ASX Announcement ASX: AAR 9 OCTOBER 2024

STRONG IN-FILL DRILLING RESULTS PAVE WAY FOR UPGRADE OF CORNERSTONE THEIA DEPOSIT AT MANDILLA

In-fill drilling demonstrates strong continuity within of known gold mineralisation, supporting upgrade from Inferred to Indicated status

HIGHLIGHTS

- Assay results received for a 70-hole (6,512 metre) in-fill reverse circulation (**RC**) drill program at the cornerstone Theia deposit at the Mandilla Gold Project, with best results including:
 - 8 metres at 1.82g/t Au from 29 metres and 33 metres at 1.82g/t Au from 64 metres, including 2 metres at 25.9g/t Au from 90 metres in MDRC886;
 - 10 metres at 5.33g/t Au from 38 metres including 1 metre at 37.5g/t Au from 43 metres in MDRC908;
 - 6 metres at 1.74g/t Au from 70 metres and 18 metres at 2.54g/t Au from 84 metres including 1 metre at 24.8g/t Au from 93 metres in MDRC906;
 - 7 metres at 0.70g/t Au from 44 metres and 19 metres at 2.12g/t Au from 67 metres including 1 metre at 19.5g/t Au from 71 metres and 1 metre at 14.8g/t Au from 78 metres in MDRC885;
 - **17 metres at 0.73g/t Au** from 40 metres and **14 metres at 1.64g/t Au** from 83 metres including **1 metre at 12.5g/t Au** from 84 metres in MDRC875;
 - 29 metres at 0.67g/t Au from 25 metres and 17 metres at 1.37g/t Au from 64 metres including 1 metre at 14.9g/t Au from 80 metres;
 - 1 metre at 223 g/t Au from 15 metres in MDRCD918;
 - 1 metre at 21.3g/t Au from 12 metres and 22 metres at 0.53g/t Au from 60 metres in MDRC869;
 - 15 metres at 1.27g/t Au from 60 metres in MDRC899;
 - 14 metres at 1.35g/t Au from 96 metres in MDRC894;
 - 2 metres at 5.56g/t Au from 70 metres in MDRC902; and
 - 6 metres at 1.96g/t Au from 69 metres in MDRC910.
- 34-hole (3,750 metre) extensional and in-fill RC drill program completed recently at the satellite Kamperman deposit, with assay results pending.
- The RC rig has now been relocated to Mandilla to complete a 20-hole (3,579 metre) in-fill program at the Iris deposit to support its inclusion in the upcoming Pre-Feasibility Study (**PFS**). Once this program is complete, a 16-hole (2,540 metre) extensional drill program will be undertaken to test for extensions to the fresh rock gold mineralisation at the Eos deposit.
- As part of the current RC drill program at Mandilla, several dedicated RC holes will be drilled for the purpose of groundwater testing to support the hydrogeological study stream of the PFS.
- A diamond drill (**DD**) rig will also be mobilised this quarter to complete four deep in-fill holes ahead of an update to the Theia MRE, which is expected in the March Quarter, 2025.

Astral Resources' Managing Director Marc Ducler said: "As we move into the December Quarter, far from slowing down ahead of Christmas, we are increasing our exploration and drilling effort on multiple fronts in order to advance the Mandilla PFS as quickly as possible.

"The recent 70-hole/6,512 metre in-fill drill program at Theia was designed to ensure that the Stage 1 and Stage 2 pits, as contemplated in the Mandilla Scoping Study, had the necessary drill density to satisfy the requirement for the Mineral Resources in this area to be classified as Indicated. The assay results from this program will support that outcome.

"Our attention at Mandilla is now turning to an in-fill RC program at Iris, for which 90% of the Mineral Resource is currently categorised as Inferred. This program will focus on the higher-grade portion of the Iris deposit. If this program is successful, further drilling will be undertaken.

"Additionally, four RC pre-collars have been completed at Theia ahead of the expected arrival of a diamond drill rig in late October which will complete four diamond tail in-fill tests to feed into an updated Theia MRE.

"Meanwhile, a 34-hole/3,750 metre RC drill program at Kamperman has recently been completed. This program targeted extensions to the north and north-east of the currently interpreted mineralised envelope. If this drilling is successful in extending the mineralised envelope, then a significant in-fill program will be required.

"The update to the Feysville Mineral Resource is expected shortly. This will kick off several technical work streams at Feysville aimed at collecting the necessary data to allow development of Feysville's gold deposits as part of the Mandilla PFS.

"This is an exciting time for the Company following the strongly supported institutional capital raise completed in late September. Astral now has the balance sheet strength to accelerate our exploration efforts at both Mandilla and Feysville and complete the necessary project studies as we advance towards becoming a plus 100,000oz pa gold producer in the heart of the Kalgoorlie Goldfields."

Astral Resources NL (ASX: AAR) (**Astral** or the **Company**) is pleased to report assay results for a 70hole (6,512 metre) in-fill RC drill program at the Theia deposit, part of the 100%-owned Mandilla Gold Project (**Mandilla**), located approximately 70km south of Kalgoorlie in Western Australia (Figure 1).

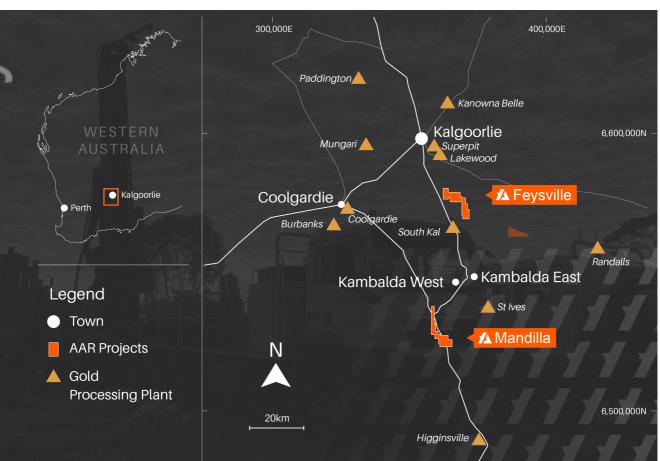


Figure 1 – Map illustrating the location of the Mandilla and Feysville Gold Projects.

MANDILLA GOLD PROJECT

The Mandilla Gold Project is situated in the northern Widgiemooltha greenstone belt, approximately 70 kilometres south of the significant mining centre of Kalgoorlie, Western Australia.

The area hosts world-class deposits such as the Golden Mile Super Pit in Kalgoorlie owned by Northern Star Resources Limited (ASX: NST) and the St Ives Gold Mine south of Kambalda owned by Gold Fields Limited, as well as the substantial Beta Hunt Gold Mine owned by Westgold Resources Limited (ASX: WGX).

Mandilla is covered by existing Mining Leases which are not subject to any third-party royalties other than the standard WA Government gold royalty.

The Mandilla Gold Project includes the Theia, Iris, Eos and Hestia deposits.

Gold mineralisation at Theia and Iris is comprised of structurally controlled quartz vein arrays and hydrothermal alteration close to the western margin of the Emu Rocks Granite and locally in contact with sediments of the Spargoville Group.

Significant NW to WNW-trending structures along the western flank of the project are interpreted from aeromagnetic data to cut through the granitic intrusion. These structures are considered important in localising gold mineralisation at Theia, which has a mineralised footprint extending over a strike length of more than 1.6km.

A second sub-parallel structure hosts gold mineralisation at the Iris deposit. The mineralised footprint at Iris extends over a strike length of approximately 600 metres, combining with Theia to form a mineralised zone extending over a strike length of more than 2.2 kilometres.

At Eos, located further to the south-east, a relatively shallow high-grade mineralised palaeochannel deposit has been identified and which extends over a length of approximately 600 metres. A primary gold source is also present with further drilling required to determine both the nature and structural controls on mineralisation and its extent.

Mineralisation delineated over approximately 800 metres of strike at the Hestia deposit, located approximately 500 metres west of Theia, is associated with a shear zone adjacent to a mafic/sediment contact, interpreted to be part of the major north-south trending group of thrust faults known as the Spargoville Shear Corridor.

Locally, the Spargoville Shear Corridor hosts the historically mined Wattle Dam gold mine (266koz at 10.6g/t Au) and, further to the north, the Ghost Crab/Mt Marion mine (>1Moz).

The mineralisation at Hestia, which is present in a different geological setting to bedrock mineralisation at Theia and Iris, remains open both down-dip and along strike.

In July 2023, Astral announced a Mineral Resource Estimate (**MRE**) of **37Mt at 1.1 g/t Au for 1.27Moz** of contained gold¹ for the Mandilla Gold Project.

Metallurgical testing undertaken on each of the main deposits at Mandilla – Theia, Iris, Eos and Hestia – has demonstrated high gravity recoverable gold, fast leach kinetics and exceptional overall gold recoveries with low reagent consumptions and coarse grinding^{2,3}.

In September 2023, Astral announced the results of a Scoping Study for Mandilla (**Scoping Study**) which – based on a standalone project comprising three open pit mines feeding a 2.5Mtpa processing facility, producing 80 to 100koz per year, and incorporating a gold price of A\$2,750 – has a Net Present Value (8% discount rate) of \$442 million⁴.

The Scoping Study did not include any contribution from Astral's nearby 100%-owned Feysville Project, which currently hosts a 116koz MRE⁵.

A map of Mandilla illustrating both the local area geology and mineral deposits is set out in Figure 2.

¹ - Mandilla JORC 2012 Mineral Resource Estimate: 21Mt at 1.1g/t Au for 694koz Indicated Mineral Resources and 17Mt at 1.1g/t Au for 571koz Inferred Mineral Resources. See ASX Announcement 20 July 2023.

² - ASX Announcement 6 June 2022 "Outstanding metallurgical test-work results continue to de-risk Mandilla."

³ - ASX Announcement 17 September 2024 "Outstanding metallurgical results further de-risk Mandilla."

⁴ - ASX Announcement 21 September 2023 "Mandilla Gold Project – Kalgoorlie, WA. Positive Scoping Study"

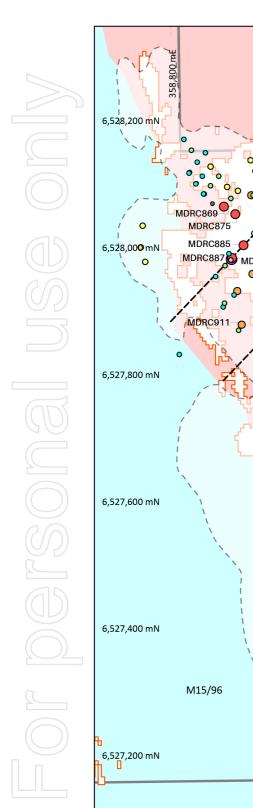
⁵ - Feysville JORC 2012 Mineral Resource Estimate: 0.6Mt at 1.1g/t Au for 20.2koz Indicated Mineral Resources and 2.3Mt at 1.3g/t Au for 95.6koz Inferred Mineral Resources (refer to ASX Announcement dated 8 April 2019).



Figure 2 – Map of Mandilla Gold Project showing gold deposits on local area geology.

THEIA IN-FILL RC DRILL RESULTS

The purpose of this in-fill RC program was to in-fill the Stage 1 and Stage 2 pits to a drill density of roughly 40 metres x 20 metres with a view to upgrading the Inferred Mineral Resources envisaged in


- 8 metres at 1.82g/t Au from 29 metres and 33 metres at 1.82g/t Au from 64 metres,
- 10 metres at 5.33g/t Au from 38 metres including 1 metre at 37.5g/t Au from 43 metres in
- 6 metres at 1.74g/t Au from 70 metres and 18 metres at 2.54g/t Au from 84 metres
- roughly 40 metres A Louise
 the Scoping Study completed in September 2023° to the mulcated outcompleted in September 2023° to the september 2023° to the september 2023° to the set and 33 metres in MDRC886;
 10 metres at 1.74g/t Au from 70 metres and 18 metres at 2.54g/t Au from including 1 metre at 14.8g/t Au from 1 metres and 1 metre at 14.8g/t Au from 1 metres and 1 metre at 14.8g/t Au from 1 metres and 1 metre at 14.8g/t Au from 1 metres and 1 metre at 14.8g/t Au from 1 metres and 1 metre at 14.8g/t Au from 1 metres and 1 metre at 14.8g/t Au from 1 metres and 1 metre at 14.8g/t Au from 1 metres and 1 metres and 1 metres at 14.8g/t Au from 1 metres and 1 metres at 14.8g/t Au from 1 metres and 1 metres at 14.8g/t Au from 1 metres and 1 metres at 14.8g/t Au from 7 metres at 0.70g/t Au from 44 metres and 19 metres at 2.12g/t Au from 67 metres including 1 metre at 19.5g/t Au from 71 metres and 1 metre at 14.8g/t Au from 78 metres
 - 17 metres at 0.73g/t Au from 40 metres and 14 metres at 1.64g/t Au from 83 metres
 - 29 metres at 0.67g/t Au from 25 metres and 17 metres at 1.37g/t Au from 64 metres

 - 1 metre at 21.3g/t Au from 12 metres and 22 metres at 0.53g/t Au from 60 metres in

<sup>b Inertes at 17.7g/r Au from 12 metres in MDRC906;
7 metres at 0.70g/t Au from 44 metres and 19 metres at 2.12g/t Au from including 1 metre at 19.5g/t Au from 71 metres and 1 metre at 14.8g/t Au from in MDRC885;
17 metres at 0.73g/t Au from 40 metres and 14 metres at 1.64g/t Au from including 1 metre at 12.5g/t Au from 84 metres in MDRC875;
29 metres at 0.67g/t Au from 25 metres and 17 metres at 1.37g/t Au from including 1 metre at 14.9g/t Au from 80 metres;
1 metre at 223g/t Au from 15 metres in MDRCD918;
1 metre at 21.3g/t Au from 12 metres and 22 metres at 0.53g/t Au from 6 MDRC869;
15 metres at 1.27g/t Au from 96 metres in MDRC899;
14 metres at 1.35g/t Au from 70 metres in MDRC902; and
6 metres at 1.96g/t Au from 69 metres in MDRC910.</sup>

⁶ - Refer to ASX Announcement 21 September 2023 "Mandilla Gold Project – Kalgoorlie, WA. Positive Scoping Study"

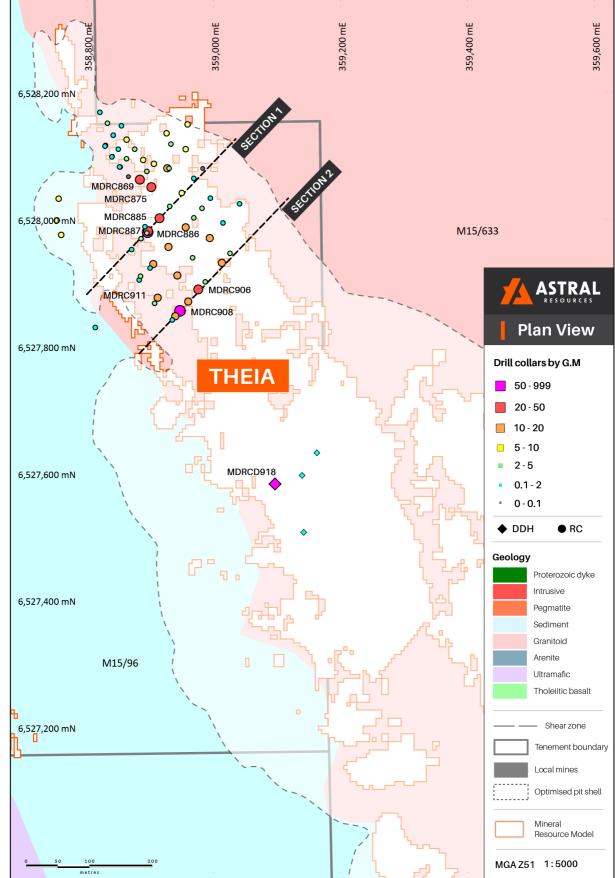


Figure 3 - Map of Theia illustrating drill collar locations on local area geology.

As expected, elevated gold grade occurs with increased quartz veining and sulphide abundance. It is highly encouraging to see assay results from in-fill drilling tie in smoothly with logged quartz/sulphide zones within the current resource model.

Only minor refinement will be necessary for an updated Mineral Resource Estimate and no major changes to tonnage or grade are expected. This confirms the consistency and robustness of the Theia deposit as tighter-spaced drilling more accurately delineates its geometry and orientation.

Section 1 (Figure 4) highlights good pairing of recent assay results with the current Mineral Resource. Broad zones of gold mineralisation have been intersected through the thickest part of the ore body at Stage 2. Higher-grade intersections from in-fill drilling are consistent with the Resource model, as indicated by the intersections in MDRC885, MDRC886, and MDRC887

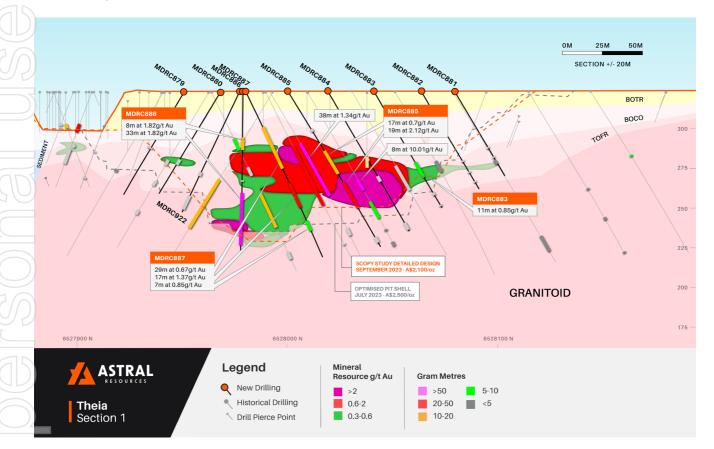
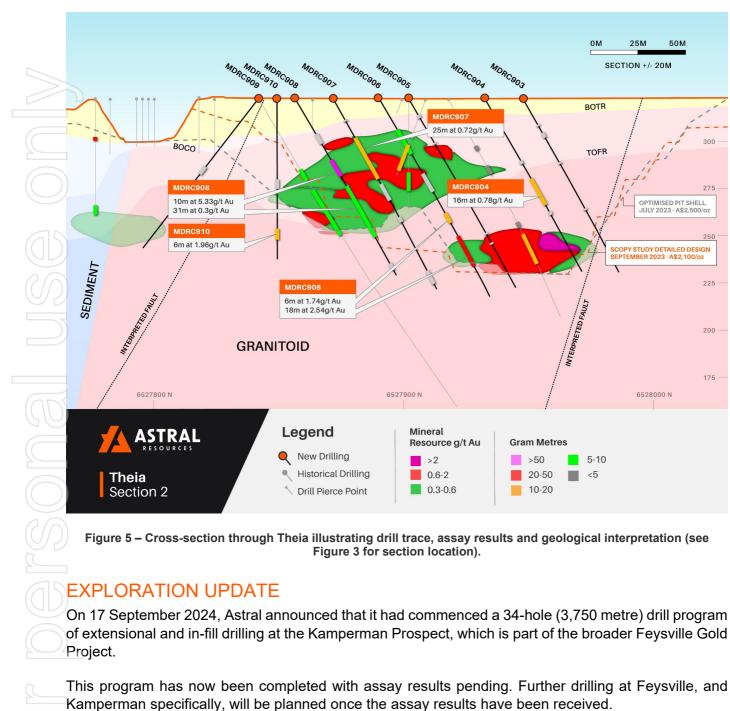


Figure 4 – Cross-section through Theia illustrating drill trace, assay results and geological interpretation (see Figure 3 for section location).

Section 2 (Figure 5), 120m south-east of Section 1, also displays good consistency between the new drilling and the Resource model through the thicker mineralised zone visible in the section.

Gold mineralisation outside of the Resource model and within the Stage 2 pit design has also been intersected – for example, in MDRC904.

50M


OPTIMISED PIT SHELL JULY 2023 - A\$2,500/oz

6528000 N

275

200

175

The RC drill rig has now been relocated to Mandilla to in-fill the high-grade portion of the Iris Deposit, for which 90% of Mineral Resources are currently categorised as Inferred. This program consists of 20 holes for 3,579 metres.

Upon completion of the Iris program, a 16-hole/2,540 metre drill program targeting fresh-rock gold mineralisation adjacent to the Eos palaeochannel deposit will commence.

Prior to the RC rig demobilising from Mandilla, a three-week ground water drilling program will be undertaken to collect information at a PFS level of accuracy for the hydrogeological study at the Theia, Hestia, Iris and Eos deposits for the Mandilla Gold Project PFS.

As announced on 17 September, four RC pre-collars have been drilled for the purpose of completing four diamond tail in-fill tests for 1,600 metres at Theia. The DD rig is expected to mobilise prior to the end of October 2024 to complete this work. Once completed, the Stage 1 and Stage 2 in-fill drilling, combined with the results of the diamond drilling, will be incorporated into an updated MRE for Theia. This work will form the basis of the Theia mine design for the Mandilla PFS.

Whilst the DD rig is onsite, Astral will also drill six holes for 760 metres at Hestia and Eos as the basis for geotechnical studies.

APPROVED FOR RELEASE

This announcement has been authorised for release by the Managing Director.

For further information:

Investors Marc Ducler Managing Director Astral Resources +61 8 9382 8822 Media Nicholas Read Read Corporate +61 419 929 046

Competent Person's Statement

The information in this announcement that relates to exploration targets and exploration results is based on, and fairly represents, information and supporting documentation compiled by Ms Julie Reid, who is a full-time employee of Astral Resources NL. Ms Reid is a Competent Person and a Member of The Australasian Institute of Mining and Metallurgy. Ms Reid has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Reid consents to the inclusion in this announcement of the material based on this information, in the form and context in which it appears.

The information in this announcement that relates to Estimation and Reporting of Mineral Resources for the Mandilla Gold Project is based on information compiled by Mr Michael Job, who is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM). Mr Job is an independent consultant employed by Cube Consulting. Mr Job has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Job consents to the inclusion in this Quarterly Report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to Estimation and Reporting of Mineral Resources for the Feysville Gold Project is based on information compiled by Mr Richard Maddocks, who is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM). Mr Maddocks is an independent consultant to the Company. Mr Maddocks has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Maddocks consents to the inclusion in this announcement of the matters based on the information in the form and context in which it appears.

Previously Reported Results

There is information in this announcement relating to exploration results which were previously announced on 31 January 2017, 19 June 2020, 11 August 2020, 15 September 2020, 17 February 2021, 26 March 2021, 20 April 2021, 20 May 2021, 29 July 2021, 26 August 2021, 27 September 2021, 6 October 2021, 3 November 2021, 15 December 2021, 22 February 2022, 3 May 2022, 6 June 2022, 5 July 2022, 13 July 2022, 10 August 2022, 23 August 2022, 21 September 2022, 13 October 2022, 3 November 2022, 30 November 2022, 15 March 2023, 12 April 2023, 24 April 2023, 16 May 2023, 14 June 2023, 3 July 2023, 30 August 2023, 5 September 2023, 18 September 2023, 8 November 2023, 22 November 2023, 21 December 2023, 18 January 2024, 30 January 2024, 28 February 2024, 6 March 2024, 4 April 2024, 4 June 2024, 11 July 2024, 25 July 2024, 2 August 2024 and 19 August 2024. Other than as disclosed in those announcements, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements.

The information in this announcement relating to the Company's Scoping Study are extracted from the Company's announcement on 21 September 2023 titled "Mandilla Gold Project – Kalgoorlie, WA. Positive Scoping Study". All material assumptions and technical parameters underpinning the Company's Scoping Study results referred to in this announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Forward Looking Statements

This announcement may contain certain "forward looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis.

However, forward looking statements are subject to risks, uncertainties, assumptions, and other factors which could cause actual results to differ materially from future results expressed, projected or implied by such forward looking statements. Such risks include, but are not limited to exploration risk, resource risk, metal price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which we sell our product to, and government regulation and judicial outcomes.

For more detailed discussion of such risks and other factors, see the Company's prospectus, as well as the Company's other filings. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward looking statement" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

Appendix 1 – Drill Hole Details

Mandilla Gold Project

Hole ID Type Hole Depth (m) GDA (North) GDA (East) GDA RL Dip MGA A MDRC853 RC 60 6,528,170 358,821 325.5 -55 - MDRC854 RC 80 6,528,153 358,833 325.3 -62 - MDRC855 RC 75 6,528,117 358,829 325.0 -90 - MDRC857 RC 75 6,528,117 358,823 325.0 -90 - MDRC859 RC 775 6,528,101 358,841 325.0 -90 - MDRC859 RC 772 6,528,101 358,841 325.0 -57 - MDRC861 RC 90 6,528,112 358,853 324.3 -90 - MDRC863 RC 72 6,528,112 358,853 324.5 -87 MDRC864 RC 96 6,528,104 358,853 324.4 -60 - MDRC867 R	_				Table 1 –	Drill hole data			
MDRC854 RC 80 6,528,153 358,833 325.3 -62 MDRC855 RC 75 6,528,118 358,830 325.0 -90 MDRC856 RC 84 6,528,117 358,829 325.0 -90 MDRC857 RC 75 6,528,149 358,855 325.0 -90 MDRC859 RC 75 6,528,101 358,842 325.0 -90 MDRC859 RC 72 6,528,101 358,840 325.0 -57 MDRC861 RC 72 6,528,112 358,850 324.3 -90 MDRC863 RC 72 6,528,084 358,853 324.5 -58 MDRC864 RC 96 6,528,084 358,853 324.7 -90 MDRC865 RC 102 6,528,047 358,863 324.7 -90 MDRC866 RC 102 6,528,047 358,863 324.4 -60 MDRC867 RC		Hole ID	Туре		GDA (North)	GDA (East)	GDA RL	Dip	MGA Azmith
MDRC855 RC 75 6,528,118 358,830 325.0 -90 MDRC856 RC 84 6,528,117 358,829 325.0 -60 MDRC857 RC 75 6,528,149 358,855 325.0 -90 MDRC858 RC 75 6,528,101 358,841 325.0 -90 MDRC859 RC 72 6,528,100 358,840 325.0 -57 MDRC861 RC 72 6,528,100 358,853 324.3 -90 MDRC862 RC 96 6,528,112 358,853 324.5 -87 MDRC863 RC 72 6,528,084 358,852 324.5 -58 MDRC863 RC 102 6,528,084 358,853 324.7 -90 MDRC864 RC 96 6,528,097 358,863 324.7 -90 MDRC865 RC 102 6,528,077 358,866 324.3 -90 MDRC867 RC		MDRC853	RC	60	6,528,170	358,821	325.5	-55	220
MDRC856 RC 84 6,528,117 358,829 325.0 -60 MDRC857 RC 75 6,528,149 358,855 325.0 -90 MDRC858 RC 75 6,528,134 358,841 325.0 -90 MDRC859 RC 72 6,528,101 358,841 325.0 -57 MDRC860 RC 90 6,528,102 358,863 324.3 -90 MDRC861 RC 72 6,528,112 358,850 324.3 -90 MDRC863 RC 72 6,528,084 358,853 324.5 -87 MDRC863 RC 96 6,528,084 358,853 324.5 -58 MDRC864 RC 96 6,528,067 358,863 324.7 -90 MDRC865 RC 102 6,528,067 358,866 324.3 -90 MDRC866 RC 62 6,528,067 358,895 325.5 -90 MDRC870 RC <		MDRC854	RC	80	6,528,153	358,833	325.3	-62	220
MDRC857 RC 75 6,528,149 358,855 325.0 -90 MDRC858 RC 75 6,528,134 358,841 325.0 -90 MDRC859 RC 72 6,528,101 358,841 325.0 -57 MDRC860 RC 90 6,528,100 358,840 325.0 -57 MDRC861 RC 72 6,528,112 358,850 324.3 -90 MDRC862 RC 96 6,528,112 358,850 324.3 -90 MDRC863 RC 72 6,528,084 358,853 324.5 -87 MDRC864 RC 96 6,528,084 358,853 324.7 -90 MDRC865 RC 102 6,528,097 358,866 324.3 -90 MDRC866 RC 62 6,528,097 358,893 324.4 -60 MDRC867 RC 84 6,528,097 358,893 325.5 -90 MDRC870 RC <		MDRC855	RC	75	6,528,118	358,830	325.0	-90	40
MDRC858 RC 75 6,528,134 358,842 325.0 -90 MDRC859 RC 72 6,528,101 358,841 325.0 -85 MDRC860 RC 90 6,528,100 358,840 325.0 -57 MDRC861 RC 72 6,528,127 358,863 324.3 -90 MDRC862 RC 96 6,528,084 358,853 324.5 -87 MDRC863 RC 72 6,528,084 358,852 324.5 -58 MDRC864 RC 96 6,528,097 358,863 324.7 -90 MDRC865 RC 102 6,528,097 358,863 324.4 -60 MDRC866 RC 102 6,528,095 358,866 324.3 -90 MDRC867 RC 84 6,528,095 358,866 324.3 -90 MDRC867 RC 90 6,528,077 358,895 325.5 -90 MDRC870 RC		MDRC856	RC	84	6,528,117	358,829	325.0	-60	220
MDRC859 RC 72 6,528,101 358,841 325.0 -85 MDRC860 RC 90 6,528,100 358,840 325.0 -57 MDRC861 RC 72 6,528,127 358,863 324.3 -90 MDRC862 RC 96 6,528,112 358,850 324.3 -90 MDRC863 RC 72 6,528,084 358,853 324.5 -87 MDRC864 RC 96 6,528,084 358,852 324.5 -58 MDRC865 RC 102 6,528,097 358,863 324.7 -90 MDRC866 RC 102 6,528,097 358,863 324.4 -60 MDRC867 RC 84 6,528,095 358,866 324.3 -90 MDRC868 RC 62 6,528,097 358,866 324.3 -90 MDRC867 RC 90 6,528,077 358,893 325.5 -90 MDRC870 RC		MDRC857	RC	75	6,528,149	358,855	325.0	-90	40
MDRC860 RC 90 6,528,100 358,840 325.0 -57 MDRC861 RC 72 6,528,127 358,863 324.3 -90 MDRC862 RC 96 6,528,112 358,850 324.3 -90 MDRC863 RC 72 6,528,084 358,853 324.5 -87 MDRC864 RC 96 6,528,084 358,852 324.5 -58 MDRC865 RC 102 6,528,097 358,863 324.7 -90 MDRC866 RC 102 6,528,097 358,863 324.4 -60 MDRC867 RC 84 6,528,095 358,889 324.4 -60 MDRC868 RC 62 6,528,095 358,866 324.3 -90 MDRC869 RC 90 6,528,077 358,895 325.5 -90 MDRC870 RC 150 6,528,120 358,933 324.5 -90 MDRC871 RC		MDRC858	RC	75	6,528,134	358,842	325.0	-90	40
MDRC861 RC 72 6,528,127 358,863 324.3 -90 MDRC862 RC 96 6,528,112 358,850 324.3 -90 MDRC863 RC 72 6,528,084 358,853 324.5 -87 MDRC864 RC 96 6,528,084 358,852 324.5 -58 MDRC865 RC 102 6,528,012 358,863 324.7 -90 MDRC866 RC 102 6,528,097 358,863 324.4 -60 MDRC867 RC 84 6,528,095 358,889 324.4 -60 MDRC868 RC 62 6,528,095 358,881 325.8 -90 MDRC869 RC 90 6,528,077 358,895 325.5 -90 MDRC870 RC 90 6,528,077 358,993 324.5 -90 MDRC871 RC 150 6,528,121 358,993 324.5 -90 MDRC873 RC	Γ	MDRC859	RC	72	6,528,101	358,841	325.0	-85	220
MDRC862 RC 96 6,528,112 358,850 324.3 -90 MDRC863 RC 72 6,528,084 358,853 324.5 -87 MDRC864 RC 96 6,528,084 358,852 324.5 -58 MDRC865 RC 102 6,528,012 358,876 324.7 -90 MDRC866 RC 102 6,528,097 358,863 324.4 -60 MDRC867 RC 84 6,528,095 358,889 324.4 -60 MDRC868 RC 62 6,528,069 358,866 324.3 -90 MDRC869 RC 90 6,528,069 358,884 325.8 -90 MDRC870 RC 90 6,528,077 358,895 324.5 -90 MDRC871 RC 150 6,528,107 358,933 324.5 -90 MDRC873 RC 144 6,528,120 358,933 324.5 -90 MDRC875 RC	Γ	MDRC860	RC	90	6,528,100	358,840	325.0	-57	220
MDRC863 RC 72 6,528,084 358,853 324.5 87 MDRC864 RC 96 6,528,084 358,852 324.5 58 MDRC865 RC 102 6,528,012 358,863 324.7 90 MDRC866 RC 102 6,528,097 358,863 324.7 90 MDRC867 RC 84 6,528,095 358,866 324.3 90 MDRC867 RC 62 6,528,064 358,866 324.3 .90 MDRC869 RC 90 6,528,064 358,884 325.8 .90 MDRC870 RC 90 6,528,077 358,995 325.5 .90 MDRC871 RC 150 6,528,012 358,933 324.5 .90 MDRC873 RC 144 6,528,120 358,959 324.5 .90 MDRC875 RC 115 6,528,082 358,926 324.2 .60 MDRC877 RC	Γ	MDRC861	RC	72	6,528,127	358,863	324.3	-90	40
MDRC864 RC 96 6,528,084 358,852 324.5 -58 MDRC865 RC 102 6,528,112 358,876 324.7 -90 MDRC866 RC 102 6,528,097 358,863 324.7 -90 MDRC867 RC 84 6,528,095 358,889 324.4 -60 MDRC868 RC 62 6,528,069 358,866 324.3 -90 MDRC869 RC 90 6,528,069 358,886 324.3 -90 MDRC870 RC 90 6,528,077 358,895 325.5 -90 MDRC871 RC 150 6,528,077 358,933 324.5 -90 MDRC872 RC 145 6,528,120 358,933 324.5 -90 MDRC873 RC 144 6,528,137 358,926 324.2 -60 MDRC874 RC 115 6,528,082 358,930 324.0 -90 MDRC876 RC	Γ	MDRC862	RC	96	6,528,112	358,850	324.3	-90	40
MDRC865 RC 102 6,528,112 358,876 324.7 -90 MDRC866 RC 102 6,528,097 358,863 324.7 -90 MDRC867 RC 84 6,528,095 358,889 324.4 -60 MDRC868 RC 62 6,528,069 358,866 324.3 -90 MDRC869 RC 90 6,528,064 358,884 325.8 -90 MDRC870 RC 90 6,528,077 358,895 325.5 -90 MDRC871 RC 150 6,528,089 358,906 325.3 -90 MDRC872 RC 145 6,528,120 358,933 324.5 -90 MDRC873 RC 144 6,528,151 358,959 324.5 -90 MDRC874 RC 130 6,528,137 358,926 324.6 -90 MDRC875 RC 115 6,528,082 358,930 324.2 -60 MDRC877 RC	Γ	MDRC863	RC	72	6,528,084	358,853	324.5	-87	220
MDRC866 RC 102 6,528,097 358,863 324.7 -90 MDRC867 RC 84 6,528,095 358,889 324.4 -60 MDRC868 RC 62 6,528,069 358,866 324.3 -90 MDRC869 RC 90 6,528,064 358,884 325.8 -90 MDRC870 RC 90 6,528,077 358,895 325.5 -90 MDRC871 RC 150 6,528,089 358,906 325.3 -90 MDRC872 RC 145 6,528,120 358,933 324.5 -90 MDRC873 RC 144 6,528,151 358,959 324.5 -90 MDRC874 RC 130 6,528,052 358,902 324.2 -60 MDRC875 RC 115 6,528,082 358,927 324.2 -60 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC878 RC	Γ	MDRC864	RC	96	6,528,084	358,852	324.5	-58	220
MDRC867 RC 84 6,528,095 358,889 324.4 -60 MDRC868 RC 62 6,528,069 358,866 324.3 -90 MDRC869 RC 90 6,528,064 358,884 325.8 -90 MDRC870 RC 90 6,528,077 358,895 325.5 -90 MDRC871 RC 150 6,528,089 358,906 325.3 -90 MDRC872 RC 145 6,528,120 358,933 324.5 -90 MDRC873 RC 144 6,528,151 358,959 324.5 -90 MDRC874 RC 130 6,528,137 358,926 324.6 -90 MDRC876 RC 115 6,528,052 358,902 324.2 -60 MDRC877 RC 115 6,528,082 358,930 324.0 -90 MDRC877 RC 150 6,528,112 358,956 323.5 -90 MDRC878 RC	Γ	MDRC865	RC	102	6,528,112	358,876	324.7	-90	40
MDRC868 RC 62 6,528,069 358,866 324.3 -90 MDRC869 RC 90 6,528,064 358,884 325.8 -90 MDRC870 RC 90 6,528,077 358,895 325.5 -90 MDRC871 RC 150 6,528,089 358,906 325.3 -90 MDRC871 RC 150 6,528,120 358,933 324.5 -90 MDRC873 RC 144 6,528,151 358,959 324.5 -90 MDRC874 RC 130 6,528,137 358,926 324.6 -90 MDRC875 RC 115 6,528,052 358,902 324.2 -60 MDRC876 RC 115 6,528,082 358,927 324.2 -60 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC877 RC 150 6,528,012 358,956 323.5 -90 MDRC879 RC	Γ	MDRC866	RC	102	6,528,097	358,863	324.7	-90	40
MDRC869RC906,528,064358,884325.8.90MDRC870RC906,528,077358,895325.5.90MDRC871RC1506,528,089358,906325.3.90MDRC871RC1456,528,120358,933324.5.90MDRC872RC1446,528,151358,959324.5.90MDRC873RC11446,528,151358,959324.5.90MDRC874RC1306,528,137358,926324.6.90MDRC875RC1156,528,052358,902324.2.60MDRC876RC1156,528,082358,930324.0.90MDRC877RC1506,528,112358,956323.5.90MDRC879RC756,527,954358,871324.0.60MDRC880RC756,527,954358,983324.1.60MDRC881RC626,528,042358,969324.5.60MDRC882RC726,528,043358,950324.5.60MDRC883RC856,528,043358,950324.5.60MDRC884RC1026,528,022358,931324.5.60MDRC885RC1146,528,003358,915323.3.60	Γ	MDRC867	RC	84	6,528,095	358,889	324.4	-60	40
MDRC870 RC 90 6,528,077 358,895 325.5 -90 MDRC871 RC 150 6,528,089 358,906 325.3 -90 MDRC872 RC 145 6,528,120 358,933 324.5 -90 MDRC873 RC 144 6,528,151 358,959 324.5 -90 MDRC874 RC 130 6,528,137 358,926 324.6 -90 MDRC875 RC 115 6,528,052 358,902 324.2 -60 MDRC876 RC 115 6,528,082 358,927 324.2 -60 MDRC877 RC 115 6,528,082 358,930 324.0 -90 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC878 RC 150 6,527,954 358,871 324.0 -60 MDRC880 RC	Γ	MDRC868	RC	62	6,528,069	358,866	324.3	-90	0
MDRC871 RC 150 6,528,089 358,906 325.3 -90 MDRC872 RC 145 6,528,120 358,933 324.5 -90 MDRC873 RC 144 6,528,151 358,959 324.5 -90 MDRC874 RC 130 6,528,137 358,926 324.6 -90 MDRC875 RC 115 6,528,052 358,902 324.2 -60 MDRC876 RC 115 6,528,082 358,927 324.2 -60 MDRC877 RC 115 6,528,082 358,930 324.0 -90 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC878 RC 150 6,528,082 358,930 324.0 -90 MDRC879 RC 75 6,527,954 358,871 324.0 -60 MDRC880 RC 75 6,527,971 358,886 324.5 -60 MDRC881 RC	Γ	MDRC869	RC	90	6,528,064	358,884	325.8	-90	0
MDRC872 RC 145 6,528,120 358,933 324.5 -90 MDRC873 RC 144 6,528,151 358,959 324.5 -90 MDRC874 RC 130 6,528,137 358,926 324.6 -90 MDRC874 RC 115 6,528,052 358,902 324.2 -60 MDRC876 RC 115 6,528,082 358,902 324.2 -60 MDRC876 RC 115 6,528,082 358,902 324.2 -60 MDRC877 RC 1150 6,528,082 358,930 324.0 -90 MDRC877 RC 150 6,528,112 358,956 323.5 -90 MDRC879 RC 75 6,527,954 358,871 324.0 -60 MDRC880 RC 75 6,527,971 358,866 323.5 -90 MDRC881 RC 62 6,528,082 358,983 324.1 -60 MDRC882 RC		MDRC870	RC	90	6,528,077	358,895	325.5	-90	0
MDRC873 RC 144 6,528,151 358,959 324.5 -90 MDRC874 RC 130 6,528,137 358,926 324.6 -90 MDRC875 RC 115 6,528,052 358,902 324.2 -60 MDRC876 RC 115 6,528,082 358,927 324.2 -60 MDRC876 RC 115 6,528,082 358,930 324.0 -90 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC878 RC 150 6,528,112 358,956 323.5 -90 MDRC879 RC 75 6,527,954 358,871 324.0 -60 MDRC880 RC 75 6,527,971 358,886 324.5 -60 MDRC881 RC 62 6,528,082 358,983 324.1 -60 MDRC882 RC 72 6,528,043 358,969 324.5 -60 MDRC883 RC		MDRC871	RC	150	6,528,089	358,906	325.3	-90	0
MDRC874 RC 130 6,528,137 358,926 324.6 -90 MDRC875 RC 115 6,528,052 358,902 324.2 -60 MDRC876 RC 115 6,528,082 358,927 324.2 -60 MDRC876 RC 115 6,528,082 358,927 324.2 -60 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC878 RC 150 6,528,082 358,930 324.0 -90 MDRC878 RC 150 6,528,112 358,956 323.5 -90 MDRC879 RC 75 6,527,954 358,871 324.0 -60 MDRC880 RC 75 6,527,971 358,886 324.5 -60 MDRC881 RC 62 6,528,082 358,983 324.1 -60 MDRC883 RC 72 6,528,043 358,950 324.5 -60 MDRC883 RC	Γ	MDRC872	RC	145	6,528,120	358,933	324.5	-90	0
MDRC875 RC 115 6,528,052 358,902 324.2 -60 MDRC876 RC 115 6,528,082 358,927 324.2 -60 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC878 RC 150 6,528,082 358,956 323.5 -90 MDRC879 RC 75 6,527,954 358,871 324.0 -60 MDRC880 RC 75 6,527,974 358,886 324.5 -60 MDRC881 RC 62 6,528,082 358,983 324.1 -60 MDRC882 RC 72 6,528,082 358,969 324.5 -60 MDRC883 RC 85 6,528,043 358,950 324.5 -60 MDRC884 RC 102 6,528,022 358,931 324.5 -60 MDRC885 RC	Γ	MDRC873	RC	144	6,528,151	358,959	324.5	-90	0
MDRC876 RC 115 6,528,082 358,927 324.2 -60 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC878 RC 150 6,528,112 358,956 323.5 -90 MDRC879 RC 75 6,527,954 358,871 324.0 -60 MDRC880 RC 75 6,527,954 358,871 324.0 -60 MDRC881 RC 62 6,528,082 358,983 324.1 -60 MDRC882 RC 72 6,528,082 358,983 324.1 -60 MDRC883 RC 72 6,528,066 358,969 324.5 -60 MDRC883 RC 85 6,528,022 358,931 324.5 -60 MDRC884 RC 102 6,528,022 358,931 324.5 -60 MDRC885 RC		MDRC874	RC	130	6,528,137	358,926	324.6	-90	0
MDRC877 RC 150 6,528,082 358,930 324.0 -90 MDRC878 RC 150 6,528,112 358,956 323.5 -90 MDRC879 RC 75 6,527,954 358,871 324.0 -60 MDRC880 RC 75 6,527,974 358,886 324.5 -60 MDRC881 RC 62 6,528,082 358,983 324.1 -60 MDRC882 RC 72 6,528,082 358,969 324.5 -60 MDRC883 RC 85 6,528,043 358,969 324.5 -60 MDRC883 RC 102 6,528,043 358,950 324.5 -60 MDRC884 RC 102 6,528,022 358,931 324.5 -60 MDRC885 RC 114 6,528,003 358,915 323.3 -60		MDRC875	RC	115	6,528,052	358,902	324.2	-60	220
MDRC878 RC 150 6,528,112 358,956 323.5 -90 MDRC879 RC 75 6,527,954 358,871 324.0 -60 MDRC880 RC 75 6,527,954 358,886 324.5 -60 MDRC880 RC 75 6,528,082 358,983 324.1 -60 MDRC881 RC 62 6,528,082 358,969 324.5 -60 MDRC882 RC 72 6,528,066 358,969 324.5 -60 MDRC883 RC 85 6,528,043 358,950 324.5 -60 MDRC884 RC 102 6,528,022 358,931 324.5 -60 MDRC885 RC 114 6,528,003 358,915 323.3 -60		MDRC876	RC	115	6,528,082	358,927	324.2	-60	220
MDRC878 RC 150 6,528,112 358,956 323.5 -90 MDRC879 RC 75 6,527,954 358,871 324.0 -60 MDRC880 RC 75 6,527,971 358,886 324.5 -60 MDRC881 RC 62 6,528,082 358,983 324.1 -60 MDRC882 RC 72 6,528,082 358,969 324.5 -60 MDRC883 RC 85 6,528,043 358,950 324.5 -60 MDRC884 RC 102 6,528,022 358,931 324.5 -60 MDRC885 RC 114 6,528,003 358,915 323.3 -60	. [MDRC877	RC	150	6,528,082	358,930	324.0	-90	0
MDRC880 RC 75 6,527,971 358,886 324.5 -60 MDRC881 RC 62 6,528,082 358,983 324.1 -60 MDRC882 RC 72 6,528,066 358,969 324.5 -60 MDRC883 RC 85 6,528,043 358,950 324.5 -60 MDRC884 RC 102 6,528,022 358,931 324.5 -60 MDRC885 RC 114 6,528,003 358,915 323.3 -60	Ē	MDRC878	RC	150	6,528,112	358,956	323.5	-90	0
MDRC881 RC 62 6,528,082 358,983 324.1 -60 MDRC882 RC 72 6,528,066 358,969 324.5 -60 MDRC883 RC 85 6,528,043 358,950 324.5 -60 MDRC884 RC 102 6,528,022 358,931 324.5 -60 MDRC885 RC 114 6,528,003 358,915 323.3 -60		MDRC879	RC	75	6,527,954	358,871	324.0	-60	220
MDRC882 RC 72 6,528,066 358,969 324.5 -60 MDRC883 RC 85 6,528,043 358,950 324.5 -60 MDRC884 RC 102 6,528,022 358,931 324.5 -60 MDRC885 RC 114 6,528,003 358,915 323.3 -60		MDRC880	RC	75	6,527,971	358,886	324.5	-60	220
MDRC883 RC 85 6,528,043 358,950 324.5 -60 MDRC884 RC 102 6,528,022 358,931 324.5 -60 MDRC885 RC 114 6,528,003 358,915 323.3 -60		MDRC881	RC	62	6,528,082	358,983	324.1	-60	40
MDRC884 RC 102 6,528,022 358,931 324.5 -60 MDRC885 RC 114 6,528,003 358,915 323.3 -60		MDRC882	RC	72	6,528,066	358,969	324.5	-60	40
MDRC885 RC 114 6,528,003 358,915 323.3 -60		MDRC883	RC	85	6,528,043	358,950	324.5	-60	40
	ſ	MDRC884	RC	102	6,528,022	358,931	324.5	-60	40
MDRC886 RC 100 6,527,981 358,896 324.0 -90	F	MDRC885	RC	114	6,528,003	358,915	323.3	-60	40
	F	MDRC886	RC	100	6,527,981	358,896	324.0	-90	0
MDRC887 RC 115 6,527,983 358,897 324.0 -65	F	MDRC887	RC	115	6,527,983	358,897	324.0	-65	40
MDRC888 RC 78 6,527,906 358,883 323.3 -60	F	MDRC888	RC	78	6,527,906	358,883	323.3	-60	220
MDRC889 RC 72 6,527,912 358,885 323.6 -90	F	MDRC889	RC	72				-90	0
MDRC890 RC 75 6,528,035 358,995 322.3 -60	F	MDRC890			-			-60	40

MDRC891	RC	80	6,528,019	358,982	322.7	-60	40
MDRC892	RC	105	6,528,004	358,969	323.2	-60	40
MDRC893	RC	105	6,527,989	358,956	323.6	-60	40
MDRC894	RC	120	6,527,958	358,929	324.1	-60	40
MDRC895	RC	114	6,527,931	358,905	323.3	-60	40
MDRC896	RC	78	6,527,925	358,900	324.0	-90	0
MDRC897	RC	65	6,528,026	359,041	323.3	-60	40
MDRC898	RC	80	6,527,996	359,015	322.4	-60	40
MDRC899	RC	105	6,527,972	358,994	324.0	-60	40
MDRC900	RC	115	6,527,941	358,967	324.5	-60	40
MDRC901	RC	108	6,527,913	358,943	323.7	-60	40
MDRC902	RC	108	6,527,878	358,912	323.0	-60	40
MDRC903	RC	105	6,527,948	359,026	322.1	-60	40
MDRC904	RC	105	6,527,933	359,013	323.0	-60	40
MDRC905	RC	115	6,527,903	358,987	324.7	-60	40
MDRC906	RC	120	6,527,891	358,976	322.0	-60	40
MDRC907	RC	115	6,527,872	358,960	322.0	-60	40
MDRC908	RC	108	6,527,857	358,947	322.8	-60	40
MDRC909	RC	100	6,527,843	358,935	322.5	-52	220
MDRC910	RC	85	6,527,850	358,941	323.3	-90	0
MDRC911	RC	72	6,527,868	358,904	324.0	-90	0
MDRC912	RC	75	6,527,868	358,903	323.7	-60	220
MDRC913	RC	90	6,528,034	358,756	324.7	-55	40
MDRC914	RC	90	6,528,000	358,753	325.7	-55	40
MDRC915	RC	90	6,527,977	358,760	326.1	-55	40
MDRC916	RC	72	6,527,829	358,816	323.3	-60	40
MDRCD917	RC	65	6,527,508	359,142	319.8	-56	148
MDRCD918	RC	93	6,527,584	359,097	320.6	-56	148
MDRCD919	RC	33	6,527,597	359,139	320.5	-55	148
MDRCD920	RC	33	6,527,633	359,163	320.5	-55	147
MDRD921	RC	78	6,527,990	358,892	323.9	-54	240
MDRC922	RC	84	6,527,980	358,895	324.0	-65	220

	Table 2 – Drilling Intersections				
Hole ID	Location	From (m)	To (m)	Length (m)	Grade g/t Au
MDRC853	Theia	31.0	35.0	4.0	0.2
MDRC854	Theia	31.0	37.0	6.0	0.3
		51.0	54.0	3.0	0.24
MDRC855	Theia	50.0	51.0	1.0	0.20
		60.0	61.0	1.0	0.4
MDRC856	Theia	40.0	41.0	1.0	0.43
		55.0	57.0	2.0	0.72
MDRC857	Theia	44.0	47.0	3.0	0.2
		63.0	64.0	1.0	0.30
MDRC858	Theia	36.0	37.0	1.0	0.22
		46.0	47.0	1.0	0.34
MDRC859	Theia		N	SI	
MDRC860	Theia	57.0	58.0	1.0	0.8
	-	71.0	72.0	1.0	0.2
MDRC861	Theia	40.0	42.0	2.0	3.0
		46.0	47.0	1.0	0.3
	-	65.0	72.0	7.0	0.6
MDRC862	Theia	28.0	29.0	1.0	0.2
	-	69.0	70.0	1.0	0.4
	-	74.0	75.0	1.0	0.2
		90.0	91.0	1.0	0.5
MDRC863	Theia	37.0	38.0	1.0	0.4
		44.0	46.0	2.0	1.5
		55.0	56.0	1.0	0.2
MDRC864	Theia	62.0	63.0	1.0	0.1
		78.0	81.0	3.0	0.1
MDRC865	Theia	26.0	27.0	1.0	0.3
		41.0	46.0	5.0	0.7
		55.0	56.0	1.0	0.
		59.0	62.0	3.0	0.3
		99.0	100.0	1.0	0.2
MDRC866	Theia	25.0	26.0	1.0	0.4
		37.0	38.0	1.0	0.2
		42.0	43.0	1.0	0.3
		47.0	52.0	5.0	0.3
MDRC867	Theia	24.0	25.0	1.0	0.2
		32.0	33.0	1.0	0.2
		42.0	47.0	5.0	1.7
	1	56.0	59.0	3.0	0.3
MDRC868	Theia		N	SI	
MDRC869	Theia	12.0	13.0	1.0	21.

		26.0	27.0	1.0	2.40
		51.0	53.0	2.0	0.42
		60.0	82.0	22.0	0.53
MDRC870	Theia	30.0	31.0	1.0	0.2
		45.0	46.0	1.0	0.35
		62.0	63.0	1.0	0.38
		72.0	77.0	5.0	0.64
MDRC871	Theia	52.0	58.0	6.0	0.32
		63.0	64.0	1.0	2.59
		79.0	98.0	19.0	0.32
		111.0	112.0	1.0	0.52
		121	122	1.0	0.38
		126	132	6.0	0.43
MDRC872	Theia	29	30	1.0	0.53
		41	42	1.0	0.32
		90	91	1.0	0.39
		94	95	1.0	0.55
		104	105	1.0	0.40
		130	138	8.0	0.5
MDRC873	Theia	80	83	3.0	0.3
		124	138	14.0	0.6
MDRC874	Theia	75	77	2.0	0.1
		105	118	13.0	0.4
MDRC875	Theia	20	21	1.0	0.6
		40	57	17.0	0.7
		68	69	1.0	0.2
		83	97	14.0	1.6
		Includes 1 n	netre at 12.5g	g/t Au from 84	metres
MDRC876	Theia	40	41	1.0	0.3
		52	69	17.0	0.6
		79	82	3.0	0.2
		88	91	3.0	0.5
		98	99	1.0	0.4
MDRC877	Theia	52	53	1.0	0.2
		56	57	1.0	0.5
		106	107	1.0	0.2
		125	130	5.0	0.8
		149	150	1.0	0.8
MDRC878	Theia	50	65	15.0	0.4
		84	85	1.0	1.6
		93	94	1.0	0.3
		123	126	3.0	0.44
MDRC879	Theia	41	42	1.0	0.16

MDRC880	Theia	50	54	4.0	0.39
MDRC880	Theia	50		4.0 SI	0.39
MDRC881	Theia	51	52	1.0	0.36
MDRC882	Theia	52	63	11.0	0.30
WIDIC005	Incla	74	76	2.0	0.39
			84		
	Theia	83 49		1.0	0.65
MDRC884	Inela		51	2.0	0.30
		62	66	4.0	0.57
	Theie	96	101	5.0	0.27
MDRC885	Theia	28	30	2.0	0.41
		44	61	17.0	0.70
		67	86	19.0	2.12
			1 metre at 19.		
			1 metre at 14.		
		107	111	4.0	0.37
MDRC886	Theia	29	37	8.0	1.82
		56	57	1.0	0.39
		64	97	33.0	1.82
			2 metres at 25.		
MDRC887	Theia	25	54	29.0	0.67
		64	81	17.0	1.37
			1 metre at 14.		
		90	97	7.0	0.85
MDRC888	Theia	42	43	1.0	0.29
MDRC889	Theia	36	38	2.0	0.28
		48	50	2.0	1.01
MDRC890	Theia	44	45	1.0	0.74
		51	54	3.0	0.33
		56	58	2.0	0.58
MDRC891	Theia	53	57	4.0	0.49
		62	64	2.0	0.37
MDRC892	Theia	52	53	1.0	1.91
		58	60	2.0	1.30
		64	68	4.0	0.62
		92	93	1.0	0.47
MDRC893	Theia	49	50	1.0	0.84
		70	71	1.0	0.32
		84	89	5.0	1.97
MDRC894	Theia	24	31	7.0	0.57
		47	62	15.0	0.43
		64	68	4.0	0.23
		78	85	7.0	0.34
		96	110	14.0	1.35

MDRC895	Theia	54	63	9.0	0.15
		73	90	17.0	0.72
MDRC896	Theia	34	36	2.0	0.31
		43	44	1.0	0.31
		56	57	1.0	0.33
		67	69	2.0	0.32
MDRC897	Theia	48	49	1.0	0.16
MDRC898	Theia	54	55	1.0	0.15
MDRC899	Theia	20	21	1.0	0.51
		37	38	1.0	0.35
		42	48	6.0	0.42
		54	56	2.0	0.76
		60	75	15.0	1.27
MDRC900	Theia	16	20	4.0	0.32
		22	23	1.0	0.42
		38	58	20.0	0.20
		61	62	1.0	0.36
		106	113	7.0	0.41
MDRC901	Theia	18	23	5.0	0.82
		31	37	6.0	0.48
		49	74	25.0	0.43
MDRC902	Theia	33	52	19.0	0.31
		70	72	2.0	5.56
		76	78	2.0	0.95
		83	87	4.0	0.39
		102	106	4.0	0.37
MDRC903	Theia	16	17	1.0	0.61
		21	24	3.0	0.69
		39	40	1.0	2.24
		67	68	1.0	0.28
MDRC904	Theia	9	10	1.0	0.95
		38	40	2.0	0.24
		49	65	16.0	0.78
		69	71	2.0	0.26
MDRC905	Theia	10	12	2.0	0.27
		27	28	1.0	2.28
		82	83	1.0	0.45
		88	89	1.0	0.77
MDRC906	Theia	19	34	15.0	0.33
		46	58	12.0	0.38
		70	76	6.0	1.74
		84	102	18.0	2.54
		Includes 1	metre at 24.8	8g/t Au from 9	3 metres

MDRC907	Theia	13	14	1.0	1.27
		24	49	25.0	0.72
		52	63	11.0	0.45
		72	75	3.0	0.66
		104	112	8.0	0.37
MDRC908	Theia	22	28	6.0	0.42
		38	48	10.0	5.33
		Includes	1 metre at 37.	5g/t Au from 4	3 metres
		54	85	31.0	0.29
		101	105	4.0	0.77
MDRC909	Theia	46	51	5.0	0.26
MDRC910	Theia	43	48	5.0	0.23
		69	75	6.0	1.96
MDRC911	Theia	33	39	6.0	0.33
		64	65	1.0	0.36
MDRC912	Theia	44	48	4.0	0.72
MDRC913	Theia	55	60	5.0	1.05
MDRC914	Theia	49	65	16.0	0.38
MDRC915	Theia	49	60	11.0	0.49
		84	87	3.0	0.45
MDRC916	Theia	49	54	5.0	0.81
MDRCD917	Theia	45	46	1.0	0.32
MDRCD918	Theia	15	16	1.0	223.30
		30	32	2.0	0.40
		47	49	2.0	0.49
		66	74	8.0	0.40
	Theia	89	91	2.0	2.42
MDRCD919	Theia	22	23	1	0.68
MDRCD920	Theia	31	32	1.0	0.76
MDRC921	Theia	55	56	1	0.20
MDRC922	Theia	57	59	2	0.27
		73	82	9.0	0.34

Appendix 2 – JORC 2012 Table 1

Mandilla Gold Project

	Section 1 – Sampling Te	chniques and Data			
Criteria	JORC Code Explanation	Commentary			
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	The project has been sampled using industry standard drilling techniques including diamond drilling (DD), and reverse circulation (RC) drilling and air-core (AC) drilling. Historical - The historic data has been gathered by a number of owners since the 1980s. There is a lack of detailed information available pertaining to the equipment used, sample techniques, sample sizes, sample preparation and assaying methods used to generate these data sets. Down hole surveying of the drilling where documented has been undertaken using Eastman single shot cameras (in some of the historic drilling) and magnetic multi-shot tools and gyroscopic instrumentation. All Reverse Circulation (RC) drill samples were laid out in 1 metre increments and a representative 500 – 700-gram spear sample was collected from each pile and composited into a single sample every 4 metres. Average weight 2.5 – 3 kg sample. All Aircore samples were laid out in 1 metre increments and a representative 500 – 700-gram spear sample was collected from each pile and composited into a single sample were then collected from those composites assaying above 0.2g/t Au			
Drilling techniques	 Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	All RC holes were drilled using face sampling hammer reverse circulation technique with a four-and-a-half inch bit. Diamond drilling was cored using HQ and NQ2 diamond bits.			
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Diamond drilling collects uncontaminated fresh core samples which are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling. Definitive studies on RC recovery at Mandilla have not been undertaken systematically, however the combined weight of the sample reject and the sample collected indicated recoveries in the high nineties percentage range. Poor recoveries are recorded in the relevant sample sheet. No assessment has been made of the relationship between recovery and grade. Except for the top of the hole, while collaring there is no evidence of excessive loss of material and at this stage no information is available regarding possible bias due to sample loss. RC: RC face-sample bits and dust suppression were used to minimise sample loss. Drilling airlifted the water column above the bottom of the hole to ensure dry sampling. RC samples are collected through a cyclone and cone splitter, the rejects deposited on the ground, and the samples for the lab collected to a total mass optimised for photon assay (2.5 to 4 kg).			
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All chips and drill core were geologically logged by company geologists, using their current company logging scheme. The majority of holes (80%+) within the mineralised intervals have lithology information which has provided sufficient detail to enable reliable interpretation of wireframe. The logging is qualitative in nature, describing oxidation state, grain size, an assignment of lithology code and stratigraphy code by geological interval. RC: Logging of RC chips records lithology, mineralogy, mineralisation, weathering, colour and other features of the samples. All samples are wet-sieved and stored in a chip tray.			

Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	HQ and NQ2 diamond core was halved and the right side sampled. RC holes were drilled and sampled. The samples are collected at 1m intervals via a cyclone and splitter system and logged geologically. A four-and-a-half inch RC hammer bit was used ensuring plus 20kg of sample collected per metre. Wet samples are noted on logs and sample sheets. Historical - The RC drill samples were laid out in one metre intervals. Spear samples were taken and composited for analysis as described above. Representative samples from each 1m interval were collected and retained as described above. No documentation of the sampling of RC chips is available for the Historical Exploration drilling. Recent RC drilling collects 1 metre RC drill samples that are channelled through a rotary cone-splitter, installed directly below a
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material 	rig mounted cyclone, and an average 2-3 kg sample is collected in pre-numbered calico bags, and positioned on top of the rejects cone. Wet samples are noted on logs and sample sheets. Standard Western Australian sampling techniques applied. There has been no statistical work carried out at this stage. ALS assay standards, blanks and checks were inserted at regular intervals. Standards, company blanks and duplicates were inserted at 25 metre intervals. RC: 1 metre RC samples are split on the rig using a cone-splitter, mounted directly under the cyclone. Samples are collected to 2.5 to 4kg which is optimised for photon assay.
	 collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Sample sizes are appropriate to the grain size of the material being sampled. Unable to comment on the appropriateness of sample sizes to grain size on historical data as no petrographic studies have been undertaken. Sample sizes are considered appropriate to give an indication of mineralisation given the particle size and the preference to keep the sample weight below a targeted 4kg mass which is the optimal weight to ensure representivity for photon assay. There has been no statistical work carried out at this stage.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Photon Assay technique at ALS, Kalgoorlie. Samples submitted for analysis via Photon assay technique were dried, crushed to nominal 90% passing 3.15mm, rotary split and a nominal ~500g sub sample taken (AC/RC Chips method code CRU-32a & SPL-32a, DD core method codes CRU-42a & SPL-32a) The ~500g sample is assayed for gold by PhotonAssay (method code Au-PA01) along with quality control samples including certified reference materials, blanks and sample duplicates. The ALS PhotonAssay Analysis Technique: - Developed by CSIRO and the Chrysos Corporation, This Photon Assay technique is a fast and chemical free alternative to the traditional fire assay process and utilizes high energy x-rays. The process is non-destructive on and utilises a significantly larger sample than the conventional 50g fire assay. ALS has thoroughly tested and validated the PhotonAssay process with results benchmarked against conventional fire assay. The National Association of Testing Authorities (NATA), Australia's national accreditation body for laboratories, has issued Min Analytical with accreditation for the technique in compliance with TSO/TEC 17025:2018-Testing. Certified Reference Material from Geostats Pty Ltd submitted at 75 metre intervals approximately. Blanks and duplicates also submitted
	The second s	metre intervals approximately. Blanks and duplicates also submitted at 75m intervals giving a 1:25 sample ratio. Referee sampling has not yet been carried out.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Senior Geology staff have verified hole position on site. Standard data entry used on site, backed up in South Perth WA. No adjustments have been carried out. However, work is ongoing as samples can be assayed to extinction via the PhotonAssay Analysis Technique
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other 	Drill holes have been picked up by Topcon HiPer Ga Model RTK GPS. Southern Cross Surveys were contracted to pick up all latest drilling collars.

	locations used in Mineral Resource estimation.	Grid: GDA94 Datum MGA Zone 51
	 Specification of the grid system used. 	
	Quality and adequacy of topographic control.	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC Drill hole spacing at Theia is a maximum of 40 x 40m. And approaching 20 x 20m within the central areas. RC Drill spacing at Hestia is 40 x40m, in the central area and is 40 x 80m to the northern edge of the deposit. Diamond drilling at Theia is at 40 - 40m to 40-80m spacing. 3 diamond holes have been drilled at the Hestia deposit, within current RC section lines. Drill hole spacing at Eos is a maximum of 40 x 40m. And approaching 20 x 20m within the central palaeochannel. NO Sample compositing was undertaken.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	DD-holes are typically drilled normal to the interpreted strike. Most of the current holes at Theia are drilled on a 040 azimuth with variations applied where drill-hole spacing is limited or to test particular geological concepts.
Sample security	 The measures taken to ensure sample security. 	All samples taken daily to AAR yard in Kambalda West, then transported to the Laboratory in batches of up to 10 submissions
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits have been carried out at this stage.

Criteria	Section 2 - Reporting of JORC Code Explanation	Exploration Res	ults	Commentary		
Mineral tenement	Type, reference name/number, location	Tenement	Status	Location	Interest	Held
and land tenure status	and ownership including agreements or material issues with third parties such as	E15/1404	Granted	Western Australia	(%) 100	
Status	joint ventures, partnerships, overriding	M15/96	Granted	Western Australia	Gold Rights	: 100
	royalties, native title interests, historical sites, wilderness or national park and	M15/633	Granted	Western Australia	Gold Rights	
	environmental settings.					
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Department o	f Mines, Indi	ood standing with the ustry Regulation and S e WA government 2.5	Safety.	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	were complete Corporation (delineated, wh percussion tra- intersected in 1989-90- limite 3 diamond hou 1990-91- 20 F magnetic surv- undertaken. 1994-95 – ext WNW trending granite conta supergene (21 with the gold s During 1995-9 were drilled 5 sheared grani 1996-97 - A completed but area. WID321 1997-1998- 1 previous drillin were returned	ed in the are WMC). In e hich was tes averses and thin quartz v ed exploratio les complete RC holes an vey and soil ensive AC p g CS define act and so 0-25m) mini- soil anomaly 96 - Three A 500m south te felsic sed 69-hole AC t proved to b 5 returned 5 7 RC in-fill ng was com	d 26 AC were drilled a l anomaly. 1991-94 - rogramme to investiga d lineament appears a urrounding sediment eralisation was identif C traverses 400m apa of the Mandilla soil a iment contact. program to the east e ineffective due to thi im @7g/t from 69m to holes to test mineral pleted. A number of b /ID3278 with 4m @ 6.	9 by Western nt soil anoma 289 with a ser Id mineralisati y dipping sheat ological mapp to follow up a - no gold exp ate gold dispe to offset the M ts, Shallow fied, which cou fied, which cou fied, which cou fied, which cou fied, which cou fied, which cou station interse bedrock interse 9g/t Au from 4	Mining aly was ries of 4 ion was ar zone. hing and ground loration rsion. A Mandilla patchy bincides n length ting the aly was er in the ected in sections f6m
	 Deposit type, geological setting and style of mineralisation. 	south of Kalg Western Austi M15/633 (AAF Lease E15/14 Regional Geo Mandilla is lo 3235. It is situ of the Kalgoo Belt, Archaeal Mandilla is loo eastern Zuleik trending majo The Spargovil lithologies (the Black Flag Gri intense D2 fa the east, a D host the Mand Rocks Grani sedimentary m across the re locations, gran the system a Mandilla mine Local Geolog Mandilla is loo western edge of which are d 50 m depth be evidence of p felsic rocks lii Minor primary The nature of	goorlie, and ralia. The de R gold rights, 04 (wholly o blogy cated within tated in the 0 orlie Terra Bin on Yilgarn Bic cated betwee ca Shear. Pro- tor D29 thrus lle Trend cor e Coolgardie oup) forming ulting and so 2 Shear (pro- dilla minerali- te, which ocks of the E ogion, with a nite stockwol ind provide tralisation is 19 and Mine cated along to of M15/633 lominated by elow surface rimary mine- kely to be p mineralisati f gold minerali	en the western Kunan oject mineralisation is i t faults known as the ntains four linear belts e Group) with interven a D110 anticline mod hearing. Flanking the ossibly the Karramindi isation along the west has intruded the Black Flag Group. This a number of deflection rks have formed signifi- structural targets for interpreted to be such	vest of Kamb anted Mining ghts) and Exp me Lefroy Map n the western orseman Gree alling Shear, related to nort "Spargoville of mafic to ult ning felsic roo lified and repe Spargoville T ie Shear) app tern flank of ti felsic volcan s shear can be ns present. A ficant heteroge mineralisatio a target. '96 extending and west zor ation between shows any sig within coarse of cropping to th ts.	alda in Leases loration o Sheet margin enstone and the h-south Trend". tramafic cks (the rated by Trend to be ars to he Emu oclastic e traced to these eneity in on. The into the ne, both 20 and granular ne east. ccurring

Drill hole information Data aggregation methods	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of 	volcanoclastic sedimentary rocks. Gold mineralisation appears as a series of narrow, high grade quartz veins with relatively common visible gold, with grades over the width of the vein of up to several hundreds of grams per tonne. Surrounding these veins are lower grade alteration haloes. These haloes can, in places, coalesce to form quite thick zones of lower grade mineralisation. The mineralisation manifests itself as large zones of lower grade from ~0.5 – 1.5g/t Au with occasional higher grades of +5g/t Au over 1 or 2 metres. Further to the west of Theia close to the mafic/sediment contact a D2 shear sub parallels the Mandilla shear. Quartz veining and sulphides have been identified within the sediments close to the contact with high mag basalt within sheared siltstones and shales. In addition to the granite-hosted mineralisation, a paleochannel is situated above the granite/sediment contact that contains significant gold mineralisation. An 800 m section of the paleochannel was mined by AAR in 2006 and 2007, with production totalling 20,573 ounces. This Information has been summarised in Table 1 and 2 of this ASX announcement.
	 and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly should be clearly 	This has not been applied.
Relationship between mineralisation widths and intercept lengths	 stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	The overall mineralisation trend strikes to the north-west at about 325°, with a sub-vertical dip. However, extensive structural logging from diamond core drilling of the quartz veins within the mineralised zones shows that the majority dip gently (10° to 30°) towards SSE to S (160° to 180°). The majority of drilling is conducted at an 040 azimuth and 60° dip to intersect the mineralisation at an optimum angle. The Hestia mineralisation is associated with a shear zone striking around 350°. The drill orientation at 090 azimuth and 60° dip is optimal for intersecting the mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Please refer to the maps and cross sections in the body of this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Balanced reporting has been applied.

Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other substantive exploration data.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Additional metallurgical testing may be required as the Mandilla Gold Project is progressed from preliminary feasibility to definitive feasibility for Hestia, Iris and Eos. Additional metallurgical testing is planned for Theia to ensure adequate variability tests have been conducted.