

18th September 2024

GEOPHYSICAL SURVEY COMPLETED AS EXPLORATION ADVANCES AT SIBERIAN TIGER

- UAV magnetic survey completed at Leinster South over prospective stratigraphy along the eastern limb of the Lawlers Anticline.
- Detailed geophysical data to assist with drill targeting at the untested Siberian Tiger gold prospect.
- New rock chip gold results extend the surface footprint and strike potential of Siberian Tiger. Further mapping and geochemical sampling continue to identify new drill targets.
- Additional 177 rockchip samples from new prospect areas submitted for gold analysis with results expected in 3-4 weeks.
- Heritage negotiations and drilling approvals progressing.

Metal Hawk Limited (**ASX: MHK**, "**Metal Hawk**" or the "**Company**") is pleased to provide an exploration update for its 100% owned Leinster South project, located 30km south of Leinster in the Western Australian goldfields.

A high-resolution UAV (drone) magnetic survey has been completed over the majority of Leinster South tenement E36/1068, which includes the Siberian Tiger gold prospect. Recent rock chip sampling at Siberian Tiger identified high grade gold in quartz veining (see ASX announcement 5 August 2024). The detailed magnetic data and imagery (shown in Figure 1) is assisting the Company with geological and structural interpretation leading up to the maiden campaign of RC drilling at Leinster South. These features are now being investigated and field checked by Metal Hawk geologists. Detailed UAV photogrammetry and LIDAR data were also collected to assist in outlining new areas for exploration.

The Siberian Tiger gold discovery is located along the eastern limb of the Lawlers Anticline and only 15km from the Lawlers mining centre (Figure 1). Past production from the Agnew - Lawlers deposits is > 5 million oz @ 5gt Au¹.

¹ <u>https://www.goldfields.com</u>

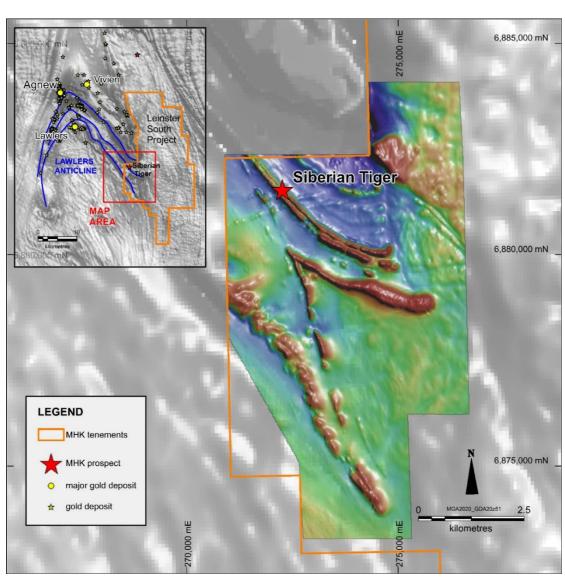


Figure 1. Leinster South airborne magnetics

Metal Hawk's Managing Director Will Belbin commented: "The level of detail shown from the geophysical drone survey is excellent. The data clearly maps out the prospective southeastern trending stratigraphy along strike from Siberian Tiger and also highlights a number of key structural features. It is great to see additional high-grade gold rock chip samples in new areas and we will continue to develop more prospects with effective boots-onground exploration."

Following the initial high-grade rock chip results from Siberian Tiger, the second field campaign of mapping and geochemical sampling was carried out in August 2024. Assay results from this second round of rock chip sampling show a number of new gold anomalies at untested locations along the belt, along strike to the southeast from Siberian Tiger ("Tiger Tail") and also on the other (southwestern) side of the prominent southeast trending mafic and ultramafic belt ("Tiger Stripes"; see Figure 2). There is a subtle magnetic association with

the Siberian Tiger as it is currently mapped, suggesting the presence of some pyrrhotite or magnetite below the depth of weathering. Only rarely have sulphides been observed at surface due to surface oxidation. The assay data are also firming the pathfinder elements, with bismuth, tungsten, copper and zinc aligning well with gold-bearing quartz veins in the area.

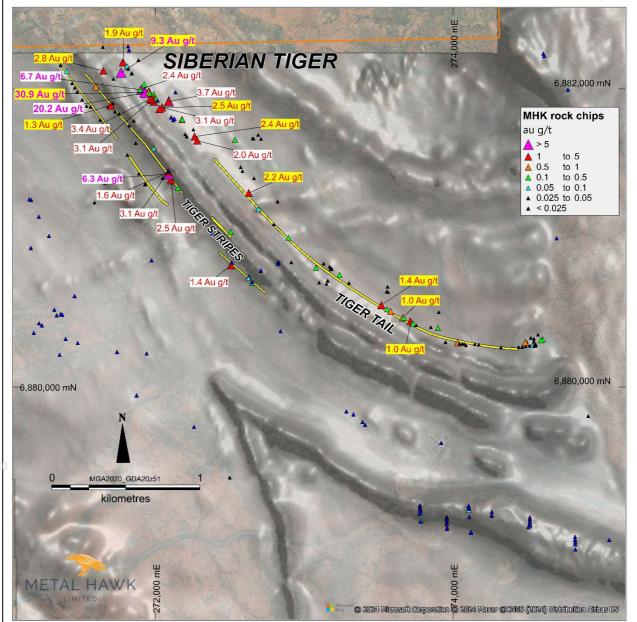


Figure 2. Siberian Tiger prospect; new significant rock chip results (>1 g/t Au) highlighted yellow.

Verification rockchip sampling was undertaken from four of the initial Siberian Tiger quartz vein samples grading between 0.76g/t Au and 20.2g/t Au. The gold assay results (see Table 1) reconcile well and show good repeatability. For the full list of new results see Table 2.

	Table 1. Siberian Tiger verification rockchip samples					
coordinates		Original Sample		Duplicate Sample		
Easting	Northing	ID	au g/t	ID	au g/t	
271929	6881975	24DR158	20.2	24DR289	30.87	
271956	6881979	24DR159	0.76	24DR290	1.12	
272045	6881876	24DR165	2.96	24DR291	2.49	
272088	6881916	24DR203	3.75	24DR292	6.16	

Further geochemical sampling and regional mapping is being conducted as follow-up and in addition to the results reported in this announcement. Several new prospect areas have been flagged and abundant outcropping quartz veins have been sampled, with the next batch of results expected in 3-4 weeks.

Metal Hawk is progressing heritage negotiations with the traditional owners and will be scheduling a heritage clearance survey as soon as possible.

Figure 3. Quartz vein rock chip sample from Siberian Tiger grading 30.9g/t Au

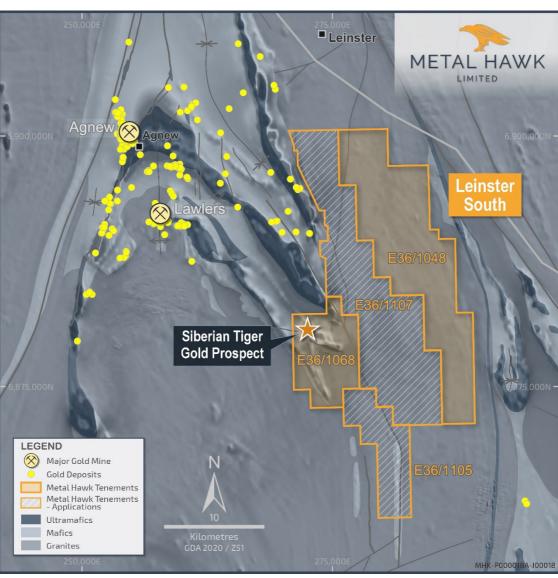


Figure 4. Leinster South Project

This announcement has been authorised for release by Mr Will Belbin, Managing Director, on behalf of the Board of Metal Hawk Limited.

For further information regarding Metal Hawk Limited please visit our website at <u>www.metalhawk.au</u> or contact:

Will Belbin Managing Director Metal Hawk Limited +61 478 198 665 Media & Investor Relations Luke Forrestal GRA Partners +61 411 479 144

admin@metalhawk.au

luke.forrestal@grapartners.com.au

Competent Person statement

The information in this announcement that relates to Exploration Targets and Exploration Results is based on information compiled and reviewed by Mr William Belbin, a "Competent Person" who is a Member of the Australian Institute Geoscientists (AIG) and is Managing Director at Metal Hawk Limited. Mr Belbin is a full-time employee of the Company and hold shares and options in the Company. Mr Belbin has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Belbin consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Metal Hawk Limited's planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements.

Antess in the

Table 2: ROCK CHIP SAMPLE RESULTS

24DR274	EAST 271648	NORTH	REGRL 521	PROSPECT LN019	SAMPLETYPE	Rock type	Au (g/t
24DR274 24DR275	271648	6882281 6882158	521	LN019 LN019	Rock Rock	quartz vein quartz vein	0.02
24DR275 24DR276	271364 271402	6882158	508	LN019	Rock	quartz vein	NSR
24DR270	271402	6882121	503	LN019	Rock	fe carbonate rock	0.08
24DR277	272894	6881001	505	LN019	Rock	quartz vein	0.50
24DR279	272913	6880836	501	LN019	Rock	quartz vein	NSR
24DR280	273158	6880714	502	LN019	Rock	quartz vein	NSR
24DR281	273185	6880793	503	LN019	Rock	quartz vein	0.02
24DR282	273237	6880753	504	LN019	Rock	mafic	0.21
24DR283	273170	6880807	503	LN019	Rock	quartz vein	0.03
24DR284	273130	6880827	501	LN019	Rock	quartz vein	0.02
24DR285	273661	6880461	501	LN034	Rock	quartz vein	0.19
24DR286	273660	6880463	501	LN034	Rock	cu-rich sulphidic rock	1.00
24DR287	273713	6880439	500	LN034	Rock	cu-rich sulphidic rock	1.03
24DR288	273731	6880425	500	LN034	Rock	quartz vein	0.13
24DR289	271929	6881975	509	Siberian Tiger	Duplicate 24DR158 (20g/t Au)	quartz vein	30.87
24DR290	271956	6881979	507	Siberian Tiger	Duplicate 24DR159 (0.76g/t Au)	quartz vein	1.12
24DR291	272045	6881876	508	Siberian Tiger	Duplicate 24DR165 (2.96g/t Au)	quartz vein	2.49
24DR292	272088	6881916	503	Siberian Tiger	Duplicate 24DR203 (3.75g/t Au)	quartz vein	6.16
24DR294	272256	6881727	499	Siberian Tiger	Rock	quartz vein	0.02
24DR295	272211	6881681	498	Siberian Tiger	Rock	quartz vein	0.03
24DR296	272264	6881681	499	Siberian Tiger	Rock	quartz vein	2.44
24DR297	272307	6881779	500	Siberian Tiger	Rock	quartz vein	0.01
24DR298	272536	6881660	498	LN019	Rock	quartz vein	0.27
24DR299	272691	6881692	502	LN019	Rock	quartz vein	NSR
24DR300	272660	6881666	500	LN019	Rock	quartz vein	NSR
24DR301	272654	6881669	501	LN019	Rock	quartz vein	NSR
24DR302	272585	6881448	500	LN019	Rock	quartz vein	NSR
24DR303	272573	6881475	502	LN019	Rock	quartz vein	NSR
24DR304	272628	6881302	503	LN019	Rock	quartz vein	2.23
24DR305	272663	6881401	500	LN019	Rock	quartz vein	NSR
24DR306	272821	6881245	507	LN019	Rock	quartz vein	NSR
24DR307	272691	6881195	507	LN019	Rock	quartz vein	0.06
24DR308 24DR309	272795	6881091	507 501	LN019 LN034	Rock Rock	quartz vein	NSR NSR
	273564 273554	6880636	501	LN034		quartz vein	NSR
24DR310 24DR311	273554	6880640 6880550	502	LN034	Rock Rock	quartz vein	1.44
24DR311 24DR312	273518	6880522	508	LN034 LN034	Rock	amphibolite? Cu-ox amphibolite? Cu-ox	0.24
24DR312	273581	6880508	506	LN034	Rock	amphibolite? Cu-ox	0.24
24DR315	273752	6880413	498	LN034	Rock	quartz vein	NSR
24DR315	274031	6880297	491	LN034	Rock	quartz vein	0.98
24DR317	274031	6880290	491	LN034	Rock	quartz vein	NSR
24DR318	274061	6880287	490	LN034	Rock	quartz vein	0.02
24DR319	274074	6880287	490	LN034	Rock	quartz vein	NSR
24DR320	274087	6880278	489	LN034	Rock	quartz vein	NSR
24DR321	274146	6880287	489	LN034	Rock	quartz vein	NSR
24DR322	274172	6880284	490	LN034	Rock	quartz vein	NSR
24DR323	274321	6880266	491	LN034	Rock	quartz vein	NSR
24DR324	274440	6880267	489	LN034	Rock	quartz vein	NSR
24DR325	274465	6880268	490	LN034	Rock	quartz vein	NSR
24DR326	274487	6880273	490	LN034	Rock	quartz vein	NSR
24DR327	274514	6880276	491	LN034	Rock	quartz vein	NSR
24DR328	274532	6880282	492	LN034	Rock	quartz vein	NSR
24DR329	274535	6880280	492	LN034	Rock	quartz vein	0.06
24DR330	274545	6880278	492	LN034	Rock	quartz vein	NSR
24DR332	274553	6880279	494	LN034	Rock	quartz vein	NSR
24DR333	274555	6880277	494	LN034	Rock	quartz vein	NSR
24DR334	274555	6880285	494	LN034	Rock	quartz vein	NSR
24DR335	274570	6880351	491	LN034	Rock	quartz vein	0.02
24DR336	274521	6880329	491	LN034	Rock	quartz vein	NSR
24DR337	274475	6880287	490	LN034	Rock	dolerite	NSR
2455220	274494	6880300	491	LN034	Rock	quartz vein	NSR
24DR338							
24DR338 24DR339	274542	6880324	491	LN034	Rock	quartz vein	NSR

And Statistics

					· · · · · · · · · · ·			
	24DR342	274589	6880312	491	LN034	Rock	quartz vein	0.16
	24DR343	271844	6882102	507	Siberian Tiger	Rock	quartz vein	NSR
	24DR344	271842	6882107	506	Siberian Tiger	Rock	quartz vein	NSR
)	24DR345	271441	6882039	501	LN019	Rock	quartz vein	NSR
	24DR346	271460	6882010	503	LN019	Rock	quartz vein	NSR
	24DR347	271477	6881982	503	LN019	Rock	quartz vein	NSR
	24DR348	271509	6881927	503	LN019	Rock	quartz vein	NSR
	24DR349	271538	6881886	501	LN019	Rock	quartz vein	NSR
	24DR350	271630	6881793	498	LN019	Rock	quartz vein	NSR
	24DR351	271566	6881881	500	LN019	Rock	amphibolite	NSR
	24DR352	271651	6882122	510	LN019	Rock	quartz vein	2.83
	24DR353	271783	6882180	513	Siberian Tiger	Rock	quartz vein	1.87
	24DR354	271810	6882154	510	Siberian Tiger	Rock	quartz vein	0.07
	24DR355	271818	6882135	507	Siberian Tiger	Rock	quartz vein	0.02
	24DR356	271886	6882194	509	Siberian Tiger	Rock	quartz vein	0.05
	24DR357	271770	6882111	510	Siberian Tiger	Rock	quartz vein	9.29
	24DR358	271719	6882068	510	Siberian Tiger	Rock	quartz vein	0.03
	24DR359	271601	6882015	503	LN019	Rock	quartz vein	0.66
	24DR360	271683	6881880	499	LN019	Rock	quartz vein	NSR
	24DR362	271702	6881890	500	LN019	Rock	quartz vein	1.28
	24DR363	271717	6881903	500	LN019	Rock	quartz vein	0.03
	24DR364	271856	6881787	508	LN019	Rock	amphibolite	0.04
	24DR365	271824	6881753	503	LN019	Rock	quartz vein	0.02
	24DR366	271756	6881835	504	LN019	Rock	quartz vein	NSR
	24DR367	271732	6881849	502	LN019	Rock	quartz vein	NSR
	24DR368	271868	6881637	497	LN019	Rock	quartz vein	0.03
	24DR369	271812	6881558	496	LN019	Rock	quartz vein	NSR
	24DR370	271661	6881371	499	Regional	Rock	quartz vein	NSR
	24DR371	271592	6881238	489	Regional	Rock	quartz vein	NSR
	24DR372	271891	6881432	500	LN019	Rock	quartz vein	NSR
	24DR373	271930	6881359	499	LN019	Rock	quartz vein	NSR
	24DR374	271933	6881363	497	LN019	Rock	shale	NSR
	24JW009	271013	6883220	529	Regional	Rock	amphibolite	NSR
	24JW010	271004	6883223	529	Regional	Rock	quartz vein/mafic	NSR
	24JW011	272050	6881402	492	LN019	Rock	mafic	NSR
	24JW012	273178	6880800	503	LN019	Rock	quartz vein	0.02
	24JW013	272710	6881665	502	Regional	Rock	quartz vein	NSR
	24JW014	272201	6881696	498	Siberian Tiger	Rock	quartz vein	NSR
	24JW015	273668	6880464	501	LN034	Rock	quartz vein	0.27
	24JW016	274542	6880304	491	LN034	Rock	quartz vein	NSR
	24JW017	274548	6880277	494	LN034	Rock	quartz vein	NSR
	24JW018	274907	6879804	497	LN034	Rock	quartz vein	NSR
	24JW019	273949	6880300	493	LN034	Rock	quartz vein	NSR
	24JW020	273898	6880394	495	LN034	Rock	quartz vein	0.26
	24JW021	273850	6880401	496	LN034	Rock	quartz vein	NSR
1	24JW022	273904	6880501	493	LN034	Rock	quartz vein	NSR
	24JW023	273560	6880672	499	LN034	Rock	quartz vein	NSR
	24JW024	273300	6880697	507	LN034	Rock	quartz vein	NSR
	24JW025	273301	6880698	507	LN034	Rock	quartz vein	NSR
	24JW027	273100	6880700	509	LN019	Rock	quartz vein	NSR
	24JW028	273150	6880691	507	LN019	Rock	quartz vein	NSR
	24JW029	273178	6880790	503	LN019	Rock	quartz vein	NSR
	24JW030	273079	6880799	499	LN019	Rock	quartz vein	0.30
	24JW031	272500	6879391	478	LN032	Rock	quartz vein	NSR

Notes to Table 2:

- Grid coordinates GDA2020: zone51, locations determined by handheld GPS.
- Au reported is average where repeat assay available.
- NSR = no significant result.

2012 JORC Table 1

SECTION 1: SAMPLING TECHNIQUES & DATA (SURFACE GEOCHEMISTRY)

	JORC Code explanation	Commentary
Sampling techniques	JORC Code explanationNature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, 	 Surface rockchip sampling at Leinster South was undertaken as part of reconnaissance mapping and prospecting of gold targets and follow up from recent reconnaissance work carried out in June-July 2024 which identified gold mineralisation in quartz veining. Additional targets were identified from satellite imagery, interpretation of GSWA geological maps and from historic soil geochemical anomalies. Sampling was undertaken using standard industry practices. The rockchip sampling program was reconnaissance in nature, rockchips were taken at the discretion of a geologist according to visual inspection of suitably mineralised and/or unmineralised rock units. The geologist has attempted to collect a representative sample of the material presented, so there is no hand picking of specific pieces of broken rock or minerals. Rockchip sampling consisted of outcropping/ subcropping quartz veins and/or ferruginous mafic saprock lithologies. Samples weighed between 1 to 3kg. A total of 119 samples were collected in this campaign. Sample coordinates are in UTM grid (GDA2020 z51) and have been measured with a hand-held GPS with an accuracy of +/- 4m. All MHK samples were submitted for gold and multi-element analysis by Intertek Laboratories
		 Perth, WA using 4 acid digest with ICPMS finish, plus fire assay for gold. UAV (drone) magnetic survey was conducted by Pegasus Airborne. Flight lines were 50m spaced and the flying height of 25m.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Not applicable.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Not applicable.
	Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	

ALCONO.

)	Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	•	Logging of rock chips colour and lithology was carried out on a routine basis. Data is in a digital form. A photograph has been collected for each rockchip sample.
		Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.		
		The total length and percentage of the relevant intersections logged.		
	Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	•	Rockchip samples are split using a small rock hammer. In some cases where rock had weathered to gravelly material, multiple pieces of representative rock were required to create a composite sample. No selective hand picking of minerals took place. Rockchip samples weighed approximately 1-3 kg, which is sufficient for the grain size of the material being analysed and the reconnaissance stage of exploration being carried out. No selective hand picking took place. In some cases, multiple pieces of representative rock were required to create a composite sample. This approach is used in regional programs to establish the fertility of a range of veins at one locality. This is especially important given the size of the area and number of veins systems being covered in this program. The objective of the follow-up sampling is to collect individual veins wherever possible at any given locality. Rockchip samples were delivered to Intertek Genalysis prep lab in Kalgoorlie. Sample preparation by dry pulverization to 90% passing 80 microns. Standards were used for this program at an insertion rate of 1:20. The laboratory also inserted standards at regular intervals. Following gold results reported from reconnaissance sampling in June-July 2024, additional duplicate/replicate samples were collected at four (4) sites of gold mineralisation. The results show good repeatability and are shown in the table within the report. Once samples arrived in Kalgoorlie, further work including routine laboratory duplicates and QC was undertaken at the laboratory. At the laboratory where the entire sample was dried, crushed, then pulverised to 85% passing 75 microns or better using an LM2 or LM5 mill.
	Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis	•	Rockchip geochemical analysis was undertaken by Intertek Genalysis in Perth, using routine multi- element analysis by 4-acid digest and ICP-MS. This near-full digest is considered sufficient for this stage of exploration and the weathered nature of the samples. Gold analysis was undertaken with 25-gram Fire Assay. The detection limit for gold via fire assay is 5ppb (0.005ppm).

ASX	ANING	DUNCE	MENT	ASX.	мнк
AOA	AIVIN	JUNCLI	VILINI	AOA.	IVITIN

COST CON

	including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 No geophysical assay tools were used. Laboratory QA/QC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the in- house procedures. QC results (blanks, duplicates, standards) were in line with commercial procedures, reproducibility and accuracy.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Data storage as PDF/XL files on company PC in Perth office, which is then up-loaded to the Company's access database. Data is validated at several stages to ensure consistency. No data was adjusted.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 All rock chip and soil samples were surveyed using a handheld Garmin GPS, accurate to within 3-5 m. MHK rockchip locations are shown as per Tables 1 & 2 in the announcement. Grid MGA2020 Zone 51. Topography is moderately uneven and GPS has poor vertical controls, so the elevation of samples is derived from a digital terrain model.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Rockchips were collected at variable sample spacings at the discretion of the geologist to adequately sample the area of interest.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Rockchip sampling was designed to establish the gold fertility of the various veins and textures presented at the site. This is reflected in the range of assays presented herein – barren quartz through to strongly mineralised quartz with abundant ex-sulphide.
Sample security	The measures taken to ensure sample security.	Samples were collected on site under supervision of the responsible geologist. Once collected samples were bagged and transported to Kalgoorlie for analysis. Dispatch and consignment notes were delivered and checked for discrepancies.

Audits or reviews The results of any audits or reviews of sampling techniques and data.

No Audits have been commissioned.

.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The work programs were conducted on the granted exploration licenses 36/1048, 36/1068. The tenements are registered to Metal Hawk Limited, who is 100% owner.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	The project tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous exploration has been carried out in the area by a number of explorers. The majority of early documented historical work was carried out for nickel sulphide exploration, given the extension of magnetic highs from the northwest (Agnew Greenstone Belt). No historical drilling data has been recorded at the Siberian Tiger prospect. Between 1997 to 2001 the tenure was owned by WMC (Western Mining Corporation). Work undertaken included soil and rockchip sampling, but there is no record of any drilling. Heron Resources Ltd (Heron) held part of the ground from 2004 to 2009. In 2004, Heron completed an extensive wide-spaced (1000x100m) soil survey which covered the Siberian Tiger prospect. While they reported an anomaly of 87ppb Au along strike to the southeast of Siberian Tiger, the stronger anomaly that is the central to the prospect (482ppb Au) received no coverage. More recently the tenement area was owned by Jindalee Resources Ltd Limited (from 2018 to 2023). The ground was subject to a JV with Auroch Minerals Ltd. No reported fieldwork took place at the Siberian Tiger prospect.
Geology	Deposit type, geological setting and style of mineralisation.	 The Leinster South Project lies at the southeastern tip of the Lawlers Anticline on the Agnew Greenstone Belt in central-west WA. The geological setting is of Archaean age with common host rocks related to komatiite-hosted nickel sulphide mineralisation as found throughout the Yilgarn Craton of Western Australia. The region is also made up of mafic and felsic volcanics and intrusions, siliciclastic metasediments of upper greenschist to lower amphibolite facies and postorogenic S-type muscovite-bearing granites.

AN ALL AND A

	LIMITED	
D S N		
	Drill hole Information	A summary the undersi results incli following inf holes: • ea ho • ele
	Data aggregation methods	mo • dij • dc int • hc In reporting b averaging to minimum gra
		high grades usually Mate Where aggr short length longer lengt procedure

		 The main belt of exposed rocks in EL36/1068 is composed of interlayered dolerite, gabbro, metabasalt, ortho-amphibolite, pyroxenite, and schistose meta-mafic and meta-sedimentary rocks. There are strong domainal foliations at the interface between brittle and ductile lithologies, and locally the development of quartz veins systems parallel and en echelon to the fabric. Veins range from undeformed sheeted to complex breccia and boudinaged with host rock and iron oxides. Rarely are primary sulphides preserved, but pyrite, chalcopyrite and sphalerite have been recorded during the mapping and sampling program by Metal Hawk. The package has been intruded by several granites with differing affinities, ranging from leucogranite to granodiorite. Some bodies are highly foliated and locally migmatised, while others are equigranular and essentially undeformed. The Leinster South Project principally has potential for komatiite-associated nickel and structurally controlled intrusion-related gold. Significant gold deposits are currently in production at Agnew – Lawlers (15 to 25km to NW) and Thunderbox, 25km to the east of E36/1068. The closest gold deposit and former mine is Fairyland (148,000 oz pre-mining resource 1997), 10km to north. The Company does not know the historical production figures for Fairyland.
ole nation	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	Not applicable.
•	 hole length. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Rockchips: Average of original and any repeat gold assays used. No top-cut applied. No metal equivalents have been used.
gation ods	averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly	No top-cut applied.

ATTENNING IN

Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 As the geochemical results reported are from surface, any potential depths of mineralisation or orientations can only be inferred from geological observations on the surface and hence are speculative in nature.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All Metal Hawk rock chip sample results are presented in Tables 1 & 2 and as a thematic map in the report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Everything meaningful and material is disclosed in the body of the report.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 Metal Hawk is continuing follow-up soil sampling program over parts of E36/1068, encompassing the Siberian Tiger prospect and along strike to the southeast. Most is at a spacing of 200x50m, with 100mx25m infill over the immediate area of Siberian Tiger. The company is also continuing follow up rockchip sampling at Siberian Tiger and further reconnaissance rockchip and soil sampling across E36/1068.