

ASX Release

15 November 2024

GDM Confirms High-Grade Antimony & Gold at Banshee, Coonambula

Great Divide Mining Ltd (the **Company** or **GDM**) (ASX:GDM), an Australian gold, antimony and critical metals explorer and producer, has confirmed high-grade antimony and gold assays in surface geochemical samples at the Company's Banshee Prospect, Coonamula Project, EPM 16216.

Key Points:

- Geochemical samples within historical trenches along strike from the old Banshee antimony-gold mine
 have returned anomalous antimony up to <u>23.9% Sb</u> and gold up to <u>9.93 g/t Au</u>.
- The best horizontal channel sample interval returned 4 m @ 3.09 g/t Au and 1.14% Sb in Trench 13, including 1 m @ 6.15 g/t Au and 3.1% Sb.
- These new geochemical results from the old trenches will help GDM link the surface mineralisation with the Sb-Au mineralisation intersected in previous drill holes, for the next stage of 3D modelling work.
- Historical trenches were rehabilitated, and unsafe old workings were fenced off.

Commenting on this recent activity Chief Executive Officer of Great Divide Mining, Justin Haines, said:

"These high-grade assay results from the old trenches at Banshee are very encouraging. Not only do we have high-grades of antimony, but we also have high-grades of gold up to 9.93 g/t Au. GDM has shown that the mineralisation extends along strike, well away from the old workings. The anomalous Sb-Au system at Banshee is open to the east and west, plus at depth, so GDM will continue to explore this exciting prospect to unlock its full potential."

Coonambula Project

The Coonambula Project is located around 25 km SW of Eidsvold in SE Queensland. This project lies in a region of significant mineral deposits, ~70 km to the SE of Cracow (2.5 million oz gold), 90 km SW of Mount Rawdon (1.5 million oz gold) and 180 km NW of Gympie (3.5 million oz gold). The Coonambula Project is host to several historical Antimony-Gold mine workings. A project location map is provided as **Figure 1**.

GDM's Coonambula Project includes 5 contiguous EPMs (15203, 16216, 25260, 26743 and 28433) that cover an area of ~288 sq km. The project is host to large areas of Carboniferous to Permian-Triassic granitoid intrusions of the Rawbelle Batholith, plus an abundance of historical mineral occurrences. The main target of interest at Coonambula is the historical Antimony-Gold mine workings at Banshee, see **Figure 2**

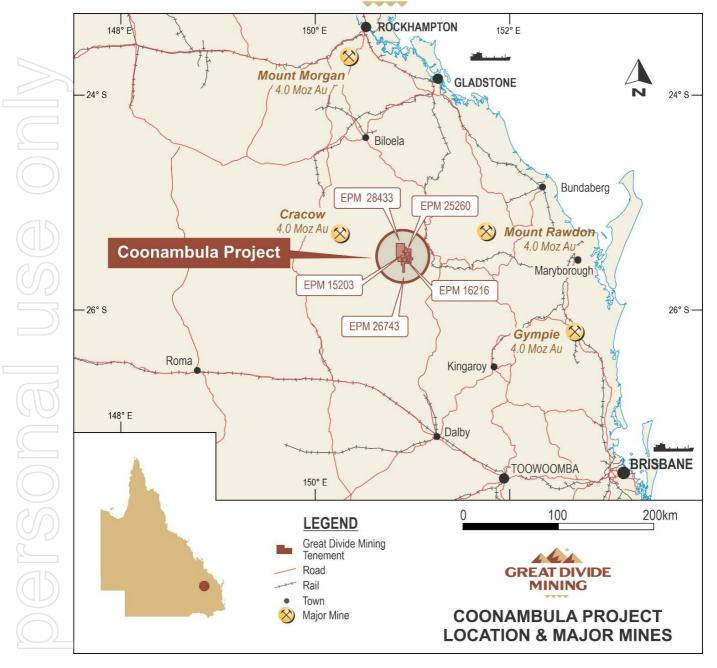


Figure 1: Coonambula Project location map

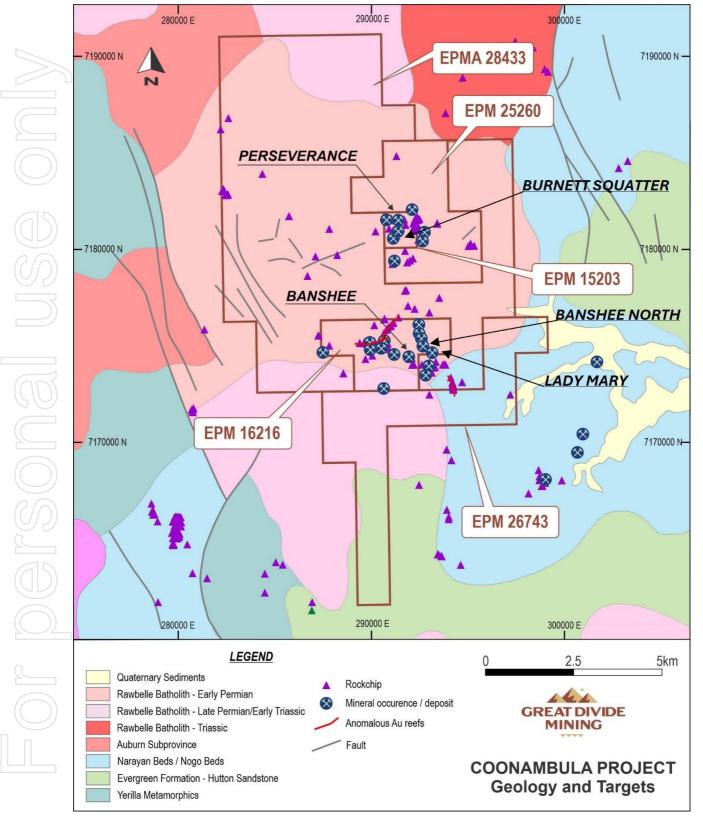


Figure 2: Coonambula Project tenement map, geology and main targets

Banshee Antimony-Gold Prospect

The largest historical mine at Coonambula is the Banshee Antimony-Gold (Sb-Au) mine, which has geological similarities to the Hillgrove Mine in NSW. The Banshee Sb-Au mine lies within the historical Hungry Hill mine workings and was first mined in 1876, then in 1907, 1928, 1953 and 1955. The most recent production was in 1983, when 20 tons of ore was mined containing 4 tons of Antimony sulphide (i.e. stibnite).

Mining to a depth of around 30 m has occurred in one small area of Banshee. A photo of the historical collapsed mine workings is included in **Figure 3**. Rock chip samples collected by Queensland Ores in 2014 at Banshee, from the old waste piles have returned high-grade antimony assays of up to <u>44.9% Sb</u> (see GDM's 2023 Prospectus).

Figure 3: Banshee old mine workings

Previous Drilling at Banshee

An initial exploration program by Queensland Ores in 2013 included geochemical sampling, a gravity survey, an IP survey and RC drilling. A second drilling program followed in 2014 including RC and diamond drilling.

The stibnite-quartz rich mineralised zones intersected in the drill holes returned many significant intercepts of Sb-Au mineralisation, including 6 m @ 5.12% Sb and 1.55 g/t Au from 77 m depth in hole CNRC04. Drilling details are included in GDM's 2023 Prospectus and GDM's ASX Announcement dated 3 September 2024.

The previous drilling at Banshee shows that a sub-vertical to steeply north-dipping zone of Sb-Au mineralisation extends across the Banshee prospect, striking E-W for approximately <u>650 m strike length</u>. The drilling has not closed off the system and it remains open along strike and at depth, indicating potential for a larger system.

A drill hole map showing significant intercepts of Sb-Au is included as Figure 4.

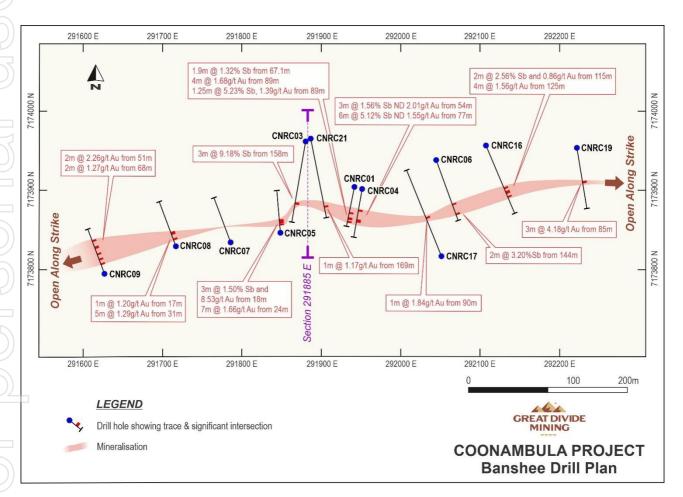


Figure 4: Banshee drill hole plan

Recent Trench Sampling Program

In October 2024, GDM completed a geochemical sampling program (160 samples) including surface rock chips and channel sampling along the walls of historical trenches along strike from the old Banshee Mine. The sampling was focused within the old trenches that were left open by previous miners. The details and results of the original historical trenching program by the previous company are not known. Therefore, GDM decided to re-sample the old trenches, prior to rehabilitation, to obtain valuable surface data of the mineralisation.

The locations of the trenches in relation to the old mine are shown on **Figure 5**, which also shows some of the assay highlights. A photograph showing the channel sampling methodology is included as **Figure 6**. Sample details are included in **Appendix 1** and the JORC Table 1 is included as **Appendix 2**.

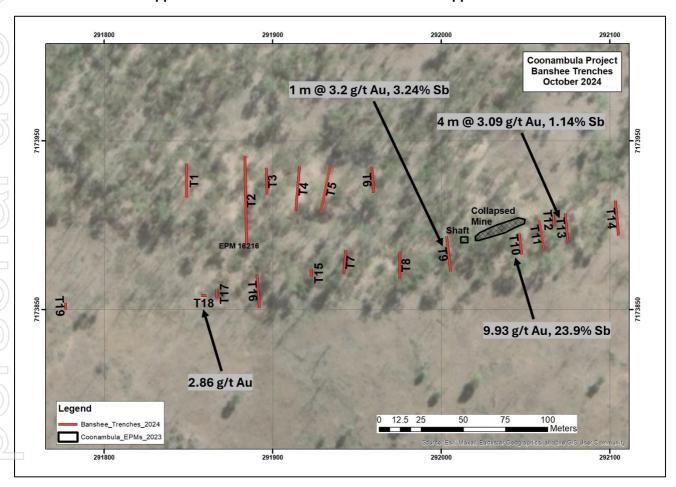


Figure 5: Banshee historical trench plan with some of the geochemical assay highlights

Figure 6: Banshee channel sampling along lower walls of shallow historical trenches

Sample Summary

A total of 160 rock chip samples were collected in October 2024, which included:

- 151 rock chip samples consisting of:
 - 139 x channel samples (1-2 m across), taken from the walls of 10 historical trenches.
 - 4 selective in-situ vein samples from within the trenches (5 to 30 cm wide quartz-stibnite veins)
 - 8 grab (float) samples (quartz-stibnite vein samples) from the edges of old shallow trenches along strike to the west of the old workings (i.e. Trenches 14 to 19).
- 9 QAQC samples (4 x duplicates and 5 x standards).

Channel Sampling

Channel sampling was conducted along cleaned walls of the historical trenches around 1 to 1.5 m depth from surface. A continuous horizontal sample was taken from the trench wall using a crowbar and/or small jack hammer, in order to collect a continuous rock chip channel sample over 1 or 2 m. A photo showing the channel sampling within the trench is shown above as **Figure 6**.

The best horizontal channel sampling interval returned 4 m @ 3.09 g/t Au 1.14% Sb in Trench 13, which included 1 m @ 6.15 g/t Au and 3.1% Sb. All trenches sampled were filled-in and rehabilitated straight after sampling. **Table 1** shows significant intervals of mineralisation sampled.

Table 1: Banshee trench channel sampling - significant intercepts

Trench	East*	North*	Туре	From m	To m	Interval m	Au g/t	Sb %
7	291942	7173871	Channel	6	8	2	1.165	
9	292005	7173873	Channel	10	13	3	1.45	
9	292005	7173873	Channel	12	13	1	3.2	3.24
12	292067	7173900	Channel	2	3	1	1.18	
13	292075	7173890	Channel	2	4	2	1.12	
13	292075	7173890	Channel	8	12	4	3.09	1.14
13	292075	7173890	Channel	8	10	2	4.02	2.24
13	292075	7173890	Channel	9	10	1	6.15	3.1

^{*} East/North GDA2020 co-ordinates are from start point of trench sampling at 0 m (south end).

Vein Sample Assays

Four selected samples of veins were sampled, up to 30 cm wide, taken from the walls of the trenches. These rock chip samples returned high-grade antimony assays up to <u>23.9% Sb</u> and gold assays up to <u>9.93 g/t Au</u>. **Table 2** shows selective rock chip samples from Trenches 9, 10 and 12.

Table 2: Banshee quartz-stibnite vein rock chip samples

	Sample	Trench	East	North	In-situ Vein Width (cm)	Au g/t	Sb %
	407109	9	292005	7173885	5	7.73	15.05
	407099	10	292047	7173887	10	3.65	23.9
	407100	10	292047	7173890	5	9.93	7.56
١	407098	12	292067	7173901	30	2.71	0.014

Float Sample Assays - Western Extension

A series of historical shallow exploration pits (Trenches 15 to 19) extend some 250 m to the west of the historical mine workings (see **Figure 5**). Grab samples of quartz-stibnite vein material on the dumps next to these pits/trenches (float) returned anomalous results up to <u>2.86 g/t Au and 1.8% Sb</u>, see **Table 3**. These results indicate that mineralisation continues along strike at least 250 m to the west of the old workings.

Table 3: Banshee float samples from trenches to the west of the workings

_	Sample	Trench	East	North	Description	Туре	Au g/t	Sb ppm	Sb %
	407101	15	291923	7173872	Quartz-stibnite	Float	1.175	2110	0.211
	407102	15	291923	7173872	Quartz-stibnite	Float	0.689	4200	0.42
	407103	16	291892	7173850	Quartz	Float	1.23	688	0.0688
	407104	16	291891	7173871	Quartz	Float	1.035	751	0.0751
	407105	17	291867	7173859	Quartz	Float	1.32	2760	0.276
_	407106	18	291859	7173858	Quartz-stibnite	Float	2.86	18000	1.8
_	407107	19	291777	7173852	Quartz-stibnite	Float	1.145	8370	0.837
	407108	19	291777	7173852	Quartz	Float	0.85	306	0.0306

Interpretation

The results presented above will help GDM to link the Sb-Au mineralisation defined in these trenches with the subsurface mineralisation defined in previous drill holes, for the next stage of 3D modelling work.

Rehabilitation

All of the historical trenches that GDM sampled in October 2024 were filled-in using an excavator and the surface was then smoothed over to encourage natural rehabilitation. GDM also arranged for a fence to be erected around the collapsed mine workings to make these areas safe for cattle and property workers. This demonstrates GDM's on-going commitment to the Coonambula Project.

Petrophysical Study on Banshee Drill Core

GDM has recently completed a petrophysical study on 12 drill core samples from historical diamond drilling at the Banshee prosect, drilled by Queensland Ores in 2014 (hole CNDD001). The drill core samples submitted for petrophysical test work included mineralised quartz-stibnite veins, surrounding clay-sericite altered granodiorite samples and fresh granodiorite samples. The goal of this project was to determine if the mineralisation at Banshee is petrophysically different to the host rocks, so GDM can confidently execute a new geophysical survey over the wider Banshee area, to detect other potential zones of Sb-Au mineralisation at depth and along strike, (for future drill testing).

The following petrophysical measurements were completed on the 12 core samples.

- Induced polarisation (time domain) / resistivity.
- Inductive conductivity.
- Magnetic susceptibility.
- Wet/Dry bulk density / porosity.
- Sonic velocity.

The results from this study are highly encouraging, showing that the quartz-stibnite veins at Banshee are around 5 to 20 times the chargeability of the surrounding host rock samples. The galvanic resistivity also shows that the Quartz Veins are very resistive, as expected. Most of the other altered samples away from the vein have low resistivity apart from the outer two fresh granodiorite samples.

In summary, the quartz-stibnite veins are highly resistive and chargeable, compared to the host granodiorite. Therefore, the application of a detailed IP geophysical survey at Banshee, to detect potential mineralisation extensions, is the most appropriate exploration tool. It is hoped that the planned IP survey will detect coincident resistivity and chargeability anomalies, which would then be prioritised for drilling.

Soil Sampling - Geophysical Target South of Banshee

GDM also recently completed a soil sampling program including 87 B-horizon soil samples (400 x 100 m spacing) over a coincident magnetic and potassium radiometrics geophysical target (RDT01), located 1-3 km south of the Banshee prospect. The soil samples were submitted to ALS using the Ionic Leach analytical technique, which is designed to detect deeper buried mineralisation. The program also included several orientation soil samples across the Banshee prospect in order to define the geochemical signatures at Banshee and then compare these results to the other target area.

The Ionic Leach assay results showed distinctive geochemical anomalies with many of the key elements such as gold and antimony across the Banshee prospect. However, the Ionic Leach soil assays over the RDT01 target further south were largely insignificant and did not show any anomalies for the key elements of interest (Au and Sb). Consequently, no further work is recommended at the RDT01 target.

Forward Plans

The proposed exploration plan for Coonambula includes the following 3 stages:

- Stage 1 Initial 3-D modelling using existing Banshee surface data and drilling data.
- Stage 2 Geophysical survey (IP) at Banshee to define new drill targets at depth and along strike and identify any structural repetitions and ore extensions nearby.
- Stage 3 RC drilling to test the best IP targets and extensions to the known mineralisation.

Chief Executive Officer of Great Divide Mining, Justin Haines, said: "The old Banshee Mine is one of the biggest historical Antimony-Gold mines in this region of Queensland. With increasing demand for this critical mineral, the Coonambula Project presents the potential for GDM to quickly advance an Antimony-Gold mine towards mining in the near term".

ASX release authorised by the Board of Great Divide Mining Ltd.

For further information:

Justin Haines

Chief Executive Officer
e: justin.haines@greatdividemining.com.au

About Great Divide Mining Ltd (ASX: GDM)

Great Divide Mining is a Gold, Antimony and critical metals explorer in Queensland, with four projects across twelve tenements (including one in application). GDM's focus is on developing assets within areas of historical mining and past exploration with nearby infrastructure, thus enabling rapid development. Through a staged exploration and development programme, GDM intends to generate cash flow from its initial projects to support further exploration across its portfolio of highly prospective tenements.

Competent Persons Statement

The information in this announcement that relates to Exploration Results based on information compiled by Mr Justin Haines who is CEO of Great Divide Mining Ltd and a Fellow of the Australasian Institute of Mining and Metallurgy (AusIMM) and a Member of the Australian Institute of Geoscientists (AIG). Mr Haines has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity that is being undertaking to qualify as a Competent Person, as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Mr Haines is an employee of GDM, and consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This announcement may contain forward-looking information about the Company and its operations. In certain cases, forward-looking information may be identified by such terms as "anticipates", "believes", "should", "could", "estimates", "target", "likely", "plan", "expects", "may", "intend", "shall", "will", or "would". These statements are based on information currently available to the Company and the Company provides no assurance that actual results will meet management's expectations. Forward-looking statements are subject to risk factors associated with the Company's business, many of which are beyond the control of the Company. It is believed that the expectations reflected in these statements are reasonable, but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially from those expressed or implied in such statements. There can be no assurance that actual outcomes will not differ materially from these statements.

Appendix 1 – Coonambula Geochemical Sample Details – October 2024

Sample	Sample Type	Trench No	From (m)	To (m)	Length (m)	East GDA2020 MGA56	North GDA2020 MGA56	Au- ICP22	Sb ME- ICP61	Sb ME- XRF15c
								ppm	ppm	%
321201	Trench Channel	1	0	2	2	291849	7173916	0.001	203	
321202	Trench Channel	1	2	4	2	291849	7173918	<0.001	282	
321203	Trench Channel	1	4	6	2	291849	7173920	0.001	266	
321204	Trench Channel	1	6	8	2	291849	7173922	<0.001	232	
321205	Trench Channel	1	8	10	2	291849	7173924	<0.001	388	
321206	Trench Channel	1	10	12	2	291849	7173926	<0.001	430	
321207	Trench Channel	1	12	13	1	291849	7173928	0.01	211	
321208	Trench Channel	1	13	14	1	291849	7173929	0.032	789	
321209	Trench Channel	1	14	15	1	291849	7173930	0.018	597	
321210	Trench Channel	1	15	16	1	291849	7173931	0.007	711	
321211	Trench Channel	1	16	18	2	291849	7173932	0.012	1060	
321212	Trench Channel	1	18	20	2	291849	7173934	0.014	748	
321213	Trench Channel	2	0	2	2	291887	7173889	0.003	125	
321214	Trench Channel	2	2	4	2	291887	7173891	0.001	109	
321215	Trench Channel	2	4	6	2	291887	7173893	<0.001	56	
321216	Trench Channel	2	6	8	2	291887	7173895	<0.001	30	
321217	Trench Channel	2	8	10	2	291887	7173897	<0.001	75	
321218	Trench Channel	2	10	12	2	291887	7173899	<0.001	99	
321219	Trench Channel	2	12	14	2	291887	7173901	<0.001	80	
321220	Trench Channel	2	14	16	2	291887	7173903	0.002	113	
321223	Trench Channel	2	16	18	2	291887	7173905	0.002	180	
321224	Trench Channel	2	18	20	2	291887	7173907	<0.001	138	
321225	Trench Channel	2	20	22	2	291887	7173909	<0.001	124	
321226	Trench Channel	2	22	24	2	291887	7173911	0.002	248	
321227	Trench Channel	2	24	26	2	291887	7173913	0.001	151	
321228	Trench Channel	2	26	28	2	291887	7173915	0.003	202	
321229	Trench Channel	2	28	29	1	291887	7173917	0.001	174	
321230	Trench Channel	2	29	30	1	291887	7173918	0.003	151	
321231	Trench Channel	2	30	31	1	291887	7173919	0.003	226	
321232	Trench Channel	2	31	32	1	291887	7173920	0.001	217	
321233	Trench Channel	2	32	33	1	291887	7173921	0.005	277	
321234	Trench Channel	2	33	34	1	291887	7173922	0.007	691	
321235	Trench Channel	2	34	35	1	291887	7173923	0.043	848	
321236	Trench Channel	2	35	36	1	291887	7173924	0.16	3140	
321237	Trench Channel	2	36	38	2	291887	7173925	0.005	380	
321238	Trench Channel	2	38	40	2	291887	7173927	0.009	421	1
321239	Trench Channel	2	40	42	2	291887	7173929	0.01	591	1
321240	Trench Channel	2	42	44	2	291887	7173931	0.029	779	1
321241	Trench Channel	2	44	46	2	291887	7173933	0.017	570	1
321242	Trench Channel	2	46	48	2	291887	7173935	0.006	413	1
321243	Trench Channel	2	48	50	2	291887	7173937	0.005	491	1
321244	Trench Channel	2	50	52	2	291887	7173939	0.005	385	1
321247	Trench Channel	3	0	2	2	291897	7173918	0.005	327	

321248	Trench Channel	3	2	4	2	291897	7173920	0.006	679	
321249	Trench Channel	3	4	5	1	291897	7173922	0.1	1920	
321250	Trench Channel	3	5	6	1	291897	7173923	0.086	1915	
407001	Trench Channel	3	6	7	1	291897	7173924	0.04	650	
407002	Trench Channel	3	7	8	1	291897	7173925	0.009	436	
407003	Trench Channel	3	8	9	1	291897	7173926	0.052	4940	
407004	Trench Channel	3	9	10	1	291897	7173927	0.012	928	
407005	Trench Channel	3	10	12	2	291897	7173928	0.006	434	
407006	Trench Channel	3	12	14	2	291897	7173930	0.004	304	
407007	Trench Channel	3	14	16	2	291897	7173932	0.011	227	
407008	Trench Channel	4	0	2	2	291911	7173910	0.001	116	
407009	Trench Channel	4	2	4	2	291911	7173912	0.007	330	
407010	Trench Channel	4	4	6	2	291911	7173914	0.007	315	
407011	Trench Channel	4	6	8	2	291911	7173916	0.01	449	
407012	Trench Channel	4	8	10	2	291911	7173918	0.006	307	
407013	Trench Channel	4	10	11	1	291911	7173920	0.001	83	
407014	Trench Channel	4	11	12	1	291911	7173921	0.064	367	
407015	Trench Channel	4	12	13	1	291911	7173922	0.011	553	
407016	Trench Channel	4	13	14	1	291911	7173923	0.007	433	
407017	Trench Channel	4	14	16	2	291911	7173924	0.004	249	
407018	Trench Channel	4	16	18	2	291911	7173926	0.002	112	
407019	Trench Channel	4	18	20	2	291911	7173928	0.003	217	
407020	Trench Channel	4	20	22	2	291911	7173930	0.003	189	
407023	Trench Channel	4	22	24	2	291911	7173932	0.004	110	
407024	Trench Channel	4	24	26	2	291911	7173934	0.004	150	
407025	Trench Channel	7	0	2	2	291942	7173871	0.404	152	
407026	Trench Channel	7	2	4	2	291942	7173873	0.068	199	
407027	Trench Channel	7	4	6	2	291942	7173875	0.056	174	
407028	Trench Channel	7	6	8	2	291942	7173877	1.165	401	
407029	Trench Channel	7	8	9	1	291942	7173879	0.241	391	
407030	Trench Channel	7	9	10	1	291942	7173880	0.009	95	
407031	Trench Channel	7	10	12	2	291942	7173881	0.009	95	
407032	Trench Channel	7	12	14	2	291942	7173883	0.004	62	
407033	Trench Channel	8	0	2	2	291976	7173868	0.024	48	
407034	Trench Channel	8	2	4	2	291976	7173870	0.066	108	
407035	Trench Channel	8	4	5	1	291976	7173872	0.056	113	
407036	Trench Channel	8	5	6	1	291976	7173873	0.028	87	
407037	Trench Channel	8	6	8	2	291976	7173874	0.016	70	
407038	Trench Channel	8	8	10	2	291976	7173876	0.021	73	
407039	Trench Channel	8	10	11	1	291976	7173878	0.052	149	
407040	Trench Channel	8	11	12	1	291976	7173879	0.122	153	
407041	Trench Channel	8	12	13	1	291976	7173880	0.382	3150	
407042	Trench Channel	8	13	14	1	291976	7173881	0.057	242	
407043	Trench Channel	8	14	16	2	291976	7173882	0.022	66	
407044	Trench Channel	9	0	2	2	292005	7173873	0.014	41	
407045	Trench Channel	9	2	4	2	292005	7173875	0.036	117	
407046	Trench Channel	9	4	6	2	292005	7173877	0.024	136	
407047	Trench Channel	9	6	7	1	292005	7173879	0.116	128	

407048	Trench Channel	9	7	8	1	292005	7173880	0.01	51	
407049	Trench Channel	9	8	9	1	292005	7173881	0.012	98	
407050	Trench Channel	9	9	10	1	292005	7173882	0.011	69	
407051	Trench Channel	9	10	11	1	292005	7173883	0.551	200	
407052	Trench Channel	9	11	12	1	292005	7173884	0.584	305	
407053	Trench Channel	9	12	13	1	292005	7173885	3.2	>10000	3.24
407054	Trench Channel	9	13	14	1	292005	7173886	0.047	144	
407055	Trench Channel	9	14	16	2	292005	7173887	0.045	87	
407056	Trench Channel	9	16	18	2	292005	7173889	0.04	171	
407057	Trench Channel	9	18	20	2	292005	7173891	0.059	264	
407058	Trench Channel	14	0	2	2	292105	7173894	0.004	13	
407059	Trench Channel	14	2	4	2	292105	7173896	0.013	21	
407060	Trench Channel	14	4	6	2	292105	7173898	0.022	24	
407063	Trench Channel	14	6	8	2	292105	7173900	0.004	17	
407064	Trench Channel	14	8	10	2	292105	7173902	0.004	34	
407065	Trench Channel	14	10	12	2	292105	7173904	0.056	89	
407066	Trench Channel	14	12	14	2	292105	7173906	0.038	74	
407067	Trench Channel	14	14	16	2	292105	7173908	0.015	108	
407068	Trench Channel	14	16	18	2	292105	7173910	0.013	87	
407069	Trench Channel	14	18	20	2	292105	7173912	0.015	91	
407070	Trench Channel	13	0	2	2	292075	7173891	0.019	18	
407071	Trench Channel	13	2	4	2	292075	7173893	1.12	10	
407072	Trench Channel	13	4	6	2	292075	7173895	0.043	35	
407073	Trench Channel	13	6	8	2	292075	7173897	0.077	84	
407074	Trench Channel	13	8	9	1	292075	7173899	1.89	>10000	1.38
407075	Trench Channel	13	9	10	1	292075	7173900	6.15	>10000	3.1
407076	Trench Channel	13	10	11	1	292075	7173901	3.02	696	
407077	Trench Channel	13	11	12	1	292075	7173902	1.285	195	
407078	Trench Channel	13	12	13	1	292075	7173903	0.666	277	
407079	Trench Channel	13	13	14	1	292075	7173904	0.243	115	
407080	Trench Channel	13	14	15	1	292075	7173905	0.122	116	
407081	Trench Channel	13	15	16	1	292075	7173906	0.235	174	
407082	Trench Channel	13	16	17	1	292075	7173907	0.167	154	
407083	Trench Channel	13	9	11	2	292075	7173900	2.41	8680	
407084	Trench Channel	11	0	2	2	292061	7173886	0.528	285	
407085	Trench Channel	11	2	4	2	292061	7173888	0.171	214	
407086	Trench Channel	11	4	6	2	292061	7173890	0.065	156	
407087	Trench Channel	11	6	8	2	292061	7173892	0.348	219	
407088	Trench Channel	11	8	10	2	292061	7173894	2.16	321	
407089	Trench Channel	11	10	11	1	292061	7173896	2.01	1450	
407090	Trench Channel	11	15	16	1	292061	7173900	0.083	312	
407091	Trench Channel	11	16	17	1	292061	7173901	0.154	201	
407092	Trench Channel	12	0	1	1	292067	7173899	0.922	2010	
407093	Trench Channel	12	1	2	1	292067	7173900	0.987	280	
407094	Trench Channel	12	2	3	1	292067	7173901	1.18	167	
407095	Trench Channel	12	3	4	1	292067	7173902	0.349	239	
407096	Trench Channel	12	4	5	1	292067	7173903	0.179	108	
407097	Trench Channel	12	5	6	1	292067	7173904	0.158	120	

	407098	Trench Vein	12		292067	7173901	2.71	138	
	407099	Trench Vein	10		292047	7173887	3.65	>10000	23.9
	407100	Trench Vein	10		292047	7173890	9.93	>10000	7.56
\	407101	Grab Dump Float	15		291923	7173872	1.175	2110	
	407102	Grab Dump Float	15		291923	7173872	0.689	4200	
	407103	Grab Dump Float	16		291892	7173871	1.23	688	
	407104	Grab Dump Float	16		291891	7173871	1.035	751	
	407105	Grab Dump Float	17		291867	7173859	1.32	2760	
	407106	Grab Dump Float	18		291859	7173858	2.86	>10000	1.8
	407107	Grab Dump Float	19		291777	7173852	1.145	8370	
	407108	Grab Dump Float	19		291777	7173852	0.85	306	
	407109	Trench Vein	9		292009	7173885	7.73	>10000	15.05

Appendix 2 - Coonambula - JORC Code Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 A total of 160 geochemical rock chip samples including 1-2 m wide channel samples, selective vein samples and grab (float) samples plus QAQC samples, were collected by GDM's qualified geological consultants at the Banshee Sb-Au prospect, Coonambula Project in October 2024. Samples are 1-3 kg rock chips taken from historical trenches then placed in labelled calico sample bags. All sample information, including lithological descriptions and GPS coordinates were recorded in the field during the sampling process. Samples are taken from various locations and are not considered representative. The accuracy of surface rock chip geochemistry is generally high but is generally not used in Mineral Resource estimations.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling programs are included.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and 	Not applicable

Great Divide Mining Ltd

ACN 655 868 803

GPO Box 154 Brisbane QLD 4001

greatdividemining.com.au

	10000	
Criteria	JORC Code explanation	Commentary
	 ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The geochemical samples were geologically logged in the field by an experienced consultant geologist. Geochemical samples included 1-2 m wide channel samples within historical trenches, selective vein samples and grab (float) samples, taken from various locations, as shown on the map and within the tables of the body of this report. Descriptions of samples are mostly qualitative (e.g. lithology, alteration, veining and mineralisation) with limited quantitative logging of key minerals or veins.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 A total of 160 geochemical samples were collected including: 139 x channel samples (1-2 m across), taken from the walls of 10 historical trenches. 4 selective in-situ vein samples from within the trenches (5 to 30 cm wide quartz-stibnite veins) 8 grab (float) samples (quartz-stibnite vein samples) from the edges of old shallow trenches along strike to the west of the old workings (i.e. Trenches 14 to 19). 9 QAQC samples (4 x duplicates and 5 x standards) The channel samples (1-3 kg) were collected along cleaned walls of the historical trenches around 1 to 1.5 m depth from surface. A continuous horizontal sample was taken from the trench wall using a crowbar and/or small jack hammer, in order to collect a continuous rock chip channel sample over 1 or 2 m width. The vein samples (1-3 kg) were collected from the trench walls using a geological hammer. The grab (float) samples (1-3 kg) samples were collected from the dumps next to shallow pits/trenches. Samples were despatched to ALS Laboratory in Brisbane, a certified

Criteria	JORC Code explanation	Commentary
		 commercial laboratory, who carried out appropriate sample preparation methods. Samples were dried, crushed and pulverised, as per standard industry practice.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All 160 samples were analysed at the commercial laboratory ALS using industry-standard analytical techniques. Samples were assayed for gold using the Au-ICP22 technique. High grade Au samples were re-assayed using the Au-GRA22 technique. Samples were also assayed for a multi-element suite using the ME-ICP61 analytical technique. High grade Sb samples were re-assayed using the ME-XRF15c technique. No geophysical tools, spectrometers, or handheld XRF instruments have been used to date. A total of 9 QAQC samples (5 x CRM standards, 4 x duplicates) were inserted into the sample batch of 160 samples. The QAQC samples returned assay results within accepted tolerance limits
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 GDM has collated and created a digital database of all exploration completed at the Project. No adjustments to assay data have been made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample sites were surveyed using hand-held GPS, with a +/- 3m to 5m accuracy. The coordinate system used is Geocentric Datum of Australia (GDA2020) in Map Grid of Australia (MGA) zone 56. Quality of the topographic control data is reliant on public domain topographic data. A sample location map and sample details tables are included in the body of the report.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The spacing of geochemical data is variable and controlled by the limited availability of historical trenches and outcrops. There are no reported Mineral Resources or Reserves - the sample results will not be used for Mineral Resource and Ore Reserve estimation at this point in time. No sample compositing was carried out on site.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Surface sampling techniques are considered appropriate for the early-stage exploration. Drilling will be required to establish the optimal orientation. No sampling bias is considered to have been introduced in sampling completed to date.
Sample security	The measures taken to ensure sample security.	 At the completion of the field program, the samples were transported by GDM's Consultants to ALS laboratories in Brisbane.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	GDMs CEO visited to the project during the sampling program to review the sampling methodologies.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Coonambula Project comprises EPMs 15203, EPM 16216, EPM 25260, EPM 26743 and EPM 28433. These licences are currently held 100% by subsidiary companies of Great Divide Mining. The tenements are in good standing. Refer to the tenement table in the Company's Annual Report dated November 2023.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Numerous exploration permits have been held over parts and/or all the wider Project area. Previous exploration has included geological mapping, geochemical sampling, trenching/costeaning, airborne and ground

Criteria	JORC Code explanation	Commentary
		geophysics, plus RC drilling. Major programs included:
		 Wicklow Alluvials Pty Ltd (1969 - 1970) completed a resistivity survey and alluvial drilling. Goldfields Exploration Pty Ltd (1983 – 1985) completed geochemical surveys for tin. Coal Country Pty Ltd (1984 – 1986) completed geochemical surveys. CSR Ltd (1984 – 1985) completed geochemical surveys and alluvial drilling. Aluka Exploration Ltd (1985 – 1986) completed geochemical surveys. ARI Ltd (1986 – 1987) completed geochemical surveys, geophysical surveys (IP, magnetics). Geopeko Ltd (1989 – 1990) completed geochemical surveys, geophysical surveys (airborne magnetics/radiometrics, seismic, gravity, IP) and drilling. Mogul Mining Ltd (1994) completed desktop work for heavy mineral sands. Compass Resources (1997 - 1998) completed geochemical and geophysical (ground magnetic) surveys. RGC Ltd (1996 – 1999) completed geochemical surveys, geophysical surveys (airborne magnetics/radiometrics) and palaeochannel drilling. St John Creek Gold Mine Pty Ltd (2000 – 2003) completed remote sensing surveys. Queensland Ores Holdings (2012 – 2023) completed geochemical sampling, ground geophysical surveys and RC-Diamond drilling programs.
Geology	Deposit type, geological setting and style of mineralisation.	 The Coonambula Project area lies predominantly in the Connors-Auburn Province of the New England Orogen in southeast Queensland. The Connors-Auburn Province is a linear belt of predominantly subaerial, terrestrial felsic volcanics and granitoids. GDM considers that the Coonambula Project is prospective for High-grade orogenic Gold-Antimony veins (e.g. Banshee, Perseverance, Hillgrove NSW). Intrusion-related Gold-rich deposits (e.g. epithermal deposits of Mount Rawdon, Cracow). Deep Lead sedimentary-hosted paleo-channel gold mineralisation The district contains numerous old gold (+/- antimony) mine workings

Criteria	JORC Code explanation	Commentary
		and known mineral occurrences.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Not applicable.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No capping of high grades was performed. No aggregation of data was performed. No metal equivalents are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Geochemcial samples were taken from historical trenches and are not representative of the entire thickness of the underlying rock units.

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Plans of sample locations have been provided in the body of the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Balanced reporting of Exploration Results is presented.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The Project includes a moderate amount of exploration data collected by previous companies, including surface geochemical data and drill hole data. Much of this data has been captured by GDM into a GIS database. There is no other exploration data that is considered to be material to the results reported herein.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Great Divide Mining plans to conduct 3-D geological modelling, ground geophysical surveys and drilling programs in the future.