825		390.0	310.0	2820.0
KONTIOAHO-001	KO01	104.450	104.950	0.500	345.1	645.1	72.4	247.3	40.0	4.7	32.4	5.8	35.4	7.2	18.7	2.3	13.7	1.9	193.294	1665	28.6	238.4	371.7	1040.2
KONTIOAHO-001	KO01	110.950	112.950	2.000		714.3	0.0	326.5	81.2	34.7	69.2	0.0	23.0	0.0	0.0	0.0	0.0	0.0	431.8	1974		510.0	360.0	9030.0
KONTIOAHO-001	KO01	131.250	131.820	0.570		432.5	49.9	174.0	30.4	3.7	27.6	4.5	27.0	5.5	15.0	1.9	10.8	1.5	161.417	1177	31.9	227.3	341.9	1233.7
KONTIOAHO-005	KO05	13.000	13.350	0.350		125.3	15.2	58.0	10.0	2.3	8.4	1.2	6.8	1,4	3.7	0.5	3.2	0.5	38.735	338	9.0	49.0	106.7	352.7
KONTIOAHO-005	KO05	25.500	25.750	0.250		127.8	15.6	60.0	11.9	2.2	10.3	1.6	9.0	1.8	5.1	0.7	4.5	0.7	52.197	365	11.9	54.1	111.9	453.1
KONTIOAHO-005	KO05	30.450	30.950			695.6	79.5	283.6	43.1	4.5	33.1	5.3	34.6	7.9	26.6	4.0	26.9	3.9	220.726	1822	85.2	460.7	385.2	3390.4
KONTIOAHO-005	KO05	58.300	58.800			463.0	52.0	181.3	30.9	3.7	28.5	4.5	27.2	5.6	15.7	2.2	14.2	2.0	146.05	1234	49.5	321.2	249.5	1603.5
KONTIOAHO-005	KO05	56.400	60.400	4.000		667.5	93.6	268.2	69.6	34.7	80.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	368.3	1899		470.0	380.0	2120.0
KONTIOAHO-005	KO05	60.400	62.400 70.640	2.000		796.3 496.2	105.3	291.5	58.0 35.2	11.6 4.1	57.7	0.0	23.0	0.0	0.0	0.0	0.0	0.0	457.2	2199	22.0	490.0 248.3	410.0 368.8	2310.0
KONTIOAHO-005 KONTIOAHO-005	KO05	70.140 117.000	117.500	0.500		205.3	25.2	201.8 89.1	30.2 14.9	1.8	29.8 13.4	2.3	25.0 14.5	2.9	8.8	1.9	7.5	1.7	151.511 88.265	1296 591	33.6 18.7	132.2	226.4	740.9
KONTIOAHO-005	KO05	30.000	30.310			127.1	15.5	59.6	10.3	2.4	8.4	1.2	6.1	1.2	3.3	0.5	3.2	0.4	35.814	339	12.3	39.2	158.0	465.8
KONTIOAHO-006	KO06	31.000	35.000			210.8	35.1	93.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	165.1	539	12.0	100.0	160.0	1080.0
KONTIOAHO-006	KO06	44.000	44.460			533.9	63.0	228.4	38.5	5.1	34.3	5.5	32.7	7.2	22.0	3.2	20.8	2.9	209.169	1494	59.5	299.3	361.8	2419.2
KONTIOAHO-006	KO06	83.800	86.400			175.7	35.1	93.3	34.8	34.7	11.5	0.0	0.0	11.5	0.0	0.0	0.0	0.0	254	656		250.0	200.0	6490.0
KONTIOAHO-006	KO06	85,600	86,000	0.400	347.8	747.4	89.3	325.9	62.1	7.5	67.7	14.0	104.4	27.6	103.6	18.0	129.7	19.9	800,481		510.4	660.7	261.3	22596.3
KONTIOAHO-006	KO06	96.000	99.000	3.000	258.1	538.7	70.2	209.9	69.6	46.3	57.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	228.6	1479		310.0	250.0	1770.0
KONTIOAHO-006	KO06	35.000	42.500	7.500	293.3	608.9	93.6	256.5	46.4	34.7	46.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	330.2	1710		400.0	310.0	2090.0
KONTIOAHO-006	KO06	42.500	48.000	5.500	246.3	538.7	70.2	221.5	58.0	34.7	46.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	317.5	1533		390.0	300.0	3470.0
KONTIOAHO-006	KO06	134.600	135.900	1.300	11.7	58.6	11.7	23.3	0.0	11.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.8	168		40.0	60.0	150.0
KONTIOAHO-006	KO06	147.430	147.860	0.430	35.5	66.3	7.6	28.2	4.8	0.7	4.2	0.6	3.8	0.8	2.4	0.3	2.4	0.4	22.86	181	2.8	45.4	96.8	109.3
KONTIOAHO-007	KO07	27.100	31.100	4.000	504.4	1147.6	163.8	513.0	116.0	34.7	126.8	0.0	57.4	0.0	45.7	0.0	11.4	0.0	673.1	3394		550.0	280.0	5100.0
KONTIOAHO-007	KO07	31.100	37.120	6.020		819.7	105.3	361.5	58.0	11.6	69.2	0.0	11.5	0.0	0.0	0.0	0.0	0.0	482.6	2306		420.0	320.0	4090.0
KONTIOAHO-007	KO07	36.100	36.600	0.500		904.7	108.6	393.2	74.3	9.1	66.7	10.3	58.6	11.4	31.8	4.2	25.5	3.4	317.627	2481	42.3	500.9	373.0	1574.7
KONTIOAHO-007	KO07	37.120	44.500			655.8	81.9	291.5	69.6	34.7	69.2	0.0	11.5	0.0	11.4	0.0	0.0	0.0	342.9	1885		420.0	290.0	2350.0
KONTIOAHO-007	KO07	44.500	52.700			761.2	93.6	314.8	92.8	34.7	69.2	0.0	34.4	0.0	11.4	0.0	0.0	0.0	381	2157		420.0	340.0	2010.0
KONTIOAHO-007	KO07	52.700	58.500	5.800		655.8	93.6	268.2	69.6	34.7	57.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	330.2	1826		340.0	320.0	2000.0
KONTIOAHO-007	KO07	58.500	60.050	1.550		409.9	46.8	174.9	58.0	34.7	46.1	0.0	0.0	0.0	22.9	0.0	0.0	0.0	317.5	1310		310.0	340.0	2270.0
KONTIOAHO-007	KO07	135.550	137.300	1.750		105.4	23.4	46.6	34.8	34.7	34.6	0.0	11.5	0.0	0.0	0.0	0.0	0.0	152.4	467		200.0	140.0	590.0
KONTIOAHO-007	KO07	168.570	169.000	0.430		493.5	62.5	243.1	48.5	6.0	44.9	7.2	41.1	8.1	22.4	2.9	17.4	2.4	228.727	1476	30.5	266.6	137.0	1346.2
KONTIOAHO-007	KO07	176.720	177.220	0.500		135.0	16.5	60.9	11.2	2.5	9.7	1.5	7.7	1.5	4.1	0.6	3.4	0.5	42.799	364	9.9	42.7	113.3	375.6
KONTIOAHO-012	KO12	23.780	24.300			130.4	16.1	58.8	11.2	2.6	9.4	1.4	7.4	1.4	4.0	0.5	3.5	0.5	39.497	353	9.9	41.7	141.7	366.7
KONTIOAHO-012	KO12	68.050	68.530			263.7	31.6	119.2	22.9	4.0	21.2	3.5	20.3	4.1	12.1	1.6	10.1	1.4	117.348	765	22.7	118.8	177.6	910.0
KONTIOAHO-012	KO12	91.800	93.200			82.0	0.0	104.9	116.0	11.6	0.0	0.0	0.0	0.0	0.0	45.7	34.2	0.0	177.8	572	40.7		270.0	8920.0
KONTIOAHO-012	KO12	119.000	119.540	0.540	336.3	636.7	73.6	258.9	48.6	5.6	41.9	6.7	37.1	7.6	21.3	3.0	18.5	2.6	227.584	1726	43.7	315.1	387.1	1728.2

Section 1 Appendix – Assays of Rare Earth Oxides to date collated from historic drilling (continued).

HOLE ID	SHORT ID DEPT	TH FROM DEPTH	H TO INT	r	La2O3 ppm	CeO2 ppm	Pr2O3 ppm	Nd2O3 ppm	Sm2O3 ppm	Eu2O3 ppm	Gd2O3 ppm	Tb2O3 ppm	Dy2O3_ppm	Ho2O3 ppm	Er2O3 ppm	Tm2O3 ppm	Yb2O3 ppm	Lu2O3 ppm	Y2O3_ppm	TREO	Hf_ppm	Nb_ppm	Rb_ppm	Zr ppm
OTM11008	OT08		7.990	2.210	153.1	289.2	28.4	101.3	18.6	2.3	16.3	2.7	16.7	3.2	9.1	1.3	8.7	1.3	102.362	755	16.4	145	165.5	750
OTM11008	OT08		8.300	2.000	119.6	241.2	25.7	99.3	20.6	2.7	19.8	3.2	19.6	3.8	10.3	1.4	8.7	1.2	124.333	702	19.5	180.5	230.0	843
OTM11008	OT08	90.000 92	2.000	2.000	174.8	353.6	37.7	144.0	28.0	3.3	24.1	3.9	23.4	4.4	12.5	1.7	12.1	1.7	131.445	957	24.2	204	174.0	1090
OTM11009	ОТ09	28.030 29	9.030	1.000	76.7	175.7	17.1	66.7	12.9	2.6	11.1	1.7	10.1	1.8	5.0	0.7	4.6	0.6	57.277	445	11.7	57.9	178.0	485
OTM11009	ОТ09		9.530	0.500	313.2	689.7	75.2	298.5	66.0	9.2	71.8	14.4	102.4	22.1	69.6	10.9	81.2	11.5	708.66	2545	245.0	523	362.0	10900
OTM11009	OT09		1.530	2.000	293.3	586.7	61.3	231.5	44.7	6.5	40.0	6.6	41.2	8.0	22.7	3.1	20.6	2.8	266.7	1635	50.4	289	362.0	2150
OTM11009	OT09		2.970	1.440	823.4	1610.1	163.8	609.8	109.3	13.2	91.3	15.4	96.1	18.3	49.6	5.9	32.8	3.9	506.73	4150	57.6	514	328.0	2620
OTM11009	OT09		4.400	1.430		839.6	85.8	317.2	57.5	7.1	50.2	7.8	47.1	8.9	25.0	3.5	23.6	3.3	267.97	2177	62.1	412	281.0	2780
OTM11009	OT09 OT09		5.020	2,000	234.0	466.1	48.9	186.0	37.0	4.7	31.4	5.0	30.2	5.6	15.5	2.0	12.8 16.3	1.8	187.96	1269	24.1 39.6	237 331	732.0	1240 1800
OTM11009 OTM11009	OT09		7.020 9.020	2.000	383.6 415.2	738.9 785.7	75.5 80.6	271.7 289.2	47.2 50.8	5.5 6.1	38.0 42.2	6.1 6.5	36.9 38.3	7.0 7.1	19.3 19.4	2.5	17.3	2.2	224.79 230.505	1875 1994	38.2	480	310.0 314.0	1600
OTM11009	ОТ09		9.380	0.360		1027.0	107.6	369.6	61.6	7.3	48.3	7.0	42.9	8.6	24.7	3.8	22.7	3.2	279.4	2557	44.0	457	284.0	1820
OTM11009	ОТ09		1.380	2.000		623.0	67.7	237.9	46.5	6.0	40.8	6.5	38.5	7.7	22.1	3.5	21.0	3.0	242.57	1686	51.8	371	296.0	2040
OTM11009	OT09		3.690	2.310		678.0	72.4	249.5	50.1	6.5	45.4	7.7	46.3	9,1	24.0	3.2	18.0	2.5	288.29	1838	43.6	317	327.0	1790
OTM11009	ОТ09	43.690 45	5.330	1.640	200.0	366.5	38.4	131.8	24.8	3.6	24.1	4.2	28.5	6.6	21.7	3.9	26.9	4.3	208.28	1093	167.5	229	275.0	6050
OTM11009	ОТ09	45.330 46	6.720	1.390	124.3	244.7	27.4	98.9	20.6	3.7	20.9	3.7	22.7	4.8	15.0	2.6	17.8	2.9	139.065	749	76.0	169	364.0	3550
OTM11009	ОТ09	46.720 48	8.580	1.860	185.9	366.5	39.8	141.7	26.3	3.9	21.5	3.0	15.8	3.0	8.4	1.3	8.5	1.4	95.504	923	60.5	201	243.0	2400
OTM11009	OT09		0.060	1.480	299.1	577.3	62.7	221.5	43.7	6.2	39.3	6.4	39.0	7.9	23.0	3.7	23.7	3.6	281.94	1639	83.9	379	263.0	3340
OTM11009	ОТ09		1.540	1.480	183.0	364.2	40.2	142.8	27.7	4.2	23.9	3.8	22.0	4.4	12.4	1.9	12.0	1.8	151.765	996	52.1	264	216.0	2000
OTM11009	ОТ09		1.850	0.310	41,4	94.3	11.6	43.7	8.6	1.8	6.6	0.9	5.0	0.9	2.6	0.4	2.4	0.3	33.909	254	9.1	37.5	312.0	358
OTM11009	OT09		2.340	0.490		850.1	86.1	274.0	39.1	4.9	24.8	3.1	15.4	2.7	7.2	1.1	6.2	0.9	92.075	1895	10.4	68.6	87.8	427
OTM11009	OT09		2.730	0.390	974.8	1698.0	169.7	551.5	78.6	9.0	51.8	7.4	41.8	8.5	25.9	4.3	25.4	3.3	312.42	3962	21.8	248	106.0	915
OTM11009 OTM11009	OT09 OT09		3.240 4.060	0.510	150.1 205.9	315.0 432.1	35.1 48.3	124.8 174.3	26.1 36.9	3.8 5.1	25.0 34.6	4.5 5.9	26.9 35.2	5.3 7.0	15.0 19.8	2.4 3.2	14.7 19.4	2.1	156.845 203.2	908	61.1 68.0	282 448	375.0 319.0	2240 2620
OTM11009	OT09		6.060	2.000	205.9	432.1 560.9	48.3 62.4	225.0	30.9 41.2	5.3	33.4	4.8	26.9	5.2	19.8	2.2	19.4	2.8	162.56	1234	33.9	256	282.0	1310
OTM11009	OT09		5.000	2.000	163.0	330.2	37.2	134 1	26.2	3.3	23.2	3.7	21.4	4.3	12.1	1.9	12.1	1.9	136.525	911	57.8	216	406.0	2260
OTM11009	ОТ09		7.000	2.000	398.8	758.8	82.6	288.0	56.4	6.9	48.5	7.7	44.9	8.8	24.5	3.8	23.1	3.3	271.78	2028	64.8	507	411.0	2490
OTM11009	ОТ09		9.000	2.000	346.0	676.8	74.8	267.0	52.9	6.5	45.8	7.3	42.1	8.2	23.0	3.5	20.2	2.8	253.365	1830	50.0	387	277.0	2010
OTM11009	OT09		0.100	1.000	225.8	427.4	46.3	162.7	29.8	3.5	24.7	3.7	20.8	4.0	11.0	1.6	9.6	1.4	131.445	1104	33.8	219	281.0	1270
OTM11010	OT10	63.450 64	4.120	0.670	163.6	327.9	37.0	130.6	25.6	3.0	22.4	3.8	22.7	4.6	13.4	2.1	12.6	1.8	132.08	903	34.6	219	172.5	1400
OTM11010	OT10	64.120 66	6.120	2.000	191.2	381.7	41.4	144.0	25.6	2.8	19.8	3.1	17.8	3.6	10.5	1.7	10.9	1.6	106.045	962	33.6	175.5	152.5	1400
OTM11011	OT11		4.900	1.150	366.0	777.5	84.8	292.7	49.3	5.2	37.6	5.4	28.6	5.2	13.9	2.1	11.8	1.6	173.355	1855	21.2	120	230.0	882
OTM11011	OT11		5.900	1.000	194.7	391.1	43.6	152.7	25.4	2.6	19.0	2.7	15.3	2.9	8.2	1.3	7.9	1.2	94.107	963	21.8	111	235.0	856
OTM11011	OT11		7.450	1.550	209.4	435.6	51.2	183.6	38.4	4.2	33.3	5.8	35.4	7.0	20.0	3.2	18.4	2.5	189.23	1237	79.0	406	171.5	2530
OTM11011	OT11		9.450	2.000	232.8	473.1	53.4	186.0	33.9	3.6	25.9	4.0	21.8	4.0	10.3	1.5	8.2	1.2	118.364	1178	19.3	162	195.5	779
OTM11011 OTM11011	OT11 OT11		1.450 3.200	2.000 1.750	197.1 178.3	393.5 358.3	43.5 40.5	152.2 141.7	26.9 25.3	2.9	21.2 18.7	3.2 2.8	17.5 15.8	3.2	8.5 8.2	1.2	6.9 7.6	1.0	106.68 94.361	985 899	19.2 24.6	123.5 145.5	195.0	816 881
OTM11011	OT11		5.200	2.000	246.3	509.4	40.5 58.1	207.0	36.3	3.7	28.5	4.1	22.3	4.2	11.3	1.7	10.2	1.1	128.905	1273	24.0	138	213.0	931
OTM11011	OT11		7.200	2.000	178.3	356.0	39.9	139.9	26.1	2.6	20.3	3.1	17.7	3.4	9.7	1.5	8.7	1.3	113.03	922	26.1	157	220.0	979
OTM11011	OT11		8.900	2.000	303.8	585.5	63.3	220.4	40.1	4.6	34.0	5.2	30.8	6.2	17.4	2.5	13.2	1.9	199.39	1528	46.2	275	256.0	1870
OTM11011	OT11		9.100	0.200		3700.4	293.7	708.9	65.8	6.1	31.2	5.1	30.7	6.7	21.0	3.5	20.6	3.0	214.63	7504	67.4	325	256.0	3510
OTM11011	OT11		1.100	2.000	361.3	678.0	72.5	253.0	47.0	5.4	38.0	6.1	35.4	7.0	19.8	3.1	17.8	2.6	215.9	1763	59.6	317	239.0	2440
OTM11011	OT11	56.000 58	8.000	2.000	273.3	524.6	56.4	205.8	37.1	4.4	30.1	4.8	27.8	5.7	15.0	2.1	12.7	1.9	167.64	1369	38.4	255	209.0	1590
OTM11011	OT11	68.300 70	0.500	2.200	173.0	354.8	39.5	149.8	31.6	4.3	30.4	5.4	33.4	7.2	19.7	2.8	16.8	2.4	203.835	1075	63.1	304	238.0	2700
OTM11012	OT12		8.000	1.400	158.4	298.6	31.4	112.8	18.9	2.5	14.0	2.3	12.9	2.7	6.9	1.0	6.3	1.0	79.883	749	14.6	107	196.0	609
OTM11012	OT12		8.500	0.500	101.9	207.3	22.9	87.5	16.2	2.5	14.0	2.3	13.3	2.9	7.6	1.1	7.0	1.1	90.043	578	10.1	99.3	186.0	431
OTM11012	OT12		8.700	0.200		1762.4	187.2	694.9	132.2	16.2	105.8	17.1	96.2	18.8	46.7	6.4	35.7	4.9	595.63	4586	55.0	603	179.0	2360
OTM11012	OT12		9.650	0.950	131.4	263.5	28.8	108.4	20.1	2.7	16.2	2.5	13.5	2.7	6.6	1.0	6.2	1.0	77.724	682	17.0	133	153.0	681
OTM11012	OT12		0.650	0.680	79.2	155.2	17.0	64.5	11.4	1.8	9.1	1.4	8.3	1.8	4.7	0.7	4.8	0.8	52.578	413	10.4	54.8	169.0	432 448
OTM11012 OTM11012	OT12 OT12		1.330 1.750	0.680	151.3 8.0	296.3 20.0	32.6 2.5	120.1 10.5	20.0	2.9 0.5	14.2 2.4	0.4	11.1	2.2 0.5	5.7 1.3	0.9	5.9 1.5	1.0 0.3	66.548 13.208	733 66	1.4	71.2 54.6	177.0 220.0	448
OTM11012	OT12		4.750	3.000	68.5	123.5	12.9	47.0	8.3	1.4	6.4	1.0	5.9	1.2	3.2	0.5	3.3	0.6	38.227	322	7.6	60.1	171.5	279
OTM11012	OT12		7.750	3.000	271.0	575.0	63.6	240.2	48.5	6.7	38.9	6.5	37.1	7.2	18.1	2.5	14.7	2.0	184.785	1517	32.8	262	140.0	1330
OTM11012	OT12			2.300	59.2	121.2	14.2	55.4	10.1	2.3	7.7	1.2	6.8	1.4	3.7	0.6	3.8	0.7	41.656	330	6.7	59	138.5	268
OTM11012	OT12		1.000	0.950	73.1	145.2	16.6	64.7	12.1	3.1	9.4	1.5	8.4	1.7	4.4	0.7	4.0	0.6	55.626	401	6.1	90.6	206.0	256
OTM11012	OT12		1.670	0.670	99.9	229.5	27.4	108.6	20.6	5.1	16.8	2.6	14.9	3.1	8.3	1.2	7.5	1.1	108.458	655	4.7	160.5	162.0	208
OTM11012	OT12		2.680	1.010	92.9	186.8	21.3	81.3	14.7	3.9	10.5	1.6	9.1	1.8	4.7	0.7	4.3	0.7	54.737	489	9.6	119.5	176.0	371
OTM11012	OT12		4.680	2.000	69.8	135.3	15.3	58.9	10.5	4.2	8.1	1.2	6.9	1.4	3.5	0.5	3.1	0.5	43.815	363	4.9	65.2	152.0	204
OTM11012	OT12		6.000	2.000	220.5	468.4	51.9	192.4	32.0	4.7	20.2	3.0	16.1	3.1	7.7	1.2	8.0	1.4	83.439	1114	26.7	119	168.0	1070
OTM11012	OT12		8.000	2.000	81.2	166.9	19.3	75.3	13.8	2.8	10.5	1.7	9.3	1.9	4.9	0.7	4.9	0.8	56.515	451	8.5	80.8	163.5	349
OTM11012	OT12		0.750	0.750	68.4	140.5	16.3	64.1	12.6	3.0	10.0	1.6	9.3	1.9	5.1	0.8	4.7	0.8	62.23	402	5.3	77.8	166.5	207
OTM11012	OT12		1.440	0.690	49.5	101.4	11.9	47.7	9.6	1.6	8.0	1.3	7.2	1.5	4.1	0.7	5.7	1.1	44.704	296	8.2	68.9	171.0	323
OTM11012	OT12		1.640	0.200	120.8	242.4	26.0 17.6	94.0	14.6	1.8	9.1	1.4	7.4	1.5	4.0 4.7	0.7	4.4	0.8	39.37	568	27.2	275	192.5	1070
OTM11012	OT12		2.440		75.0 74.4	152.8 134.7	17.6	68.1 56.2	12.8 9.7	2.5 2.5	9.7 7.0	1.5	8.7 5.9	1.8	2.9	0.7	2.3	0.8	53.34	415	11.7	122.5	154.0 552.0	451
OTM11012 OTM11012	OT12 OT12		2.750 4.080	1.330		134.7	18.4	69.5	9.7	2.8	9.8	1.1	9.4	2.0	5.3	0.4	5.7	1.0	36.957 59.944	350 439	2.9	133 174	139.0	120 816
OTM11012	OT12		4.080	0.290		196.1	22.1	83.3	12.8	2.8	9.8	1.8	10.3	2.0	6.2	1.0	7.6	1.4	71.755	528	45.5	195	129.5	1320
OTM11012	OT12		6.370	2.000	75.2	153.4	17.6	68.8	13.3	2.8	10.8	1.8	10.5	2.1	5.5	0.8	5.0	0.8	59.055	427	11.8	93.1	118.5	446
OTM11012	OT12		8.370	2.000	235.8	480.1	52.2	191.2	31.1	4.8	18.7	2.8	15.1	3.0	7.5	1,1	6.9	1.1	87.63	1139	20.7	93.8	135.0	739
OTM11012	OT12		9.580	1.580	66.7	142.3	17.1	69.0	13.3	2.8	9.5	1.5	8.7	1.8	4.8	0.7	4.7	0.8	54.991	399	7.1	89.7	134.0	279
OTM11012	OT12		2.240	0.290	63.2	135.8	16.2	63.3	11.7	2.2	8.2	1.3	7.5	1.5	4.1	0.6	4.2	0.7	43.307	364	8.7	86.5	129.5	340
																		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-27		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		