

ASX Announcement

7 October 2024

High-Grade Assay Results from the Didievi Project

33.0 m at 2.4 g/t of gold from 31m

HIGHLIGHTS

Assay results from the first of 6 completed diamond drillholes returns a wide, highgrade intercept of:

• 33.0 m at 2.4 g/t of gold from 31m (DDD047)

- The mineralisation intersected by the first drill hole is hosted by a newly discovered quartz porphyry located in the southern zone of the deposit
- Similar untested porphyries have been identified in the southern Blaffo Guetto zone, with potential for a major new mineral discovery
- The new drill results are outside of, and in addition to, the existing Didievi Project Maiden Inferred Resource of 4.93Mt for 452koz of gold at 2.9 g/t Au (1.0 g/t Au cut off)¹
- The result is consistent with previous drilling on Blaffo Guetto, indicating that the prospect is high-grade, shallow and potentially suitable for open pit mining
- Drilling has recently been completed and samples for the remaining 5 holes are being submitted to the laboratory

African Gold Ltd (African Gold or the Company) (ASX: A1G) is very pleased to announce results from the first of 6 recently completed diamond drillholes which were planned to test possible extension of the gold lodes and to infill previous drilling on gold controlling structures at the Blaffo Guetto prospect, on the Company's Didievi Gold Project in Cote d'Ivoire.

The assay results from hole first drill hole of the program have returned shallow and wide high grade gold values, the highlight intersection being 33.0 m at 2.4 g/t of gold from 31 m (DDD047).

The drilling program was designed to expand and upgrade the recently announced shallow, high grade, maiden gold inferred resource of 4.93Mt for 452koz of gold at 2.9 g/t Au (1.0 g/t Au cut off)¹.

¹ Refer ASX announcements dated 30 July 2024 & 1 August 2024 for further information.

The first hole, DDD047, was drilled in the Domain – SW of the Blaffo Guetto prospect (Figure 1).

Figure 1: Map of the Blaffo Guetto prospect showing location of the new drillholes (the collars are shown as the dots). Trace of the DDD047 is shown for the reference; (a) gold lodes projected on the surface and shown on the geological map; (b) gold lodes.

The mineralised intercept obtained by the first drillhole, DDD047, is located outside of the Blaffo Guetto Inferred Resource envelopes (Figure 2).

Figure 2: Longsection of the lode 3 showing location of the DDD047 intercept relative to the Mineral Resource blocks estimated in this lode.

Mineralisation from hole DDD047 is hosted in a quartz porphyry (Figure 3a). Field traverses have identified subcrops of the porphyries on the surface above this intersection suggesting that the mineralised porphyry extends to the surface, and it also remains open at depth (Figure 3b).

The discovery of the porphyry acting as a main host of the gold mineralisation is new for the Didievi Project and indicates the presence of a new mineralisation type, which significantly enhances the prospectivity of the project area and the potential for new gold discoveries. The gold lodes delineated by the previous drilling data were preferentially controlled by shear zones cutting the host volcano-sedimentary succession and also distributed along the contacts of the intrusive porphyry bodies. The mineralised porphyries represent new exploration targets and mapped by resistivity high anomalies, which could be due to unexposed and yet to be drill-tested porphyry bodies.

Figure 3: Details of the drillhole DDD047: (a) geological map of the DDD047 drillhole area, modified after Equigold 2010 prospecting data; (b) Cross section of prospect drawn through the drill hole DDD047.

Managing Director, Phillip Gallagher, said, "It is very pleasing to have received such a wide, high-grade result from the first hole of the first phase of our Didievi diamond drilling program, which is consistent with the previous widths and grades on the Blaffo Guetto prospect. The first drill hole was approximately 60m away from the recently announced inferred resource envelope and will add to the size of the gold resource. In addition to that, the discovery of the new quartz porphyries in the southern zone of the Blaffo Guetto prospect has the potential to be a major new mineral discovery.

"The samples from the remaining 5 diamond drill holes have been provided to MSA labs in Yamoussoukro for photon assay and those results are expected in the coming weeks.

"The Didievi Project has other exciting prospects that remain substantially untested, including the Kouassi and Akissi Prospects to the north of Blaffo Guetto and the 11km long Poku gold trend located to the southwest. As the discovery of the new quartz porphyries at Blaffo Guetto demonstrate, there is also the potential for new discoveries across the project area. We still firmly believe that the Didievi Project has the potential to be a multi-million-ounce deposit."

The Didievi Project

The Didievi Project is located in central Cote d'Ivoire, approximately 60km southeast from the capital city, Yamoussoukro.

On 30 July 2024, African Gold announced a shallow, high-grade Maiden Inferred Resource, based on new geological model from recent geological logging and mapping, on the Blaffo Guetto prospect within the Didievi Project of 4.93Mt for 452koz of gold at 2.9 g/t (1.0 g/t Au cut off). The recently completed drilling program on the Blaffo Guetto prospect was designed to test the predictive capacity of the new geological model and expand and upgrade the Inferred Resource.

Previous drilling on Blaffo Guetto has produced spectacular shallow intercepts on the Blaffo Guetto prospect, including²:

- 10.0m at 123.7g/t of gold from 66m including 2m at 613.1g/t gold
- 83.3m at 3.3g/t of gold from 166.9m including 18.0m at 12g/t gold
- 17.4m at 17.0 g/t of gold from 244m including 1.0m at 216.0g/t gold
- 80.0m at 3.0g/t of gold from 0m including 23.0m at 9.5g/t gold
- 43.0m at 4.3g/t of gold from 57 m including 17.0m at 9.5g/t gold
- 69.0m at 2.9g/t of gold from 31m including 37.0m at 4.9g/t gold
- 37.0m at 7.7g/t of gold from 42m including 24m at 11.0g/t gold

² Refer ASX announcements dated 8 September 2021 and 27 November 2020 for further information.

Figure 4: Location map of identified gold prospects on the Didievi Project.

Figure 5: African Gold Project Locations in Côte d'Ivoire and Mali.

This announcement has been authorised for release by the Board of African Gold Ltd.

For further information, please contact:

Mr Phillip Gallagher Managing Director T: +61 417 980 690 E: admin@african-gold.com

ASX : AIG

Competent Person's Statement

The information contained in this announcement that relates to new exploration results for the Didievi Project, Cote d'Ivoire, is based on and fairly reflects, information compiled by Dr Marat Abzalov, who is a fellow of the Australasian Institute of Mining and Metallurgy. Dr Abzalov, via his company Massa Geoservices, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Abzalov consents to the inclusion in this announcement of the matters based on his information on the form and context in which it appears.

The Company confirms that the mineral resource estimate referred to in this announcement was reported on 30 July 2024 in accordance with Listing Rule 5.8 and that the historical exploration results referred to in this announcement were reported in accordance with Listing Rule 5.7 on the dates identified through the ASX release. The Company confirms it is not aware of any new information or data that materially affects the mineral resource estimate or the exploration results and all material assumptions and technical parameters underpinning the resource continue to apply and have not materially changed.

Forward Looking Statements

This announcement may include forward-looking statements. Forward-looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of the Company. Actual values, results or events may be materially different to those expressed or implied in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forwardlooking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law, the Company does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions, or circumstances on which any such forward looking statement is based.

Hole ID	Easting	Northing	RL	Dip	Azimuth	Hole length (m)
DDD047	279130.0	749114.0	211.8	-55	111	174.48
DDD048	279045.0	748897.1	237.8	-72	317	207.00
DDD049	276659.0	749334.5	226.3	-72	137	258.00
DDD050	279763.6	749480.1	232.3	-55	137	213.00
DDD051	279949.0	749577.0	253.4	-75	137	205.00
DDD052	279946.9	749642.8	281.0	-55	137	209.00

Hole ID	Easting	3	Northing	RL		Di
DDD047	279130.	.0	749114.0	211.	8	-5
DDD048	279045.	.0	748897.1	237.	8	-7
DDD049	276659.	.0	749334.5	226.	3	-7
DDD050	279763.	.6	749480.1	232.	3	-5
DDD051	279949.	.0	749577.0	253.	4	-7
DDD052	279946.	.9	749642.8	281.	0	-5
7				1		
Hole ID	From	То	Length	Sample No	Au (g/t)	Lod
DDD047	0.00	1.00	1.00	29052	0.17	
DDD047	1.00	2.00	1.00	29053	0.12	
DDD047	2.00	3.00	1.00	29054	0.10	
DDD047	3.00	4.00	1.00	29055	0.04	
DDD047	4.00	5.00	1.00	29056	0.01	
DDD047	5.00	6.00	1.00	29057	0.04	
DDD047	6.00	7.00	1.00	29058	0.01	
DDD047	7.00	8.00	1.00	29059	0.01	
DDD047	8.00	9.00	1.00	29061	0.01	
DDD047	9.00	10.00	1.00	29062	0.01	
DDD047	10.00	11.00	1.00	29063	0.01	
DDD047	11.00	12.00	1.00	29064	0.03	
DDD047	12.00	13.00	1.00	29065	0.02	
DDD047	13.00	14.00	1.00	29066	0.03	
DDD047	14.00	15.00	1.00	29067	0.04	
DDD047	15.00	16.00	1.00	29068	0.01	
DDD047	16.00	17.00	1.00	29069	0.01	
DDD047	17.00	18.00	1.00	29071	0.01	
DDD047	18.00	19.00	1.00	29072	0.03	
DDD047	19.00	20.00	1.00	29073	0.03	<u> </u>
DDD047	20.00	21.00	1.00	29074	0.01	
DDD047	21.00	22.00	1.00	29075	0.07	
DDD047	22.00	23.00	1.00	29076	0.01	
DDD047	23.00	24.00	1.00	29077	0.01	
DDD047	24.00	25.00	1.00	29078	0.12	

>>	DDD047	26.00	27.00	1.00	29081	0.08	
	DDD047	27.00	28.00	1.00	29082	0.09	
	DDD047	28.00	29.00	1.00	29083	0.30	
	DDD047	29.00	30.00	1.00	29084	0.17	
	DDD047	30.00	31.00	1.00	29085	0.58	
	DDD047	31.00	31.50	0.50	29086	2.87	3
	DDD047	31.50	32.00	0.50	29087	0.42	3
	DDD047	32.00	32.50	0.50	29088	4.99	3
	DDD047	32.50	33.00	0.50	29089	8.57	3
	DDD047	33.00	33.50	0.50	29091	3.14	3
27	DDD047	33.50	34.00	0.50	29092	6.60	3
	DDD047	34.00	34.50	0.50	29093	0.55	3
	DDD047	34.50	35.00	0.50	29094	4.84	3
	DDD047	35.00	35.50	0.50	29095	1.33	3
	DDD047	35.50	36.00	0.50	29096	1.18	3
	DDD047	36.00	36.50	0.50	29097	1.71	3
	DDD047	36.50	37.00	0.50	29098	1.98	3
96	DDD047	37.00	37.50	0.50	29099	1.36	3
\square	DDD047	37.50	38.00	0.50	29101	3.46	3
	DDD047	38.00	38.50	0.50	29102	3.33	3
\square	DDD047	38.50	39.00	0.50	29103	2.23	3
	DDD047	39.00	39.50	0.50	29104	1.25	3
26	DDD047	39.50	40.00	0.50	29105	4.45	3
\bigcirc	DDD047	40.00	40.50	0.50	29106	2.30	3
\mathcal{L}	DDD047	40.50	41.00	0.50	29107	4.28	3
	DDD047	41.00	41.50	0.50	29108	1.47	3
(JL	DDD047	41.50	42.00	0.50	29109	1.28	3
	DDD047	42.00	42.50	0.50	29111	0.54	3
	DDD047	42.50	43.00	0.50	29112	0.89	3
	DDD047	43.00	43.50	0.50	29113	1.85	3
7	DDD047	43.50	44.00	0.50	29114	2.90	3
	DDD047	44.00	44.50	0.50	29115	3.48	3
\bigcirc	DDD047	44.50	45.00	0.50	29116	3.99	3
	DDD047	45.00	45.50	0.50	29117	8.09	3
	DDD047	45.50	46.00	0.50	29118	4.86	3
	DDD047	46.00	46.50	0.50	29119	2.32	3
	DDD047	46.50	47.00	0.50	29121	1.35	3
	DDD047	47.00	47.50	0.50	29122	0.94	3
	DDD047	47.50	48.00	0.50	29123	1.43	3
	DDD047	48.00	48.50	0.50	29124	1.32	3

DDD047	48.50	49.00	0.50	29125	0.42	3
DDD047	49.00	49.50	0.50	29126	3.33	3
DDD047	49.50	50.00	0.50	29127	4.90	3
DDD047	50.00	50.50	0.50	29128	3.71	3
DDD047	50.50	51.00	0.50	29129	1.55	3
DDD047	51.00	51.50	0.50	29131	0.46	3
DDD047	51.50	52.00	0.50	29132	0.32	3
DDD047	52.00	52.50	0.50	29133	0.68	3
DDD047	52.50	53.00	0.50	29134	1.27	3
DDD047	53.00	53.50	0.50	29135	0.45	3
DDD047	53.50	54.00	0.50	29136	1.92	3
DDD047	54.00	54.50	0.50	29137	1.19	3
DDD047	54.50	55.00	0.50	29138	0.83	3
DDD047	55.00	55.50	0.50	29139	1.21	3
DDD047	55.50	56.00	0.50	29141	6.66	3
DDD047	56.00	56.50	0.50	29142	1.44	3
DDD047	56.50	57.00	0.50	29143	0.61	3
DDD047	57.00	57.50	0.50	29144	1.48	3
DDD047	57.50	58.00	0.50	29145	0.88	3
DDD047	58.00	58.50	0.50	29146	0.32	3
DDD047	58.50	59.00	0.50	29147	0.43	3
DDD047	59.00	59.50	0.50	29148	0.88	3
DDD047	59.50	60.00	0.50	29149	1.56	3
DDD047	60.00	60.50	0.50	29151	1.36	3
DDD047	60.50	61.00	0.50	29152	0.83	3
DDD047	61.00	61.50	0.50	29153	2.30	3
DDD047	61.50	62.00	0.50	29154	0.04	3
DDD047	62.00	62.50	0.50	29155	0.03	3
DDD047	63.00	64.00	1.00	29157	9.14	3
DDD047	64.00	65.00	1.00	29159	0.32	
DDD047	65.00	66.00	1.00	29161	0.20	
DDD047	66.00	67.00	1.00	29162	0.24	
DDD047	67.00	68.00	1.00	29163	0.16	
DDD047	68.00	69.00	1.00	29164	0.51	
DDD047	69.00	70.00	1.00	29165	0.54	4
DDD047	70.00	71.00	1.00	29166	1.17	4
DDD047	71.00	72.00	1.00	29167	0.68	4
DDD047	72.00	73.00	1.00	29168	0.54	
DDD047	73.00	74.00	1.00	29169	0.49	
DDD047	74.00	75.00	1.00	29171	0.16	

>	DDD047	75.00	76.00	1.00	29172	0.13	
	DDD047	76.00	77.00	1.00	29173	0.23	
	DDD047	77.00	78.00	1.00	29174	0.17	
$(\)$	DDD047	78.00	79.00	1.00	29175	0.17	
	DDD047	79.00	80.00	1.00	29176	0.63	
	DDD047	80.00	81.00	1.00	29177	0.33	
	DDD047	81.00	82.00	1.00	29179	0.15	
	DDD047	82.00	83.00	1.00	29181	0.14	
(Π)	DDD047	83.00	84.00	1.00	29182	0.15	
	DDD047	84.00	85.00	1.00	29183	0.27	
211	DDD047	85.00	86.00	1.00	29184	0.30	
	DDD047	86.00	87.00	1.00	29185	0.09	
	DDD047	87.00	88.00	1.00	29186	0.04	
	DDD047	88.00	89.00	1.00	29187	0.03	
	DDD047	89.00	90.00	1.00	29188	0.11	
	DDD047	90.00	91.00	1.00	29189	0.01	
	DDD047	91.00	92.00	1.00	29191	0.08	
99	DDD047	92.00	93.00	1.00	29192	0.03	
\square	DDD047	93.00	94.00	1.00	29193	0.11	
	DDD047	94.00	95.00	1.00	29194	1.34	
\square	DDD047	95.00	96.00	1.00	29195	0.21	
	DDD047	96.00	97.00	1.00	29196	0.09	
AR	DDD047	97.00	98.00	1.00	29197	0.09	
$\bigcup_{\mathbf{I}}$	DDD047	98.00	99.00	1.00	29198	0.09	
	DDD047	99.00	100.00	1.00	29199	0.26	
	DDD047	100.00	101.00	1.00	29201	0.13	
(IL	DDD047	101.00	102.00	1.00	29202	0.51	
\sim	DDD047	102.00	102.50	0.50	29203	0.51	
	DDD047	102.50	103.00	0.50	29204	0.30	
	DDD047	103.00	103.50	0.50	29205	0.20	
7	DDD047	103.50	104.00	0.50	29206	0.27	
	DDD047	104.00	104.50	0.50	29207	0.32	
\square	DDD047	104.50	105.00	0.50	29208	0.31	
\subseteq	DDD047	105.00	105.50	0.50	29209	0.30	
Π	DDD047	105.50	106.00	0.50	29211	0.27	
	DDD047	106.50	107.00	0.50	29213	0.43	
	DDD047	107.00	108.00	1.00	29214	0.27	
	DDD047	108.00	109.00	1.00	29215	0.23	
	DDD047	109.00	110.00	1.00	29216	0.28	
	DDD047	110.00	111.00	1.00	29217	0.23	

				1		,	
>	DDD047	111.00	112.00	1.00	29218	0.30	
	DDD047	112.00	113.00	1.00	29219	0.20	
	DDD047	113.00	114.00	1.00	29221	0.22	
(DDD047	114.00	115.00	1.00	29222	0.33	
	DDD047	115.00	116.00	1.00	29223	0.26	
	DDD047	116.00	117.00	1.00	29224	0.12	
	DDD047	117.00	118.00	1.00	29225	0.29	
	DDD047	118.00	119.00	1.00	29226	0.92	
(\square)	DDD047	119.00	120.00	1.00	29227	0.14	
	DDD047	120.00	121.00	1.00	29228	0.01	
CI	DDD047	121.00	122.00	1.00	29229	0.01	
	DDD047	122.00	123.00	1.00	29231	0.06	
	DDD047	123.00	124.00	1.00	29232	0.01	
	DDD047	124.00	125.00	1.00	29233	0.04	
	DDD047	125.00	126.00	1.00	29234	0.18	
	DDD047	126.00	127.00	1.00	29235	0.36	
	DDD047	127.00	128.00	1.00	29236	0.34	
99	DDD047	128.00	129.00	1.00	29237	0.35	
\square	DDD047	129.00	130.00	1.00	29238	0.45	
	DDD047	130.00	131.00	1.00	29239	0.20	
\square	DDD047	131.00	132.00	1.00	29241	0.12	
	DDD047	132.00	133.00	1.00	29242	0.21	
26	DDD047	133.00	134.00	1.00	29243	0.12	
\bigcirc	DDD047	134.00	135.00	1.00	29244	0.14	
	DDD047	135.00	136.00	1.00	29245	0.10	
	DDD047	136.00	137.00	1.00	29246	0.23	
UL	DDD047	137.00	138.00	1.00	29247	0.67	
	DDD047	138.00	139.00	1.00	29248	0.04	
	DDD047	139.00	140.00	1.00	29249	0.04	
	DDD047	140.00	141.00	1.00	29251	0.04	
7	DDD047	141.00	142.00	1.00	29252	0.01	
	DDD047	142.00	143.00	1.00	29253	0.11	
$(\ $	DDD047	143.00	144.00	1.00	29254	0.08	
	DDD047	144.00	145.00	1.00	29255	0.30	
	DDD047	145.00	146.00	1.00	29256	0.68	
	DDD047	146.00	147.00	1.00	29257	0.16	
	DDD047	147.00	148.00	1.00	29258	0.14	
	DDD047	148.00	149.00	1.00	29259	0.25	
	DDD047	149.00	150.00	1.00	29261	0.43	
	DDD047	150.00	151.00	1.00	29262	0.19	

DDD047 151.00 152.00 1.00 29263 0.51 DDD047 152.00 153.00 1.00 29264 0.31 DDD047 154.00 155.00 1.00 29266 0.14 DDD047 155.00 156.00 1.00 29267 0.01 DDD047 156.00 157.00 1.00 29269 0.02 DDD047 157.00 158.00 1.00 29271 0.11 DDD047 159.00 160.00 1.00 29272 0.13 DDD047 159.00 160.00 1.00 29273 0.01 DDD047 161.00 162.00 1.00 29273 0.01 DDD047 162.00 163.00 1.00 29275 0.14 DDD047 162.00 164.00 1.00 29277 0.13 DDD047 164.00 165.00 1.00 29278 0.11 DDD047 166.00 1.00 29281 0.17
DDD047 154.00 155.00 1.00 29266 0.14 DDD047 155.00 156.00 1.00 29267 0.01 DDD047 156.00 157.00 1.00 29268 0.01 DDD047 157.00 158.00 1.00 29269 0.02 DDD047 157.00 158.00 1.00 29271 0.11 DDD047 159.00 160.00 1.00 29272 0.13 DDD047 160.00 161.00 1.00 29273 0.01 DDD047 161.00 162.00 1.00 29274 0.07 DDD047 162.00 163.00 1.00 29275 0.14 DDD047 163.00 164.00 1.00 29276 0.10 DDD047 166.00 167.00 1.00 29279 0.19 DDD047 166.00 167.00 1.00 29281 0.17 DDD047 166.00 169.00 1.00 29283 0.20
DDD047 155.00 156.00 1.00 29267 0.01 DDD047 156.00 157.00 1.00 29268 0.01 DDD047 157.00 158.00 1.00 29269 0.02 DDD047 157.00 158.00 1.00 29271 0.11 DDD047 159.00 160.00 1.00 29272 0.13 DDD047 160.00 161.00 1.00 29273 0.01 DDD047 161.00 162.00 1.00 29273 0.01 DDD047 161.00 162.00 1.00 29275 0.14 DDD047 163.00 164.00 1.00 29276 0.10 DDD047 163.00 166.00 1.00 29278 0.11 DDD047 165.00 166.00 1.00 29278 0.11 DDD047 166.00 167.00 29279 0.19 DDD047 166.00 1.00 29281 0.17 DDD047
DDD047 156.00 157.00 1.00 29268 0.01 DDD047 157.00 158.00 1.00 29269 0.02 DDD047 158.00 159.00 1.00 29271 0.11 DDD047 159.00 160.00 1.00 29272 0.13 DDD047 160.00 161.00 1.00 29273 0.01 DDD047 161.00 162.00 1.00 29273 0.01 DDD047 161.00 162.00 1.00 29274 0.07 DDD047 162.00 163.00 1.00 29275 0.14 DDD047 163.00 164.00 1.00 29276 0.10 DDD047 165.00 166.00 1.00 29278 0.11 DDD047 166.00 167.00 1.00 29278 0.11 DDD047 166.00 167.00 1.00 29281 0.17 DDD047 168.00 169.00 1.00 29283 0.20
DDD047157.00158.001.00292690.02DD047158.00159.001.00292710.11DD047159.00160.001.00292720.13DD047160.00161.001.00292730.01DD047161.00162.001.00292740.07DD047162.00163.001.00292750.14DD047162.00163.001.00292760.10DD047166.00165.001.00292770.13DD047166.00166.001.00292780.11DD047166.00166.001.00292780.11DD047166.00167.001.00292790.19DD047166.00167.001.00292810.17DD047167.00170.001.00292820.18DD047169.00170.001.00292840.13DD047171.00171.001.00292850.16DD047172.00173.001.00292850.16
DDD047158.00159.001.00292710.11DDD047159.00160.001.00292720.13DDD047160.00161.001.00292730.01DDD047161.00162.001.00292740.07DDD047162.00163.001.00292750.14DDD047163.00164.001.00292760.10DDD047165.00166.001.00292770.13DDD047165.00166.001.00292780.11DDD047166.00166.001.00292790.19DDD047166.00167.001.00292810.17DDD047166.00169.001.00292820.18DDD047169.00170.001.00292830.20DDD047170.00171.001.00292850.16DDD047171.00172.001.00292850.16
DDD047 159.00 160.00 1.00 29272 0.13 DDD047 160.00 161.00 1.00 29273 0.01 DDD047 161.00 162.00 1.00 29274 0.07 DDD047 161.00 162.00 1.00 29275 0.14 DDD047 162.00 163.00 1.00 29275 0.14 DDD047 163.00 164.00 1.00 29276 0.10 DDD047 165.00 166.00 1.00 29277 0.13 DDD047 165.00 166.00 1.00 29277 0.13 DDD047 165.00 166.00 1.00 29278 0.11 DDD047 166.00 167.00 1.00 29281 0.17 DDD047 167.00 168.00 1.00 29282 0.18 DDD047 169.00 170.00 1.00 29283 0.20 DDD047 169.00 170.00 1.00 29284 0.13
DDD047 160.00 161.00 1.00 29273 0.01 DDD047 161.00 162.00 1.00 29274 0.07 DDD047 162.00 163.00 1.00 29275 0.14 DDD047 163.00 164.00 1.00 29276 0.10 DDD047 164.00 165.00 1.00 29277 0.13 DDD047 165.00 166.00 1.00 29278 0.11 DDD047 166.00 167.00 1.00 29279 0.19 DDD047 166.00 167.00 1.00 29281 0.17 DDD047 166.00 169.00 1.00 29281 0.17 DDD047 168.00 169.00 1.00 29282 0.18 DDD047 169.00 170.00 1.00 29283 0.20 DDD047 169.00 170.00 1.00 29284 0.13 DDD047 170.00 171.00 1.00 29285 0.16
DDD047161.00162.001.00292740.07DDD047162.00163.001.00292750.14DDD047163.00164.001.00292760.10DDD047164.00165.001.00292770.13DDD047165.00166.001.00292780.11DDD047165.00166.001.00292790.19DDD047166.00167.001.00292810.17DDD047166.00168.001.00292820.18DDD047169.00170.001.00292830.20DDD047170.00171.001.00292840.13DDD047171.00172.001.00292850.16DDD047172.00173.001.00292860.30
DDD047 162.00 163.00 1.00 29275 0.14 DDD047 163.00 164.00 1.00 29276 0.10 DDD047 164.00 165.00 1.00 29277 0.13 DDD047 165.00 166.00 1.00 29278 0.11 DDD047 166.00 167.00 1.00 29279 0.19 DDD047 166.00 167.00 1.00 29281 0.17 DDD047 166.00 169.00 1.00 29281 0.17 DDD047 168.00 169.00 1.00 29282 0.18 DDD047 169.00 170.00 1.00 29283 0.20 DDD047 169.00 170.00 1.00 29284 0.13 DDD047 171.00 172.00 1.00 29285 0.16 DDD047 172.00 173.00 1.00 29286 0.30
DDD047 163.00 164.00 1.00 29276 0.10 DDD047 164.00 165.00 1.00 29277 0.13 DDD047 165.00 166.00 1.00 29278 0.11 DDD047 165.00 166.00 1.00 29279 0.19 DDD047 166.00 167.00 1.00 29281 0.17 DDD047 166.00 169.00 1.00 29282 0.18 DDD047 169.00 170.00 1.00 29283 0.20 DDD047 169.00 170.00 1.00 29284 0.13 DDD047 169.00 171.00 1.00 29284 0.13 DDD047 170.00 171.00 1.00 29285 0.16 DDD047 172.00 173.00 1.00 29285 0.30
DDD047 164.00 165.00 1.00 29277 0.13 DDD047 165.00 166.00 1.00 29278 0.11 DDD047 166.00 167.00 1.00 29279 0.19 DDD047 166.00 167.00 1.00 29281 0.17 DDD047 167.00 168.00 1.00 29282 0.18 DDD047 169.00 170.00 1.00 29283 0.20 DDD047 169.00 170.00 1.00 29284 0.13 DDD047 167.00 171.00 1.00 29285 0.16 DDD047 172.00 173.00 1.00 29285 0.30
DDD047 165.00 166.00 1.00 29278 0.11 DDD047 166.00 167.00 1.00 29279 0.19 DDD047 166.00 168.00 1.00 29281 0.17 DDD047 168.00 169.00 1.00 29282 0.18 DDD047 169.00 170.00 1.00 29283 0.20 DDD047 169.00 171.00 1.00 29284 0.13 DDD047 171.00 172.00 1.00 29285 0.16 DDD047 172.00 173.00 1.00 29286 0.30
DDD047 166.00 167.00 1.00 29279 0.19 DDD047 167.00 168.00 1.00 29281 0.17 DDD047 168.00 169.00 1.00 29282 0.18 DDD047 169.00 170.00 1.00 29283 0.20 DDD047 169.00 171.00 1.00 29284 0.13 DDD047 171.00 172.00 1.00 29285 0.16 DDD047 172.00 173.00 1.00 29285 0.30
DDD047 167.00 168.00 1.00 29281 0.17 DDD047 168.00 169.00 1.00 29282 0.18 DDD047 169.00 170.00 1.00 29283 0.20 DDD047 169.00 171.00 1.00 29283 0.20 DDD047 170.00 171.00 1.00 29284 0.13 DDD047 171.00 172.00 1.00 29285 0.16 DDD047 172.00 173.00 1.00 29286 0.30
DDD047 168.00 169.00 1.00 29282 0.18 DDD047 169.00 170.00 1.00 29283 0.20 DDD047 169.00 171.00 1.00 29284 0.13 DDD047 171.00 172.00 1.00 29285 0.16 DDD047 172.00 173.00 1.00 29286 0.30
DDD047169.00170.001.00292830.20DDD047170.00171.001.00292840.13DDD047171.00172.001.00292850.16DDD047172.00173.001.00292860.30
DDD047170.00171.001.00292840.13DDD047171.00172.001.00292850.16DDD047172.00173.001.00292860.30
DDD047 171.00 172.00 1.00 29285 0.16 DDD047 172.00 173.00 1.00 29286 0.30
DDD047 171.00 172.00 1.00 29285 0.16 DDD047 172.00 173.00 1.00 29286 0.30

Appendix 2: JORC Tables

JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	Explanation	Details of the Reported Project
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 The new drilling data includes the drillholes drilled by A1G in September 2024 and planned with an objective to infill gaps in the maiden Mineral Resources of the Blaffo Guetto deposit that were estimated in 2024 and referred here as MRE2024 (details of the maiden Resource estimation program can be found on the ASX releases dated 30 July 2024 and 1 August 2024). The post MRE2024 drilling includes 6 diamond core drillholes. Total length of the drilling program is 1,266.48 m.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 The diamond drillcore was orientated, marked, logged, and split in half using a diamond core saw before being sampled. Sample intervals typically 1m, in rare cases e.g. at end of hole <1m. RC drill samples were collected as 1m intervals and then split into a ~2-3kg sample from bulk sample using a riffle splitter. Drilling and sampling procedures used by Equigold, Lihir and Newcrest, were as follows: the diamond core was split and sampled based on standard fixed intervals (1m) as well as geological based sample intervals, in a range from 0.28m to 1.7m; the RC drilling used the fixed sample length of 1m, which locally, when barren intervals outside of mineralised zones were drilled, were composited to 4m composites.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was	 The determination of mineralisation has been by a combination of geological observations (logging and mapping) in conjunction with assay results from the surface drilling. Drilling and sampling, including the African Gold Ltd data and the historical drilling by Equigold, Lihir and Newcrest, all are reputable ASX listed companies, have been done following best practice standard operating procedures and in a good accordance with the industry standards.
	pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling	

Drilling	problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. Drill type (eg core,	 The drilling was carried out by Easy Drilling Saarl using standard recognized techniques
techniques	reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 and procedures, which includes wireline techniques for retreating the samples from the drillhole. Most of the diamond core drilling was made using NQ diameter drill bits for drilling the fresh rocks, and the HQ size drill bits for drilling the pre-collar and the weathered rocks (i.e. laterites). This drilling was oriented.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	• DD core losses were recorded using the linear method, based on comparison of the recovered core length vs nominal length of the drilled interval.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Core recovery was supervised by the field geologists and drillers were requested to adjust drilling parameters where this found appropriate to do.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 No significant sampling issue were noted, and it is therefore considered that both sample recovery and quality is adequate for the Mineral Resource and Ore Reserves estimation.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 All drill samples were geologically logged by experienced qualified geologists and this included recording the drilled rocks, alteration style and composition, RQD measurements providing the geotechnical information and structural measurements of the rock contacts, bedding and metamorphic structures. The level of geological and geotechnical logging was adequate to support Mineral Resource estimation and applicable for the mining and metallurgical studies.
	Whether logging is qualitative or	Geological logging used a standardized logging system. It was essentially qualitative and descriptive in nature.

\rightarrow	quantitative in nature.	•	Geotechnical logging, mainly re	ecording the RQD, was semi-quantitative.	
	Core (or costean,			0, 1, 1	
	channel, etc)				
	photography.				
	The total length and	•	Total length of the 6 drillholes	is 1.266.48 m.	
	percentage of the	•	-	g mineralised intervals and their host rocks, was logged.	
	relevant intersections				
	logged.				
Sub-sampling	If core, whether cut or	•	Drill core was split in half using	a diamond core saw.	
techniques and	sawn and whether			,	
sample	quarter, half or all core				
preparation	taken				
	If non-core, whether	•	Not applicable. Current drilling	included only the diamond drill core drilling.	
	riffled, tube sampled,				
//))	rotary split, etc and				
	whether sampled wet or				
	dry.				
))	For all sample types, the	•	Sample preparation was made	at the MSALABS in Yamoussoukro, Ivory Coast. The	
	nature, quality and	-		s of crushing the entire sample to 1mm at 80% pass, and	
	appropriateness of the			erial, collecting 1000g subsample which is pulverized to	
	sample preparation				
	technique.	200 mesh (74 microns). 300g aliquot is collected and assayed for Au using assay instrument.			
ILV	iceinique.				
(\mathbf{U})				SAMPLE PREPARATION	
			METHOD CODE	DESCRIPTION	
			ADM-300	Single charge for each batch of samples submitted	
			CPA-Jar	Unit charge per CPA Jar	
			CRU-999	Crush to client specification	
)			PLG-100	Log Sample - No preparation required	
			PPU-530	Pulverize 1000g to 85% -75 μm	
			SPL-425	Split 1000g material (Rotary Split)	
//))			CRU-999: Crush enti	re Sample to 1mm at 80% passing	
				1 1 0	
		•	Sample sizes and laboratory pr	reparation techniques corresponds to the common	
		•			
11))					
				red to be appropriate for Mineral Resource estimation of	
			the orogenic gold deposits.	red to be appropriate for Mineral Resource estimation of	
	Quality control	•	the orogenic gold deposits.	to assure particle size is matching to the certified	
	Quality control procedures adopted for	•	the orogenic gold deposits. Laboratories used sieving tests		
	-	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep	to assure particle size is matching to the certified	
	procedures adopted for	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r	to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory.	
	procedures adopted for all sub-sampling stages		the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r	to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by	
	procedures adopted for all sub-sampling stages to maximise		the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in	s to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples.	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects	s to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects	to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects	to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected,	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects	to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects	s to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects	s to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects	s to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects collected and analysed. Duplica	to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved. (-1mm material after first crush) were systematically ate assays are not received yet from the laboratory.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects collected and analysed. Duplicat	s to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved. (-1mm material after first crush) were systematically ate assays are not received yet from the laboratory.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects collected and analysed. Duplicates The drillhole samples are 2-3 k samples of the Blaffo Guetto of	s to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved. (-1mm material after first crush) were systematically ate assays are not received yet from the laboratory.	
	procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are	•	the orogenic gold deposits. Laboratories used sieving tests parameters of the sample prep the laboratory personnel and r The sieving test is performed in Duplicates of the coarse rejects collected and analysed. Duplicates The drillhole samples are 2-3 k samples of the Blaffo Guetto of	s to assure particle size is matching to the certified paration protocol. This analysis is conducted routinely by represents operational practice of the laboratory. In each batch to ensure the correct grind size is achieved. (-1mm material after first crush) were systematically ate assays are not received yet from the laboratory.	

	ſ	
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, cracteometers, bandhold	 Drillhole samples were assayed for Au by Gamma ray analysis of sample for gold by photon assay instrument. This is a relatively new method which at present is broadly used in the mining industry and has become a modern standard of the gold mining industry. The method uses 300g aliquot which superior to a conventional fire-assay method that uses 50g aliquots. This is a total recovery technique. Not applicable – no such tools used.
	spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their dorivation ate	
	derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision	 QAQC procedures used by the African Gold Ltd at this drilling included systematic analysis of the coarse and pulp duplicates, assay of the standards (CRM) and blanks. Duplicate assays results are still pending from the lab. QAQC results of the CRM and blanks did not reveal issues that could affect quality of the sample assay results and allow to conclude that the sample assays quality, are sufficient for Mineral Resource and Ore Reserves estimation.
Verification of sampling and assaying	have been established. The verification of significant intersections by either independent or alternative company personnel.	 The QAQC procedures used by the African Gold at this drilling campaign includes systematic assaying of the sample coarse and pulp duplicates for the all samples that have returned the high grade (> 3%) results. Lower grade mineralisation (>0.3 g/t Au) also verified by analysing the coarse reject duplicates
	The use of twinned holes.	Not applicable – no twinned holes.
	Documentation of primary data, data entry procedures, data verification, data storage	• The logging procedure consisted of direct entering data into a portable (laptop) computer which then have been electronically transferred to a database administrator for the data review and uploading into the database.
	(physical and electronic) protocols.	 Assay results were received from laboratory by email, reviewed by database administrator and uploaded into the company database. African Gold Ltd uses relational database built using the Microsoft ACCESS
	Discuss any adjustment	Not applicable - no adjustments were made to the data
(())	to assay data.	
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	 All drill collars were originally located with a handheld GPS and after drilling were resurveyed using a handheld GPS
	estimation. Specification of the grid system used.	All data location is in UTM WGS84 Zone30N grid system

	Quality and adequacy of topographic control.	• Digital topography was generated using the DGPS data that were obtained during the topographic survey campaign undertaken by the previous owners. Comparison of the different data generation has shown their good matching assuring accurate topographic control of the drilling data
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Not applicable for this drill program. Drill core was sampled at regular intervals, 0.5m of the mineralised zones, and 1m of the wall rocks. No physical compositing of the samples was used.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Orientation of the drillholes (azimuth and dip) provides intersections close to perpendicular to interpreted mineralized structure being targeted.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Orientation of the drillhole intersections is adequate for 3D geological modelling and Resource estimation and cannot be source of the sampling bias
Sample security	The measures taken to ensure sample security	 African Gold Ltd personnel have guarded samples during drilling and sampling. The collected and safely stored on-site samples have been delivered by the African Gold Ltd personnel to the MSA laboratory. After samples have been removed from the site, they were securely stored in the laboratory facilities.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The MSA laboratory was visited and the procedures reviewed by Company personnel, including P. Gallagher (Managing Director), D. Sie (Project geologist), and also by consultant M. Abzalov (CP of the Project).

Section 2 - Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections)

	Criteria	Explanation	Details of the Reported Project				
	Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title	 African Gold Mali SARL has entered into a number of agreements with companies – details are provided in ASX releases dated 4 July 2019; 5 September 2019 and 27 November 2021. Details of the permits are shown in the Table 2.1-1 Table 2.1-1: Permits obtained and applied by the African Gold Ltd for Gold exploration and mining in Cote d'Ivoire 				
IJ,		interests, historical sites, wilderness or national	Permit	Permit type	Date Granted	Area (km ²)	Duration
	2	park and environmental	Didievi	Permis de	18 Nov 2019	391	4 + 3+ 3 years
		settings.	Agboville	rescherche	25 Oct 2017	391	4 + 3+ 3 years
			Sikensi	(Gold)	19 Oct 2016	395	4 + 3+ 3 years
			Konahiri Nord	(00.0)	12 Jan 2022	391	4 + 3+ 3 years
			Konahiri Sud	-	Application TBA	255	4 + 3+ 3 years
			Koyekro		Application TBA	290	4 + 3+ 3 years
			Azaguire	-	Application TBA	397	4 + 3+ 3 years
_			Gomon	-	Application TBA	212	4 + 3+ 3 years
J		operate in the area.					
]	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Details of exploration by the previous groups has been reported to the ASX in 4 July 2019; 5 September 2019 and 27 November 2021. This is briefly summarised here. Didievi Permit – Cote d'Ivoire: Regional surveys by Glencore and Equigold and then by Lihir and Newcrest include geological mapping, surface geochemical sampling, airborne magnetic and radiometric data and remote sensing data. This was done during 2006 and 2012 and included several exploration campaigns. Work by Glencore and Equigold focused on the western part of the current permit consisted of acquisition of the high-resolution airborne magnetic and radiometric data, broad (800m x 50m & 200m) spaced soil sampling followed up with infill sampling on 9 discrete areas, limited trenching, rock chip sampling, RAB, RC and diamond drilling. During this time Equigold made two discoveries, namely Blaffo Guetto (BG) and Pranoi. 				

		 From 2008 the exploration was focused almost exclusively on the Blaffo Guetto, where a total of 312 RC holes and 23 diamond holes were drilled for 26,850m and 4,275m respectively At the Pranoi a total of 73 RAB, 7 RC and 1 diamond hole were drilled for 2,368m, 940m and 350m respectively (best intercept 13.0 at 2.65g/t Au). At Jonny Walker 7 RC holes were drilled and at geochemical anomalies DAS005 and DSA003 10 and 15 RAB holes respectively.
Geology	Deposit type, geological setting and style of mineralisation.	 In Côté d'Ivoire – the area under consideration is situated within the central portion of the Oumé-Fetekro Birimian greenstone belt. The belt is striking North-East to South-West direction. These belts belong to the Proterozoic basement in the Baoulé-Mossi domain of the West African Craton (WAC) formed between 2.2 and 1.9 Ga. The belt is almost 300 km long and 40 to 5km width extends from south of Dabakala (north of the belt) to Divo (south of the belt). Around the parallel 7°, it is divided in two parts. Blaffo Guetto prospect is situated in the southern Oumé-Hiré portion. The supracrustal geology of this greenstone belt, that is present within the prospect area includes schist and quartzite and also sandstone and conglomerates aligned NE-SW and intruded by the different mafic intrusions and the felsic porphyries. Gold lodes are hosted in the intensely altered and deformed rocks that are characterized by broad distribution of the mm-scale stockwork quartz veinlets (Fig. 2.3 – 1)
		Icm Icm Icm Icm DDD029, 160.8 m; 0.08 g/t DDD029, 146.2 m; 0.32 g/t DDD029, 250.4 m; 6.9 g/t Fig. 2.3-1: Host rocks of the gold mineralisation, Blaffo Guetto prospect. (a) barren; (b) low-grade; (c) high-grade

Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and Northing of the drill hole collar.	 Mineral Resource database contains 203 drillholes which includes 600 mineralised intersections (Fig.2.4-1). Details of the drillhole information has been reported to the ASX previously, including: African Gold Ltd – ASX, 2023, 17 October African Gold Ltd – ASX, 2022, 18 October African Gold Ltd – ASX, 2021, 7 December African Gold Ltd – ASX, 2020, 27 November A summary of this information is presented in this section of the JORC Table 1 Coordinates of the drillhole collars, dip and azimuth of drilling and length of the drillholes are presented in the Table 2.4-1 						
			Tahla 2 /	I-1: Location, o	rientation a	nd length (of the drillb	oles
	Elevation or RL (Reduced Level – elevation above	Hole ID	Easting	Northing	RL RL	Dip	Azi	Hole Length
	sea level in metres) of the	note ib	Lusting	Northing		Dip	7121	(m)
	drill hole collar.	DDD047	279130.0	749114.0	211.8	-55	111	174.48
		DDD048	279045.0	748897.1	237.8	-72	317	207.00
		DDD049	279659.0	749334.5	226.3	-72	137	258.00
	Dip and azimuth of the	DDD050	279763.6	749480.1	232.3	-55	137	213.00
9 D	hole.	DDD050	279949.0	749577.0	263.4	-75	137	205.00
		DDD051	279946.9	749642.8	281.0	-55	137	209.00
		000032	275540.5	743042.0	201.0		tal length:	1266.48
	Down hole length and	Gold m	inoralization	as intersected b	v the first d			
Data aggregation	 interception depth Hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting 	 31 – 64 The len Not app 	m. gth of the DDD blicable - all rele	047 drillhole is a	174.48m on is include	d in the cu	rrent repor	t
methods	Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually	cross-se the low • Average techniq	ections (Fig. 2.5 er grade mater e grade of this jue. ade cutting wa	s not applied in the	h-grade (>3) lisation is ho s determined	g/t) minera osted by the d using Len	lisation inte e quartz poi gth weighir	ercalates with rphyry dyke. ng average

	Material and should be stated.	
		Fig. 2.5-1: Mineralised intercept obtained by the DDD047 drillhole
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 Not applicable. Most of the samples in this intercept are 0.5m long, except last sample that was 1m long.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable. Only gold grade is reported
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Gold lodes are dipping steeply and close to vertical, therefore downhole length of the mineralisation exceeds the actual thickness

		Fig. 2.6 -1 Cross-section drawn through the DDD047 drillhole
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 Mineralised zones (gold lodes) were interpreted on the cross-sections, containing the 3D models (wireframes) of the drilled gold lodes. The wireframes will be updated using the new drilling results and will be used for updating the Mineral Resource estimates. Therefore, conversion of the down-hole intervals into thickness it is not required, because it will be accurately estimated using 3D wireframes.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• The appropriate maps and the sections are present in the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 The current announcement that reports a new drilling data obtained at the Blaffo Guetto prospect is made as a balanced reporting. The report includes a comprehensive list of the drillhole samples

Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Petrographic study of the gold mineralisation and their host rocks was made in 2011 by Dr. Eva S. Schandl (www.consultgeo.com) who concluded, that "In the present suite of samples, gold occurs as very small single grains within the matrix of fine- grained carbonate + quartz + sericite-rich sediments (BG-FLP05, 07, 10), and in one sample, gold occurs as an inclusion in pyrrhotite (22)".
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 African Gold Ltd is planning updating the Mineral Resource estimate. Further exploration program will be considered focusing on buried porphyry intrusions and based on the results of the initial six holes of this program.