

# ASX Announcement | ASX: TNC

5 September 2024

# TNC identifies broad zones of surface copper mineralisation at Mt Oxide Project, QLD

# HIGHLIGHTS

Assay results received from a successful rock chip sampling program at the Aquila and Ivena North prospects, part of TNC's 100% owned Mt Oxide Project in Queensland.

Aquila and Ivena North are both part of the larger Dorman Fault Mineral System, a +10km long trend that hosts the Vero Cu-Ag-Co Resource and the Camp Gossans Prospect.

At Aquila, sampling has highlighted six zones of anomalous Cu, Co & As associated with multiple gossanous breccia structures up to 30m wide.

Aquila B Trend: +180m long and +30m wide Cu +/- Co-As-Ag within a 440m long fault breccia with visible copper oxide mineralisation. The trend includes rock chip channels returning 3.6m @ 0.49% Cu with a peak assay of 0.94% Cu.

- Aquila A Trend: +20m long and up to 12m wide Cu-As-Sb anomalous zone within +210m strike of hematite altered hydrothermal breccias, returning up to 0.05% Cu and 12.7g/t Ag and anomalous pathfinders.

Aquila D Trend: +100m long and up to 4m wide Cu-Co trend associated with a historical prospecting pit with strong copper oxide mineralisation, and a peak assay of 0.87% Cu.

At Ivena North, sampling has identified Cu, Co & As trends within two geochemically anomalous zones from multiple gossanous breccia structures that are up to 25m wide.

 Ivena North A Trend – +130m long and up to 15m wide Cu-Co-As trend within a +580m strike of hydrothermal breccia and gossans that returned assays up to 1.38% Cu and anomalous As +/- Ag-Sb-Bi-Mo.

A combined 680m strike length of mapped hematite silica gossans remains under-sampled between the Aquila and Mt Gordon Prospects.

Rock chip results will be integrated with ongoing mapping and results from the Queensland Government-funded MIMDAS

True North Copper Limited (ASX: TNC) (True North, TNC or the Company) is pleased to announce results from a systematic rock chip sampling campaign at the Aquila and Ivena North prospects, part of its 100% owned Mt Oxide Project, located 140km north of Mt Isa in Queensland.

The rock chip sampling program has successfully identified new broad zones of strongly anomalous copper and pathfinder elements. The copper grades and pathfinder anomalism returned in the samples are at levels consistent with other outcropping leached gossans associated with historic drill discoveries in the region.

The Ivena North and Aquila prospects are located along strike northwest of the high-grade Vero Cu-Ag-Co resource (**Vero**). Both prospects are high priority exploration targets for TNC, with a MIMDAS Induced Polarisation (IP) and Magnetotellurics (MT) geophysical survey continuing at Mt Oxide to test for geophysical anomalies coincident with outcropping geochemically anomalous gossans<sup>1, 3</sup>.



## COMMENT

#### True North Copper's Managing Director, Bevan Jones said:

"Our exploration team has been working hard to systematically map and sample the +10km Dorman fault trend at Mt Oxide. Multiple gossans have been identified, and rock chip results from the gossans are revealing large areas of wider and stronger mineralisation on which to focus our future exploration work, including the ongoing MIMDAS geophysical survey. We are also remobilising the on-ground team to systematically collect additional rock chip samples over the newly discovered Black Marlin and Rhea structures. Further geophysical results are filtering through, and updates will be released soon. We are potentially building a significant district at Mt Oxide with multiple high priority targets which have never been drilled. Our next steps include prioritisation of these targets, designing and planning upcoming drill programs, and securing the necessary permits for on-ground access."

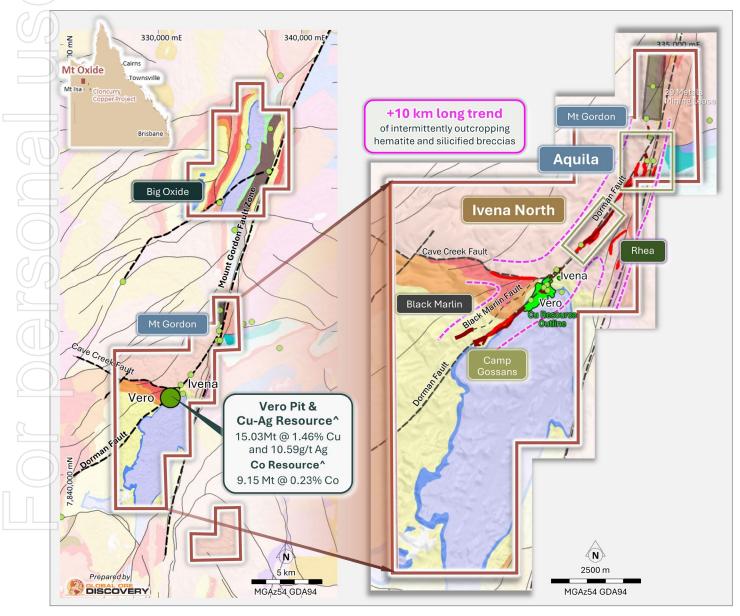



Figure 1. Mt Oxide Project with priority prospects identified within the Dorman Fault corridor. ^ Refer to Appendix 1, Table 1.



# Summary of Results

During Q4 CY23, TNC's Discovery Team initiated a prospectivity analysis of the Dorman Fault Mineral System, host to the Vero Cu-Ag-Co Resource (**Vero**) (15.03Mt @ 1.46% Cu and 10.59g/t Ag M, I & I, refer Table 1)<sup>4</sup>. Geological and structural mapping delineated a +10km highly prospective corridor of intermittently outcropping gossanous and silica breccias with no drilling, surface sampling or effective geophysics. Since completion of this work, TNC has collected 388 rock chip samples, including 243.5m of rock chip channel samples at the Ivena North and Aquila Prospects where TNC is currently acquiring MIMDAS IP and MT as part of its Queensland Government Collaborative Exploration Initiative (CEI) grant<sup>3</sup>.

Analysis of the assay results has highlighted eight high priority geochemically anomalous zones within the larger, structurally complex footprint at both prospects with two of these zones remaining open to the north. These anomalies have similar pathfinder geochemical signatures and are within the order of magnitude of the results from Camp Gossans<sup>4</sup> south of Vero, which are considered analogous to the leached gossan outcrops at the Esperanza South deposit<sup>4</sup>.

# Aquila

The Aquila prospect area is a 1.5km long and 250m wide zone of structural complexity located 4.5km northeast of the Vero Cu-Ag-Co Resource. The prospect is adjacent to the crustal scale and regionally significant Mt Gordon Fault Zone (MGFZ). A total of 295 rock chip samples, including 212 samples from continuous rock chip channels, were collected over the prospect.

Assays results from strongly Fe-Mn altered fault breccias returned a combined 220m trend of strongly anomalous copper values, with widths up to 30m wide in four geochemical trends (Table 3, Table 5, Figure 2). These copper anomalous trends occur within a 390m long zone of strongly anomalous As-Sb+/- Bi that remains open to the north.

These are important pathfinder elements associated with economic mineralisation in hydrothermal systems within the Mt Isa Inlier. The geochemical signatures, size and observed breccia textures along these structures indicate hydrothermal fluid flow over a significant strike length and suggest the potential of the prospect to host a copper ore body.

The six priority trends identified for further exploration are:

# Aquila-B

A combined +210m long and +30m wide Cu-As-Sb trend +/- Co-Bi-Mo within a 390m corridor of Sb-As +/- Bi anomalism that intensifies north towards Mt Gordon with peak assays results of 0.94% Cu and 15.2g/t Ag.

Two zones of Cu-As-Sb-Bi anomalism

- Zone 1 180m long and 30m wide with peak assay of Cu of 0.94% plus anomalous Co-Mo
  - This zone includes a WNW orientated vertical hematite-limonite fault breccia truncating the MGFZ up to ~20m wide.
- Zone 2 +30m long and 2m wide with peak Cu of 632ppm
  - This zone includes a hematite fault breccia with intense Fe alteration, boxwork leached textures and trace malachite.
- The area is structurally complex with interactions between NW trending faults and the MGFZ fault network. Commonly
   malachite is observed on the fracture planes where faults interact.
- The As-Sb anomaly remains open to the north, with peak pathfinder element values of 0.27% As, 350ppm Sb and 0.17% Bi.
- Continuous rock chip channel sampling was completed over gossanous outcrops and altered breccias. Results from these channels include:
  - Channel 2 3.6m @ 0.49% Cu with a peak 0.94% Cu and 8.8g/t Ag along with anomalous As and Bi.
  - Channel 3B 4.0m @ 0.17% Cu with a peak 0.30% Cu and 3.0g/t Ag along with anomalous As and Bi.



#### Aquila-D

- A +100m long and approximately 4m wide Cu trend with a peak of 0.87% Cu on a NW-orientated fault cutting through a 3m deep historical Cu-Co bearing prospecting pit.
- Copper minerals include malachite, tenorite and cuprite and are visible on the vertical NW striking fault breccia up to 2.0m wide.
- Continuous rock chip sampling was completed around the prospecting pit and over a gossanous hematite breccia up to 15.0m wide. Results include:
  - Channel 21B 1.2m @ 0.87% Cu and 3.4g/t Ag.
  - Channel 34 1.8m @ 0.21% Cu with a peak assay of 0.26% Cu with anomalous Ag.

#### Aquila-A

- A +20m Ag-As +/- Cu-Sb-Bi-Pb trend up to 12m wide trend with peak assay of 0.05% Cu in a 50x20m recessively weathered hematite breccia.
- Malachite staining and hematite after pyrite can be observed in the trend.
- The trend is elevated in pathfinder elements and includes a +240m long As-Sb +/- Mo trend with up to 581ppm Cu, 0.15% As and 68ppm Sb. The anomaly remains open to the north.
- Significant rock chip channels within the trend include:
  - Channel 31 3m @ 9.1g/t Ag with peak assay of 344ppm Cu and 11.6g/t Ag with anomalous As-Sb-Bi.
  - Channel 30 4.2m @ 6.6g/t Ag with peak assay of 0.05% Cu and 12.7g/t Ag with anomalous As-Sb-Bi.

#### Aquila-F

- A ~15m long and up to 6m wide Cu-Ag trend with assays of 2.10% Cu and 6.2g/t Ag in a E-W orientated fracture network cutting the Dorman Fault trend with visible Cu mineralisation in intermittent outcrop.
- The anomaly remains open to the NE and SW.
- Two continuous rock chip channels were completed over outcrop in the area. Results include:
  - Channel 18 1.4m @ 1.24% Cu and 3.8g/t Ag with a peak assay of 2.10% Cu and 6.2g/t Ag.
  - Channel 19 3.0m @ 0.13% Cu with a peak assay of 0.15% Cu.

#### Aquila-E

- A +130m long and approximately 17m wide As +/- Co trend in a NE orientated Si-Fe fault breccia splaying off the Dorman Fault trend with peak As values of 0.11% As.
- Continuous rock chip sampling was completed over Fe-Si breccias up to 20.0m wide. Results include:
  - Channel 35 4m @ 3.09g/t Ag with anomalous As.

### Aquila-C

- A +25m long trend of anomalous As-Ag in the MGFZ with peak Ag values of 3.7g/t Ag.
- The anomaly remains open in all directions.

Geochemical data collection has assisted in identifying three primary target areas within this structurally complex prospect. The current MIMDAS program will see 4 line kms of survey completed at the prospect covering targets Aquila-A, Aquila-B and Aquila-D, with the aim of identifying geophysical anomalies coincident with geochemical anomalies that can be tested in future drilling programs like those seen in the recently completed lines at Camp Gossans<sup>1</sup>. It is anticipated that the survey will be completed over Aquila in early September.



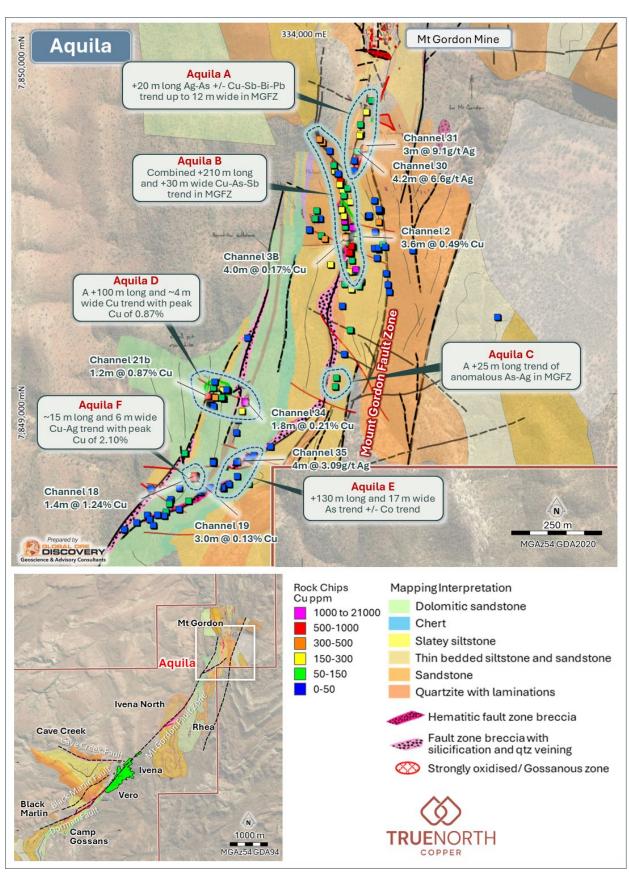



Figure 2. Summary map of the Aquila rock chip and rock chip channel copper results.





Figure 3. Aquila outcrop and selected sample photos.

## **Ivena North**

Ivena North is an undrilled and underexplored 900m long and up to 150m wide zone of steeply dipping, gossanous quartzhematite breccias that is analogous to Vero, located 2.6km NE of the Vero pit. The prospect area consists of the NE-trending Dorman Fault, a structure associated with Cu mineralisation at Vero.

The main mappable feature of the prospect is the Dorman Fault breccia, which has a 500x100m Vero-like dilation jog at the southern area of the prospect area. A  $\sim$ 1m deep prospecting pit, located in the south-west of the prospect, has abundant copper carbonates and oxide mineralisation hosted in structures interacting with the NE-SW Dorman trend.

A total of 75 rock chip samples, including 31 samples from four continuous rock chip channels, were collected during the program. Assay results from mineralised fault breccias in the prospect area returned strongly anomalous values of Cu-As over a strike length of 130m and widths up to 20m wide (Figure 4).



Two priority trends identified for further exploration include:

## Ivena North-A

• A +130m long and up to 15m wide Cu-Co-As trend with assay of 1.38% Cu within a +590m long corridor of hydrothermal breccia with gossanous and leached textures and As anomalism.

<sup>1</sup> The As trend contains two zones of anomalous Ag-Sb-Bi +/- Mo: 170m and 80m long, with peak assay of 8.2g/t Ag.

- The mineralised zone has copper mineralisation in sandstone that is pervasive into the rock fabric which was sampled with a continuous rock chip channel. Results from this channel include:
  - Channel 44 3.5m @ 0.28% Cu with a peak assay of 0.58% Cu and anomalous Co and As.

## Ivena North-B

\_

A +330m long As +/- Ag-Bi trend in a silicified fault breccia that splays off the Dorman fault trend.

The trend includes a +160m long Ag-Bi trend with up to 6.7 g/t Ag.

A MIMDAS combined IP-MT survey is in progress over the Ivena North prospect, with results expected to be delivered early next quarter.



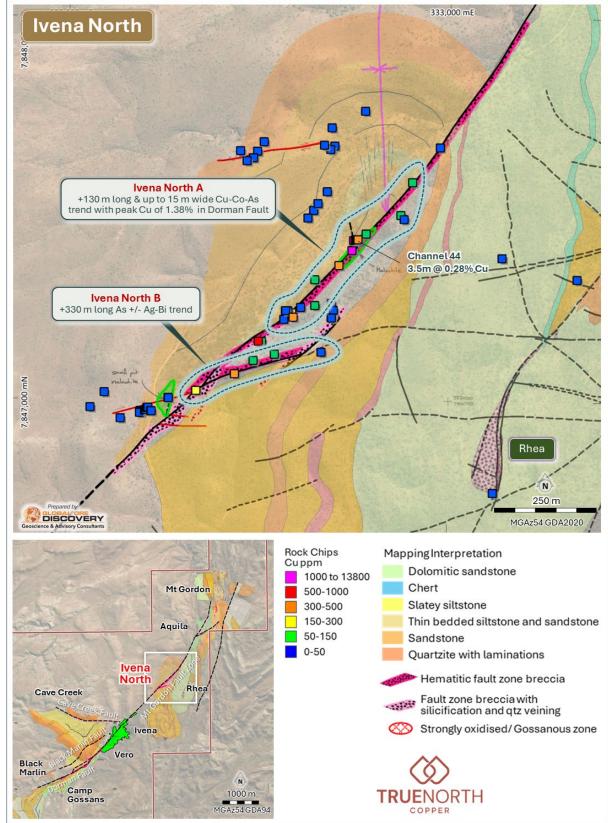



Figure 4. Summary map of the Ivena North rock chip and rock chip channel copper results.





Figure 5. Ivena North outcrop and selected sample photos.

# Next Steps – Mt Oxide 2024 Exploration Program

- Systematic rock chip sampling over the new Black Marlin and Rhea targets.
- Complete infill sampling to determine the extent of identified geochemical anomalies at Aquila and Ivena North.
- MIMDAS survey to be completed over identified geochemical anomalies at Aquila and Ivena North.



#### REFERENCES

- 1. True North Copper Limited. ASX (TNC): ASX Announcement 22 August 2024: Geophysical survey highlights growth \_\_\_\_\_ opportunities for Mt Oxide Project.
- True North Copper Limited. ASX (TNC): ASX Announcement 9 August 2024: True North Copper Updates Vero Copper-Silver Resource.
- 3. True North Copper Limited. ASX (TNC): ASX Announcement 5 April 2024: Mt Oxide leading edge geophysics awarded \$300k Collaborate Exploration Initiative Grant.
- 4. True North Copper Limited. ASX (TNC): ASX Announcement 18 March 2024: Camp Gossans, Mt Oxide Priority Exploration Target - rock chips return strongly anomalous copper, 1.2km along strike from Vero

# AUTHORISATION

This announcement has been approved for issue by Bevan Jones, Managing Director and the True North Copper Limited Board.

### **COMPETENT PERSON'S STATEMENT**

#### Mr Daryl Nunn

The information in this announcement includes exploration results comprising Ivena North and Aquila rock chip assay results. Interpretation of these results is based on information compiled by Mr Daryl Nunn, who is a fulltime employee of Global Ore Discovery who provide geological consulting services to True North Copper Limited. Mr Nunn is a Fellow of the Australian Institute of Geoscientists, (FAIG): #7057. Mr Nunn has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for the Reporting of Exploration Results, Mineral Resources, and Ore Reserves (JORC Code). Mr Nunn and Global Ore Discovery hold shares in True North Copper Limited. Mr Nunn has

## JORC AND PREVIOUS DISCLOSURE

The information in this Release that relates to Mineral Resource and Ore Reserve Estimates for Mt Oxide, Great Australia, Orphan Shear, Taipan, Wallace North and Wallace South is based on information previously disclosed in the following Company ASX Announcements available from the ASX website www.asx.com.au:

- 4 May 2023, Prospectus to raise a minimum of \$35m fully underwritten28 February 2023, Acquisition of the True North Copper Assets.
- 4 July 2023, Initial Ore Reserve for Great Australia Mine Updated.
- 19 January 2024, TNC increases Wallace North Resource.
- 6 February 2024, True North Copper reports Wallace North Maiden Reserve.
- 9 August 2024, True North Copper Updates Vero Copper-Silver Resource.

The information in this Release that relates to exploration results is based on information previously disclosed in the following Company ASX Announcements that are all available from the ASX website www.asx.com.au:

- 22 February 2024 ASX release "TNC 2024 Exploration Program".
- 18 March 2024: Mt Oxide Camp Gossans rock chips, strongly anomalous Cu.
- 22 August 2024: Geophysical survey highlights growth opportunities for Mt Oxide Project.



The Company confirms that it is not aware of any new information as at the date of the Presentation that materially affects the information included in the Release and that all material assumptions and technical parameters underpinning the estimates and results continue to apply and have not materially changed.

These ASX announcements are available on the Company's website (www.truenorthcopper.com.au) and the ASX website (www.asx.com.au) under the Company's ticker code "TNC".

# DISCLAIMER

This release has been prepared by True North Copper Limited ABN 28 119 421 868 ("TNC" "True North" or the "Company"). The information contained in this release is for information purposes only. This release may not be reproduced, disseminated, quoted or referred to, in whole or in part, without the express consent of TNC.

The information contained in this release is not investment or financial product advice and is not intended to be used as the basis for making an investment decision. Please note that, in providing this release, TNC has not considered the objectives, financial position or needs of any particular recipient. The information contained in this release is not a substitute for detailed investigation or analysis of any particular issue and does not purport to be all of the information that a person would need to make an assessment of the Company or its assets. Current and potential investors should seek independent advice before making any investment decisions in regard to the Company or its activities.

No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this news release. To the maximum extent permitted by law, none of TNC, its related bodies corporate, shareholders or respective directors, officers, employees, agents or advisors, nor any other person accepts any liability, including, without limitation, any liability arising out of fault or negligence for any loss arising from the use of information contained in this release.

This release includes "forward looking statements" within the meaning of securities laws of applicable jurisdictions. Forward looking statements can generally be identified by the use of the words "anticipate", "believe", "expect", "project", "forecast", "estimate", "likely", "intend", "should", "could", "may", "target", "plan" "guidance" and other similar expressions. Indications of, and guidance on, future earning or dividends and financial position and performance are also forward-looking statements. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of TNC and its officers, employees, agents or associates, that may cause actual results to differ materially from those expressed or implied in such statement. Actual results, performance or achievements may vary materially from any projections and forward looking statements and the assumptions on which those statements are based. Readers are cautioned not to place undue reliance on forward looking statements and the risk factors outlined in this release.

This release is not, and does not constitute, an offer to sell or the solicitation, invitation or recommendation to purchase any securities and neither this release nor anything contained in it forms the basis of any contract or commitment.



# **APPENDIX 1**

#### Table 1. TNC Mineral Resources

| _  | -                                              | Cut-off | Tonnes | Cu    | Au          | Со         | Ag     | Cu     | Au    | Со   | Ag    |
|----|------------------------------------------------|---------|--------|-------|-------------|------------|--------|--------|-------|------|-------|
| -  | Resource Category                              | (% Cu)  | (Mt)   | (%)   | (g/t)       | (%)        | (g/t)  | (kt)   | (koz) | (kt) | (Moz) |
|    | I I                                            |         |        |       | Great A     | ustralia   |        |        |       |      |       |
|    | Indicated                                      | 0.5     | 3.47   | 0.89  | 0.08        | 0.03       | -      | 31.1   | 8.93  | 0.93 | -     |
| 1  | Inferred                                       | 0.5     | 1.19   | 0.84  | 0.04        | 0.02       | -      | 10     | 1.53  | 0.2  |       |
|    | Great Australia<br>Subtotal                    |         | 4.66   | 0.88  | 0.07        | 0.02       | -      | 41.1   | 10.46 | 1.13 |       |
| J  | Ð                                              |         |        |       | Orphar      | Shear      |        |        |       |      |       |
|    | Indicated                                      | 0.25    | 1.01   | 0.57  | 0.04        | 0.04       | -      | 5.73   | 1.18  | 0.36 | -     |
|    | Inferred                                       | 0.25    | 0.03   | 0.28  | 0.01        | 0.02       | -      | 0.08   | 0.01  | 0.01 | -     |
|    | Orphan Shear<br>Subtotal                       |         | 1.03   | 0.56  | 0.04        | 0.04       | -      | 5.79   | 1.19  | 0.37 | -     |
| 71 |                                                |         |        |       | Tai         | ban        |        |        |       |      |       |
| 1  | Indicated                                      | 0.25    | 4.65   | 0.58  | 0.12        | 0.01       | -      | 26.88  | 17.94 | 0.33 | -     |
|    | Inferred                                       | 0.25    | 0.46   | 0.51  | 0.14        | 0.01       | -      | 2.27   | 2.07  | 0.04 | -     |
|    | Taipan Subtotal                                |         | 5.11   | 0.57  | 0.12        | 0.01       | -      | 29.15  | 20.17 | 0.36 | -     |
|    | $\bigcirc$                                     |         |        |       | Wallac      | e North    |        |        |       |      |       |
| 1/ | Indicated                                      | 0.3     | 1.43   | 1.25  | 0.7         | -          | -      | 17.88  | 32.18 | -    | -     |
| J  | Inferred                                       | 0.3     | 0.36   | 1.56  | 1.09        | -          | -      | 5.62   | 12.62 | -    | -     |
|    | Wallace North<br>Subtotal                      |         | 1.79   | 1.31  | 0.78        | -          | -      | 23.49  | 44.8  | -    | -     |
| 1  | 5                                              |         |        |       | Mt Norm     | a In Situ  |        |        |       |      |       |
|    | Inferred                                       | 0.6     | 0.09   | 1.76  | -           | -          | 15.46  | 1.6    | -     | -    | 0.05  |
|    | Mt Norma In Situ<br>Subtotal                   |         | 0.09   | 1.76  | -           | -          | 15.46  | 1.6    | -     | -    | 0.05  |
|    |                                                |         |        | Mt No | orma Heap l | each & Sto | ckpile |        |       |      |       |
|    | Indicated                                      | 0.6     | 0.07   | 2.08  | -           | -          | -      | 1.39   | -     | -    | -     |
|    | Mt Norma Heap<br>Leach & Stockpile<br>Subtotal |         | 0.07   | 2.08  | -           | -          | -      | 1.39   | -     | -    | -     |
|    | Cloncurry Copper-<br>Gold Total                |         | 12.75  | 0.80  | 0.19        | 0.01       | -      | 102.52 | 76.62 | 1.86 | 0.05  |

| /      | Resource Category                    | Cut-off | Tonnes | Cu    | Au        | Со        | Ag     | Cu   | Au   | Со           | Ag    |
|--------|--------------------------------------|---------|--------|-------|-----------|-----------|--------|------|------|--------------|-------|
| $\geq$ |                                      | (% Cu)  | (Mt)   | (%)   | (g/t)     | (%)       | (g/t)  | (kt) | koz) | <b>(</b> kt) | (Moz) |
|        |                                      |         |        | Mt Ox | ide – Ver | o Copper- | Silver |      |      |              |       |
|        | Indicated                            | 0.5     | 10.74  | 1.68  | -         | -         | 12.48  | 180  | -    | -            | 4.32  |
|        | Inferred                             | 0.5     | 4.28   | 0.92  | -         | -         | 5.84   | 39   | -    | -            | 0.81  |
|        | Mt Oxide Vero<br>Copper-Silver Total |         | 15.03  | 1.46  | -         | -         | 10.59  | 220  | 0.0  | 0.0          | 5.13  |

| Resource Category             | Cut-off<br>(% Co) | Tonnes<br>(Mt) | <b>Co</b><br>(%) | <b>Co</b><br>kt |
|-------------------------------|-------------------|----------------|------------------|-----------------|
| Mt Ox                         | ide - Vero        | Cobalt Res     | source           |                 |
| Measured                      | 0.10              | 0.52           | 0.25             | 1.30            |
| Indicated                     | 0.10              | 5.98           | 0.22             | 13.40           |
| Inferred                      | 0.10              | 2.66           | 0.24             | 6.50            |
| Mt Oxide Vero-Cobalt<br>Total |                   | 9.15           | 0.23             | 21.20           |

All figures are rounded to reflect the relative accuracy of the estimates. Totals may not sum due to rounding.



#### Table 2 TNC Reserves

| Resource<br>Category | Tonnes (Mt) | Cu (%)        | Au (g/t)        | Cu (kt) | Au (koz) |
|----------------------|-------------|---------------|-----------------|---------|----------|
|                      |             | Great Austr   | alia Reserve    |         |          |
| Proved               | 0.0         | 0.0           | 0.0             | 0.0     | 0.0      |
| Probable             | 2.3         | 0.81          | 0.08            | 19.2    | 6.1      |
| Total                | 2.3         | 0.81          | 0.08            | 19.2    | 6.1      |
| )                    |             | Taipan        | Reserve         |         |          |
| Proved               | 0.0         | 0.0           | 0.0             | 0.0     | 0.0      |
| Probable             | 0.9         | 0.70          | 0.10            | 6.9     | 3.2      |
| Total                | 0.9         | 0.70          | 0.10            | 6.9     | 3.2      |
|                      |             | Orphan Sh     | ear Reserve     |         |          |
| Proved               | 0.0         | 0.0           | 0.0             | 0.0     | 0.0      |
| Probable             | 0.8         | 0.60          | 0.03            | 4.6     | 0.7      |
| Total                | 0.8         | 0.60          | 0.03            | 4.6     | 0.7      |
|                      | GREA        | T AUSTRALIA M | INE - TOTAL RES | SERVE   |          |
| Proved               | 0.0         | 0.0           | 0.0             | 0.0     | 0.0      |
| Probable             | 4.0         | 0.74          | 0.08            | 30.7    | 10.0     |
| Sub Total            | 4.0         | 0.74          | 0.08            | 30.7    | 10.0     |
|                      |             | WALLACE NO    | RTH RESERVE     |         |          |
| Proved               | 0.0         | 0.0           | 0.0             | 0.0     | 0.0      |
| Probable             | 0.7         | 1.01          | 0.46            | 6.8     | 10.0     |
| Total                | 0.7         | 1.01          | 0.46            | 6.8     | 10.0     |
| J                    | CLONCUF     | RRY COPPER PF | ROJECT - TOTAL  | RESERVE |          |
| Proved               | 0.0         | 0.0           | 0.0             | 0.0     | 0.0      |
| Probable             | 4.7         | 0.80          | 0.13            | 37.5    | 20.0     |
| Total                | 4.7         | 0.80          | 0.13            | 37.5    | 20.0     |

All figures are rounded to reflect the relative accuracy of the estimates. Totals may not sum due to rounding.



| Element | Minimum | Maximum | Mean* | Upper Quartile* |
|---------|---------|---------|-------|-----------------|
| Cu ppm  | 2       | 21,000  | 474   | 281             |
| Co ppm  | <1      | 497     | 14    | 15              |
| Ag g/t  | <0.5    | 15.20   | 1.04  | 0.80            |
| AI %    | 0.14    | 7.10    | 2.07  | 2.80            |
| As ppm  | <5      | 3,490   | 157   | 139             |
| Ba ppm  | 30      | 4,210   | 479   | 630             |
| Be ppm  | <0.5    | 4       | 0.69  | 0.90            |
| Bi ppm  | <2      | 1,795   | 21    | 6               |
| Ca %    | 0.01    | 22.30   | 0.91  | 0.07            |
| Cd ppm  | <0.5    | 0.6     | 0.25  | 0.25            |
| Cr ppm  | 4       | 253     | 15    | 18              |
| Fe %    | 0.52    | >50     | 5.56  | 6.42            |
| Ga ppm  | <10     | 20      | 6     | 10              |
| Κ%      | 0.02    | 6.70    | 1.60  | 2.48            |
| La ppm  | <10     | 70      | 15    | 20              |
| Lippm   | <10     | 20      | 6     | 10              |
| Mg %    | 0.01    | 9.10    | 0.43  | 0.13            |
| Mn ppm  | 26      | 9,170   | 598   | 496             |
| Mo ppm  | <1      | 47      | 3     | 3               |
| Na %    | 0.01    | 0.24    | 0.06  | 0.08            |
| Ni ppm  | 1       | 169     | 14    | 15              |
| P ppm   | 50      | >10,000 | 939   | 772             |
| Pb ppm  | <2      | 815     | 26    | 14              |
| S %     | 0.01    | 2.50    | 0.06  | 0.04            |
| Sb ppm  | <5      | 350     | 15    | 12              |
| Sc ppm  | <1      | 18      | 3     | 5               |
| Sr ppm  | 4       | 2,740   | 134   | 79              |
| Th ppm  | <20     | 20      | 10    | 10              |
| Ti %    | 0.01    | 0.93    | 0.07  | 0.09            |
| TI ppm  | <10     | 10      | 5     | 5               |
| U ppm   | <10     | 10      | 5     | 5               |
| V ppm   | 3       | 199     | 25    | 33              |
| W ppm   | <10     | 5       | 5     | 5               |
| Zn ppm  | 3       | 205     | 11    | 12              |
|         |         |         |       |                 |

 Table 3. Summary Statistics for the Aquila and Ivena North prospect rock chips. Number of samples, 388. \*Values

 adjusted to half minimum detection level and the maximum detection level for statistical calculations.

| Element | Aquila<br>A | Aquila<br>B | Aquila<br>C | Aquila<br>D | Aquila<br>E | Aquila F   | lvena<br>North A | lvena<br>North B | Camp<br>Gossans<br>Fe-Mn<br>Rich | Camp<br>Gossans<br>Fe-Si<br>Rich |
|---------|-------------|-------------|-------------|-------------|-------------|------------|------------------|------------------|----------------------------------|----------------------------------|
|         |             |             |             |             | Co          | ount       |                  |                  |                                  |                                  |
|         | 15          | 91          | 2           | 61          | 32          | 8          | 28               | 5                | 135                              | 43                               |
|         |             |             | 1           | Γ           | Mean Val    | ues* (ppm  | ı)               | 1                |                                  |                                  |
| Cu      | 214         | 716         | 87          | 548         | 37          | 3,789      | 1,526            | 141              | 595                              | 148                              |
| Ag      | 5.57        | 1.81        | 3.00        | 0.36        | 0.63        | 3.20       | 0.78             | 1.99             | 0.80                             | 0.70                             |
| Co      | 8           | 27          | 5           | 10          | 9           | 8          | 22               | 3                | 65                               | 25                               |
| As      | 592         | 329         | 491         | 18          | 114         | 34         | 238              | 468              | 187                              | 257                              |
| Bi      | 23          | 78          | 7           | 1           | 3           | 9          | 7                | 18               | 3                                | 2                                |
| Sb      | 41          | 37          | 38          | 3           | 6           | 5          | 15               | 20               | 10                               | 15                               |
|         |             |             |             | М           | inimum \    | /alues (pp | m)               |                  |                                  |                                  |
| )) Cu   | 19          | 21          | 86          | 4           | 11          | 468        | 20               | 8                | 24                               | 4                                |
| Ag      | 0.50        | < 0.50      | 2.30        | < 0.50      | < 0.50      | < 0.50     | <0.50            | <0.50            | 0.50                             | 0.50                             |
| Со      | 2           | 2           | 2           | <1          | <1          | 2          | <1               | <1               | 5                                | <1                               |
| As      | 35          | 10          | 276         | <5          | 18          | 6          | 9                | 6                | 13                               | 7                                |
| Bi      | <2          | <2          | <2          | <2          | <2          | <2         | <2               | <2               | <2                               | <2                               |
| Sb      | 13          | <5          | 28          | <5          | <5          | <5         | <5               | <5               | <5                               | <5                               |
|         |             |             |             | M           | aximum '    | Values (pp | m)               |                  |                                  |                                  |
| Cu      | 581         | 9,440       | 87          | 8,680       | 269         | 21,000     | 13,800           | 336              | 6,180                            | 455                              |
| Ag      | 12.70       | 15.20       | 3.70        | 3.40        | 4.00        | 7.00       | 8.20             | 6.70             | 1.00                             | 1.00                             |
| Co      | 30          | 497         | 8           | 96          | 58          | 17         | 115              | 4                | 314                              | 128                              |
| As      | 1,520       | 2,740       | 705         | 184         | 1150        | 69         | 3,490            | 943              | 2,380                            | 1,700                            |
| Bi      | 62          | 1,795       | 13          | 10          | 12          | 17         | 56               | 37               | 4                                | 3                                |
| Sb      | 68          | 350         | 48          | 14          | 32          | 10         | 103              | 44               | 39                               | 45                               |
| J       |             |             |             | Uppe        | r Quartil   | e* Values  | (ppm)            |                  |                                  |                                  |
| Cu      | 312         | 770         | 87          | 487         | 36          | 2,148      | 724              | 192              | 680                              | 206                              |
| Ag      | 10.60       | 2.30        | 3.35        | 0.25        | 0.25        | 4.85       | 0.25             | 1.40             | 1.00                             | 0.80                             |
| Co      | 11          | 25          | 7           | 10          | 7           | 13         | 18               | 4                | 85                               | 29                               |
| As      | 859         | 432         | 598         | 15          | 99          | 50         | 79               | 629              | 186                              | 301                              |
|         | 47          | 71          | 10          | 1           | 4           | 15         | 2                | 33               | 3                                | 3                                |
| Bi      |             | 46          | 43          | 3           | 5           | 8          | 8                | 23               | 10                               | 20                               |

 Table 4. Summary Statistics of the 2024 Target rock chip results, and 2023 Camp Gossans rock chip results<sup>4</sup>. \*Values

 adjusted to half minimum detection level and the maximum detection level for statistical calculations.



Easting Northing Elevation Sample Cu ppm Ag ppm Co ppm As ppm Bi ppm Sb ppm Channel Length (m) Target Sample ID MGAz54 MGAz54 (mRL) Type TNR013301 Aquila\_B 0.90 1A 0.8 Outcrop TNR013302 Outcrop 2.10 1B Aquila\_B 1.2 TNR013303 1.70 Aquila\_B Outcrop Aquila B TNR013304 4.90 Outcrop 1.2 Aquila\_B TNR013305 8.80 2.4 Outcrop Aquila\_B TNR013306 2.60 3.6 Outcrop 4.8 Aquila\_B TNR013307 0.25 Outcrop Aquila\_B TNR013308 0.50 Outcrop Aquila\_B TNR013309 0.25 Δ 3A Outcrop Aquila\_B TNR013311 0.70 3A Outcrop Outcrop Aquila\_B TNR013312 0.50 ЗA 3.6 Outcrop Aquila B TNR013313 0.60 3A Aquila B TNR013314 0.25 ЗA Outcrop Aquila B TNR013315 0.50 ЗA 7.8 Outcrop Aquila B TNR013316 0.60 ЗB 0.8 Outcrop Aquila B TNR013317 0.80 3B Outcrop Aquila B TNR013318 1.40 3B 3.2 Outcrop 2.70 Aquila B TNR013319 3B 4.4 Outcrop Aquila B TNR013320 3.00 ЗB 5.6 Outcrop 1.30 Aquila B TNR013321 ЗB 6.8 Outcrop Aquila B TNR013322 3B 7.2 Outcrop 2.70 TNR013323 Aquila\_B ЗB 8.4 2.20 Outcrop TNR013324 9.6 Aquila\_B 1.80 ЗB Outcrop TNR013325 10.20 ЗB 10.8 Aquila\_B Outcrop TNR013326 1.40 Aquila\_B Outcrop Aquila\_B TNR013327 1.30 1.2 Outcrop Aquila\_B TNR013328 0.80 2.2 Outcrop Aquila\_B TNR013329 0.70 3.3 Outcrop Aquila\_B TNR013330 1.30 Δ 4.5 Outcrop TNR013331 Aquila\_B 0.70 5.7 Outcrop Aquila\_B TNR013332 2.40 6.9 Outcrop Aquila\_B TNR013334 Δ 8.1 3.80 Outcrop Outcrop Aquila\_B TNR013336 15.20 5a 1.1 Aquila\_B TNR013337 2.40 5a 2.2 Outcrop Outcrop Aquila\_B TNR013338 3.80 5a 2.8 Outcrop Aquila B TNR013339 2.30 5a Aquila B TNR013341 1.90 Outcrop Aquila B TNR013342 2.20 5b 1.2 Outcrop Aquila B TNR013343 1.50 5b 1.8 Outcrop Aquila B TNR013344 1.80 5b Outcrop Aquila B TNR013345 0.90 Outcrop Aquila B TNR013346 1.10 Outcrop TNR013348 Aquila\_B 2.2 0.80 Outcrop Aquila\_B TNR013349 1.30 Outcrop 1.2 Aquila\_B TNR013350 4.30 2.2 Outcrop Aquila B TNR013351 3.20 1.2 Outcrop TNR013352 Aquila\_B 1.50 1.8 Outcrop Aquila\_B TNR013353 2.10 2.6 Outcrop TNR013355 Outcrop Aquila\_B 1.20 3.6 Aquila B TNR013356 0.80 4.8 Outcrop Aquila\_B TNR013357 1.20 5.8 Outcrop Aquila\_B TNR013358 2.80 6.5 Outcrop TNR013359 Aquila\_B 3.20 1.2 Outcrop TNR013360 0.90 Aquila\_B 1.8 Outcrop TNR013361 Aquila\_B 0.25 2.9 Outcrop Aquila\_B TNR013362 Outcrop 3.70 Λ Aquila\_B TNR013363 2.90 Outcrop Outcrop Aquila U1 TNR013365 0.25 Aquila U1 TNR013366 0.25 2.5 Outcrop Aquila U1 TNR013367 0.25 2.5 Subcrop Aquila U1 TNR013368 0.25 2.5 Subcrop Aquila U1 TNR013369 0.25 2.5 Subcrop Aquila U1 TNR013371 0.25 Subcrop Aquila U1 TNR013373 0.25 2.5 Outcrop Aquila U1 TNR013374 0.25 2.5 2.5 1.2 Outcrop TNR013375 2.4 Aquila U1 0.25 2.5 Outcrop TNR013376 Float Aquila B 0.70 TNR013377 Aquila\_U2 2.5 0.25 Subcrop Aquila\_B TNR013378 0.60 12A Outcrop 1.2 TNR013379 0.50 Aquila\_B 12A 2.4 Outcrop Aquila\_B TNR013380 2.30 12B 1.2 Outcrop

 Table 5. Tabulated summary of Mt. Oxide Project rock chip results (GDA94). Values below detection limits have been set to half the minimum detection limit.



| Target                 | Sample ID              | Easting<br>MGAz54 | Northing<br>MGAz54 | Elevation<br>(mRL) | Cu ppm     | Ag ppm | Co ppm    | As ppm    | Bi ppm | Sb ppm     | Channel    | Length (m) | Sample<br>Type   |
|------------------------|------------------------|-------------------|--------------------|--------------------|------------|--------|-----------|-----------|--------|------------|------------|------------|------------------|
| Aquila_B               | TNR013381              | 334148            | 7849346            | 229                | 1135       | 1.50   | 69        | 430       | 11     | 28         | 12B        | 2.4        | Outcro           |
| Aquila_U2              | TNR013383              | 334115            | 7849303            | 254                | 110        | 0.25   | 8         | 58        | 5      | 6          |            |            | Subcro           |
| Aquila_U2              | TNR013384              | 334136            | 7849288            | 256                | 151        | 0.25   | 1         | 48        | 5      | 2.5        |            |            | Subcro           |
| Aquila_B               | TNR013385              | 334164            | 7849313            | 228                | 230        | 0.50   | 8         | 24        | 2      | 2.5        | 13         | 1.2        | Outcro           |
| Aquila_B<br>Aquila B   | TNR013386              | 334163            | 7849312            | 228                | 784        | 0.90   | 41        | 52        | 5      | 2.5        | 13         | 2.4        | Outcro           |
| Aquila_B<br>Aquila_B   | TNR013387<br>TNR013388 | 334163<br>334162  | 7849312<br>7849311 | 228<br>228         | 440<br>755 | 0.25   | 61<br>145 | 37<br>25  | 2      | 2.5<br>2.5 | 13<br>13   | 3.4<br>4.6 | Outcro<br>Outcro |
| Aquila B               | TNR013389              | 334162            | 7849311            | 228                | 418        | 0.80   | 71        | 52        | 1      | 2.5        | 13         | 5.8        | Outcro           |
| Aquita_B               | TNR013390              | 334160            | 7849310            | 228                | 653        | 0.25   | 497       | 41        | 1      | 2.5        | 13         | 6.8        | Outcro           |
| Aquila_B               | TNR013391              | 334159            | 7849309            | 228                | 338        | 0.80   | 9         | 22        | 1      | 2.5        | 13         | 8          | Outcro           |
| Aquila_B               | TNR013392              | 334158            | 7849308            | 228                | 854        | 1.20   | 37        | 29        | 1      | 2.5        | 13         | 9.2        | Outcro           |
| Aquila_B               | TNR013393              | 334157            | 7849307            | 228                | 173        | 0.25   | 7         | 10        | 1      | 2.5        | 13         | 10.4       | Outcro           |
| Aquila_B               | TNR013394              | 334156            | 7849307            | 228                | 61         | 0.25   | 10        | 21        | 1      | 2.5        | 13         | 11.6       | Outcro           |
| Aquila_B               | TNR013396              | 334155            | 7849306            | 228                | 60         | 0.25   | 7         | 23        | 1      | 2.5        | 13         | 12.8       | Outcro           |
| Aquila_B               | TNR013397              | 334154            | 7849305            | 228                | 35         | 0.25   | 6         | 28        | 1      | 2.5        | 13         | 13.8       | Outcro           |
| Aquila_B               | TNR013398              | 334154            | 7849305            | 228                | 76         | 0.25   | 11        | 20        | 1      | 2.5        | 13         | 14.8       | Outcro           |
| Aquila_B               | TNR013399              | 334153            | 7849304            | 222                | 88         | 0.25   | 17        | 18        | 1      | 2.5        | 13         | 16         | Outcro           |
| Aquila_U2              | TNR013400              | 334110            | 7849241            | 254                | 31         | 0.25   | 2         | 20        | 1      | 2.5        |            |            | Outcro           |
| Aquila_U2              | TNR013402              | 334134            | 7849172            | 250                | 31         | 0.25   | 5         | 17        | 1      | 2.5        | 14         | 1.2        | Outcro           |
| Aquila_U2              | TNR013404              | 334133            | 7849172<br>7849104 | 250                | 77         | 0.25   | 18<br>1   | 36        | 2      | 2.5<br>2.5 | 14         | 2.4        | Outcro           |
| Aquila_U2<br>Aquila_C  | TNR013405<br>TNR013406 | 334117<br>334095  | 7849104            | 264<br>252         | 25<br>87   | 0.25   | 8         | 45<br>276 | 13     | 2.5        |            |            | Subcro<br>Subcro |
| Aquita_C<br>Aquita_C   | TNR013400<br>TNR013407 | 334093            | 7849030            | 232                | 86         | 2.30   | 2         | 705       | 1      | 48         |            |            | Subcro           |
| Aquila_U1              | TNR013407              | 334213            | 7849514            | 243                | 99         | 0.25   | 51        | 113       | 2      | 2.5        | 15         | 1.2        | Outcro           |
| Aquila U1              | TNR013409              | 334213            | 7849514            | 208                | 56         | 0.25   | 12        | 33        | 1      | 2.5        | 15         | 1.8        | Outcro           |
| Aquila U1              | TNR013410              | 334214            | 7849515            | 208                | 97         | 0.25   | 21        | 138       | 1      | 2.5        | 15         | 3          | Outcro           |
| Aquila_U1              | TNR013411              | 334215            | 7849515            | 208                | 25         | 0.25   | 4         | 23        | 1      | 2.5        | 15         | 4.2        | Outcro           |
| Aquila_U1              | TNR013412              | 334216            | 7849516            | 208                | 129        | 0.25   | 71        | 176       | 1      | 6          | 15         | 5          | Outcro           |
| Aquila_U1              | TNR013413              | 334217            | 7849516            | 237                | 120        | 0.25   | 16        | 128       | 27     | 17         | 16A        | 1          | Outcro           |
| Aquila_U1              | TNR013414              | 334216            | 7849517            | 237                | 129        | 0.60   | 14        | 179       | 24     | 19         | 16A        | 2.2        | Outcro           |
| Aquila_U1              | TNR013415              | 334215            | 7849517            | 237                | 42         | 1.50   | 4         | 15        | 8      | 2.5        | 16A        | 3          | Outcro           |
| Aquila_U1              | TNR013416              | 334214            | 7849518            | 237                | 37         | 0.25   | 3         | 15        | 4      | 5          | 16A        | 4.2        | Outcro           |
| Aquila_U1              | TNR013417              | 334213            | 7849518            | 237                | 93         | 2.30   | 22        | 46        | 32     | 11         | 16A        | 5.2        | Outcro           |
| Aquila_U1              | TNR013418              | 334213            | 7849518            | 236                | 18         | 0.25   | 4         | 47        | 1      | 2.5        | 16A        | 6.2        | Outcro           |
| Aquila_E               | TNR013419              | 333862            | 7848797            | 235                | 20         | 0.25   | 4         | 18        | 1      | 2.5        | 16B        | 1.2        | Outcro           |
| Aquila_E               | TNR013421              | 333861            | 7848797            | 235                | 15         | 0.25   | 4         | 25        | 1      | 2.5        | 16B        | 2.4        | Outcro           |
| Aquila_E<br>Aquila_E   | TNR013422<br>TNR013423 | 333860<br>333858  | 7848798            | 235<br>235         | 27         | 0.25   | 5<br>4    | 42<br>25  | 1      | 2.5<br>2.5 | 16B<br>16B | 3.6<br>4.8 | Outcro           |
| Aquita_E<br>Aquita_E   | TNR013423<br>TNR013424 | 333857            | 7848798<br>7848798 | 235                | 20<br>14   | 0.25   | 4<br>2    | 25        | 1      | 2.5        | 16B        | 4.0<br>6   | Outcro<br>Outcro |
| Aquila_E               | TNR013424              | 333856            | 7848798            | 235                | 14         | 0.25   | 2         | 20        | 9      | 2.5        | 16B        | 7.2        | Outcro           |
| Aquita_E               | TNR013426              | 333855            | 7848799            | 235                | 19         | 0.25   | 3         | 34        | 7      | 2.5        | 16B        | 8.4        | Outcro           |
| Aquila_E               | TNR013427              | 333854            | 7848800            | 235                | 26         | 0.25   | 2         | 26        | 1      | 2.5        | 16B        | 9.6        | Outcro           |
| Aquila_E               | TNR013429              | 333854            | 7848801            | 235                | 42         | 0.25   | 9         | 40        | 12     | 5          |            |            | Outcro           |
| Aquila_E               | TNR013430              | 333852            | 7848802            | 237                | 19         | 0.25   | 8         | 30        | 5      | 2.5        | 16C        | 1.2        | Outcro           |
| Aquila_E               | TNR013432              | 333851            | 7848802            | 237                | 15         | 0.25   | 4         | 31        | 1      | 5          | 16C        | 2.3        | Outcro           |
| Aquila_E               | TNR013433              | 333850            | 7848802            | 237                | 37         | 0.25   | 7         | 93        | 1      | 2.5        | 16C        | 3.5        | Outcro           |
| Aquila_E               | TNR013434              | 333849            | 7848803            | 237                | 34         | 0.25   | 11        | 288       | 3      | 8          | 16C        | 4.6        | Outcro           |
| Aquila_E               | TNR013435              | 333848            | 7848803            | 237                | 35         | 0.25   | 4         | 117       | 1      | 2.5        | 16C        | 5.7        | Outcro           |
| Aquila_E               | TNR013436              | 333847            | 7848804            | 237                | 44         | 0.25   | 5         | 153       | 1      | 2.5        | 16C        | 6.9        | Outcro           |
| Aquila_E               | TNR013437              | 333846            | 7848804            | 237                | 269        | 0.25   | 37        | 1150      | 1      | 9          | 16C        | 8.1        | Outcro           |
| Aquila_E               | TNR013438              | 333845            | 7848805            | 237                | 35         | 0.25   | 3         | 85        | 1      | 2.5        | 16C        | 9.3        | Outcro           |
| Aquila_E               | TNR013439              | 333845<br>333845  | 7848805            | 248                | 34         | 0.25   | 3<br>43   | 117       | 1      | 2.5        | 16C        | 10.5       | Outcro           |
| Aquila_U3<br>Aquila_E  | TNR013440<br>TNR013441 | 333845<br>333790  | 7848730<br>7848729 | 236<br>248         | 148<br>24  | 0.25   |           | 42<br>22  | 1      | 2.5<br>2.5 |            |            | Subcro<br>Subcro |
| Aquita_E<br>Aquita E   | TNR013441<br>TNR013442 | 333790            | 7848729            | 248                | 41         | 0.25   | 58<br>7   | 22        | 1      | 2.5        | 17         | 1.1        | Outcro           |
| Aquita_E<br>Aquita_E   | TNR013442<br>TNR013443 | 333773            | 7848717            | 252                | 34         | 0.25   | 5         | 18        | 1      | 2.5        | 17         | 1.1        | Outcro           |
| Aquita_E               | TNR013444              | 333772            | 7848717            | 252                | 16         | 0.20   | 4         | 32        | 4      | 2.5        | 17         | 2.2        | Outcro           |
| Aquila_E               | TNR013445              | 333772            | 7848718            | 252                | 24         | 0.25   | 7         | 29        | 1      | 2.5        | 17         | 3          | Outcro           |
| Aquila_E               | TNR013446              | 333771            | 7848719            | 252                | 43         | 0.25   | 6         | 34        | 1      | 2.5        | 17         | 4          | Outcro           |
| Aquila_E               | TNR013447              | 333757            | 7848724            | 249                | 13         | 0.70   | 6         | 149       | 3      | 2.5        |            |            | Outcro           |
| Aquila_F               | TNR013449              | 333693            | 7848753            | 228                | 3970       | 1.40   | 14        | 10        | 4      | 2.5        | 18         | 0.7        | Subcro           |
| Aquila_F               | TNR013450              | 333693            | 7848753            | 228                | 21000      | 6.20   | 5         | 39        | 16     | 2.5        | 18         | 1.4        | Subcro           |
| Aquila_F               | TNR013451              | 333692            | 7848753            | 228                | 670        | 4.40   | 3         | 69        | 14     | 7          | 18         | 2.6        | Subcro           |
| Aquila_F               | TNR013452              | 333690            | 7848753            | 228                | 468        | 4.20   | 2         | 57        | 14     | 9          | 18         | 3.8        | Subcro           |
| Aquila_F               | TNR013453              | 333689            | 7848753            | 232                | 537        | 7.00   | 3         | 48        | 17     | 10         | 18         | 5          | Subcro           |
| Aquila_F               | TNR013454              | 333689            | 7848745            | 241                | 1205       | 1.90   | 13        | 26        | 6      | 2.5        | 19         | 1          | Outcro           |
| Aquila_F               | TNR013455              | 333688            | 7848745            | 241                | 1540       | 0.25   | 17        | 13        | 1      | 2.5        | 19         | 2.2        | Outcro           |
| Aquila_F               | TNR013456              | 333687            | 7848745            | 243                | 923        | 0.25   | 6         | 6         | 1      | 2.5        | 19         | 3          | Outcro           |
|                        | TND0124E7              | 333646            | 7848716            | 252                | 20         | 0.25   | 10        | 7         | 1      | 2.5        |            | 1          | Outcro           |
| Aquila_U3<br>Aquila_U3 | TNR013457<br>TNR013459 | 333622            | 7848684            | 252                | 13         | 0.25   | 9         | 12        | 1      | 2.5        |            |            | Subcro           |



. .\_ Easting Northing Elevation

|   | Target                 | Sample ID              | Easting<br>MGAz54 | MGAz54             | Elevation<br>(mRL) | Cu ppm     | Ag ppm       | Co ppm   | As ppm   | Bi ppm | Sb ppm     | Channel    | Length (m) | Sample<br>Type     |
|---|------------------------|------------------------|-------------------|--------------------|--------------------|------------|--------------|----------|----------|--------|------------|------------|------------|--------------------|
|   | Aquila_U3              | TNR013462              | 333618            | 7848671            | 254                | 51         | 0.25         | 13       | 32       | 1      | 2.5        |            |            | Subcrop            |
| F | Aquila_U3              | TNR013463              | 333609            | 7848648            | 256                | 60         | 0.25         | 5        | 15       | 1      | 2.5        |            |            | Subcrop            |
| Ē | Aquila_U3              | TNR013464              | 333604            | 7848637            | 259                | 20         | 0.25         | 7        | 21       | 1      | 2.5        |            |            | Subcrop            |
| - | Aquila_U3              | TNR013465              | 333555            | 7848639            | 273                | 12         | 0.25         | 12       | 20       | 1      | 2.5        |            |            | Subcrop            |
| Γ | Aquila_U3              | TNR013466              | 333562            | 7848626            | 272                | 4          | 0.25         | 4        | 2.5      | 1      | 2.5        |            |            | Subcrop            |
| Γ | Aquila_U3              | TNR013467              | 333572            | 7848609            | 267                | 32         | 0.25         | 10       | 7        | 1      | 2.5        |            |            | Subcrop            |
|   | Aquila_U3              | TNR013468              | 333673            | 7848680            | 254                | 69         | 0.25         | 4        | 13       | 14     | 2.5        |            |            | Outcrop            |
|   | Aquila_U2              | TNR013469              | 333838            | 7849147            | 194                | 15         | 0.25         | 10       | 17       | 1      | 2.5        |            |            | Outcrop            |
|   | Aquila_D               | TNR013471              | 333770            | 7848998            | 218                | 1355       | 0.25         | 96       | 51       | 2      | 2.5        | 20         | 0.5        | Outcrop            |
| - | Aquila_D               | TNR013472              | 333769            | 7848998            | 218                | 1420       | 0.80         | 24       | 47       | 1      | 2.5        | 20         | 1          | Outcrop            |
| - | Aquila_D               | TNR013473              | 333769            | 7848997            | 218                | 251        | 1.00         | 1        | 84       | 6      | 2.5        | 20         | 1.5        | Outcrop            |
| - | Aquila_D<br>Aquila_D   | TNR013474<br>TNR013475 | 333756<br>333755  | 7848986<br>7848986 | 227<br>227         | 49<br>949  | 0.25         | 2<br>5   | 10<br>26 | 1      | 2.5<br>2.5 | 21A<br>21A | 1.1<br>2   | Outcrop<br>Outcrop |
| ŀ | Aquila_D<br>Aquila_D   | TNR013475<br>TNR013476 | 333755            | 7848987            | 227                | 1949       | 0.25         | 1        | 2.5      | 1      | 2.5        | 21A<br>21A | 3.2        | Outcrop            |
| ŀ | Aquita_D<br>Aquita_D   | TNR013470<br>TNR013477 | 333754            | 7848987            | 227                | 293        | 0.25         | 5        | 2.5      | 1      | 2.5        | 21A<br>21A | 4.2        | Outcrop            |
| F | Aquila_D               | TNR013478              | 333753            | 7848988            | 227                | 2500       | 0.25         | 6        | 7        | 1      | 2.5        | 21A        | 5          | Outcrop            |
|   | Aquila_D               | TNR013479              | 333752            | 7848989            | 227                | 912        | 0.25         | 6        | 22       | 2      | 6          | 21A        | 6.2        | Outcrop            |
|   | Aquila_D               | TNR013480              | 333751            | 7848989            | 227                | 408        | 0.25         | 6        | 11       | 1      | 2.5        | 21A        | 7          | Outcrop            |
| Γ | Aquila_D               | TNR013481              | 333751            | 7848990            | 227                | 42         | 0.25         | 8        | 8        | 1      | 2.5        | 21A        | 8          | Outcrop            |
|   | Aquila_D               | TNR013483              | 333761            | 7848977            | 227                | 196        | 0.25         | 6        | 2.5      | 1      | 2.5        | 21B        | 1.2        | Outcrop            |
|   | Aquila_D               | TNR013484              | 333760            | 7848977            | 227                | 99         | 0.25         | 12       | 8        | 1      | 2.5        | 21B        | 2.4        | Outcrop            |
|   | Aquila_D               | TNR013485              | 333759            | 7848978            | 227                | 8680       | <u>3.4</u> 0 | 62       | 184      | 10     | 14         | 21B        | 3.6        | Outcrop            |
| Ļ | Aquila_D               | TNR013486              | 333758            | 7848979            | 227                | 273        | 0.25         | 10       | 15       | 1      | 2.5        | 21B        | 4.8        | Outcrop            |
| ŀ | Aquila_D               | TNR013487              | 333757            | 7848980            | 227                | 429        | 0.25         | 11       | 14       | 2      | 2.5        | 21B        | 6          | Outcrop            |
| ŀ | Aquila_D               | TNR013488              | 333756            | 7848980            | 227                | 44         | 0.25         | 7        | 6        | 1      | 2.5        | 21B        | 6.7        | Outcrop            |
| - | Aquila_D               | TNR013489<br>TNR013491 | 333756<br>333755  | 7848980            | 227                | 30         | 0.25         | 8        | 2.5      | 1      | 2.5        | 21B        | 7.4        | Outcrop            |
| - | Aquila_D<br>Aquila_D   | TNR013491<br>TNR013492 | 333755            | 7848981<br>7848982 | 227<br>227         | 28<br>118  | 0.25         | 8        | 10<br>6  | 1      | 2.5<br>2.5 | 21B<br>21B | 8.6<br>9.8 | Outcrop<br>Outcrop |
| ŀ | Aquita_D<br>Aquita_D   | TNR013492<br>TNR013493 | 333753            | 7848982            | 227                | 831        | 0.25         | 10       | 10       | 1      | 2.5        | 21B<br>21B | 9.8<br>11  | Outcrop            |
| - | Aquita_D<br>Aquita_D   | TNR013494              | 333753            | 7848983            | 231                | 231        | 0.25         | 9        | 8        | 1      | 2.5        | 21B<br>21B | 11         | Outcrop            |
| F | Aquila_D               | TNR013495              | 333744            | 7848979            | 241                | 32         | 0.25         | 5        | 5        | 1      | 2.5        | 210        | 1.1        | Outcrop            |
| F | Aquila_D               | TNR013496              | 333745            | 7848978            | 241                | 43         | 0.25         | 4        | 5        | 1      | 2.5        | 22         | 2          | Outcrop            |
|   | Aquila_D               | TNR013497              | 333746            | 7848978            | 241                | 35         | 0.25         | 5        | 7        | 1      | 2.5        | 22         | 2.8        | Outcrop            |
| Γ | Aquila_D               | TNR013498              | 333747            | 7848977            | 241                | 537        | 0.25         | 3        | 8        | 1      | 2.5        | 22         | 3.8        | Outcrop            |
|   | Aquila_D               | TNR013499              | 333748            | 7848976            | 241                | 410        | 0.25         | 3        | 5        | 1      | 2.5        | 22         | 5          | Outcrop            |
|   | Aquila_D               | TNR013501              | 333771            | 7848973            | 231                | 143        | 0.25         | 6        | 6        | 1      | 2.5        | 23         | 1          | Outcrop            |
|   | Aquila_D               | TNR013502              | 333770            | 7848973            | 231                | 81         | 0.25         | 15       | 6        | 1      | 2.5        | 23         | 1.8        | Outcrop            |
| - | Aquila_D               | TNR013503              | 333770            | 7848974            | 231                | 90         | 0.25         | 14       | 10       | 1      | 2.5        | 23         | 2.7        | Outcrop            |
| ŀ | Aquila_D               | TNR013504              | 333769            | 7848974            | 231                | 47         | 0.25         | 9        | 2.5      | 1      | 2.5        | 23         | 3.6        | Outcrop            |
| - | Aquila_D               | TNR013505              | 333768            | 7848975            | 231                | 487        | 0.25         | 18<br>14 | 9        | 1      | 2.5        | 23         | 4.5        | Outcrop            |
| ŀ | Aquila_D<br>Aquila_D   | TNR013506<br>TNR013507 | 333767<br>333766  | 7848975<br>7848976 | 231<br>209         | 1735<br>86 | 0.5          | 14       | 12<br>5  | 1      | 2.5<br>2.5 | 23<br>23   | 5.7<br>6.7 | Outcrop<br>Outcrop |
| Ŀ | Aquila_D               | TNR013509              | 333783            | 7848997            | 209                | 17         | 0.25         | 4        | 9        | 1      | 2.5        | 20         | 0.6        | Outcrop            |
|   | Aquila_D               | TNR013510              | 333782            | 7848998            | 209                | 20         | 0.25         | 5        | 18       | 1      | 2.5        | 24         | 1.8        | Outcrop            |
|   | Aquila_D               | TNR013511              | 333781            | 7848998            | 209                | 25         | 0.25         | 9        | 29       | 1      | 2.5        | 24         | 3          | Outcrop            |
|   | Aquila_D               | TNR013512              | 333780            | 7848999            | 209                | 21         | 0.25         | 4        | 17       | 1      | 2.5        | 24         | 3.6        | Outcrop            |
|   | Aquila_D               | TNR013513              | 333779            | 7848999            | 230                | 18         | 0.25         | 2        | 5        | 1      | 2.5        | 24         | 4.6        | Outcrop            |
|   | Aquila_D               | TNR013514              | 333732            | 7848955            | 230                | 30         | 0.25         | 7        | 5        | 1      | 2.5        | 25         | 0.5        | Outcrop            |
|   | Aquila_D               | TNR013515              | 333732            | 7848955            | 230                | 64         | 0.25         | 5        | 9        | 1      | 2.5        | 25         | 0.9        | Outcrop            |
| - | Aquila_D               | TNR013516              | 333732            | 7848955            | 230                | 49         | 0.25         | 5        | 7        | 1      | 2.5        | 25         | 1.3        | Outcrop            |
| ╞ | Aquila_D<br>Aquila D   | TNR013518<br>TNR013519 | 333733<br>333736  | 7848955<br>7848955 | 230<br>230         | 15<br>41   | 0.25         | 8        | 2.5<br>5 | 1      | 2.5<br>2.5 | 25<br>25   | 1.8<br>2.3 | Outcrop<br>Outcrop |
| ┢ | Aquita_D<br>Aquita_D   | TNR013519<br>TNR013520 | 333736            | 7848955            | 230                | 41<br>13   | 0.5          | 8        | 9        | 1      | 2.5        | 25<br>25   | 2.3        | Outcrop            |
| ŀ | Aquila_D<br>Aquila_D   | TNR013520<br>TNR013521 | 333737            | 7848954            | 230                | 13         | 0.25         | 5        | 6        | 1      | 2.5        | 25         | 2.6        | Outcrop            |
| ŀ | Aquila D               | TNR013522              | 333738            | 7848954            | 230                | 10         | 0.25         | 1        | 7        | 1      | 2.5        | 25         | 4          | Outcrop            |
| F | Aquila_D               | TNR013523              | 333739            | 7848953            | 230                | 8          | 0.25         | 1        | 5        | 1      | 2.5        | 25         | 5          | Outcrop            |
| ľ | Aquila_D               | TNR013524              | 333740            | 7848953            | 230                | 6          | 0.25         | 1        | 8        | 2      | 2.5        | 25         | 5.8        | Outcrop            |
|   | Aquila_D               | TNR013525              | 333741            | 7848953            | 230                | 7          | 0.25         | 1        | 8        | 1      | 2.5        | 25         | 6.5        | Outcrop            |
| Ľ | Aquila_D               | TNR013526              | 333742            | 7848952            | 230                | 8          | 0.25         | 0.5      | 7        | 1      | 2.5        | 25         | 7.7        | Outcrop            |
| Ĺ | Aquila_D               | TNR013527              | 333743            | 7848951            | 229                | 4          | 0.25         | 1        | 5        | 1      | 2.5        | 25         | 8.6        | Outcrop            |
| Ļ | Aquila_U3              | TNR013528              | 333744            | 7848795            | 233                | 56         | 0.25         | 10       | 25       | 2      | 2.5        | 26         | 0.7        | Outcrop            |
| ŀ | Aquila_U3              | TNR013529              | 333743            | 7848795            | 233                | 77         | 0.25         | 15       | 31       | 1      | 2.5        | 26         | 1.4        | Outcrop            |
| ŀ | Aquila_U3              | TNR013530              | 333813            | 7848912            | 220                | 6          | 0.25         | 30       | 75       | 1      | 6          | 27         | 0.7        | Outcrop            |
| ŀ | Aquila_U3              | TNR013531              | 333813            | 7848912            | 220                | 33         | 0.25         | 14       | 35       | 1      | 2.5        | 27         | 1.4        | Outcrop            |
| ŀ | Aquila_U3<br>Aquila_U3 | TNR013533<br>TNR013534 | 333744<br>333744  | 7848795<br>7848794 | 233<br>233         | 31<br>22   | 0.25         | 1        | 31<br>22 | 2      | 2.5<br>2.5 | 28<br>28   | 1 2        | Outcrop<br>Outcrop |
| ŀ | Aquila_U3<br>Aquila_U3 | TNR013534<br>TNR013535 | 333744            | 7848794            | 233                | 37         | 0.25         | 2        | 47       | 1      | 2.5        | 28         | 3.2        | Outcrop            |
| ŀ | Aquita_U3              | TNR013535<br>TNR013536 | 333743            | 7848792            | 233                | 15         | 0.25         | 1        | 47       | 1      | 2.5        | 28         | 3.2<br>4   | Outcrop            |
| ŀ | Aquila_U3              | TNR013537              | 333743            | 7848791            | 233                | 20         | 0.25         | 1        | 66       | 2      | 2.5        | 28         | 5          | Outcrop            |
| ľ | Aquila_U3              | TNR013538              | 333742            | 7848790            | 233                | 17         | 0.25         | 2        | 52       | 3      | 2.5        | 28         | 6          | Outcrop            |
| ľ | Aquila_B               | TNR013539              | 334082            | 7849643            | 255                | 124        | 1.3          | 11       | 76       | 8      | 17         |            |            | Outcrop            |
|   |                        |                        |                   |                    |                    |            |              | -        | 70       | 10     | 45         |            |            | Outer an           |
| L | Aquila_B               | TNR013540              | 334093            | 7849619            | 257                | 41         | 2            | 9        | 73       | 16     | 15         | 29         | 0.9        | Outcrop            |

.... Sample



| Target                | Sample ID              | Easting          | Northing           | Elevation  | Cuppm       | Aganam            | Conn     | Acon     | Dinnm  | Shaam      | Channel  | longth (m) | Sample             |
|-----------------------|------------------------|------------------|--------------------|------------|-------------|-------------------|----------|----------|--------|------------|----------|------------|--------------------|
| Target                | Sample ID              | MGAz54           | MGAz54             | (mRL)      | Cu ppm      | Ag ppm            | Co ppm   | As ppm   | Bi ppm | Su bhu     | Channet  | Length (m) | Туре               |
| Aquila_B              | TNR013543              | 334095           | 7849618            | 257        | 47          | 2. <mark>8</mark> | 4        | 30       | 4      | 8          | 29       | 2.5        | Outcrop            |
| Aquila_A              | TNR013544              | 334152           | 7849683            | 276        | 269         | 11                | 6        | 851      | 53     | 68         | 30       | 0.9        | Outcrop            |
| Aquila_A              | TNR013546              | 334152           | 7849683            | 276        | 581         | 12.7              | 8        | 1520     | 62     | 55         | 30       | 1.5        | Outcrop            |
| Aquila_A              | TNR013547              | 334151           | 7849683            | 276        | 398         | 10.1              | 10       | 1110     | 56     | 36         | 30       | 2.2        | Outcrop            |
| Aquila_A              | TNR013548              | 334150           | 7849683            | 276        | 201         | 2.4               | 2        | 396      | 19     | 31         | 30       | 3.4        | Outcrop            |
| Aquila_A              | TNR013549              | 334149           | 7849683            | 276        | 51          | 0.7               | 2        | 291      | 5      | 16         | 30       | 4.2        | Outcrop            |
| Aquila_A              | TNR013550              | 334170           | 7849691            | 289        | 284         | 11.6              | 12       | 235      | 45     | 63         | 31       | 1          | Outcrop            |
| Aquila_A              | TNR013551              | 334171           | 7849691            | 289        | 344         | 10.2              | 12       | 220      | 48     | 51         | 31       | 1.8        | Outcrop            |
| Aquila_A              | TNR013553              | 334172           | 7849691            | 287        | <u>3</u> 39 | 6.4               | 30       | 313      | 34     | 66         | 31       | 3          | Outcrop            |
| Aquila_U2             | TNR013554              | 334111           | 7849360            | 245        | 71          | 0.25              | 3        | 74       | 2      | 5          | 32       | 1.2        | Outcrop            |
| Aquila_U2             | TNR013555              | 334112           | 7849360            | 245        | 95          | 0.25              | 5        | 102      | 2      | 12         | 32       | 2.2        | Outcrop            |
| Aquila_U2             | TNR013556              | 334075           | 7849359            | 237        | 281         | 0.8               | 19       | 191      | 11     | 9          | 33       | 1          | Outcrop            |
| Aquila_U2             | TNR013557<br>TNR013558 | 334076<br>333833 | 7849358<br>7848966 | 237        | 223<br>1255 | 0.7               | 33       | 253      | 12     | 13         | 33<br>34 | 2.2        | Outcrop            |
| Aquila_D<br>Aquila_D  | TNR013559              | 333833           | 7848966            | 209        | 2300        | 0.25              | 9<br>5   | 13<br>57 | 1      | 2.5<br>2.5 | 34       | 0.5        | Outcrop<br>Outcrop |
|                       |                        |                  |                    | 209        |             | -                 | -        |          |        |            |          |            |                    |
| Aquila_D              | TNR013560<br>TNR013561 | 333832<br>333833 | 7848966<br>7848963 | 209<br>209 | 2660        | 0.25              | 10<br>28 | 16<br>74 | 1      | 2.5<br>6   | 34       | 1.8        | Outcrop            |
| Aquila_D              | TNR013561<br>TNR013563 | 333811           | 7848795            | 209        | 1755<br>15  | 1.6               | 20       | 48       | 3      | 7          | 35       | 0.0        | Outcrop            |
| Aquila_E              | TNR013563              | 333811           | 7848795            | 225        | 15          | 3.4               | 2        | 40<br>54 | 8      | 32         | 35       | 0.9        | Outcrop<br>Outcrop |
| Aquila_E<br>Aquila_E  | TNR013565              | 333812           | 7848793            | 225        | 11          | 4                 | 1        | 57       | 7      | 27         | 35       | 2.8        | Outcrop            |
| Aquita_E              | TNR013566              | 333812           | 7848793            | 225        | 21          | 3.3               | 1        | 138      | 7      | 26         | 35       | 4          | Outcrop            |
| Aquita_L<br>Aquila_U3 | TNR013568              | 333663           | 7848793            | 225        | 45          | 0.25              | 4        | 43       | 1      | 2.5        | 36       | 1.2        | Outcrop            |
| Aquila_U3             | TNR013569              | 333662           | 7848816            | 226        | 45<br>15    | 0.25              | 2        | 70       | 1      | 5          | 36       | 2.4        | Outcrop            |
| Aquila_U3             | TNR013570              | 333661           | 7848816            | 220        | 72          | 0.25              | 8        | 69       | 2      | 2.5        | 36       | 2.4        | Outcrop            |
| Aquila_U3             | TNR013571              | 333565           | 7848715            | 250        | 37          | 5.2               | 10       | 107      | 27     | 75         | 00       | 2.0        | Subcrop            |
| Aquila_U3             | TNR013573              | 333735           | 7848719            | 230        | 10          | 0.25              | 10       | 6        | 1      | 2.5        |          |            | Float              |
| Aquila_U3             | TNR013574              | 333708           | 7848706            | 248        | 13          | 0.25              | 12       | 42       | 1      | 2.5        |          |            | Outcrop            |
| Aquila U3             | TNR013575              | 333647           | 7848656            | 242        | 5           | 0.25              | 5        | 33       | 1      | 2.5        |          |            | Outcrop            |
| IvenaNorth_U3         | TNR013576              | 332062           | 7846980            | 265        | 6           | 0.25              | 3        | 6        | 1      | 2.5        |          |            | Outcrop            |
| IvenaNorth_U3         | TNR013577              | 332098           | 7847020            | 279        | 13          | 0.25              | 11       | 13       | 1      | 2.5        |          |            | Outcrop            |
| IvenaNorth_U3         | TNR013578              | 332141           | 7846952            | 278        | 5           | 0.25              | 2        | 2.5      | 1      | 2.5        |          |            | Subcrop            |
| IvenaNorth_U3         | TNR013579              | 332193           | 7846971            | 268        | 4           | 0.25              | 12       | 14       | 1      | 2.5        |          |            | Subcrop            |
| IvenaNorth U3         | TNR013581              | 332195           | 7846969            | 278        | 4           | 0.25              | 2        | 2.5      | 1      | 2.5        | 37       | 0.9        | Outcrop            |
| IvenaNorth_U3         | TNR013582              | 332194           | 7846968            | 278        | 6           | 0.25              | 3        | 6        | 1      | 2.5        | 37       | 2.1        | Outcrop            |
| IvenaNorth U3         | TNR013583              | 332193           | 7846967            | 278        | 6           | 0.25              | 4        | 7        | 1      | 2.5        | 37       | 3.3        | Outcrop            |
| IvenaNorth_U3         | TNR013584              | 332192           | 7846967            | 278        | 7           | 0.25              | 9        | 8        | 1      | 2.5        | 37       | 4.5        | Outcrop            |
| IvenaNorth_U3         | TNR013585              | 332191           | 7846966            | 278        | 7           | 0.25              | 11       | 17       | 1      | 2.5        | 37       | 5.7        | Outcrop            |
| IvenaNorth_U3         | TNR013586              | 332205           | 7846972            | 280        | 4           | 0.25              | 3        | 2.5      | 2      | 2.5        | 38       | 0.9        | Outcrop            |
| IvenaNorth_U3         | TNR013587              | 332206           | 7846972            | 280        | 4           | 0.25              | 1        | 2.5      | 1      | 2.5        | 38       | 1.9        | Outcrop            |
| IvenaNorth_U3         | TNR013588              | 332206           | 7846973            | 280        | 4           | 0.25              | 2        | 2.5      | 1      | 2.5        | 38       | 3          | Outcrop            |
| IvenaNorth_U3         | TNR013589              | 332207           | 7846973            | 280        | 4           | 0.25              | 1        | 2.5      | 1      | 2.5        | 38       | 3.8        | Outcrop            |
| IvenaNorth_U3         | TNR013590              | 332208           | 7846974            | 282        | 5           | 0.25              | 2        | 2.5      | 1      | 2.5        | 38       | 4.6        | Outcrop            |
| IvenaNorth_U3         | TNR013592              | 332210           | 7846979            | 287        | 11          | 0.25              | 2        | 2.5      | 1      | 2.5        | 39       | 0.7        | Subcrop            |
| IvenaNorth_U3         | TNR013593              | 332211           | 7846979            | 287        | 16          | 0.25              | 3        | 2.5      | 1      | 2.5        | 39       | 1.4        | Subcrop            |
| IvenaNorth_U3         | TNR013594              | 332212           | 7846979            | 287        | 27          | 0.25              | 3        | 2.5      | 1      | 2.5        | 39       | 2.4        | Subcrop            |
| IvenaNorth_U3         | TNR013595              | 332213           | 7846980            | 287        | 22          | 0.25              | 2        | 2.5      | 1      | 2.5        | 39       | 3.2        | Subcrop            |
| IvenaNorth_U3         | TNR013596              | 332214           | 7846980            | 288        | 12          | 0.25              | 4        | 5        | 1      | 2.5        | 39       | 4          | Subcrop            |
| IvenaNorth_U3         | TNR013597              | 332221           | 7846971            | 290        | 15          | 0.25              | 5        | 32       | 1      | 2.5        | 40       | 1          | Outcrop            |
| IvenaNorth_U3         | TNR013598              | 332222           | 7846971            | 290        | 8           | 0.25              | 2        | 5        | 1      | 2.5        | 40       | 2.1        | Outcrop            |
| IvenaNorth_U3         | TNR013600              | 332266           | 7847006            | 300        | 38          | 0.25              | 12       | 12       | 1      | 2.5        | 41       | 1          | Subcrop            |
|                       |                        | 332267           | 7847006            | 300        | 21          | 0.25              | 3        | 2.5      | 1      | 2.5        | 41       | 2          | Subcrop            |
| IvenaNorth_B          | TNR013602              | 332339           | 7847025            | 285        | 192         | 1.4               | 4        | 326      | 33     | 19         |          |            | Subcrop            |
| IvenaNorth_B          | TNR013603              | 332440           | 7847070            | 292        | <u>3</u> 36 | 6.7               | 4        | 629      | 13     | 44         |          |            | Subcrop            |
| IvenaNorth_B          | TNR013604              | 332489           | 7847105            | 303        | 51          | 1.1               | 1        | 437      | 37     | 23         |          |            | Subcrop            |
| IvenaNorth_B          | TNR013605              | 332544           | 7847121            | 296        | 116         | 0.5               | 3        | 943      | 6      | 11         |          |            | Subcrop            |
| IvenaNorth_U2         |                        | 332693           | 7847256            | 271        | 16          | 0.25              | 3        | 9        | 1      | 2.5        |          |            | Subcrop            |
| IvenaNorth_U2         |                        | 332698           | 7847237            | 271        | 4           | 0.25              | 1        | 6        | 1      | 2.5        |          |            | Subcrop            |
| IvenaNorth_U2         | TNR013609              | 332692           | 7847218            | 281        | 9           | 0.25              | 1        | 5        | 6      | 2.5        | 42       | 1.2        | Outcrop            |
| IvenaNorth_U2         |                        | 332693           | 7847217            | 281        | 5           | 0.25              | 1        | 2.5      | 1      | 2.5        | 42       | 2.4        | Outcrop            |
| IvenaNorth_B          | TNR013611              | 332666           | 7847128            | 291        | 8           | 0.25              | 3        | 6        | 1      | 2.5        |          |            | Subcrop            |
| IvenaNorth_A          | TNR013612              | 332764           | 7847417            | 278        | 32          | 0.25              | 1        | 21       | 1      | 2.5        |          |            | Outcrop            |
| IvenaNorth_A          | TNR013613              | 332747           | 7847394            | 274        | 1980        | 0.25              | 7        | 47       | 1      | 2.5        |          |            | Outcrop            |
| IvenaNorth_A          | TNR013614              | 332746           | 7847394            | 274        | 13800       | 0.25              | 56       | 255      | 1      | 2.5        |          |            | Outcrop            |
| IvenaNorth_A          | TNR013615              | 332712           | 7847354            | 294        | 301         | 1.7               | 6        | 422      | 34     | 73         |          |            | Outcrop            |
| IvenaNorth_A          | TNR013617              | 332649           | 7847249            | 305        | 70          | 0.25              | 8        | 72       | 1      | 2.5        |          |            | Subcrop            |
| IvenaNorth_A          | TNR013618              | 332568           | 7847213            | 307        | 32          | 0.25              | 4        | 62       | 1      | 5          |          |            | Subcrop            |
| IvenaNorth_A          | TNR013619              | 332588           | 7847230            | 302        | 287         | 1.5               | 13       | 486      | 19     | 103        |          |            | Outcrop            |
| IvenaNorth_A          | TNR013620              | 332579           | 7847236            | 302        | 22          | 0.25              | 2        | 30       | 1      | 5          | 17       |            | Outcrop            |
| IvenaNorth_A          | TNR013621              | 332572           | 7847235            | 299        | 28          | 0.25              | 2        | 18       | 1      | 2.5        | 43       | 1.1        | Outcrop            |
| IvenaNorth_A          |                        |                  |                    |            |             |                   |          |          |        |            |          |            |                    |
|                       | TNR013622<br>TNR013623 | 332573<br>332612 | 7847235<br>7847244 | 299<br>315 | 20<br>27    | 0.25<br>0.25      | 1 4      | 9<br>80  | 1 4    | 2.5        | 43       | 2.3        | Outcrop<br>Outcrop |



Sample ID

| Internation A. International Science 3.         101         101         102         17         1860         12         2.0         0.0         12         0.0         0.0         12         0.0         0.0         0.0         12         0.0         0.0         0.0         12         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Target        | Sample ID | MGAz54 | MGAz54  | (mRL) | Cu ppm | Ag ppm | Co ppm | As ppm | Bi ppm | Sb ppm | Channel | Length (m) | Туре    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|--------|---------|-------|--------|--------|--------|--------|--------|--------|---------|------------|---------|
| InterNeth A         INVELSES         S2050         7.92715         S30         51         D.25         I         1         2.5         Outcrop           IvenNorth A         INVEDS283         S2070         7.87473         S30         0.53         3         10         1         2.5         Outcrop           IvenNorth A         INVEDS38         S2070         7.87473         S30         0.55         3         10         1         2.5         Outcrop           IvenNorth A         INVEDS38         S2070         7.874740         S00         6.6         6.7         2         2.5         IVENDS40           IvenNorth A         INVEDS38         S2000         7.87476         S30         6.8         6.7         1         2.5         IVENDS40         S30         0.55         0.24         6.8         6.8         6.0         Outcrop         Outcrop           IvenNorthUI         INVEDS38         S3000         7.87775         S3         5         0.25         4         7.1         2.5         Outcrop           IvenNorthUI         INVEDS38         S3000         7.87775         S3         0.25         8         2.5         Outcrop           IvenNorthUI         INVEDS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IvenaNorth_A  | TNR013625 |        |         |       | 116    | 8.2    | 17     | 596    | 23     | 73     |         |            | 1       |
| InterName         InterName <t< td=""><td>IvenaNorth_A</td><td>TNR013627</td><td>332592</td><td>7847218</td><td>317</td><td>346</td><td>0.25</td><td>99</td><td>12</td><td>1</td><td>2.5</td><td></td><td></td><td>Subcrop</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                | IvenaNorth_A  | TNR013627 | 332592 | 7847218 | 317   | 346    | 0.25   | 99     | 12     | 1      | 2.5    |         |            | Subcrop |
| Immentang A         THR013600         322722         7074/20         311         3100         1         2.5         0         Outcrop           Immentang A         THR013601         322873         7074/20         311         3100         0.28         860         96         40         Outcrop           Immentang A         THR013803         322873         7074/20         311         840         36         60         7         2         2.5         Stature           Immentang A         THR013803         322873         707476         326         8         0.25         6         1         2.5         Outcrop           Immentang A         THR013803         33287         707476         326         3         0.25         5         6         1         2.5         Outcrop           Immentang A         THR013803         332848         724761         326         2         2.5         1         2.5         Outcrop           Immentang A         THR013803         332848         724771         33         3.0         2.5         1         2.5         Outcrop           Immentang A         THR01384         32289         747772         31         3.0         2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IvenaNorth_A  | TNR013628 | 332510 | 7847155 | 330   | 51     | 0.25   | 1      | 9      | 1      | 2.5    |         |            | Outcrop |
| International, A. TAROISSCI 322700         7047480         301         1100         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |        |         |       | -      |        | -      | -      |        |        |         |            | Outcrop |
| Internation A         THR015000         202707         70/7400         98         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |           |        |         |       |        |        | -      |        |        |        |         |            |         |
| Internation A. Traffoldson         208802         784787         217         78         64         8         677         2         2.5         Success           brenationti, UI TRADISMS         328275         784768         30         8         1         2.5         0         Outcrop           brenationti, UI TRADISMS         332266         784768         30         0.25         4         1         2.5         0         Outcrop           brenationti, UI TRADISMS         332466         784783         33         5         0.25         4         1         2.5         0         Outcrop           brenationti, UI TRADISMS         332466         784783         33         1<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |           |        |         |       |        |        |        | -      |        | -      |         |            |         |
| InterNetri, A. 17803563         32370.3         707763         30.4         90.7         30.7         70.7         20.4         30.8         90.7         30.7         70.7         20.8         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         70.7         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |           |        |         |       |        |        |        | 50     |        |        |         |            |         |
| ImamAnchu LI TANDISSIG         322975         74768         306         38         0.25         1         8         1         2.5         ImamAnchu LI TANDISSIG         322975         747676         33         0.25         5         6         1         2.5         ImamAnchu LI TANDISSIG         322866         747635         33         1         1         2.5         ImamAnchu LI TANDISSIG         32868         747635         33         1         2.5         ImamAnchu LI TANDISSIG         322864         747478         333         1         0.25         2         1         2.5         ImatAnchu LI TANDISSIG         32284         747477         231         1         0.25         9         1         2.5         ImatAnchu LI TANDISSIG         32287         7777         1         2.5         ImatAnchu LI TANDISSIG         322887         747478         233         0.25         1         2.5         ImatAnchu LI TANDISSIG         322887         747478         233         0.25         1         2.5         ImatAnchu LI TANDISSIG         322887         74773         21         3         0.25         1         2.5         ImatAnchu LI TANDISSIG         32287         74773         21         2.5         1         2.5         1         2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Intentoriu II         INN01368         S2512         784705         336         4         0.25         5         6         1         2.5         Outcrop           heneNortu II         INN01368         32848         784784         331         5         0.25         4         1         2.5         III         2.5         IIII         0.00000           heneNortu II         INN01368         32848         784782         331         0.25         2         8         1         2.5         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |           |        |         |       |        |        | -      |        |        |        |         |            |         |
| ImenNorth, UI         INN01388         323246         7847561         338         4         0.25         4         11         2         2.5         Subcrop           henNorth, UI         INN01389         322468         7847562         335         5         0.25         2         2.5         1         2.5         Untrop           henNorth, UI         INN01349         322461         784752         304         3         0.25         2         8         1         2.5         Untrop           henNorth, UI         INN01348         32284         78         1         2.5         Untrop           henNorth, UI         INN01346         32287         784773         231         3         0.25         7         1         2.5         Untrop           henNorth, UI         INN01348         323687         784777         231         3         0.25         1         2.5         Untrop           henNorth, UI         INN01348         323687         784757         231         3         0.25         1         2.5         Untrop           henNorth, UI         INN01348         32367         784757         280         9         0.25         1         2.5         4 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Immannen, U.T. INN01549         33264         784782         335         5         0.25         2         2.5         1         2.5         Outcrop           NemAnnen, U.T. INN01549         33264         784782         333         13         0.25         2         8         12         2.5         Outcrop           NemAnnen, U.T. INN01549         33267         784778         231         3         0.25         9         15         1         2.5         Outcrop           NemAnnen, U.T. INN01549         33269         784777         231         3         0.25         7         1         2.5         Outcrop           NemAnnen, U.T. INN01549         33269         784777         231         3         0.25         1         2.5         Outcrop           NemAnnen, U.T. INN01549         33267         784787         238         4         0.25         1         2.5         Outcrop           NemAnnen, U.T. INN01549         33267         784787         230         9         0.25         1         2.5         Outcrop           NemAnnen, M.T. INN01549         33267         784742         260         9         0.25         1         2.5         4         4.5         Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IvenaNorth_U1 | TNR013638 | 332496 | 7847651 | 328   | 4      | 0.25   | 4      | 11     | 2      | 2.5    |         |            | Subcrop |
| Immembru II, INN01564         32364         784782         304         3         0.25         2         8         1         2.5         Dutrop           WennNorth, UI, INN01564         323764         7847787         283         13         0.25         8         13         2.5         Dutrop           WennNorth, UI, INN01564         3277877         281         13         0.25         7         7         1         2.5         Dutrop           WennNorth, UI, INN01564         327697         241         2         0.25         8         2.5         I         2.5         Dutrop           WennNorth, UI, INN01564         32686         7847767         241         2         0.25         1         2.5         Dutrop           WennNorth, UI, INN01564         32677         784764         20         0         0.25         8         1         2.5         Dutrop           WennNorth, UI, INN01564         32677         784762         20         0         0.25         13         30         1         2.5         Dutrop           WennNorth, A. INN01565         32776         784762         20         0         2.5         1         2.5         44         0.5         Dutrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IvenaNorth_U1 | TNR013639 | 332485 | 7847634 | 331   | 5      | 0.25   | 4      | 7      | 1      | 2.5    |         |            | Outcrop |
| Nemahorti, U.I. INNEJSA         3284         79         30         31         0.25         8         25         1         2.5         Ductrog           Nemahorti, U.I. INNEJSA         30291         78778         2211         31         0.25         13         16         2.5          Ductrog           Nemahorti, U.I. INNEJSA         30290         78778         2211         3         0.25         1         2.5          Ductrog           Nemahorti, U.I. INNEJSA         30290         78778         2314         0.25         1         2.5          Ductrog           Nemahorti, U.I. INNEJSA         30290         78778         241         2         0.25         1         2.5          Ductrog           Nemahorti, U.I. INNEJSA         30297         787747         240         12         2.5         4         0.5         Ductrog           Nemahorti, J.I. INNEJSA         30276         787472         220         12         2.5         44         0.5         Ductrog           Nemahorti, J.I. INNEJSA         30276         787472         221         38         1         2.5         44         0.5         Ductrog           Nemahorti, A.I. INNEJS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |           |        |         |       |        |        |        |        | 1      | -      |         |            | Outcrop |
| Immanuful         TINN01366         32727         2473         13         0.25         9         15         1         2.5         Duttorp           hemannuful         TINN01366         332790         747773         2211         3         0.25         7         7         1         2.5         1         2.5         1         0.25         1         2.5         1         2.5         1         0.25         1         0.25         1         2.5         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1         0.25         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |        |         |       |        |        | -      |        |        |        |         |            |         |
| Invensionti, UI, INR01366, 332778         PART27         P31         3         0.25         13         16         2         2.5         Impact Number | -             |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Intensituti U.I. INR01368         32280         7         7         1         2.5         Untrop           bernahrutti U.I. INR01364         32268         7         7         1         2.5         1         2.5         1         2.5         1         2.5         1         2.5         1         2.5         1         2.5         1         2.5         1         2.5         1         2.5         1         2.5         1         5.0         1         2.5         1         2.5         1         5.0         1         2.5         1         1.5         3.0         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -             |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Tenn Num, UI, THR01364         33288         78/167         238         4         0.25         1         2.5         I         0.11           Wenn Noth, UI, THR01364         33271         78/4068         246         3         0.25         1         2.5         I         2.5         Subcrop           Wenn Noth, UI, THR01364         33271         78/4068         246         3         0.25         1         2.5         I         Duration           Wenn Noth, UI, THR01365         33273         78/4767         240         1.5         2.5         1         2.5         44         0.5         Outcrop           Wenn North, JI, THR01365         32756         78/4722         261         1.86         0.25         1.8         3.8         1         2.5         44         0.5         Outcrop           Wenn North, JI, THR01365         32757         78/422         261         1.05         0.25         1.1         2.5         44         4.5         Outcrop           Wenn North, JI, THR01366         32757         78/422         261         1.05         0.25         1.1         2.5         44         4.5         Outcrop           Wenn North, JI, THR01366         33277         78/4722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Immanutu UI         TMR03884         33288         7847697         241         2         0.25         1         2.5         I         2.5         I         2.5         I         Dubtrop           WennMorth UI         TMR03863         33265         784715         249         12         0.25         15         26         1         2.5         Uburdo           WenaNorth, UI         TMR03863         332754         7847422         261         1865         0.25         15         25         1         2.5         44         0.5         Outcrop           WenaNorth, UI         TMR03863         32756         7847422         261         1860         0.25         18         33         1         2.5         44         0.5         Outcrop           WenaNorth, A         TMR03865         32757         7847422         261         105         0.25         11         12         2.5         44         4.5         Outcrop           WenaNorth, A         TMR03865         32767         7847422         281         986         0.25         12         15         1.2         5         44         7.7         Outcrop           WenaNorth, A         TMR038683         333867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Immantuli         Immail         Imma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Impart         TMR013862         332679         PAPT547         250         9         0.25         17         20         3         2.5         Imparts         Subcord           IvenaNorth A         TMR013853         332756         7847422         261         1865         0.25         1         2.5         14         0.5         0.1000           IvenaNorth A         TMR013655         332756         7847422         261         2260         0.25         1         2.5         44         0.25         0.1000         1         2.5         44         3.5         Outcrop           IvenaNorth A         TMR013665         332767         7447422         261         130         0.25         11         12         2.5         44         4.5         Outcrop           IvenaNorth A         TMR013663         332760         7847422         261         130         0.25         1.8         2.2         1         2.5         44         6.7         Outcrop           Aputa U3         TMR013663         335276         7847422         263         986         0.25         1.8         2.5         Coutcrop         2.5         Coutcrop         Aputa U3         TMR013663         333715         7848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IvenaNorth_U1 | TNR013649 | 332671 | 7847668 | 246   | 3      | 0.25   | 8      |        | 1      | 2.5    |         |            | Subcrop |
| IvenaNorth A         THR013851         32274         2947422         261         1955         0.25         1         2.5         44         0.5         Outrop           IvenaNorth A         THR013851         332757         7847422         261         5780         0.25         60         25         1         2.5         44         1.7         Outrop           IvenaNorth A         THR013865         332757         7847422         261         6780         0.25         60         25         1         2.5         44         2.6         Outrop           IvenaNorth A         THR013865         332769         7847422         261         105         0.25         1         1         2.5         44         4.5         Outrop           IvenaNorth A         THR013860         333759         7847422         261         10         0.25         1         1         2.5         44         7.7         Outrop           Aquila U3         THR013860         333355         7848639         233         10         0.25         1         4         2.5         0         Outrop           Aquila U3         THR013866         33448         744867         2.8         8         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IvenaNorth_U1 |           | 332655 | 7847515 | 249   | 12     | 0.25   | 15     | 36     | 1      | 2.5    |         |            | Outcrop |
| IvenaNorth A         TNR013864         332755         784/422         261         5900         0.25         18         33         1         2.5         44         1.7         Outcrop           IvenaNorth A         TNR013865         332757         784/422         261         5900         0.25         11         1         2.5         44         3.5         Outcrop           IvenaNorth A         TNR013865         332757         784/422         261         105         0.25         11         12         2.5         44         4.5         Outcrop           IvenaNorth A         TNR013865         332760         784/422         261         130         0.25         12         15         1         2.5         44         6.7         Outcrop           IvenaNorth A         TNR013863         333575         784713         251         15         0.25         13         44         1         2.5         Outcrop           Aquita U3         TNR013863         333547         784867         303         48         0.25         4         12         1         2.5         Outcrop           Aquita U3         TNR013863         333416         784467         7303         44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             |           |        |         |       |        |        |        |        |        |        |         |            |         |
| IvenaNorth A         TNR013665         332766         9247422         261         32700         0.25         60         25         1         2.5         44         2.6         Outcrop           IvenaNorth A         TNR013657         332758         7847422         261         105         0.25         114         70         1         2.5         44         4.5         Outcrop           IvenaNorth A         TNR013665         332758         7847422         261         105         0.25         1         1         2.5         44         6.7         Outcrop           IvenaNorth A         TNR013666         333757         7847422         281         96         0.25         1         1         2.5         44         6.7         Outcrop           Aquila U3         TNR013666         333497         784871         333         48         0.25         8         8         2         2.5         Outcrop           Aquila U3         TNR013666         33416         7844697         238         48         2.4         12         1         2.5         Outcrop           Aquila B         TNR013666         334112         7844698         244         279         1         1 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| IvenaNorth A         INN012656         332757         7847422         221         2240         0.25         11         12         2.5         44         3.5         Outrop           IvenaNorth A         INN012657         332780         7847422         261         105         0.25         11         12         2.5         44         4.5         Outrop           IvenaNorth A         INN012669         332760         7847422         281         130         0.25         12         15         1         2.5         44         6.7         Outrop           Auula U3         INN012663         333716         7847422         283         386         0.255         14         2.5         1         2.5         Outrop           Aquila U3         INN012663         333489         784817         303         48         0.25         8         8         2         2.5         Outrop           Aquila U3         INN012667         334147         7848480         224         120         1         2.5         Outrop           Aquila B         INN013667         334117         7849480         244         124         124         123         66         Outrop           Aquu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| IvenaNorth A         TNR013857         332785         7847422         261         105         0.25         11         12         2         2.5         44         4.5         Outrop           IvenaNorth A         TNR013868         332799         7847422         261         130         0.25         18         22         1         2.5         44         6.7         Outrop           IvenaNorth A         TNR013863         332761         7847422         283         96         0.25         12         15         1         2.5         44         6.7         Outrop           Aquita_U3         TNR013863         33385         7849839         283         10         0.25         14         2.5         1         2.5         Outrop           Aquita_U3         TNR013866         333481         784966         302         3         0.25         4         12         1         2.5         Outrop           Aquita_B         TNR013866         33416         7849485         244         279         1         2.4         223         161         61         Outrop           Aquita_B         TNR013867         334069         7849888         205         10         307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |           |        |         |       |        |        |        | -      |        | -      |         |            |         |
| IvenaNorth A         TNR013889         332790         7847422         261         130         0.25         18         22         1         2.5         44         5.5         Outrop           IvenaNorth A         TNR013889         332760         7847422         281         96         0.25         12         15         1         2.5         44         6.7         Outrop           Aquia US         TNR015862         33715         784713         251         15         0.25         14         2.5         44         7.7         Outrop           Aquia US         TNR015863         33354         7848932         23         0.25         14         2.5         0.0ttrop           Aquia US         TNR015865         33349         7848967         259         97         1.4         8         8         2.5         Outrop           Aquia B         TNR015866         334112         7849487         259         97         1.4         8         8.4         37         40         Float           Aquia B         TNR015867         334112         7849486         244         124         220         121         36         Outrop           Aquia B         TNR015867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |           |        |         |       |        |        | -      |        |        | -      |         |            |         |
| IvenaNorth A         TNR013860         332760         7847422         261         96         0.25         12         15         1         2.5         44         6.7         Outcrop           IvenaNorth A         TNR013860         332761         7847422         263         386         0.25         13         44         1         2.5         44         7.7         Outcrop           Aquita_U3         TNR013862         333557         7848039         293         10         0.25         14         4.2         1         2.5         Outcrop           Aquita_U3         TNR013865         33349         7848037         303         48         0.25         8         8         2         2.5         Outcrop           Aquita_B         TNR013865         33416         7849483         264         1740         0.5         2.4         283         161         61         Outcrop           Aquita_B         TNR013867         33409         7849483         264         1740         0.5         10         377         11         19         Outcrop           Aquita_B         TNR013867         33409         784988         221         0.5         2         14         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquila_U3         TNR013862         333715         7848713         251         15         0.25         113         44         1         2.5         Subcrop           Aquila_U3         TNR013864         333565         7848539         293         10         0.25         14         2.5         1         2.5         Outcrop           Aquila_U3         TNR013864         333459         7848596         302         3         0.25         4         12         1         2.5         Outcrop           Aquila_U3         TNR013866         334116         784497         284         0.5         1         4         8         84         37         40         Float           Aquila_B         TNR013866         334112         784956         284         97         1         1         24         220         123         60         Outcrop           Aquila_B         TNR013866         33412         784956         288         10         0.5         10         307         11         19         Outcrop           Aquila_B         TNR013871         334040         7849707         308         382         1.3         38         900         114         224         Outcrop </td <td></td> <td>-</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |           |        |         |       |        |        |        |        |        | -      |         |            |         |
| Aquila_U3         TNR013663         333852         744633         293         10         0.25         14         2.5         Outcrop           Aquila_U3         TNR013664         333524         7846596         302         3         0.25         8         8         2         2.5         Outcrop           Aquila_B         TNR013666         33414         784467         258         97         1.4         8         84         37         40         Float           Aquila_B         TNR013666         33414         7844483         264         97         1         24         220         123         60         Outcrop           Aquila_B         TNR013668         334112         7849498         274         279         1         24         220         1123         60         Outcrop           Aquila_B         TNR013671         33409         7849588         300         200         1.7         28         328         1.0         357         7849588         350         2.0         1.7         28         328         1.0         224         Outcrop           Aquila_B         TNR013673         334049         7849717         308         35.7         73 <td< td=""><td>IvenaNorth_A</td><td>TNR013660</td><td>332761</td><td>7847422</td><td>263</td><td>386</td><td>0.25</td><td>20</td><td>46</td><td>1</td><td>2.5</td><td>44</td><td>7.7</td><td>Outcrop</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IvenaNorth_A  | TNR013660 | 332761 | 7847422 | 263   | 386    | 0.25   | 20     | 46     | 1      | 2.5    | 44      | 7.7        | Outcrop |
| Aquila_U3         TNR013664         33324         784697         303         48         0.25         8         8         2         2.5         Outcrop           Aquila_U3         TNR013665         33449         784596         302         3         0.25         4         12         1         2.5         Outcrop           Aquila_B         TNR013665         334116         7844987         258         97         1.4         8         8         4         37         40         Float           Aquila_B         TNR013666         334112         7844988         224         279         1         244         220         123         60         Outcrop           Aquila_B         TNR013666         34112         7844988         28         21         0.5         10         307         11         19         Outcrop           Aquila_B         TNR013673         33409         7845983         205         20         13         38         900         114         224         Outcrop           Aquila_B         TNR013673         33409         784771         27         42         0.25         45         34         2         2.5         Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aquila_U3     | TNR013662 | 333715 | 7848713 | 251   | 15     | 0.25   | 13     | 44     | 1      | 2.5    |         |            | Subcrop |
| Aquita_U3         TNR013665         333489         784856         302         3         0.25         4         12         1         2.5         Outcrop           Aquita_B         TNR013666         334114         7849467         256         97         1.4         8         84         37         40         Float           Aquita_B         TNR013667         334114         7849483         264         1700         0.5         124         223         160         Outcrop           Aquita_B         TNR013669         334112         7849488         224         170         1         24         223         60         Outcrop           Aquita_B         TNR013671         334099         7849883         288         21         0.25         2         14         3         2.5         Outcrop           Aquita_B         TNR013677         334049         7849707         308         352         1.3         38         900         114         224         Outcrop           Aquita_E         TNR013676         33375         784870         270         136         0.25         1         113         5         Outcrop           Aquita_D         TNR013677         333807 <td></td> <td>Outcrop</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |           |        |         |       |        |        |        |        |        |        |         |            | Outcrop |
| Aquita_B         TNR013666         334116         7849467         258         97         1.4         8         94         97         40         Float           Aquita_B         TNR013667         334112         7849498         274         270         1         24         223         161         61         Outcrop           Aquita_B         TNR013669         334112         784956         288         91         0.5         10         307         11         19         Outcrop           Aquita_B         TNR013670         334099         7849683         288         20         1.7         28         328         144         85         Outcrop           Aquita_B         TNR013671         334049         7849707         306         82         1.3         38         900         114         224         Outcrop           Aquita_B         TNR013675         333813         7849751         272         42         0.25         14         670         2         2.5         Outcrop           Aquita_B         TNR013678         333907         784887         202         0.25         1         11         3         5         Outcrop         Aquita_B         7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquita_B         TNR013667         334114         7849488         264         1740         0.5         24         283         161         61         Outcrop           Aquita_B         TNR013666         334112         7849486         274         279         1         24         220         123         66         Outcrop           Aquita_B         TNR013667         334099         7849568         288         191         0.5         10         307         11         19         Outcrop           Aquita_B         TNR013671         334069         7849683         288         21         0.25         2         14         3         2.5         Outcrop           Aquita_B         TNR013671         334049         7849707         308         352         1.33         389         00         10trop           Aquita_E         TNR013673         338401         784870         270         1.36         54         24         2.5         Outcrop           Aquita_E         TNR013673         338807         784870         270         1.36         0.25         1         11         3         5         Outcrop           Aquita_D         TNR013673         338807         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       |        |        |        | 1      |        |        |         |            |         |
| Aquita_B         TNR013668         334112         7849498         274         279         1         24         220         123         60         Outcrop           Aquita_B         TNR013668         334112         7849558         288         91         0.5         10         307         11         19         Outcrop           Aquita_B         TNR013671         334069         7849683         288         21         0.25         2         14         3         2.5         Outcrop           Aquita_B         TNR013671         334069         7849683         288         21         0.25         2         14         3         2.5         Outcrop           Aquita_E         TNR013677         334040         7849717         308         352         1.3         38         900         114         224         Outcrop           Aquita_E         TNR013676         333775         7848701         270         136         0.25         1         11         3         5         Outcrop           Aquita_L         TNR013677         333807         7848812         280         0.25         1         11         3         5         Outcrop         Aquita_L         TNR013678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       | -      |        |        |        |        |        |         |            |         |
| Aquila B         TNR013669         334112         7849556         288         91         0.5         10         307         11         19         Outcrop           Aquila B         TNR013670         334099         7849588         200         1.7         28         282         143         3         2.5         Outcrop           Aquila B         TNR013671         334049         7849707         308         352         1.3         38         900         114         224         Outcrop           Aquila B         TNR013673         334049         7849707         308         352         1.3         38         900         114         224         Outcrop           Aquila E         TNR013675         333813         7848710         270         136         0.25         14         670         2         2.5         Outcrop           Aquila L         TNR013678         33381         784870         270         136         0.25         1         11         3         5         Outcrop           Aquila D         TNR013678         333831         7848837         303         7         0.25         1         11         3         5         Outcrop <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquila B         TNR013670         334099         7849588         200         1.7         28         328         149         85         Outcrop           Aquila B         TNR013671         334009         7849583         288         21         0.25         2         14         3         2.5         Outcrop           Aquila B         TNR013673         334040         7849707         308         352         1.3         38         900         114         224         Outcrop           Aquila E         TNR013674         334040         7849717         307         397         5.7         73         1740         521         350         Outcrop           Aquila E         TNR013677         33880         7848780         270         1         36         0.25         14         670         2         2.5         Outcrop           Aquila D         TNR013677         338807         7848837         303         7         0.25         1         11         3         5         Outcrop           Aquila D         TNR013678         333807         7848837         203         7         0.25         1         1.2.5         Outcrop           Aquila D         TNR013686 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquila_B         TNR013673         334049         7849707         308         352         1.3         38         900         114         224         Outcrop           Aquila_B         TNR013674         334040         7849717         307         337         5.7         73         1740         521         350         Outcrop           Aquila_E         TNR013675         333810         7848751         272         42         0.25         44         5         Outcrop           Aquila_E         TNR013676         333707         7848780         270         136         0.25         2         26         4         5         Outcrop           Aquila_U3         TNR013679         333807         7848817         303         7         0.25         1         11         3         5         Outcrop           Aquila_D         TNR013679         333831         784938         272         208         0.25         9         48         1         7         Outcrop           Aquila_D         TNR013681         333809         784897         274         38         0.25         1         2.5         Outcrop           Aquila_D         TNR013684         333745         784902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       |        | -      |        |        |        |        |         |            |         |
| Aquita_B         TNR013674         334040         7849717         307         397         5.7         73         1740         521         350         Outcrop           Aquita_E         TNR013675         333813         7848780         270         136         0.25         45         34         2         2.5         Outcrop           Aquita_E         TNR013677         333800         7848780         270         136         0.25         1         4670         2         2.5         Outcrop           Aquita_D         TNR013677         333800         7848837         303         7         0.25         1         11         3         5         Outcrop           Aquita_D         TNR013678         333807         7848837         303         7         0.25         1         11         3         5         Outcrop           Aquita_D         TNR013678         33381         7849318         272         208         0.25         9         48         2         2.5         Outcrop           Aquita_D         TNR013683         333741         7849303         278         51         0.25         4         5         1         2.5         Outcrop           Aqui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aquila_B      | TNR013671 | 334069 | 7849683 | 288   | 21     | 0.25   | 2      | 14     | 3      | 2.5    |         |            | Outcrop |
| Aquila_E         TNR013675         333813         7848751         272         42         0.25         45         34         2         2.5         Outcrop           Aquila_E         TNR013676         333757         7848780         270         136         0.25         14         670         2         2.5         Outcrop           Aquila_E         TNR013677         333800         7848812         290         26         0.25         2         26         4         5         Outcrop           Aquila_D         TNR013679         333800         7848837         303         7         0.25         1         11         3         5         Outcrop           Aquila_D         TNR013680         333825         7848938         272         208         0.25         9         48         2         2.5         Outcrop           Aquila_D         TNR013681         333741         7848072         274         38         0.25         4         5         1         2.5         Outcrop           Aquila_D         TNR013684         333745         7849020         270         23         0.25         2         2.5         1         0.25         0utcrop           Aquila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           |        |         |       | _      |        |        |        |        |        |         |            | Outcrop |
| Aquila_E         TNR013676         333775         7848780         270         136         0.25         14         670         2         2.5         Outcrop           Aquila_L         TNR013677         333800         7848812         290         26         0.25         2         26         4         5         Outcrop           Aquila_U3         TNR013677         333807         7848837         303         7         0.25         1         11         3         5         Outcrop           Aquila_D         TNR013680         333825         7848938         272         208         0.6         16         48         1         7         Outcrop           Aquila_D         TNR013681         333007         784897         274         38         0.25         9         48         2         2.5         Outcrop           Aquila_D         TNR013681         333745         7849002         278         51         0.25         2         2.5         1         2.5         Outcrop           Aquila_D         TNR013685         333747         784879         286         821         0.6         19         50         3         6         Outcrop           Aquila_D <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquila_E       TNR013677       333860       7848812       290       26       0.25       2       26       4       5       Outcrop         Aquila_U3       TNR013678       333907       7848837       303       7       0.25       1       11       3       5       Outcrop         Aquila_D       TNR013679       333817       7849014       260       940       0.6       16       48       1       7       Outcrop         Aquila_D       TNR013680       333825       7849838       272       208       0.25       9       48       2       2.5       Outcrop         Aquila_U3       TNR013681       333809       7848877       274       38       0.25       10       8       1       2.5       Outcrop         Aquila_D       TNR013684       333747       7849003       278       51       0.25       2       2.5       1       2.5       Outcrop         Aquila_D       TNR013685       333727       784979       286       821       0.6       19       50       3       6       Outcrop         Aquila_U1       TNR013688       34157       7849297       290       134       0.25       19       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           |        |         |       |        |        |        | _      |        | -      |         |            |         |
| Aquita_U3       TNR013678       333907       7848837       303       7       0.25       1       11       3       5       Outcrop         Aquita_D       TNR013679       333831       7849014       260       940       0.6       16       48       1       7       Outcrop         Aquita_D       TNR013681       333825       7848938       272       208       0.25       9       48       2       2.5       Outcrop         Aquita_D       TNR013681       333825       7848938       272       208       0.25       1       8       1       2.5       Outcrop         Aquita_D       TNR013683       33741       7849003       278       51       0.25       4       5       1       2.5       Outcrop         Aquita_D       TNR013684       333745       7849020       270       23       0.25       2       2.5       1       2.5       Outcrop         Aquita_D       TNR013688       334157       7849297       286       821       0.6       19       50       3       6       Outcrop         Aquita_U1       TNR013688       334157       7849287       290       134       0.25       19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       |        |        |        |        | 1      |        |         |            |         |
| Aquila_D       TNR013679       333831       7849014       260       940       0.6       16       48       1       7       Outcrop         Aquila_D       TNR013680       333825       7848938       272       208       0.25       9       48       2       2.5       Outcrop         Aquila_U3       TNR013681       33309       784877       274       38       0.25       9       48       2       2.5       Outcrop         Aquila_D       TNR013683       333741       7849003       278       51       0.25       4       5       1       2.5       Outcrop         Aquila_D       TNR013684       333727       7848979       286       821       0.6       19       50       3       6       Outcrop         Aquila_U1       TNR013686       334245       7849297       286       821       0.6       19       50       3       6       Outcrop         Aquila_U2       TNR013689       334157       7849297       290       134       0.25       19       54       1       2.5       Outcrop         Aquila_U2       TNR013689       334157       7849282       295       12       21       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquila_D       TNR013680       333825       7848938       272       208       0.25       9       48       2       2.5       Outcrop         Aquila_U3       TNR013681       33309       784877       274       38       0.25       10       8       1       2.5       Outcrop         Aquila_D       TNR013683       333741       7849003       278       51       0.25       4       5       1       2.5       Outcrop         Aquila_D       TNR013684       333747       7849079       228       821       0.6       19       50       3       6       Outcrop         Aquila_D       TNR013686       333727       7849279       286       821       0.6       19       50       3       6       Outcrop         Aquila_U1       TNR013688       334157       7849297       290       134       0.25       19       54       1       2.5       Outcrop         Aquila_U2       TNR013689       334119       7849328       295       33       0.25       12       21       2       2.5       Outcrop         Aquila_U1       TNR013689       334240       7849332       262       10       0.25       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |           |        |         |       |        |        | _      | 10     |        |        |         |            |         |
| Aquila_U3         TNR013681         333809         7848877         274         38         0.25         10         8         1         2.5         Outcrop           Aquila_D         TNR013681         333741         7849003         278         51         0.25         4         5         1         2.5         Outcrop           Aquila_D         TNR013684         333745         7849020         270         23         0.25         2         2.5         1         2.5         Outcrop           Aquila_D         TNR013684         333745         7849979         286         821         0.6         19         50         3         6         Outcrop           Aquila_U1         TNR013686         334245         7849297         290         134         0.25         10         29         1         2.5         Outcrop           Aquila_U2         TNR013689         334119         7849297         290         134         0.25         2         18         3         5         Outcrop           Aquila_U1         TNR013689         334119         7849328         295         33         0.25         2         2         2.5         Outcrop           Aquila_U1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |        |         |       |        | -      |        |        |        | -      |         |            | · · · · |
| Aquila_D       TNR013684       333745       7849020       270       23       0.25       2       2.5       1       2.5       Outcrop         Aquila_D       TNR013685       333727       7848979       286       821       0.6       19       50       3       6       Outcrop         Aquila_U1       TNR013686       334245       7849282       265       7       0.25       10       29       1       2.5       Outcrop         Aquila_U2       TNR013688       334157       7849297       290       134       0.25       19       54       1       2.5       Outcrop         Aquila_U1       TNR013689       334119       7849303       262       10       0.25       12       21       2       2.5       Outcrop         Aquila_U1       TNR013690       334240       7849303       262       10       0.25       12       21       2       2.5       Outcrop         Aquila_U1       TNR013690       334209       7849335       259       17       0.25       15       50       1       2.5       Outcrop         Aquila_U1       TNR013693       334209       7849379       259       20       0.25       20 <td></td> <td></td> <td></td> <td></td> <td></td> <td>38</td> <td></td> <td>10</td> <td>8</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |           |        |         |       | 38     |        | 10     | 8      | 1      |        |         |            |         |
| Aquita_D         TNR013685         333727         7848979         286         821         0.6         19         50         3         6         Outcrop           Aquita_U1         TNR013686         334245         7849282         265         7         0.25         10         29         1         2.5         Outcrop           Aquita_B         TNR013688         334157         7849297         290         134         0.25         19         54         1         2.5         Outcrop           Aquita_U2         TNR013689         334157         7849297         290         134         0.25         2         18         3         5         Outcrop           Aquita_U1         TNR013689         334197         7849328         295         13         0.25         12         21         2         2.5         Outcrop           Aquita_U1         TNR013690         334209         7849335         259         17         0.25         15         50         1         2.5         Outcrop           Aquita_U1         TNR013694         334213         7849481         247         468         0.25         92         34         3         2.5         Outcrop <t< td=""><td>Aquila_D</td><td></td><td></td><td></td><td>278</td><td></td><td></td><td>-</td><td></td><td>1</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aquila_D      |           |        |         | 278   |        |        | -      |        | 1      |        |         |            |         |
| Aquila_U1       TNR013686       334245       7849282       265       7       0.25       10       29       1       2.5       Outcrop         Aquila_B       TNR013688       334157       7849297       290       134       0.25       19       54       1       2.5       Outcrop         Aquila_U2       TNR013689       334119       7849328       295       33       0.25       2       18       3       5       Outcrop         Aquila_U1       TNR013689       334129       7849303       262       10       0.25       12       21       2       2.5       Outcrop         Aquila_U1       TNR013690       334209       7849335       259       10       0.25       12       21       2       2.5       Outcrop         Aquila_U1       TNR013691       334209       7849379       259       20       0.25       15       50       1       2.5       Outcrop         Aquila_U1       TNR013693       334209       7849379       259       20       0.25       15       50       1       2.5       Outcrop         Aquila_U1       TNR013696       334199       7849431       247       468       0.25       2 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |           |        |         | -     |        |        |        |        |        |        |         |            |         |
| Aquila_B         TNR013688         334157         7849297         290         134         0.25         19         54         1         2.5         Outcrop           Aquila_U2         TNR013689         334119         7849328         295         33         0.25         2         18         3         5         Outcrop           Aquila_U1         TNR013690         334240         7849303         262         10         0.25         12         21         2         2.5         Outcrop           Aquila_U1         TNR013691         334235         7849335         259         17         0.25         15         50         1         2.5         Outcrop           Aquila_U1         TNR013693         334209         7849379         259         20         0.25         20         27         1         2.5         Outcrop           Aquila_U1         TNR013693         334209         7849379         259         20         0.25         92         34         3         2.5         Outcrop           Aquila_U1         TNR013694         334127         7849431         247         468         0.25         2         33         1         2.5         Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquila_U2         TNR013689         334119         7849328         295         33         0.25         2         18         3         5         Outcrop           Aquila_U1         TNR013690         334240         7849303         262         10         0.25         12         21         2         2.5         Outcrop           Aquila_U1         TNR013690         334209         7849335         259         17         0.25         15         50         1         2.5         Outcrop           Aquila_U1         TNR013691         334209         7849379         259         20         0.25         20         27         1         2.5         Outcrop           Aquila_U1         TNR013694         334209         7849379         259         20         0.25         92         34         3         2.5         Outcrop           Aquila_U1         TNR013694         334199         7849543         258         48         0.25         92         34         3         2.5         Outcrop           Aquila_U1         TNR013696         334182         7849497         245         129         0.25         135         202         1         2.5         45         0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquila_U1       TNR013690       334240       7849303       262       10       0.25       12       21       2       2.5       Outcrop         Aquila_U1       TNR013691       334235       7849335       259       17       0.25       15       50       1       2.5       Subcrop         Aquila_U1       TNR013691       334209       7849379       259       20       0.25       20       27       1       2.5       Outcrop         Aquila_U1       TNR013694       334213       7849481       247       468       0.25       92       34       3       2.5       Outcrop         Aquila_U1       TNR013695       334182       7849481       247       468       0.25       92       34       3       2.5       Outcrop         Aquila_U1       TNR013695       334182       7849481       247       468       0.25       2       33       1       2.5       Outcrop         Aquila_U1       TNR013696       334182       7849497       245       129       0.25       15       202       1       2.5       45       0.9       Outcrop         Aquila_U1       TNR013698       334183       7849499       242 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -             |           |        |         |       |        |        | _      |        |        |        |         |            |         |
| Aquila_U1       TNR013691       334235       7849335       259       17       0.25       15       50       1       2.5       Subcrop         Aquila_U1       TNR013693       334209       7849379       259       20       0.25       20       27       1       2.5       Outcrop         Aquila_U1       TNR013693       334209       7849379       259       20       0.25       20       27       1       2.5       Outcrop         Aquila_U1       TNR013695       334123       7849481       247       468       0.25       92       34       3       2.5       Outcrop         Aquila_U1       TNR013696       334182       78494943       258       48       0.25       2       33       1       2.5       Outcrop         Aquila_U1       TNR013696       334182       7849497       245       129       0.25       15       202       1       2.5       45       0.9       Outcrop         Aquila_U1       TNR013696       334183       7849498       259       252       0.25       19       284       1       2.5       45       1.9       Outcrop         Aquila_U1       TNR013698       334183       78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       |        |        |        |        |        | -      |         |            | · · · · |
| Aquila_U1       TNR013693       334209       7849379       259       20       0.25       20       27       1       2.5       Outcrop         Aquila_U1       TNR013694       334213       7849481       247       468       0.25       92       34       3       2.5       Outcrop         Aquila_U1       TNR013696       334199       7849543       258       48       0.25       92       34       3       2.5       Outcrop         Aquila_U1       TNR013696       334199       7849543       258       48       0.25       2       33       1       2.5       Outcrop         Aquila_U1       TNR013696       334182       7849497       245       129       0.25       15       202       1       2.5       45       0.9       Outcrop         Aquila_U1       TNR013697       334183       7849498       259       252       0.25       19       284       1       2.5       45       1.9       Outcrop         Aquila_U1       TNR013698       334183       7849499       242       216       0.25       19       284       1       2.5       45       3.9       Outcrop         Aquila_U1       TNR013698 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>· · · ·</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           |        |         |       |        |        |        | -      |        |        |         |            | · · · · |
| Aquila_U1       TNR013695       334199       7849543       258       48       0.25       2       33       1       2.5       Outcrop         Aquila_U1       TNR013696       334182       7849497       245       129       0.25       15       202       1       2.5       45       0.9       Outcrop         Aquila_U1       TNR013696       334182       7849498       259       252       0.25       22       325       1       2.5       45       0.9       Outcrop         Aquila_U1       TNR013698       334183       7849498       259       252       0.25       22       325       1       2.5       45       1.9       Outcrop         Aquila_U1       TNR013698       334183       7849499       242       216       0.25       25       859       1       2.5       45       2.9       Outcrop         Aquila_U1       TNR013699       334184       7849500       242       203       0.25       25       859       1       2.5       45       3.9       Outcrop         Aquila_U1       TNR013700       334184       7849500       240       14       0.25       2       30       1       2.5       45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |           |        | 7849379 |       |        |        |        |        |        | -      |         |            | · · · · |
| Aquila_U1       TNR013696       334182       7849497       245       129       0.25       15       202       1       2.5       45       0.9       Outcrop         Aquila_U1       TNR013697       334183       7849498       259       252       0.25       22       325       1       2.5       45       1.9       Outcrop         Aquila_U1       TNR013698       334183       7849499       242       216       0.25       19       284       1       2.5       45       2.9       Outcrop         Aquila_U1       TNR013698       334184       7849500       242       203       0.25       25       859       1       2.5       45       3.9       Outcrop         Aquila_U1       TNR013700       334184       7849500       240       14       0.25       2       30       1       2.5       45       5       Outcrop         Aquila_B       TNR013701       334131       7849539       305       268       3.5       4       544       11       40       Subcrop         Aquila_B       TNR013701       334121       7849578       285       127       0.5       3       22       1       9       Outcrop <td>Aquila_U1</td> <td>TNR013694</td> <td>334213</td> <td>7849481</td> <td>247</td> <td>468</td> <td>0.25</td> <td>92</td> <td>34</td> <td>3</td> <td>-</td> <td></td> <td></td> <td>Outcrop</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aquila_U1     | TNR013694 | 334213 | 7849481 | 247   | 468    | 0.25   | 92     | 34     | 3      | -      |         |            | Outcrop |
| Aquila_U1       TNR013697       334183       7849498       259       252       0.25       22       325       1       2.5       45       1.9       Outcrop         Aquila_U1       TNR013698       334183       7849499       242       216       0.25       19       284       1       2.5       45       2.9       Outcrop         Aquila_U1       TNR013698       334184       7849500       242       203       0.25       25       859       1       2.5       45       3.9       Outcrop         Aquila_U1       TNR013700       334184       7849500       240       14       0.25       2       30       1       2.5       45       5       Outcrop         Aquila_B       TNR013701       334121       7849539       305       268       3.5       4       544       11       40       Subcrop         Aquila_B       TNR013703       334121       7849578       285       127       0.5       3       22       1       9       Outcrop         Aquila_A       TNR013704       334140       7849578       285       127       0.5       3       22       1       9       Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |           |        |         |       |        |        | _      |        |        |        |         |            |         |
| Aquila_U1         TNR013698         334183         7849499         242         216         0.25         19         284         1         2.5         45         2.9         Outcrop           Aquila_U1         TNR013699         334184         7849500         242         203         0.25         25         859         1         2.5         45         3.9         Outcrop           Aquila_U1         TNR013700         334184         7849500         240         14         0.25         2         30         1         2.5         45         5         Outcrop           Aquila_U1         TNR013700         334184         7849500         240         14         0.25         2         30         1         2.5         45         5         Outcrop           Aquila_B         TNR013701         334131         7849539         305         268         3.5         4         544         11         40         Subcrop           Aquila_B         TNR013703         334121         7849578         285         127         0.5         3         22         1         9         Outcrop           Aquila_A         TNR013704         334140         7849628         318         34<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |           |        |         |       |        |        | _      |        |        |        |         |            |         |
| Aquila_U1         TNR013699         334184         7849500         242         203         0.25         25         859         1         2.5         45         3.9         Outcrop           Aquila_U1         TNR013700         334184         7849500         240         14         0.25         2         30         1         2.5         45         5         Outcrop           Aquila_B         TNR013701         334131         7849539         305         268         3.5         4         544         11         40         Subcrop           Aquila_B         TNR013703         334121         7849578         285         127         0.5         3         22         1         9         Outcrop           Aquila_A         TNR013704         334140         7849628         318         34         1.7         3         219         3         16         Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -             |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquila_U1         TNR013700         334184         7849500         240         14         0.25         2         30         1         2.5         45         5         Outcrop           Aquila_B         TNR013701         334131         7849539         305         268         3.5         4         544         11         40         Subcrop           Aquila_B         TNR013703         334121         7849578         285         127         0.5         3         22         1         9         Outcrop           Aquila_A         TNR013704         334140         7849628         318         34         1.7         3         219         3         16         Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquila_B         TNR013701         334131         7849539         305         268         3.5         4         544         11         40         Subcrop           Aquila_B         TNR013703         334121         7849578         285         127         0.5         3         22         1         9         Outcrop           Aquila_A         TNR013704         334140         7849628         318         34         1.7         3         219         3         16         Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           |        |         |       |        |        |        |        |        |        |         |            |         |
| Aquila B         TNR013703         334121         7849578         285         127         0.5         3         22         1         9         Outcrop           Aquila_A         TNR013704         334140         7849628         318         34         1.7         3         219         3         16         Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |           |        |         |       |        |        |        |        |        |        | -+-2    | J          |         |
| Aquila_A TNR013704 334140 7849628 318 34 1.7 3 219 3 16 Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |           |        |         |       |        |        | -      |        |        |        |         |            | · · · · |
| Aquila_A TNR013705 334141 7849656 324 19 0.5 2 35 1 1 13 Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |           |        |         |       |        |        |        |        |        | -      |         |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |           |        | 7849656 | 324   | 19     |        |        | 35     |        |        |         |            |         |

Easting Northing Elevation Cuppm Ag ppm Coppm As ppm Bi ppm Sb ppm Channel Length (m) Sample



| Target      | Sample ID | Easting<br>MGAz54 | Northing<br>MGAz54 | Elevation<br>(mRL) | Cu ppm | Ag ppm | Co ppm | As ppm | Bi ppm | Sb ppm | Channel | Length (m) | Sample<br>Type |
|-------------|-----------|-------------------|--------------------|--------------------|--------|--------|--------|--------|--------|--------|---------|------------|----------------|
| Aquila_A    | TNR013706 | 334159            | 7849733            | 327                | 231    | 11.8   | 6      | 1135   | 1      | 68     |         |            | Outcrop        |
| Aquila_A    | TNR013707 | 334155            | 7849729            | 330                | 171    | 1.7    | 4      | 866    | 1      | 55     |         |            | Outcrop        |
| Aquila_A    | TNR013708 | 334157            | 7849760            | 326                | 50     | 0.8    | 4      | 240    | 5      | 18     |         |            | Outcrop        |
| Aquila_A    | TNR013709 | 334174            | 7849796            | 323                | 153    | 0.9    | 14     | 669    | 8      | 17     |         |            | Outcrop        |
| Aquila_A    | TNR013710 | 334188            | 7849828            | 329                | 83     | 1      | 5      | 777    | 11     | 48     |         |            | Outcrop        |
| Rhea_U      | TNR013711 | 332347            | 7845282            | 273                | 95     | 0.25   | 80     | 102    | 1      | 2.5    |         |            | Outcrop        |
| Rhea_U      | TNR013712 | 333119            | 7846763            | 303                | 9      | 0.25   | 9      | 22     | 1      | 2.5    |         |            | Outcrop        |
| Rhea_U      | TNR013713 | 333140            | 7847376            | 269                | 4      | 0.25   | 4      | 5      | 1      | 2.5    |         |            | Outcrop        |
| Rhea_U      | TNR013714 | 333337            | 7847321            | 297                | 7      | 0.25   | 2      | 2.5    | 1      | 2.5    |         |            | Outcrop        |
| Rhea_U      | TNR013715 | 332852            | 7846162            | 245                | 6      | 0.25   | 3      | 14     | 1      | 2.5    |         |            | Outcrop        |
| Rhea_U      | TNR013716 | 332814            | 7846044            | 243                | 3      | 0.25   | 3      | 5      | 3      | 2.5    |         |            | Outcrop        |
| Rhea_U      | TNR013717 | 332852            | 7846226            | 227                | 2      | 0.25   | 2      | 10     | 1      | 2.5    |         |            | Outcrop        |
| Rhea_U      | TNR013718 | 332852            | 7846226            | 227                | 3      | 0.25   | 1      | 50     | 1      | 2.5    |         |            | Outcrop        |
| Rhea_U      | TNR013719 | 332952            | 7846441            | 287                | 10     | 0.25   | 6      | 26     | 1      | 2.5    |         |            | Outcrop        |
| Aquila_U1   | TNR013720 | 334556            | 7849213            | 228                | 31     | 0.25   | 3      | 13     | 3      | 2.5    |         |            | Outcrop        |
| Aquila_U2   | TNR013721 | 334034            | 7849512            | 230                | 81     | 0.25   | 12     | 16     | 1      | 2.5    |         |            | Outcrop        |
| Aquila_U2   | TNR013722 | 334044            | 7849490            | 226                | 44     | 0.25   | 4      | 14     | 1      | 2.5    |         |            | Outcrop        |
| Aquila_U2   | TNR013723 | 334029            | 7849490            | 223                | 104    | 0.25   | 5      | 9      | 1      | 2.5    |         |            | Subcrop        |
| Aquila_U2   | TNR013724 | 334013            | 7849458            | 207                | 5      | 0.25   | 8      | 6      | 1      | 2.5    | 46      | 1          | Outcrop        |
| Aquila_U2   | TNR013725 | 334013            | 7849457            | 207                | 8      | 0.25   | 7      | 6      | 1      | 2.5    | 46      | 2          | Outcrop        |
| Aquila_U2   | TNR013727 | 334047            | 7849442            | 210                | 146    | 0.25   | 10     | 31     | 1      | 2.5    |         |            | Outcrop        |
| Aquila_U2   | TNR013728 | 334058            | 7849432            | 213                | 379    | 0.25   | 22     | 109    | 7      | 7      |         |            | Outcrop        |
| MtGordon_U2 | TNR013729 | 334284            | 7850231            | 243                | 237    | 0.25   | 5      | 123    | 4      | 10     |         |            | Outcrop        |
| MtGordon_U2 | TNR013730 | 334225            | 7850311            | 287                | 107    | 0.25   | 4      | 307    | 19     | 18     |         |            | Outcrop        |
| MtGordon_U2 | TNR013731 | 334193            | 7850335            | 289                | 214    | 0.25   | 2      | 48     | 3      | 19     |         |            | Outcrop        |
| MtGordon_U2 | TNR013732 | 334193            | 7850335            | 273                | 36     | 0.25   | 5      | 56     | 23     | 77     |         |            | Outcrop        |
| MtGordon_U1 | TNR013733 | 333690            | 7850413            | 275                | 3      | 0.25   | 6      | 2.5    | 1      | 2.5    |         |            | Outcrop        |
| MtGordon_U1 | TNR013734 | 333617            | 7850460            | 296                | 5      | 0.25   | 7      | 6      | 1      | 2.5    |         |            | Outcrop        |
| MtGordon_U1 | TNR013735 | 333800            | 7850290            | 269                | 5      | 0.25   | 8      | 7      | 1      | 2.5    |         |            | Outcrop        |
| MtGordon_U2 | TNR013736 | 334282            | 7850247            | 289                | 88     | 0.25   | 4      | 134    | 1      | 46     |         |            | Outcrop        |
| MtGordon_U2 | TNR013737 | 334195            | 7850443            | 338                | 194    | 3.8    | 3      | 492    | 72     | 152    |         |            | Outcrop        |



# **APPENDIX 2: JORC CODE 2012 EDITION, TABLE 1**

# Section 1. Sampling Techniques and Data

Table 1 refers to 2024 mapping, rock chip, rock chip channel completed by True North Copper (TNC) at the Mt Oxide Project.

| Criteria               |   | JORC Code Explanation                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | - | Nature and quality of sampling (e.g.,<br>cut channels, random chips, or<br>specific specialised industry standard<br>measurement tools appropriate to the<br>minerals under investigation, such as<br>down hole gamma sondes, or<br>handheld XRF instruments, etc).                                                                           | <ul> <li>TNC Mt Oxide Mapping</li> <li>Structural measurements were obtained using a Freiberg structural compass and the built-in structural compass in Datamine Discover 3.13.2</li> <li>731 field observations were recorded at Mt Oxide.</li> </ul> TNC Rock Chip and Channel Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | - | These examples should not be taken<br>as limiting the broad meaning of<br>sampling.<br>Include reference to measures taken<br>to ensure sample representivity and<br>the appropriate calibration of any<br>measurement tools or systems used.<br>Aspects of the determination of<br>mineralisation that are Material to the<br>Public Report. | <ul> <li>Rock chip outcrop and float samples were taken at the discretion of the supervising geologist and given a sample number correlating with the observation point ID.</li> <li>Where possible samples were taken at intervals no less than 50.00m apart and no greater than 100.00m.</li> <li>Float samples taken were representative of either a 2.00 x 2.00m or 5.00 x 5.00m area depending on outcrop availability.</li> <li>Channel samples were taken by measuring continuous 0.30-1.20 m intervals perpendicular to the strike of the mappable unit. Chipping was complete over each interval and combined to form a composite sample.</li> <li>A total of 388 rock chip and channel samples have been taken from Mt Oxide at the time of this release: 75 from Ivena North, 295 from Aquila, 9 from Mt. Gordon, and 9 from Rhea.</li> </ul> |
|                        | - | In cases where 'industry standard'<br>work has been done this would be<br>relatively simple (e.g. 'reverse<br>circulation drilling was used to obtain<br>1 m samples from which 3 kg was<br>pulverised to produce a 30 g charge                                                                                                               | <ul> <li>TNC Mt Oxide Rock Chip and Channel Assays</li> <li>Samples have been submitted to Australian Laboratory Services (ALS) an ISO certified contract laboratory in Mt Isa.</li> <li>Sample preparation for the Mt Oxide samples comprised of drying, crushing and pulverisation prior to analysis (PREP-31Y).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| ASX:  | ΤN  | IC. |
|-------|-----|-----|
| 7.07. | 111 |     |

| Criteria                 | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                           |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | for fire assay'). In other cases more<br>explanation may be required, such as<br>where there is coarse gold that has<br>inherent sampling problems. Unusual<br>commodities or mineralisation types<br>(e.g. submarine nodules) may warrant<br>disclosure of detailed information.                                                                                                          | <ul> <li>Samples have been submitted for multi-element analysis by ME-ICP61 comprising a 4 Acid Digestion with ICP-AES finish for: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W &amp; Zn.</li> </ul> |
| Drilling<br>techniques   | <ul> <li>Drill type (e.g. core, reverse<br/>circulation, open-hole hammer, rotary<br/>air blast, auger, Bangka, sonic, etc)<br/>and details (e.g. core diameter, triple<br/>or standard tube, depth of diamond<br/>tails, face- sampling bit or other type,<br/>whether core is oriented and if so, by<br/>what method, etc).</li> </ul>                                                   | <ul> <li>Drilling is not reported in this announcement.</li> </ul>                                                                                                                                                                                                                   |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul> | Drilling is not reported in this announcement.                                                                                                                                                                                                                                       |



| Criteria                                               | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                                                | <ul> <li>Whether core and chip samples have<br/>been geologically and geotechnically<br/>logged to a level of detail to support<br/>appropriate Mineral Resource<br/>estimation, mining studies and<br/>metallurgical studies.</li> <li>Whether logging is qualitative or<br/>quantitative in nature. Core (or<br/>costean, channel, etc) photography.</li> <li>The total length and percentage of the<br/>relevant intersections logged.</li> </ul> | <ul> <li>TNC Mt Oxide Mapping</li> <li>Mapping observations were made in a qualitative manner where possible.</li> <li>At each location the following was recorded where possible: lithology, grain size, texture, weathering, fabric/strain, alteration, veining, structures, mineralisation, strike, dip, dip direction, GPS measurements.</li> <li>Photos of specimens and outcrop were recorded at the mapping geologist's discretion.</li> <li>TNC Mt Oxide Rock Chip Sampling</li> <li>Geological information for rock chips and rock chip channel samples were recorded in a qualitative manner where possible.</li> <li>At each location the following was recorded where possible: lithology, grain size, texture, weathering, fabric/strain, alteration, veining, structures, mineralisation, strike, dip, dip direction, GPS measurements. A description of the sample location including dimensions of area sampled was recorded.</li> <li>Sample type was recorded as outcrop, subcrop, float or continuous rockchip channel.</li> <li>Each sample was given a unique sample ID.</li> <li>All samples were photographed on top of the sample bag with the sample ID showing.</li> </ul> |
| Sub-<br>sampling<br>technique<br>and samp<br>preparati | le If non-core, whether riffled, tube                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>TNC Mt Oxide Rock Chip Sampling</li> <li>Outcrop, sub-crop, and float samples were taken using a geopick and brick hammer at the supervising geologist's discretion.</li> <li>Outcrop, and sub-crop were taken from a point source within an interval of 0.30-1.20m that is representative of the described and recorded lithology. Where possible samples were taken at intervals no less than 50.00m apart and no greater than 100.00m.</li> <li>Where inadequate outcrop was available, float samples were taken from a 2.00 x 2.00m or 5.00 x 5.00m area, where possible.</li> <li>Channel samples were taken by measuring 0.30-1.20m intervals and marking each interval and the channel with surveyor's spray paint. Chipping was completed every ~25cm within the sample interval and along the sample line.</li> <li>Channels were taken perpendicular to the strike of a mappable unit, with the aim of representing mineralisation/alteration/structural variations over the width of the sample interval.</li> </ul>                                                                                                                                                             |



| Criteria                                               | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | <ul> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Samples range between 0.5 and 3.6kg in weight.</li> <li>Field duplicates were taken by collecting a larger sample and splitting during sampling. Where there was an inability to collect enough sample (e.g., rock type, accessibility issues), duplicates were taken from directly above or below the point source of the sample coordinate location, at a rate of 3 to 4 in 100 samples.</li> <li>Certified Reference Material (CRM) materials were inserted into the sampling sequence at a rate of 4 or 4.6 in 100.</li> <li>Coarse Blanks were inserted into the sampling sequence at a rate of 3 or 4 in 100.</li> <li>Sample preparation was undertaken by ALS Mt Isa, an ISO certified contract laboratory.</li> <li>ALS preparation codes for analyses was PREP-31Y.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Quality of<br>Assay data<br>and<br>laboratory<br>tests | <ul> <li>The nature, quality and<br/>appropriateness of the assaying and<br/>laboratory procedures used and<br/>whether the technique is considered<br/>partial or total.</li> <li>For geophysical tools, spectrometers,<br/>handheld XRF instruments, etc, the<br/>parameters used in determining the<br/>analysis including instrument make<br/>and model, reading times, calibrations<br/>factors applied and their derivation,<br/>etc.</li> <li>Nature of quality control procedures<br/>adopted (e.g. standards, blanks,<br/>duplicates, external laboratory<br/>checks) and whether acceptable<br/>levels of accuracy (i.e. lack of bias)<br/>and precision have been established.</li> </ul> | <ul> <li>TNC Mt Oxide Rock Chip Sampling</li> <li>Samples were photographed on top of the sample bag with the sample number displayed.</li> <li>QAQC analytical standards were photographed, with the Standard ID removed before placement into sampling bags.</li> <li>Samples have been submitted to Australian Laboratory Services (ALS) an ISO certified contract laboratory in Mt Isa.</li> <li>Sample preparation comprised of drying, crushing and pulverisation prior to analysis (PREP-31Y).</li> <li>Samples were submitted for multi-element analysis by ME-ICP61 comprising a near total 4 Acid Digestion with ICP-AES finish for 34 elements: Ag, AI, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, TI, U, V, W &amp; Zn.</li> <li>ALS quality control procedures include blanks, standards, pulverisation repeat assays, weights and sizings.</li> <li>Standards</li> <li>All the assay values charted for batches (MI24183396 and MI24183121) were within 2 and 3 standard deviations (SD) except for Ag, which returned values slightly outside 3SD - 70% of OREAS520 Ag returned slightly above the 3SD high values (0.58ppm), between 0.6 and 0.8ppm. These values are very low level and considered acceptable since the expected value for Ag in OREAS520 is lower than the detection limit, and precision decreases at low level. Additionally, of the 3 OREAS908 samples in batch MI24183121, two returned Ag slightly above 3SD by just 0.01ppm. These samples were proceeded by samples with Ag (0.89 to 2.3ppm) and it could be that they have picked up some contamination from the previous samples at the analytical stage. Since the difference is not material, the sample analysis is deemed acceptable.</li> </ul> |



| Duplicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Batch MI24183396: The Au, Ag and Co results for all of the duplicates come back within tolerance of 30%, e for one duplicate showing 50% Co variance. This is considered acceptable as they are very low-level samples (5ppm vs 10ppm). This variation can also be attributed to the mineralization style.</li> <li>Batch MI24183121: All Ag and some of the Co and Cu values of the field duplicates returned variance within difference. In contrast, 37% of the Co and Cu solves of the field duplicates returned variance within difference. In contrast, 37% of the Co and Cu solves of the field duplicates returned variance within difference. In contrast, 37% of the Co and Cu solves of the field duplicates returned variance within difference is amples. This is attributed to the asymmetrical mineralization style and the subsequent difference samples taken – e.g., slight difference in oxidation and alteration. This variation at low levels is expected and considered satisfactory for the reporting of rock chip exploration results.</li> <li>Coarse blanks</li> <li>Batch MI24183399: All the pulp blanks returned results under the max expected value for all elements reviewed. All coarse blanks also returned Ag and Co under the max expected value; however, half of the coarse blanks exceeded the max expected value of Cu, and they were proceeded by high level Cu samples (0.2 to 1.38% Cu They were all considered acceptable as the variance was not material compared to the surrounding grade.</li> <li>Batch MI24183121: Both the coarse and pulp blanks returned results under the max expected value for all elements reviewed.</li> <li>Insertion rates</li> <li>Both blatches have met the recommended insertion rate for all standards, blanks, and duplicates.</li> </ul> |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Criteria                   | JORC Code Explanation                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                   |              |             |                                                                                  |                                                           |             |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|--------------|-------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|-------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dispatch # Lab Batch # | Insertion rate per 100 samples    |              |             |                                                                                  |                                                           |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                  | Dispatch #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | Analytical<br>standards<br>(CRMs) | Coarse Blank | Pulp Blanks | Field<br>duplicates                                                              | #orig                                                     | #Orig+QC    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                          |                                                                                                                                                                                                                  | TNR0133300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MI24183121             | 4.1                               | 4.1          | 1           | 4.1                                                                              | 193                                                       | 219         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                  | TNR0133519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MI24183396             | 4.62                              | 3.07         | 1.54        | 3.1                                                                              | 195                                                       | 219         |  |  |
| <ul> <li>Verification of sampling and assaying</li> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, and data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> <li>TNC Mt Oxide Mapping</li> <li>Data was recorded using a combination of field notebook and Discover Mobile. Data was entre Excel spreadsheets daily.</li> <li>Mapping was completed by a suitably qualified geologist.</li> <li>Geological interpretation and mapping points reported here have been verified by a supervisin the inherent weathering process of outcropping lithologies, mineral identification was not alway the inherent weathering and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> <li>GPS data was recorded using a Garmin GPSMAP 66i and transferred into a Microsoft Excel spreaudancy (RAID), onsite and offsite backups (via tape and cloud backup). These servers are FortiGate Firewall's with IPS/IDS, least privilege access, regular security patching and proactivincluding regular audits by a consultant IT team.</li> </ul> |                            |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                   |              |             | ervising geolo<br>t always pos<br>cel spreadsh<br>Resilio Conne<br>rs are protec | ogist. Due to<br>sible.<br>eet daily.<br>ect),<br>ted via |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Location of<br>data points | <ul> <li>Accuracy and quality of surveys used<br/>to locate drill holes (collar and down-<br/>hole surveys), trenches, mine<br/>workings and other locations used in<br/>Mineral Resource estimation.</li> </ul> | <ul> <li>The grid system used is GDA94 datum and MGA Zone 54 map projection for easting/northing/F</li> <li>Discover Mobile and Garmin GPSMAP 66i was used to record observation and sample points with the second second</li></ul> |                        |                                   |              |             |                                                                                  |                                                           | accuracy of |  |  |



| Criteria                                                            |   | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | • | Specification of the grid system used.<br>Quality and adequacy of topographic<br>control.                                                                                                                                                                                                                                                                                                           | <ul> <li>Topography information in relation to Mt Oxide was carried out in 1992 by Mr David Turton of AAM Surveys PTY<br/>LTD. David Turton digitised contours from aerial photography dated October 1989. It references M H Lodewyk P/L<br/>who supplied the vertical datum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       |
| Data spacing<br>and<br>distribution                                 | - | Data spacing for reporting of<br>Exploration Results.<br>Whether the data spacing and<br>distribution is sufficient to establish<br>the degree of geological and grade<br>continuity appropriate for the Mineral<br>Resource and Ore Reserve estimation<br>procedure(s) and classifications<br>applied.<br>Whether sample compositing has<br>been applied.                                          | <ul> <li>TNC Mt Oxide Mapping</li> <li>Data spacing is variable due to the inherent irregular nature of outcrops and is determined by the supervising geologist.</li> <li>TNC Mt Oxide Rock Chip and Channel Sampling</li> <li>Data spacing is variable due to the inherent irregular nature of outcrops and is determined by the supervising geologist.</li> <li>Data spacing is variable due to the inherent irregular nature of outcrops and is determined by the supervising geologist.</li> <li>Samples are taken at intervals no less than 50.00m apart and no greater than 100.00m.</li> <li>For channel sampling a sample is taken at 0.30-1.20m intervals.</li> </ul> |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | - | Whether the orientation of sampling<br>achieves unbiased sampling of<br>possible structures and the extent to<br>which this is known, considering the<br>deposit type.<br>If the relationship between the drilling<br>orientation and the orientation of key<br>mineralised structures is considered<br>to have introduced a sampling bias,<br>this should be assessed and reported<br>if material. | <ul> <li>TNC Mt Oxide Mapping</li> <li>Structural analyses of bedding, folding and faults have been conducted using compass data obtained during field mapping.</li> <li>TNC Mt Oxide Rock Chip Sampling</li> <li>Rock chip sampling is conducted perpendicular to strike of targeted structures or outcrops, as determined by the supervising geologist and assisted by GPS and GIS polygons.</li> <li>Channel sampling is conducted perpendicular to the strike of mappable beds or outcrops where possible.</li> </ul>                                                                                                                                                      |



| Criteria           |   | JORC Code Explanation                                                 |   | Commentary                                                                                                                                                                                                     |
|--------------------|---|-----------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>security | • | The measures taken to ensure sample security.                         | • | Sample security protocols adopted by TNC are documented. TNC site personnel with the appropriate experience and knowledge manage the chain of custody protocols for rock chip samples from site to laboratory. |
| Audits or reviews  | • | The results of any audits or reviews of sampling techniques and data. | • | No audits or reviews undertaken.                                                                                                                                                                               |



# Section 2. Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement<br>and land<br>tenure status | <ul> <li>Type, reference name/number,<br/>location and ownership including<br/>agreements or material issues with<br/>third parties such as joint ventures,<br/>partnerships, overriding royalties,<br/>native title interests, historical sites,<br/>wilderness or national park and<br/>environmental settings.</li> <li>The security of the tenure held at the<br/>time of reporting along with any<br/>known impediments to obtaining a<br/>licence to operate in the area.</li> </ul> | <ul> <li>Mt Oxide</li> <li>EPM 10313 is an amalgamation of EPM's 6085, 6086 and 8277 which were applied for by BHP on behalf of a joint ventures (JV) with Perilya Mines NL.</li> <li>EPM 10313 "Mt Oxide" was granted to Perilya Mines NL (30%) and BHP Minerals Pty Ltd (70%) in 1994.</li> <li>In May 1996 Perilya Mines NL transferred its 30% interest in the JV to Freehold Mining, a wholly owned subsidiary of Perilya Mines NL.</li> <li>In September 1997, BHP withdrew from the JV and Freehold Mining acquired 100% interest in the permit.</li> <li>In July 2003, Western Metals Copper Limited acquired a 60% share in the permit, however this was subsequently returned to Freehold Mining Limited in April 2004.</li> <li>In July 2008 100% interest the EPM was transferred to Perilya Mining PTY LTD from Freehold Mining. In February 2009 it was transferred to Mount Oxide PTY LTD and wholly owned subsidiary of Perilya Mines NL. Mount Oxide PTY LTD are the current (100%) holders of the Permit.</li> <li>In June 2023 100% of the license was transferred from Perilya Resources to TNC.</li> <li>EPM 14660 was originally granted to Freehold Mining Limited a subsidiary of Perilya Limited on 3 January 2006 over a total area of 33 sub blocks. Freehold Mining Limited subsequently changed their name to Mount Oxide Pty Ltd. The tenement was reduced to 27 sub blocks on 2 January 2008 and then to 9 sub blocks on 2nd January 2009.</li> <li>Mount Oxide Pty Ltd, (on behalf of Perilya Limited) relinquished 2 sub-blocks on 1st November 2013 and a further 4 sub-blocks on 30th July 2014. After relinquishments the total of remaining sub-blocks now stands at 3 covering an area of 9.71 km<sup>2</sup>.</li> <li>In June 2023 100% of the license was transferred from Perilya Resources to TNC.</li> </ul> |



| Criteria                 | JORC Code explanation                               | Commentary                                                                                                                                                                            |
|--------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exploration              | <ul> <li>Acknowledgment and appraisal of</li> </ul> | Mt Oxide Project                                                                                                                                                                      |
| done by<br>other parties | exploration by other parties.                       | Broken Hill South 1960s: Geological mapping, grab sampling, and percussion drilling.                                                                                                  |
|                          |                                                     | <ul> <li>Kennecott Exploration Australia 1964-1967: Stream sediment sampling, surface geochemical sampling, air photo<br/>interpretation and subsequent anomaly mapping.</li> </ul>   |
|                          |                                                     | <ul> <li>Kern County Land Company &amp; Union Oil Co 1966-1967: Surface geochemical sampling, geological mapping,<br/>diamond drilling.</li> </ul>                                    |
| 5                        |                                                     | <ul> <li>Western Nuclear Australia Pty Ltd 1960-1970: Airborne &amp; ground radiometrics, rock chip sampling, diamond<br/>drilling (2 holes for 237m).</li> </ul>                     |
| $\hat{D}$                |                                                     | • Eastern Copper Mines 1971-1972: Stream sediment and surface geochemical sampling, airborne magnetics and radiometrics, geological mapping, drilling of 8 holes in the Theresa area. |
|                          |                                                     | Consolidated Goldfields & Mitsubishi 1972-1973: Stream sediment and rock chip sampling, geological mapping.                                                                           |
| $\bigcirc$               |                                                     | RGC 1972-1976: Aerial photography and photogeological interpretation.                                                                                                                 |
|                          |                                                     | BHP 1975-1976: Geological mapping, surface geochemical sampling.                                                                                                                      |
|                          |                                                     | <ul> <li>BHP / Dampier Mining Co Ltd 1976: Surface geochemical sampling, geological mapping and petrography, RC drilling.</li> </ul>                                                  |
| $\bigcirc$               |                                                     | <ul> <li>Newmont 1977-1978: Surface geochemical sampling, geological mapping, diamond drilling, air photo<br/>interpretation.</li> </ul>                                              |
|                          |                                                     | Paciminex late 1970s: Geological mapping, surface geochemical sampling, ground IP.                                                                                                    |
|                          |                                                     | • AMACO Minerals Australia Co 1980-1981: Surface geochemical sampling, geological mapping, gravity survey.                                                                            |
| $\bigcirc$               |                                                     | C.E.C. Pty Ltd 1981-1982: Surface geochemical sampling.                                                                                                                               |
| 6                        |                                                     | <ul> <li>BHP 1982-1983: Geological literature review, mapping, aerial photo interpretation, stream sediment samples,<br/>962 soil samples, rock chip sampling, IP survey.</li> </ul>  |
| D                        |                                                     | W.M.C. 1985-1993: Geological mapping, surface geochemical sampling, transient EM surveys.                                                                                             |
|                          |                                                     | C.S.R. Ltd: 1988-1989: Surface geochemical sampling.                                                                                                                                  |
| 5)                       |                                                     |                                                                                                                                                                                       |



|                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    | Mentana 1990: Geological mapping, surface geochemical sampling, air photo interpretation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                    | <ul> <li>Placer Exploration Ltd 1991-1994: Surface geochemical sampling, literature reviews, stream sediment (BLEG) sampling, carbonate isotopic analyses, reconnaissance rock chip sampling and geological traversing, RC drilling (5 holes, 452.00m), one diamond hole for 134.30m, downhole EM.</li> </ul>                                                                                                                                                                                                                                                                             |
|                                                                                    | <ul> <li>BHP/Perilya JV 1995: Geological mapping, soil, and rock chip sampling, Pb isotope determinations and five (5) diamond drill holes all concentrated on the Myally Creek Prospect.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                    | <ul> <li>Western Metals 2002-2003: Diamond drilling (8 holes totalling 1332.30m), rock chip sampling, surface<br/>geochemical mapping, GeoTEM survey.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                    | <ul> <li>Perilya 2003-2023 - Between 2005 and 2011, Perilya drilled 187 diamond drill holes for a total of 49,477.00m at<br/>the Mt Oxide Vero Deposit. Drilling at the Vero Deposit culminated in two separate, but overlapping, JORC 2012<br/>Mineral resource estimations:</li> </ul>                                                                                                                                                                                                                                                                                                  |
|                                                                                    | <ul> <li>The Vero Copper-Silver mineral resource containing 'Indicated and Inferred' resources at 15.90 million tonnes<br/>at an average grade of 1.43% using a cut-off Cu grade of 0.50% Cu, with silver credits.</li> </ul>                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    | <ul> <li>The Vero Cobalt Resource contains 9.15 Mt at 0.23% cobalt at a 0.10% Co cut-off.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                    | <ul> <li>Perilya also completed a number of mapping, surface geochemical sampling, and geophysical surveys over the<br/>exploration tenement which defined multiple exploration targets some of which remain poorly tested.</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Deposit type, geological setting, and style of mineralisation.</li> </ul> | <ul> <li>Mt Oxide Project</li> <li>The Mt Oxide Project is located in the Western fold belt of the Mount Isa Inlier, a world-class metallogenic province. The host lithologies for the Mt Oxide deposit are the mid-Proterozoic sedimentary units of the McNamara Group, that are known to host other copper deposits such as Esperanza and Mammoth. At the regional scale, mineralisation is localised by a +100 km long NS oriented structural corridor, the Mt Gordon Fault Zone which is also a key structural control for localising copper-silver-cobalt mineralisation.</li> </ul> |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| Criteria                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Dominant lithologies observed are shale, siltstone, chert, fine to medium grained sandstone, quartzite, dolomite, sandy dolomite and stromatolitic dolomite. Other mapped features include gossans, false gossans. Outcrop in the area is abundant.</li> <li>Dominant structures observed are bed parallel shear and brittle faulting, varying from undifferentiated fractures zones to rubble cataclasite. Faults express silica and hematite alteration of variable intensity.</li> <li>Copper mineralisation at surface is dominated by malachite, azurite, chrysocolla, tenorite, and cuprite. The mineralisation varies from sooty joint coating to fracture fill in breccia and shear zones. Mineralisation typically occurs where two faults interact.</li> <li>Lithologies observed hosting mineralisation are siltstone, sandstone, dolomitic sandstone and quartzite.</li> <li>Mineralisation is associated with extensive development of hematite replacement and breccia development.</li> <li>The areas of interest for mapping and rock chip sampling are defined by the NE striking Dorman fault, the EW striking Cave Creek fault, the regional scale NS striking Mount Gordon Fault Zone and NW-SE orientated folding.</li> </ul> |
| Drill hole<br>Information | <ul> <li>A summary of all information<br/>material to the understanding of the<br/>exploration results including a<br/>tabulation of the following<br/>information for all Material drill<br/>holes:         <ul> <li>easting and northing of the drill<br/>hole collar</li> <li>elevation or RL (Reduced Level<br/>- elevation above sea level in<br/>metres) of the drill hole collar</li> </ul> </li> </ul> | Drilling is not reported in this announcement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| ASX. | ты | С |
|------|----|---|
| ASA. |    | U |

| Criteria                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                        |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | <ul> <li>dip and azimuth of the hole</li> <li>down hole length and<br/>interception depth</li> <li>hole length.</li> <li>If the exclusion of this information is<br/>justified on the basis that the<br/>information is not Material and this<br/>exclusion does not detract from the<br/>understanding of the report, the<br/>Competent Person should clearly<br/>explain why this is the case</li> </ul>                                                                                 |                                                                                                                                                                                                                                                                                                                                   |
| Data<br>aggregation<br>methods | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> </ul> | <ul> <li>Compositing of channel samples was undertaken where anomalous Cu is continuous and does not include more than 1.50m of &lt;0.10% Cu within the total composite.</li> <li>The composites are reported as weighted averages according to sample interval length as part of the total composite interval length.</li> </ul> |



| Criteria                                                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                       |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                      | <ul> <li>The assumptions used for any<br/>reporting of metal equivalent values<br/>should be clearly stated.</li> </ul>                                                                                                                                                                                                                                                                                                                                    |                                                                                  |
| $\bigcirc$                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
| (D)                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
| Relationship<br>between<br>mineralisatio<br>n, widths<br>and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., down hole length, true width not known').</li> <li>Appropriate maps and sections</li> </ul> | Drilling is not reported in this announcement.                                   |
| Diagrams                                                                             | <ul> <li>Appropriate maps and sections (with<br/>scales) and tabulations of intercepts<br/>should be included for any significant</li> </ul>                                                                                                                                                                                                                                                                                                               | <ul> <li>See Figures 1, 2 &amp; 4.</li> <li>See Tables 2,3,4 &amp; 5.</li> </ul> |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | discovery being reported These<br>should include, but not be limited to<br>a plan view of drill hole collar<br>locations and appropriate sectional<br>views.                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Balanced<br>Reporting                       | <ul> <li>Where comprehensive reporting of all<br/>Exploration Results is not<br/>practicable, representative reporting<br/>of both low and high grades and/or<br/>widths should be practiced to avoid<br/>misleading reporting of Exploration<br/>Results.</li> </ul>                                                                                                                                                                             | <ul> <li>Drilling is not reported in this announcement.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Other<br>substantive<br>exploration<br>data | <ul> <li>Other exploration data, if meaningful<br/>and material, should be reported<br/>including (but not limited to):<br/>geological observations; geophysical<br/>survey results; geochemical survey<br/>results; bulk samples – size and<br/>method of treatment; metallurgical<br/>test results; bulk density,<br/>groundwater, geotechnical and rock<br/>characteristics; potential deleterious<br/>or contaminating substances.</li> </ul> | <ul> <li>True North Copper Limited. ASX (TNC): ASX Announcement 16 June 2023: Prospectus.</li> <li>True North Copper Limited. ASX (TNC): ASX Announcement 28 February 2023: Acquisition of True North Copper Assets.</li> <li>True North Copper Limited. ASX (TNC): ASX Announcement 6 July 2023: Mt Oxide Project – First drill hole into Vero intersects multiple wide zones of visually impressive copper mineralisation.</li> <li>True North Copper Limited. ASX (TNC): ASX Announcement 10 August 2023: TNC intersects 66.5m at 4.95% Cu in first drillhole at Vero Resource, Mt Oxide.</li> <li>True North Copper Limited. ASX (TNC): ASX Announcement 20 September 2023: TNC drilling returns up to 7.65% Cu, confirms large-scale high-grade copper, silver and cobalt mineralisation at Vero, QLD.</li> <li>True North Copper Limited. ASX (TNC): ASX Announcement 23 October 2023: TNC intersects exceptional visual copper mineralisation at Vero, Mt Oxide.</li> <li>True North Copper Limited. ASX (TNC): ASX Announcement 29 November 2023: TNC 69.95m @ 1.91% Cu &amp; 16.75m @ 5.3% Cu, Vero.</li> </ul> |



| Criteria     | JORC Code explanation                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| al use on r  |                                                                                                                                                                        | <ul> <li>True North Copper Limited. ASX (TNC): ASX Announcement 22 February 2024: TNC 2024 Exploration Program.</li> <li>True North Copper Limited. ASX (TNC): ASX Announcement 18 March 2024: Camp Gossans, Mt Oxide Priority Exploration Target - rock chips return strongly anomalous copper, 1.2km along strike from Vero.</li> <li>True North Copper Limited. ASX (TNC): ASX Announcement 5 April 2024: Mt Oxide leading edge geophysics awarded \$300k Collaborate Exploration Initiative Grant.</li> <li>True North Copper Limited. ASX (TNC): ASX Announcement 9 August 2024: True North Copper Updates Vero Copper-Silver Resource.</li> <li>True North Copper Limited. ASX (TNC): ASX Announcement 22 August 2024: Geophysical survey highlights growth opportunities for Mt Oxide Project.</li> </ul> |
| Further work | <ul> <li>The nature and scale of planned<br/>further work (e.g. tests for lateral<br/>extensions or depth extensions or<br/>large-scale step-out drilling).</li> </ul> | <ul> <li>Future work along the Dorman Fault Mineral System at Mt Oxide includes:</li> <li>Targeted infill rock chip and channel sampling.</li> <li>Geophysical survey redesign and acquisition.</li> <li>Target prioritisation drill design and access permitting.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| Criteria | JORC Code explanation                                                                                                                                                                                                                     | Commentary |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|          | <ul> <li>Diagrams clearly highlighting the<br/>areas of possible extensions,<br/>including the main geological<br/>interpretations and future drilling<br/>areas, provided this information is<br/>not commercially sensitive.</li> </ul> |            |

5 SEPTEMBER 2024