ASX Announcement

01 October 2024

Board and management

Non-Executive Chairman
Mark Connelly

Managing Director & CEO
Amanda Buckingham

Non-Executive Director
Dianmin Chen

Chief Financial Officer
Graeme Morissey

GM Corporate & GC Stuart Burvill

Company Secretary
David Palumbo

Exploration Manager – Western Australia Thomas Dwight

Exploration Manager – Nevada Steve McMillin

Chief Geologist Peng Sha

Capital structure

Last traded price A\$0.060

Current shares on issue

Current market capitalisation A\$46 M

Cash

A\$3.6 M (at 30 Jun 2024)

Debt Zero

Continued Delivery of High Grade Antimony Mineralisation at Ricciardo

HIGHLIGHTS:

- Review of the antimony (Sb) potential at Ricciardo is complete with drillhole assay data confirming Sb mineralisation of significant thickness and grade exists below both the Ardmore pit (previously identified) and the Copse-Silverstone pits (newly identified), representing a potential combined strike length of approx. 1km.
- Multiple significant Sb intervals have been identified (reviewing both historic and WA8 drill hole assays), in addition to results recently released (* indicated below):

	Interval	Antimony	Gold	Gold Equivalent	from	Hole
	36m	1% Sb	0.85 g/t Au	3.0 g/t AuEq	294m	SSDD008
incl.	2m	7.9% Sb	1.38 g/t Au	18.1 g/t AuEq	327m	SSDD008
	12m	2.2% Sb	0.74 g/t Au	5.4 g/t AuEq	106m	SSRC055
incl.	4m	5.1% Sb	0.54 g/t Au	11.3 g/t AuEq	112m	SSRC055
	22m	1% Sb	0.57 g/t Au	2.7 g/t AuEq	104m	RDRC038
incl.	7m	2.3% Sb	0.3 g/t Au	5.1 g/t AuEq	108m	RDRC038
	13m	1.4% Sb	1.06 g/t Au	4.0 g/t AuEq	97m	SSRC011
incl.	5m	3.1% Sb	0.34 g/t Au	7.0 g/t AuEq	100m	SSRC011
	12.7m	6.0% Sb	0.36 g/t Au	13.1 g/t AuEq	229m	RDRC067*
incl.	1.9m	28.5% Sb	0.45 g/t Au	60.1 g/t AuEq	238m	RDRC067*
	34m	1% Sb	0.59 g/t Au	2.7 g/t AuEq	159m	RDRC001*

- Most of the Sb mineralisation appears to be located above the main gold zone, a distinct metallurgical positive for future processing and economic potential. Similarly to the gold mineralisation, the Sb zones remain wide open at depth.
- Only 11% of historical drill samples at Ricciardo were assayed for Sb. Retained pulp samples from historical holes are currently being tested with pXRF, with those favourable for significant Sb set to undergo laboratory multi element assay.
- An approx. 100kg high-grade sample of antimony mineralisation from Ricciardo has also been dispatched for scoping-level metallurgical testwork.

Warriedar Resources Limited (ASX: WA8) (**Warriedar** or the **Company**) provides an update on its initial review of the antimony (Sb) potential at the Ricciardo deposit, located within its Golden Range Project in the Murchison region of Western Australia.

Warriedar Managing Director and CEO, Amanda Buckingham, commented:

"Following the recent high grade antimony intersections at Ricciardo, our initial review of the broader antimony potential has delivered further promise. An exceptionally high-grade antimony interval, as well as a much wider intersection, are now able to

be placed in greater context. This context is a broader volume of antimony, not yet well-defined but with existing drilling showing serious scale and grade potential.

"Importantly, the high-grade antimony appears relatively discrete from higher-grade gold mineralisation, an excellent metallurgical outcome. While it remains early days, we are cautiously optimistic and have commenced initial metallurgical testing for potential processing and antimony recovery.

"While we are excited about this emerging opportunity at Ricciardo, I want to emphasise however that pursuit of this opportunity will be in parallel with our growth-focussed gold drilling at Golden Range, which remains our current core focus."



Figure 1: The Golden Range and Fields Find Projects, with proximate mines, mills and projects.

Key Ricciardo context

The Ricciardo gold system spans a strike length of approximately 2.3km, with very limited drilling having been undertaken below 100m depth. Ricciardo possesses a current Mineral Resource Estimate (MRE) of 8.7 Mt @ 1.7 g/t Au for 476 koz gold.¹

Historical gold mining operations at Ricciardo were primarily focused on the oxide material, with the transition and primary sulphides mineralisation not systematically explored. Antimony was not a focus of previous exploration, with only about 11% of historic drill holes assayed for antimony.

The gold and antimony mineralisation at Ricciardo is predominantly hosted within intensely altered and deformed ultramafic units. The high-grade antimony-dominant mineralisation occurred later than the main gold events and generally sits above the high-grade gold mineralisation.

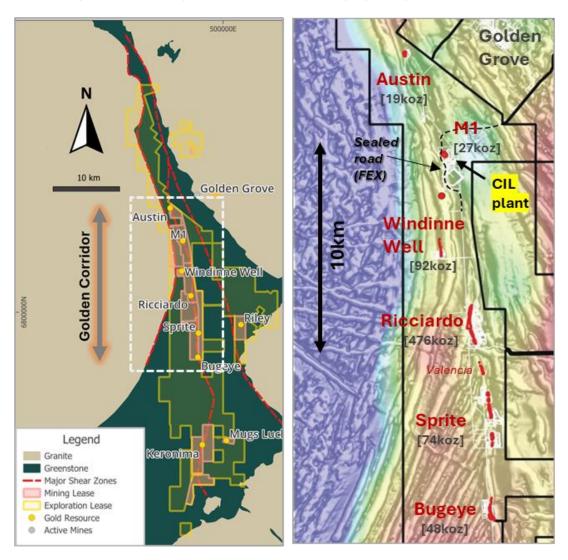


Figure 2: The 'Golden Corridor' within the Golden Range Project. The image on the right is gravity over shaded residual magnetic RTP. The location of the Ricciardo deposit can be seen, in the middle of the Golden Corridor.

¹ For full details of the Ricciardo Mineral Resource Estimate (and broader Golden Range Project Mineral Resource Estimate), refer to Appendix 1 and WA8 ASX release dated 28 November 2022, *Major Gold Project Acquisition*. Warriedar confirms that it is not aware of any new information or data that materially affects the information included in that release. All material as sumptions and technical parameters underpinning the estimates in that ASX release continue to apply and have not materially changed.

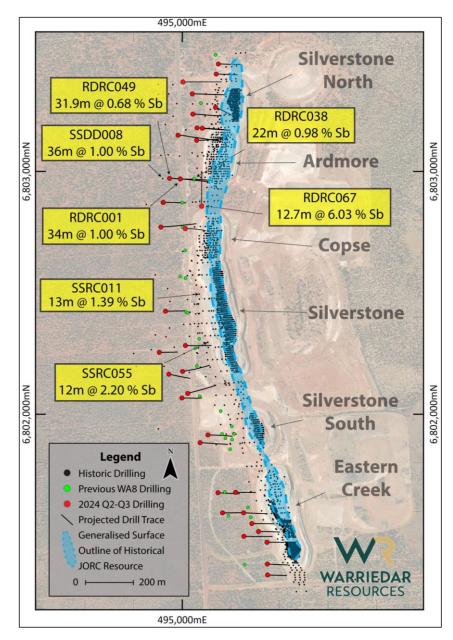


Figure 3: Plan view of the Ricciardo deposit with selected Sb intervals annotated (refer Table 3 for the full interval details).

Antimony zone below the Ardmore pit

Warriedar previously released exceptional antimony intervals below the Ardmore pit (refer WA8 ASX release dated 26 August 2024). A subsequent initial drilling data review has expanded the extent of the potential antimony opportunity at Ardmore. Antimony assay data, where it exists, supports a +300m long zone of antimony mineralisation of considerable thickness below the Ardmore pit (refer Figure 4). Intervals of note include:

- 36m @ 1% Sb and 0.85 g/t Au (2.96 g/t AuEq*) from 294m (SSDD008) incl. 2m @ 7.90% Sb and 1.38 g/t Au (18.13 g/t AuEq) from 327m
- 31.90 m @ 0.68% Sb and 0.89 g/t Au (2.33 g/t AuEq*) from 198.4m (RDRC049) incl. 3m @ 2.27% Sb and 1.51 g/t Au (6.33 g/t AuEq) from 207.4m

And those previously released:

- 12.70 m @ 6.03% Sb and 0.36 g/t Au (13.14 g/t AuEq*) from 229.20m (RDRC067)
 incl. 1.85m @ 28.50% Sb and 0.45 g/t Au (60.94 g/t AuEq) from 238.25m
- 34 m @ 1.00% Sb and 0.59 g/t Au (2.72 g/t AuEq*) from 158.80m (RDRC001)
 incl. 5m @ 3.02% Sb and 0.39 g/t Au (60.94 g/t AuEq) from 182.80m

The high intersections from RDRC049 and SSDD008 suggests the high-grade antimony mineralisation extends at depth with significant thickness and is open along strike (refer Figure 4).

Table 1: Key Sb intercepts (historic drilling and WA8 drilling*)

Hole ID	Pit	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample Type
RDRC067*	Ardmore	229.20	241.90	12.70	13.14	0.36	6.03	CORE
Including		238.25	240.10	1.85	60.94	0.45	28.50	CORE
SSDD008	Ardmore	294.00	330.00	36.00	2.96	0.85	1.00	CORE
Including		327.00	329.00	2.00	18.13	1.38	7.90	CORE
RDRC001*	Ardmore	158.80	192.80	34.00	2.72	0.59	1.00	CHIPS
Including		182.80	187.80	5.00	6.79	0.39	3.02	CHIPS
SSRC055	Silverstone	106.00	118.00	12.00	5.40	0.74	2.20	CHIPS
Including		112.00	116.00	4.00	11.28	0.54	5.07	CHIPS
RDRC038*	Ardmore	104.00	126.00	22.00	2.66	0.57	0.98	CHIPS
Including		108.00	115.00	7.00	5.07	0.30	2.25	CHIPS
SSRC011	Copse	97.00	110.00	13.00	4.00	1.06	1.39	CHIPS
Including		100.00	105.00	5.00	6.98	0.34	3.13	CHIPS
RDRC049*	Ardmore	198.40	230.30	31.90	2.33	0.89	0.68	CHIPS
Including		207.40	210.40	3.00	6.33	1.51	2.27	CHIPS
SSRC056	Silverstone	116.00	133.00	17.00	2.79	1.37	0.67	CHIPS
Including		126.00	128.00	2.00	5.26	1.26	1.89	CHIPS
SSRC013	Copse	117.00	131.00	14.00	1.94	0.31	0.77	CHIPS
Including		121.00	125.00	4.00	4.63	0.48	1.96	CHIPS
SSRC022	Silverstone	138.00	146.00	8.00	5.22	2.76	1.16	CHIPS
Including		140.00	146.00	6.00	6.66	3.47	1.51	CHIPS
MJD004	Silverstone	189.00	195.00	6.00	8.10	5.24	1.35	CORE
Including		190.00	191.00	1.00	10.50	2.97	3.55	CORE
Including		193.00	195.00	2.00	9.74	5.17	2.16	CORE
RDRC044*	Silverstone	294.00	316.60	22.60	2.71	2.11	0.29	CORE
Including		303.00	305.00	2.00	5.15	1.01	1.95	CORE
RDRC046*	Silverstone	253.30	267.00	13.70	4.04	3.27	0.36	CORE
Including		256.70	258.75	2.05	7.32	2.67	2.19	CORE

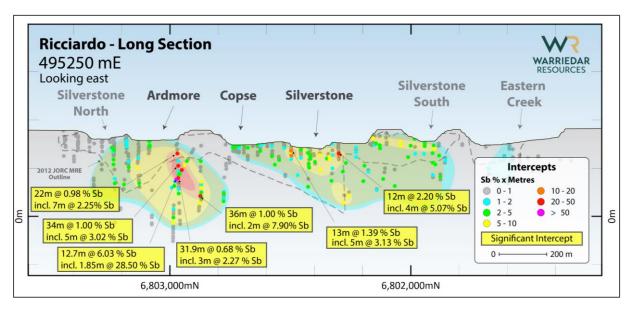


Figure 4: Long Section through Ricciardo (looking East) showing the known antimony distribution with the highlight main antimony zone (about 1km from Ardmore to Silverstone).

The northern limit of the antimony mineralisation is not currently defined and historical drill holes re-assay (set to commence) is required to outline the high-grade mineralisation more accurately.

Antimony zone below the Copse-Silverstone pit

High-grade antimony intervals have also now been identified within historical drilling below the Silverstone pit. Significant intervals include:

- 12m @ 2.2% Sb and 0.74 g/t Au (5.40 g/t AuEq*) from 106m (SSRC055)
 incl. 4m @ 5.07% Sb and 0.54 g/t Au (11.28 g/t AuEq) from 112m
- 6m @ 1.35% Sb and 5.24 g/t Au (8.10 g/t AuEq*) from 189m (MJD004) incl. 1m @ 3.55% Sb and 2.97 g/t Au (10.5 g/t AuEq) from 190m and 2m @ 2.16% Sb and 5.17 g/t Au (9.74 g/t AuEq) from 193m
- 22.6 @ 0.29 % Sb and 2.11 g/t Au (2.71 g/t AuEq*) from 294m (RDRC044) incl. 2m @ 1.95 % Sb and 1.01 g/t Au (5.15 g/t AuEq) from 303m and

These intervals delineate a significant body of antimony mineralisation below the Silverstone pit. They also indicate the potential for the antimony mineralisation to continuously extend from Ardmore to Silverstone – an approximate strike length of approximately 1km. The drilling data gap between Ardmore and Copse-Silverstone currently impedes understanding of this potential.

A number of historical drill holes also intersected antimony mineralisation with good thickness below the Copse pit. Significant intercepts include:

13m @ 1.39% Sb and 1.06 g/t Au (4.00 g/t AuEq*) from 97m (SSRC011)
 incl. 5m @ 3.13% Sb and 0.34 g/t Au (6.98 g/t AuEq) from 100m

14m @ 0.77% Sb and 0.31 g/t Au (1.94 g/t AuEq*) from 97m (SSRC013) incl. 4m @ 1.96% Sb and 0.48 g/t Au (4.63 g/t AuEq) from 100m

Similar to the Sb mineralisation intersected at Ardmore, the high-grade antimony zones in this area predominantly occur adjacent to the main gold lode, rather than coincident with it. Once reassaying of historic pulps for antimony has been completed, Warriedar will be able to provide a more detailed view of the gold / antimony relationship at Ricciardo.

Initial review of antimony potential at Ricciardo

After the recently returned high-grade antimony interval at Ricciardo (12.7m @ 6.03% Sb and 0.36 g/t Au in RDRC067; refer Table 3 including the note on grade increase), the Company conducted an initial review of historical assay data at Ricciardo.

The limited historical antimony data (only approximately 11% of samples were previously assayed for antimony) indicates the Ricciardo antimony mineralisation has scale potential, rather than being limited discontinuous mineralisation. In particular, it demonstrates that the antimony mineralisation occurs from near surface/pit and extends to a vertical depth of at least 250m (e.g. SSDD008 and RDRC044).

Further work is required to infill significant drill spacing between areas, however this initial review has highlighted that Ricciardo has potential to host contiguous antimony mineralization of significant thickness for an approximately 1km strike length from Ardmore to Silverstone.

Results and observations from the recent drilling program also suggest antimony mineralisation, which presents as breccia and stockwork veins in the cores, mainly correlates with medium-to-weak gold mineralization (refer Figure 5). These antimony-rich zones are predominantly discrete from, and seen to be spatially above, high-grade gold (>5 g/t Au) mineralisation.

The recent geochemistry review of historical and WA8 assay data suggests that the high-grade antimony is independent from the high-grade gold mineralisation. The conclusion is consistent with the results of research work from Dr Jamie Price², suggesting antimony mineralisation likely occurred later than the main gold mineralisation phase at Ricciardo.

Re-assaying of historical pulp samples

Pulp samples from select historical holes at Ricciardo are currently being tested with low-cost pXRF (portable X-ray fluorescence). Identified significant samples are then set to be dispatched for multi-element assay. Only approximately 11% of historical drilling at Ricciardo was previously assayed for antimony.

² Jamie Price, 2020, PhD Dissertation. Gold exploration in the Yalgoo-Singleton Greenstone belt, Western Australia. Cardiff University.

Figure 5: Core photo of the high-grade Sb interval in RDRC067 highlighting brecciated ultramafic at 239.4m. Refer ASX

Release 26 August for full context)

Why is Antimony important?

Antimony is recognized as a critical mineral in the EU, the US, Japan and Australia. The criticality criteria may vary across these lists, but is globally defined as:

- 1. High reliance on imports (risk of supply shortage);
- 2. Limited substitution options; and
- 3. Essential function in the manufacture of products which are key to the regional economy and/or national security.

Antimony has a wide range of applications across various industries due to its unique properties, such as flame retardancy, alloying capability, and use in electronics and military³.

According to the United States Geological Survey, total global antimony mine production in 2023 was approximately 83,000 tonnes, with China producing more than 40,000 tonnes, or 48% of the total⁴. China has recently imposed export restrictions on antimony, and the price has increased dramatically in recent months; from US\$13,400/t on 12 April 2024 to US\$22,700/t on 14 June 2024.³

Suite 3, 41-47 Colin Street West Perth WA 6005 | PO Box 920 Scarborough WA Australia 6019 T +61 8 9481 0389 E info@warriedarresources.com.au www.warriedarresources.com.au

³ https://www.antimony.com/regulations-compliance/criticalitycircularity/https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-antimony.pdfhttps://mmta.co.uk/supply-constraints-push-antimony-prices-to-record-high/

Gold equivalent (AuEq) calculation methodology

Warriedar considers that both gold and antimony included in the gold equivalent calculation (**AuEq**) have reasonable potential to be recovered at Ricciardo, given current geochemical understanding, geologically analogous mining operations and historical resource estimation.

For the purposes of its AuEq calculation methodology, Warriedar considers it appropriate to adopt the gold and antimony prices utilised for Larvotto Resources' (ASX: LRV) recent Hillgrove Gold-Antimony Project Pre-Feasibility Study (being US\$2,200/oz gold and US\$15,000/t antimony) (refer LRV ASX release dated 5 August 2024).

An assumed mineral recovery of 90% has been applied in the formula after reviewing the recoveries of typical antimony projects in Australia including Hillgrove and Costerfield ⁴. Expected recoveries will be updated once sufficient data has been obtained from future metallurgical study.

These assumptions result in a chosen AuEq calculation formula for Ricciardo of:

$$AuEq (g/t) = Au (g/t) + 2.12 \times Sb (\%)$$

This formula is deemed appropriate for use in the initial exploration targeting of gold-antimony mineralisation at Ricciardo.

Engage with this announcement at the Warriedar InvestorHub

This announcement has been authorised for release by: Amanda Buckingham, Managing Director.

CONTACT:

Investors

+61 8 9481 0389

info@warriedarresources.com.au

Media

Michael Vaughan (Fivemark Partners) +61 422 602 720

⁴ refer Mandalay Resources - Costerfield Property NI 43-101 Technical Report dated 25 March 2022 and LRV ASX release dated 5 August 2024.

Table 2. Drill Collars for the holes assayed for antimony at Ricciardo.

All drill holes have been previously released in various announcements, however only the gold results were released (antimony was not previously recognised as being important or present in large enough volumes). Here, the Intervals have been recalculated using a AuEq > 0.5 g/t cut-off to represent antimony and gold grades.

Note, "RDRC" is the hole prefix for holes drilled by Warriedar.

Hole ID	Total Depth (m)	East MGA50	North MGA50	RL MGA50	Azimuth	Dip	Туре
ECRC076	108	495253	6801902	361	87	-50.9	RC
ECRC077	126	495252	6801902	361	89	-60.4	RC
ECRC078	96	495252	6801942	361	89	-51.3	RC
ECRC079	108	495251	6801942	361	88	-60.2	RC
ECRC080	90	495232	6802001	361	90	-60.9	RC
ECRC083	82	495234	6802041	361	84	-60.1	RC
ECRC084	91	495215	6802041	361	87	-60.5	RC
ECRC085	69	495252	6802102	361	90	-59.5	RC
ECRC086	84	495212	6802100	361	89	-59.9	RC
ECRC087	71	495232	6802102	361	87	-60.8	RC
MJD004	217	495006	6802369	359	90	-60	Diamond
MJD005	346	495015	6803171	357	84	-60	Diamond
MJD006	209.5	495094	6803228	357	84	-60	Diamond
MJD007	340	494934	6802318	359	86	-60	Diamond
MJD009	103	495148	6803081	357	83	-60	Diamond
MJD011	70	495154	6802376	360	84	-60	Diamond
MJD013	59	495207	6802179	362	84	-60	Diamond
MJD014	520	494920	6802970	359	83	-70	Diamond
MJD015	367	494873	6802265	358	83	-70	Diamond
MJP042	132	495067	6802572	359	87	-60	RC
MJP120	110	495156	6803230	358	87	-60	RC
MJP122	200	495095	6803176	357	87	-60	RC
MJP123	130	495063	6802622	359	87	-60	RC
MJP124	140	495085	6802425	359	87	-60	RC
MJP125	200	495032	6802420	359	87	-60	RC
MJP126	135	495094	6802322	360	87	-60	RC
MJP127	202	495030	6802320	360	87	-60	RC
MJP128	150	495105	6802224	360	87	-60	RC
MJP131	82	495186	6803281	358	87	-59	RC
MJP132	118	495166	6803280	358	87	-60	RC
MJP133	142	495147	6803278	357	87	-60	RC
MJP134	46	495221	6803381	358	83	-60	RC
MJP135	76	495201	6803380	358	87	-60	RC
MJP136	95	495181	6803379	358	87	-60	RC
MJP137	100	495161	6803379	357	87	-60	RC
MJP139	64	495191	6803182	358	87	-60	RC
MJP140	88	495176	6803179	358	87	-60	RC
MJP141	118	495150	6803177	358	87	-60	RC

Hole ID	Total Depth (m)	East MGA50	North MGA50	RL MGA50	Azimuth	Dip	Туре
MJP142	112	495145	6803081	358	87	-60	RC
MJP144	130	495133	6803085	358	87	-60	RC
MJP178	110	495367	6801590	363	87	-60	RC
MJP179	134	495347	6801589	363	87	-60	RC
MJP182	140	495322	6801687	362	87	-60	RC
MJP185	98	495286	6801785	362	87	-60	RC
MJP188	92	495277	6801882	362	87	-60	RC
MJP190	68	495268	6801983	361	87	-60	RC
MJP191	98	495227	6801981	361	87	-60	RC
MJP192	134	495197	6801979	361	87	-60	RC
MJP193	50	495233	6802129	361	87	-60	RC
MJP194	98	495193	6802127	361	87	-60	RC
MJP195	120	495175	6802125	361	87	-60	RC
MJP197	122	495145	6802225	360	87	-60	RC
MJP198	128	495125	6802224	360	87	-60	RC
MJP201	120	495117	6802323	360	87	-60	RC
MJP204	60	495140	6802525	359	87	-60	RC
MJP205	68	495119	6802525	359	87	-60	RC
MJP209	92	495084	6802623	359	87	-60	RC
MJP211	65	495114	6802724	359	87	-60	RC
MJP212	104	495090	6802724	359	87	-60	RC
MJP214	44	495214	6803232	358	87	-60	RC
MJP215	76	495194	6803232	358	87	-60	RC
MJP217	60	495209	6803333	358	87	-60	RC
MJP218	86	495189	6803332	358	87	-60	RC
MJP219	86	495224	6803434	358	87	-60	RC
MJP220	60	495244	6803435	358	87	-60	RC
MJP221	92	495099	6802524	359	87	-60	RC
MJP222	116	495080	6802523	359	87	-60	RC
MJP223	122	495070	6802722	358	87	-60	RC
MJP225	80	495168	6803129	358	87	-60	RC
MJP226	158	495128	6803127	358	87	-60	RC
MJP227	90	495173	6803231	358	87	-60	RC
MJP228	128	495134	6803229	357	87	-60	RC
MJP229	116	495169	6803331	358	87	-60	RC
MJP230	116	495204	6803431	358	87	-60	RC
NMRC003	120	494978	6803279	356	90	-60	RC
NMRC005	315	495042	6803319	357	90	-61.3	RC, Diamond Tail
NMRC006	120	495098	6803319	357	90	-60	RC
NMRC009	120	495043	6803238	357	90	-60	RC
RDRC001	251.9	494992	6802969	357	93	-55.9	RC, Diamond Tail
RDRC002	314.9	494983	6803149	357	92	-54.9	RC, Diamond Tail

Hole ID	Total Depth (m)	East MGA50	North MGA50	RL MGA50	Azimuth	Dip	Туре
RDRC004	210	495077	6803281	357	90	-60.3	RC
RDRC007	174	495231	6803781	357	88	-60.1	RC
RDRC010	228	495000	6802871	357	92	-59.2	RC
RDRC011	234	495002	6802770	358	92	-60.3	RC
RDRC012	247	495073	6802073	361	95	-60.8	RC
RDRC013	222	495176	6801680	362	91	-60.6	RC
RDRC014	138	495190	6801581	363	92	-59.9	RC
RDRC016	156	495432	6801103	365	89	-60.2	RC
RDRC018	225.13	495061	6803179	357	94	-59.6	RC, Diamond Tail
RDRC019	188.87	495083	6803177	357	92	-53.4	RC, Diamond Tail
RDRC020	174	495070	6802310	360	60	-55.8	RC
RDRC021	168	495159	6802013	361	90	-60.4	RC
RDRC022	150	495204	6801949	361	92	-61.8	RC
RDRC024	174	495164	6801919	361	92	-61.7	RC
RDRC025	156	495214	6801919	361	95	-56.4	RC
RDRC026	174	495205	6801895	361	96	-57.7	RC
RDRC027	168	495178	6801900	361	90	-63.5	RC
RDRC028	194	495198	6801856	361	90	-63.8	RC
RDRC029	156	495282	6801575	363	89	-57.4	RC
RDRC030	156	495271	6801616	363	91	-56.8	RC
RDRC031	168	495013	6802561	359	95	-52.8	RC
RDRC032	192	494992	6802567	358	89	-53.9	RC
RDRC033	210	495015	6802421	359	86	-59.9	RC
RDRC034	180	495054	6802271	360	90	-55.6	RC
RDRC035	186	495060	6802199	360	92	-57	RC
RDRC036	168	495012	6802675	358	87	-52.3	RC
RDRC038	168	495049	6802970	357	89	-57.3	RC
RDRC039	222	495059	6803128	357	91	-56	RC, Diamond Tail
RDRC040	146.91	495137	6803264	357	120	-57.7	RC, Diamond Tail
RDRC041	198	495023	6802417	359	98	-52.1	RC
RDRC042	261.1	495023	6802085	360	73	-62	RC, Diamond Tail
RDRC043	268	495002	6802176	360	80	-65.9	RC, Diamond Tail
RDRC044	339.93	494906	6802255	359	89	-62.7	RC, Diamond Tail
RDRC045	216	495013	6802283	360	91	-59.4	RC
RDRC046	318.67	494931	6802424	359	90	-64.8	RC, Diamond Tail
RDRC047	480	494912	6802771	358	89	-75.2	RC, Diamond Tail
RDRC048B	351	494922	6802872	357	91	-60.9	RC, Diamond Tail
RDRC049	431.9	494948	6802971	357	92	-66.2	RC, Diamond Tail

Hole ID	Total Depth (m)	East MGA50	North MGA50	RL MGA50	Azimuth	Dip	Туре
RDRC050	180	495149	6803442	357	90	-59.6	RC
RDRC051	174	495140	6803401	358	90	-59.7	RC
RDRC055	284.89	495044	6803236	357	92	-62.1	RC, Diamond Tail
RDRC060	198	495253	6801593	363	91	-60.1	RC
RDRC061	174	495287	6801549	363	90	-56.4	RC
RDRC062	162	495314	6801517	363	91	-56.8	RC
RDRC063	242.81	495254	6801497	363	92	-60.7	RC, Diamond Tail
RDRC064	144	495349	6801472	363	90	-59.9	RC
RDRC065	179.63	495350	6801383	364	95	-61.8	RC, Diamond Tail
RDRC066	162	495351	6801338	364	93	-59.6	RC
RDRC067	296.96	495078	6802858	358	360	-61	RC, Diamond Tail
SSDD006	546.4	494931	6803193	356	87	-60	Diamond
SSDD007	399	494945	6803319	356	87	-60	Diamond
SSDD008	405	494852	6802864	357	87	-58	Diamond
SSDD009	260.9	494940	6802517	358	87	-58	Diamond
SSDD010	249	495029	6802171	360	87	-60	Diamond
SSDD011	468	494943	6803068	357	87	-63	Diamond
SSDD012	351.1	494950	6802464	359	88	-60	Diamond
SSDD014	375.4	494902	6801940	361	89	-59.6	Diamond
SSDD015	300.3	495056	6803126	357	92	-59.9	Diamond
SSDD016	473.2	494962	6803227	356	91	-60.1	Diamond
SSRC007	127	495068	6802454	359	87	-50	RC
SSRC008	130	495066	6802454	359	87	-55	RC
SSRC009	120	495061	6802453	359	87	-60	RC
SSRC010	156	495051	6802453	359	87	-60	RC
SSRC011	133	495069	6802494	359	87	-52	RC
SSRC012	138	495062	6802494	359	87	-60	RC
SSRC013	150	495047	6802493	359	87	-60	RC
SSRC015	152	495070	6802414	359	87	-55	RC
SSRC016	150	495066	6802414	359	87	-60	RC
SSRC017	168	495056	6802413	359	87	-60	RC
SSRC018	150	495081	6802374	360	87	-60	RC
SSRC020	156	495082	6802334	360	87	-60	RC
SSRC021	156	495072	6802334	360	87	-60	RC
SSRC022	146	495064	6802333	360	87	-60	RC
SSRC024	96	495091	6802710	358	88	-60.4	RC
SSRC025	118	495071	6802709	359	85	-59.7	RC
SSRC028	90	495092	6802690	359	86	-61.1	RC
SSRC029	114	495071	6802689	358	86	-60.3	RC
SSRC032	112	495073	6802674	359	87	-60	RC
SSRC037	90	495084	6802655	359	87	-62.1	RC

Hole ID	Total Depth (m)	East MGA50	North MGA50	RL MGA50	Azimuth	Dip	Туре
SSRC039	90	495096	6802643	359	128	-50.5	RC
SSRC040	90	495093	6802645	359	109	-62	RC
SSRC041	97	495081	6802635	358	85	-59.6	RC
SSRC042	103	495078	6802634	357	110	-52.5	RC
SSRC043	85	495089	6802735	359	87	-60.8	RC
SSRC044	105	495070	6802734	359	85	-60.3	RC
SSRC045	102	495072	6802574	354	87	-50	RC
SSRC046	109	495068	6802593	356	85	-50.4	RC
SSRC047	144	495043	6802573	359	87	-60	RC
SSRC048	150	495039	6802633	359	87	-60	RC
SSRC054	123	495105	6802295	360	83	-49.4	RC
SSRC055	138	495104	6802295	360	83	-61.9	RC
SSRC056	144	495090	6802294	360	86	-60.5	RC
SSRC057	84	495194	6802120	361	55	-52	RC
SSRC058	96	495181	6802120	361	54	-51	RC
SSRC059	90	495191	6802127	361	47	-51.2	RC
SSRC060	96	495179	6802129	361	57	-48.9	RC
SSRC061	90	495243	6802133	361	334	-56.3	RC
SSRC063	96	495175	6802136	361	58	-52.5	RC

Table 3: Significant intercepts table: Ricciardo antimony review

Significant intercepts table of assay drill intersections using a 0.5 g/t AuEq cut off, with a minimum width of 0.2 meter and including a maximum of 2 meters consecutive internal waste.

All the drill holes have been previously released in various announcements (gold only). However, the Intervals have been recalculated using AuEq>0.5 g/t cut-off to represent antimony and gold grades.

Please note due to the nature of super high-grade antimony, the high-grade Sb samples (>3.5%) were reanalysed by the fusion method (Jinnings laboratory) to obtain near total digestion. The grades for affected intervals have been updated accordingly for hole RDRC067 (for example 12.7m from 229.2m changes from 4.98% to 6.03% Sb).

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
RDRC067*	229.2	241.9	12.7	13.14	0.36	6.03	CORE
Including	238.25	240.1	1.85	60.94	0.45	28.5	CORE
SSDD008	294	330	36	2.96	0.85	1	CORE
Including	327	329	2	18.13	1.38	7.9	CORE
RDRC001	158.8	192.8	34	2.72	0.59	1	CHIPS
Including	182.8	187.8	5	6.79	0.39	3.02	CHIPS
SSRC055	106	118	12	5.4	0.74	2.2	CHIPS
Including	112	116	4	11.28	0.54	5.07	CHIPS
RDRC038	104	126	22	2.66	0.57	0.98	CHIPS
Including	108	115	7	5.07	0.3	2.25	CHIPS
SSRC011	97	110	13	4	1.06	1.39	CHIPS
Including	100	105	5	6.98	0.34	3.13	CHIPS
RDRC049	198.4	230.3	31.9	2.33	0.89	0.68	CHIPS
Including	207.4	210.4	3	6.33	1.51	2.27	CHIPS

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
SSRC056	116	133	17	2.79	1.37	0.67	CHIPS
Including	126	128	2	5.26	1.26	1.89	CHIPS
SSRC013	117	131	14	1.94	0.31	0.77	CHIPS
Including	121	125	4	4.63	0.48	1.96	CHIPS
SSRC022	138	146	8	5.22	2.76	1.16	CHIPS
Including	140	146	6	6.66	3.47	1.51	CHIPS
MJD004	189	195	6	8.1	5.24	1.35	CORE
Including	190	191	1	10.5	2.97	3.55	CORE
Including	193	195	2	9.74	5.17	2.16	CORE
RDRC044	294	316.6	22.6	2.71	2.11	0.29	CORE
Including	303	305	2	5.15	1.01	1.95	CORE
RDRC046	253.3	267	13.7	4.04	3.27	0.36	CORE
Including	256.7	258.75	2.05	7.32	2.67	2.19	CORE
ECRC076	77	97	20	1.11	0.78	0.16	CHIPS
ECRC077	84	104	20	1.98	1.35	0.3	CHIPS
ECRC078	56	57	1	2	1.95	0.02	CHIPS
ECRC078	66	78	12	1.75	1.23	0.24	CHIPS
ECRC078	81	85	4	1.87	1.78	0.05	CHIPS
ECRC079	69	93	24	2.71	2.3	0.19	CHIPS
ECRC080	73	84	11	1.7	1.03	0.31	CHIPS
ECRC083	53	68	15	2.41	1.55	0.4	CHIPS
ECRC084	75	85	10	2.73	1.26	0.69	CHIPS
ECRC085	15	24	9	0.64	0.53	0.05	CHIPS
ECRC086	61	66	5	1.52	1.42	0.05	CHIPS
ECRC086	71	72	1	3	3	0	CHIPS
ECRC087	36	45	9	1.21	1.01	0.09	CHIPS
MJD005	239	241	2	1.16	1.04	0.06	CORE
MJD005	250	275	25	1.1	0.74	0.17	CORE
MJD005	284	285	1	4.34	4.3	0.02	CORE
MJD006	100.3	105	4.7	1.09	1.07	0.01	CORE
MJD006	109	110	1	0.64	0.6	0.02	CORE
MJD006	115.2	116	0.8	0.62	0.6	0.01	CORE
MJD006	122.8	125	2.2	0.74	0.72	0.01	CORE
MJD006	137	149.5	12.5	2.17	1.45	0.34	CORE
MJD006	152	183	31	1.68	1.54	0.07	CORE
MJD007	219	220	1	1.49	1.48	0	CORE
MJD007	252.9	262.35	9.45	6.49	5.62	0.41	CORE
MJD009	50	54.73	4.73	0.86	0.27	0.28	COMP
MJD009	56.8	88	31.2	1.73	1.52	0.1	CORE
MJD009	93	99	6	0.77	0.76	0.01	CORE
MJD011	69	69.4	0.4	0.6	0.59	0.01	CORE
MJD013	32	49	17	1.98	1.77	0.1	CORE
MJD014	65	70	5	0.65	0.64	0	COMP
MJD014	227	230	3	0.97	0.16	0.38	CORE

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
MJD014	245	252.2	7.2	1.04	0.11	0.44	CORE
MJD014	332	339	7	0.79	0.63	0.08	CORE
MJD014	350	353	3	1.08	0.19	0.42	CORE
MJD014	357	359	2	0.58	0.33	0.12	CORE
MJD014	370.9	372	1.1	0.65	0.48	0.08	CORE
MJD014	373.9	375	1.1	0.69	0.61	0.04	CORE
MJD014	381.75	399	17.25	0.75	0.48	0.13	CORE
MJD014	403.45	423	19.55	1.52	0.91	0.29	CORE
MJD014	427	436	9	0.54	0.45	0.04	CORE
MJD014	439	441	2	1.52	0.71	0.38	CORE
MJD014	445	450	5	3.44	3.19	0.12	CORE
MJD014	455	465	10	0.57	0.53	0.02	CORE
MJD014	474	475	1	0.63	0.58	0.02	CORE
MJD014	479	490	11	0.89	0.88	0.01	CORE
MJD014	494	498	4	0.67	0.63	0.02	CORE
MJD015	300	301	1	1.14	1.14	0	CORE
MJD015	330	345.6	15.6	5.26	4.28	0.46	CORE
MJP042	101	102	1	1.54	1.54	0	CHIPS
MJP120	80	94	14	6.3	6.18	0.06	CHIPS
MJP122	140	178	38	3.92	3.88	0.02	CHIPS
MJP123	96	107	11	1.39	0.96	0.2	CHIPS
MJP124	108	115	7	3.19	2.27	0.43	CHIPS
MJP125	158	168	10	1.62	1.07	0.26	CHIPS
MJP125	171	174	3	1.07	1.02	0.02	CHIPS
MJP126	121	125	4	4.16	3.34	0.39	CHIPS
MJP127	182	190	8	4.05	3.67	0.18	CHIPS
MJP128	130	135	5	0.58	0.1	0.23	COMP
MJP131	52	67	15	1.1	1.01	0.04	CHIPS
MJP132	38	39	1	0.61	0.21	0.19	CHIPS
MJP132	50	51	1	0.71	0.64	0.03	CHIPS
MJP132	57	60	3	0.63	0.59	0.02	CHIPS
MJP132	76	79	3	2.01	1.88	0.06	CHIPS
MJP132	82	83	1	0.59	0.52	0.03	CHIPS
MJP133	26	27	1	1.29	1.19	0.05	CHIPS
MJP133	34	47	13	1.07	1.03	0.02	CHIPS
MJP133	50	53	3	0.82	0.7	0.06	CHIPS
MJP133	102	103	1	0.87	0.83	0.02	CHIPS
MJP134	24	29	5	1.22	1.17	0.03	CHIPS
MJP135	36	37	1	0.73	0.67	0.03	CHIPS
MJP135	51	68	17	3.19	3.15	0.02	CHIPS
MJP135	74	76	2	2.13	2.08	0.03	CHIPS
MJP136	34	35	1	0.59	0.51	0.04	CHIPS
MJP136	52	55	3	2.58	2.56	0.01	CHIPS
MJP136	59	68	9	1.75	1.69	0.03	CHIPS

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
MJP137	60	61	1	0.59	0.55	0.02	CHIPS
MJP137	65	67	2	0.76	0.68	0.04	CHIPS
MJP137	85	87	2	0.93	0.92	0.01	CHIPS
MJP137	93	98	5	0.87	0.85	0.01	CHIPS
MJP139	28	30	2	2.39	2.35	0.02	CHIPS
MJP139	45	46	1	3.16	3.12	0.02	CHIPS
MJP140	29	31	2	0.58	0.44	0.07	CHIPS
MJP140	36	37	1	0.6	0.57	0.01	CHIPS
MJP140	63	64	1	1.75	1.56	0.09	CHIPS
MJP140	72	75	3	0.79	0.75	0.02	CHIPS
MJP141	46	58	12	0.97	0.69	0.13	CHIPS
MJP141	61	70	9	0.67	0.38	0.14	CHIPS
MJP141	75	84	9	1.05	0.77	0.13	CHIPS
MJP141	88	89	1	0.56	0.42	0.06	CHIPS
MJP141	106	109	3	1.17	1.14	0.01	CHIPS
MJP142	52	53	1	0.6	0.29	0.15	CHIPS
MJP142	58	101	43	1.51	1.36	0.07	CHIPS
MJP144	48	61	13	1.37	0.91	0.22	CHIPS
MJP144	79	82	3	0.65	0.33	0.15	CHIPS
MJP144	87	88	1	0.61	0.57	0.02	CHIPS
MJP144	96	97	1	1.1	1.08	0.01	CHIPS
MJP144	101	102	1	1.44	1.42	0.01	CHIPS
MJP144	105	122	17	1.51	1.46	0.02	CHIPS
MJP178	67	84	17	1.24	1.13	0.05	CHIPS
MJP179	80	84	4	0.94	0.65	0.14	CHIPS
MJP179	92	101	9	0.96	0.82	0.06	CHIPS
MJP182	84	89	5	1	0.84	0.07	CHIPS
MJP185	72	73	1	0.95	0.9	0.02	CHIPS
MJP185	76	78	2	1.19	1.12	0.03	CHIPS
MJP188	65	73	8	2.88	2.72	0.08	CHIPS
MJP188	79	81	2	0.54	0.49	0.03	CHIPS
MJP190	35	38	3	0.52	0.49	0.01	CHIPS
MJP190	41	52	11	1.53	1.14	0.19	CHIPS
MJP191	85	86	1	1.17	0.85	0.15	CHIPS
MJP192	111	124	13	1.32	1.08	0.11	CHIPS
MJP193	28	38	10	1.08	1	0.04	CHIPS
MJP194	73	80	7	1.89	1.21	0.32	CHIPS
MJP195	89	98	9	1.52	0.75	0.36	CHIPS
MJP197	38	39	1	1.95	1.95	0	CHIPS
MJP197	44	46	2	1.61	1.61	0	CHIPS
MJP197	86	92	6	1.7	1.33	0.17	CHIPS
MJP197	96	98	2	0.55	0.54	0.01	CHIPS
MJP198	107	114	7	1.01	0.58	0.2	CHIPS
MJP200	61	73	12	1.74	1.45	0.14	CHIPS

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
MJP201	97	105	8	3.81	3.56	0.12	CHIPS
MJP203	76	91	15	2.51	2.07	0.21	CHIPS
MJP204	36	51	15	2.01	1.94	0.03	CHIPS
MJP205	60	65	5	3.48	3.43	0.02	CHIPS
MJP209	68	82	14	2.34	2.1	0.11	CHIPS
MJP209	86	87	1	0.69	0.66	0.01	CHIPS
MJP211	58	59	1	2.61	2.6	0	CHIPS
MJP212	65	90	25	1.87	1.6	0.13	CHIPS
MJP212	95	99	4	0.82	0.81	0.01	CHIPS
MJP214	40	41	1	0.5	0.5	0	CHIPS
MJP215	52	56	4	10.57	10.55	0.01	CHIPS
MJP215	59	65	6	2.52	2.5	0.01	CHIPS
MJP217	40	41	1	0.64	0.63	0	CHIPS
MJP217	44	51	7	0.73	0.72	0	CHIPS
MJP217	55	57	2	1.54	1.53	0	CHIPS
MJP218	37	40	3	1.57	1.53	0.02	CHIPS
MJP218	46	47	1	1.46	1.41	0.02	CHIPS
MJP218	51	61	10	1.01	0.98	0.01	CHIPS
MJP219	46	47	1	0.64	0.63	0	CHIPS
MJP219	53	54	1	0.53	0.49	0.02	CHIPS
MJP220	32	33	1	1.13	1.12	0	CHIPS
MJP220	39	42	3	0.64	0.63	0.01	CHIPS
MJP221	69	72	3	1.18	0.76	0.2	CHIPS
MJP221	75	80	5	0.83	0.81	0.01	CHIPS
MJP222	78	80	2	1.36	1.2	0.07	CHIPS
MJP222	84	92	8	0.95	0.64	0.15	CHIPS
MJP223	73	79	6	0.68	0.67	0.01	CHIPS
MJP223	82	86	4	0.66	0.66	0	CHIPS
MJP223	90	93	3	2.16	2.15	0	CHIPS
MJP223	100	112	12	0.82	0.68	0.07	CHIPS
MJP225	67	70	3	1.1	0.98	0.06	CHIPS
MJP226	80	84	4	0.7	0.65	0.02	CHIPS
MJP226	94	95	1	1.34	0.19	0.54	CHIPS
MJP226	99	104	5	1.42	1.38	0.02	CHIPS
MJP226	107	123	16	0.79	0.75	0.02	CHIPS
MJP226	126	140	14	1.1	0.94	0.07	CHIPS
MJP227	26	28	2	0.65	0.34	0.15	CHIPS
MJP227	53	57	4	0.91	0.42	0.23	CHIPS
MJP227	71	80	9	3.54	3.45	0.04	CHIPS
MJP228	25	26	1	0.56	0.55	0	CHIPS
MJP228	34	38	4	2.37	2.37	0	CHIPS
MJP228	54	74	20	0.87	0.78	0.04	CHIPS
MJP228	78	79	1	0.54	0.39	0.07	CHIPS
MJP228	83	111	28	1.07	0.71	0.17	CHIPS

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
MJP228	118	122	4	5.26	5.25	0	CHIPS
MJP229	44	45	1	0.85	0.84	0.01	CHIPS
MJP229	49	63	14	0.76	0.64	0.06	CHIPS
MJP229	73	93	20	1.51	1.47	0.02	CHIPS
MJP229	103	105	2	1.45	1.44	0	CHIPS
MJP230	44	46	2	1.09	1.09	0	CHIPS
MJP230	76	77	1	0.54	0.52	0.01	CHIPS
MJP230	82	86	4	2.65	2.65	0	CHIPS
NMRC003	29	30	1	0.81	0.81	0	CHIPS
NMRC005	223	226	3	2.28	2.25	0.01	CORE
NMRC005	233	234	1	0.94	0.93	0	CORE
NMRC005	249	255	6	0.7	0.55	0.07	CORE
NMRC005	258	259.4	1.4	0.68	0.62	0.02	CORE
NMRC005	281	282	1	0.79	0.76	0.01	CORE
NMRC005	286	287	1	32.92	28.31	2.18	CORE
NMRC005	293	293.5	0.5	0.84	0.82	0.01	CORE
NMRC006	62	63	1	0.52	0.52	0	CHIPS
NMRC009	31	32	1	0.77	0.77	0	CHIPS
NMRC009	39	40	1	0.55	0.55	0	CHIPS
RDRC001	42.8	43.8	1	1.57	1.57	0	CHIPS
RDRC001	149.8	154.8	5	0.58	0.08	0.24	CHIPS
RDRC001	200.8	203.8	3	1.25	0.11	0.54	CHIPS
RDRC001	209.8	227.7	17.9	1.32	1.03	0.13	CHIPS
RDRC002	228	235	7	1.01	1	0	CHIPS
RDRC002	251	252	1	5.53	5.24	0.14	CHIPS
RDRC002	255	258	3	8.7	8.49	0.1	CHIPS
RDRC002	265	272	7	1.82	1.04	0.37	CORE
RDRC002	281	295	14	0.72	0.66	0.03	CORE
RDRC004	29	32	3	1.48	1.48	0	CHIPS
RDRC004	163	171	8	0.83	0.81	0.01	CHIPS
RDRC004	183	200	17	1.38	1.26	0.06	CHIPS
RDRC007	23	24	1	0.88	0.86	0.01	CHIPS
RDRC010	73	76	3	1.2	1.19	0	CHIPS
RDRC010	140	153	13	0.77	0.23	0.25	CHIPS
RDRC010	174	175	1	0.53	0.41	0.06	CHIPS
RDRC010	187	199	12	1.15	1.04	0.05	CHIPS
RDRC011	69	70	1	0.59	0.57	0.01	CHIPS
RDRC011	154	161	7	0.73	0.45	0.13	CHIPS
RDRC011	167	168	1	1.23	1.19	0.02	CHIPS
RDRC011	179	186	7	1.87	1.82	0.03	CHIPS
RDRC012	191	198	7	0.95	0.67	0.13	CHIPS
RDRC013	192	193	1	0.85	0.85	0	CHIPS
RDRC013	218	220	2	1.32	0.97	0.17	CHIPS
RDRC014	97	99	2	1.1	1.1	0	CHIPS

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
RDRC016	90	93	3	1.27	1.24	0.01	CHIPS
RDRC016	103	104	1	0.7	0.67	0.01	CHIPS
RDRC018	151	152	1	0.56	0.49	0.04	CHIPS
RDRC018	155	158	3	1.33	0.13	0.57	CHIPS
RDRC018	161	168	7	0.92	0.72	0.09	CHIPS
RDRC018	172	174	2	0.62	0.44	0.08	CHIPS
RDRC018	177	197	20	1.27	1.03	0.11	CHIPS
RDRC018	201	211.3	10.3	1.92	1.9	0.01	CHIPS
RDRC019	123.5	127.5	4	0.61	0.17	0.21	CHIPS
RDRC019	137.5	139.5	2	0.87	0.55	0.15	CHIPS
RDRC019	147.5	179.5	32	3.64	3.59	0.02	CHIPS
RDRC020	122	123	1	1.66	1.63	0.02	CHIPS
RDRC020	142	148	6	6.21	4.69	0.72	CHIPS
RDRC021	134	142	8	1.21	0.68	0.25	CHIPS
RDRC022	114	128	14	1.4	1.15	0.12	CHIPS
RDRC024	154	168	14	1.34	0.78	0.26	CHIPS
RDRC025	114	128	14	2.05	1.56	0.23	CHIPS
RDRC026	127	140	13	0.89	0.48	0.19	CHIPS
RDRC027	156	168	12	1.78	1.41	0.18	CHIPS
RDRC028	134	136	2	1.37	0.86	0.24	CHIPS
RDRC028	141	155	14	1.06	0.81	0.12	CHIPS
RDRC028	159	160	1	0.95	0.94	0	CHIPS
RDRC029	141	142	1	0.93	0.91	0.01	CHIPS
RDRC029	146	152	6	0.7	0.46	0.12	CHIPS
RDRC029	155	156	1	0.92	0.57	0.16	CHIPS
RDRC030	132	135	3	1.04	0.92	0.06	CHIPS
RDRC030	142	146	4	1.86	1.28	0.27	CHIPS
RDRC030	149	154	5	1.74	1.06	0.32	CHIPS
RDRC031	135	140	5	1.65	1.64	0.01	CHIPS
RDRC031	144	146	2	1.2	1.1	0.05	CHIPS
RDRC031	149	160	11	4.12	3.43	0.32	CHIPS
RDRC032	166	179	13	1.76	1.28	0.23	CHIPS
RDRC033	140	141	1	0.75	0.75	0	CHIPS
RDRC033	174	184	10	1.84	1.2	0.3	CHIPS
RDRC034	40	44	4	0.65	0.65	0	COMP
RDRC034	160	169	9	2.87	2.39	0.23	CHIPS
RDRC035	169	177	8	1.33	0.58	0.35	CHIPS
RDRC036	130	131	1	0.57	0.25	0.15	CHIPS
RDRC036	134	138	4	1.05	0.57	0.23	CHIPS
RDRC036	148	152	4	1.07	1.03	0.02	CHIPS
RDRC037	133.1	137.1	4	0.62	0.51	0.05	CHIPS
RDRC037	146.1	151.1	5	1.13	1.1	0.02	CHIPS
RDRC037	160.1	162.1	2	0.77	0.72	0.02	CHIPS
RDRC038	63	71	8	0.7	0.44	0.12	CHIPS

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
RDRC038	96	97	1	0.63	0.5	0.06	CHIPS
RDRC038	147	151	4	1.05	0.91	0.06	CHIPS
RDRC039	28.7	30.7	2	0.83	0.75	0.04	CHIPS
RDRC039	33.7	35.7	2	0.88	0.83	0.02	CHIPS
RDRC039	134.7	137.7	3	3.87	3.85	0.01	CHIPS
RDRC039	152.7	155.7	3	0.59	0.19	0.19	CHIPS
RDRC039	161.7	168.7	7	0.62	0.31	0.14	CHIPS
RDRC039	173.7	207	33.3	3.46	3.01	0.21	CHIPS
RDRC040	28.4	29.4	1	0.63	0.62	0.01	CHIPS
RDRC040	48.4	49.4	1	0.55	0.53	0.01	CHIPS
RDRC040	53.4	65.4	12	0.75	0.68	0.03	CHIPS
RDRC040	73.4	99	25.6	1.59	1.21	0.18	CHIPS
RDRC040	102	107	5	0.83	0.21	0.29	CORE
RDRC040	110	122	12	7.03	6.98	0.02	CORE
RDRC041	125	128	3	0.51	0.5	0	CHIPS
RDRC041	134	135	1	0.95	0.94	0	CHIPS
RDRC041	165	174	9	10.96	10.18	0.37	CHIPS
RDRC041	179	180	1	0.53	0.48	0.03	CHIPS
RDRC042	179.6	183.6	4	1.02	1.02	0	COMP
RDRC042	199.6	200.6	1	0.67	0.66	0	CHIPS
RDRC042	229	236	7	3.32	2.59	0.34	CORE
RDRC043	233.4	240	6.6	2	0.93	0.5	CORE
RDRC044	290.4	291.4	1	0.76	0.76	0	CORE
RDRC045	197	205	8	1.62	0.88	0.35	CHIPS
RDRC046	223.58	224.65	1.07	0.56	0.56	0	CORE
RDRC047	202.5	203.5	1	1.72	1.71	0	CHIPS
RDRC047	265.17	267.34	2.17	1.91	0.12	0.85	CORE
RDRC047	270.5	274.22	3.72	2.01	0.17	0.87	CORE
RDRC047	276.49	279.5	3.01	0.57	0.14	0.2	CORE
RDRC047	282.5	286.5	4	0.71	0.32	0.19	CORE
RDRC047	293	298	5	1.1	0.34	0.36	CORE
RDRC047	304	311	7	1.11	0.47	0.3	CORE
RDRC048B	231.75	243	11.25	2.56	0.82	0.82	CORE
RDRC048B	247	248	1	2.73	0.36	1.12	CORE
RDRC048B	251	252	1	0.61	0.44	0.08	CORE
RDRC048B	256	273	17	1.48	0.56	0.44	CORE
RDRC048B	276	294	18	3.97	3.41	0.27	CORE
RDRC048B	306.1	311	4.9	1.53	0.6	0.44	CORE
RDRC048B	316	320	4	0.63	0.56	0.03	CORE
RDRC049	232.8	240	7.2	4.6	4.51	0.04	CORE
RDRC049	253.3	254.5	1.2	1.07	1	0.03	CORE
RDRC049	256.75	268.6	11.85	1.04	0.82	0.11	CORE
RDRC049	270.8	294	23.2	1.91	1.6	0.15	CORE
RDRC049	323.6	324.5	0.9	1.56	1.55	0	CORE

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
RDRC049	358	359	1	0.7	0.69	0	CORE
RDRC049	369	370.15	1.15	0.68	0.67	0	CORE
RDRC049	400	403	3	1.34	1.31	0.01	CORE
RDRC049	416	418	2	0.93	0.9	0.01	CORE
RDRC050	0	4	4	0.56	0.54	0.01	COMP
RDRC050	123	128	5	1.18	1.17	0	CHIPS
RDRC051	126	127	1	0.5	0.48	0.01	CHIPS
RDRC051	138	142	4	0.59	0.38	0.1	CHIPS
RDRC051	152	153	1	0.69	0.66	0.01	CHIPS
RDRC052	280	281	1	0.57	0.57	0	CORE
RDRC052	284	287.65	3.65	1.67	0.77	0.43	CORE
RDRC053	259	267	8	2.22	1.24	0.46	CORE
RDRC054	224.85	229.22	4.37	2.01	1.82	0.09	CORE
RDRC054	232	246	14	1.45	0.89	0.26	CORE
RDRC054	253	255.2	2.2	0.78	0.65	0.06	CORE
RDRC055	180	184	4	0.81	0.78	0.01	CORE
RDRC055	220	226	6	0.71	0.17	0.25	CORE
RDRC055	229	259	30	1.66	1.38	0.13	CORE
RDRC055	264	281	17	2.48	2.38	0.05	CORE
RDRC056	209.4	218.4	9	1.22	0.93	0.14	CHIPS
RDRC056	224.1	225.25	1.15	1.41	1.38	0.01	CORE
RDRC057	71.4	75.4	4	0.6	0.6	0	COMP
RDRC057	241.65	255.4	13.75	1	0.92	0.04	CORE
RDRC058	179.91	193.15	13.24	1.22	1.04	0.08	CORE
RDRC059	228	229.92	1.92	5.39	4.79	0.28	CORE
RDRC059	232	257	25	1.6	1.23	0.17	CORE
RDRC059	261.4	262.45	1.05	0.74	0.69	0.02	CORE
RDRC060	159	166	7	0.62	0.5	0.06	CHIPS
RDRC060	170	177	7	3.05	2.54	0.24	CHIPS
RDRC060	180	189	9	1.74	1.42	0.15	CHIPS
RDRC061	129	130	1	0.98	0.97	0.01	CHIPS
RDRC061	145	150	5	1	0.97	0.01	CHIPS
RDRC061	155	156	1	0.79	0.5	0.14	CHIPS
RDRC061	161	164	3	1.89	1.31	0.27	CHIPS
RDRC061	168	169	1	1.69	1.13	0.26	CHIPS
RDRC062	145	147	2	0.65	0.54	0.05	CHIPS
RDRC063	35.6	39.6	4	1.01	1.01	0	COMP
RDRC063	192.1	193	0.9	0.66	0.59	0.04	CORE
RDRC063	198.1	205	6.9	0.78	0.58	0.09	CORE
RDRC064	129	134	5	0.52	0.48	0.02	CHIPS
RDRC064	135	140	5	0.54	0.51	0.01	CHIPS
RDRC065	146.4	148.4	2	1.13	0.93	0.1	CHIPS
RDRC066	153	156	3	3.23	2.66	0.27	CHIPS
RDRC067	91	92.1	1.1	0.61	0.56	0.02	CORE

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
RDRC067	94.3	95	0.7	0.58	0.56	0.01	CORE
RDRC067	106.6	107.3	0.7	0.53	0.24	0.14	CORE
RDRC067	138	139	1	0.73	0.22	0.24	CORE
RDRC067*	143	152.5	9.5	0.99	0.38	0.29	CORE
RDRC067	155.6	179	23.4	1.67	0.85	0.39	CORE
RDRC067*	183	198.1	15.1	3.48	0.42	1.44	CORE
RDRC067*	204	212	8	0.99	0.41	0.27	CORE
RDRC067	253.38	296	42.62	1.17	1.08	0.05	CORE
SSDD006	352.8	354	1.2	0.75	0.7	0.02	CORE
SSDD006	358	360	2	0.59	0.33	0.12	CORE
SSDD006	498.6	500	1.4	0.89	0.83	0.03	CORE
SSDD007	24	28	4	0.69	0.69	0	COMP
SSDD008	332.5	360	27.5	1.7	1.22	0.23	CORE
SSDD008	363	364	1	1.71	1.59	0.05	CORE
SSDD008	369.7	370	0.3	1.28	1.25	0.01	CORE
SSDD008	382	386	4	0.95	0.64	0.14	CORE
SSDD009	218.7	219.5	0.8	1.49	1.41	0.04	CORE
SSDD009	222	222.5	0.5	1.4	0.57	0.39	CORE
SSDD009	225.5	230.7	5.2	1.07	1.04	0.01	CORE
SSDD010	195	197	2	0.85	0.83	0.01	CORE
SSDD010	202	206.3	4.3	1.62	1.1	0.25	CORE
SSDD011	281	291	10	0.94	0.76	0.08	CORE
SSDD011	410	411	1	0.55	0.48	0.04	CORE
SSDD011	419	420	1	1.03	0.97	0.03	CORE
SSDD011	448	449	1	1.07	1.06	0.01	CORE
SSDD011	454	455	1	0.64	0.61	0.01	CORE
SSDD012	220.5	221.4	0.9	3.57	0.22	1.58	CORE
SSDD014	367.35	374.43	7.08	1.95	0.99	0.45	CORE
SSDD015	216	217	1	0.79	0.17	0.29	Core
SSDD016	439.6	440.4	0.8	0.73	0.72	0	Core
SSRC007	64	68	4	1.11	1.1	0.01	COMP
SSRC007	100	115	15	2.79	2.49	0.14	CHIPS
SSRC008	68	72	4	0.55	0.54	0.01	COMP
SSRC008	106	111	5	2.01	1.71	0.14	CHIPS
SSRC008	114	119	5	4.84	4.76	0.04	CHIPS
SSRC009	76	80	4	0.72	0.71	0	СОМР
SSRC009	113	114	1	3.44	3.33	0.05	CHIPS
SSRC009	119	120	1	0.53	0.44	0.04	CHIPS
SSRC010	88	92	4	1.3	1.28	0.01	CHIPS
SSRC010	129	140	11	1.04	0.83	0.1	CHIPS
SSRC011	85	90	5	1.59	1.54	0.02	CHIPS
SSRC012	94	97	3	1.1	1.09	0.01	CHIPS
SSRC012	107	121	14	2.42	1.07	0.64	CHIPS
SSRC013	108	112	4	1.01	0.99	0.01	CHIPS
					0.00	V.V.1	· ·

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
SSRC013	138	144	6	0.58	0.17	0.2	CHIPS
SSRC015	87	88	1	0.77	0.72	0.03	CHIPS
SSRC015	92	94	2	0.82	0.79	0.01	CHIPS
SSRC015	105	106	1	1.46	1.32	0.07	CHIPS
SSRC015	116	119	3	1.12	0.99	0.06	CHIPS
SSRC015	122	131	9	2.52	2.02	0.24	CHIPS
SSRC016	72	76	4	0.52	0.51	0	COMP
SSRC016	83	84	1	0.66	0.65	0	CHIPS
SSRC016	123	124	1	0.57	0.39	0.09	CHIPS
SSRC016	127	134	7	6.22	5.4	0.39	CHIPS
SSRC017	122	123	1	1.82	0.97	0.4	CHIPS
SSRC017	133	148	15	3.59	2.97	0.29	CHIPS
SSRC018	89	90	1	1.07	0.98	0.04	CHIPS
SSRC018	93	95	2	1.24	1.19	0.02	CHIPS
SSRC018	116	118	2	0.74	0.4	0.16	CHIPS
SSRC018	121	131	10	7.98	6.55	0.68	CHIPS
SSRC020	125	136	11	4.18	2.86	0.62	CHIPS
SSRC021	135	147	12	3.83	2.49	0.63	CHIPS
SSRC024	59	84	25	1.79	1.48	0.14	CHIPS
SSRC025	76	78	2	1.82	1.62	0.09	CHIPS
SSRC025	82	96	14	1.26	1.04	0.1	CHIPS
SSRC025	102	105	3	2.81	2.8	0.01	CHIPS
SSRC025	109	110	1	0.78	0.78	0	CHIPS
SSRC028	61	79	18	1.29	0.96	0.15	CHIPS
SSRC029	78	80	2	1.31	0.73	0.27	CHIPS
SSRC029	83	84	1	0.77	0.52	0.12	CHIPS
SSRC029	91	98	7	0.86	0.82	0.02	CHIPS
SSRC029	106	110	4	0.62	0.6	0.01	COMP
SSRC032	74	98	24	2.25	2.02	0.11	CHIPS
SSRC037	69	70	1	0.67	0.24	0.2	CHIPS
SSRC037	76	79	3	0.87	0.67	0.1	CHIPS
SSRC039	70	77	7	5.07	4.72	0.17	CHIPS
SSRC040	63	72	9	1.38	0.47	0.43	CHIPS
SSRC041	76	80	4	4.83	4.48	0.16	CHIPS
SSRC042	70	85	15	2.75	2.55	0.09	CHIPS
SSRC043	60	78	18	2.3	1.95	0.16	CHIPS
SSRC044	72	96	24	0.95	0.61	0.16	CHIPS
SSRC044	100	101	1	0.75	0.66	0.04	CHIPS
SSRC045	70	71	1	1.38	1.26	0.06	CHIPS
SSRC045	78	88	10	2.29	2.03	0.12	CHIPS
SSRC046	74	75	1	0.78	0.73	0.02	CHIPS
SSRC046	78	97	19	2.01	1.9	0.05	CHIPS
SSRC047	113	114	1	0.6	0.57	0.01	CHIPS
SSRC047	117	119	2	1.85	1.73	0.06	CHIPS

Hole ID	From (m)	To (m)	Interval (m)	AuEq g/t	Au g/t	Sb %	Sample_Type
SSRC047	122	132	10	5.33	4.74	0.27	CHIPS
SSRC048	106	107	1	1.02	1	0.01	CHIPS
SSRC048	112	113	1	0.89	0.84	0.02	CHIPS
SSRC048	117	126	9	0.85	0.7	0.07	CHIPS
SSRC054	72	76	4	0.72	0.67	0.03	COMP
SSRC054	82	83	1	0.52	0.39	0.06	CHIPS
SSRC054	94	95	1	0.53	0.1	0.21	CHIPS
SSRC054	101	108	7	2.36	2.06	0.14	CHIPS
SSRC055	101	102	1	0.54	0.51	0.02	CHIPS
SSRC056	139	140	1	0.85	0.25	0.29	CHIPS
SSRC056	143	144	1	0.61	0.14	0.22	CHIPS
SSRC057	69	77	8	1.72	1.13	0.28	CHIPS
SSRC058	79	85	6	1.98	1.55	0.2	CHIPS
SSRC059	69	73	4	2.73	2.44	0.14	CHIPS
SSRC060	75	82	7	2.18	2.04	0.07	CHIPS
SSRC061	32	36	4	0.64	0.11	0.25	COMP
SSRC061	40	52	12	1.99	1.03	0.45	COMP
SSRC061	73	74	1	0.61	0.57	0.02	CHIPS
SSRC063	78	86	8	4.51	4.35	0.08	CHIPS

About Warriedar

Warriedar Resources Limited (ASX: WA8) is an advanced gold and copper exploration business with an existing resource base of over 1.8 Moz gold (148 koz Measured, 819 koz Indicated and 864 koz Inferred)¹ across Western Australia and Nevada, and a robust pipeline of high-calibre drill targets. Our focus is on rapidly building our resource inventory though modern, innovative exploration.

Competent Person Statement

The information in this report that relates to Exploration Result is based on information compiled by Dr. Amanda Buckingham and Peng Sha. Buckingham and Sha are both employees of Warriedar and members of the Australasian Institute of Mining and Metallurgy and have sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr. Buckingham and Mr. Sha consent to the inclusion in this report of the matters based on his information in the form and context in which they appear.

Appendix 1: Mineral Resources

Golden Range and Fields Find Projects, Western Australia

	Golden Range Mineral Resources (JORC 2012) - December 2019											
		Meas	ured	ļ	Indicated			Inferred		Tota	Total Resources	
Deposit	kt	g/t Au	kOz Au	kt	g/t Au	kOz Au	kt	g/t Au	kOz Au	kt	g/t Au	kOz Au
Austin	-	-	-	222	1.30	9.1	212	1.5	10.1	434	1.4	19.2
Rothschild	-	-	-	-	-	-	693	1.4	31.3	693	1.4	31.3
M1	55	1.80	3.3	131	2.50	10.4	107	4.0	13.7	294	2.9	27.4
Riley	-	-	-	32	3.1	3.2	81	2.4	6.3	113	2.6	9.5
Windinne Well	16	2.33	1.2	636	3.5	71	322	1.9	19.8	975	2.9	91.7
Bugeye	14	1.56	0.7	658	1.2	24.5	646	1.1	22.8	1319	1.1	48.1
Monaco-Sprite	52	1.44	2.4	1481	1.2	57.2	419	1.1	14.2	1954	1.2	74
Mugs Luck- Keronima	68	2.29	5	295	1.6	15	350	1.6	18.5	713	1.7	38.6
Ricciardo (Silverstone)	62	3.01	6	4008	1.6	202.6	4650	1.8	267.5	8720	1.7	475.9
Grand Total	267	2.17	18.6	7466	1.64	393	7480	1.68	404.2	15213	1.67	815.7

Note: Appropriate rounding applied

The information in this report that relates to estimation, depletion and reporting of the Golden Range and Fields Find Mineral Resources for is based on and fairly represents information and supporting documentation compiled by Dr Bielin Shi who is a Fellow (CP) of The Australasian Institute of Mining and Metallurgy. Dr Bielin Shi has sufficient experience relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr. Shi consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Big Springs Project, Nevada

	Big S	prings	Miner	al Reso	urces (JORC 2	012) - I	Novem	ber 20	22		
	Meas	ured		Indicat	ed		Inferre	d		TOTAL		
Deposit	kt	g/t Au	koz	kt	g/t Au	koz	kt	g/t Au	koz	kt	g/t Au	koz
North Sammy	345	6.6	73.4	698	3.1	70.6	508	2.4	39.1	1,552	3.7	183.1
North Sammy Contact	-	-	-	439	2.2	30.9	977	1.4	45	1,416	1.7	75.8
South Sammy	513	3.4	55.5	4,112	2.0	260.7	1,376	1.5	64.9	6,001	2.0	381.2
Beadles Creek	-	-	-	753	2.6	63.9	2,694	1.9	164.5	3,448	2.1	228.4
Mac Ridge	-	-	-	-	-	-	1,887	1.3	81.1	1,887	1.3	81.1
Dorsey Creek	-	-	-	-	-	-	325	1.8	18.3	325	1.8	18.3
Brien's Fault	-	-	-	-	-	-	864	1.7	46.2	864	1.7	46.2
Sub-Totals	858	4.7	128.9	6,002	2.2	426.1	8,631	1.7	459.1	15,491	2.0	1,014.1

Note: Appropriate rounding applied

The information in the release that relates to the Estimation and Reporting of the Big Springs Mineral Resources has been compiled and reviewed by Ms Elizabeth Haren of Haren Consulting Pty Ltd who is an independent consultant to Warriedar Resources Ltd and is a current Member and Chartered Professional of the Australasian Institute of Mining and Metallurgy and Member of the Australian Institute of Geoscientists. Ms Haren has sufficient experience, which is relevant to the style of mineralisation and types of deposits under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code).

Appendix 2: JORC CODE (2012) TABLE 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

	JORC Code explanation	Commentary Pro 2010 (MI) and CC hales)
Criteria Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Pre 2010 (MJ and SS holes) Each metre RC sample is subjected to a 75/25 two-tier splitter to produce a sample of approximately 3-4 kg in a calico bag and 15-20 kg in a plastic bag. Bulk sample bags are composited over 2 to 4 meterintervals (total weight 2-3 kg) using either a PVC spear or hand grabilithe samples are too sticky or wet, a spear cannot be used. The original 1-metre riffle splits (1-3 kg weight) are selectively submitted for analysis if the composite intervals assay ≥0.2 g/t Au. 2010 to 2022 (NWRC and ECRC holes) RC drilling: 2kg − 3kg samples were split from dry 1m bulk samples. The sample was initially collected from the cyclone in an inline collection box. Once the metre was completed the sample was dropped under gravity thorough a cone splitter, with the 1m split for assay collected in a calico bag. 2023 to Now (RDRC drill holes and NWRC diamond tail) For Reverse Circulation (RC) drilling program, 1m RC drill samples were collected through a rig-mounted cone splitter designed to capture a one metre sample with optimum 2kg to 4kg sample weight. Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines through the cyclone chimney. Compositing RC samples in lengths of 4 m was undertaken from hos rocks via combining 'Spear' samples of the 1m intervals to generate a 2 kg (average) sample. Diamond Core samples were taken, generally on 1 m intervals or or geological boundaries where appropriate. For 1m RC samples, field duplicates were collected at an approximate ratio of 1:50 and collected at the same time as the original sample through the chute of the cone splitter. Certified reference materials (CRMs) were inserted at an approximate ratio of 1:25. Grade range of the certified samples were selected based on grade population and economic grade ranges. For composite RC samples, field duplicates were made via combining 'Spear' samples. Duplicates, CRMs and blanks were inserted at an approximate ratio of 1:50.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger,	Samples were sent to the lab where they were pulverised to produce a 30g or 25g sample for fire assay. Pre 2010 (MJ and SS holes) 10 Diamond holes and 94 PC Holes.
,	Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 19 Diamond holes and 94 RC Holes 2010 to 2022 (NWRC and ECRC holes) 14 RC Holes 2023 to Now (RDRC drill holes and NWRC diamond tail) Top Drill drill rig was used for the RC holes. Hole diameter was 140 mm. Diamond drilling was also undertaken by Top Drill rig using HQ. Core was orientated using Axis Champ Ori digital core orientation tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximize sample recovery and ensure representative nature of the samples.	Pre 2010 (MJ and SS holes) It has been not possible to check sample recoveries for all the historical drill holes. 2010 to 2022 (NWRC and ECRC holes)

Criteria	JORC Code explanation	Commentary
Logging	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	 Drill recovery data were recorded for drill holes completed since 2010. Average recovery for Minjar drill holes is above 92%. During the RC sample collection process, the sample sizes were visually inspected to assess drill recoveries. The majority of samples were of good quality with ground water having minimal effect on sample quality or recovery. 2023 to Now (RDRC drill holes and NWRC diamond tail) For RC each metre interval, sample recovery, moisture and condition were recorded systematically. The majority of samples were of good quality with ground water having minimal effect on sample quality or recovery. The diamond drill core recovered is physically measured by tape measure and the length recovered is recorded for every run. There is no obvious relationship between sample recovery and grade. During the RC sample collection process, the sample sizes were visually inspected to assess drill recoveries. Pre 2023 (MJ, SS, NWRC and ECRC holes) Detailed geology logs exist for the vast majority of the holes in database. RC chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Chips were visually inspected and logged to record lithology, weathering, colour, veining, alteration, mineralization, oxidation and structure. Logging is both qualitative and quantitative or semi quantitative in nature. Diamond drill holes were logged by site geologist for the entire length of each core. Core trays were photographed wet and dry prior to sampling. Drill hole logs are recorded in excel and datashed, and validated in 3D software such as Surpac and Micromine 2023 to Now (RDRC drill holes and NWRC diamond tail) RC chips were washed and stored in chip trays in 1 m intervals for the entire length of each hole. Chip trays were stored on site in a sealed container. RC chips and diamond core were visually inspected and logged by an onsite ge
Sub- sampling Techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	database manager and uploaded to DataShed. Pre 2010 (MJ and SS holes) Spear composite, one metre riffle split samples and diamond core samples approximately 2 to 3 kg in weight, were collected sand submitted for gold and multielement assay. Sample preparation comprises drying and pulverizing total sample as received to nominal -75 micron grain size. The sample preparation technique is considered industry standard practice. Sample sizes are appropriate to the grain size of the mineralization. Prior to the 2010 drill program, quality control analysis was limited.

Criteria	JORC Code explanation	Commentary
	the grain size of the material being sampled.	 The sample preparation technique is considered industry best standard practice. Sample sizes are appropriate to the grain size of the mineralisation.
		 RC samples were generally dry and split at the rig using a riffle splitter. Large samples weighing between 3 and 5 kg each were dried, crushed and pulverized using industry best practice at the time.
		 Field QAQC procedures for drill holes involved the use of certified reference samples and blank samples. Frequency for standard samples is 1 in every 20 unknows.
		2023 to Now (RDRC drill holes and NWRC diamond tail)
		RC samples were split from dry 1 m bulk samples via a splitter directly
		from the cyclone to obtain a sample mass of 2-3kg.
		Composite RC samples were generated by taking a spear sample from
		each 1m bag to make rough 2 kg sample.
		Half Core samples were taken, generally on 1 m intervals or on
		geological boundaries where appropriate. Samples including RC chips and diamond core were sorted and dried
		 Samples including RC chips and diamond core were sorted and dried at 105 °C in client packaging or trays.
		All samples weighed and recorded when sample sorting.
		Pulverize 3kg to nom 85% <75um. All samples were analysed for Au
		using fire assay.
		Sample preparation technique is appropriate for Golden Range
		projects and is standard industry practice for gold deposits.
Quality of assay data	The nature, quality and appropriateness of the assaying and laboratory procedures	Pre 2010 (MJ and SS holes)
and Laboratory	used and whether the technique is	All samples were submitted to Utratrace Analytical Laboratories in
tests	considered partial or total. For geophysical tools, spectrometers,	Perth. Samples were analysed by fire assay with AAS or ICP finish (FA002).
	handheld XRF instruments, etc., the parameters used in determining the	The multi element assay were completed by aqua regia digest, ICP-
	analysis including instrument make and model, reading times, calibrations factors	OES finish (ICP302).
	applied and their derivation, etc.	2010 to 2022 (NWRC and ECRC holes)
	 Nature of quality control procedures adopted (e.g. standards, blanks, 	Drill samples were submitted to ALS in Perth. All samples were
	duplicates, external laboratory checks) and whether acceptable levels of	analysed by a 50g fire assay (AAS finish) which is a total digest assay
	accuracy (i.e. lack of bias) and precision	technique.
	have been established.	RC Field duplicates were collected at a rate of 1:20 with CRM's inserted at a rate of 1:20 also. The grade ranges of the CRM's ware.
		inserted at a rate of 1:20 also. The grade ranges of the CRM's were selected based on grade populations.
		Compositing RC samples in lengths of 4 m was undertaken via
		combining 'Spear' samples of the 1.0 m intervals to generate a 2 kg
		(average) sample
		Selected samples were analysed for multi elements with either an
		aqua regia or 4 acid digest and ICP-OES finish.
		2023 to Now (RDRC drill holes and NWRC diamond tail)
		 Drilling samples were submitted to Jinning Testing & Inspection's Perth laboratory. Samples were assayed by 30g fire assay ICP-OES
		finish from Jinning (FA30I). The multi element assay were completed
		by mixed acid digest ICP-OES finish (MADI33). The high-grade Sb
		samples (>3.5%) are reanalysed by fusion method to obtain near total
		digestion.
		Field duplicates, blanks and CRMs were selected and placed into
		sample stream analysed using the same methods.
		For 1m RC sample sequence, field duplicates were collected at a ratio
		of 1:50 and collected at the same time as the original sample through
		the cone splitter. CRMs were inserted at an approximate ratio of 1:15
<u> </u>		and blanks were inserted at an approximate ratio of 1:25.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 For composite RC samples, duplicates, CRMs and blanks were inserted at an approximate ratio of 1:50. For diamond drilling CRMs were inserted at an approximate ratio of 1:15 and blanks were inserted at an approximate ratio of 1:25. No portable XRF analyses result has been used in this release. Pre 2023 (MJ, SS Holes, NWRC and ECRC holes) Independent consultant reports have been viewed that verify significant historic interactions. Visual inspections have been completed with original and close grade control RC holes and results are comparable. Primary data was sourced from an existing digital database and compiled into an industry standard drill hole database management software (DataShed). Records have been made of all updates that have been made in cases of erroneous data. Data verification has been ongoing with historical assay and survey being checked. Some of historical drill holes were infill and grade control holes nearby historical holes and produced comparable results. No adjustments have been made to the assay data other than length weighted averaging. 2023 to Now (RDRC drill holes and NWRC diamond tail) Logging and sampling were recorded on digital logging sheet and digital sample sheet. Information was imported into DataShed
		digital sample sneet. Information was imported into DataSned database after data validation. File validation was also completed by geologist on the rig. Datashed was also applied for data verification and administration. There were no twin holes drilled during the RC/diamond program. All the sample intervals were visually verified using high quality photography. Assay results received were plotted on section and were verified against neighbouring holes. QAQC data were monitored on a hole-
		 by-hole basis. Any failure in company QAQC protocols resulted in follow up with the lab and occasional repeat of assay as necessary.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Pre 2023 (MJ, SS, NWRC and ECRC holes) Collar survey has been used from the supplied database. All holes have been checked spatially in 3D. All drill holes drilled since 2010 were staked using total station DGPS by a professional surveyor. 2000s drill holes were located by using theodolite. Pre 2000 holes collars were recorded in local gride and then transferred to MGA late. The topo surface files were sourced from the mine closure site survey results by professional surveyors. 2023 to Now (RDRC drill holes and NWRC diamond tail) RDRC067 positions was surveyed using handheld GPS. Rest of holes were picked-up by a licenced surveyor using DGPS equipment. All location data are captured in the MGA projection coordinates on GDA94 geodetic datum. During drilling most holes underwent gyroscopic down hole surveys on 30m increments. Upon completion of the hole a continuous gyroscopic survey with readings taken automatically at 5m increments inbound and outbound. Each survey was carefully checked to be in bounds of acceptable tolerance.

Criteria	JOF	RC Code explanation	Commentary
Data spacing and distribution	•	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Historical drill holes (having antimony assay) spacing varies from place to place in Ricciardo. The hole spacing are from 100m to 20m. 2023-2024 Ricciardo exploration drilling has been drilled on a grid pattern. Holes spacings at part of Ricciardo are sufficient for gold resource estimation. Historical drill holes are considered to have suitable data spacing for resource estimation focusing on contained gold. Due to limited multi-element analysis on historical holes, further pulps analysis is needed to meet the required spacing for an antimony resource estimation. RC Samples have been composited to 4m lengths outside proposed target zones
Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	WA8 and historical drilling are mainly orientated to perpendicular are main structural trend of the area; however, further study and drilling is required to obtain better understanding of antimony mineralized structure.
Sample security	•	The measures taken to ensure sample security.	Pre 2023 (MJ, SS, NWRC and ECRC holes) All historical drill cores and RC chips were stored on Golden Dragon mine site core yard. Company geologists have checked and compared with the digital drill hole data base. For samples collected since 2010, all the procedures were following industry standard. 2023 to Now (RDRC drill holes and NWRC diamond tail) Calico sample bags are tied, grouped by sample ID placed into polyweave sacks and cable tied. These sacks were then appropriately grouped, placed within larger in labelled bulka bags for ease of transport by company personnel or third-party transport contractor. Each dispatch was itemised and emailed to the laboratory for reconciliation upon arrival.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	The competent person has visited the project where sampling has taken place and has reviewed and confirmed the sampling procedures.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wildemess or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	There are 64 tenements associated with both Golden Dragon and Fields Find. Among them, 19 are mining leases, 27 are exploration licenses and 2 are in prospecting licenses. The rest of the tenements are G and L licenses. Third party rights include: 1) Gindalbie iron ore rights; 2) Mt Gibson Iron ore right for the Shine project; 3) Messenger's Patch JV right on M 59/357 and E 59/852: 4) Mt Gibson's iron ore and non-metalliferous dimension stone right on Fields Find; 5) GoldEX Royalty to Anketell Pty Ltd for 0.75% of gold and other metals production from M 59/379 and M 59/380; 6) 2% NSR royalty on products produced from Fields Find tenements to Mt Gibson; 7) Royalty of A\$5 per oz of gold produced payable to Mr Gary Mason, limited to 50Koz produced from P 59/1343, which covers part of E 59/1268. 8) Minjar royalty for A\$ 20 per oz of gold production from the project subject to a minimum received gold price of A\$2000 per oz with a cap of A\$18 million.

Criteria	JORC Code explanation	Commentary
		There is no determined native title in place.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Gold exploration at the region commenced in the 1980s. Normandy Exploration commenced the systematic exploration in late 1980s and 1990s. Project were acquired by Gindalbie Gold N.L. in December 1999. Golden Stallion Resources Pty Ltd acquired the whole project in March 2009. Shandong Tianye purchased 51% of Minjar (the operating company) in July 2009. Minjar became the wholly owned subsidiary of Tianye in 2010. Over 30,000 drill holes are in the database and completed by multiple companies using a combination technic of Reserve Circulation (RC), diamond drilling (DD), airecore (AC), Auger and RAB. Most of the drill holes were completed during the period of 2001-2004 and 2013-2018 by Gindalbie and Minjar respectively.
Geology	Deposit type, geological setting and style of mineralisation.	In the Golden Range area, gold mineralisation is dominantly controlled by structures and lithologies. North trending shear zones and secondary structures are interpreted to be responsible for the hydrothermal activity that produced many of the region's gold deposits. Two major shear structures have been identified, the Mougooderra Shear Zone and the Chulaar Shear Zone; both striking approximately north and controlling the occurrence of gold deposits. Host lithology units for gold mineralisation are predominantly the intensely altered mafic to ultramafic units, BIF, and dolerite intrusions. Main mechanism for mineralisation is believed to be associated with: 1) Shear zones as a regional control for fluid; 2) dolerite intrusions to be reacted and mineralised with auriferous fluids; 3) BIF as a rheological and chemical control; 4) porphyry intrusions associated with secondary or tertiary brittle structures to host mineralisation.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Table 2 and Table 3 of this release provides details of drill hole coordinates, orientations, length for all drill holes, and significant gold/copper intercepts.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Gold assays are reported as Au g/t and antimony assays Sb %. Gold equivalents are reported as AuEq g/t. Reported intercepts at Ricciardo include a minimum of 0.5g/t AuEq (gold equivalent) value over a minimum length of 0.3m with a maximum 2 m length of consecutive interval waste. Gold equivalent assays are calculated as AuEq g/t = Au g/t + Sb% x [US\$ 15,000 x antimony recovery / ((US\$ 2,200 x Au recovery) / 31.1035)] The use of 0.5 g/t Au equivalent cut-off is appropriate given to the potential open cut mining method at Ricciardo. Gold and antimony of US\$ 2,200/ounce gold and US\$ 15,000/tonne antimony were adopted. These prices were

Criteria	JORC Code explanation	Commentary
		applied by Hillgrove Gold-Antimony Project Pre-Feasibility Study, which was released by Larvotto Resource on 5 th August 2024.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Gold mineralization and antimony mineralisation at Ricciardo dips about 70 degrees to west. Majority of WA8 drill holes in this release are orientated around -60 degrees to the east at Ricciardo. The majority of the historical drill holes at Ricciardo were drilled as inclined holes with dipping angles close to -60 degree from multiple orientations; most of the drill holes are toward east. This is considered to be appropriate for the interpreted dip of the major mineralised structure and intrusions and creating minimal sampling bias.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps are included in the announcement
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to be a balanced report with a suitable cautionary note.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	None reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work includes RC and diamond core drilling programs to extend the identified mineralisation along strike and toward depth of the deposits sitting on Mougooderra Shear and other paralleled shear structure. Repeated parallel ore bodies toward will be tested as well.