

ASX: FNR

farnorthernresources.com

12 September 2024

The Empire Projects /Chillagoe North Queensland

Far Northern Resources Limited (ASX:FNR) (FNR or the Company) is pleased to report that a recent targeted drilling program at the Empire Mining Lease confirmed the presence of a zone in the primary vein at the northern end of the Empire Stockworks consisting of a high-grade gold zone (>3 g/t Au refer to Figure 1). The zone is within the greater Empire Stockworks gold system, with mineralisation open at depth and along strike.

Highlights

- FNR has recently completed a small RC drilling program at the Empire gold deposit. The
 program was designed to update and infill the 2020 resource model (see pp 28 to 36 of the
 Company's Prospectus lodged with ASX on 10 April 2024 and provide a potential starting
 point for future mining operations.
- Assays from all 6 drill holes intercepted the high-grade quartz veins that formed the basis of the previous modeling.

4m @ 1.24g/t Au from 28m in FNRRC031 (incl. 1m @ 2.90 g/t Au)

1m @ 1.20g/t Au from 43m in FNRRC031

1m @ 1.01g/t Au from 13m in FNRRC032

3m @ 0.93g/t Au from 50m in FNRRC032

1m @ 14.96g/t Au from 9m in FNRRC033

1m @ 9.05g/t Au from 44m in FNRRC033

1m @ 2.49g/t Au from 11m in FNRRC034

8m @ 3.03g/t Au from 18m in FNRRC034 (incl. 5m @ 4.31 g/t Au)

1m @ 1.32g/t Au from 32m in FNRRC034

1m @ 1.02g/t Au from 41m in FNRRC034

1m @ 2.80g/t Au from 0m in FNRRC035

1m @ 1.45g/t Au from 11m in FNRRC035

1m @ 1.24g/t Au from 14m in FNRRC035

6m @ 1.23g/t Au from 29m in FNRRC035

1m @ 1.30g/t Au from 32m in FNRRC036

ASX: FNR

farnorthernresources.com

- These results will provide further data to the known resources at the Empire Stockwork. and an updated model. This will enable FNR to update the resource and economic modelling at the current gold prices, with a view to moving into future feasibility studies
- FNR is in a unique position with a mill located less than 20km away from the current mining lease.
- FNR will continue to advance the project.

TABLE 1 FNR MINERAL RESOURCES (SEE FNR PROSPECTUS LODGED 10 APRIL 2024)

Resource Category	Cut Off Au (g/t)	Depth	Tonnes (kt)	Au (g/t)	Ounces (oz)					
	Empire Stockworks - Queensland									
Indicated	0.2	0-150	542	0.97	16,887					
Inferred	0.2	0-150	279	0.63	5,616					
Empire Stockworks			821	0.85	22,503					
Total			821	0.83	22,303					
	Bri	idge Creek – No	rthern Territory							
Indicated	0.5	0-100	-	•	-					
Inferred	0.5	0-100	1,970	1.12	70,560					
Bridge Creek Total			1,970	1.12	70,560					
Total			2,791	1.04	93,063					

All figures are rounded to reflect the relative accuracy of the estimates. Totals may not sum due to rounding

ASX: FNR

farnorthernresources.com

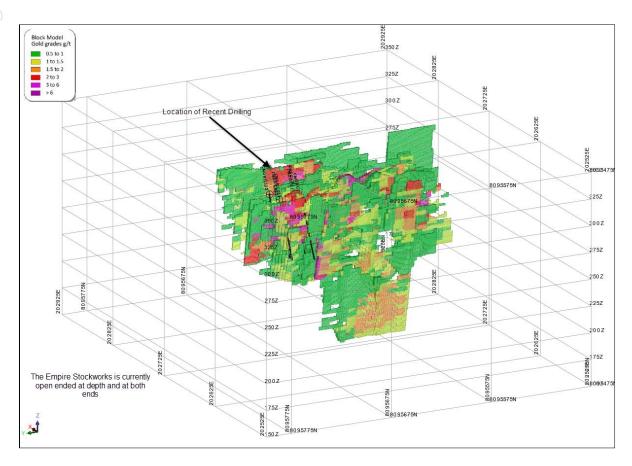


FIGURE 1:3D VIEW OF EMPIRE STOCKWORKS BLOCK MODEL

Commenting on the initial assays results the board of Far Northern Resources Ltd, said.

"We are pleased with the assays from the Mining Lease as it will add critical data to the resource model at Empire that is open at depth and in all directions. FNR has been exploring this area for some time and it is pleasing to release some very exciting new gold results from our 2024 drilling campaign that clearly show there is a much bigger picture at play at our Empire Project. We are excited to now have the funding to continue to drill out and model what has the potential to be FNR's first mine."

ASX: FNR

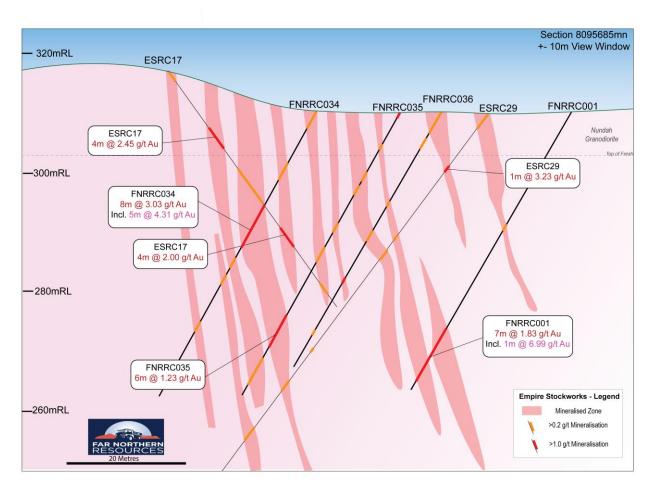


FIGURE 2: CROSS SECTION THROUGH RECENT DRILLING SECTION 8095685MN (INTERSECTIONS >2M)

ASX: FNR

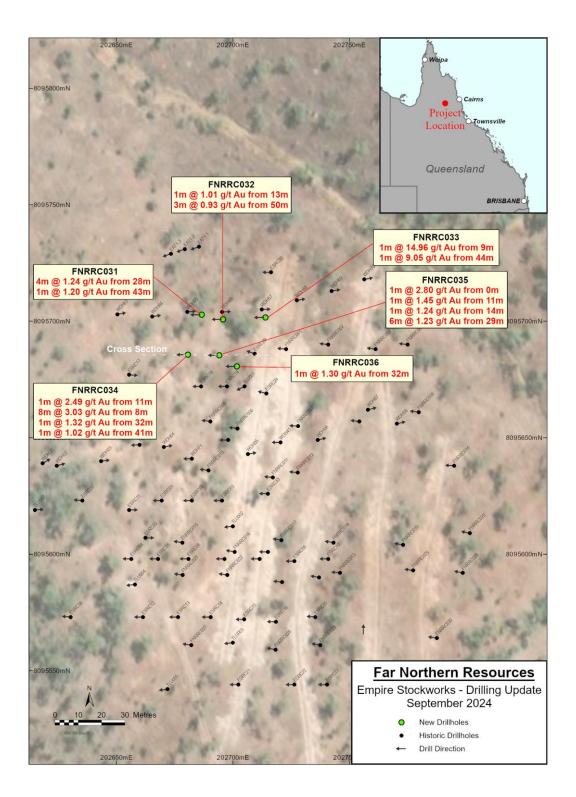


FIGURE 3: EMPIRE MINING LEASE - LOCATION OF EMPIRE STOCK WORK WITH RECENT DRILLING & SIGNIFICANT INTERSECTIONS

ASX: FNR

farnorthernresources.com

Enquires:

Cameron Woodrow

cwoodrow@farnorthernresources.com

Roderick Corps.

rcorps@farnorthernresources.com

For further information regarding Far Northern Resources Limited please visit our website at www.farnorthernresources.com or contact:

Authorisation

This announcement has been authorised for release by the Board of Directors

JORC and Previous Disclosure

The information in this release that related to Mineral Resource for Empire Stockworks, is based on information previously disclosed in the following company ASX announcement available from the ASX website www.asx.com.au

• Far Northern Resources Limited (FNR) ASX Announcement 10 April 2024 - Prospectus.

The Company confirms that is not aware of any new information as at the date of the announcement that materially affects the information include in the Release and that all material assumptions and technical parameters underpinning the estimates and results continue to apply and have not materially changed.

These ASX announcements are available on the Company's website (<u>www.farnorthernresources.com</u>) and the ASX website (<u>www.asx.com.au</u>) under the Company's ticker code 'FNR'.

Competent Person's Statement

The information in this announcement that relates to the Empire Project, is based on information compiled by Mr Christopher Speedy who is a Member of the Australian Institute of Geoscientists. Mr Christopher Speedy is employed by Angora Resources on a full-time basis. Mr Speedy has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Speedy consents to the inclusion in this announcement of the matters based on information in the form and context in which it appears.

ASX: FNR

farnorthernresources.com

Forward Looking Statement

Forward Looking Statements regarding FNR's plans with respect to its mineral properties and programs are forward-looking statements. There can be no assurance that FNR's plans for development of its mineral properties will proceed as currently expected. There can also be no assurance that FNR will be able to confirm the presence of additional mineral resources, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of FNR's mineral properties. The performance of FNR may be influenced by a number of factors which are outside the control of the Company and its Directors, staff, and contractors. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results.

All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and

(vi) other risks and uncertainties related to the company's prospects, properties, and business strategy. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

ASX: FNR

farnorthernresources.com

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Mangrove Jack (1995-1996) (WDH series) reverse circulation holes were sampled at 2m intervals. Analytical samples were representatively split from 2m residue sample using a 75/25 riffle splitter. Mangrove Jack (1996) (WDH series) diamond samples were sawn in two laterally with a diamond blade, with the 1-metre half core being fire assayed for Au. Chillagoe Gold (2002) (ESRC1-31 series) and Premier Mining (2009) (ESRC 23-38 series) reverse circulation (RC) holes were sampled at 1m intervals and were passed through a cyclone and split with a splitter to provide a sample for assay of approximately 3 kg. No information is known about Tellus drilling (TLU series), however reverse circulation holes were sampled at 2m intervals. For the FNR samples (2019 & 2024) - One metre single split taken off the rig with cone splitter. With RC drilling regular air and manual cleaning of cyclone to remove hung up clays where present. Standards & replicate assays taken by the laboratory. Based on statistical analysis of these results, there is no evidence to suggest the samples are not representative. RC drilling was used to obtain one metre samples with approximately 2.5-3.5kg was pulverised to produce a 50 g charge for fire assay. RC chips were geologically logged over 1m intervals. Samples were assayed for Au only for this program.
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, facesampling bit, or other type, whether core is oriented and if so, by what method, etc).	 RC drilling was completed with a 139mm diameter face sampling hammer and DD was completed at PQ and HQ3 sized core. For FNR the drilling was completed by Bullion drilling using and RC rig with a 139mm diameter face sampling hammer.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recoveries from historical sampling techniques are unknown. For the FNR drilling the RC recovery and meterage was assessed by comparing drill chip volumes for individual meters. Estimates of poor sample recoveries were recorded. Routine checks for correct sample depths are undertaken every RC rod. RC sample recoveries were visually checked for recovery, moisture, and contamination. The cyclone was routinely cleared ensuring no material build up. Due to the good standard of drilling conditions around sample intervals (dry) the geologist believes the samples are representative. No sample bias has been identified.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Logging of drill cuttings has been completed to a level of detail required to support future Mineral Resource Estimation. However, no Mineral Resource Estimation is reported in this release. Geological logging has been completed by a qualified geologist for the entire length of the hole, recording lithology, oxidation, alteration, veining, mineralisation containing both qualitative and quantitative fields.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc and 	For historical, Core was cut in half to 1m samples or geological / lithological contacts.

ASX: FNR

Criteria	JORC Code explanation	Commentary
	 whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 For historical, RC drilling used a cyclone and cone splitter to consistently produce 2.5kg to 3.5kg dry samples. In some rare cases when the sample was wet, a spear sample of the sample interval was used Samples are dried, crushed to 10mm, and then pulverised to 85% passing 75µm. Duplicate field samples have not been taken. For the FNR drilling - One metre single split taken off the rig with cone splitter. No field standards, duplicates were inserted. RC drilling was used to obtain one metre samples with approximately 2.5-3.5kg. The samples are crushed to 10mm and then riffle split to <3kg prior to pulverising in LM5 machines. Sample sizes (1.5kg to 3kg) at Empire Stockworks are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style, the width and continuity of the intersections, the sampling methodology, the coarse gold variability and the assay ranges for the gold. Laboratory duplicates (sample preparation split) were also completed every 15th sample to assess the analytical precision of the laboratory. Acceptable level of repeatability
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 and precision was noted for the FNR testing. Mangrove Jack samples were submitted to ALS Townsville for Au by method PM209 (30g fire assay) and Cu, Zn, Pb, Bi, Ag, As by method G001 (AAS). Chillagoe Gold samples were submitted to ALS Chemex for Au by method AA25 or AA26 (30g fire assay). FNR 2019 samples were submitted to Tony King Analytical Pty Ltd for Au (50g fire assay). For the 2024 FNR program the one metre RC samples were assayed by fire assay (FA50) with OE finish by Intertek, Townsville. Samples from Empire Stockworks drilling were submitted by Premier Mining Pty Ltd for re-assay as duplicates to determine the repeatability and accuracy of the reported gold grades. This includes pulps from previous drilling programs, as well as pulps from the 2009 drilling. Thirteen pulps from Chillagoe Gold's RC holes returned a re-assay average of 1.55g/t Au (method AA26), against an original assay average of 1.32g/t (method AA25) representing an increase in grade of 17%. Twelve pulps from Mangrove Jacks RC and DDH returned a re-assay average of 3.67g/t Au (method AA26), against an original assay average of 80%. However, this grade increase is strongly influenced by a 3.98g/t Au sample that repeated at 19.2g/t Au. All the Duplicate samples have repeated within the accepted variance range of laboratory analytical error limits. There was no instance of a barren or low-grade sample repeating at a significantly higher grade. Twenty-one intervals from Premier Mining's May 2009 drilling program were re-sampled as duplicates and submitted for gold assay to test the repeatability of analysis. In this case, the re-assay returned an average of 1.73g/t (method AA26) against an original assay average of 1.72g/t (method AA26), representing a decrease of 19% (although this was strongly influenced by one "outlier" sample). The grab sampling method fused to re-assay samples raises some

ASX: FNR

Criteria	JORC Code explanation	Commentary
		 doubt about the validity of this exercise. In 2019 FNR performed inter-laboratory checks on the 2019 assay results by sending seventy-eight pulp samples to an independent laboratory, Intertek Geanalysis, Townsville. Testing was completed by 50g Lead collection fire assay. Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry. The overall assay value from the original 2.27 g/t Au v 2.34 g/t Au and was considered within acceptable repeatability and accuracy parameters. No major inconsistencies have been observed in the data, certainly some variability in the gold values is recognised and has been in part reflected by the laboratory replicate and check analysis, and variations caused by sampling method and fire assay test size. The presence of nuggety gold is acknowledged. No geophysical assays tools were used. Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits, and replicates as part of the in-house procedures. QC results (blanks, duplicates, standards) were in line with commercial procedures, reproducibility, and accuracy.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 For the historical work, independent personnel have visually inspected the significant intersections in core or RC chips. Numerous highly qualified and experienced company personnel from exploration positions have visually inspected the significant intersections in core and RC chips. For the 2024 FNR program, work was supervised by senior Intertek staff experienced in metal assaying. QC data reports confirming the same quality are supplied. Sample results are received as PDF & XLS and are stored. Logging was completed by a suitable qualified geologist. Logging was reviewed offsite by the competent person. Primary logging data is collected onto paper. Paper records are entered into the standardised Microsoft Excel templates. Data is then uploaded into an Oracle based database server, with onsite and offsite backups. No specific twinning program has been conducted. No data was adjusted
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The grid used was MGA Zone 55, datum GDA94. Mangrove Jack established an AMG grid at Empire. Dennis and O'Neill completed 3.5-line kilometres of baseline using a total station theodolite. The integrity of the baseline was maintained by solar observations at predetermined points. Iron pins, each with a star picket witness was placed at 200m intervals along the baseline, and full coordinates stamped on the star picket. A simple translation has converted the drill hole coordinates to Map Grid Australia Zone 55Downhole survey measurements are only available for the Tellus and FNR reverse circulation holes. No downhole surveys are available for the open holes (generally drilled to vertical depths of less than 40m below the surface). Holes completed by Tellus and FNR were surveyed by the drilling supervisor / senior driller at regular intervals downhole as the drilling progressed, using a north-seeking gyroscopic survey instrument. For the FNR program the collars were surveyed using a Garmin GPSMap 66i by the supervising geologist. The collar will be picked up by licensed surveyors at the end of the drilling campaign. All drillholes were downhole surveyed by

ASX: FNR

farnorthernresources.com

Criteria	JORC Code explanation	Commentary
		the drilling supervisor / senior driller at regular intervals downhole as the drilling progressed, using a north-seeking gyroscopic survey instrument. • A digital terrain model (DTM) was built from data sourced from the ELVIS geoscience Australia platform. Data points were sourced from the 1-second shuttle radar capture; points are approximately thirty metres apart.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The Nominal hole spacing of the Empire Stockworks deposit is approximately twenty-five metres along strike and 20m across strike. This latest drilling was to finish of a missing line across the deposit and start to provide closer infill grace control drilling (5m x 5m). The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred, Indicated and Mineral Resources under the 2012 JORC code
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drilling is predominantly orientated west (270°) with a 60° dip, which is perpendicular to both the strike and dip of the mineralisation, therefore ensuring intercepts are close to true width. No orientation biased sampling has been identified in the data.
Sample security	The measures taken to ensure sample security.	No information is known about historical samples. The FNR samples were delivered by FNR personnel to Intertek in Townsville.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews undertaken

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Empire Stockworks gold deposit is located within granted Mining Lease ML 20380, which is wholly owned by the Company's wholly owned subsidiary Premier Mining Pty Ltd. The Empire Stockworks deposit is located in Far North Queensland, approximately 180km west of Cairns. The tenements are in good standing with no known encumbrances that might impede future activities.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Capricorn Dolomite Pty Ltd / Mangrove Jack Pty Ltd (1995 – 1997) - Exploration activities in 1995 – 1996 included collection and assaying of 387 stream sediment samples, 449 rock chip samples, 380 soil samples, 33-line kilometres of coordinated gridding combined with detailed geological mapping including air photo interpretation. Percussion drilling totalling 870m along with assaying 430 percussion drill samples. Anomalous gold geochemistry was discovered during reconnaissance surface geochemical sampling at no fewer than 20 separate prospects. Sub-surface gold mineralisation was identified at three prospects by percussion drilling. The 1997 exploration was focused on the identification of large auriferous mineral systems and the evaluation of the Empire-Pinnacles breccia pipe target area. Drilling of the Empire – Pinnacles breccia pipe systems

ASX: FNR

Criteria	JORC Code explanation	Commentary
		returned strongly anomalous gold values (Burban, 1997). • Chillagoe Gold Pty Ltd (2002-2008) EPM 10780. Chillagoe undertook an extensive channel sampling program in 2002 as well an 881m reverse circulation (RC) drilling campaign. In 2003 a follow upstream sediment sampling programme was conducted over areas of the Empire complex followed by the second phase of RC drilling; twelve holes were drilled for 739m as well as air trac holes across channel sample line Et-
		On the 11th of March 2004 ML, 20380 was granted to Chillagoe Gold Pty Ltd. During the year 2005, further extensive exploration and metallurgical test work were completed with respect to the Empire Stock Works gold zone. Check drilling was undertaken by Premier Mining Pty Ltd at
		Empire Stockworks, with a total of seven reverse circulation holes (ESRC-32 to ESRC-38) drilled at Empire Stockworks to confirm historical mineralization and test possible extensions. On the 16th of May 2012, Tellus Resources Ltd executed an
		agreement to acquire 100% of the issued capital of Premier Mining Pty Ltd which became a wholly owned subsidiary of Tellus Resources Ltd. Tellus completed 10 RC holes for 1937m in 2012. Tellus was subsequently wound up in April 2015, and its assets were dispersed by the Administrator.
		The work completed by the other parties is considered by the competent person to be of a high standard.
Geology	Deposit type, geological setting, and style of mineralisation.	 Mining Lease 20380 is situated within the Dargalong Inlier, along the northeast edge of the Georgetown Inlier. Basement rocks consist primarily of amphibolite to granulite grade metamorphic and granitoid sequences of the Proterozoic Dargalong Metamorphic, extensively intruded by a complex of Lower Palaeozoic (Silurian) generally coarsegrained Nundah Granodiorite. Late Palaeozoic (Carboniferous) felsic porphyries intrude these older rocks. Late Palaeozoic rhyolite and dolerite dykes are also common, whilst Mesozoic cover rocks are sparse. The eastern boundary of the Dargalong Inlier is defined by the Palmerville Fault to the north-east of the mining lease. The Carboniferous Carrs Granite is an elongate, Northwest trending intrusive body 28 km in length and 3-5 km in width which occurs between the lease and the Palmerville Fault – it has a contact aureole discernible in aeromagnetic data, and this aureole extends into the lease. This aureole area contains the Empire-Pinnacles and Mt Wandoo breccia pipe systems and is host to several other breccia pipe targets identified in the Wandoo area. The eastern margin of Empire is known as the Empire Stockworks prospect. Empire Stockworks consists of a broad zone of sheeted quartz veins and quartz vein stockworks of variable intensity, hosted within intensely silicified Nundah Granodiorite. The sheeted quartz veins consist of banded comb quartz, with quartz rimmed by albite and carbonate, separated by a median suture cavity. The veins are usually accompanied by sulphides, consisting of arsenopyrite, chalcopyrite, pyrite and minor bornite. The quartz veins are orientated north-south with a strike length of 400m, over a

ASX: FNR

Criteria	JORC Code explanation	Commentary
		 Alteration consists of pervasive replacement of feldspar in the Nundah Granodiorite by silica. "Red rock" alteration is observed by Reudavey (2009), suggesting hematite dusting and sodic alteration of the feldspars (albitization) has occurred.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	The locations and mineralised intersections (0.2g/t Au and above) for all holes completed are summarised in the Appendixes.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Exploration results are reported as length weighted averages of the individual sample intervals. No high-grade cuts have been applied to the reporting of exploration results. Intersections have been reported using a 0.2g/t lower cutoff. Metal equivalent values have not been used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	• The Empire Stockworks drill holes were drilled predominantly at -60° to the west and the mineralised zone dips at 80-90° to the east so the intercepts reported are slightly greater than the true mineralised width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	All relevant figures are included in this release
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	All meaningful & material exploration data has been reported, including recent and historical data refer to Appendixes.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful & material exploration data has been reported.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The Empire Stockworks gold resource extends over a North-South strike length of 200m. The southern half of the deposit is well drilled, however is still open down dip., the deposit is open to the north and south. Geotechnical drilling and potentially monitoring wells will need to be drilled to provide further information before mining commences.

FNRRC033

FNRRC033

FNRRC033

FNRRC033

FNRRC033

FNRRC033

FNRRC033

9

15

16

17

28

31

43

10

16

17

18

29

32

44

ASX ANNOUNCEMENT

ASX: FNR

farnorthernresources.com

Appendix 1 -FNR 2024 - Drillhole Listing

		0					
Holename	Easting (m) GDA94 Z55	. ,		Depth (m)	Azimuth (°)	Declination (°)	HoleType
FNRRC031	202686	8095702	310	54	270	-60	RC
FNRRC032	202695	8095700	309	54	270	-60	RC
FNRRC033	202713	8095701	309	54	270	-60	RC
FNRRC034	202680	8095685	310	54	270	-60	RC
FNRRC035	202694	8095685	310	54	270	-60	RC
FNRRC036	202701	8095680	310	54	270	-60	RC

	OCCUPIE Appendix	2 -FNR 2	024 - Sig	nificant	Interse	ctions	(great	er than	0.2 g/t	Au)		
	Holename	From (m)	To (m)	Au (g/t)	Holename	From (m)	To (m)	Au (g/t)	Holename	From (m)	To (m)	Au (g/t)
	FNRRC031	1	2	0.867	FNRRC033	44	45	9.048	FNRRC035	26	27	0.492
	FNRRC031	11	12	0.276	FNRRC033	45	46	0.257	FNRRC035	27	28	0.754
	FNRRC031	28	29	2.899	FNRRC033	46	47	0.296	FNRRC035	28	29	0.821
0	FNRRC031	29	30	0.255	FNRRC033	49	50	0.234	FNRRC035	39	40	1.455
	FNRRC031	30	31	0.721	FNRRC034	0	1	0.259	FNRRC035	40	41	1.182
	FNRRC031	31	32	1.116	FNRRC034	1	2	0.252	FNRRC035	41	42	2.163
	FNRRC031	34	35	0.364	FNRRC034	2	3	0.374	FNRRC035	42	43	0.629
	FNRRC031	35	36	0.665	FNRRC034	10	11	0.293	FNRRC035	43	44	1.273
	FNRRC031	42	43	0.607	FNRRC034	11	12	2.486	FNRRC035	44	45	0.696
	FNRRC031	43	44	1.201	FNRRC034	12	13	0.368	FNRRC035	47	48	0.573
	FNRRC031	44	45	0.377	FNRRC034	17	18	0.47	FNRRC035	48	49	0.368
	FNRRC031	45	46	0.258	FNRRC034	18	19	1.336	FNRRC035	49	50	0.681
	FNRRC032	0	1	0.793	FNRRC034	19	20	0.588	FNRRC035	50	51	0.664
	FNRRC032	1	2	0.24	FNRRC034	20	21	10.35	FNRRC035	51	52	0.604
	FNRRC032	10	11	0.344	FNRRC034	21	22	1.205	FNRRC035	52	53	0.274
7	FNRRC032	11	12	0.247	FNRRC034	22	23	4.093	FNRRC035	53	54	0.224
	FNRRC032	13	14	1.011	FNRRC034	23	24	3.828	FNRRC036	0	1	0.574
	FNRRC032	14	15	0.598	FNRRC034	24	25	2.08	FNRRC036	2	3	0.671
	FNRRC032	18	19	0.394	FNRRC034	25	26	0.736	FNRRC036	3	4	0.207
	FNRRC032	26	27	0.305	FNRRC034	28	29	0.865	FNRRC036	5	6	0.264
	FNRRC032	47	48	0.37	FNRRC034	29	30	0.217	FNRRC036	6	7	0.449
	FNRRC032	49	50	0.404	FNRRC034	31	32	0.546	FNRRC036	17	18	0.273
	FNRRC032	50	51	1.391	FNRRC034	32	33	1.318	FNRRC036	23	24	0.259
	FNRRC032	51	52	0.619	FNRRC034	40	41	0.676	FNRRC036	24	25	0.27
	FNRRC032	52	53	0.768	FNRRC034	41	42	1.018	FNRRC036	32	33	1.3
	FNRRC033	0	1	0.306	FNRRC034	45	46	0.336	FNRRC036	42	43	0.384
	FNRRC033	2	3	0.201	FNRRC035	0	1	2.802				
	FNRRC033	4	5	0.402	FNRRC035	2	3	0.384				

FNRRC035

FNRRC035

FNRRC035

FNRRC035

FNRRC035

FNRRC035

FNRRC035

14.96

0.426

0.268

0.591

0.239

0.404

0.38

7

12

13

15

16

22

23

6

11

12

14

15

21

22

0.684

1.445

0.257

1.244

0.227

0.946

0.407

ASX: FNR

farnorthernresources.com

Appendix 3 - Historical - Drillhole Listing

					8			
		Easting (m)	Northing	Elevation	Depth	Azimuth	Declination	
	Holename	GDA94 Z55	(m)					HoleType
		GDA94 Z55	GDA94 Z55	(m)	(m)	(°)	(°)	
	ESRC01	202669	8095623	322.7	35	270	-50	RC
F	ESRC02	202682	8095623	322.5	12	270	-50	RC
H	ESRC03	202695	8095623	319.5	75	270	-50	RC
H	ESRC04	202656	8095598	325	25	270	-50	RC
-	ESRC05	202668	8095598	324.5	54	270	-50	RC
F	ESRC06	202681	8095598	323.8	66	270	-50	RC
┢	ESRC07	202696	8095598	323.8	42	270	-50	RC
H								
-	ESRC08	202711	8095598	320.3	42	270	-50	RC
H	ESRC09	202726	8095597	319.5	24	270	-50	RC
-	ESRC10	202741	8095598	318.5	24	270	-50	RC
-	ESRC11	202655	8095619	324.5	38	90	-50	RC
-	ESRC12	202661	8095573	324.8	30	270	-50	RC
_	ESRC13	202676	8095573	324.2	48	270	-50	RC
	ESRC14	202690	8095573	323.6	42	270	-50	RC
	ESRC15	202705	8095572	322.4	66	270	-50	RC
	ESRC16	202718	8095571	321.6	84	270	-49	RC
	ESRC17	202655	8095677	317	72	94	-54	RC
	ESRC18	202686	8095672	311.6	64	270	-50	RC
	ESRC19	202697	8095672	311	60	270	-52	RC
	ESRC20	202716	8095721	305	72	270	-50	RC
	ESRC21	202702	8095544	324.45	36	270	-46	RC
	ESRC22	202726	8095544	322.3	66	270	-50	RC
-	ESRC23	202740	8095544	321.45	90	270	-50	RC
F	ESRC24	202714	8095669	311.69	96	284	-49	RC
-	ESRC25	202604	8095761	311.6	36	49	-50	RC
H	ESRC26	202554	8095784	311.8	48	49	-50	RC
-	ESRC27	202562	8095798	313.2	30	49	-48	RC
-	ESRC28	202582	8095770	311.8	60	69	-47	RC
-					97	290	-47	
-	ESRC29	202709	8095686	309.6				RC
-	ESRC30	202662	8095607	323.7	48	90	-49	RC
-	ESRC31	202712	8095416	326.2	48	100	-51	RC
-	ESRC32	202715	8095601	319.65	73	270	-50	RC
1	ESRC33	202715	8095626	317.71	85	270	-50	RC
-	ESRC34	202698	8095649	316.97	61	270	-50	RC
	ESRC35	202735	8095573	320.05	98	275	-50	RC
	ESRC36	202630	8095573	326.68	40	275	-50	RC
L	ESRC37	202635	8095623	323.91	40	275	-50	RC
	ESRC38	202645	8095663	317.2	35	95	-55	RC
	FNRRC001	202723	8095688	310	54	276	-60	RC
	FNRRC002	202741	8095690	313	60	276	-60	RC
	FNRRC003	202761	8095688	315	54	277	-60	RC
	FNRRC004	202775	8095690	315	54	270	-60	RC
Γ	FNRRC005	202690	8095657	315	54	277	-61	RC
Γ	FNRRC006	202702	8095654	315	60	276	-60	RC
	FNRRC007	202728	8095655	314	54	272	-60	RC
	FNRRC008	202754	8095657	317	54	276	-61	RC
F	FNRRC009	202780	8095661	318	54	276	-61	RC
H	FNRRC010	202690	8095636	319	54	277	-61	RC
H	FNRRC011	202717	8095633	317	54	273	-61	RC
F	FNRRC012	202728	8095635	317	54	276	-60	RC
H	FNRRC013	202728	8095592	317	54	275	-60	RC
\vdash	FNRRC014	202740	8095638		60	273	-59	RC
L	I'INNNCU14	202/93	0033038	318	υU	212	-39	ΝC

ASX: FNR

	Holename	Easting (m) GDA94 Z55	Northing (m) GDA94 Z55	Elevation (m)	Depth (m)	Azimuth (°)	Declination (°)	HoleType
Ī	FNRRC015	202678	8095605	323	54	278	-61	RC
Ī	FNRRC016	202701	8095601	321	54	280	-60	RC
Ī	FNRRC017	202721	8095606	319	78	279	-60	RC
Ī	FNRRC018	202743	8095605	318	150	278	-59	RC
	FNRRC019	202773	8095604	319	54	280	-59	RC
	FNRRC020	202802	8095609	319	54	281	-60	RC
F	FNRRC021	202679	8095591	324	54	279	-59	RC
F	FNRRC022	202698	8095591	322	54	279	-60	RC
F	FNRRC023	202721	8095588	320	54	276	-61	RC
t	FNRRC024	202737	8095590	319	54	280	-61	RC
F	FNRRC025	202777	8095593	319	54	278	-60	RC
ŀ	FNRRC026	202799	8095592	320	54	280	-60	RC
ŀ	FNRRC027	202682	8095561	322	54	277	-59	RC
F	FNRRC028	202718	8095559	322	60	281	-60	RC
F	FNRRC029	202738	8095561	321	54	279	-60	RC
ŀ	FNRRC030	202788	8095564	320	54	277	-59	RC
ŀ	TLU001	202705	8095672	310	228	244	-60	RC
ŀ	TLU002	202700	8095612	315	127	263	-55	RC
F	TLU003	202700	8095562	310	222	263	-55	RC
F	TLU004	202658	8095587	322.3	264	263	-55	RC
ŀ	TLU005	202672	8095542	319.5	216	263	-55	RC
F	TLU006	202660	8095647	319.5	264	266	-70	RC
F	TLU007	202665	8095619	323.4	136	86	-60	RC
F	TLU008	202551	8095767	311	180	56	-60	RC
F	TLU008	202566	8095787	312	150	278	-60	RC
F				300		1		RC RC
ŀ	TLU010	202457	8095834	-	150	160	-60 -57	
F	WDH01	202609	8095639	309.32	30	70		RC
F	WDH02	202624	8095638	321.21	30	76	-50	RC
F	WDH03	202643	8095640	320.83	84	84	-55	RC
F	WDH04	202670	8095646	318.64	48	79	-55	RC
ŀ	WDH05	202706	8095643	316.53	42	81	-55	RC
F	WDH06	202736	8095649	315.17	30	76	-60	RC
F	WDH07	202758	8095662	311.88	30	75	-55	RC
Ļ	WDH08	202770	8095656	318.81	30	76	-55	RC
Ļ	WDH09	202592	8095466	324.74	30	267	-55	RC
Ļ	WDH10	202592	8095474	324.74	36	84	-55	RC
-	WDH11	202513	8095475	323.25	30	87	-55	RC
Ļ	WDH12	202631	8095474	324.99	30	92	-55	RC
L	WDH13	202646	8095472	325	30	91	-53	RC
ļ	WDH37	202618	8095639	321.21	300	59	-70	DD
Ļ	WDH38	202429	8095506	320.33	300	70	-60	DD
L	WDH41	202720	8095648	315.17	151	270	-60	DD
L	WDH63	202650	8095703	313.65	30	80	-55	RC
L	WDH64	202665	8095702	310.91	30	81	-55	RC
L	WDH65	202680	8095704	310.91	30	85	-55	RC
L	WDH66	202695	8095704	308.35	30	88	-55	RC
L	WDH67	202712	8095705	308.35	30	87	-55	RC
L	WDH68	202727	8095709	308.62	30	81	-55	RC
L	WDH69	202742	8095713	312.39	30	81	-55	RC
Ĺ	WDH70	202756	8095718	312.39	30	80	-55	RC
- 1	WDH71	202682	8095641	318.64	30	269	-55	RC

ASX: FNR

farnorthernresources.com

Appendix 4 -Historical - Significant Intersections (greater than 0.5 g/t Au)

	Appendix	From	To (m)	Au	Halanama	From	То	Au	Halanama	From	То	A
	Holename	(m)	To (m)	(g/t)	Holename	(m)	(m)	(g/t)	Holename	(m)	(m)	(g,
	ESRC01	1	2	0.84	ESRC19	44	45	0.6	FNRRC011	31	32	0.
	ESRC01	2	3	3.23	ESRC19	45	46	0.66	FNRRC011	32	33	0
	ESRC01	7	8	0.58	ESRC19	47	48	0.62	FNRRC011	48	49	0
	ESRC01	8	9	0.64	ESRC19	50	51	0.62	FNRRC012	4	5	0
-	ESRC01	9	10	1.03	ESRC19	52	53	0.81	FNRRC012	5	6	1
	ESRC01	10	11	0.7	ESRC19	54	55	9.25	FNRRC015	0	1	1
	ESRC02	0	1	0.86	ESRC19	55	56	3.92	FNRRC015	6	7	3
	ESRC02	1	2	1.09	ESRC19	56	57	5.46	FNRRC015	10	11	- 1
	ESRC02	2	3	5.41	ESRC19	57	58	0.94	FNRRC016	24	25	
	ESRC02	3	4	5.57	ESRC19	58	59	1.61	FNRRC016	48	49	C
-74	ESRC02	4	5	39.2	ESRC20	17	18	0.69	FNRRC017	61	62	- 1
	ESRC02	5	6	0.73	ESRC20	26	27	0.53	FNRRC018	37	38	C
	ESRC02	6	7	0.7	ESRC20	27	28	1.38	FNRRC018	38	39	(
	ESRC03	3	4	1	ESRC20	28	29	0.95	FNRRC018	110	111	3
	ESRC03	45	46	0.9	ESRC20	47	48	0.72	FNRRC018	111	112	2
B	ESRC03	46	47	2.95	ESRC21	8	9	0.56	FNRRC018	112	113	(
(\bigcup)	ESRC03	47	48	0.99	ESRC21	22	23	1	FNRRC018	113	114	2
	ESRC03	49	50	3.94	ESRC23	61	62	0.62	FNRRC018	115	116	(
	ESRC03	50	51	0.73	ESRC24	3	4	1.51	FNRRC018	116	117	(
	ESRC04	0	1	0.52	ESRC24	12	13	1.05	FNRRC018	117	118	(
	ESRC04	1	2	0.77	ESRC24	15	16	0.56	FNRRC018	118	119	
	ESRC04	8	9	0.66	ESRC24	16	17	0.58	FNRRC018	122	123	(
	ESRC05	1	2	1.03	ESRC24	59	60	0.67	FNRRC018	139	140	1
	ESRC05	14	15	0.55	ESRC24	61	62	1.76	FNRRC018	140	141	Ĺ
	ESRC05	17	18	0.65	ESRC24	71	72	0.59	FNRRC018	141	142	(
	ESRC05	18	19	0.82	ESRC24	72	73	1.06	FNRRC020	32	33	(
	ESRC05	19	20	0.58	ESRC25	15	16	0.53	FNRRC021	2	3	ŗ
15	ESRC05	20	21	1.25	ESRC25	22	23	0.5	FNRRC021	40	41	2
	ESRC06	3	4	1.32	ESRC25	23	24	1.42	FNRRC021	41	42	2
	ESRC06	10	11	0.7	ESRC25	24	25	1.16	FNRRC022	22	23	(
	ESRC06	11	12	4.15	ESRC25	25	26	0.57	FNRRC022	23	24	(
	ESRC06	12	13	10.7	ESRC25	27	28	0.58	FNRRC022	29	30	(
	ESRC06	13	14	2.11	ESRC25	28	29	0.83	FNRRC022	31	32	(
	ESRC06	37	38	2.65	ESRC25	31	32	0.68	FNRRC022	32	33	
	ESRC07	11	12	0.85	ESRC27	0	1	0.97	FNRRC022	34	35	(
	ESRC07	23	24	2.86	ESRC27	20	21	0.58	FNRRC022	36	37	(
	ESRC07	24	25	0.58	ESRC27	22	23	0.52	FNRRC022	37	38	1
	ESRC07	32	33	0.92	ESRC28	18	19	0.6	FNRRC022	38	39	(
	ESRC07	33	34	1.78	ESRC28	27	28	0.66	FNRRC022	40	41	
	ESRC07	34	35	1.89	ESRC28	29	30	0.67	FNRRC023	37	38	ç
	ESRC07	35	36	0.52	ESRC28	30	31	0.89	FNRRC023	38	39	1
	ESRC08	10	11	2.39	ESRC28	32	33	1.01	FNRRC023	40	41	(
	ESRC08	11	12	0.52	ESRC28	33	34	0.51	FNRRC023	41	42	1
	ESRC10	11	12	1.26	ESRC29	0	1	1.67	FNRRC023	42	43	(
	ESRC11	3	4	0.78	ESRC29	11	12	3.23	FNRRC025	18	22	(
	ESRC11	14	15	2.32	ESRC29	30	31	2	FNRRC025	53	54	1 2
	ESRC11	15	16	1.06	ESRC29	33	34	0.58	FNRRC026	24	25	(
-	ESRC11	16	17	0.59	ESRC29	45	46	2.77	FNRRC026	26	27	

ASX: FNR

	Unlangua	From	T- ()	Au	Halanana	From	To	Au	Halamana	From	То	Au
	Holename	(m)	To (m)	(g/t)	Holename	(m)	(m)	(g/t)	Holename	(m)	(m)	(g/t)
	ESRC11	17	18	0.5	ESRC29	47	48	4.15	FNRRC027	12	16	0.7
	ESRC11	18	19	0.66	ESRC29	56	57	1.66	FNRRC028	54	55	3.38
	ESRC11	19	20	0.75	ESRC29	57	58	1	FNRRC028	55	56	2.89
	ESRC11	20	21	0.63	ESRC29	59	60	1.93	FNRRC028	56	57	6.4
	ESRC11	22	23	0.67	ESRC29	61	62	0.57	FNRRC028	57	58	1.69
	ESRC11	23	24	1.41	ESRC29	73	74	0.64	FNRRC029	14	15	3.68
	ESRC12	12	13	0.83	ESRC30	10	11	3.05	FNRRC029	24	25	4.73
	ESRC13	4	5	0.78	ESRC30	11	12	0.59	FNRRC030	3	4	0.61
7	ESRC14	4	5	0.64	ESRC30	13	14	0.51	TLU001	34	36	0.56
1/6	ESRC14	29	30	1.55	ESRC30	14	15	1.17	TLU001	36	38	3.08
UH	ESRC15	27	28	1.13	ESRC30	16	17	0.93	TLU001	66	68	0.89
	ESRC15	28	29	1.89	ESRC30	17	18	2.31	TLU001	68	70	0.73
7	ESRC15	34	35	26.5	ESRC30	34	35	1.05	TLU002	14	16	0.99
	ESRC15	38	39	0.6	ESRC31	0	1	1.04	TLU002	26	28	0.66
	ESRC15	50	51	0.61	ESRC31	10	11	0.85	TLU002	44	46	0.88
-	ESRC15	51	52	3.14	ESRC32	30	31	0.77	TLU002	46	48	1.22
_	ESRC15	52	53	0.8	ESRC32	44	45	2.08	TLU002	76	78	1.06
	ESRC16	25	26	8.33	ESRC32	45	46	2.54	TLU002	6	8	0.78
IJΗ	ESRC16	26	27	0.67	ESRC32	63	64	0.82	TLU003	140	142	0.78
7	ESRC16	45	46	1.55	ESRC32	71	72	3.84	TLU003	184	186	0.77
										ļ		
	ESRC16	47	48	1.74	ESRC33	0	1	0.78	TLU004	0	2	1.04
	ESRC16	48	49	2.14	ESRC33	42	43	4.26	TLU004	4	6	1.42
$(\ \)$	ESRC16	49	50	11.5	ESRC33	77	78	0.96	TLU004	8	10	4.95
	ESRC16	50	51	3.32	ESRC33	78	79	4.91	TLU007	112	114	0.55
1/2	ESRC16	64	65	0.82	ESRC33	79	80	0.91	TLU007	116	118	0.55
UĮĮ	ESRC16	72	73	0.91	ESRC33	83	84	0.88	TLU007	120	122	0.92
7	ESRC16	73	74	0.68	ESRC34	40	41	0.6	TLU007	124	126	0.68
	ESRC17	0	1	1.27	ESRC34	41	42	13.55	TLU007	128	130	3.08
70	ESRC17	1	2	0.51	ESRC34	45	46	1.12	TLU007	130	132	0.64
	ESRC17	13	14	2.25	ESRC34	46	47	0.95	TLU007	134	136	0.95
	ESRC17	14	15	6.48	ESRC34	47	48	2.16	TLU008	76	78	0.96
	ESRC17	15	16	0.82	ESRC35	44	46	0.6	TLU008	116	118	0.67
	ESRC17	21	22	0.71	ESRC35	58	60	0.66	TLU010	40	42	0.88
	ESRC17	24	25	0.53	ESRC35	68	69	0.61	TLU010	62	64	0.55
	ESRC17	26	27	0.57	ESRC35	91	92	1.79	TLU010	64	66	0.57
	ESRC17	32	33	3.6	ESRC38	32	33	0.96	WDH03	40	42	7.3
	ESRC17	33	34	1.15	ESRC38	33	34	0.77	WDH03	42	44	0.67
	ESRC17	34	35	2.62	FNRRC001	42	43	6.99	WDH03	60	62	2.36
	ESRC17	35	36	0.65	FNRRC001	44	48	1.24	WDH04	2	4	1.6
	ESRC17	40	41	0.59	FNRRC002	37	38	0.5	WDH04	4	6	0.58
	ESRC17	45	46	0.61	FNRRC003	2	3	1.23	WDH04	6	8	1.4
	ESRC17	55	56	0.65	FNRRC003	11	12	0.76	WDH04	10	12	6.5
	ESRC17	56	57	0.58	FNRRC003	22	23	1.52	WDH05	32	34	2.69
	ESRC17	57	58	1.02	FNRRC005	25	26	1	WDH07	0	2	0.53
	ESRC17	68	69	0.57	FNRRC005	29	30	7.2	WDH07	6	8	0.5
<u> </u>	ESRC18	0	1	5.62	FNRRC005	30	31	3.84	WDH07	14	16	0.52
<u> </u>	ESRC18	4	5	1.18	FNRRC005	31	32	31.83	WDH07	20	22	0.99
	ESRC18	16	17	0.53	FNRRC005	32	33	8.53	WDH37	39	40	0.9
-	ESRC18	20	21	5.7	FNRRC005	33	34	1.39	WDH37	119	120	0.6
-	ESRC18	21	22	0.77	FNRRC005	49	50	3.09	WDH37	196	197	0.63

ASX: FNR

ESRC18 24 25 2.52 FNRRC006 4 5 3.59 WDH37 235 236 ESRC18 25 26 0.8 FNRRC006 49 50 3.49 WDH38 59 60 ESRC18 29 30 0.54 FNRRC006 50 51 9.06 WDH38 69 70 ESRC18 32 33 0.96 FNRRC007 18 19 0.84 WDH41 4 5 ESRC18 33 34 0.63 FNRRC007 39 40 0.76 WDH41 74 75 ESRC19 0 1 1.03 FNRRC007 40 41 2.33 WDH41 75 76 ESRC19 1 2 0.64 FNRRC009 9 10 0.66 WDH41 76 77 ESRC19 1 1 2 0.64 FNRRC009 22 23 0.53 WDH41 106 107 ESRC19 11 12 0.51 FNRRC009 41 42 0.75 WDH41 108 109 ESRC19 13 14 3.04 FNRRC010 0 1 2.59 WDH41 109 110 ESRC19 13 14 3.04 FNRRC010 4 5 5.7 WDH63 8 10 ESRC19 14 15 3.53 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 15 16 3.36 FNRRC010 14 15 0.72 WDH64 20 22 ESRC19 16 17 12.7 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 17 18 5.62 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 18 19 0.8 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 18 19 0.8 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 38 39 0.71 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 39 40 3.41 FNRRC010 35 36 0.55 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 36 37 6.08 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 24 26 ESRC19 42 43 0.55 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	(g/	To (m)	From (m)	Holename	Au (g/t)	To (m)	From (m)	Holename	Au (g/t)	To (m)	From (m)	Holename	
ESRC18 29 30 0.54 FNRRC006 50 51 9.06 WDH38 69 70 ESRC18 32 33 0.96 FNRRC007 18 19 0.84 WDH41 4 5 ESRC18 33 34 0.63 FNRRC007 39 40 0.76 WDH41 74 75 ESRC19 0 1 1.03 FNRRC007 40 41 2.33 WDH41 75 76 ESRC19 1 2 0.64 FNRRC009 9 10 0.66 WDH41 76 77 ESRC19 1 1 2 0.64 FNRRC009 9 10 0.66 WDH41 76 77 ESRC19 1 1 12 0.51 FNRRC009 22 23 0.53 WDH41 106 107 ESRC19 11 12 0.51 FNRRC009 41 42 0.75 WDH41 108 105 ESRC19 12 13 1.3 FNRRC010 0 1 2.59 WDH41 109 110 ESRC19 13 14 3.04 FNRRC010 4 5 5.7 WDH63 8 10 ESRC19 14 15 3.53 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 15 16 3.36 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 16 17 12.7 FNRRC010 14 15 0.72 WDH64 20 22 ESRC19 16 17 12.7 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 18 19 0.8 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 23 24 0.56 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 38 39 0.71 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 39 40 3.41 FNRRC010 35 36 0.55 WDH71 4 6 ESRC19 39 40 3.41 FNRRC010 35 36 0.55 WDH71 4 6 ESRC19 39 40 3.41 FNRRC010 37 38 2.3 WDH71 24 26 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 26 28 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55		236	235	WDH37	3.59	5	4	FNRRC006		25	24	ESRC18	
ESRC18 32 33 0.96 FNRRC007 18 19 0.84 WDH41 4 5 ESRC18 33 34 0.63 FNRRC007 39 40 0.76 WDH41 74 75 ESRC19 0 1 1.03 FNRRC007 40 41 2.33 WDH41 75 76 ESRC19 1 2 0.64 FNRRC009 9 10 0.66 WDH41 76 77 ESRC19 2 3 0.61 FNRRC009 22 23 0.53 WDH41 106 107 ESRC19 11 12 0.51 FNRRC009 41 42 0.75 WDH41 108 109 ESRC19 12 13 1.3 FNRRC010 0 1 2.59 WDH41 109 110 ESRC19 13 14 3.04 FNRRC010 4 5 5.7 WDH63 8 10 ESRC19 14 15 3.53 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 15 16 3.36 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 16 17 12.7 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 17 18 5.62 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 23 24 0.56 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 ESRC19 39 40 3.41 FNRRC010 37 38 2.3 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 40 41 12.1 FNRRC010 40 41 0.85 WDH71 26 28 ESRC19 42 43 0.5 FNRRC010 40 41 0.85 WDH71 26 28 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	1.0	60	59	WDH38	3.49	50	49	FNRRC006	0.8	26	25	ESRC18	
ESRC19	2.0	70	69	WDH38	9.06	51	50	FNRRC006	0.54	30	29	ESRC18	
ESRC19 0 1 1.03 FNRRC007 40 41 2.33 WDH41 75 76 ESRC19 1 2 0.64 FNRRC009 9 10 0.66 WDH41 76 77 ESRC19 2 3 0.61 FNRRC009 22 23 0.53 WDH41 106 107 ESRC19 11 12 0.51 FNRRC009 41 42 0.75 WDH41 108 109 ESRC19 12 13 1.3 FNRRC010 0 1 2.59 WDH41 109 110 ESRC19 13 14 3.04 FNRRC010 4 5 5.7 WDH63 8 10 ESRC19 14 15 3.53 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 15 16 3.36 FNRRC010 14 15 0.72 WDH64 20 22 <t< td=""><td>1.3</td><td>5</td><td>4</td><td>WDH41</td><td>0.84</td><td>19</td><td>18</td><td>FNRRC007</td><td>0.96</td><td>33</td><td>32</td><td>ESRC18</td><td></td></t<>	1.3	5	4	WDH41	0.84	19	18	FNRRC007	0.96	33	32	ESRC18	
ESRC19 1 2 0.64 FNRRC009 9 10 0.66 WDH41 76 77 ESRC19 2 3 0.61 FNRRC009 22 23 0.53 WDH41 106 107 ESRC19 11 12 0.51 FNRRC009 41 42 0.75 WDH41 108 109 ESRC19 12 13 1.3 FNRRC010 0 1 2.59 WDH41 109 110 ESRC19 13 14 3.04 FNRRC010 4 5 5.7 WDH63 8 10 ESRC19 14 15 3.53 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 15 16 3.36 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 16 17 12.7 FNRRC010 14 15 0.72 WDH64 20 22 ESRC19 16 17 12.7 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 17 18 5.62 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH70 0 2 ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 2 4 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 2 4 ESRC19 39 40 3.41 FNRRC010 37 38 2.3 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 42 43 0.5 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 42 43 0.55	2.0	75	74	WDH41	0.76	40	39	FNRRC007	0.63	34	33	ESRC18	
ESRC19 2 3 0.61 FNRC009 22 23 0.53 WDH41 106 107 ESRC19 11 12 0.51 FNRC009 41 42 0.75 WDH41 108 109 ESRC19 12 13 1.3 FNRC010 0 1 2.59 WDH41 109 110 ESRC19 13 14 3.04 FNRC010 4 5 5.7 WDH63 8 10 ESRC19 14 15 3.53 FNRC010 7 8 0.79 WDH64 14 16 ESRC19 15 16 3.36 FNRC010 7 8 0.79 WDH64 14 16 ESRC19 16 17 12.7 FNRC010 15 16 2.37 WDH65 22 24 ESRC19 16 17 12.7 FNRC010 15 16 2.37 WDH65 22 24 ESRC19 17 18 5.62 FNRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRC010 16 17 12.12 WDH66 14 16 ESRC19 23 24 0.56 FNRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRC010 35 36 0.55 WDH71 24 26 ESRC19 39 40 3.41 FNRC010 36 37 6.08 WDH71 24 26 ESRC19 40 41 12.1 FNRC010 37 38 2.3 WDH71 26 28 ESRC19 41 42 2.1 FNRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 41 42 1.02	3.9	76	75	WDH41	2.33	41	40	FNRRC007	1.03	1	0	ESRC19	
ESRC19 11 12 0.51 FNRRC009 41 42 0.75 WDH41 108 109 ESRC19 12 13 1.3 FNRRC010 0 1 2.59 WDH41 109 110 ESRC19 13 14 3.04 FNRRC010 4 5 5.7 WDH63 8 10 ESRC19 14 15 3.53 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 15 16 3.36 FNRRC010 14 15 0.72 WDH64 20 22 ESRC19 16 17 12.7 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 17 18 5.62 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 23 24 0.56 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 ESRC19 39 40 3.41 FNRRC010 36 37 6.08 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 40 41 12.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	1.0	77	76	WDH41	0.66	10	9	FNRRC009	0.64	2	1	ESRC19	
ESRC19 12 13 1.3 FNRRC010 0 1 2.59 WDH41 109 110 ESRC19 13 14 3.04 FNRRC010 4 5 5.7 WDH63 8 10 ESRC19 14 15 3.53 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 15 16 3.36 FNRRC010 14 15 0.72 WDH64 20 22 ESRC19 16 17 12.7 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 17 18 5.62 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 ESRC19 39 40 3.41 FNRRC010 35 36 0.55 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 40 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	0.5	107	106	WDH41	0.53	23	22	FNRRC009	0.61	3	2	ESRC19	
ESRC19 13 14 3.04 FNRRC010 4 5 5.7 WDH63 8 10 ESRC19 14 15 3.53 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 15 16 3.36 FNRRC010 14 15 0.72 WDH64 20 22 ESRC19 16 17 12.7 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 17 18 5.62 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRRC010 35 36 0.55 WDH71 4 6	2.0	109	108	WDH41	0.75	42	41	FNRRC009	0.51	12	11	ESRC19	
ESRC19 14 15 3.53 FNRRC010 7 8 0.79 WDH64 14 16 ESRC19 15 16 3.36 FNRRC010 14 15 0.72 WDH64 20 22 ESRC19 16 17 12.7 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 17 18 5.62 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 <	2.7	110	109	WDH41	2.59	1	0	FNRRC010	1.3	13	12	ESRC19	
ESRC19 15 16 3.36 FNRRC010 14 15 0.72 WDH64 20 22 ESRC19 16 17 12.7 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 17 18 5.62 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 ESRC19 39 40 3.41 FNRRC010 35 36 0.55 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	2.0	10	8	WDH63	5.7	5	4	FNRRC010	3.04	14	13	ESRC19	RI
ESRC19 16 17 12.7 FNRRC010 15 16 2.37 WDH65 22 24 ESRC19 17 18 5.62 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 ESRC19 39 40 3.41 FNRRC010 36 37 6.08 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	2.0	16	14	WDH64	0.79	8	7	FNRRC010	3.53	15	14	ESRC19	
ESRC19 17 18 5.62 FNRRC010 16 17 12.12 WDH66 14 16 ESRC19 18 19 0.8 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 ESRC19 39 40 3.41 FNRRC010 36 37 6.08 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 <	1	22	20	WDH64	0.72	15	14	FNRRC010	3.36	16	15	ESRC19	
ESRC19 18 19 0.8 FNRRC010 17 18 7.79 WDH70 0 2 ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 ESRC19 39 40 3.41 FNRRC010 36 37 6.08 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 43 44 3.92 FNRRC010 41 42 1.02 ESRC19 43 44 </td <td>0.7</td> <td>24</td> <td>22</td> <td>WDH65</td> <td>2.37</td> <td>16</td> <td>15</td> <td>FNRRC010</td> <td>12.7</td> <td>17</td> <td>16</td> <td>ESRC19</td> <td></td>	0.7	24	22	WDH65	2.37	16	15	FNRRC010	12.7	17	16	ESRC19	
ESRC19 23 24 0.56 FNRRC010 18 19 7.52 WDH71 2 4 ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 ESRC19 39 40 3.41 FNRRC010 36 37 6.08 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	0.6	16	14	WDH66	12.12	17	16	FNRRC010	5.62	18	17	ESRC19	
ESRC19 25 26 0.73 FNRRC010 19 20 0.61 WDH71 4 6 ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 ESRC19 39 40 3.41 FNRRC010 36 37 6.08 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	0.6	2	0	WDH70	7.79	18	17	FNRRC010	0.8	19	18	ESRC19	
ESRC19 38 39 0.71 FNRRC010 35 36 0.55 WDH71 8 10 ESRC19 39 40 3.41 FNRRC010 36 37 6.08 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	6.	4	2	WDH71	7.52	19	18	FNRRC010	0.56	24	23	ESRC19	
ESRC19 39 40 3.41 FNRRC010 36 37 6.08 WDH71 24 26 ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	12	6	4	WDH71	0.61	20	19	FNRRC010	0.73	26	25	ESRC19	7
ESRC19 40 41 12.1 FNRRC010 37 38 2.3 WDH71 26 28 ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	0.9	10	8	WDH71	0.55	36	35	FNRRC010	0.71	39	38	ESRC19	\forall
ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	0.	26	24	WDH71	6.08	37	36	FNRRC010	3.41	40	39	ESRC19	
ESRC19 41 42 2.1 FNRRC010 40 41 0.85 WDH71 28 30 ESRC19 42 43 0.5 FNRRC010 41 42 1.02 ESRC19 43 44 3.92 FNRRC010 42 43 0.55	0.6	28	26	WDH71	2.3	38	37	FNRRC010	12.1	41	40	ESRC19	
ESRC19 43 44 3.92 FNRRC010 42 43 0.55	0.7	30	28	WDH71	0.85	41	40	FNRRC010	2.1	42	41	ESRC19	
ESRC19 43 44 3.92 FNRRC010 42 43 0.55					1.02	42	41	FNRRC010	0.5	43	42	ESRC19	
					0.55	43	42	FNRRC010	3.92	44	43	ESRC19	