

11 September 2024

TUMAS 3 DRILLING ACHIEVES MEASURED RESOURCE TARGET

HIGHLIGHTS

- Tumas 3 Measured Mineral Resource upgraded to 22.5 Mlb at 300 ppm eU $_3O_8$
 - At a 100 ppm cut-off, the updated Tumas 3 MRE has a Measured and Indicated Mineral Resource totalling 58.2 Mlb at 320 ppm eU_3O_8
- Tumas 1, 2 and 3 Measured Mineral Resource upgraded to 38.5 Mlb at 253 ppm eU_3O_8
 - \circ Remaining Indicated Mineral Resources include 63.6 Mlb at 278 ppm eU₃O₈
 - $_{\odot}$ Total Measured and Indicated Mineral Resources of Tumas 1, 1 East, 2 and 3 at 102.1 Mlb at 268 ppm eU $_{3}O_{8}$
- Mineral Resource Estimate upgrade follows 660 hole, 12,727 m RC resource infill drill program completed in June 2024
- Tumas Project successfully achieves targeted +30-year Life-of-Mine
- Significant upside potential remains to further increase the resource base associated with this highly prospective target
- Ongoing resource drilling is planned to the west of Tumas 3 during FY2025, focusing on identifying an additional 30 Mlb to achieve a +35-year Life-of-Mine
- The Ore Reserve Estimate for the Project, using current pricing points, will now be revised based on this upgraded Mineral Resource Estimate

Deep Yellow Limited (**Deep Yellow** or **Company**) is pleased to announce an updated Mineral Resource Estimate (**MRE**) for the Tumas 1, 1 East, 2 and 3 Deposits (refer Figure 1), located on Mining Licence 237 (**ML237**) in the Erongo Region of Namibia. The deposit is held by Deep Yellow through its wholly owned subsidiary Reptile Uranium Namibia (Pty) Ltd (**RUN**).

The Mineral Resource status upgrade is required to enable the definition of sufficient Proven Mineral Reserves for the first six years of operation and to support project financing. The objective of the program was to improve drill spacing in parts of Tumas 3 to 50 m x 50 m to enable the conversion of approximately 20 Mlb U_3O_8 from the Indicated to Measured JORC Mineral Resource status and collect additional core samples to enhance the density database of the orebodies.

The resource drilling has covered the pit locations which are planned to be mined in the initial six years of operations, as defined in the Tumas Definitive Feasibility Study (**DFS**). By the end of June 2024, 100% of the program, including 660 RC holes for 12,727 m and six diamond core holes for 144.1 m, was completed. After all outstanding data, including density determinations, had been received and validated the drilling program was followed by a mineral resource estimation with the results reported in this announcement.

e: info@deepyellow.com.au

Tables 1, 2 and 3 in Appendix 3 list the RC drill hole locations and intersections greater than 100 ppm U_3O_8 . Diamond core holes were completed for density determinations only.

Based on this work, the drill program has successfully established a measured mineral resource for Tumas 1, 2 and 3, whilst materially maintaining the overall grade and uranium content of the deposits. While the resource status upgrade to Measured Resources at Tumas 3 is based on increased drill density, an upgrade to Measured Resource category was also achieved at Tumas 1 and 2, due to better definition of ore densities.

Overall, at a 100 ppm eU_3O_8 cut-off grade, the Tumas 1, 1 East, 2 and 3 Mineral Resource now stands at Measured and Indicated Mineral Resources of 102.1 Mlb grading 268 ppm, and an Inferred Mineral Resource of 16.1 Mlb at 196 ppm eU_3O_8 , totalling 118.2 Mlb at 255 ppm eU_3O_8 .

A reserve update based on the new mineral resource is currently in progress. This reserve update will be based on the DFS metrics, incorporating the DFS review impact (December 2023) and involve a re-optimisation of the Ore Reserve Estimate in preparation for the expected commencement of mining operations in the pre-production phase of project execution next calendar year.

The Company is confident that the reserve update will extend the operating life of Tumas to over 35 years. The detailed engineering for the Project, which is currently underway, will provide a control capital estimate and detailed execution schedule. In parallel, marketing enquiries, funding advancement (announced July 2024) and re-running of the Project financial model will be undertaken.

Deep Yellow Managing Director Mr John Borshoff commented: "Tumas is a standout, Tier-1, long-life Project and the team continues to tick all the boxes as we progress with project financing and marketing ahead of a final investment decision (**FID**) later this year.

"Delivery of the Tumas Mineral Resource upgrade across the areas earmarked for the initial six years of mining highlights the potential of the mineralised system identified at Tumas to deliver quality uranium resources.

"Remarkably, even with the detailed infill drilling on the Tumas 3 deposit to convert resources from Indicated to the more stringent Measured category, the quantity and quality of the Tumas 3 resource has remained well within the acceptable range."

Deep Yellow Rössing Mine N Africa 0 10km Husab Mine B2 Desalination Plant Namibia Swakopmund Etango **Garnet Valley** C28 Namaqua 🗯 Atlantic Ongolo Langer Heinrich **Omahola Project** D1994 MS7 Mine Ocean B2 Barking Gecko • INCA EPL3496 EPL3669 Tumas Project Walvis Bay Tubas Calcrete Tumas Central Port Tubas Red Sand A Ĵ ML237 ▲ Tumas 3 ML176 $(\mathbf{+})$ Walvis Bay EPL3497 Tumas 1 & 2 A Tumas 1 East C14 EPL3670 D1983 D2186 Angola Zambia Legend Basement Deposit Palaeochannel Deposit Namibia Palaeochannel Prospect Botswana Basement Prospect MDRL3498 Windhoek Tumas Project (ML237) Swakopmund Omahola Project C ٦ Reptile Project Aussinanis Nova JV(→65%) Lüderitz Yellow Dune (85%) South Africa Shiyela ML Palaeochannel

Figure 1: Namibian Project Location Map.

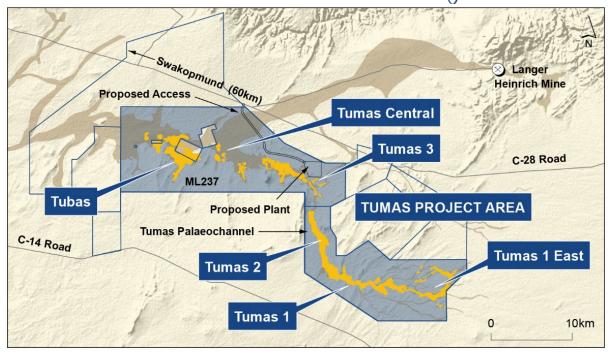


Figure 2: ML237 Showing Tumas Deposits and Main Prospect Locations Over Palaeochannels.

Table 1 Lists the details of the Mineral Resource estimation results for the Tumas 1, 2 and 3 deposits.

Denseit	JORC	0	.	U ₃ O ₈	U₃O ⁸		M	1	1
Deposit	Class	Cut-off	Tonnes	ppm	(t)	(Mlb)	Measured	Indicated	Inferred
Tumas 3	Measured	100	33.8	300	10,210	22.5	22.5		
	Indicated	100	48.6	335	16,200	35.7		35.7	
	Inferred	100	16.1	170	2,770	6.1			6.1
Tumas 3 Total			98.5	295	29,180	64.3			
Tumas 1 & 2	Measured	100	35.2	205	7,270	16.0	16.0		
	Indicated	100	18.9	200	3,760	8.3		8.3	
	Inferred	100	1.8	190	340	0.7			0.7
Tumas 1 & 2 Tot	al		55.9	205	11,370	25.1			
Tumas 1, 2 & 3	Measured	100	69.0	286	17,480	38.5	38.5		
1011103 1, 2 0 0					,		50.5	44.0	
	Indicated	100	67.5	295	19,960	44.0		44.0	
	Inferred	100	17.9	174	3,110	6.8			6.8
Tumas 1, 2 & 3 T	Total		154.4	262	40,550	89.3	38.5	44.0	6.8

Table 1: Tumas 1, 2 and 3 Resource Upgrade September 2024

Tumas 3 is the largest uranium deposit along the Tumas palaeodrainage. By itself it contains Measured and Indicated Mineral Resources of $58.2 \text{ Mlb } U_3O_8$ at $321 \text{ ppm } U_3O_8$.

Together with Tumas 1, 1 East, Tumas 2 and Tubas deposits, the palaeodrainage contains total surficial Measured, Indicated, and Inferred Mineral Resources at a 100 ppm eU_3O_8 cut-off (excluding the Aussinanis deposit on MDRL3498) of 137.0 Mlb at 247 ppm eU_3O_8 . (refer Appendix 1).

It is expected that the Ore Reserve will be updated later in September using the Tumas Mineral Resource detailed in this announcement.

Uranium mineralisation at Tumas occurs in association with calcium carbonate precipitations (calcrete) in sediment-filled palaeovalleys.

The MRE upgrade from this drill program is a notable improvement in the quality of the resource converting one third into the Measured category while close to maintaining the grade and uranium contents of the deposits.

The MRE was undertaken using various cut-off grades using a minimum thickness of 1 m and conforms to the 2012 JORC Code of Mineral Resources reporting.

The mineralisation at Tumas occurs as discrete mineralised deposits, occurring separately from each other as previously identified within this palaeochannel system (refer Figure 2).

The palaeochannels occurring elsewhere on ML237, west of Tumas 3 and the Tubas Red Sand and Calcrete deposits have, in parts, only been sparsely drilled along widely spaced lines. With the western Tumas and Tubas palaeochannels within ML237 being largely under-drilled, significant upside potential remains to further increase the resource base associated with this highly prospective target. Further infill drilling in these parts of the palaeochannel is expected to increase the current 18.8 Mlb in this zone. Further resource drilling is planned to continue to the west of Tumas 3 and is expected to start during FY2025. The Company is seeking a further 30 Mlb to add to the Tumas resource base.

Tumas 3 Mineral Resource Estimate Summary

The Mineral Resource was estimated by Multi Indicator Kriging (**MIK**). The final MRE was reported at cut-off grades from 100 ppm to 200 ppm eU_3O_8 and the Mineral Resources derived from these cut-off grades indicate the mineralisation remains robust and consistent (refer Table 2).

The MRE covers the Tumas 3 deposit, between coordinates 498,600E to 513,000E, as shown on Figure 3.

At a 100 ppm cut-off, the updated Tumas 3 MRE has a Measured and Indicated Mineral Resource totalling 58.2 Mlb at 320 ppm eU_3O_8 (as shown in Table 1).

The 100 ppm eU_3O_8 cut-off was selected based on previous mining studies and represents the most continuous mineralisation within the deposit.

		Measured			Indicated			Inferred	
	М	Grade		М	Grade		М	Grade	
Cut-off	Tonnes	ppm	Mlb	Tonnes	ppm	Mlb	Tonnes	ppm	Mlb
100	33.8	300	22.5	48.6	335	35.7	16.1	170	6.1
150	25.8	355	20.3	38.3	390	32.9	7.3	235	3.7
200	18.0	435	17.3	29.2	455	29.4	3.3	305	2.2

Table 2: Tumas 3 – JORC 2012 MRE at Various Cut-off Grades

Notes: Figures have been rounded and totals may reflect small rounding errors. eU₃O₈ - equivalent uranium grade as determined by downhole gamma logging. Gamma probes were calibrated at the Langer Heinrich uranium mine test pit. During drilling, probes were checked daily against a standard source.

When compared to the previous MRE for the deposit (refer Table 3) the differences relate to the conversion of a portion of the previous Indicated Mineral Resources due to the completion of the recent infill drilling.

	F	Previous MRE			Updated MRE	
Class	M tonnes	Grade	Mlb	M tonnes	Grade	Mlb
Measured				33.8	300	22.5
Indicated	84.0	325	60.6	48.6	335	35.7
Inferred	16.5	170	6.2	16.1	170	6.1
Total	100.5	300	66.8	98.5	295	64.3

Table 3: Tumas 3 – Comparison between Previous and Updated MRE

Table 4 outlines the combined Mineral Resources of Tumas 1, 1 East, 2 and 3, all of which are the focus of the Tumas DFS. The changes to Tumas 1 and 2 are purely based on mineral resource classification following the application of estimated bulk density values to the previous mineral resource estimates. These estimates were originally classified as Indicated and Inferred only on the basis of an assumed bulk density value; this has now been corrected enabling part of these orebodies to be classified as Measured.

U₃O₈ ppm Deposit **JORC Class** cut-off $U_{3}O_{8}(t)$ U₃O₈ (Mlb) tonnes Tumas 3 Measured 100 33.8 300 10,210 22.5 Indicated 100 48.6 335 16,200 35.7 100 16.1 170 Inferred 2,770 6.1 **Tumas 3 Total** 98.5 295 64.3 29,180 7,270 Tumas 1 & 2 Measured 100 35.2 205 16.0 100 200 Indicated 18.9 3,760 8.3 Inferred 100 1.8 190 340 0.7 Tumas 1 & 2 Total 55.9 205 25.0 11,370 Tumas 1 East Measured 100 Indicated 100 36.3 245 8,870 19.6 Inferred 100 19.4 215 4,190 9.2 **Tumas 1 East Total** 55.7 235 13,060 28.8 100 38.5 Tumas 1, 2 & 3 Measured 69.0 286 17,480 Indicated 100 103.8 330 28,830 63.6 Inferred 100 37.3 199 7,300 16.0 Tumas 1, 1 East, 2 & 3 Total 210.1 255 53,610 118.1

Table 4: Tumas 1, 1 East, 2 and 3 - JORC 2012 MRE - Mineral Resources at 100 ppm eU $_3O_8$ cut-off

Note:Figures have been rounded and totals may reflect small rounding errors.
eU3O8 - equivalent uranium grade as determined by downhole gamma logging.
Gamma probes were calibrated at the Langer Heinrich uranium mine test pit.
During drilling, probes were checked daily against a standard source.

ASX Additional Information

The following is a summary of the material information used to estimate the Mineral Resources as required by Listing Rule 5.8.1 and JORC 2012 Reporting Guidelines.

Deposit Parameters

The Tumas 1, 2 and 3 uranium mineralisation is of the calcrete-type located within an extensive, mainly east-west trending, palaeochannel system. The uranium mineralisation occurs in association with calcium carbonate precipitations (calcrete) in sediment filled palaeovalleys. Uranium is the only economically extractable metal in this type of mineralisation, although vanadium production can be considered if the price for vanadium becomes high enough. Uranium minerals mainly include uranium vanadates. The geology of this type of mineralisation is well understood, having been explored over many years. The Langer Heinrich uranium miner, located 30 km to the north-east, mines this type of deposit and has been in operation since 2007.

The mineralisation domains used for the current extended MRE study were interpreted to capture continuous zones of mineralisation above an 80 ppm eU_3O_8 cut-off. The mineralisation included in this study has a strike length of approximately 15.7 km and ranges in width between 400 m to 1,700 m extending to a maximum depth of 45 m along the main Tumas channel. Within this zone the largest area of detailed infill drilling extends for approximately 12 km strike length and was the main focus of the MRE. Thicknesses vary from 1 m to 18 m. The mineralisation occurs in a reasonably continuous, seam-like horizon, occurring between depths of 2 m to 25 m and extends west beyond the infill drilled areas.

Drilling on the project has mostly used RC methods. Drilling that formed the basis of the MRE included the recently completed infill drilling as well as drilling dating back to 2009 and amounted to 4,522 drill holes for a total of 104,121 m. A number of drill holes were regional in nature and the subsequent dataset used for the final estimates was limited to 91,667 1 m intervals. Drilling achieved recoveries of around 90%. All drill chips were geologically logged, and their radioactivity was measured. All the data was added into a well-maintained database. Figure 3 shows the drill hole locations at Tumas 3 highlighting the 2024 infill drilling holes.

The 2022 and 2023 infill drilling of some of the previously 100 m by 100 m and 200 m x 200 m spaced holes was carried out along 50 m spaced lines using 100 m hole spacing achieving a staggered overall spacing of approximately 70 m x 70 m, this was deemed sufficient for the determination of Indicated Mineral Resources.

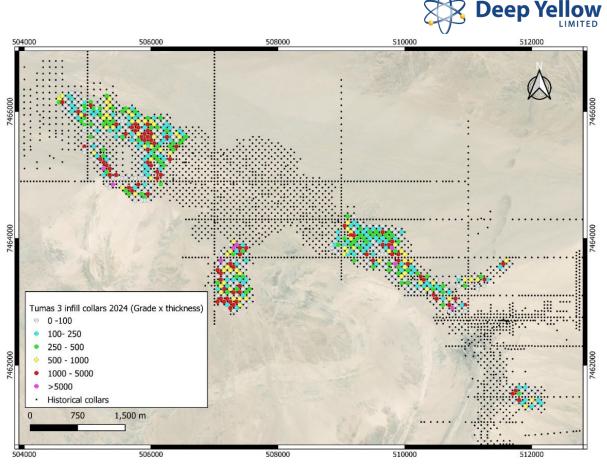


Figure 3: Tumas 3 Deposit, Showing Area of Infill Drill Hole Locations and GT Contours Over Palaeochannel Outline

Methodology

Data used in the MRE is largely based on down-hole radiometric gamma logging taken by a fully calibrated Aus Log gamma logging system which was used in the recent and previous drilling programs. Down-hole gamma readings were taken at 5 cm intervals and converted into equivalent uranium values (eU_3O_8) before being composited to 1 m intervals. Geochemical assays were collected from 1 m RC-drilling intervals, which were split to 1 to 1.5 kg samples by riffle splitters and 120 grams were further pulverised for use in XRF or ICP-MS analysis. Selected samples from the historical holes were also assayed for U_3O_8 by ICP-MS method to confirm the XRF results. For further description of sampling techniques and associated data see Table 1, Appendix 2.

The geochemical assays were used to confirm the validity of the eU_3O_8 values determined by down-hole gamma probing. After validation, the eU_3O_8 values derived from the down-hole gamma logging were given preference over geochemical assays for the resource estimation due to the greater sampling volume. In-house handheld XRF measurements of nearly all the mineralised samples were used to further confirm the equivalent uranium determinations.

All relevant prior drill hole details and results were previously reported by Deep Yellow in announcements made to the ASX on 29 November 2023 11 September 2023, 13 July 2021, 8 June 2021, 5 May 2021, 24 September 2020, 12 May 2020, 2 April 2020, 21 October 2019, 27 March 2019, 17 April 2018, 5 July 2018, 14 December 2017, 27 September 2017, 11 July 2017, 22 June 2017, 22 May 2017 and 19 April 2017.

Figure 3 shows the Tumas 3 Deposit drill hole locations with the collars of the 2024 drilling program coloured according to grade thickness ($GT-eU_3O_8$ ppm x metre thickness) outlining extent and nature of the mineralisation over the 14 km length of channel tested which was the focus of this current MRE work. One East-West long-section and two North-South cross-sections through the resource of the Tumas 3 uranium mineralisation are shown in Figures 4, 5 and 6, respectively.

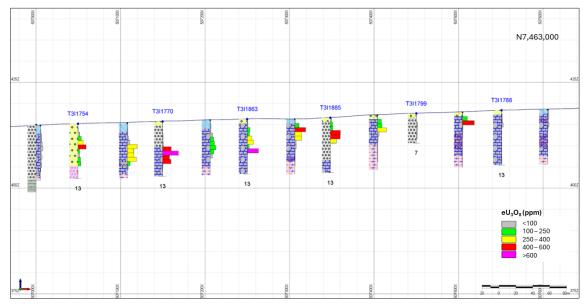


Figure 4: Tumas 3, Drill Long-section 7,463,000N

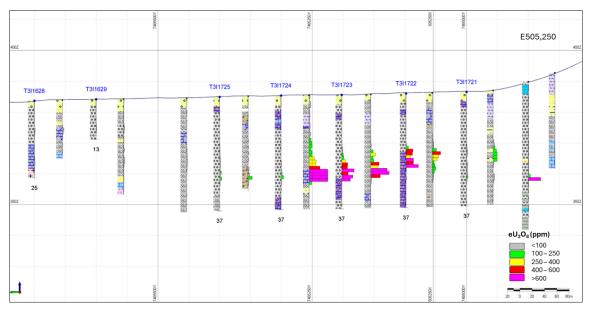


Figure 5: Tumas 3, Drill Cross-section 505,250E

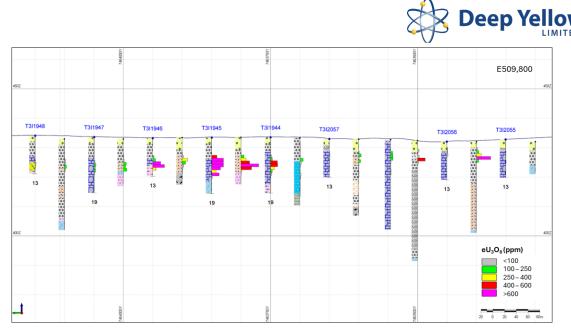
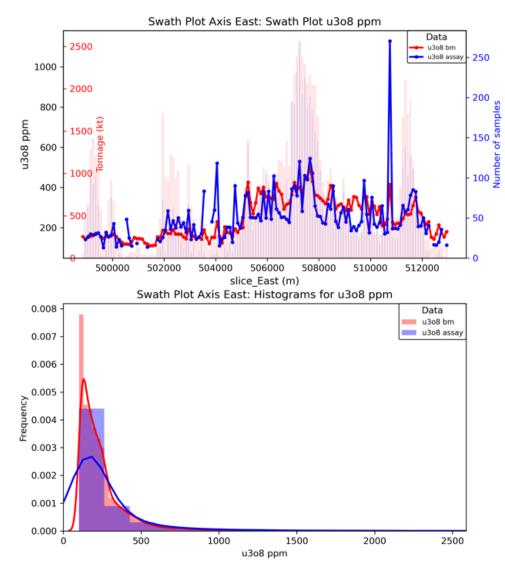


Figure 6: Tumas 3, Drill Cross-section 509,800E

Mineral Resource Estimate

The Tumas MRE was undertaken in order to define an updated MRE following the completion of infill drilling of Tumas 3. In this instance an MIK estimate was completed using data supplied from the Deep Yellow database in conjunction with updated base of mineralisation profile, base of calcrete palaeochannel and top and bottom mineralisation surfaces.


The estimation dataset was broken into six separate domains, with domains 1 and 3 representing the waste portion and domains 2, 4, 5 and 6 representing the mineralised zones within the Tumas 3 deposit. Indicator variography was undertaken on domains 1 and 3 (as waste domains) and 2, 4, 5 and 6 as the mineralised domains in order to more reasonably represent the mineralisation within the deposits. Individual metal variograms were calculated for all six domains in order to enable the correct assessment of the variance adjustment to be applied to the MIK estimate for each domain. In all cases the short range variography was dominated by the downhole direction as this contained both the best continuity and shortest sample spacing with continuity and ranges in the X and Y directions being dominated by the drill hole spacing and general mineralisation continuity throughout the deposit.

Block sizes used in the estimation of the mineral resource were set at 50 m x 50 m x 3 m as this was deemed appropriate to the sample spacing of the underlying dataset and general thickness of the mineralisation. As an MIK estimate was being undertaken the expected Selected Mining Unit (**SMU**) size was set at 4 m x 4 m x 3 m (similar in X, Y and Z extent to that employed at the nearby Langer Heinrich mine) with an expected grade control spacing of 4 m x 4 m x 1 m being completed prior to actual mining.

A four-pass expanding search process was employed in the estimate with the search distance starting at 55 m x 55 m x 2.0 m, expanding to 100 m x 100 m x 5.2 m. Initial sample requirements for an estimate to be undertaken for a block were set at a minimum of sixteen samples, a maximum of forty-eight samples and samples to be selected for at least four octants. This sample requirement was progressively reduced to a minimum of eight samples from two octants for the final search pass, maximum sample numbers were maintained throughout the search process.

Prior to final compilation of the model, a variance adjustment was applied to the panel grades based on the individual domain variography in order to estimate potentially recoverable mineral resources. Bulk density values used within the MRE are based on an inverse distance density model created using specific densities for the various logged rock types within the resource dataset. The density values for each lithotype were based on a combination of physical density measurements, complete in-house and at various analytical laboratories, and downhole gamma-gamma geophysical densities. It is expected that, as additional infill drilling takes place, more bulk density values will be collected. The generation of a bulk density dataset has now allowed for the allocation of measured mineral resource categories to the Tumas 1 and 2 Mineral Resource Estimates, when these resources were previously announced it was stated that the mineral resources were classified as Indicated and Inferred based on the lack of bulk density measurements – this has now been corrected with the underlying estimate unchanged.

The swath plot shows a very good correlation between the MRE block grades and the underlying data.

The updated mineral resources for Tumas 3 compare well with the previous estimates with the main differences being the reduction in total metal content as a result of the application of updated bulk density values. Table 5 details the differences between the estimates.

			S	eptember 20	24		Previous	
Deposit	JORC Class	cut-off	tonnes	U₃O ₈ ppm	U₃O ₈ Mlb	Tonnes	U₃Oଃ ppm	U₃O₅ (Mlb)
Tumas 3	Measured	100	33.8	300	22.5			
	Indicated	100	48.6	335	35.7	84.0	325.0	60.6
	Inferred	100	16.1	170	6.1	16.5	170.0	6.2
Tumas 3	Fotal		98.5	295	64.3	100.5	300.0	66.8

Table 5: Tumas 3 Resource Comparison September 2024

The Competent Person is satisfied that the applied methodology is appropriate for reporting a Measured and Indicated Mineral Resource and that the resulting block estimates are true reflections of the underlying drilling data.

Mining and Other Material Modifying Factors Considered

Potential mining scenarios have focused on open cast mining using three-metre high flitches; after stripping of unconsolidated sandy grits and screes (expected to be free-digging).

Block support corrections applied to the MRE follow the expected mining process.

More detailed mineralogical characterisation tests were conducted from the lower Tumas areas which has presented the Company with a sound understanding of how calcrete ore from Tumas would respond to beneficiation and further downstream processing.

Two distinct metallurgical testwork programs were conducted to support the Tumas DFS. The first utilised a single 270 kg ore composite which was used to develop those parts of the process where chemical and/or physical performance is directly linked to the ore properties, i.e., beneficiation, leach and CCD. A second testwork program covered the unit operations downstream of pregnant leach solution concentration, i.e., precipitation, causticisation, crystallisation and carbonation (see ASX release 2 February 2023).

Namisun, as independent consultant and leading Environmental Practitioner, completed an Environmental Impact Assessment (**EIA**) for the Tumas Project in 2023.

With mining progressing along the channel parameter, waste material will be backfilled into mined-out areas so to provide for ongoing rehabilitation of the mined-out areas progressively throughout the life of the mine.

The process plant has been specifically designed to produce a benign tailings stream that will not have any long-term environmental impacts once final rehabilitation and closure of the project has been completed.

JOHN BORSHOFF Managing Director/CEO Deep Yellow Limited

This ASX announcement was authorised for release by Mr John Borshoff, Managing Director/CEO, for and on behalf of the Board of Deep Yellow Limited.

Contact

Investors: John Borshoff, Managing Director/CEO +61 8 9286 6999 john.borshoff@deepyellow.com.au Media: Cameron Gilenko +61 466 984 953 cameron.gilenko@sodali.com

About Deep Yellow Limited

Deep Yellow Limited is successfully progressing a dual-pillar growth strategy to establish a globally diversified, Tier-1 uranium company to produce 10+ Mlb pa.

The Company's portfolio provides geographic and development diversity with the Company's two advanced projects – flagship Tumas, Namibia (FID expected in Q4/CY24) and Mulga Rock, Western Australia (advancing through revised Definitive Feasibility Study), both located in Tier-1 uranium jurisdictions.

Deep Yellow is well-positioned for further growth through development of its highly prospective exploration portfolio – Alligator River, Northern Territory and Omahola, Namibia with ongoing M&A focused on high-quality assets should opportunities arise that best fit the Company's strategy.

Led by a best-in-class team, who are proven uranium mine builders and operators, the Company is advancing its growth strategy at a time when the need for nuclear energy is becoming the only viable option in the mid-to-long term to provide baseload power supply and achieve zero emission targets. Importantly, Deep Yellow is on track to becoming a reliable and long-term uranium producer, able to provide production optionality, security of supply and geographic diversity.

Competent Person's Statements

Mineral Resource Estimate

The information in this announcement that relates to the Tumas Mineral Resource Estimate is based on, and fairly represents, information and supporting documentation relating to work completed by Mr. D Princep, B.Sc. Geology, who is a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy and has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person in terms of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code 2012 Edition). Mr. Princep is an independent consultant. Mr. Princep consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information in this announcement as it relates to Exploration results and other Mineral Resource estimates and Ore Reserves was based on, and fairly represents, information and supporting documentation compiled by Martin Hirsch, a Competent Person who is a Professional Member of the Institute of Materials, Minerals and Mining (UK) and the South African Council for Natural Science Professionals. Mr Hirsch, who is currently the Manager, Resources & Pre-Development for Reptile Mineral Resources (Pty) Ltd, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Hirsch consents to the inclusion in this announcement of the matters based on the information in the form and context in which it appears. M Hirsch holds shares in the Company.

The Company confirms that it is not aware of any new information or data that materially affects the information included in previous announcements and in particular the announcement released to the market on 2 February 2023 entitled 'Strong Results from Tumas Definitive Feasibility Study'. All material assumptions and technical parameters underpinning the Mineral Resource and Ore Reserve estimates continue to apply and have not materially changed.

Where the Company refers to JORC 2004 resources in this report, it confirms they have not been updated to comply with JORC 2012 on the basis that the information has not materially changed since it was last reported, however these are currently being reviewed to bring all resources up to JORC 2012 standard.

Geophysics Component

The deconvolution of the relevant Tumas 3 down-hole gamma data to convert the data to equivalent uranium values (eU_3O_8) was performed by experienced in-house personnel and over time was checked by various experienced qualified persons. The latest was Jonathon Ross a geophysicist who has 15 years' experience as a geophysicist. He has applied a full range of geophysical methods for mining and exploration, but with a particular focus on wireline geophysics, including tool calibration, data collection, processing, and interpretation. For 10 years, Jonathan was at Heathgate Resources, South Australia based at an in-situ recovery uranium mining company known for its Beverley and Four Mile operations. He then worked in the Orebody Intelligence group at Orica Digital Solutions before joining Deep Yellow. Jonathan is an active member of both AIG and ASEG.

Appendix 1 JORC Mineral Resources - Namibia

		Cut-off	Tonnes	U ₃ O ₈	U ₃ O ₈	U ₃ O ₈	Resource	Categories (M	lb U₃Oଃ)
Deposit	Category	(ppm U₃Oଃ)	(M)	(ppm)	(t)	(Mlb)	Measured	Indicated	Inferred
BASEMENT MINERALISATI	<u>ON</u> Om	ahola Project - J	ORC 2012 ¹						
INCA Deposit ♦	Indicated	100	21.4	260	5,600	12.3	-	12.3	-
INCA Deposit 🔶	Inferred	100	15.2	290	4,400	9.7	-	-	9.7
Ongolo Deposit #	Measured	100	47.7	185	8,900	19.7	19.7	-	-
Ongolo Deposit #	Indicated	100	85.4	170	14,300	31.7	-	31.7	-
Ongolo Deposit #	Inferred	100	94.0	175	16,400	36.3	-	-	36.3
MS7 Deposit #	Measured	100	18.6	220	4,100	9.1	9.1	-	-
MS7 Deposit #	Indicated	100	7.2	185	1,300	2.9	-	2.9	-
MS7 Deposit #	Inferred	100	8.7	190	1,600	3.7	-	-	3.7
Omahola Project Sub-T	otal		298.2	190	56,500	125.4	28.8	46.9	49.7
CALCRETE MINERALISATIO	<u>ON</u> Tum	nas 3 Deposit - J	ORC 2012 ²						
Tumas 3 Deposit	Measured	100	33.3	300	10,210	22.5	22.5	-	-
	Indicated	100	48.6	335	16,200	35.7	-	35.7	-
	Inferred	100	16.1	170	2,770	6.1	-	-	6.1
Tumas 3 Deposits Total			98.5	295	29,180	64.3			
7	Tumas 1	, 1E & 2 Deposit	s – JORC 201	2 ³					
Tumas 1, 1E & 2 Deposit ♦	Measured	100	35.2	205	7,270	16.0	16.0	-	-
Tumas 1, 1E & 2 Deposit ♦	Indicated	100	55.2	230	12,630	27.9	-	27.9	-
Tumas 1, 1E & 2 Deposit ♦	Inferred	100	21.2	215	4,530	9.9	-	-	9.9
Tumas 1, 1E & 2 Deposi	ts Total		111.6	220	24,430	53.8			
Sub-Total of Tumas 1, 1	E, 2 and 3	·	210.1	255	53,610	118.1	38.5	63.6	16.0
	Tubas R	ed Sand Deposi	t - JORC 201	2 ⁴					
Tubas Sand Deposit #	Indicated	100	10.0	185	1,900	4.1	-	4.1	-
Tubas Sand Deposit #	Inferred	100	24.0	165	3,900	8.6	-	-	8.6
Tubas Red Sand Depos	it Total		34.0	170	5,800	12.7			
))	Tubas C	Calcrete Deposi	t - JORC 2004	4 ⁵					
Tubas Calcrete Deposit	Inferred	100	7.4	375	2,765	6.1	-	-	6.1
Tubas Calcrete Total			7.4	375	2,765	6.1			
D D	Aussinani	s Deposit - JORC	2012- DYL 8	35 % ⁶					
Aussinanis Deposit 🔶	Indicated	100	12.3	170	2,000	4.5	-	4.5	-
Aussinanis Deposit 🔶	Inferred	100	62.1	170	10,700	23.6	-	-	23.6
Aussinanis Deposit Tot	al		74.4	170	12,700	28.1			
Calcrete Projects Sub-	Fotal		325.9	230	74,875	165.0	38.5	72.2	54.3
GRAND TOTAL NAMIBIA	N RESOURC	ES	624.1	210	131,375	290.4	67.3	119.1	104.0

Figures have been rounded and totals may reflect small rounding errors.
 XRF chemical analysis unless annotated otherwise.

- # Combined XRF Fusion Chemical Assays and eU_3O_8 values.

• $\oint eU_3O_8$ - equivalent uranium grade as determined by downhole gamma logging.

 Where eU₃O₈ values are reported it relates to values attained from radiometrically logging boreholes. - Gamma probes were originally calibrated at Pelindaba, South Africa in 2007. Recent calibrations were carried out at the Langer Heinrich Mine calibration facility in July 2018, September 2019, December 2020, January 2022, and February 2023.

- Sensitivity checks are conducted by periodic re-logging of a test hole to confirm operations.

- During drilling, probes are checked daily against standard source.

JORC Ore Reserves - Namibia

		Cut-off	Tonnes	U ₃ O ₈	U ₃ O ₈	U ₃ O ₈	Reserve (Categories (Mlb U ₃ O ₈)
Deposit	Category	(ppm U₃Oଃ)	(M)	(ppm)	(t)	(Mlb)	Proved	Probable
Namibia								
	Tu	mas Project - JO	RC 2012 ¹					
Tumas 3	Probable	150	44.9	415	18,600	41.0	-	41.0
Tumas 1E	Probable	150	29.5	265	7,850	17.3	-	17.3
Tumas 1 and 2	Probable	150	13.9	290	4,090	9.0	-	9.0
Tumas Project			88.4	345	30,540	67.3		67.3

Notes: - Figures may not add due to rounding.

- ¹ ASX Release 2 Feb 2023 'Strong Results From Tumas Definitive Feasibility Study'.

Appendix 2: JORC Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 equivalent uranium values (eU₃O₈) by experienced DYL personnel and have been confirmed by competent person (geophysicist). Geochemical assays were used to confirm the conversion results. Appropriate factors were applied to all downhole gamma counting results to make allowance for dri rod thickness, gamma probe dead times and incorporating all other applicable calibration factors. Total gamma eU₃O₈ 33 mm Auslog total gamma probes were used and operated by Company personnel. RMR's gamma probes (T029, T162, D300) were calibrated by a qualified technician at Langer Heinrick Mine in February 2023. Probing at Tumas 3 in 2024 utilised probes T029, T162, and D300. During drilling the probes were checked doily using capacitivity checks against a standard source.
		Chemical assay data
		 Geochemical samples were derived from Reverse Circulation (RC) drilling at intervals of 1 m. Sample were split at the drill site using a riffle splitter to obtain a 0.5 kg to 1 kg sample and a field duplicate. From the 2024 infill drilling program samples from 363 out of 660 holes (55%) were analysed by in-hous portable XRF analysis . The portable XRF instruments (Hitachi X-MET8000 Expert Geo) are calibrated weekly and RMR applies strict QA/QC protocols. The samples were taken for confirmatory assay to be compared to the equivalent uranium value derived from down-hole gamma logging. The assay results have confirmed the equivalent uranium grades and are within an acceptable statistical error margin of less than 10%, except for equivalent uranium grades collected with prob D300 (see: Quality of assay data and laboratory tests). In addition, 212 one-metre samples representing approximately 22% of the mineralised intersection were taken for confirmatory external assays using ICP-AES analysis at ALS, Johannesburg.

Section 1 Sampling Techniques and Data (continued)

Criteria	JO	RC Code Explanation C	Commentary
Drilling technique	s •	Drill type (eg core, reverse circulation, open-hole hammer, rotary air •	RC infill drilling was used for the Tumas 3 campaign.
		blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or • standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	All holes were drilled vertically, and intersections measured present true thicknesses.
Drill sample	•	Method of recording and assessing core and chip sample recoveries and •	Drill chip recoveries were good, generally greater than 90%.
recovery		results assessed.	Drill chip recoveries were assessed by weighing 1 m drill chip samples at the drill site. Weights we
	٠	Measures taken to maximise sample recovery and ensure	recorded in sample tag books.
		representative nature of the samples.	Sample loss was minimised by placing the sample bags directly underneath the cyclone.
	•	Whether a relationship exists between sample recovery and grade and • whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Drilling air pressures were monitored during the drilling program.
Logging	•	Whether core and chip samples have been geologically and $ullet$	All drill holes were geologically logged.
		geotechnically logged to a level of detail to support appropriate Mineral • Resource estimation, mining studies and metallurgical studies.	The logging was qualitative in nature. A dominant (Lith1) and a subordinate lithology type (Lith2) w determined for every sample representing a 1 m interval with assessment of ratio/percentage.
	•	Whether logging is qualitative or quantitative in nature. Core (or costean, • channel, etc) photography.	Other parameters routinely logged include colour, colour intensity, weathering, oxidation, alteration alteration intensity, grain size, hardness, carbonate (CaCO ₃) content, sample condition (wet, dry) a
	•	The total length and percentage of the relevant intersections logged.	a total gamma count was derived from a Rad-Eye scintillometer.
		•	In the 2024 infill drilling program, 12,727 m were geologically logged, which represents 100% of met drilled. The full Tumas 3 dataset contains 95,487 logged intervals.
Sub-sampling	•	If core, whether cut or sawn and whether quarter, half or all core taken. •	Sample splitters used were a 2-tier riffle giving an 87.5% (reject) and a 12.5% sample (assay sample
techniques and sample	•	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	The assay sample was further split using a 2-tier (50%/50%) splitter to obtain a 0.5 kg - 1 kg sample a a 0.5 kg-1 kg field duplicate. All sampling was dry.
preparation	•	For all sample types, the nature, quality and appropriateness of the • sample preparation technique.	The above sub-sampling techniques are common industry practice and appropriate. Sample sizes are considered appropriate to the grain size of the material being sampled.
	•	Quality control procedures adopted for all sub-sampling stages to • maximise representivity of samples.	Standards, field duplicates and blank samples are inserted at an approximate rate of one each for ev 20 samples.
	•	Measures taken to ensure that the sampling is representative of the in • situ material collected, including for instance results for field duplicate/second-half sampling.	RMR used two different standards to monitor accuracy of the portable XRF instruments (AMIS008' alaskite, Goanikontes and AMIS0092 = calcrete, Langer Heinrich Uranium Mine). AMIS0087 standar reported within two standards deviation at an average of 197 ppm U ₃ O ₈ while the expected value is 2
	•	Whether sample sizes are appropriate to the grain size of the material being sampled.	ppm U ₃ O ₈ . AMIS0092 standards also performed within the acceptable limits of the two standards deviations at an expected value of 338 ppm U ₃ O ₈ , against an average derived assay of 336 ppm U ₃ O
Quality of	•		
assay data and		procedures used and whether the technique is considered partial or	technique is industry standard and considered appropriate.
laboratory tests		total.	In-house portable XRF measurements were taken by a Hitachi X-MET8000 Expert Geo instrument.
	•	For geophysical tools, spectrometers, handheld XRF instruments, etc, • the parameters used in determining the analysis including instrument	AUSLog downhole gamma tools were used as explained under 'Sampling techniques'. This is principal evaluating technique.

Section 1 Sampling Techniques and Data (continued)

Criteria	JO	RC Code Explanation	Commentary
		make and model, reading times, calibrations factors applied and their	
		derivation, etc.	analysed during the 2024 infill drilling program.
	•	Nature of quality control procedures adopted (eg standards, blanks,	 16 blanks were randomly inserted following a high-grade sample. They performed reasonably wel
		duplicates, external laboratory checks) and whether acceptable levels	either below or at below or at detection limit.
		of accuracy (i.e. lack of bias) and precision have been established.	15 CRMs were analysed, which, except for one outlier, reported within two standard deviation.
			 Field duplicates (15) indicate a good precision for uranium.
			 Comparison between the ICP assays and equivalent composited gamma data suggested that on probe, i.e., D300, performed below expectations. As a result, gamma data collected with D300 wa substituted by in-house one-metre portable XRF values for the final mineral resource estimate (MRE)
			The comparison further confirmed that the gamma derived values for probes T162 and T029 ar appropriate for use in the MRE.
Verification of	•	The verification of significant intersections by either independent or	• The lithology of the drill samples was recorded in the field using tablets and MaxGeo's LogChie
sampling and		alternative company personnel.	software. Logging codes are derived from pre-defined pulldown menus minimizing mis-logging an
assaying	•	The use of twinned holes.	misspelling. All digital information was validated by the geologist at the end of every drill day an
	٠	Documentation of primary data, data entry procedures, data verification,	uploaded to the MaxGeo database.
		data storage (physical and electronic) protocols.	Gamma data was uploaded daily onto a file server.
	٠	Discuss any adjustment to assay data.	Sample tag books were utilized for sample identification.
			 Tag books including sample specifications and gamma data were validated by a designated Dat Administrator before dispatching for import into the MaxGeo database.
			 Twinning of RC holes was not considered due to the nuggetty nature of the mineralisation.
			 Equivalent eU₃O₈ values are calculated from raw gamma files by applying calibration, casing factor where applicable and deconvolution.
			 The factors applied to individual logs are stored in the MaxGeo database.
			• Equivalent U_3O_8 data was composited from 5 cm to 1 m intervals.
			 The ratio of eU₃O₈ versus assayed U₃O₈ for matching composites is used to quantify the statistical error. It was found that they all lie within statistically acceptable margins except for gamma dat collected by probe D300 (see: Quality of assay data and laboratory tests).
Location of data	•	Accuracy and quality of surveys used to locate drill holes (collar and	
points		down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 All drill holes are vertical and shallow; therefore no down-hole surveying was deemed necessary. The grid system is World Geodetic System (WGS) 1984, Zone 33.
	•	Specification of the grid system used.	
	•	Quality and adequacy of topographic control.	
Data spacing and	•	Data spacing for reporting of Exploration Results.	 The data spacing and distribution is optimised along the Tumas palaeochannel direction. The 2024 infi
distribution	•	Whether the data spacing and distribution is sufficient to establish the	drilling has resulted in a 50 m by 50 m drill spacing over portions of the deposit deemed to lie within th
		degree of geological and grade continuity appropriate for the Mineral	first six years of mining with the majority of the remainder having a staggered 50 m by 100 m spacing.
			 The drill pattern is considered sufficient to establish Measured and Indicated Mineral Resources.

Section 1 Sampling Techniques and Data (continued)

Criteria	JORC Code Explanation	Commentary
)	 Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The total gamma count data, which is recorded at 5 cm intervals, is converted to equivalent uranium value (eU₃O₈) and composited to 1 m intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling or possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation or key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 were drilled vertically and mineralised intercepts therefore represent the true width. All holes were sampled down-hole from surface. Geochemical samples were collected at 1 m intervals. Total-gamma count data was collected at 5 cm intervals.
Sample security	• The measures taken to ensure sample security.	• One-metre RC drill chip samples were prepared at the drill site. The assay samples were stored in plastic bags. Sample tags were placed inside the bags. The samples were placed into plastic crates and transported from the drill site to RMR's site premises in Swakopmund by Company personnel. Samples were prepared for shipment to ALS's sample preparation facility in Okahandja, Namibia, by RMR personnel. ALS, Okahandja, forwarded the prepared pulps to ALS, Johannesburg, for assaying. The remainder of the drill chip sample bags for each hole was placed in crates and stored securely at RMR's sample storage facility Rocky Point located outside Swakopmund.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Dr J Corbin from GeoViz Consulting Australia undertook a drilling data review. He concluded his audit commenting: "Overall, the data available is of reasonably good quality and easily accessible."

Section 2 Reporting of Exploration Results

Criteria	JORC Code Explanation Co	ommentary
Mineral tenement and land tenure status Exploration done	 Type, reference name/number, location and ownership including • agreements or material issues with third parties such as joint ventures, • partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any • known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties. 	The work to which the exploration results relate was undertaken on Mining Licence (ML) 237 (Tumas 3). ML237 was granted to Reptile Uranium Namibia (Pty) Ltd (RUN) in September 2023. RUN is a wholly owned subsidiary of Reptile Mineral Resources and Exploration (Pty) Ltd (RMR), the latter being the operator. ML237 is in good standing and valid until 21 September 2043. ML237 is located within the Namib-Naukluft National Park in Namibia. There are no known impediments to the Tumas Project beyond Namibia's standard permitting procedures. Historically, some work was conducted by Anglo American Prospecting Services (AAPS), General Mining
by other parties	•	Corporation and Falconbridge in the 1970s. Assay results from the historical drilling are incomplete and available on paper logs only. There are no digital records available from this period. Data from this historical information does not form part of the Mineral Resource dataset.
Geology	 Deposit type, geological setting and style of mineralisation. • 	Tumas mineralisation occurs as secondary carnotite enrichment of variably calcretised palaeochannel and sheet wash sediments and adjacent weathered bedrock. Uranium mineralisation at Tumas is surficial and stratabound in Cenozoic sediments, which include from top to bottom scree, sand, gravel, gypcrete, various intercalated calcareous sand and calcrete horizons overlying discordant Damaran age folded sequences of metasediments and granitic suites. The majority of the mineralisation in the project area is hosted in calcrete. Locally, the underlying Proterozoic bedrock shows traces of mineralisation in weathered contact zones of more schistose basement types.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	660 RC holes including 12,727m were drilled in the 2024 infill drilling program. All relevant drilling on Tumas 3 was carried out between 29 February and 7 June 2024. All holes were drilled vertically, and intersections measured present true thicknesses. Refer to Appendix 3 for drill hole data.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	5 cm gamma intervals were composited to 1 m intervals. 1 m composites of eU_3O_8 were used for the estimate. No grade truncations were applied.

Section 2 Reporting of Exploration Results (continued)

Criteria	JORC Code Explanation C	ommentary
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true 	The mineralisation is sub-horizontal and all drilling vertical, therefore, mineralised intercepts are considered to represent true widths.
Diagrams	 width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	All relevant intercepts were included within the text and appendices of previous releases.
Balanced reporti		Comprehensive reporting, including previous announcements covering Tumas 3 exploration results an resource updates was practised throughout the duration of the project including ASX announcement from 19 April 2017, 22 May 2017, 22 June 2017, 11 July 2017, 27 September 2017, 14 December 2017, July 2018, 17 April 2018, 27 March 2019, 21 October 2019, 2 April 2020, 12 May 2020, 5 May 2021, 8 Jun 2021, 13 July 2021, 18 August 2021, 11 September 2023, 29 November 2023 and 5 February 2024.
Other substantiv exploration data		The wider area of the Tumas palaeochannel was subject to some drilling from the 1970 on by Angle American Prospecting Services, Falconbridge and General Mining Corporation. Downhole gamma-gamma density logging for bulk density was derived from work at Tumas 1, 2 and 3 and in analogy to Langer Heinrich Uranium Mine mining in the same lithologies and geological setting East and North-East of Tumas Zone 3. Over 500 in house bulk density determinations were carried out on core samples from Tumas 1, 2 and 3. Additionally, 50 samples were sent to ALS in Johannesburg for verification of the results.
Further work	 The nature and scale of planned further work (eg tests for lateral • extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The palaeochannel mineralisation continues eastwards into Tumas 1 and 2 and westwards into the Tumas Central and Tubas, where there is additional exploration potential.

Section 3 Estimation and Reporting of Mineral Resources

	Criteria .	IORC Code Explanation	Commentary		
	Database integrity	Measures taken to ensure that data has not been corrupted by, for	A set of SOPs (Standard Operating Procedures) was defined that safeguards data integrity covering the		
		example, transcription or keying errors, between its initial collection and following aspects:			
		its use for Mineral Resource estimation purposes.	 Capturing of all exploration data; geology and downhole probing; 		
	•	• Data validation procedures used.	 QA/QC of all drilling, geophysical and laboratory data; 		
			 Data storage (database management), security and back-up; 		
			• Reporting and statistical analyses used industry standard software packages including Micromine and GS ³ .		
:	Site visits of	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. 	• During all drilling programs regular site visits were conducted by the Company's Competent Person who signed off on all exploration data.		
	•	If no site visits have been undertaken indicate why this is the case.	• The Competent Person for Mineral Resources has visited the site numerous times with the most recent being in 2017.		
	-	 Confidence in (or conversely, the uncertainty of) the geological 			
i	interpretation	interpretation of the mineral deposit.	This type of geology is well known and readily recognised in the RC drill chips.		
	•	 Nature of the data used and of any assumptions made. 	• The factors affecting grade distribution are channel morphology and bedrock profile, with bedrock		
		• The effect, if any, of alternative interpretations on Mineral Resource estimation.	"highs" indicative forming areas of mineralisation traps.		
		 The use of geology in guiding and controlling Mineral Resource estimation. 			
	•	• The factors affecting continuity both of grade and geology.			
I	Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	• The drilled mineralisation in Tumas 3 has a total strike length of approximately 15 km, 400 to 1,700 m wide, 2 to 25 m deep. The infilled drilled area of the current resource estimation extends along 12 km strike length and is 400 to 1,700 m wide. The main mineralised calcrete reaches from a shallow depth below surface of -2 to -3 m deep down to -20 m/25 m.		
	Estimation and o	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, 	• The present estimates are based on grade domains controlling the interpolations into block estimates. Block sizes used are 50 m East x 50 m West x 3 m elevation.		
	techniques	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation	• Estimation of block values used Multi Indicator Kriging (MIK). Mineralisation surfaces were derived		
		method was chosen include a description of computer software and	As the estimate was based on MIK no grade capping was applied.		
	·	 parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. 	 The MIK estimate was based on a total of 14 indicator bin values representing 10% probability increments up to 70% then 5% increments to 95% then 97% and 99% in order to more reasonably model the high-grade component of the dataset. Directional variograms based on 14 indicator bins are used in the current estimates. 		
		 The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). 	• A maximum search distance of 100 m x 100 m x 5.2 m was used within the estimate. Panel proportions		

Section 3 Estimation and Reporting of Mineral Resources (continued)

Criteria	JORC Code Explanation	Commentary
0	• In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	estimate throughout correlates well with composited eU_3O_8 GT (Grade-Thickness) data.
	 Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. 	 No correction for water was made other than any that may have been applied during the calculation of downhole equivalent uranium values.
	 Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	• A block support correction was applied to the MIK estimate to derive final block proportions and grades. This correction value adjusts the tonnes and grade for each panel based on the likely mining and grade control parameters. The general progression of this process is to increase overall tonnes and reduce overall grades. Final smu sizes were set at 4 m x 4 m x 3 m with a target grade control spacing of 4 m x 4 m x 1 m.
		 The MIK estimate is considered to be a recoverable Mineral Resource.
		• There is potential to recover the vanadium that is a component of the mineralisation (from carnotite) however this has not been considered as part of this MRE.
		• Average drill spacing for the portion of the mineral resource expected to be mined early in the project life is 50 m x 50 m expanding to a staggered 100 m x 50 m for the majority of the remainder.
		The Mineral Resource panels are centred on drill holes.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	• A visual assessment of sample material was done during the sampling process and samples were classified as either "dry" or "wet". The drilling program did intersect water at times. As the majority of grade values applied within the MRE are based on downhole logging whether the sample is wet or dry is not considered material.
		Tonnages are estimated dry.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	• Composites less than 0.75 m were excluded from the estimation process. This only relates to samples at the start or end of drill holes.
		 The final MRE was reported at a range of cut-off grades starting at 100 ppm U₃O₈ and going up to 900 ppm U₃O₈.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining 	 Based on previous mining studies a cut-off grade of 100 ppm was selected for the reporting of the MRE. Potential mining scenarios will be open cast mining using three-metre high flitches; after stripping of unconsolidated sandy grits and screes (expected to be free-digging).
	dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining	 The MRE has been limited by the application of a basement profile derived from drill hole logging as it is expected that any basement hosted mineralisation would not be recoverable using the expected processing flowsheet.
	methods and parameters when estimating Mineral Resources may not	
	always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider	 More detailed mineralogical characterisation tests were conducted from the lower Tumas areas which presents the Company with a sound understanding of how a calcrete ore from Tumas would respond to beneficiation and further downstream processing.

Section 3 Estimation and Reporting of Mineral Resources (continued)

Criteria	JORC Code Explanation C	commentary
D	potential metallurgical methods, but the assumptions regarding • metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. •	utilised a single 270 kg ore composite which was used to develop those parts of the process where chemical and/or physical performance is directly linked to the ore properties, i.e., beneficiation, leach and CCD. A second testwork program covered the unit operations downstream of pregnant leach solution concentration, i.e., precipitation, causticisation, crystallisation and carbonation (see ASX release 2 February 2023).
Environmen factors or assumption:	disposal options. It is always necessary as part of the process of	Namisun, as independent consultant and leading Environmental Practitioner, completed an Environmental Impact Assessment (EIA) for the Tumas Project in 2023. With mining progressing along the channel parameter, waste material will be backfilled into mined-out areas so to provide for ongoing rehabilitation of the mined-out areas progressively throughout the life of the mine. Any remaining waste rock stockpiles will be shaped and contoured to blend into the surrounding environment. The process plant has been specifically designed to produce a benign tailings stream that will not have any long-term environmental impacts once final rehabilitation and closure of the project has been completed.
Bulk density		out in 2020-2023. In 2020 bulk density determinations on drill core were carried out in-house and by ALS in Johannesburg. Additional drill core bulk density determinations were done in 2024. At the nearby Langer Heinrich mine bulk density is defined at an SI of 2.40 (after mining geologically equivalent material for ten years).
Classificatio	 The basis for the classification of the Mineral Resources into varying e confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. erelative confidence in tonnage/grade estimations, reliability of input erelative confidence estimations, reliability of input erelative confidence estimations, reliability erelative confidence estimations, reliability estimatily estimations, reliability estimations, relia	Semi-variography modelling indicates long range grade continuity of greater than 100 m. Maximum search ranges used were set to maximum of 100 m.

Section 3 Estimation and Reporting of Mineral Resources (continued)

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code Explanation	Commentary
)	 data, confidence in continuity of geology and metal values, quartity and distribution of the data). Whether the result appropriately reflects the Competent Person's values of the deposit. 	allocate Inferred Mineral Resources. Vertical search components were 3 m, 4.1 m and 5.2 m
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	• No additional reviews were conducted beyond those carried out by the various Competent Persons over time.
Discussion of relative accuracy, confidence	 Where appropriate a statement of the relative accuracy and confider level in the Mineral Resource estimate using an approach or proced deemed appropriate by the Competent Person. For example, application of statistical or geostatistical procedures to quantify relative accuracy of the resource within stated confidence limits, o such an approach is not deemed appropriate, a qualitative discussion the factors that could affect the relative accuracy and confidence of estimate. The statement should specify whether it relates to global or lo estimates, and, if local, state the relevant tonnages, which should relevant to technical and economic evaluation. Documentation sho include assumptions made and the procedures used. 	 Resource is considered sound and is appropriate to the style of mineralisation contained within the deposit. The same estimation methodology has been successfully applied at the nearby Langer Heinrich mine for a period of over 15 years. r, if The presented block model is considered to be a reasonable representation of the underlying sample data. It is this Competent Person's opinion that the classification of portions of this Indicated Mineral Resource could be improved to measured status by confirming the validity of the currently available bulk density information and further infill drilling.

• These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.

Appendix 3: Drill Hole Locations and >100 ppm eU $_3O_8$ and U $_3O_8$ Intersections Table 1: Drill Hole Collar Table

Hole ID
T3I1488
T3I1489
T3I1490
T3I1491
T3I1492
T3I1493
T3I1494
T3I1495
T3I1496
T3I1497
T3I1498
T3I1499
T3I1500
T3I1501
T3I1502
T3I1503
T3I1504
T3I1505
T3I1506
T3I1507
T3I1508
T3I1509
T3I1510
T3I1511
T3I1512
T3I1513 T3I1514
T3I1515
T3I1516
T3I1517
T3I1518
T3I1519
T3I1520
T3I1521
T3I1522
T3I1523
T3I1524
T3I1525
T3I1526

Hole ID	Easting	Northing	RL (m)	EOH (m)
T3I1488	504,550	7,466,200	375.14	25
T3I1489	504,550	7,466,149	375.39	25
T3I1490	504,600	7,466,249	375.41	19
T3I1491	504,600	7,466,150	375.92	25
T3I1492	504,600	7,466,049	376.02	19
T3I1493	504,650	7,466,200	376.09	25
T3I1494	504,650	7,466,100	376.17	25
T3I1495	504,650	7,466,001	376.93	25
T3I1496	504,700	7,465,951	377.24	25
T3I1497	504,700	7,466,050	377.00	25
T3I1498	504,700	7,466,150	376.73	25
T3I1499	504,700	7,466,250	376.17	25
T3I1500	504,750	7,466,200	376.96	25
T3I1501	504,750	7,466,100	377.52	25
T3I1502	504,750 504,750		377.68	31
		7,466,000		
T3I1503	504,750	7,465,900	378.12	25
T3I1504	504,900	7,465,650	380.84	37
T3I1505	504,950	7,465,700	380.92	31
T3I1506	504,950	7,465,750	381.00	31
T3I1507	504,950	7,465,800	380.42	31
T3I1508	504,950	7,465,850	380.25	31
T3I1509	504,950	7,465,900	380.01	31
T3I1510	504,950	7,465,950	379.79	31
T3I1511	504,950	7,466,000	379.61	31
T3I1512	504,950	7,466,051	378.97	25
T3I1513	504,950	7,466,100	378.77	25
T3I1514	504,950	7,466,151	378.77	19
T3I1515	504,951	7,466,199	378.20	19
T3I1516	505,050	7,466,150	379.60	19
T3I1517	505,050	7,466,100	379.69	19
T3I1518	505,050	7,466,000	380.11	25
T3I1519	505,050	7,465,900	380.72	31
T3I1520	505,050	7,465,800	381.20	31
T3I1521	505,050	7,465,700	381.83	31
T3I1522	505,050	7,465,601	382.29	31
T3I1523	505,300	7,465,750	383.67	31
T3I1524	505,300	7,465,851	382.95	31
T3I1525	505,300	7,465,950	382.09	19
T3I1526	505,300	7,466,050	381.96	19
T3I1527	505,300	7,466,150	381.72	13
T3I1528	505,300	7,466,251	381.51	13
T3I1529	505,350	7,466,200	382.09	13
T3I1530	505,350	7,466,101	382.49	19
T3I1531	505,350	7,465,900	382.76	25
T3I1532	505,350	7,465,800	383.56	25

Appendix 3: Drill Hole Locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued)

	x 3: Drill Hole Locati rill Hole Collar Table (co	
Hole ID	Easting	Nort
T3I1533	505,350	7,46
T3I1534	505,400	7,46
T3I1535	505,400	7,46
T3I1536	505,400	7,46
T3I1537	505,400	7,460
T3I1538	505,402	7,460
T3I1539	505,400	7,466
T3I1540	505,450	7,460
T3I1541	505,450	7,46
T3I1542	505,450	7,46
T3I1543	505,450	7,46
T3I1544	505,450	7,46
T3I1545	505,650	7,46
T3I1546	505,650	7,46
T3I1547	505,650	7,46
T3I1548	505,650	7,46
T3I1549	505,650	7,460
T3I1550	505,700	7,460
T3I1551	505,700	7,46
T3I1552	505,701	7,46
T3I1553	505,700	7,46
T3I1554	505,700	7,46
T3I1555	505,700	7,46
T3I1556	505,750	7,46
T3I1557	505,750	7,46
T3I1558	505,750	7,46
T3I1559	505,750	7,46
T3I1560	505,753	7,46
T3I1561	505,750	7,46
T3I1562	505,750	7,466
T3I1563	505,800	7,46
T3I1564	505,798	7,46
T3I1565	505,800	7,46
T3I1566	505,800	7,46
T3I1567	505,800	7,46
T3I1568	505,800	7,46
T3I1569	505,800	7,46
T3I1570	505,803	7,46
T3I1571	506,000	7,464
T3I1572	506,000	7,46

Hole ID	Easting	Northing	RL (m)	EOH (m)
T3I1533	505,350	7,465,700	384.07	13
T3I1534	505,400	7,465,751	384.13	13
T3I1535	505,400	7,465,850	383.49	25
T3I1536	505,400	7,465,950	383.43	19
T3I1537	505,400	7,466,050	383.01	13
T3I1538	505,402	7,466,150	382.68	13
T3I1539	505,400	7,466,250	382.57	7
T3I1540	505,450	7,466,100	383.47	13
T3I1541	505,450	7,465,900	384.04	19
T3I1542	505,450	7,465,800	384.00	19
T3I1543	505,450	7,465,700	384.69	13
T3I1544	505,450	7,465,600	385.40	19
T3I1545	505,650	7,465,500	387.39	19
T3I1546	505,650	7,465,700	386.41	19
T3I1547	505,650	7,465,800	386.37	19
T3I1548	505,650	7,465,900	385.74	19
T3I1549	505,650	7,466,000	385.34	13
T3I1550	505,700	7,466,050	385.68	7
T3I1551	505,700	7,465,950	386.05	19
T3I1552	505,701	7,465,849	386.28	19
T3I1553	505,700	7,465,750	387.04	19
T3I1554	505,700	7,465,650	387.07	25
T3I1555	505,700	7,465,550	387.42	19
T3I1556	505,750	7,465,400	388.92	13
T3I1557	505,750	7,465,500	388.25	13
T3I1558	505,750	7,465,600	387.73	19
T3I1559	505,750	7,465,700	387.65	25
T3I1560	505,753	7,465,801	386.81	19
T3I1561	505,750	7,465,900	386.72	13
T3I1562	505,750	7,466,000	386.16	13
T3I1563	505,800	7,465,950	386.98	13
T3I1564	505,798	7,465,850	387.47	19
T3I1565	505,800	7,465,750	387.50	25
T3I1566	505,800	7,465,650	388.24	19
T3I1567	505,800	7,465,550	388.11	19
T3I1568	505,800	7,465,450	388.95	19
T3I1569	505,800	7,465,350	389.56	19
T3I1570	505,803	7,465,149	390.81	25
T3I1571	506,000	7,464,850	393.49	31
T3I1572	506,000	7,464,950	392.68	31
T3I1573	506,000	7,465,051	392.66	25
T3I1574	506,000	7,465,150	392.37	25
T3I1575	506,000	7,465,251	391.64	25
T3I1576	506,000	7,465,351	391.10	25

	Hole ID	Easting	Northing	RL (m)	EOH (m)
	T3I1577	506,000	7,465,451	390.22	25
	T3I1578	506,000	7,465,551	390.22	25
	T3I1579	506,000	7,465,651	389.81	19
	T3I1580		7,465,751	389.63	19
	T3I1581	506,001 506,000	7,465,850	389.27	19
	T3I1582 T3I1583	505,950 505,950	7,465,900 7,465,800	388.81 388.96	19 19
	T3I1584			389.21	19
	T3I1585	505,950 505,950	7,465,700 7,465,601	389.73	25
	T3I1586	505,950	7,465,500	389.73	25
	T3I1587	505,953	7,465,455	389.81	25
	T3I1588	505,950	7,465,400	390.30	25
	T3I1589	505,950	7,465,300	390.83	25
	T3I1590	505,950	7,465,200	391.70	25
	T3I1591	505,950	7,465,100	391.99	25
	T3I1592	505,950	7,465,000	392.38	25
	T3I1593	505,900	7,464,950	392.05	25
1 1	T3I1594	505,900	7,465,051	391.89	25
	T3I1595	505,900	7,465,151	391.48	25
	T3I1596	505,900	7,465,250	390.98	25
	T3I1597	505,900	7,465,351	390.16	19
	T3I1598	505,900	7,465,450	389.35	19
	T3I1599	505,900	7,465,550	389.31	25
	T3I1600	505,900	7,465,650	389.30	25
	T3I1601	504,900	7,466,150	378.00	19
	T3I1602	504,900	7,466,050	379.00	25
	T3I1603	504,900	7,465,950	379.00	31
	T3I1604	504,900	7,465,850	379.00	31
	T3I1605	505,100	7,465,649	382.00	31
	T3I1606	505,100	7,465,750	382.00	31
	T3I1607	505,100	7,465,850	382.00	25
	T3I1608	505,100	7,465,950	382.00	25
	T3I1609	505,100	7,466,049	382.00	25
	T3I1610	505,150	7,466,100	380.74	19
	T3I1611	505,150	7,466,050	380.50	25
	T3I1612	505,150	7,466,001	380.78	31
	T3I1613	505,150	7,465,900	381.44	31
	T3I1614	505,150	7,465,802	382.10	25
	T3I1615	505,151	7,465,701	382.87	31
	T3I1616	505,150	7,465,600	383.18	31
	T3I1617	505,200	7,465,650	383.34	25
	T3I1618	505,200	7,465,750	382.67	31
	T3I1619	505,199	7,465,850	382.36	31
	T3I1620	505,200	7,465,949	381.73	31
	-				

	Hole ID	Easting	Northing	RL (m)	EOH (m)
	T3I1621	505,196	7,466,050	380.95	25
>>	T3I1622	505,200	7,466,150	381.00	19
	T3I1623	505,250	7,466,200	381.01	19
	T3I1624	505,250	7,466,100	381.58	25
	T3I1625	505,250	7,466,000	381.80	25
	T3I1626	505,250	7,465,901	382.31	31
	T3I1627	505,250	7,465,800	382.85	31
	T3I1628	505,250	7,465,700	383.66	25
	T3I1629	505,250	7,465,600	384.16	13
	T3I1630	505,500	7,465,551	385.98	25
	T3I1631	505,500	7,465,650	385.32	13
	T3I1632	505,497	7,465,750	384.75	19
	T3I1633	505,500	7,465,850	384.98	13
	T3I1634	505,500	7,465,950	384.01	19
	T3I1635	505,500	7,466,050	383.84	13
	T3I1636	505,551	7,466,000	384.50	13
	T3I1637	505,551	7,465,900	384.98	13
	T3I1638	505,550	7,465,850	385.03	19
	T3I1639	505,551	7,465,800	385.47	19
	T3I1640	505,550	7,465,700	385.59	19
	T3I1641	505,550	7,465,600	386.10	25
	T3I1642	505,550	7,465,502	386.74	25
	T3I1643	505,600	7,465,548	386.79	25
	T3I1644	505,600	7,465,650	386.16	25
	T3I1645	505,600	7,465,750	382.00	19
	T3I1646	505,600	7,465,850	382.00	19
	T3I1647	505,600	7,465,950	382.00	19
	T3I1648	505,600	7,466,050	382.00	13
	T3I1649	505,350	7,466,000	382.00	19
	T3I1650	505,850	7,465,900	387.71	13
	T3I1651	505,850	7,465,800	388.04	19
	T3I1652	505,850	7,465,700	388.59	19
	T3I1653	505,850	7,465,601	388.83	19
	T3I1654	505,850	7,465,500	388.66	19
	T3I1655	505,850	7,465,400	389.47	19
	T3I1656	505,850	7,465,300	390.27	25
	T3I1657	505,851	7,465,201	390.65	25
	T3I1658	505,850	7,465,100	391.39	19
	T3I1659	505,853	7,465,004	391.30	13
	T3I1660	506,099	7,464,950	393.49	31
	T3I1661	506,099	7,465,050	393.39	31 31
	T3I1662 T3I1663	506,099 506 100	7,465,151	393.02	31
	1311003	506,100	7,465,251	392.40	31

7,465,452

391.83

T3I1664

506,101

25

EOH (m)

19

19

13

13

13

13

13

13

13

19

25

25

25

25

Appendix 3: Drill Hole Locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 1: Drill Hole Collar Table (continued)

RL (m)

391.43

390.86

390.42

390.37

390.37

390.77

391.11

391.77

391.86

392.40

392.25

393.17

393.62

394.06

	Table 1: Drill Hole Collar Table (continued)		
	Hole ID	Easting	Northing
	T3I1665	506,100	7,465,551
	T3I1666	506,100	7,465,651
	T3I1667	506,100	7,465,750
	T3I1668	506,100	7,465,850
	T3I1669	506,150	7,465,900
	T3I1670	506,150	7,465,801
	T3I1671	506,150	7,465,700
	T3I1672	506,150	7,465,600
	T3I1673	506,150	7,465,500
(a 5)	T3I1674	506,150	7,465,400
	T3I1675	506,150	7,465,301
\mathcal{C}	T3I1676	506,150	7,465,200
00	T3I1677	506,150	7,465,100
	T3I1678	506,154	7,465,003
	T3I1679	506,154	7,464,857
	T3I1680	506,199	7,465,150
	T3I1681	506,200	7,465,250
ad	T3I1682	506,199	7,465,351
GO	T3I1683	506,200	7,465,551
	T3I1684	506,200	7,465,650
	T3I1685	506,200	7,465,750
	T3I1686	506,201	7,465,851
	T3I1687	506,255	7,465,905
	T3I1688	506,250	7,465,801
(O)	T3I1689	506,250	7,465,700
	T3I1690	506,250	7,465,601
	T3I1691	506,250	7,465,200
(15)	T3I1692	506,300	7,465,250
	T3I1693	506,300	7,465,350
\bigcirc	T3I1694	506,300	7,465,451
	T3I1695	506,300	7,465,550
	T3I1696	506,300	7,465,650
	T3I1697	506,301	7,465,751
	T3I1698	506,100	7,465,350
	T3I1699	506,350	7,465,700
	T3I1700	504,750	7,466,300
	T3I1701	504,847	7,466,295
	T3I1702	504,800	7,466,250
	T3I1703	504,800	7,466,150
	T3I1704	504,800	7,466,050
	T3I1705	504,800	7,465,950

504,799

504,850

504,850

T3I1706

T3I1707

T3I1708

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00 1100	20
7,464,857	394.27	25
7,465,150	393.56	25
7,465,250	392.95	25
7,465,351	392.90	13
7,465,551	392.17	13
7,465,650	391.73	13
7,465,750	391.33	13
7,465,851	391.44	7
7,465,905	391.66	7
7,465,801	391.99	13
7,465,700	391.94	13
7,465,601	392.75	19
7,465,200	393.57	25
7,465,250	394.13	25
7,465,350	394.13	19
7,465,451	393.48	19
7,465,550	393.16	19
7,465,650	392.83	13
7,465,751	392.66	13
7,465,350	391.60	25
7,465,700	392.98	13
7,466,300	376.37	19
7,466,295	377.06	19
7,466,250	377.11	20
7,466,150	377.52	25
7,466,050	378.00	31
7,465,950	378.30	31
7,465,850	378.94	31
7,465,900	379.00	31
7,466,000	378.62	31

	Hole ID	Easting	Northing	RL (m)	EOH (m)
	T3I1709	504,851	7,466,099	378.36	25
	T3I1710	504,850	7,466,200	377.81	19
	T3I1711	506,350	7,465,600	393.66	13
	T3I1712	506,351	7,465,501	393.86	13
	T3I1713	506,351	7,465,400	394.30	19
	T3I1714	505,150	7,465,501	383.43	31
	T3I1715	505,150	7,465,400	383.96	31
	T3I1716	505,149	7,465,302	384.40	31
	T3I1717	505,150	7,465,200	384.54	25
	T3I1718	505,200	7,465,450	384.12	31
	T3I1719	505,201	7,465,250	385.11	37
	T3I1720	505,200	7,465,150	385.41	25
	T3I1721	505,250	7,465,000	386.55	37
	T3I1722	505,250	7,465,098	386.04	37
	T3I1723	505,253	7,465,202	385.59	37
	T3I1724	505,250	7,465,301	385.39	37
	T3I1725	505,250	7,465,400	384.94	37
1	T3I1726	505,400	7,464,849	391.99	37
	T3I1727	505,400	7,464,951	388.15	37
	T3I1728	505,403	7,465,050	387.60	31
	T3I1729	505,450	7,464,950	388.75	37
	T3I1730	505,449	7,465,001	388.16	37
	T3I1731	505,500	7,464,951	389.04	37
	T3I1732	505,498	7,464,849	391.40	37
	T3I1733	505,550	7,464,800	393.16	37
	T3I1734	505,550	7,464,948	389.53	37
	T3I1735	505,600	7,464,954	389.52	37
	T3I1736	505,600	7,464,851	391.71	37
	T3I1737	505,600	7,464,751	394.47	37
	T3I1738	505,650	7,464,700	395.57	37
	T3I1739	505,650	7,464,801	392.63	37
	T3I1740	505,653	7,465,000	389.90	31
	T3I1741	505,899	7,464,850	392.67	31
	T3I1742	505,900	7,464,750	393.00	31
	T3I1743	505,900	7,464,650	395.58	31
	T3I1744	505,900	7,464,600	397.45	7
	T3I1745	505,950	7,464,600	396.83	7
	T3I1746	505,949	7,464,700	393.79	31
	T3I1747	505,949	7,464,800	393.38	25
	T3I1748	507,050	7,463,601	408.83	7
	T3I1749	507,050	7,463,500	409.91	25
	T3I1750	507,050	7,463,400	410.73	19
	T3I1751	507,050	7,463,300	411.55	13
	T3I1752	507,050	7,463,201	412.46	13

Appendix 3: Drill Hole Locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 1: Drill Hole Collar Table (continued)

	Table 1: Drill Hole Collar Table (continued)				
	Hole ID	Easting	Northing	RL (m)	
	T3I1753	507,052	7,463,101	413.66	
	T3I1754	507,050	7,463,002	415.23	
	T3I1755	507,099	7,463,050	414.73	
	T3I1756	507,101	7,463,150	413.49	
	T3I1757	507,100	7,463,250	412.56	
	T3I1758	507,099	7,463,351	411.72	
	T3I1759	507,100	7,463,451	410.78	
	T3I1760	507,100	7,463,551	409.44	
	T3I1761	507,100	7,463,651	408.59	
	T3I1762	507,102	7,463,751	407.48	
	T3I1763	507,148	7,463,799	407.29	
	T3I1764	507,150	7,463,600	409.33	
	T3I1765	507,150	7,463,500	410.42	
	T3I1766	507,150	7,463,400	411.47	
	T3I1767	507,149	7,463,300	412.57	
	T3I1768	507,154	7,463,203	413.38	
	T3I1769	507,150	7,463,101	414.51	
ad	T3I1770	507,150	7,463,001	415.77	
	T3I1771	507,197	7,462,951	416.52	
	T3I1772	507,200	7,463,050	415.51	
	T3I1773	507,200	7,463,149	413.93	
	T3I1774	507,200	7,463,250	413.38	
	T3I1775	507,200	7,463,351	412.44	
	T3I1776	507,200	7,463,450	411.30	
	T3I1777	507,202	7,463,549	410.26	
	T3I1778	507,200	7,463,650	408.97	
	T3I1779	507,200	7,463,750	407.88	
	T3I1780	507,500	7,463,850	410.68	
	T3I1781	507,499	7,463,749	410.93	
	T3I1782	507,500	7,463,650	410.77	
	T3I1783	507,500	7,463,349	413.88	
	T3I1784	507,500	7,463,249	415.15	
	T3I1785	507,500	7,463,150	416.26	
	T3I1786	507,500	7,463,050	417.49	
	T3I1787	507,500	7,462,950	418.35	
	T3I1788	507,551	7,463,000	418.41	
	T3I1789	507,550	7,463,100	417.06	
	T3I1790	507,550	7,463,200	415.82	
	T3I1791	507,449	7,463,900	410.30	
	T3I1792	507,450	7,463,799	410.46	
	T3I1793	507,450	7,463,600	410.95	
	T3I1794	507,450	7,463,500	411.89	

507,450

507,450

7,463,400

7,463,300

T3I1795

T3I1796

413.15

414.27

Hole ID	Easting	Northing	RL (m)	EOH (m)
T3I1797	507,450	7,463,201	415.47	13
T3I1798	507,450	7,463,100	416.46	13
T3I1799	507,450	7,463,000	417.63	7
T3I1800	508,849	7,463,850	423.70	13
T3I1801	505,900	7,465,750	388.59	19
T3I1802	505,900	7,465,850	388.49	19
T3I1803	506,050	7,465,300	391.67	25
T3I1804	506,050	7,465,400	390.86	25
T3I1805	506,050	7,465,500	391.00	25
T3I1806	506,050	7,465,600	390.62	19
T3I1807	506,050	7,465,700	390.14	13
T3I1808	506,051	7,465,801	389.95	13
T3I1809	506,050	7,465,900	389.70	13
T3I1810	506,399	7,465,651	393.78	13
T3I1811	506,400	7,465,550	394.30	13
T3I1812	506,400	7,465,450	394.57	19
T3I1813	506,450	7,465,501	394.87	13
T3I1814	506,450	7,465,600	394.23	13
T3I1815	506,450	7,465,700	393.96	13
T3I1816	506,499	7,465,650	394.67	13
T3I1817	506,500	7,465,550	395.36	19
T3I1818	506,550	7,465,600	395.09	13
T3I1819	504,950	7,465,501	381.83	31
T3I1820	504,950	7,465,450	381.99	31
T3I1821	504,950	7,465,400	382.48	31
T3I1822	504,950	7,465,350	382.40	25
T3I1823	505,050	7,465,301	383.58	19
T3I1824	505,050	7,465,400	383.09	31
T3I1825	505,050	7,465,503	382.48	31
T3I1826	505,097	7,465,452	383.25	31
T3I1827	505,100	7,465,350	383.64	31
T3I1828	505,100	7,465,250	383.89	25
T3I1829	505,300	7,464,850	392.82	37
T3I1830	505,300	7,464,950	387.52	37
T3I1831	505,300	7,465,050	386.72	37
T3I1832	505,300	7,465,150	386.01	37
T3I1833	505,297	7,465,252	385.85	37
T3I1834	505,350	7,465,300	386.13	37
T3I1835	505,350	7,465,200	386.44	37
T3I1836	505,350	7,465,100	386.88	37
T3I1837	505,350	7,465,001	387.69	37
T3I1838	505,350	7,464,800	396.12	31
T3I1839	505,700	7,464,950	390.47	31
T3I1840	505,700	7,464,850	391.49	25

Hole ID	Easting	Northing	RL (m)	EOH (m)
T3I1841	505,700	7,464,750	393.83	37
T3I1842	505,700	7,464,651	397.16	37
T3I1843	505,750	7,464,599	399.32	31
T3I1844	505,750	7,464,700	395.56	37
T3I1845	505,750	7,464,801	392.26	37
T3I1846	505,750	7,464,950	390.73	19
T3I1847	505,800	7,464,850	391.56	25
T3I1848	505,800	7,464,750	393.44	31
T3I1849	505,800	7,464,650	397.17	31
T3I1850	505,850	7,464,600	398.49	13
T3I1851	505,850	7,464,701	394.69	31
T3I1852	505,850	7,464,801	392.23	31
T3I1853	506,000	7,464,750	393.89	31
T3I1854	506,000	7,464,650	394.90	31
T3I1855	507,250	7,463,900	408.19	7
T3I1856	507,250	7,463,800	408.48	25
T3I1857	507,250	7,463,601	409.49	25
T3I1858	507,250	7,463,500	410.79	19
T3I1859	507,250	7,463,400	411.82	19
T3I1860	507,250	7,463,300	412.97	19
T3I1861	507,250	7,463,201	414.04	13
T3I1862	507,249	7,463,101	414.96	13
T3I1863	507,250	7,463,000	416.32	13
T3I1864	507,250	7,462,901	417.46	7
T3I1865	507,300	7,462,950	417.04	13
T3I1866	507,299	7,463,050	415.65	13
T3I1867	507,304	7,462,857	418.30	13
T3I1868	507,300	7,463,150	414.98	13
T3I1869	507,300	7,463,250	413.94	13
T3I1870	507,300	7,463,351	412.73	13
T3I1871	507,300	7,463,451	411.43	13
T3I1872	507,300	7,463,550	410.44	19
T3I1873	507,300	7,463,650	409.39	19
T3I1874	507,300	7,463,751	409.07	25
T3I1875	507,300	7,463,850	408.84	25
T3I1876	507,300	7,463,951	408.60	19
T3I1877	507,350	7,463,900	409.33	31
T3I1878	507,350	7,463,800	409.49	31
T3I1879	507,350	7,463,600	410.05	13
T3I1880	507,350	7,463,500	411.16	19
T3I1881	507,350	7,463,400	412.28	13
T3I1882	507,350	7,463,300	413.65	13
T3I1883	507,350	7,463,201	414.78	13
			-	

T3I1884

507,350

7,463,100

415.89

13

Hole ID	Easting	Northing	RL (m)	EOH (m)
T3I1885	507,348	7,463,000	416.63	13
T3I1886	507,350	7,462,900	417.82	13
T3I1887	507,400	7,462,948	417.68	13
T3I1888	507,400	7,463,050	416.81	13
T3I1889	507,398	7,463,150	415.55	13
T3I1890	507,400	7,463,250	414.50	13
T3I1891	507,400	7,463,350	413.11	13
T3I1892	507,400	7,463,450	412.10	19
T3I1893	507,400	7,463,550	410.93	7
T3I1894	507,400	7,463,650	410.03	19
T3I1895	507,401	7,463,750	410.04	31
T3I1896	507,400	7,463,850	409.62	31
T3I1897	509,050	7,464,000	424.61	13
T3I1898	509,043	7,463,896	424.34	13
T3I1899	509,051	7,463,848	424.83	13
T3I1900	509,049	7,463,751	425.00	13
T3I1901	508,850	7,463,900	422.48	13
T3I1902	508,897	7,463,949	422.93	13
T3I1903	508,899	7,463,901	423.05	13
T3I1904	508,900	7,463,800	423.29	13
T3I1905	508,950	7,463,749	423.95	13
T3I1906	508,950	7,463,850	423.83	13
T3I1907	508,951	7,463,900	423.66	13
T3I1908	508,950	7,464,000	423.60	13
T3I1909	508,951	7,464,100	423.93	13
T3I1910	509,451	7,464,201	429.83	13
T3I1911	509,449	7,464,100	429.69	13
T3I1912	509,450	7,464,000	429.30	13
T3I1913	509,450	7,463,901	429.18	13
T3I1914	509,499	7,463,850	429.68	7
T3I1915	509,500	7,463,950	430.06	13
T3I1916	509,499	7,464,050	430.10	13
T3I1917	509,500	7,464,151	430.43	13
T3I1918	509,548	7,464,200	431.19	13
T3I1919	509,550	7,464,100	430.96	13
T3I1920	509,550	7,464,001	430.65	13
T3I1921	509,550	7,463,900	430.75	13
T3I1922	509,550	7,463,800	429.97	7
T3I1923	509,599	7,463,751	430.88	13
T3I1924	509,601	7,463,851	431.25	13
T3I1925	509,600	7,463,950	430.83	13
T3I1926	509,600	7,464,051	431.05	13
T3I1927	509,599	7,464,150	431.68	19
T3I1928	509,650	7,464,200	432.31	19

EOH (m)

19

13

13

7

7 7

7

13

13

13

19

19

13

13

13

19

19

13

19

13

13

13

13

13

13

19

19

13

19

19

19

19

19

13

13

13

19

19

19

19

19

19

19

13

Appendix 3: Drill Hole Locations and >100 ppm eU₃O₈ and U₃O₈ Intersections (continued) Table 1: Drill Hole Collar Table (continued)

RL (m)

432.00

431.80

431.85

431.54

431.56

431.78 432.30

432.32

432.03

432.47

432.82

433.24

432.86

432.57

432.85

433.56

433.43

433.26

433.65

434.10

434.47

434.13

433.80

433.99

434.62

434.70

434.88

435.30

435.78

435.60

435.37

435.05

434.63

433.74

434.17

434.69

434.26

434.81

435.71

435.77

436.11

436.32

435.34

434.75

7,463,599

7,463,500

7,463,299

	Table 1: Drill Hole Collar Table (continued)				
	Hole ID	Easting	Northing		
	T3I1929	509,650	7,464,100		
	T3I1930	509,650	7,464,000		
	T3I1931	509,649	7,463,900		
	T3I1932	509,650	7,463,800		
	T3I1933	509,650	7,463,750		
	T3I1934	509,700	7,463,650		
	T3I1935	509,700	7,463,750		
	T3I1936	509,700	7,463,849		
	T3I1937	509,700	7,463,950		
	T3I1938	509,700	7,464,050		
	T3I1939	509,700	7,464,148		
	T3I1940	509,750	7,464,099		
	T3I1941	509,751	7,464,000		
	T3I1942	509,750	7,463,899		
	T3I1943	509,750	7,463,800		
	T3I1944	509,800	7,463,750		
	T3I1945	509,800	7,463,850		
adi	T3I1946	509,800	7,463,950		
	T3I1947	509,800	7,464,050		
	T3I1948	509,800	7,464,150		
2	T3I1949	509,849	7,464,100		
	T3I1950	509,850	7,463,999		
	T3I1951	509,850	7,463,900		
	T3I1952	509,850	7,463,799		
	T3I1953	509,900	7,463,849		
	T3I1954	509,900	7,463,950		
	T3I1955	509,900	7,464,050		
	T3I1956	509,900	7,464,150		
	T3I1957	509,950	7,464,100		
	T3I1958	509,950	7,463,999		
	T3I1959	509,950	7,463,799		
	T3I1960	509,950	7,463,599		
	T3I1961	509,951	7,463,499		
	T3I1962	509,951	7,463,400		
	T3I1963	509,950	7,463,297		
	T3I1964	509,999	7,463,251		
	T3I1965	510,000	7,463,350		
	T3I1966	510,000	7,463,450		
	T3I1967	510,000	7,463,550		
	T3I1968	510,000	7,463,649		
	T3I1969	510,001	7,463,750		

510,050

510,050

510,049

T3I1970

T3I1971

T3I1972

Appendix 3: Drill Hole Locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) (continued)

	Appendix 3: Drill Hole Loca		
	Table 1: Drill I	Hole Collar Table (
	Hole ID	Easting	
	T3I1973	510,050	
\rightarrow	T3I1974	510,350	
	T3I1975	510,350	
	T3I1976	510,350	
	T3I1977	510,399	
	T3I1978	510,400	
	T3I1979	510,400	
	T3I1980	510,450	
	T3I1981	510,450	
	T3I1982	510,500	
	T3I1983	510,499	
	T3I1984	510,499	
	T3I1985	510,500	
	T3I1986	510,551	
	T3I1987	510,600	
	T3I1988	510,455	
	T3I1989	510,455	
GDI	T3I1990	510,600	
	T3I1991	510,600	
	T3I1992	510,600	
	T3I1993	510,650	
	T3I1994	510,648	
	T3I1995	510,950	
	T3I1996	510,950	
	T3I1997	510,951	
	T3I1998	510,850	
	T3I1999	510,851	
	T3I2000	510,849	
	T3I2001	509,100	
	T3I2002	509,100	
	T3I2003	509,100	
	T3I2004	509,100	
	T3I2005	509,050	
	T3I2006	509,100	
	T3I2007	509,100	
	T3I2008	509,150	
	T3I2009	509,150	
	T3I2010	509,150	
	T3I2011	509,150	
	T3I2012	509.150	

Hole ID	Easting	Northing	RL (m)	EOH (m)
T3l1973	510,050	7,463,199	435.47	13
T3l1974	510,350	7,463,200	438.39	19
T3I1975	510,350	7,463,300	438.72	19
T3I1976	510,350	7,463,400	438.67	13
T3I1977	510,399	7,463,350	439.27	13
T3I1978	510,400	7,463,249	439.00	19
T3I1979	510,400	7,463,149	438.74	19
T3I1980	510,450	7,463,199	439.69	19
T3I1981	510,450	7,463,299	440.09	19
T3I1982	510,500	7,463,349	440.60	13
T3I1983	510,499	7,463,250	440.41	19
T3I1984	510,499	7,463,150	440.03	19
T3I1985	510,500	7,463,049	440.47	19
T3I1986	510,551	7,463,201	440.69	19
T3I1987	510,600	7,463,248	441.50	19
T3I1988	510,455	7,463,109	439.67	19
T3I1989	510,455	7,463,004	440.54	19
T3I1990	510,600	7,463,151	441.33	19
T3I1991	510,600	7,463,051	441.40	19
T3I1992	510,600	7,462,950	441.23	19
T3I1993	510,650	7,463,001	442.15	19
T3I1994	510,648	7,463,201	441.73	13
T3I1995	510,950	7,462,950	445.37	19
T3I1996	510,950	7,462,901	445.58	13
T3I1997	510,951	7,462,851	445.73	13
T3I1998	510,850	7,463,247	444.62	13
T3I1999	510,851	7,463,350	445.00	13
T3I2000	510,849	7,463,401	445.12	13
T3I2001	509,100	7,463,750	425.46	13
T3I2002	509,100	7,463,800	425.02	13
T3I2003	509,100	7,463,950	425.18	7
T3I2004	509,100	7,464,150	425.52	13
T3I2005	509,050	7,464,200	425.34	19
T3I2006	509,100	7,464,249	425.93	13
T3I2007	509,100	7,464,350	425.86	13
T3I2008	509,150	7,464,200	426.33	13
T3I2009	509,150	7,464,100	426.22	19
T3I2010	509,150	7,464,051	426.14	19
T3I2011	509,150	7,464,000	425.73	13
T3I2012	509,150	7,463,900	425.76	13
T3I2013	509,150	7,463,800	425.68	13
T3I2014	509,200	7,463,650	426.45	13
T3I2015	509,200	7,463,751	426.07	13
T3I2016	509,198	7,463,851	425.96	13

EOH (m)

13

19

19

19

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

19

19

13

13

13

13

13

19

19

13

13

13

13

13

13

13

13 13

13

13

19

13

13

Appendix 3: Drill Hole Locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 1: Drill Hole Collar Table (continued)

RL (m) 426.48

426.48

426.49

427.01

427.00

427.39

427.39

426.99

426.94

426.51

427.33

427.04

426.61

427.73

427.87

428.22

428.44

428.50

427.93

428.04

427.44

428.23

428.02

428.54

428.79

428.92

429.25

428.60

429.31

428.85

429.63

429.93

430.38

430.55

431.05

432.22

431.54

432.39

432.82 432.09

432.98

433.64

433.25

432.69

7,463,650

7,463,600

7,463,500

7,463,400

	Hole Collar Table (co	ntinued)
Hole ID	Easting	Northing
T3I2017	509,200	7,463,950
T3I2018	509,198	7,464,050
T3I2019	509,198	7,464,150
T3I2020	509,200	7,464,250
T3I2021	509,200	7,464,350
T3I2022	509,253	7,464,201
T3I2023	509,254	7,464,099
T3I2024	509,250	7,464,000
T3I2025	509,249	7,463,899
T3I2026	509,250	7,463,800
T3I2027	509,300	7,463,650
T3I2028	509,300	7,463,750
T3I2029	509,299	7,463,850
T3I2030	509,300	7,464,050
T3I2031	509,300	7,464,150
T3I2032	509,300	7,464,250
T3I2033	509,350	7,464,200
T3I2034	509,350	7,464,099
T3I2035	509,350	7,464,000
T3I2036	509,350	7,463,900
T3I2037	509,350	7,463,800
T3I2038	509,400	7,463,649
T3I2039	509,400	7,463,749
T3I2040	509,400	7,463,850
T3I2041	509,400	7,463,950
T3I2042	509,400	7,464,050
T3I2043	509,400	7,464,151
T3I2044	509,450	7,463,600
T3I2045	509,500	7,463,650
T3I2046	509,500	7,463,750
T3I2047	509,549	7,463,599
T3I2048	509,600	7,463,650
T3I2049	509,600	7,463,550
T3I2050	509,649	7,463,600
T3I2051	509,701	7,463,548
T3I2052	509,750	7,463,600
T3I2053	509,750	7,463,497
T3I2054	509,750	7,463,399
T3I2055	509,800	7,463,350
T3I2056	509,800	7,463,450
TOLOOFT		

509,800

509,850

509,849

509,850

T3I2057

T3I2058

T3I2059

T3I2060

Appendix 3: Drill Hole Locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued)

		Hole Collar Table (co	
	Hole ID	Easting	Nor
	T3I2061	509,900	7,46
	T3I2062	509,900	7,46
	T3I2063	509,900	7,46
	T3I2064	509,900	7,46
	T3I2065	509,899	7,46
	T3I2066	510,100	7,46
	T3I2067	510,100	7,46
	T3I2068	510,099	7,46
	T3I2069	510,100	7,46
	T3I2070	510,100	7,46
	T3I2071	510,150	7,46
	T3I2072	510,150	7,46
	T3I2073	510,150	7,46
	T3I2074	510,150	7,46
	T3I2075	510,200	7,46
	T3I2076	510,198	7,46
	T3I2077	510,200	7,46
	T3I2078	510,250	7,46
	T3I2079	510,250	7,46
	T3I2080	510,250	7,46
	T3I2081	510,300	7,46
	T3I2082	510,300	7,46
	T3I2083	510,300	7,46
	T3I2084	510,700	7,46
	T3I2085	510,700	7,46
	T3I2086	510,700	7,46
	T3I2087	510,700	7,46
	T3I2088	510,750	7,46
	T3I2089	510,750	7,46
	T3I2090	510,750	7,46
\bigcirc	T3I2091	510,800	7,46
	T3I2092	510,800	7,46
	T3I2093	510,850	7,46
	T3I2094	510,849	7,46
	T3I2095	510,900	7,46
	T3I2096	510,900	7,46
	T3I2097	510,901	7,46
	T3I2098	511,100	7,46
	T3I2099	511,199	7,46
	T3I2100	511,149	7,46

Hole ID	Easting	Northing	RL (m)	EOH (m)
T3I2061	509,900	7,463,350	433.41	13
T3I2062	509,900	7,463,450	433.49	13
T3I2063	509,900	7,463,550	434.51	19
T3I2064	509,900	7,463,650	434.45	19
T3I2065	509,899	7,463,750	434.83	13
T3I2066	510,100	7,463,649	437.03	19
T3I2067	510,100	7,463,549	436.59	13
T3I2068	510,099	7,463,450	435.62	13
T3I2069	510,100	7,463,250	435.21	13
T3I2070	510,100	7,463,149	436.08	13
T3I2071	510,150	7,463,200	435.90	13
T3I2072	510,150	7,463,300	436.49	13
T3I2073	510,150	7,463,500	436.56	13
T3I2074	510,150	7,463,601	437.35	13
T3I2075	510,200	7,463,450	436.86	13
T3I2076	510,198	7,463,250	436.44	13
T3I2077	510,200	7,463,150	436.73	13
T3I2078	510,250	7,463,200	436.82	13
T3I2079	510,250	7,463,300	437.51	19
T3I2080	510,250	7,463,400	437.57	19
T3I2081	510,300	7,463,350	438.03	19
T3I2082	510,300	7,463,249	437.73	19
T3I2083	510,300	7,463,150	437.97	13
T3I2084	510,700	7,463,150	442.56	13
T3I2085	510,700	7,463,050	442.52	19
T3I2086	510,700	7,462,951	442.48	19
T3I2087	510,700	7,462,850	442.47	19
T3I2088	510,750	7,462,799	443.12	19
T3I2089	510,750	7,462,900	443.17	19
T3I2090	510,750	7,463,000	443.21	19
T3I2091	510,800	7,463,050	443.68	13
T3I2092	510,800	7,462,950	443.87	19
T3I2093	510,850	7,462,900	444.23	19
T3I2094	510,849	7,462,801	444.33	19
T3I2095	510,900	7,462,650	445.14	19
T3I2096	510,900	7,462,850	445.10	19
T3I2097	510,901	7,462,950	445.07	19
T3I2098	511,100	7,463,400	448.12	13
T3I2099	511,199	7,463,399	449.31	19
T3I2100	511,149	7,463,350	448.44	19
T3I2101	511,150	7,463,250	448.33	13
T3I2102	511,149	7,463,200	448.33	7
T3I2103	511,250	7,463,250	449.77	13
T3l2104	511,299	7,463,350	450.35	19

Appendix 3: Drill Hole Locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued)

	Table 1: Drill Hole Collar Table (continued)			
	Hole ID	Easting	Northing	
	T3I2105	511,600	7,461,550	
	T3I2106	511,596	7,461,451	
	T3I2107	511,701	7,461,450	
	T3I2108	511,700	7,461,550	
	T3I2109	511,650	7,461,600	
	T3I2110	511,700	7,461,649	
	T3I2111	511,750	7,461,600	
	T3I2112	511,750	7,461,401	
	T3I2113	511,800	7,461,451	
(a 5)	T3I2114	511,800	7,461,550	
	T3I2115	511,800	7,461,650	
60	T3I2116	511,850	7,461,600	
09	T3I2117	511,849	7,461,400	
	T3I2118	511,900	7,461,350	
	T3I2119	511,900	7,461,449	
	T3I2120	511,900	7,461,550	
	T3I2121	511,900	7,461,651	
ad	T3I2151	510,900	7,463,300	
GO	T3I2152	510,950	7,463,351	
	T3I2153	510,948	7,463,254	
	T3I2154	511,050	7,463,249	
	T3I2155	511,050	7,463,350	
	T3I2156	511,500	7,463,549	
	T3I2157	511,500	7,463,650	
(O/O)	T3I2158	511,550	7,463,599	
	T3I2159	511,549	7,463,500	
	T3I2160	511,600	7,463,550	
(15)	T3I2161	511,600	7,463,649	
	T3I2162	511,650	7,463,600	
	T3I2163	511,950	7,461,599	
	T3I2164	511,950	7,461,299	
	T3I2165	512,000	7,461,350	
	T3I2166	512,004	7,461,454	
	T3I2167	512,000	7,461,550	
(())	T3I2168	512,050	7,461,600	
	T3I2169	512,050	7,461,400	
	T3I2170	512,100	7,461,351	
	T3I2171	512,100	7,461,451	
	T3I2172	512,100	7,461,550	
	T3I2173	512,150	7,461,400	

Hole ID	Easting	Northing	RL (m)	EOH (m)
T3l2105	511,600	7,461,550	458.68	7
T3l2106	511,596	7,461,451	459.10	19
T3l2107	511,701	7,461,450	460.28	19
T3l2108	511,700	7,461,550	459.79	25
T3l2109	511,650	7,461,600	459.00	7
T3l2110	511,700	7,461,649	459.49	7
T3l2111	511,750	7,461,600	460.25	19
T3l2112	511,750	7,461,401	461.13	7
T3l2113	511,800	7,461,451	461.45	25
T3l2114	511,800	7,461,550	461.11	19
T3l2115	511,800	7,461,650	460.74	13
T3l2116	511,850	7,461,600	461.49	7
T3l2117	511,849	7,461,400	462.28	25
T3l2118	511,900	7,461,350	463.17	13
T3l2119	511,900	7,461,449	462.89	25
T3l2120	511,900	7,461,550	462.57	7
T3l2121	511,900	7,461,651	462.13	13
T3l2151	510,900	7,463,300	445.36	13
T3l2152	510,950	7,463,351	446.15	19
T3l2153	510,948	7,463,254	445.77	13
T3l2154	511,050	7,463,249	447.20	19
T3l2155	511,050	7,463,350	447.39	19
T3l2156	511,500	7,463,549	453.26	13
T3l2157	511,500	7,463,650	452.90	7
T3l2158	511,550	7,463,599	453.76	13
T3l2159	511,549	7,463,500	453.72	7
T3I2160	511,600	7,463,550	454.47	13
T3l2161	511,600	7,463,649	454.38	13
T3l2162	511,650	7,463,600	454.97	7
T3l2163	511,950	7,461,599	462.97	7
T3l2164	511,950	7,461,299	464.29	7
T3l2165	512,000	7,461,350	464.43	13
T3I2166	512,004	7,461,454	464.18	25
T3l2167	512,000	7,461,550	463.92	7
T3l2168	512,050	7,461,600	464.53	13
T3I2169	512,050	7,461,400	464.96	7
T3l2170	512,100	7,461,351	465.97	13
T3I2171	512,100	7,461,451	465.67	19
T3I2172	512,100	7,461,550	465.30	19
T3I2173	512,150	7,461,400	466.38	19
T3I2174	509,405	7,463,555	428.44	13
T3I2175	509,505	7,463,554	429.38	13
T3I2176	511,255	7,463,354	449.76	19

Appendix 3: Drill Hole Locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 1: Drill Hole Collar Table (continued)

Diamond Drill Holes						
Hole ID	Easting	Northing	RL (m)	EOH (m)		
T3DD01	507,550	7,465,101	406.67	22		
T3DD02	511,387	7,462,599	452.12	18		
T3DD03	512,000	7,461,450	464.12	20.37		
T2DD01	511,625	7,457,000	495	29.39		
T2DD02	511,815	7,456,500	496	39.42		
T2DD03	512,325	7,455,450	505	25		

Appendix 3: Drill Hole Locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 2: U_3O_8 values are determined by XRF

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	U₃Oଃ (ppm)
T3I1488	13	14	1	123
1311400	17	24	7	112
T3I1489	9	10	1	100
1311403	17	18	1	164
T3I1490	13	17	4	194
T3I1491	9	22	13	211
T3I1499	13	14	1	117
T3I1500	17	19	2	124
T3I1501	18	19	1	165
T3I1502	8	9	1	138
1311502	18	19	1	123
	11	13	2	123
T3I1507	19	20	1	105
T3I1510	19	25	6	481
T3I1511	9	10	1	121
T3I1512	16	17	1	261
T014540	9	10	1	130
T3I1513	16	18	2	105
T3I1514	8	9	1	100
T3I1516	6	8	2	151
T3I1517	7	16	9	124
	8	9	1	116
T3I1518	20	21	1	134
T3I1522	22	26	4	121
T3I1523	8	12	4	147
T3I1523	24	25	1	210
	9	10	1	125
T3I1524	21	22	1	139
T3I1526	7	13	6	134
T3I1527	6	10	4	141
	6	8	2	143
T3I1528	12	13	1	180
T3I1529	6	10	4	218
T3I1530	6	9	3	224
	7	8	1	138
T3I1531	12	13	1	133
	16	18	2	154
T3I1532	8	10	2	147
T3I1533	9	10	1	117
T3I1534	8	11	3	180
T3I1542	8	17	9	201
T3I1543	9	10	1	165
T3I1544	9	10	1	147
T3I1549	7	10	3	197
	•		-	

U₃O₈ (ppm)

	Hole ID	Depth From (m)	Depth To (m)
	T3I1551	7	11
	T3I1552	8	13
		8	14
	T3I1553	17	18
	T3I1554	8	9
	T3I1555	8	9
	1311333	18	19
	T3I1559	8	10
		13	21
(\Box)	T3I1560	8	15
	T3I1561	8	9
$(\mathcal{C}(\mathcal{O}))$	T3I1562	6	8
00	T3I1563	6	7
5	T3I1564	8	13
	T3I1565	9	16
	T3I1566	8	14
	T3I1567	8	12
	T3I1568	9	10
GO	T3I1572	15	17
		5	6
	T3I1574	8	9
		14	19
	T3I1575	14	18
	T3I1576	13	14
(O/2)	T3I1577	8	12
		16	17
	T3I1578 T3I1579	8 8	18 14
	T3I1579	8	14
	T3I1581	8 7	12
	T3I1582	8	10
	T3I1583	7	13
4	T3I1584	8	13
	T3I1585	9	14
		8	9
	T3I1586	14	16
	T3I1587	16	17
	T3I1588	8	18
		8	9
	T3I1589	14	15
	T3I1590	12	17

T3I1591

T3I1592

T3I1594

Appendix 3: Drill Hole locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 2: U_3O_8 values are determined by XRF (continued)

Interval (m)

Appendix 3: Drill Hole locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 2: U_3O_8 values are determined by XRF (continued)

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	U₃Oଃ (ppm)
T3I1595	12	13	1	125
1311595	19	20	1	113
T3I1596	17	18	1	169
T3I1598	8	13	5	139
T3I1599	8	10	2	129
1311399	13	17	4	350
T3I1600	4	5	1	159
1311000	9	19	10	245
T3I1674	7	13	6	136
T3I1689	7	10	3	160
T3I1690	8	12	4	299
T3I1780	15	23	8	226
T3I1782	4	5	1	126
T3I1783	2	3	1	160
T3I1785	1	4	3	133
T3I1786	1	5	4	170
T3I1801	12	13	1	125
T3I1802	8	11	3	315
T3I1803	13	16	3	105
T014004	7	9	2	191
T3I1804	12	13	1	113
T3I1805	8	16	8	141
T3I1806	8	14	6	155
T3I1808	7	11	4	238
T3I1809	7	8	1	117
T3I1810	7	10	3	174
T3I1812	8	13	5	235
T3I1813	8	10	2	147
T3I1814	7	11	4	169
T3I1815	7	8	1	177
T3I1816	8	10	2	125
T3I1817	8	12	4	124
T3I1818	6	8	2	185
T3I1820	20	28	8	148
T3I1826	10	11	1	103
	19	20	1	124
T3I1827	23	25	2	357
	20	21	1	166
T3I1831	27	28	1	324
	16	18	2	111
T3I1832	22	31	9	148
T3I1833	20	21	1	100
	26	27	1	106
T3I1836				
	31	36	5	319

	Hole ID	Depth From (m)
	T3I1837	17
	1311637	23
	T3I1841	28
	T3I1844	27
	T3I1845	7
	T3I1847	14
	1311047	21
	T3I1851	22
	T3I1856	16
(15)	T3I1857	12
	T3I1858	2
\mathcal{C}	1011000	13
00	T3I1861	5
	T3I1863	2
	T3I1864	1
	T3I1865	0
	T3I1866	1
adi	T3I1868	4
GO	T3I1870	8
	T3I1872	12
	T3I1875	12
	T3I1876	3
(\bigcirc)	T3I1877	2
		14
(U/z)	T3I1878	13
	T3I1879	10
	T3I1880	8
$(\Box D)$	T3I1881	6
	T3I1883	3
\bigcirc	T3I1885	1
	T3I1886	1
	T3I1887	1
<u></u>	T3I1888	2
	T3I1889	3
(\bigcirc)	T3I1890	3 6
	T3I1891 T3I1892	6 5
	1311092	5 17
	T3I1895	27
	T014000	27 10

Appendix 3: Drill Hole locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 2: U_3O_8 values are determined by XRF (continued)

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	U₃O₅ (ppm)
T3I1837	17	20	3	151
1311037	23	25	2	578
T3I1841	28	30	2	516
T3I1844	27	30	3	179
T3I1845	7	8	1	101
T3I1847	14	15	1	123
1311047	21	24	3	767
T3I1851	22	24	2	170
T3I1856	16	19	3	235
T3I1857	12	16	4	535
T2110E0	2	3	1	203
T3I1858	13	15	2	167
T3I1861	5	10	5	180
T3I1863	2	9	7	392
T3I1864	1	5	4	494
T3I1865	0	7	7	554
T3I1866	1	5	4	135
T3I1868	4	9	5	489
T3I1870	8	9	1	104
T3I1872	12	15	3	375
T3I1875	12	23	11	751
T3I1876	3	4	1	789
T3I1877	2	3	1	123
1311077	14	24	10	521
T3I1878	13	14	1	149
T3I1879	10	11	1	165
T3I1880	8	11	3	182
T3I1881	6	9	3	106
T3I1883	3	5	2	150
T3I1885	1	6	5	671
T3I1886	1	2	1	139
T3I1887	1	7	6	144
T3I1888	2	7	5	151
T3I1889	3	6	3	1068
T3I1890	3	6	3	420
T3I1891	6	7	1	216
T3I1892	5	9	4	215
T3I1895	17	24	7	655
1011000	27	28	1	182
T3I1896	12	21	9	308
T3I1897	5	7	2	162
T3I1898	4	5	1	101
T3I1899	4	8	4	236
T3I1900	4	7	3	169

Appendix 3: Drill Hole locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 2: U_3O_8 values are determined by XRF (continued)

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	U ₃ O ₈ (ppm)
T3I2001	3	5	2	108
T3I2002	4	7	3	233
T3I2003	5	6	1	124
T3I2004	7	9	2	487
T3I2005	8	14	6	224
T3I2006	7	10	3	195
T3I2007	8	10	2	231
T3I2010	6	14	8	281
T3I2011	5	8	3	197
T3I2012	5	7	2	227
T3I2013	4	5	1	108
T3I2014	3	6	3	153
T3I2015	4	6	2	107
T3I2016	4	7	3	186
T3I2017	6	8	2	172
T010040	6	12	6	459
T3I2018	15	16	1	119
T010000	6	7	1	110
T3I2020	10	11	1	132
T3I2022	6	7	1	114
T3I2023	6	7	1	147
T3I2118	7	11	4	167

T3I1509
T3I1520
T3I1525
T3I1535
T3I1536
T3I1537
T3I1547
T3I1548
T3I1603
T3I1604
T3I1608
T3I1609
T3I1612
T3I1615
T3I1620
T3I1621
T3I1626
T3I1627
T3I1632
T3I1636
T3I1641
T3I1644
T3I1648
T3I1653
T3I1654
T3I1660
T3I1661
T3I1663
T3I1664
T3I1667
T3I1669
T3I1673
7014075

Appendix 3: Drill Hole locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 3: eU_3O_8 values are determined by gamma logging

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	U₃Oଃ (ppm)
T3I1509	26	28	2	183
T3I1520	20	23	3	106
TOMEOF	8	9	1	106
T3I1525	12	17	5	175
T3I1535	17	19	2	137
T3I1536	8	9	1	112
T3I1537	7	9	2	131
T014 F 47	13	14	1	112
T3I1547	17	18	1	101
T3I1548	7	8	1	122
T014000	19	20	1	113
T3I1603	24	27	3	177
T3I1604	25	26	1	284
T3I1608	19	20	1	112
T3I1609	13	16	3	116
T3I1612	15	16	1	103
T3I1615	25	26	1	101
T3I1620	18	20	2	129
T3I1621	16	17	1	284
T3I1626	18	22	4	177
T3I1627	9	10	1	127
1311027	18	19	1	212
T3I1632	8	9	1	112
T3I1636	7	9	2	150
T3I1641	14	17	3	121
T3I1644	8	9	1	110
1311044	12	18	6	282
T3I1648	6	9	3	163
T3I1653	10	16	6	248
T3I1654	8	9	1	109
T3I1660	14	18	4	287
T3I1661	12	17	5	415
T3I1663	15	17	2	244
T3I1664	13	15	2	140
T3I1667	8	11	3	135
T3I1669	6	9	3	135
T3I1673	8	9	1	205
T3I1675	8	9	1	101
1011070	14	15	1	116
T3I1676	13	16	3	162
T3I1677	18	19	1	185
T3I1678	15	19	4	944
T3I1679	18	19	1	280
T3I1680	19	21	2	192
T3I1681	15	16	1	144

	Hole ID	Depth From (m)	Depth To (m)	Interval (m)	U₃O₅ (ppm)
	T3I1683	9	10	1	184
>>	T3I1684	9	11	2	115
	T3I1685	7	9	2	114
	T3I1688	7	8	1	215
	T3I1692	9	17	8	240
	T3I1693	9	15	6	137
	T3I1694	8	11	3	137
	T3I1695	9	10	1	155
	T3I1696	8	10	2	111
	T3I1697	7	8	1	114
	T3I1704	20	21	1	165
	T3I1707	24	25	1	139
	T3I1708	18	22	4	317
	T3I1712	8	10	2	167
	T3I1713	9	11	2	148
	T3I1716	21	23	2	115
	T3I1719	21	27	6	358
Б		30	31	1	212
	T3I1721	27	28	1	103
	T3I1722	17	24	7	720
	T3I1723	19	28	9	543
	T3I1724	25	27	2	157
	T3I1725	24	27	3	117
	T3I1726	20	25	5	257
	1011720	28	34	6	750
	T3I1730	21	26	5	487
	T3I1733	31	33	2	281
		20	21	1	102
	T3I1737	26	27	1	224
		32	33	1	117
\mathcal{D}	T3I1738	25	28	3	127
	T3I1739	27	30	3	428
	T3I1741	18	19	1	175
	T3I1743	22	23	1	260
	T3I1746	19	21	2	692
	T3I1749	12	15	3	721
	T3I1751	5	8	3	112
	T3I1752	4	5	1	185
	T3I1754	3	10	7	215
	T3I1755	6	10	4	354
	T3I1756	6	10	4	164
	T3I1757	5	10	5	144
	T3I1758	8	12	4	1094

16

3

Appendix 3: Drill Hole locations and >100 ppm eU₃O₈ and U₃O₈ Intersections (continued) Table 3: eU₃O₈ values are determined by gamma logging (continued)

T3I1759

13

U₃O₈ (ppm)

	Hole ID	Depth From (m)	Depth To (m)	Interval (m)
	T3I1761	13	17	4
	T3I1765	13	15	2
	T3I1767	9	11	2
	T3I1768	6	11	5
	T3I1770	6	10	4
	T3I1771	8	9	1
	T3I1772	4	9	5
	T3I1773	8	10	2
	T3I1774	8	9	1
(15)	T3I1775	10	11	1
	T3I1777	13	15	2
\mathcal{C}	T3I1779	15	20	5
09	T3I1790	2	4	2
	T3I1791	22	23	1
	T3I1792	18	19	1
		22	23	1
	T3I1795	4	6	2
	T3I1796	3	4	1
GO	T3I1798	3	4	1
	T3I1874	15	17	2
	T3I1903	3	4	1
	T3I1907	5	8	3
	T3I1908	5	6	1
	T3I1909	6	7	1
(O/\mathcal{Z})	T3I1911	7	9	2
	T3I1912	7	8	1
	T3I1913	7	8	1
(\Box)	T3I1916	7	9	2
	T3I1917	7	8	1
\bigcirc	T3I1919	7	9	2
	T3I1920	7	8	1
	T3I1925	6	8	2
	T3I1926	7	10	3
	T3I1927	7	8	1 4
	T3I1929	8 10	12	
	T3I1930 T3I1931	8	11 10	1 2
	T3I1931	8 7	8	2 1
	T3I1937	7	8	1
	T3I1937	8	8 10	2
	T3I1940	9	11	2
	1011040	5		<u> </u>

T3I1941

T3I1942

T3I1943

Appendix 3: Drill Hole locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 3: eU₃O₈ values are determined by gamma logging (continued)

	Hole ID	Depth From (m)	Depth To (m)	Interval (m)	U₃Oଃ (ppm)
	T3I1944	7	12	5	354
	T3I1945	6	13	7	838
	T3I1946	6	11	5	685
	T3I1947	9	12	3	118
	T3I1950	9	10	1	125
	T3I1951	9	10	1	687
	T3I1952	7	11	4	90
	T3I1954	10	11	1	381
	T3I1957	9	10	1	104
	T3I1959	7	10	3	183
	T3I1960	6	7	1	106
	T3I1961	4	6	2	114
	T3I1962	3	9	6	157
	T3I1963	6	7	1	460
	T3I1966	4	7	3	167
	T3I1967	6	8	2	285
	T3I1968	10	13	3	173
GR	T3I1969	6	11	5	157
	T3I1970	7	12	5	953
	T3I1971	7	8	1	363
	T3I1972	3	4	1	279
	T3I1974	4	10	6	145
	T3I1975	6	8	2	115
	T3I1976	5	7	2	128
	T3I1978	5	6	1	112
	T3I1980	6	9	3	125
	T3I1981	6	10	4	177
	T3I1983	6	7	1	136
	T3I1985	9	12	3	654
	T3I1986	5	7	2	116
	T3I1987	6	8	2	166
	T3I1988	8	13	5	373
	T3I1990	4	6	2	183
	T3I1991	6	7	1	108
	T3I1992	5	9	4	89
	T3I1995	6	10	4	341
	T3I1999	7	8	1	126
	T3I2008	7	8	1	212
	T3I2009	7	9	2	351
	T3I2024	6	8	2	148
	T3I2025	5	6	1	115
	T3I2029	4	7	3	163
	7010000	<u>^</u>	0	0	010

Appendix 3: Drill Hole locations and >100 ppm eU_3O_8 and U_3O_8 Intersections (continued) Table 3: eU_3O_8 values are determined by gamma logging (continued)

T3I2030

T3I2031

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	U₃Oଃ (ppm)
T3I2034	7	8	1	203
T3I2035	6	8	2	234
T3I2036	6	8	2	124
T3I2037	4	5	1	106
T3I2039	5	9	4	328
T3I2040	6	7	1	106
T3I2041	6	8	2	194
T3I2042	7	8	1	207
T3I2043	7	8	1	227
T3I2045	4	7	3	295
T3I2045	11	12	1	120
T3I2046	4	5	1	120
T3I2047	4	6	2	102
T3I2048	4	6	2	405
T3I2052	6	8	2	204
T3I2053	4	5	1	488
T3I2058	5	12	7	1116
T3I2062	3	5	2	130
T3I2063	7	8	1	268
T3I2064	6	10	4	570
T3I2065	7	11	4	282
T3I2066	7	12	5	166
T3I2067	6	7	1	226
T3I2068	4	5	1	115
T3I2073	5	6	1	123
T3I2075	4	7	3	116
T3I2076	5	6	1	115
T3I2079	7	10	3	251
T3I2080	4	16	12	277
T3I2081	4	11	7	229
T3I2082	7	8	1	218
T3I2084	6	7	1	103
T3I2085	4	7	3	137
T3I2085	12	13	1	145
T3I2086	4	12	8	254
	0	1	1	373
T3I2089	4	14	10	4142
	3	6	3	664
T3I2091	9	10	1	120
T3I2097	7	8	1	133
T3I2099	9	11	2	181
T3I2100	7	11	4	202
T3I2104	10	12	2	119
T3I2108	5	16	11	261

Appendix 3: Drill Hole locations and >100 ppm eU₃O₈ and U₃O₈ Intersections (continued) Table 3: eU_3O_8 values are determined by gamma logging (continued)

U₃O₈ (ppm)

U₃O₈ (ppm)

	Hole ID	Depth From (m)	Depth To (m)
	T3I2111	3	13
	T3l2113	8	17
	T3I2114	7	9
	T3l2115	10	11
	T3I2117	12	14
	T3I2119	6	7
	T3l2121	8	10
	T3I2152	6	9
	T3l2153	6	9
	T3I2155	8	13
	T3I2156	3	4
	T3I2158	3	6
	T3I2161	4	8
	T3I2165	7	8
	T3I2166	6	13
	T3I2171	10	12
	T3I2173	6	7
GDI	T3I2175	4	7
	T3I2176	9	15
	Diamond Drill Hole	es	
	Hole ID	Depth From (m)	Depth To (m)
	T3DD01	8	17
	T3DD02	4	6
	100002	11	14
	T3DD03	6	13
	T2DD01	19	23
	T2DD02	16	24
	T2DD03	11	23

Appendix 3: Drill Hole locations and >100 ppm eU₃O₈ and U₃O₈ Intersections (continued) Table 3: eU₃O₈ values are determined by gamma logging (continued)

Interval (m)

Interval (m)