11 November 2024

Aurum hits 36 g/t gold at Boundiali BM Target 1, extending strike to 2.5km

Aurum Resources Limited (ASX: AUE) (Aurum) is pleased to report further high-grade gold intercepts from exploration diamond drilling at multiple prospects on the **BM** Tenement, part of its 1037km² Boundiali Gold Project in Côte d'Ivoire, West Africa.

Highlights

- Exploration diamond drilling (26 holes for 5,049.5m) from the expanded diamond program targeting multiple prospects on the Boundiali BM tenement returns shallow, wide and highgrade gold hits¹ including:
 - o 1m @ 35.86 g/t Au from 82m & 4.25m @ 3.75 g/t Au from 120m (MBDD070)
 - o 17m @ 1.60 g/t Au from 230m inc. 10.05m @ 2.02 g/t Au (MBDD057)
 - o 13m @ 2.07 g/t Au from 139m inc. 4m @ 3.29 g/t Au (MBDD054)
 - o 6m @ 3.57 g/t Au from 118m inc. 2m @ 10.14 g/t Au (MBDD065)
- Gold mineralisation remains open along strike and down dip at BM Targets 1 (up to 2.5km strike), 2 & 3
- Diamond drilling continues at both Boundiali tenements with assays pending for ~60 holes (13,000m), next batch expected end of November
- Aurum has **six self-owned diamond rigs** at Boundiali Gold Project with up to ~10,000m drilling capacity per month and will complete more than **45,000m** in CY2024
- Results from **metallurgical test work** overseen by MACA Interquip Mintrex (MIM) and ALS (Perth) expected by year end
- Inaugural Mineral Resource Estimate for Boundiali Gold Project targeted for late CY2024
- Aurum's takeover of Mako Gold (ASX: MXG)² progressing well the merged company will achieve greater scale and market presence, creating a stronger platform for future growth and success in the industry
- Aurum is well-funded (~\$19M cash at bank at 30 Sept) for continued aggressive exploration.

Aurum's Managing Director Dr. Caigen Wang said: *"Our exploration drilling at BM continues to grow the known extent of gold mineralisation, which is now up to* **2.5km at BM Target 1**. *Our expanded drilling program at* **BM** *is hitting multiple intercepts downhole including shallow high-grade hits such as* **1m @ 35.86 g/t Au** from 82m and **4.25m @ 3.75 g/t Au** from 120m in MBDD070.

Our six rigs are systematically ramping up production and with our new camp coming online, we expect to see increased operational efficiencies to demonstrate the full potential of the Boundiali gold project. We're well-funded with **\$19 million cash at bank**, allowing us to accelerate drilling and build on these encouraging results. We're targeting an **inaugural JORC resource** for Boundiali by **late 2024**."

¹ Refer to Table 2 for details of the assay results

² The full terms of the bid are set out in the Bidder Statement lodged with ASX and ASIC on 30 October 2024

BM Target 1 - Latest Drill Results

Aurum reports results for 26 holes for 5,049.5m of diamond core drilled at **BM** Target 1 (19 holes for 3,445m), **BM** Target 2 (two holes for 314.5m) and BM Target 3 (five holes for 1,290m) on the **BM** Tenement, part of an expanded drill program on the **BM** Tenement where Aurum is working toward and 80% project interest³. Best results for these holes⁴ include:

BM Target 1

- 1m @ 35.86 g/t Au from 82m (Figure 1) & 4.25m @ 3.75 g/t Au from 120m (MBDD070)
- **17m @ 1.60 g/t Au** from 230m inc. **10.05m @ 2.02 g/t Au** (MBDD057) BM Target 3
- 13m @ 2.07 g/t Au from 139m inc. 4m @ 3.29 g/t Au (MBDD054)
- 6m @ 3.57 g/t Au from 118m inc. 2m @ 10.14 g/t Au (MBDD065).

Figure 1 Visible gold at 82m in MBDD070

These new results are in addition to diamond holes previously drilled by Aurum at **BM** Target 1 and reported on 22 January 2024, 1 March 2024 and 18 September 2024, which included:

- 11.46m @ 6.67 g/t Au from 162.54m incl. 1.46m @ 45.04 g/t Au (MBDD049)
- 45m @ 0.93 g/t Au from 78m incl. 8m @ 1.18 g/t Au from 78m & 25m @ 1.15 g/t Au from 98m (MBDD0045)
- 16m @ 1.24 g/t Au from 117m incl. 6m @ 2.44 g/t Au (MBDD0010)
- 7.39m @ 1.94 g/t Au from 139.34m incl. 5.35m @ 2.53 g/t Au (MBDD017)
- 16.3m @ 1.02 g/t Au from 86.7m incl. 8m @ 1.71 g/t Au (MBDD019)
- 16.64m @ 1.45 g/t Au from 56.26m incl. 10.40m @ 2.11 g/t Au (MBDD007)
- 5m @ 4.73 g/t Au from 53.5m incl. 1.10m @ 20.35 g/t Au (MBDD004).

³ Refer to About Aurum's Boundiali Gold Project

⁴ Refer to Table 2 for full details of the assay results

Aurum's geologists used information from previous drilling and mapped the prospects, which include some large artisanal pits. Drilling has grown the strike of gold mineralisation at **BM** Target 1 to about 2.5km from drilling that is wide spaced, generally on 100m lines. True widths for these shallow wide high-grade gold intercepts are estimated at about 70% - 80% of reported downhole lengths.

Details of drill collar location and assay results for the new drilling at **BM** are in **Table 1** and **Table 2** respectively. Plans showing Boundiali Gold Project location including assay results are presented in (Figure 2 to Figure 5). A cross section showing the latest drill results is presented in Figure 6 and Figure 7.

Gold mineralisation remains open along strike and at depth on all prospects, with drilling ongoing and Aurum planning further work to follow up these initial results.

Next steps

Aurum will continue its high-tempo gold exploration drilling at the Boundiali Gold Project. Considering the recent high-grade intercepts reported in this release at **BM** Target 1, Aurum is planning follow-up drilling of around 1,500m a month to further define the extent of mineralisation on this target. Exploration drilling on the early-stage **BM** tenement will continue to test for potential new discoveries.

Scout and step-back diamond drilling at the **BD** tenement will aim to continue to delineate known gold zones and identify new targets.

With six diamond drill rigs in operation, Aurum maintains its target drilling rate of ~10,000m per month across the Boundiali Gold Project, and aiming to drill 45,000m of diamond core at Boundiali this year. This drilling, along with faster turnaround of assay results, will support Aurum's goal of delivering an inaugural Mineral Resource Estimate for the Boundiali Gold Project by the end of CY2024.

Aurum is well-funded to execute these exploration plans with ~\$19M cash at bank and remains confident in the potential of the Boundiali Gold Project to deliver significant value for shareholders.

Aurum's takeover bid for Make Gold Limited

On 16 October 2023, Aurum launched a takeover bid for Mako Gold Limited (MKG, or Mako) with the following highlights.

- Mako Gold Limited (ASX:MKG) and Aurum Resources Limited (ASX:AUE) have entered into a Bid Implementation Agreement (BIA), for an agreed merger pursuant to which Aurum proposes to acquire 100% of the issued shares in Mako and 100% of two classes of unlisted options by way of an off-market takeover bid (Proposed Merger)
- Proposed Merger will create an emerging exploration and development gold business in West Africa, with cash of over A\$20 million to advance the flagship Napié and Boundiali Projects in northern Côte d'Ivoire
- Aurum to offer:

- 1 Aurum share for every 25.1 Mako shares, representing an offer price of \$0.018 per Mako share (Share Offer)
- 1 Aurum share for every 170 Class A Options
- 1 Aurum share for every 248 Class B Options
- Offer represents a 112% premium for Mako shareholders based on the 30-day VWAP of A\$0.00855 (Based on Aurum's 5-day volume weighted average price of A\$0.455 per share as of 11 October 2024, being the last trading day prior to announcement of the Proposed Merge)
- Mako shareholders will own 20.5% of the merged entity under the Share Offer while Aurum shareholders will own the remaining 79.5%
- Mako Directors unanimously recommend that, in the absence of a superior proposal, all shareholders and option holders accept Aurum's offers
- The combined group will be pursuing its growth strategy from a position of greater market scale, underpinned by a strong cash balance of \$20 million and lower consolidated cost base

On 30 October 2024, Aurum lodged a bidder's statement (Bidder's Statement) with ASX. Under the Bidder's Statements, the takeover offers opened on 4 November 2024 and will close (unless extended) 7.00pm (Sydney time) on 4 December 2024.

In preparation for a successful conclusion of the takeover, Aurum purchased two sets of new diamond drill rigs and 30,000m of drilling consumables which were shipped out of China on 10th November going to Côte D'Ivoire.

This update has been authorised by the Board of Aurum Resources Limited.

ENDS

FORWARD-LOOKING STATEMENTS

This ASX release contains forward-looking statements about Aurum Resources Limited's exploration activities, drilling programs, and potential Mineral Resource Estimate at the Boundiali Gold Project. These statements are based on current expectations and are subject to risks and uncertainties inherent in mineral exploration and mining. Factors that could cause actual results to differ materially include exploration risks, drilling results, resource estimation, gold prices, operational risks, regulatory changes, and broader economic conditions. Investors should not place undue reliance on these forward-looking statements.

COMPETENT PERSONS STATEMENT

The information in this release that relates to Exploration Targets and Exploration Results is based on information compiled by Mr Mark Strizek, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Strizek has been a non-executive Director of the Company since 1 February 2024 and joined as an executive Director on 1 June 2024. Mr Strizek has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Strizek consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears. Additionally, Mr Strizek confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this presentation.

COMPLIANCE STATEMENT

This report contains information extracted from ASX market announcements reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ("2012 JORC Code") and available for viewing at www.asx.com and includes results reported previously and published on ASX platform:

30 Oct 2024, Bidders Statement (ASX:AUE) 16 Oct 2024, Recommended Takeover of Mako Gold By Aurum Resources (ASX:AUE) 09 Sep 2024, Aurum earns 51% interest in Boundiali BM tenement (ASX:AUE) 05 Sep 2024, AUE hits 40m at 1.03 g/t gold at Boundiali BD Target 1 (ASX:AUE) 03 Sep 2024, Boundiali South Exploration Licence Renewed (ASX:AUE) 07 Aug 2024, Aurum to advance met studies for Boundiali Gold Project (ASX:AUE) 22 July 2024, Prelim metallurgical tests deliver up to 99% gold recovery (ASX:AUE) 17 June 2024, Aurum hits 69m at 1.05 g/t gold at Boundiali BD Target 1 (ASX:AUE) 28 May 2024, AUE hits 163 g/t gold in 12m @ 14.56 g/t gold at BD Target 1 (ASX:AUE) 24 May 2024, Aurum hits 74m @ 1.0 g/t gold at Boundiali BD Target 2 (ASX:AUE) 15 May 2024, Aurum expands Boundiali Gold Project footprint (ASX:AUE) 10 May 2024, AUE hits 90m @ 1.16 g/t gold at Boundiali BD Target 1 (ASX:AUE) 01 May 2024, Aurum Appoints Country Manager in Cote d'Ivoire (ASX:AUE) 23 April 2024, AUE drilling hits up to 45 g/t gold at Boundiali BD Target 2 (ASX:AUE) 19 March 2024, AUE signs binding term sheet for 100% of Boundiali South (ASX:AUE) 12 March 2024, AUE hits 73m at 2.15q/t incl 1m at 72q/t gold at Boundiali (ASX:AUE) 01 March 2024, Aurum hits 4m at 22 g/t gold in Boundiali diamond drilling (ASX:AUE) 22 January 2024, Aurum hits shallow, wide gold intercepts at Boundiali, Côte d'Ivoire (ASX: AUE) 21 December 2023, Rapid Drilling at Boundiali Gold Project (ASX.AUE) 21 November 2023, AUE Acquisition Presentation (ASX.AUE) 21 June 2021, Notice of General Meeting/Proxy Form (MSR.ASX) 21 May 2021, PlusOr to Acquire 6194 sq kms Ground Position in Cote d'Ivoire (MSR.ASX) 22 August 2019, Boundiali RC Drill Results Continue to Impress (PDI.ASX) 15 July 2019, RC, Trench Results Grow Boundiali Potential In Cote D'Ivoire (PDI.ASX) 27 May 2019, New Drill Results Strengthen Boundiali Project Cote D'Ivoire (PDI.ASX 16 January 2019, PDI-Toro JV Sharpens Focus with Major Drilling Program (PDI.ASX) 26 November 2018, Boundiali North - Large Coherent Gold Anomalies in 14km Zone (PDI.ASX)

The Company confirms that it is not aware of any new information or data that materially affects the information included in the previous announcements.

Figure 2: Location of Aurum's Boundiali Gold Project in Côte d'Ivoire

Figure 3: Aurum's Boundiali Gold Project

Figure 4: BM tenement plan view showing new significant drilling results⁵ (yellow) at BM Target 1 and BM Target 2

Figure 5: BM tenement plan view showing new significant drilling results (yellow) at BM Target 3

⁵ Only showing new results having gold gram metres greater than 5

Figure 6:Oblique Cross Section looking northeast (+/-50m) showing new drill results MBDD057 - BM Target 1

Figure 7:Oblique Cross Section looking Northeast (+/-50m) showing new drill results MBDD057 – BM Target 1

Hole ID	UTM East	UTM North	Depth (m)	Dip deg	Azi deg	Prospect	Туре
MBDD031	796,616	1,094,346	201.0	-55	290	BM Target 1	DD
MBDD032	796,572	1,094,589	175.5	-55	290	BM Target 1	DD
MBDD033A	796,501	1,094,304	211.5	-55	290	BM Target 1	DD
MBDD034	796,543	1,094,284	226.0	-55	290	BM Target 1	DD
MBDD035	796,618	1,094,585	235.5	-55	290	BM Target 1	DD
MBDD036	796,421	1,093,908	136.0	-55	290	BM Target 1	DD
MBDD037	796,171	1,093,890	218.5	-55	290	BM Target 1	DD
MBDD040	796,507	1,093,448	180.0	-55	290	BM Target 1	DD
MBDD041	796,553	1,093,431	237.5	-55	290	BM Target 1	DD
MBDD042	796,438	1,093,368	130.5	-55	290	BM Target 1	DD
MBDD044	796,147	1,093,046	118.0	-55	290	BM Target 1	DD
MBDD046	796,537	1,094,503	162.0	-55	290	BM Target 1	DD
MBDD047	796,588	1,094,488	218.0	-55	290	BM Target 1	DD
MBDD048	796,517	1,093,556	123.5	-55	290	BM Target 1	DD
MBDD050	796,214	1,092,813	100.5	-55	290	BM Target 1	DD
MBDD051	796,093	1,092,964	120.0	-55	290	BM Target 1	DD
MBDD057	796,579	1,094,061	278.0	-55	290	BM Target 1	DD
MBDD066	796,205	1,092,679	199.5	-57	290	BM Target 1	DD
MBDD070	796,177	1,092,612	173.5	-55	290	BM Target 1	DD
MBDD056	794,786	1,093,676	179.5	-55	308	BM Target 2	DD
MBDD059	794,682	1,093,617	135.0	-50	310	BM Target 2	DD
MBDD052	795,063	1,077,979	271.5	-50	15	BM Target 3	DD
MBDD053	795,147	1,078,280	252.0	-50	15	BM Target 3	DD
MBDD054	795,109	1,078,134	252.0	-50	15	BM Target 3	DD
MBDD060	795,098	1,078,093	294.0	-55	15	BM Target 3	DD
MBDD065	795,131	1,078,194	220.5	-50	15	BM Target 3	DD
26 holes			5,049.5m			TOTAL	DD

Table 1: Drill Collar Information

Table 2: Significant assay results for holes being reported⁶

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
MBDD031	21.50	23.00	1.50	0.23	1.50m @ 0.23 g/t Au	0.3	
MBDD031	26.00	27.50	1.50	0.31	1.50m @ 0.31 g/t Au	0.5	
MBDD031	146.50	147.50	1.00	0.66			
MBDD031	147.50	148.50	1.00	0.03			
MBDD031	148.50	149.50	1.00	0.01			
MBDD031	149.50	150.66	1.16	0.06			
MBDD031	150.66	152.00	1.34	1.45	9.50m @ 0.50 g/t Au	4.7	2 24m @ 1 20 a/h Au
MBDD031	152.00	153.00	1.00	1.09			2.34m @ 1.30 g/t Au
MBDD031	153.00	154.00	1.00	0.27			
MBDD031	154.00	155.00	1.00	0.34			
MBDD031	155.00	156.00	1.00	0.33			
MBDD031	157.00	158.00	1.00	0.27	1.00m @ 0.27 g/t Au	0.3	
MBDD031	159.00	160.00	1.00	0.25			
MBDD031	160.00	161.00	1.00	0.99			
MBDD031	161.00	162.00	1.00	0.11			
MBDD031	162.00	163.00	1.00	0.04	7.00m @ 0.26 g/t Au	1.8	
MBDD031	163.00	164.00	1.00	0.18			
MBDD031	164.00	165.00	1.00	0.03			
MBDD031	165.00	166.00	1.00	0.20			
MBDD031	167.00	168.00	1.00	0.23			
MBDD031	168.00	169.00	1.00	0.05			
MBDD031	169.00	170.00	1.00	0.41			
MBDD031	170.00	171.00	1.00	0.03	7.00m @ 0.31 g/t Au	2.2	
MBDD031	171.00	172.00	1.00	0.10			
MBDD031	172.00	173.00	1.00	0.83	_		
MBDD031	173.00	174.00	1.00	0.55			
MBDD031	184.00	185.00	1.00	0.84	1.00m @ 0.84 g/t Au	0.8	
MBDD031	191.00	192.00	1.00	0.25			
MBDD031	192.00	193.00	1.00	0.02	3.00m @ 0.40 g/t Au	1.2	
MBDD031	193.00	194.00	1.00	0.93			
MBDD031	195.00	196.00	1.00	0.13			
MBDD032	13.50	14.60	1.10	0.11			
MBDD032	49.50	51.00	1.50	0.42			
MBDD032	51.00	52.00	1.00	0.70	3.50m @ 0.60 g/t Au	2.1	
MBDD032	52.00	53.00	1.00	0.78			
MBDD032	55.21	56.00	0.79	0.14			
MBDD032	67.00	68.00	1.00	0.45	1.00m @ 0.45 g/t Au	0.5	
MBDD032	85.00	86.00	1.00	0.47	1.00m @ 0.47 g/t Au	0.5	

⁶ 0.2 g/t Au cut off used with 3m internal dilution and no top cut applied

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
MBDD033A	5.08	6.30	1.22	0.15			
MBDD033A	20.44	21.00	0.56	0.12			
MBDD033A	56.50	57.50	1.00	0.15			
MBDD033A	57.50	58.50	1.00	1.44			1.00m @ 1.44 g/t Au
MBDD033A	58.50	59.50	1.00	0.05			
MBDD033A	59.50	60.50	1.00	0.26			
MBDD033A	60.50	61.50	1.00	0.20		2.0	
MBDD033A	61.50	62.50	1.00	0.02	8.00m @ 0.37 g/t Au	3.0	
MBDD033A	62.50	63.50	1.00	0.03			
MBDD033A	63.50	64.50	1.00	0.34			
MBDD033A	64.50	65.50	1.00	0.62			
MBDD033A	65.50	66.50	1.00	0.17			
MBDD033A	66.50	67.50	1.00	0.14			
MBDD033A	86.00	87.00	1.00	1.00	1.00m @ 1.00 g/t Au	1.0	1.00m @ 1.00 g/t Au
MBDD033A	87.00	88.00	1.00	0.19			
MBDD033A	93.00	94.00	1.00	0.18			
MBDD033A	129.00	130.00	1.00	0.19			
MBDD033A	130.00	131.00	1.00	0.41	1.00m @ 0.41 g/t Au	0.4	
MBDD034	5.20	6.00	0.80	0.13			
MBDD034	21.50	22.50	1.00	0.20	1.00m @ 0.20 g/t Au	0.2	
MBDD034	40.00	41.00	1.00	0.13			
MBDD034	41.00	42.00	1.00	0.20	1.00m @ 0.20 g/t Au	0.2	
MBDD034	55.50	56.50	1.00	0.25	2 00m @ 0 22 a/t Au	0.5	
MBDD034	56.50	57.50	1.00	0.20	2.00m @ 0.23 g/t Au	0.5	
MBDD034	113.00	114.00	1.00	0.10			
MBDD034	117.00	118.00	1.00	0.20	1.00m @ 0.20 g/t Au	0.2	
MBDD034	118.00	119.00	1.00	0.17			
MBDD034	125.00	126.00	1.00	0.30	1.00m @ 0.30 g/t Au	0.3	
MBDD034	133.00	134.00	1.00	0.16			
MBDD034	150.00	151.00	1.00	1.56	1.00m @ 1.56 g/t Au	1.6	1.00m @ 1.56 g/t Au
MBDD034	157.00	158.00	1.00	0.19			
MBDD034	193.00	194.00	1.00	0.18			
MBDD035	14.50	15.31	0.81	0.10			
MBDD035	17.50	18.50	1.00	0.24			
MBDD035	18.50	19.50	1.00	0.17	3.00m @ 0.31 g/t Au	0.9	
MBDD035	19.50	20.50	1.00	0.52			
MBDD035	23.50	24.50	1.00	0.15			
MBDD035	29.50	30.95	1.45	0.14			
MBDD035	40.50	41.50	1.00	0.10			
MBDD035	48.00	49.00	1.00	0.35	1.00m @ 0.35 g/t Au	0.4	
MBDD035	50.00	51.00	1.00	0.18			
MBDD035	53.50	54.50	1.00	0.43	4.00m @ 0.27 a/+ A.	1 5	
MBDD035	54.50	55.50	1.00	0.55	4.00m @ 0.37 g/t Au	1.5	

Γ	Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	MBDD035	55.50	56.50	1.00	0.29			
Ŋ	MBDD035	56.50	57.50	1.00	0.21			
	MBDD035	122.00	123.00	1.00	0.10			
	MBDD035	128.00	129.00	1.00	0.21	1.00m @ 0.21 g/t Au	0.2	
	MBDD036	3.50	4.50	1.00	0.13			
	MBDD036	20.50	21.50	1.00	0.39	1.00m @ 0.39 g/t Au	0.4	
	MBDD036	51.00	52.00	1.00	0.23	1.00m @ 0.23 g/t Au	0.2	
	MBDD037	3.00	4.00	1.00	0.18			
	MBDD037	20.50	21.76	1.26	0.20	1.26m @ 0.20 g/t Au	0.3	
	MBDD037	76.00	77.00	1.00	0.10			
	MBDD037	84.00	85.00	1.00	0.16			
	MBDD040	38.50	39.50	1.00	0.15			
	MBDD040	39.50	40.50	1.00	0.20	1.00m @ 0.20 g/t Au	0.2	
	MBDD040	62.00	63.00	1.00	0.40	1.00m @ 0.40 g/t Au	0.4	
	MBDD040	114.00	114.68	0.68	0.19			
	MBDD040	115.50	117.00	1.50	0.74	1.50m @ 0.74 g/t Au	1.1	
	MBDD041	123.00	124.00	1.00	0.12			
	MBDD041	176.00	177.00	1.00	4.75			1.00m @ 4.75 g/t Au
	MBDD041	177.00	178.00	1.00	0.36			
	MBDD041	178.00	179.00	1.00	0.66	6 29m @ 1 19 a/t Au	7.4	
	MBDD041	179.00	180.00	1.00	0.80	0.2011 @ 1.16 g/t Au	7.4	
	MBDD041	180.00	181.00	1.00	0.12			
	MBDD041	181.00	182.28	1.28	0.55			
	MBDD041	193.00	194.00	1.00	0.20			
	MBDD041	194.00	195.00	1.00	0.91	3.07m @ 0.43 g/t Au	1.3	
	MBDD041	195.00	196.07	1.07	0.20			
	MBDD041	196.07	197.00	0.93	0.10			
	MBDD041	197.00	198.00	1.00	0.08			
	MBDD041	198.00	199.00	1.00	0.37			
	MBDD041	199.00	200.00	1.00	4.18			2 00m @ 2 82 a/t Au
	MBDD041	200.00	201.00	1.00	1.47			2.00m @ 2.85 g/t Au
	MBDD041	201.00	202.00	1.00	0.10			
	MBDD041	202.00	203.00	1.00	0.13			
	MBDD041	203.00	204.00	1.00	0.10			
	MBDD041	204.00	205.00	1.00	0.14			
	MBDD041	205.00	206.00	1.00	0.35	16.00m @ 0.89 g/t Au	14.2	
	MBDD041	206.00	207.00	1.00	0.64			
Ī	MBDD041	207.00	208.00	1.00	0.23			
Ī	MBDD041	208.00	209.00	1.00	0.32			
Ī	MBDD041	209.00	210.00	1.00	1.28			1.00m @ 1.28 g/t Au
Ī	MBDD041	210.00	211.00	1.00	0.86			
Ī	MBDD041	211.00	212.00	1.00	0.29			
	MBDD041	212.00	213.00	1.00	0.65			

	Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	MBDD041	213.00	214.00	1.00	3.08		(8)/	1.00m @ 3.08 g/t Au
	MBDD042	9.00	10.00	1.00	0.10			
	MBDD042	42.00	43.00	1.00	0.20	1.00m @ 0.20 g/t Au	0.2	
	MBDD042	43.00	44.00	1.00	0.10			
	MBDD042	46.00	47.00	1.00	0.11			
	MBDD042	53.00	54.00	1.00	0.35			
	MBDD042	54.00	55.00	1.00	0.38	2.00m @ 0.36 g/t Au	0.7	
	MBDD042	55.00	56.00	1.00	0.18			
	MBDD042	61.00	62.00	1.00	0.22	1.00m @ 0.22 g/t Au	0.2	
	MBDD042	65.00	66.00	1.00	0.63	1.00m @ 0.63 g/t Au	0.6	
	MBDD042	73.00	74.00	1.00	0.30	1.00m @ 0.30 g/t Au	0.3	
	MBDD042	76.00	77.00	1.00	2.57			1.00m @ 2.57 g/t Au
	MBDD042	77.00	77.55	0.55	0.55	1.55m @ 1.85 g/t Au	2.9	
	MBDD042	78.00	79.00	1.00	0.92			
	MBDD042	79.00	80.00	1.00	0.09			
	MBDD042	80.00	81.00	1.00	0.01			
	MBDD042	81.00	82.00	1.00	0.04	6.00m @ 0.24 g/t Au	1.5	
	MBDD042	82.00	83.00	1.00	0.07			
	MBDD042	83.00	84.00	1.00	0.34			
	MBDD042	84.00	85.00	1.00	0.18			
	MBDD042	85.00	86.00	1.00	0.33			
	MBDD042	86.00	87.00	1.00	0.24			
	MBDD042	87.00	88.00	1.00	0.04	4.00m @ 0.21 g/t Au	0.8	
	MBDD042	88.00	89.00	1.00	0.23			
	MBDD042	97.00	98.00	1.00	0.10			
	MBDD042	98.00	99.00	1.00	0.32			
	MBDD042	99.00	100.00	1.00	0.10			
	MBDD042	100.00	101.00	1.00	0.74			
	MBDD042	101.00	102.00	1.00	0.70	7.00m @ 0.36 g/t Au	2.5	
	MBDD042	102.00	103.00	1.00	0.04			
	MBDD042	103.00	104.00	1.00	0.01			
1	MBDD042	104.00	105.00	1.00	0.59			
	MBDD042	108.69	110.00	1.31	0.20	1.31m @ 0.20 g/t Au	0.3	
	MBDD042	118.00	119.00	1.00	0.47	1.00m @ 0.47 g/t Au	0.5	
	MBDD042	125.50	126.50	1.00	0.18			
	MBDD046	66.00	67.00	1.00	0.27	1 00m @ 0 27 alt Au	0.3	
	MBDD046	91.00	92.00	1.00	0.27	1.00m @ 0.27 g/t Au	0.3	
	MBDD046	114.00	115.00	1.00	0.16			
	MBDD046	115.00	116.00	1.00	0.21	1.00m @ 0.21 g/t Au	0.2	
	MBDD046	125.00	126.00	1.00	0.15			
	MBDD046	136.52	137.50	0.98	0.14			
	MBDD046	160.00	161.00	1.00	0.35	2 00m @ 0 91 g/t Au	1 9	
	MBDD046	161.00	162.00	1.00	1.46	2.0011 @ 0.91 g/t Au	1.0	1.00m @ 1.46 g/t Au

	Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	MBDD047	4.00	5.00	1.00	0.17			
D	MBDD047	24.00	25.25	1.25	0.11			
	MBDD047	47.00	48.50	1.50	0.10			
	MBDD047	57.00	58.00	1.00	0.18			
Γ	MBDD047	66.00	67.00	1.00	0.13			
Γ	MBDD047	138.00	139.00	1.00	0.24	2.00m @ 0.41 a/t Au	0.9	
	MBDD047	139.00	140.00	1.00	0.59	2.00m @ 0.41 g/t Au	0.8	
Γ	MBDD047	141.00	142.00	1.00	0.10			
Γ	MBDD047	144.00	145.00	1.00	0.10			
	MBDD047	153.00	154.00	1.00	1.08	1.00m @ 1.08 g/t Au	1.1	1.00m @ 1.08 g/t Au
	MBDD047	154.00	155.00	1.00	0.15			
Γ	MBDD047	161.00	162.00	1.00	0.16			
	MBDD047	162.00	163.00	1.00	0.19			
Γ	MBDD047	164.00	165.00	1.00	0.12			
Γ	MBDD047	188.00	189.00	1.00	0.12			
	MBDD048	3.00	4.00	1.00	0.13			
Γ	MBDD048	61.90	63.00	1.10	0.11			
	MBDD048	74.00	75.00	1.00	0.12			
	MBDD048	75.00	75.93	0.93	0.20			
	MBDD048	77.21	78.00	0.79	0.13			
	MBDD048	78.00	79.00	1.00	0.25	2.00m @ 1.50 g/t Au	2.0	
	MBDD048	79.00	80.00	1.00	2.75	2.00m @ 1.50 g/t Au	3.0	1.00m @ 2.75 g/t Au
	MBDD048	80.00	81.00	1.00	0.10			
	MBDD048	81.00	82.00	1.00	0.16			
	MBDD048	82.00	83.00	1.00	0.12			
	MBDD048	86.50	88.00	1.50	0.14			
	MBDD048	88.00	89.00	1.00	2.11	1.00m @ 2.11 g/t Au	2.1	1.00m @ 2.11 g/t Au
	MBDD050	14.70	16.00	1.30	1.67	1.30m @ 1.67 g/t Au	2.2	1.30m @ 1.67 g/t Au
	MBDD050	64.50	65.19	0.69	0.13			
	MBDD050	76.00	77.00	1.00	0.82			
	MBDD050	77.00	78.00	1.00	0.03			
	MBDD050	78.00	79.00	1.00	0.08	5.00m @ 0.32 g/t Au	1.6	
	MBDD050	79.00	80.00	1.00	0.17			
	MBDD050	80.00	81.00	1.00	0.49			
	MBDD050	81.00	82.00	1.00	0.17			
	MBDD050	93.00	94.00	1.00	0.47	1.00m @ 0.47 g/t Au	0.5	
	MBDD052	61.26	62.00	0.74	1.38			1 74m @ 1 90 g/+ Au
	MBDD052	62.00	63.00	1.00	2.28			1.7 m @ 1.30 g/t Au
	MBDD052	63.00	64.00	1.00	0.09	4.74m @ 0.77 g/t Au	3.6	
	MBDD052	64.00	65.00	1.00	0.01			
	MBDD052	65.00	66.00	1.00	0.23			
	MBDD052	82.00	83.00	1.00	1.18	2 00m @ 1 22 g/t Au	2.4	2 00m @ 1 22 g/+ Au
Ī	MBDD052	83.00	84.00	1.00	1.26	2.00111 @ 1.22 g/t Ad	2.4	2.0011 @ 1.22 g/t AU

ſ	Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	MBDD052	90.00	91.00	1.00	0.12			
D	MBDD052	94.00	95.00	1.00	0.62			
Ī	MBDD052	95.00	96.00	1.00	0.99			
Ī	MBDD052	96.00	97.00	1.00	0.07			
Ī	MBDD052	97.00	98.00	1.00	0.01		C 1	
Ī	MBDD052	98.00	99.00	1.00	0.01	8.00m @ 0.80 g/t Au	6.4	
Ī	MBDD052	99.00	100.00	1.00	0.09			
Ī	MBDD052	100.00	101.00	1.00	3.56			
Ī	MBDD052	101.00	102.00	1.00	1.02			2.00m @ 2.29 g/t Au
	MBDD052	112.00	113.00	1.00	0.18			
Ī	MBDD052	115.00	116.00	1.00	0.25	1.00m @ 0.25 g/t Au	0.3	
Ī	MBDD052	120.00	121.00	1.00	0.13			
Ī	MBDD052	126.00	127.00	1.00	0.21			
Ī	MBDD052	127.00	128.00	1.00	0.03			
Ī	MBDD052	128.00	129.00	1.00	1.22	5.00m @ 0.34 g/t Au	1.7	1.00m @ 1.22 g/t Au
Ī	MBDD052	129.00	130.00	1.00	0.01			
Ī	MBDD052	130.00	131.00	1.00	0.21			
Ī	MBDD052	149.00	150.00	1.00	0.10			
Ī	MBDD052	173.00	174.00	1.00	1.40			1.00m @ 1.40 g/t Au
Ī	MBDD052	174.00	175.00	1.00	0.40		2.2	
Ī	MBDD052	175.00	176.00	1.00	0.01	4.30m @ 0.53 g/t Au	2.3	
Ī	MBDD052	176.00	177.30	1.30	0.37			
Ī	MBDD052	191.00	192.00	1.00	0.10			
Ī	MBDD052	197.00	198.00	1.00	0.41	1.00m @ 0.41 g/t Au	0.4	
	MBDD052	221.00	222.00	1.00	0.22	1.00m @ 0.22 g/t Au	0.2	
Γ	MBDD052	248.00	249.00	1.00	0.98			
	MBDD052	249.00	250.00	1.00	0.26			
	MBDD052	250.00	251.00	1.00	1.32	5.00m @ 0.96 g/t Au	4.8	2.00m@1.66.g/t.Au
	MBDD052	251.00	252.00	1.00	2.00			2.00m @ 1.66 g/t Au
	MBDD052	252.00	253.00	1.00	0.22			
	MBDD052	258.00	259.00	1.00	0.43	1.00m @ 0.43 g/t Au	0.4	
	MBDD052	259.00	260.00	1.00	0.19			
	MBDD053	1.50	2.07	0.57	0.10			
	MBDD053	108.00	109.00	1.00	0.29	1.00m @ 0.29 g/t Au	0.3	
	MBDD053	110.00	111.00	1.00	0.41			
	MBDD053	111.00	112.00	1.00	0.03	3.00m @ 0.22 g/t Au	0.7	
	MBDD053	112.00	113.00	1.00	0.23			
	MBDD053	113.00	114.00	1.00	0.13			
	MBDD053	140.00	141.00	1.00	1.60	1.00m @ 1.60 g/t Au	1.6	1.00m @ 1.60 g/t Au
	MBDD053	142.00	143.00	1.00	0.87			
	MBDD053	143.00	144.00	1.00	0.06	11 00m @ 0 /8 σ/t Δι	5 2	
	MBDD053	144.00	145.00	1.00	0.01	11.00m @ 0.40 g/ t Au	5.5	
ſ	MBDD053	145.00	146.00	1.00	0.01			

	Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	MBDD053	146.00	147.00	1.00	0.17			
D	MBDD053	147.00	148.00	1.00	0.39			
	MBDD053	148.00	149.00	1.00	1.66			
	MBDD053	149.00	150.00	1.00	1.11			2.00m @ 1.39 g/t Au
	MBDD053	150.00	151.00	1.00	0.44			
	MBDD053	151.00	152.00	1.00	0.36			
	MBDD053	152.00	153.00	1.00	0.25			
	MBDD053	159.00	160.00	1.00	0.25	1.00m @ 0.25 g/t Au	0.3	
Ī	MBDD053	162.00	163.00	1.00	0.13			
	MBDD053	205.00	206.00	1.00	0.40			
	MBDD053	206.00	207.00	1.00	0.02	4.00mm @ 0.40 m/t Au	1.0	
Ī	MBDD053	207.00	208.00	1.00	0.60	4.00m @ 0.40 g/t Au	1.6	
	MBDD053	208.00	209.00	1.00	0.58			
	MBDD053	223.00	224.00	1.00	0.91	1.00m @ 0.91 g/t Au	0.9	
Ī	MBDD053	229.00	230.00	1.00	1.54			200m@161-/+A.
	MBDD053	230.00	231.00	1.00	1.68	4.00mm @ 0.04 a/t Av	2.7	2.00m @ 1.61 g/t Au
	MBDD053	231.00	232.00	1.00	0.32	4.00m @ 0.94 g/t Au	3.7	
	MBDD053	232.00	233.00	1.00	0.20			
	MBDD053	235.00	236.00	1.00	0.12			
	MBDD054	1.50	2.50	1.00	0.31	1.00m @ 0.31 g/t Au	0.3	
	MBDD054	2.50	3.50	1.00	0.12			
	MBDD054	3.50	4.50	1.00	0.13			
	MBDD054	81.00	82.00	1.00	0.10			
	MBDD054	91.00	92.00	1.00	0.12			
	MBDD054	95.00	96.00	1.00	0.10			
	MBDD054	107.00	108.00	1.00	0.26			
	MBDD054	108.00	109.00	1.00	1.34	4.00m @ 0.76 g/t Au	3.0	1.00m @ 1.34 g/t Au
	MBDD054	109.00	110.00	1.00	0.17	4.00m @ 0.70 g/t Au	3.0	
	MBDD054	110.00	111.00	1.00	1.27			1.00m @ 1.27 g/t Au
	MBDD054	116.00	117.00	1.00	0.14			
	MBDD054	117.00	118.00	1.00	0.54	1.00m @ 0.54 g/t Au	0.5	
	MBDD054	118.00	118.78	0.78	0.15			
	MBDD054	132.00	133.00	1.00	0.47			
	MBDD054	133.00	134.00	1.00	0.47			
	MBDD054	134.00	135.00	1.00	0.06	5.00m @ 0.49 g/t Au	2.5	
	MBDD054	135.00	136.00	1.00	0.05			
	MBDD054	136.00	137.00	1.00	1.40			1.00m @ 1.40 g/t Au
	MBDD054	139.00	140.00	1.00	0.20			
	MBDD054	140.00	141.00	1.00	3.17			
	MBDD054	141.00	142.00	1.00	5.05	13 በበm @ 2 በ7 a /+ ለ	26.0	4 00m @ 3 29 a /+ Au
	MBDD054	142.00	143.00	1.00	2.12	13.00m @ 2.07 g/t Au	20.3	9.25 g/ L AU
	MBDD054	143.00	144.00	1.00	2.84			
ſ	MBDD054	144.00	145.00	1.00	0.04			

	Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	MBDD054	145.00	146.00	1.00	8.42			1.00m @ 8.42 g/t Au
D	MBDD054	146.00	147.00	1.00	0.14			
	MBDD054	147.00	148.00	1.00	0.05			
	MBDD054	148.00	149.00	1.00	2.66			1.00m @ 2.66 g/t Au
Ī	MBDD054	149.00	150.00	1.00	0.80			
Ī	MBDD054	150.00	151.00	1.00	0.91			
	MBDD054	151.00	152.00	1.00	0.51			
Ī	MBDD054	157.00	158.00	1.00	0.22	2 00 0 0 21 - 4 0	0.4	
Ī	MBDD054	158.00	159.00	1.00	0.20	2.00m @ 0.21 g/t Au	0.4	
	MBDD054	162.00	163.00	1.00	0.11			
Ī	MBDD054	163.00	164.00	1.00	0.73			
Ī	MBDD054	164.00	165.00	1.00	0.01			
Ī	MBDD054	165.00	166.00	1.00	0.01	5.00m @ 0.25 g/t Au	1.2	
Ī	MBDD054	166.00	167.00	1.00	0.01			
Ī	MBDD054	167.00	168.00	1.00	0.50			
Ī	MBDD054	171.00	172.00	1.00	1.90			1.00m @ 1.90 g/t Au
Ī	MBDD054	172.00	173.00	1.00	0.40			
Ī	MBDD054	173.00	174.00	1.00	0.30			
Ī	MBDD054	174.00	175.00	1.00	0.01			
Ī	MBDD054	175.00	176.00	1.00	0.14	9.00m @ 0.48 g/t Au	4.3	
Ī	MBDD054	176.00	177.00	1.00	0.01			
Ī	MBDD054	177.00	178.00	1.00	0.13			
Ī	MBDD054	178.00	178.72	0.72	0.66			
Ī	MBDD054	178.72	180.00	1.28	0.75			
	MBDD054	182.00	183.00	1.00	0.27	1.00m @ 0.27 g/t Au	0.3	
Ī	MBDD054	184.00	185.00	1.00	0.70			
Ī	MBDD054	185.00	186.00	1.00	0.96			
	MBDD054	186.00	187.00	1.00	1.20			
Γ	MBDD054	187.00	188.00	1.00	6.23			2.00m @ 3.71 g/t Au
Ī	MBDD054	188.00	189.00	1.00	0.55			
Ī	MBDD054	189.00	190.00	1.00	0.08	11.00m @ 1.14 g/t Au	12.6	
	MBDD054	190.00	191.00	1.00	0.11			
Γ	MBDD054	191.00	192.00	1.00	0.07			
Ī	MBDD054	192.00	193.00	1.00	1.89			1.00m @ 1.89 g/t Au
Γ	MBDD054	193.00	194.00	1.00	0.10			
Ī	MBDD054	194.00	195.00	1.00	0.66			
Ī	MBDD054	195.00	196.00	1.00	0.10			
Ī	MBDD054	222.00	223.00	1.00	0.41			
Ī	MBDD054	223.00	224.00	1.00	0.02			
Ī	MBDD054	224.00	225.00	1.00	0.07	6.00m @ 0.25 ~/+ Au	1 5	
Ī	MBDD054	225.00	226.00	1.00	0.42	o.uum @ 0.25 g/t Au	1.5	
Ī	MBDD054	226.00	227.00	1.00	0.22			
	MBDD054	227.00	228.00	1.00	0.34			

	Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	MBDD054	234.00	235.00	1.00	0.92			
D	MBDD054	235.00	236.00	1.00	0.04		4.5	
Γ	MBDD054	236.00	237.00	1.00	0.05	4.00m @ 0.37 g/t Au	1.5	
	MBDD054	237.00	238.00	1.00	0.46			
Γ	MBDD054	250.00	251.00	1.00	0.53	2.00m @ 0.20 a/t Au	0.8	
	MBDD054	251.00	252.00	1.00	0.25	2.0011 @ 0.39 g/t Au	0.8	
	MBDD056	0.00	1.00	1.00	0.18			
	MBDD056	1.00	2.15	1.15	0.23	1.15m @ 0.23 g/t Au	0.3	
	MBDD056	9.50	10.50	1.00	0.20	1.00m @ 0.20 g/t Au	0.2	
	MBDD056	23.63	24.43	0.80	0.32			
	MBDD056	68.00	69.00	1.00	0.12			
	MBDD056	86.00	87.00	1.00	0.14			
	MBDD056	112.00	113.00	1.00	0.39	1.00m @ 0.39 g/t Au	0.4	
	MBDD056	131.75	133.00	1.25	0.15			
	MBDD056	139.00	139.62	0.62	0.12			
	MBDD056	145.00	146.00	1.00	0.27	1.00m @ 0.27 g/t Au	0.3	
	MBDD057	128.00	129.00	1.00	0.12			
	MBDD057	129.00	130.00	1.00	0.26			
	MBDD057	130.00	131.00	1.00	0.70			
	MBDD057	131.00	132.00	1.00	0.37			
	MBDD057	132.00	133.00	1.00	1.54			1.00m @ 1.54 g/t Au
	MBDD057	133.00	134.00	1.00	0.39			
	MBDD057	134.00	135.00	1.00	0.71			
	MBDD057	135.00	136.00	1.00	1.12	13.00m @ 1.38 g/t Au	17.9	
	MBDD057	136.00	137.00	1.00	1.32			
	MBDD057	137.00	138.00	1.00	2.04			6 00m @ 2 25 a/t Au
	MBDD057	138.00	139.00	1.00	1.42			0.0011 @ 2.25 g/t Au
	MBDD057	139.00	140.00	1.00	1.34			
	MBDD057	140.00	141.00	1.00	6.25			
	MBDD057	141.00	142.00	1.00	0.45			
	MBDD057	155.00	156.00	1.00	0.17			
	MBDD057	158.00	158.67	0.67	0.10			
	MBDD057	173.00	174.00	1.00	0.10			
	MBDD057	174.00	175.00	1.00	0.18			
	MBDD057	175.00	176.00	1.00	0.12			
	MBDD057	176.00	177.11	1.11	0.21	2.00m @ 0.20 g/t Au	0.6	
	MBDD057	177.11	178.00	0.89	0.42	2.00m @ 0.50 g/t Au	0.0	
	MBDD057	181.00	182.00	1.00	0.14			
	MBDD057	185.00	186.00	1.00	0.96			
	MBDD057	186.00	187.00	1.00	0.35	/ 00m @ 1 2/ g/t Au	5 /	
	MBDD057	187.00	188.00	1.00	3.06	ד.סטווי ש ד.ס+ צ/ו Au	J. 4	2 00m @ 2 02 a/+ Au
	MBDD057	188.00	189.00	1.00	1.00			2.0011 @ 2.05 g/t Au
ſ	MBDD057	204.00	205.00	1.00	0.14			

	Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	MBDD057	205.00	206.00	1.00	0.16			
D	MBDD057	206.00	207.00	1.00	0.32	1.00m @ 0.32 g/t Au	0.3	
Ī	MBDD057	219.00	220.00	1.00	0.12			
	MBDD057	220.00	221.00	1.00	0.63			
	MBDD057	221.00	222.00	1.00	0.37			
ſ	MBDD057	222.00	223.00	1.00	0.10			
	MBDD057	223.00	224.00	1.00	0.06	8.00m @ 0.20 a/t Au	2.4	
	MBDD057	224.00	225.00	1.00	0.09	8.0011 @ 0.50 g/t Au	2.4	
	MBDD057	225.00	226.00	1.00	0.36			
	MBDD057	226.00	227.00	1.00	0.42			
	MBDD057	227.00	228.00	1.00	0.41			
	MBDD057	230.00	231.00	1.00	3.48			
	MBDD057	231.00	232.00	1.00	1.24			
	MBDD057	232.00	233.00	1.00	2.78			
	MBDD057	233.00	234.00	1.00	1.19			
	MBDD057	234.00	235.00	1.00	0.17			40.05m @ 2.02 - / Au
Ī	MBDD057	235.00	236.00	1.00	2.33			10.05m @ 2.02 g/t Au
Ī	MBDD057	236.00	237.00	1.00	0.99			
	MBDD057	237.00	238.00	1.00	3.74			
Ī	MBDD057	238.00	239.00	1.00	1.39	17.00m @ 1.60 g/t Au	27.2	
Γ	MBDD057	239.00	240.05	1.05	2.86			
	MBDD057	240.05	241.00	0.95	0.65			
	MBDD057	241.00	242.00	1.00	0.05			
Γ	MBDD057	242.00	243.00	1.00	0.15			
	MBDD057	243.00	244.00	1.00	2.40			
	MBDD057	244.00	245.00	1.00	1.72			3.03m @ 1.92 g/t Au
	MBDD057	245.00	246.03	1.03	1.64			
	MBDD057	246.03	247.00	0.97	0.30			
	MBDD057	247.00	248.00	1.00	0.11			
	MBDD057	249.00	250.00	1.00	0.10			
	MBDD057	258.00	258.65	0.65	0.18			
	MBDD057	258.65	260.00	1.35	0.67			
	MBDD057	260.00	261.00	1.00	0.26	3.72m @ 0.62 g/t Au	2.3	
	MBDD057	261.00	262.37	1.37	0.84			
	MBDD057	266.00	267.00	1.00	0.15			
	MBDD059	2.00	3.00	1.00	0.10			
	MBDD059	8.83	10.00	1.17	0.13			
	MBDD059	98.00	99.00	1.00	0.15			
	MBDD059	133.00	134.00	1.00	0.67	1.00m @ 0.67 g/t Au	0.7	
	MBDD059	134.00	135.00	1.00	0.14			
	MBDD060	81.00	82.00	1.00	0.15			
	MBDD060	83.00	84.00	1.00	0.11			
ſ	MBDD060	88.00	89.00	1.00	0.20	4.00m @ 0.23 g/t Au	0.9	

	Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	MBDD060	89.00	90.00	1.00	0.05			
	MBDD060	90.00	91.00	1.00	0.01			
Ī	MBDD060	91.00	92.00	1.00	0.67			
	MBDD060	101.00	102.00	1.00	0.16			
Ī	MBDD060	102.00	103.00	1.00	0.17			
Ī	MBDD060	103.00	104.00	1.00	0.30	1.00m @ 0.30 g/t Au	0.3	
	MBDD060	131.61	133.00	1.39	0.28		0.0	
Ī	MBDD060	133.00	134.16	1.16	0.42	2.55m @ 0.34 g/t Au	0.9	
Ī	MBDD060	151.00	152.00	1.00	4.21		E.C.	2.00m @ 2.70 = /# Au
	MBDD060	152.00	153.00	1.00	1.37	2.00m @ 2.79 g/t Au	5.6	2.00m @ 2.79 g/t Au
Ī	MBDD060	170.00	171.00	1.00	0.28			
Ī	MBDD060	171.00	172.00	1.00	0.05			
Ī	MBDD060	172.00	173.00	1.00	9.48	5.00m @ 2.29 g/t Au	11.5	1.00m @ 9.48 g/t Au
Ī	MBDD060	173.00	174.00	1.00	0.03			
Ī	MBDD060	174.00	175.00	1.00	1.61			1.00m @ 1.61 g/t Au
Ī	MBDD060	195.00	196.00	1.00	0.54			
Ī	MBDD060	196.00	197.00	1.00	0.20			
Ī	MBDD060	197.00	198.00	1.00	0.04	5.00m @ 0.38 g/t Au	1.9	
Ī	MBDD060	198.00	199.00	1.00	0.15			
Ī	MBDD060	199.00	200.00	1.00	0.97			
Ī	MBDD060	212.00	213.00	1.00	0.57	1.00m @ 0.57 g/t Au	0.6	
Ī	MBDD060	226.00	227.00	1.00	0.25			
Ī	MBDD060	227.00	228.00	1.00	0.01			
Ī	MBDD060	228.00	229.00	1.00	0.42	5.00m @ 0.46 g/t Au	2.3	
	MBDD060	229.00	230.00	1.00	0.41			
Ī	MBDD060	230.00	231.00	1.00	1.22			1.00m @ 1.22 g/t Au
Ī	MBDD060	237.00	238.00	1.00	0.23	1.00m @ 0.23 g/t Au	0.2	
	MBDD060	239.00	240.00	1.00	0.27	1.00m @ 0.27 g/t Au	0.3	
Ī	MBDD060	240.00	241.00	1.00	0.16			
Ī	MBDD060	290.00	291.00	1.00	0.38	1.00m @ 0.38 g/t Au	0.4	
Ī	MBDD065	0.00	1.00	1.00	0.12			
	MBDD065	1.00	1.85	0.85	0.10			
	MBDD065	103.00	104.00	1.00	0.41			
Ī	MBDD065	104.00	105.00	1.00	0.43			
	MBDD065	105.00	106.00	1.00	0.03			
Ī	MBDD065	106.00	107.00	1.00	0.15	7.00m @ 0.64 g/t Au	4.5	
	MBDD065	107.00	108.00	1.00	0.03			
Ī	MBDD065	108.00	109.00	1.00	0.14			
	MBDD065	109.00	110.00	1.00	3.29			1.00m @ 3.29 g/t Au
Ī	MBDD065	110.00	111.00	1.00	0.13			
	MBDD065	112.00	113.00	1.00	0.21			
Ī	MBDD065	113.00	114.00	1.00	0.17	3.00m @ 0.20 g/t Au	0.6	
Ī	MBDD065	114.00	115.00	1.00	0.22			

Γ	Hole ID	From	То	Interval	Au	Sig Int > 0.2 g/t Au	m*g/t Au	Sig Int >1 g/t Au
ŀ		110.00	110.00	1.00	(ppm)		(gpm)	
2		118.00	119.00	1.00	0.20			
-		119.00	120.00	1.00	0.08		21.4	
-	MBDD065	120.00	121.00	1.00	4.04	6.00m @ 3.57 g/t Au		2.00m @ 10.14 g/t Au
-		121.00	122.00	1.00	16.24			
ŀ		122.00	123.00	1.00	0.17			
-		123.00	124.00	1.00	0.71			-
-	MBDD065	129.00	130.00	1.00	0.62			
-		130.00	131.00	1.00	0.07			
-		131.00	132.00	1.00	0.16	7.00m @ 0.22 a/t Au	2.2	
-	MBDD065	132.00	133.00	1.00	0.46	7.00m @ 0.33 g/t Au	2.3	
ŀ	MBDD065	133.00	134.00	1.00	0.28			
-	MBDD065	134.00	135.00	1.00	0.02			
-	MBDD065	135.00	136.00	1.00	0.68			-
-	MBDD065	140.00	141.00	1.00	0.18			-
-	MBDD065	141.00	142.00	1.00	0.55			
-	MBDD065	142.00	143.00	1.00	0.09		1.9	
ŀ	MBDD065	143.00	144.00	1.00	0.22	/ .		
-	MBDD065	144.00	145.00	1.00	0.28	7.00m @ 0.27 g/t Au		
-	MBDD065	145.00	146.00	1.00	0.19			
-	MBDD065	146.00	147.00	1.00	0.28			
-	MBDD065	147.00	148.00	1.00	0.28			
-	MBDD065	148.00	149.00	1.00	0.14			
	MBDD065	149.00	150.00	1.00	0.12			-
-	MBDD065	153.00	154.00	1.00	0.32	2.60m @ 0.81 g/t Au	2.1	
-	MBDD065	154.00	155.00	1.00	0.52			
	MBDD065	155.00	155.60	0.60	2.11			-
	MBDD065	169.00	170.00	1.00	0.59	1.00m @ 0.59 g/t Au	0.6	-
Ļ	MBDD065	170.00	171.00	1.00	0.17			
	MBDD065	174.00	175.00	1.00	0.19			-
	MBDD065	176.00	177.00	1.00	0.84			
	MBDD065	177.00	178.00	1.00	0.24	4 00m @ 0 53 σ/t Δι	2.1	
	MBDD065	178.00	179.00	1.00	0.61			
	MBDD065	179.00	180.00	1.00	0.41			-
	MBDD065	193.00	194.00	1.00	0.10			-
	MBDD065	200.00	201.00	1.00	0.24	1.00m @ 0.24 g/t Au	0.2	
	MBDD065	201.00	202.00	1.00	0.19			
	MBDD065	204.00	205.00	1.00	0.46	1.00m @ 0.46 g/t Au	0.5	
	MBDD065	208.00	209.00	1.00	0.18			
	MBDD065	219.00	220.50	1.50	0.65	1.50m @ 0.65 g/t Au	1.0	
	MBDD066	113.00	114.00	1.00	0.10			
	MBDD066	114.00	115.00	1.00	0.11			
ſ	MBDD066	116.00	117.00	1.00	0.10			
Ē	MBDD066	117.00	118.00	1.00	0.16			

[Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	MBDD066	120.00	120.64	0.64	0.28			
D	MBDD066	152.00	153.00	1.00	0.16			
Ī	MBDD066	153.00	154.00	1.00	0.46			
	MBDD066	154.00	155.00	1.00	0.09			
	MBDD066	155.00	156.00	1.00	1.25			1.00m @ 1.25 g/t Au
	MBDD066	156.00	157.00	1.00	0.04			
	MBDD066	157.00	158.00	1.00	0.33	9.00m @ 0.33 g/t Au	2.9	
	MBDD066	158.00	159.00	1.00	0.03			
	MBDD066	159.00	160.00	1.00	0.38			
	MBDD066	160.00	161.00	1.00	0.10			
	MBDD066	161.00	162.00	1.00	0.25			
	MBDD066	162.00	163.00	1.00	0.13			
	MBDD066	163.00	164.00	1.00	0.31			
	MBDD066	164.00	165.00	1.00	0.02			
	MBDD066	165.00	166.00	1.00	0.01		1.2	
	MBDD066	166.00	167.00	1.00	0.08	6.00m @ 0.21 g/t Au	1.3	
Ī	MBDD066	167.00	168.00	1.00	0.01			
	MBDD066	168.00	169.00	1.00	0.86			
Ī	MBDD066	171.00	172.00	1.00	0.11			
Ī	MBDD066	174.00	175.00	1.00	0.19			
	MBDD066	176.00	177.00	1.00	0.28	2.00	0.0	
	MBDD066	177.00	178.00	1.00	0.53	2.00m @ 0.41 g/t Au	0.8	
	MBDD066	182.00	183.00	1.00	0.11			
Ī	MBDD066	185.00	186.00	1.00	0.61	1.00m @ 0.61 g/t Au	0.6	
	MBDD066	187.00	188.00	1.00	0.10			
	MBDD066	188.00	189.00	1.00	0.12			
	MBDD066	189.00	190.00	1.00	0.18			
	MBDD066	191.00	192.00	1.00	0.66	1.00m @ 0.66 g/t Au	0.7	
	MBDD070	82.00	83.00	1.00	35.86	1.00m @ 35.86 g/t Au	35.86	1.00m @ 35.86g/t Au
	MBDD070	120.00	121.00	1.00	4.11			1.00m @ 4.11 g/t Au
	MBDD070	121.00	122.00	1.00	0.35	4 25 m @ 2 75 a/h Au	15.0	
	MBDD070	122.00	123.00	1.00	4.63	4.25m @ 3.75 g/t Au	15.9	2.25m @ 5.10 = /4 Au
	MBDD070	123.00	124.25	1.25	5.48			2.25m @ 5.10 g/t Au
	MBDD070	132.00	133.00	1.00	0.27	1.00m @ 0.27 g/t Au	0.3	
Ī	MBDD070	142.00	143.00	1.00	0.11			
	MBDD070	146.00	147.00	1.00	0.10			
	MBDD070	147.00	148.40	1.40	0.58	1.40m @ 0.58 g/t Au	0.8	
	MBDD070	149.00	150.00	1.00	0.10			
	MBDD070	160.00	161.00	1.00	0.30	1.00m @ 0.30 g/t Au	0.3	
Ī	MBDD070	171.00	172.00	1.00	0.24	1.00m @ 0.24 g/t Au	0.2	

About Aurum's Boundiali Gold Project

The Boundiali Gold Project is comprised of four neighbouring exploration tenements (Figure 3):

- 1) Boundiali Minex Tenement PR0893 ("**BM**"), 400km², holder Minex West Africa, of which Aurum holds 51% and is earning interest of up to 80-88% through its fully owned subsidiary Plusor Global Pty Ltd ("Plusor").
- 2) Boundiali DS tenement PR808 ("**BD**"), 260km², holder DS Resources Joint Venture Company, of which Aurum is 80% share capital owner through its fully owned subsidiary Plusor.
- 3) Boundiali South tenement PR414 ("BST"), 167.34km² is located directly south of Aurum's BD and BM tenement. The BST exploration tenement was renewed on 19th August 2024. Predictive Discovery Côte d'Ivoire SARL (89% owned by Turaco Gold Limited and 11% owned by Predictive Discovery Limited) agreed to sell 100% interest to Aurum, subject to Aurum obtaining a renewal of the Boundiali South tenement (or the granting of a replacement tenement) and being satisfied that the terms of the renewal (or replacement) do not restrict exploration or potential future mining rights, along with all required Government approvals.
- 4) Boundiali North tenement PR283 ("**BN**"), 208.87km2, under renewal, Aurum to earn up to 70% interest through its wholly owned subsidiary Plusor.

The Boundiali Gold Project is located within the same greenstone belt as Resolute's large Syama (11.5Moz) gold mine and Perseus' Sissingue (1.4 Moz) gold mine to the north and Montage Gold's 4.5Moz Koné project located to the south. Barrick's Tongon mine (5.0Moz) is located to the northeast (Figure 2).

BM gold project JV

Plusor has earned 51% interest through drilling 8,000m and is working to earn 80% interest from accumulated exploration expenditure.

- Completed drilling 4,000m diamond holes to earn 30% interest
- Completed drilling a further 4,000m diamond holes to earn accumulated 51% interest
- Earn an accumulated 80% interest from a total exploration expenditure of US\$2.5M using a nominal diamond drilling cost of US\$140/m in calculation for expenditure commitment.
- 80-88% interest in future gold production company (Government gets 10% free carry from local partner):
 - 80% if local partner contributes 11% capex
 - $\circ~~$ 85% if local partner does not contribute capex they go to 5% free carry
 - \circ $\,$ 88% if local partner sells us 3% of their interest they go to 2% free carry $\,$

BD gold project JV

Plusor owns 80% interest acquired from DS Joint Venture Company's two shareholders:

- acquired 45% share capital of DS Joint Venture Company Sarl by paying US\$430,000 to DS Resources Sarl; and
- acquired 35% share capital of DS Joint Venture Company Sarl from Turaco Gold Ltd by drilling 3,500m diamond holes in Turaco's other gold projects in Cote D'Ivoire. This commitment has been completed.

- 80-88% interest in future gold production company (Government gets 10% free carry from local partner):
 - 80% if local partner contributes 11% capex
 - \circ 85% if local partner does not contribute capex they go to 5% free carry
 - o 88% if local partner sells us 3% of their interest they go to 2% free carry

BST gold project consideration and payment for the binding term sheet

- Purchase of the tenement is subject to Aurum obtaining a renewal of the BST tenement (or the granting of a replacement) and being satisfied that the terms of the renewal (or replacement permit) do not restrict exploration or potential future mining rights, along with required Government approvals
- Within 15 business days of the satisfaction (or waiver) of the conditions precedent above, the Seller will, by written notice to the Purchaser, elect to receive **one** of the following forms of consideration (**Election**):
 - (i) A\$800,000 in cash (Cash Consideration); or
 - (ii) If the 20-day volume weighted average trading price of Shares (VWAP) is:
 - Less than or equal to A\$0.20 at the time of the Election, 5,000,000 fully paid ordinary shares in the Purchaser (Shares) (Consideration Shares 1); or
 - Greater than A\$0.20 at the time of the Election, Shares to a value of A\$1.2 million, as determined by dividing A\$1.2 million by the 20-day VWAP for the Shares (Consideration Shares 2)
- 90% interest in future gold production company (Government get 10% free carry from our interest)

BN gold project JV

Aurum is earning interest through carrying out exploration to earn 70% interest in three stages:

- Stage 1: Aurum earns 35% interest by spending USD 1.2 million within 36 months of license grant
- Stage 2: Aurum earns 51% interest by spending USD 2.5 million within 60 months of license grant
- Stage 3: Aurum earns 70% interest upon completion of a pre-feasibility study on the tenement.
- Diamond drilling conducted by Aurum will be valued at US\$140 per meter for expenditure calculations
- Upon grant of a mining exploitation license, the ownership structure will be: Aurum (70%), GNRR (20%), Ivorian Government (10%)

Section 1 of the JORC Code, 2012 Edition – Table 1

Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut	Samples were collected using diamond
techniques	channels, random chips, or specific	drilling techniques generally angled at 50°
	specialised industry standard measurement	towards north-northwest to optimally
	tools appropriate to the minerals under	intersect the mineralised zones.
	investigation, such as down hole gamma	Diamond core was logged both for
	sondes, or handheld XRF instruments, etc).	geological and mineralised structures as
	These examples should not be taken as	noted above. The core was then cut in half
	limiting the broad meaning of sampling.	using a diamond brick cutting saw on 1m
	Include reference to measures taken to	intervals. Typically the core was sampled
	ensure sample representivity and the	to geological intervals as defined by the
	appropriate calibration of any measurement	intervals utilised. The right-hand side of the
	tools or systems used.	core was always submitted for analysis
	Aspects of the determination of	with the left side being stored in travs on
	mineralisation that are Material to the Public	site
	Report. In cases where 'industry standard	Sampling and QAQC procedures were
	simple (eq. 'reverse circulation drilling was	carried out to industry standards.
	used to obtain 1 m samples from which 3 ka	Sample preparation was completed by
	was pulverised to produce a 30 a charae for	independent international accredited
	fire assay'). In other cases more explanation	laboratory Intertek Minerals Ltd. Following
	may be required, such as where there is	cutting or splitting, the samples were
	coarse gold that has inherent sampling	bagged by the Client employees and then
	problems. Unusual commodities or	sent to the laboratory for preparation.
	mineralisation types (eg submarine nodules)	These samples were subsequently sent to
	may warrant disclosure of detailed	Ghunu jor unuysis viu sog jire ussuy.
	information.	•
Drilling	Drill type (eg core, reverse circulation, open-	Diamond drilling carried out with mostly NTW
techniques	hole hammer, rotary air blast, auger, Bangka,	and some HQ sized equipment. PQ-size rods
	sonic, etc) and details (eg core diameter,	and casing were used at the top the holes to
	triple or standard tube, depth of diamond	stabilise the collars although no samples
	tails, face-sampling bit or other type, whether	were taken from the PQ size core.
	core is oriented and if so, by what method,	
Drill sample	Method of recording and assessing core and	Diamond drilling core recoveries ranged
recoverv	chin sample recoveries and results assessed.	between 85% and 100% for all holes with no
,	 Measures taken to maximise sample recovery 	significant issues noted.
	and ensure representative nature of the	
	samples.	
	Whether a relationship exists between	
	sample recovery and grade and whether	
	sample bias may have occurred due to	
	preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been	All holes were field logged by company
	geologically and geotechnically logged to a	geologists. Lithological, alteration and
	level of detail to support appropriate Mineral	mineralogical nomenclature of the deposit
	Resource estimation, mining studies and	As well as sulphide content were recorded.
	metallurgical studies.	data has been recorded
	Whether logging is qualitative or quantitative	Photography and recovery measurements
	in nature. Core (or costean, channel, etc)	were carried out by assistants under a
	The total length and percentage of the	geologist's supervision.
	relevant intersections loaged	All drill holes were logged in full.
	relevant intersections logged.	 Logging was qualitative and quantitative in nature.
Sub-sampling	If core, whether cut or sawn and whether	• NTW core cut in half using a core saw.
techniques	quarter, half or all core taken.	Typically, the core was sampled to major
and sample	• If non-core, whether riffled, tube sampled.	geological intervals as defined by the
preparation	rotary split, etc and whether sampled wet or	geologist within the even two metre sample

AURUM RESOURCES LIMITED | ACN 17 650 477 286 | +61 8 6559 1792 Suite 11, 23 Railway Road, SUBIACO, PERTH, WA 6008 | www.aurumres.com.au

Criteria	JORC Code explanation	Commentary
Criteria	 JORC Code explanation dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Commentary intervals utilised. All samples were collected from the same side of the core. Sample sizes are considered appropriate to correctly represent the moderately nuggetty gold mineralisation based on: the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for Au. The 250gm sample is milled through an LM5 using a single puck to 90% <75 micron Milled sample is homogenised through a matt roll with a 150gm routine sample collected using a spoon around the quadrants and sent to Ghana for analysis and the remaining 100gm kept at Intertek for checks. Field QC procedures involved the use of 2 types of certified reference materials (1 in 20) which is certified by Geostats Ltd, Primary RC duplicates: Generated from the first splitter off the rig and inserted 5% (1 in 20 samples). This sample is collected from a spear sample from the reject material of the primary split. Primary DD duplicate: Generated by cutting the remaining half core into a ¼ and sampled. Coarse blank samples: Inserted 1 in every 20 samples Laboratory Internal Duplicates and Standards Sample sizes are considered appropriate to correctly represent the moderately nuggetty gold mineralisation based on: the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The analytical techniques used 50 gram Fire Assay on 150g pulp samples. Aurum is investigating assaying for gold using ChrysosTM PhotonAssay methodology . This uses a high-energy X-ray source that is used to irradiate large mineral samples, typically about 500g compared to the 50g of the fire assay. The X-rays induce short-lived changes in the structure of any gold nuclei present. As the excited gold nuclei return to their ground state, they emit a characteristic gamma-ray signature, the intensity of which is directly proportional to the concentration of gold. The penetrating nature of ChrysosTM PhotonAssay provides much higher energy than those used in conventional X-ray fluorescence (XRF), which provides a true bulk analysis of the entire

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 sample. Samples are presented into a fully automatic process where samples are irradiated, measured, data collection and reporting. Further work is ongoing to determine the suitability of this method. No geophysical tools were used to determine any element concentrations used for this report. Sample preparation checks for fineness were carried out by the laboratory as part of internal procedures to ensure the grind size of 2mm was being attained. Laboratory QAQC includes the use of internal standards using certified reference material, and pulp replicates. No anomalous assays were noted in information provided to the Client. The QAQC results confirm that acceptable levels of accuracy and precision have been established for the Classifications applied. NA No holes have been twinned No adjustment to assay data Logging records were mostly registered in physical format and were input into a digital format. Assay values that were below detection limit were adjusted to equal half of the detection limit value. Un-sampled intervals were assumed to have no mineralisation and they were therefore set to blank in the datapase
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 DD collar positions were located using a handheld GPS with a location error of +/3m. The datum employed is WGS84, Zone 29
Data spacing	 Data spacing for reporting of Exploration 	Drillholes were completed on variable
and distribution	 Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 spacings and orientations. No judgement has yet been made by an independent qualified consultant on whether the drill density is sufficient to calculate a Mineral Resource. The samples were not composited prior to assay.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material 	 Drill holes were drilled approximately at right angles to the anticipated strike of the target geochemical anomaly and orthogonal to the interpreted mineralisation orientation.

Criteria	JORC Code explanation	Commentary
Sample security	• The measures taken to ensure sample security.	Chain of custody is managed by the Client's senior site geologists and geotechnicians. Samples are stored in a core shed at site and samples were delivered to the laboratory by client geologists. Client employees have no further involvement in the preparation or analysis of the samples.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	Aurum is reviewing the suitability of PhotonAssay to analyse for gold compared to fire assay. This work is ongoing

Section 2 of the JORC Code, 2012 Edition – Table 1

Criteria	JORC Code explanation	Commentary		
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Exploration results are from the Boundiali project area. There are no impediments to working in the area. 		
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The exploration results reported in this announcement are from work undertaken by PlusOr and BM on behalf of Aurum Resources Limited The license area is known as a prospective region for gold and recent artisanal workings revealed the presence of primary gold mineralisation in artisanal pits and small-scale underground mining. 		
Geology	 Deposit type, geological setting and style of mineralisation. 	 The geology consists of granitoid intrusives, metasediments, typical of granite – greenstone belt Birimian terrains. Mineralisation style is typical structurally controlled, mesothermal, lode gold orogenic style. 		
Drill hole information	 A summary of all information material to the under-standing of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Complete drill hole data has been provided. Drill hole collar locations are shown in figures in main body of announcement. 		

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Assay Intervals are shown in detail. Drilling intervals are predominantly 1m and 2m. Metal equivalent values are not being reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g.'down hole length, true width not known'). 	 True widths have not been estimated as the geological controls on mineralisation in these initial drill holes into the prospect are not yet well understood. The holes were drilled from east to west to test a steeply east dipping foliation in the limited rock exposures seen in the area. The mineralisation lies within what has been interpreted to be a ductile shear zone which would suggest that mineralisation should lie parallel to foliation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• Appropriate diagrams relevant to material results are shown in the body of this announcement.
Balanced Reporting	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drill hole and trench collar locations were surveyed utilising handheld GPS methods. Exploration results only being reported. No Mineral Resource exists Drilling teams utilised the Reflex EZ-shot instrument to measure deviations in azimuth and inclination angles for all holes; however, vertical holes were not surveyed. The first measurement is taken at 6 m depth, and then at approximately every 30m depth interval and at the end of the hole. being reported
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All relevant exploration data is either reported in this announcement or has been reported previously by Aurum, Randgold or Predictive Discovery and is referred to in the announcement.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main 	• The Company intends to continue exploration on the project and this work will include auger, aircore, RC and diamond core drilling, along with further geophysical surveys and geochemical sampling

Criteria	JORC Code explanation	Commentary
	geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 programs. Diagrams included in body of report as deemed appropriate by competent person