ASX RELEASE.

6 August 2024

St George to acquire advanced high-grade Araxa Niobium Project in world's leading niobium producing address

Acquisition propels St George onto global niobium stage

Highlights

- **Binding Agreement:** St George has entered into a binding conditional agreement to acquire 100% of the Araxá niobium-REE Project in Minas Gerais, Brazil (the "Project")
- World class location: The Project is immediately adjacent to, and within the same carbonatite complex as, the niobium mine of CBMM that produces approximately 80% of the world's niobium
- **High-grade mineralisation:** Historical drilling at the Project has defined extensive high-grade niobium, REE and phosphate mineralisation with:
 - \circ More than 500 intercepts of high-grade niobium, >1% Nb₂O₅
 - $\circ~$ Ultra-high grades up to 8% Nb_2O_5, 33% TREO and 32% P_2O_5
 - Mineralisation commencing from surface and open in all directions
- **Strong foundation to deliver resource:** Outstanding opportunity for St George to define a globally significant niobium-REE resource
- Enviable development potential: Located in an established mining district with existing infrastructure (roads and power), proven route to market and access to workforce
- **Capital raising locked-in:** St George has received firm commitments from investors to raise new funds of \$21.25 million for application towards acquisition costs, exploration expenses and working capital

St George Mining Limited (ASX: SGQ) ("St George" or "the Company") is pleased to announce that it has entered into a binding conditional agreement to acquire all the issued capital of Itafos Araxá Mineracao E Fertilizantes S.A ("Itafos Araxá") which owns 100% of the advanced niobium-REE Araxá Project in Minas Gerais, Brazil ("Araxá" or "the Project"). The closing of the transaction is subject to the completion (or waiver) of certain conditions by November 3, 2024.

Drilling by previous explorers at the Project has confirmed significant niobium and rare earths element (**REE**) mineralisation – see Tables 1, 2 and 3.

Hole ID	From (m)	To (m)	Interval (m)	Nb ₂ O ₅ %
AAX-DD-007	surface	14	14	2.9
including	1	6	5	3.6
AAX-DD-008	1	12	11	2.8
including	4	11	7	3.3
AAX-DD-009	surface	20	20	2.4
including	2	12	10	3.2
AAX-DD-017	4	37	33	2.1
including	20	23	3	3.3
AAX-DD-022	2	15	13	2.7
including	3	13	10	3
AAX-DD-036	5	16	11	3
including	6	8	2	4
AAX-DD-045	surface	43	43	1.5
and	46	51.4	5.4	2.6
including	49	50	1	6.2
AAX-DD-059	20	33	13	2.8
including	26	27.2	1.2	8.3

Table 1: Historical high-grade niobium drill intercepts at Araxá include (cut-off grade of 1% Nb₂O₅)¹:

The intercepts in Tables 1 and 2 have been selected to demonstrate, respectively, the outstanding prospectivity for near-surface high-grade niobium and TREO mineralisation at the Project. For a full list of significant historical drill results, see Table 3 at the end of this ASX Release.

The historical drill results use categories of mineralisation consistent with those defined in the 2012 JORC Code. These results confirm the presence of high-grade niobium and REE mineralisation, providing St George with a strong platform to expand the mineralised footprint at the Project with further drilling.

¹ Based on historical drill results from the periods 2004 to 2008 and 2011 to 2012. For a full list of drill results, see Table 3.

Hole ID	From (m)	To (m)	Interval (m)	TREO %
ΙΧVΚ7	surface	60	60	11.1
including	27.5	57.5	30	16.9
25XVK85	15	60	45	14.4
including	40	47.5	47.5 7.5	
AAX-DD-008	surface	urface 17 17		14.6
including	4	11	7	23
AAX-DD-009	surface	29	29	10.3
including	2	12	10	19.9
AAX-DD-014A	surface	10	10	14.7
including	4	10	6	20
AAX-DD-019	surface	58.2	58.2	5.5
including	surface	12	12	7.1
AAX-DD-025	surface	59.4	59.4	4.9
AAX-DD-030	surface	43	43	6.8
including	10	14	4	15.3

Table 2: Historical high-grade TREO drill intercepts at Araxá include (cut-off grade of 2% TREO)²:

John Prineas, St George Mining's Executive Chairman, said:

"The Araxá Project is located in the world's 'dress circle' for niobium production and presents a tremendous opportunity for St George to become a global player in the niobium market.

"Extensive high-grade niobium mineralisation has already been discovered at the Project – with more than 500 intercepts of niobium grades above 1% – providing a strong foundation for St George to quickly progress to potential resource definition. In addition to niobium, high-grade rare earths mineralisation has been confirmed by drilling over a widespread area.

"The high-grade mineralisation commences at surface and is open in all directions, with excellent prospects to substantially expand the known mineralised footprint. Significantly, less than 10% of the project area has been effectively drilled and there has been limited drilling beyond 50m from surface.

"Together with abundant high-grade mineralisation, the Project's strength is its location in an established mining district with potential to access infrastructure and labour – factors that are favourable for near-term development potential. CBMM's flagship niobium mine abuts the south-east border of our Project, while Mosaic's world-class phosphate mine is immediately to the south-west of our Project.

² Based on historical drill results from the periods 2004 to 2008 and 2011 to 2012. For a full list of drill results, see Table 3.

"Minas Gerais is a first-class mining jurisdiction and we are excited to be adding such a high-quality project in Brazil to our attractive exploration portfolio of critical minerals projects in Western Australia.

"We are delighted with the strong investor support for the Araxá acquisition with firm commitments received for our \$21.25 million fund raising. This provides St George with a strong platform to leverage the advanced status of the Project and continue on the path to being a globally significant player in the niobium and rare earths sector.

"We also look forward to welcoming Itafos Inc (TSX-V: IFOS), a global fertiliser company and the vendor of the Araxá Project, as a new and substantial shareholder of St George on completion of the acquisition."

Location and Infrastructure

The Araxá Project is located 5km south of the town of Araxá, Minas Gerais State, Brazil. The town of Araxá is situated approximately 375km from the capital of this State – Belo Horizonte, the centre of mining in the State of Minas Gerais. Araxá is situated 549km from Sao Paulo and 848km from Rio de Janeiro.

The local infrastructure that may be utilised by the Araxá Project is excellent with the Project being situated 5km south of the town of Araxá and within 1km of two other mining operations. The following is available within the project area or within close proximity which could potentially be utilised by St George (i.e. within 5km of the Project):

- sealed roads to the Project and to major destinations;
- grid power;
- water borehole and mains;
- accommodation and offices available in Araxá town;
- telecommunications network coverage is available on site; and
- skilled workforce available locally from Araxá, or from Belo Horizonte.

Project Geology

The Araxá Project is located within the Barreiro Carbonatite Intrusive Complex which forms part of the Alto Paranaiba suite of alkaline carbonatites and kimberlites that were intruded along the AZ125° lineament. This lineament stretches over 2,000km from Rondonia to Rio de Janeiro.

The Barreiro Carbonatite Complex is a circular shaped intrusion with a diameter of approximately 5km. The complex intruded into the surrounding sediments (quartzites and schists) approximately 87 million years ago. This intrusion caused the doming of the existing sediments, with concentric and radial fracturing evident in the quartzites.

Mining operations have already been established in the Barriero Carbonatite, being niobium mining by CBMM³ and CODEMIG⁴ and a phosphate mine operated by The Mosaic Company.

³ Companhia Brasileira de Metalurgia e Mineração. a private company

⁴ Companhia de Desenvolvimento Econômico de Minas Gerais, a company owned by the State of Minas Gerais

Figure 1 - Aerial view of the Barreiro carbonatite complex showing St George's Araxá Project as well as the adjacent CBMM niobium mine and the Mosaic phosphate mine.

The subsequent erosion and weathering of the carbonatite complex in a tropical climate has formed a deep saprolitic profile. The leaching associated with the formation of the saprolitic profile has resulted in the enrichment of the REEs, niobium and phosphates present into high-grade concentrations.

The host mineral for niobium at Araxá is pyrochlore, and the host mineral for REEs is monazite.

There has been no previous mining operation at the Araxá Project.

Previous Exploration

ST**GEORGE**

MINING LIMITED

Historical exploration within the area of the Araxá Project is known to have occurred since 1965. Known historical exploration includes:

1965 to 1974:

Exploration by the Brazilian government under the auspices of the DNPM⁵ and by CBMM and Canopus Holding SA (Canopus). Exploration included the drilling and sampling of 24 diamond boreholes and the excavation and sampling of 59 pits.

⁵ Departamento Nacional de Produção Mineral

2004 to 2008:

Exploration was conducted by Extramil and Companhia Industrial Fluminense (CIF) within the Project boundary. Exploration included the drilling and sampling of 11 diamond boreholes and 31 auger holes.

2011 to 2012:

Exploration By Itafos (previously called MBAC Fertilizer Corp) which included mapping, topographical surveys, 36 auger drillholes and 67 diamond core drillholes. Itafos also completed preliminary metallurgical testwork and resource estimates.

Figure 2 – section showing high-grade niobium intercepts (cut-off grade 1% Nb₂O₅).

Drill core:

All diamond core for the Araxá Project is stored at a core storage facility near Araxá town. A pilot plant used by Itafos for preliminary metallurgical testwork is also held at the core storage facility.

The drilling and sampling techniques for recent drill programs are well documented and appropriate for the relevant stage of exploration with appropriate QAQC protocols employed. See the attached JORC Table 1 for further details. There are no more recent estimates or data relevant to the reported mineralisation available to St George.

Historical exploration has identified enriched mineralisation to a depth of 80m from surface. Mineralisation is open ended in all directions including at depth. The diamond drilling to date suggests that the base of weathering is at around 100m below surface, however further drilling is required to confirm this and to test the variability to the base of weathering.

A list of historical drill results is contained in Table 3.

Figure 3 – plan view map of the project area showing the limited drilling to date, highlighting the potential for further drilling to delineate additional mineralisation (cut-off grade 1% Nb₂O₅).

Forward Work Plan

On completion of the acquisition of the Araxá Project, St George intends to undertake a diamond drill program focused on further confirmation of historical drill results, exploration along strike of known high-grade mineralisation and testing the depth extent of mineralisation.

This inaugural drill programme will comprise up to 5,000m of diamond drilling and will commence as soon as practicable after drilling approvals and land access arrangements are finalised. Funding for the drill programme will be provided from the capital raising to be approved by a shareholder meeting expected to be held in mid to late September 2024 – see section below on **Fund Raising** for further details.

Results from the new drilling together with historical results will be used to complete a mineral resource estimate in accordance with the 2012 JORC Code. Delivery of the JORC compliant MRE is targeted for H1 2025.

The inaugural drill program will also provide bulk samples for metallurgical studies to further identify the metallurgical properties of the Araxá mineralisation and assess optimal processing methods for a potential mining operation.

Further drill programs to fully scope the extent of mineralisation at the Project area will be planned after a review of results from the initial program.

Environmental and geotechnical studies have already been commenced by Itafos with Walm Engenharia – a leading geotechnical and environmental engineering firm in Brazil, and will be continued by St George.

Due Diligence

St George has undertaken the usual type of due diligence for the acquisition of the Araxá Project including searches to confirm the vendor's ownership of the project tenements and the status of those tenements, review of project information including previous exploration and assessment of any material risks.

St George engaged Brazilian-based technical consultants, GE21 Consultoria Mineral, to assist with technical due diligence on the Araxá Project. GE21 has experience across the entire mining cycle from geological assessment, mineral exploration, project development, resource estimation including under JORC and CIM NI43-101, technical audits and economic feasibility studies. The Competent Person in regard to the historical results for the Araxá Project is employed by GE21.

Legal due diligence in Brazil was completed by FFA Legal, a leading mining-focused law firm based in Belo Horizonte.

Steinepreis Paganin, Perth acted as Australian lawyers to St George in regard to the acquisition and capital raising.

Acquisition Terms

The three permits comprising the Araxá Project are held by Itafos Araxá Mineracao E Fertilizantes S.A ("Itafos Araxá"), a subsidiary of Itafos Inc ("Itafos").

St George has entered into a binding conditional agreement ("Agreement") with Itafos whereby Niobium Dragon Pty Limited ("Dragon"), a subsidiary of St George, will acquire all issued shares of Itafos Araxá ("Transaction").

Under the terms of the Agreement, St George will make a cash payment to Itafos of USD\$10,000,000 at closing of the Transaction and will make deferred cash payments of USD\$6,000,000 nine months after closing, and USD\$5,000,000 18 months after closing (collectively, the "Deferred Payments"). As a condition to closing of the Transaction, St George, its wholly owned subsidiaries, and Itafos Araxá will also grant security over their assets to Itafos to secure the Deferred Payments. Additional equity raisings or debt financing will be arranged in the future to fund the Deferred Payments. The Board is assessing a number of options in respect of potential equity and debt financing arrangements.

Upon closing of the Transaction, St George will also issue to Itafos: (a) ordinary shares of St George ("SGQ Shares") representing 10% of St George's outstanding share capital immediately following closing; (b) 9,999,990 options to acquire SGQ Shares at an exercise price of AUD\$0.05, expiring three years from the date of issue; and (c) 11,111,100 performance rights, convertible into SGQ Shares for no additional consideration upon satisfaction of (i) the closing of the Transaction and (ii) St George reporting an Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC") compliant inferred resource of no less than 25Mt @ 3.5% total rate earth oxide ("TREO") at a cut-off of 2% TREO within five years from the date of issue. The issue of the SGQ Shares, options and performance rights are subject to receipt of shareholder approval.

The closing of the Transaction is subject to the completion (or waiver) of certain conditions by 3 November 2024 including: St George undertaking a capital raise of at least AUD\$20,000,000; St George receiving approval of its shareholders for the transactions contemplated by the Agreement; the parties executing and registering certain security documents to grant security to Itafos over the assets of St George and Itafos Araxá until such time as the Deferred Payments have been received by Itafos; and if required, Itafos obtaining the approval of the TSX-V in accordance with TSX-V Policy 5.3 – Acquisition and Disposition of Non-Cash Assets.

Additionally, in the event that St George fails to make a Deferred Payment within five business days of its due date, Itafos will be granted a call option whereby it may acquire the shares of Itafos Araxá for consideration of USD\$1.00 in lieu of having to enforce its security over the assets of St George and its wholly owned subsidiaries (including Itafos Araxá).

The Transaction is expected to close in late September 2024/early October 2024, following a general meeting of St George shareholders in mid to late September 2024 at which approval for the matters contemplated by the Agreement will be sought (the "EGM").

The Agreement is otherwise on terms considered standard for an agreement of this nature, including representations and warranties, indemnities and confidentiality provisions.

Fund Raising

St George is pleased to confirm that it has received firm commitments for a placement of shares to raise AUD\$21,250,000 via the issue of 850,000,000 ordinary shares of the Company to institutional and sophisticated investors at an issue price of \$0.025 (the "Placement").

The Placement will be completed in two tranches:

- Tranche 1: the placement of 100,000,000 shares at \$0.025 per share under the Company's Listing Rule 7.1 capacity.
- Tranche 2: the placement of 750,000,000 shares at \$0.025 per share subject to approval at the EGM.

GBA Capital Pty Ltd ("GBA") acted as lead manager and bookrunner to the Placement, and will receive a cash fee equal to 6% of the proceeds raised by GBA plus 20,000,000 options to acquire St George shares at an exercise price of AUD\$0.05, expiring three years from the date of issue (the "Options"), subject to receipt of shareholder approval which will also be sought at the EGM.

Funds raised under the Placement will be used for: payment of USD\$10,000,000 on closing of the Transaction, St George's inaugural drill program at Araxá and working capital including costs relating to acquisition completion.

St George will also issue shares and options on closing of the Transaction as follows as payment for services in connection with the Transaction:

- 112,500,000 ordinary shares as an introduction fee, payable to Orchid Capital Mining Pte Ltd;
- 40,000,000 ordinary shares and 40,000,000 options (on the same terms as the Options) as advisory fees, and 30,000,000 options (on the same terms as the Options) as a placement marketing fee, payable to Cong Ming Limited.

The issue of the shares to Orchid Capital Mining Pte Ltd and the shares and options to Cong Ming Limited are subject to receipt of shareholder approval, which will also be sought at the EGM.

Further payments as introduction fees will be paid by St George as follows:

- US\$900,000 at the same time as the first Deferred Payment is paid to Itafos; and
- US\$750,000 at the same time as the second Deferred Payment is paid to Itafos.

Performance rights up to 100,000,000 may also be issued to directors and employees of St George (subject to receipt of shareholder approval). The milestones for the Performance rights are: (i) the closing of the Transaction: and (ii) St George reporting an Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC) compliant inferred resource of no less than 25Mt @ 3.5% total rate earth oxide ("TREO") at a cut-off of 2% TREO within five years from the date of issue.

The effect of the Transaction on the capital structure of SGQ is set out in Appendix A.

Authorised for release by the Board of St George Mining Limited.

John Prineas Executive Chairman St George Mining +61 411 421 253 john.prneas@stgm.com.au Peter Klinger Media and Investor Relations Purple +61 411 251 540 pklinger@purple.au

Appendix A

	SGQ Shares	Listed SGQ Options	Unlisted SGQ Options	SGQ Performance Rights	Totals
Current issued capital	988,540,432	39,188,238	49,224,209	21,500,000	1,098,452,879
Placement (subject to St George shareholder approval) ¹	750,000,000	-	-	-	750,000,000
Placement (LR 7.1 capacity) ¹	100,000,000		-	-	100,000,000
Sales agent SGQ Shares ^{2(a)}	112,500,000	-	-	-	112,500,000
Adviser Options and SGQ Shares ^{2(b)}	40,000,000	-	40,000,000	-	80,000,000
Broker Options ^{2(c)}	-	-	50,000,000	-	50,000,000
Director/employee SGQ Performance Rights ^{2(d)}	-	-	-	100,000,000	100,000,000
Total Equity	1,991,040,432	39,188,238	139,224,209	121,500,000	2,290,952,879
Consideration Shares ³	221,226,715	-	-	-	221,226,715
Consideration Options ³	-		9,999,990	-	9,999,990
Consideration Performance Rights ³	-	-	-	11,111,100	11,111,110
Total	2,212,267,147	39,188,238	149,224,199	132,611,100	2,533,290,684

750,000,000 shares subject to receipt of shareholder approval at the EGM, 100,000,000 shares to be issued under the Company's current Listing Rule 7.1 placement capacity. Shares to be issued at \$0.025 per share to raise a total of AUD\$21,500,000.

Subject to the approval of SGQ Shareholders, St George will issue:

- (a) 112,500,000 SGQ Shares to Orchid Capital Mining Pte Ltd, a sales agent, in consideration for facilitating the Transaction;
- (b) 40,000,000 SGQ Shares and 40,000,000 SGQ Options with an exercise price equal to AUD\$0.05 and an expiry date of three (3) years from the date of issue, to its corporate adviser, Cong Ming Limited (Adviser Options);
- 20,000,000 SGQ Options with an exercise price equal to AUD\$0.05 and an expiry date of three (3) years from (c) the date of issue, to GBA and 30,000,000 of the same Options to Cong Ming Limited; and
- (d) 100,000,000 SGQ Performance Rights to its directors and/or senior employees, convertible into SGQ Shares upon satisfaction of both:
 - ١. completion of the Acquisition; and
 - П. St George reporting a JORC compliant inferred resource of no less than 25Mt @ 3.5% TREO at a cut-off of 2% TREO within five years from the date of issue.
- (e) Consideration securities to be issued for the Transaction (all of which are subject to receipt of SGQ Shareholder approval).

Competent Person Statement:

The information in this ASX Release that relates to historical and foreign results is based upon, and fairly represents, information and supporting documentation reviewed by Mr. Carlos Silva, Senior Geologist employed by GE21 Consultoria Mineral and a Competent Person Person who is a Member of The Australasian Institute of Mining and Metallurgy.

GE21 an independent consultancy engaged by St George Mining Limited for the review of historical exploration data. Mr Silva has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Silva consents to the inclusion in this ASX Release of matters based on his information in the form and context in which it appears.

Forward Looking Statements:

This announcement includes forward-looking statements that are only predictions and are subject to known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of St George, the directors and the Company's management. Such forward-looking statements are not guarantees of future performance.

Examples of forward-looking statements used in this announcement include use of the words 'may', 'could', 'believes', 'estimates', 'targets', 'expects', or 'intends' and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of announcement, are expected to take place.

Actual values, results, interpretations or events may be materially different to those expressed or implied in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward-looking statements in the announcement as they speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, St George does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions or circumstances on which any such forward-looking statement is based.

This announcement has been prepared by St George Mining Limited. The document contains background Information about St George Mining Limited current at the date of this announcement.

The announcement is in summary form and does not purport to be all inclusive or complete. Recipients should not rely upon it as advice for investment purposes, as it does not take into account your investment objectives, financial position or needs. These factors should be considered, with or without professional advice, when deciding if an investment is appropriate.

The announcement is for information purposes only. Neither this announcement nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction. The announcement may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply to their own jurisdiction as a failure to do so may result in a violation of securities laws in such jurisdiction.

This announcement does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this announcement are not intended to represent recommendations of particular investments to particular persons.

Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments. To the extent permitted by law, no responsibility for any loss arising in any way (including by way of negligence) from anyone acting or refraining from acting as a result of this material is accepted by St George Mining Limited (including any of its related bodies corporate), its officers, employees, agents and advisers.

- Ends -

Table 3a: List of significant intercepts (cut-off grade of 1% Nb₂O₅):

HOLE ID	FROM	TO (m)	INTERV.		Nb2O5 %	TREO %	P2O5 %
AAX-DD-001	<mark>(m)</mark> 0.5	4	(m) 3.5	@	1.33	5.96	5.82
AAX-DD-001 AAX-DD-001	9	14	5	@	1.35	5.30	4.76
AAX-DD-001 AAX-DD-001	15	16.26	1.26	@	1.40	4.57	2.90
	19.7		0.95	@			
AAX-DD-001		20.65	1.5	-	1.10 1.22	4.73	2.91
AAX-DD-001 AAX-DD-001	32.25 33.95	33.75 35.5	1.5	@ @		4.63 3.22	4.57 5.80
	38	33.5		@	1.36 1.15		4.69
AAX-DD-001			1	-		4.09	
AAX-DD-001	40	41	1	@	1.27	5.60	6.23
AAX-DD-001	48.1	49.1	1	@	1.12	6.18	6.09
AAX-DD-001	52	53	1	@	1.12	3.03	5.54
AAX-DD-001	57	58	1	@	1.05	7.27	17.14
AAX-DD-001	59	60	1	@	1.28	9.68	12.08
AAX-DD-002	0	3.3	3.3	@	1.20	5.37	7.97
AAX-DD-002	5.8	7.7	1.9	@	1.30	7.59	6.06
AAX-DD-002	28	29.5	1.5	@	1.19	7.59	4.17
AAX-DD-002	46.18	47.85	1.67	@	1.38	4.19	25.58
AAX-DD-002	62.55	63.2	0.65	@	1.03	2.05	5.57
AAX-DD-002	70.65	71.1	0.45	@	1.15	6.89	5.03
AAX-DD-002	78	79.35	1.35	@	1.26	3.83	1.96
AAX-DD-002	79.8	80.35	0.55	@	3.08	5.89	4.49
AAX-DD-003	17.57	19.7	2.13	@	1.27	3.72	4.83
AAX-DD-003	20.51	21.3	0.79	@	1.68	3.12	3.55
AAX-DD-003	25	27	2	@	1.07	4.33	5.52
AAX-DD-003	28	30.45	2.45	@	1.36	3.61	4.68
AAX-DD-003	31.5	36	4.5	@	1.45	6.47	3.85
AAX-DD-003	39	41	2	@	1.33	7.45	5.33
AAX-DD-003	41.8	42.8	1	@	1.00	6.12	10.63
AAX-DD-003	59.05	59.65	0.6	@	1.21	4.23	7.27
AAX-DD-004	2.65	3.23	0.58	@	1.06	6.69	3.94
AAX-DD-004	8.65	9.33	0.68	@	1.11	4.96	4.35
AAX-DD-001	0	0.5	0.5	@	1.12	1.10	1.95
AAX-DD-004	17.18	18.35	1.17	@	3.16	2.92	2.84
AAX-DD-004	21	22.41	1.41	@	1.07	3.99	2.70
AAX-DD-004	23	24	1	@	1.41	4.19	3.19
AAX-DD-004	25.05	30	4.95	@	2.21	7.04	5.21
AAX-DD-004	26.02	27	0.98	incl.	3.02	10.67	6.58
AAX-DD-004	32.8	33.5	0.7	@	2.17	9.06	7.22
AAX-DD-005	1.07	7.49	6.42	@	2.22	7.84	9.26

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-005	4.47	5.69	1.22	incl.	4.48	14.05	12.95
AAX-DD-005	18.75	21.8	3.05	@	1.84	5.87	8.01
AAX-DD-005	23.12	24.64	1.52	@	2.06	5.48	16.65
AAX-DD-005	30	33	3	@	1.19	4.76	5.61
AAX-DD-005	35	37.94	2.94	@	1.58	5.59	6.87
AAX-DD-005	45	46	1	@	1.29	3.38	7.17
AAX-DD-006	1	3	2	@	1.05	6.06	4.74
AAX-DD-006	8	10	2	@	2.42	8.75	12.98
AAX-DD-006	19	20	1	@	1.25	3.72	4.93
AAX-DD-006	22	23	1	@	1.99	3.49	2.77
AAX-DD-006	24	25	1	@	1.26	5.79	3.71
AAX-DD-006	26	27	1	@	1.18	3.63	8.73
AAX-DD-006	29	31	2	@	1.46	5.75	6.43
AAX-DD-006	52	54	2	@	1.53	5.36	10.55
AAX-DD-006	54	55	1	@	2.11	5.22	5.16
AAX-DD-007	0	14	14	@	2.94	14.80	15.82
AAX-DD-007	1	6	5	incl.	3.59	16.46	18.91
AAX-DD-007	7	9	2	incl.	3.12	14.11	14.72
AAX-DD-007	10	11	1	incl.	3.22	15.36	8.75
AAX-DD-007	12	13	1	incl.	3.61	22.14	13.22
AAX-DD-007	16.2	18.7	2.5	@	1.39	5.57	7.04
AAX-DD-007	18.85	24	5.15	@	1.55	6.72	14.00
AAX-DD-007	25	33.45	8.45	@	2.26	8.39	13.41
AAX-DD-007	26	28	2	incl.	3.93	12.98	20.92
AAX-DD-007	34.15	35	0.85	@	1.12	3.94	4.79
AAX-DD-007	37.9	39	1.1	@	1.37	6.34	9.79
AAX-DD-007	39.2	40.55	1.35	@	2.03	4.81	8.39
AAX-DD-008	1	12	11	@	2.78	18.52	14.25
AAX-DD-008	4	11	7	incl.	3.34	23.02	14.03
AAX-DD-008	13	17.2	4.2	@	1.86	8.27	5.41
AAX-DD-008	17.55	17.8	0.25	@	1.61	4.85	1.81
AAX-DD-008	18.74	19.35	0.61	@	1.18	12.12	6.30
AAX-DD-008	21	22	1	@	1.30	4.48	6.71
AAX-DD-008	30	32	2	@	1.85	5.38	8.90
AAX-DD-008	33	37	4	@	1.45	4.41	5.24
AAX-DD-009	0	20	20	@	2.40	12.68	4.38
AAX-DD-009	2	12	10	incl.	3.21	19.91	5.66
AAX-DD-009	21	29	8	@	1.73	5.05	2.49
AAX-DD-009	35	36	1	@	1.17	3.59	4.84
AAX-DD-010	0	6	6	@	1.97	12.05	13.67

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-010	5	6	1	incl.	3.41	18.57	14.71
AAX-DD-010	8	9	1	@	1.10	3.13	3.25
AAX-DD-010	13	14	1	@	1.03	6.11	3.83
AAX-DD-010	15	16	1	@	1.22	4.21	3.67
AAX-DD-010	19	21	2	@	3.06	7.07	5.53
AAX-DD-010	19	20	1	incl.	3.45	8.97	7.08
AAX-DD-010	22	23	1	@	1.13	6.48	7.54
AAX-DD-010	26	27	1	@	1.37	6.27	9.51
AAX-DD-010	29	30	1	@	1.79	5.66	5.18
AAX-DD-010	31	34	3	@	1.61	4.35	8.88
AAX-DD-011	0	4.2	4.2	@	1.51	5.37	6.46
AAX-DD-011	4.75	7	2.25	@	1.34	4.14	3.47
AAX-DD-011	7.9	10	2.1	@	1.74	6.97	5.28
AAX-DD-011	14	15	1	@	1.03	2.95	4.49
AAX-DD-011	30	31	1	@	1.40	3.35	2.80
AAX-DD-011	39.7	41.8	2.1	@	2.00	6.56	9.55
AAX-DD-012	0	8	8	@	2.32	8.90	11.40
AAX-DD-012	5	7	2	incl.	3.26	11.33	14.23
AAX-DD-012	10	11.1	1.1	@	1.70	7.51	6.28
AAX-DD-012	13	14	1	@	1.41	7.89	5.50
AAX-DD-012	30	32	2	@	1.33	2.76	3.53
AAX-DD-012	38	39	1	@	1.18	5.93	12.26
AAX-DD-013	0	14.05	14.05	@	2.83	12.77	10.55
AAX-DD-013	4	5	1	incl.	3.63	16.23	12.70
AAX-DD-013	6	11	5	incl.	3.96	18.01	11.99
AAX-DD-013	14.4	14.8	0.4	@	1.39	7.13	5.02
AAX-DD-013	23	24	1	@	1.08	10.33	5.55
AAX-DD-013	25	26.75	1.75	@	1.24	6.44	7.96
AAX-DD-013	29.9	30.3	0.4	@	1.34	5.58	3.44
AAX-DD-014	7.1	9.05	1.95	@	2.12	11.58	16.45
AAX-DD-014	10.1	10.8	0.7	@	2.09	13.97	10.24
AAX-DD-014	12.45	15	2.55	@	1.54	7.62	5.44
AAX-DD-014	20	28.99	8.99	@	2.05	6.30	11.26
AAX-DD-014	23	24	1	incl.	4.44	8.86	4.77
AAX-DD-014	30	33	3	@	2.53	6.10	7.04
AAX-DD-014	31	32	1	incl.	3.66	7.44	5.87
AAX-DD-014	34	35.93	1.93	@	1.18	4.26	12.39
AAX-DD-014	36.35	38	1.65	@	1.17	3.18	7.71
AAX-DD-014	41	44.53	3.53	@	1.20	5.05	7.37
AAX-DD-014	47.6	48.64	1.04	@	1.12	8.83	11.34

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-014A	0	3	3	@	1.54	7.45	13.42
AAX-DD-014A	4	10	6	@	2.94	19.97	13.07
AAX-DD-014A	5	8	3	incl.	3.65	24.22	15.34
AAX-DD-015	3	16	13	@	2.48	7.68	7.65
AAX-DD-015	6	9	3	incl.	4.97	13.64	11.03
AAX-DD-015	19	26	7	@	1.34	5.33	6.00
AAX-DD-015	29	30	1	@	1.26	4.82	5.57
AAX-DD-015	32	33	1	@	1.30	6.73	4.77
AAX-DD-015	36	41	5	@	1.76	4.84	5.90
AAX-DD-015	46	47.11	1.11	@	1.90	5.27	10.15
AAX-DD-015	49	50	1	@	1.36	4.88	4.38
AAX-DD-016	0	1	1	@	1.25	6.71	11.55
AAX-DD-016	3.82	4.52	0.7	@	1.41	11.82	3.37
AAX-DD-016	6	7	1	@	1.01	7.10	3.25
AAX-DD-016	8	10	2	@	1.29	8.03	4.81
AAX-DD-016	11	13	2	@	1.32	8.36	4.30
AAX-DD-016	14	15	1	@	1.07	4.11	10.20
AAX-DD-016	16	17	1	@	1.37	8.95	13.75
AAX-DD-016	21	29	8	@	1.45	6.21	7.57
AAX-DD-016	30	31.65	1.65	@	2.30	6.95	10.78
AAX-DD-016	32.8	33.6	0.8	@	1.44	2.84	3.25
AAX-DD-016	35	36	1	@	1.20	3.95	16.20
AAX-DD-016	37	38	1	@	1.28	4.83	13.50
AAX-DD-016	43	45	2	@	1.70	4.93	12.84
AAX-DD-016	51	53	2	@	1.38	2.85	9.67
AAX-DD-016	54	56	2	@	1.47	3.70	14.09
AAX-DD-016	58	60	2	@	1.19	5.62	8.32
AAX-DD-017	4	37	33	@	2.08	10.01	10.35
AAX-DD-017	9	10	1	incl.	3.10	13.55	17.00
AAX-DD-017	12	13	1	incl.	3.10	12.86	14.39
AAX-DD-017	20	23	3	incl.	3.30	9.85	8.42
AAX-DD-017	40.6	44.9	4.3	@	1.50	3.51	8.29
AAX-DD-017	46	47	1	@	1.06	3.13	5.34
AAX-DD-017	48	50	2	@	1.33	4.44	7.21
AAX-DD-017	51	53	2	@	1.54	4.29	7.12
AAX-DD-017	54	55	1	@	1.24	2.78	11.30
AAX-DD-017	56	57	1	@	1.35	5.08	9.79
AAX-DD-018	2	8	6	@	1.68	7.44	16.06
AAX-DD-018	9	20.55	11.55	@	2.82	11.86	9.21
AAX-DD-018	9	10	1	incl.	3.10	14.87	8.53

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-018	12	14	2	incl.	3.21	15.90	9.87
AAX-DD-018	15	17	2	incl.	4.30	15.81	9.60
AAX-DD-018	20	20.55	0.55	incl.	3.45	7.71	5.36
AAX-DD-018	21.5	22.6	1.1	@	1.12	5.73	2.61
AAX-DD-018	23.2	29	5.8	@	1.71	4.95	5.84
AAX-DD-018	32	33.25	1.25	@	1.96	4.78	5.73
AAX-DD-018	37	38	1	@	1.57	5.41	5.84
AAX-DD-018	39.2	42	2.8	@	1.16	3.44	10.61
AAX-DD-018	44	46	2	@	1.35	3.43	19.61
AAX-DD-018	47	48	1	@	1.32	5.91	9.67
AAX-DD-018	49	51	2	@	1.18	3.81	6.21
AAX-DD-019	0	1	1	@	1.10	4.70	4.15
AAX-DD-019	3	11.95	8.95	@	1.87	8.24	5.55
AAX-DD-019	8	9	1	incl.	4.26	16.55	9.92
AAX-DD-019	12.95	18	5.05	@	2.58	10.79	8.55
AAX-DD-019	15	16	1	incl.	3.06	10.51	6.97
AAX-DD-019	17	18	1	incl.	3.30	8.29	8.18
AAX-DD-019	19	21	2	@	1.80	7.20	6.10
AAX-DD-019	22	23	1	@	1.04	5.33	19.66
AAX-DD-019	24	25	1	@	1.06	5.79	17.21
AAX-DD-019	26	28	2	@	1.63	4.56	10.08
AAX-DD-019	31	35	4	@	1.36	3.82	5.62
AAX-DD-019	39	40	1	@	1.02	7.34	3.80
AAX-DD-019	41	43	2	@	2.05	4.33	2.15
AAX-DD-019	45	46	1	@	2.30	3.42	12.40
AAX-DD-019	49	54	5	@	1.30	4.89	7.70
AAX-DD-020	4	6	2	@	1.32	6.72	7.16
AAX-DD-020	11	15	4	@	1.29	7.57	5.34
AAX-DD-020	17	20	3	@	1.18	5.58	5.08
AAX-DD-020	27	28	1	@	1.05	4.03	5.64
AAX-DD-020	29	31	2	@	1.20	4.37	4.58
AAX-DD-020	34	35	1	@	1.95	5.47	3.92
AAX-DD-020	55.37	56.05	0.68	@	1.49	2.94	20.51
AAX-DD-020	57	58	1	@	1.14	4.48	10.91
AAX-DD-020	59	60.4	1.4	@	1.44	8.67	6.59
AAX-DD-021	0	2	2	@	1.08	4.31	6.09
AAX-DD-021	3	8	5	@	1.47	5.26	8.33
AAX-DD-021	15	17	2	@	1.30	6.32	6.27
AAX-DD-021	18	19	1	@	1.26	8.03	3.53
AAX-DD-021	20	21	1	@	1.28	6.41	4.33

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-021	25	26.19	1.19	@	1.47	4.53	12.26
AAX-DD-021	37.05	38	0.95	@	1.04	7.39	8.50
AAX-DD-021	50	51	1	@	1.52	3.71	8.20
AAX-DD-021	57	58	1	@	1.72	5.99	16.96
AAX-DD-021	59	59.83	0.83	@	1.01	4.37	12.19
AAX-DD-022	0	1	1	@	1.06	3.69	5.57
AAX-DD-022	2	15	13	@	2.73	10.51	12.02
AAX-DD-022	3	13	10	incl.	3.05	12.31	13.31
AAX-DD-022	17	18	1	@	1.14	4.49	3.14
AAX-DD-022	21	26	5	@	1.41	4.17	4.65
AAX-DD-022	27	33	6	@	2.03	7.38	7.90
AAX-DD-022	34.1	35.05	0.95	@	1.19	5.34	2.93
AAX-DD-022	37.15	38.63	1.48	@	1.26	3.84	2.28
AAX-DD-022	41.07	42	0.93	@	1.96	6.35	14.35
AAX-DD-023	12	15	3	@	1.59	6.84	16.38
AAX-DD-023	17	19	2	@	3.31	16.14	18.40
AAX-DD-023	26	28	2	@	1.45	3.95	2.73
AAX-DD-023	43	45	2	@	1.29	4.40	15.65
AAX-DD-023	49.45	51	1.55	@	1.84	6.33	6.12
AAX-DD-023	54	56	2	@	1.22	4.94	7.40
AAX-DD-024	12.15	14	1.85	@	2.24	5.24	1.54
AAX-DD-024	15	16	1	@	1.35	4.06	2.29
AAX-DD-024	17	21.9	4.9	@	1.62	3.99	1.42
AAX-DD-024	22.9	23.45	0.55	@	2.37	5.25	1.08
AAX-DD-024	27	31.9	4.9	@	1.42	6.80	5.98
AAX-DD-024	35.1	36	0.9	@	1.51	7.38	4.10
AAX-DD-024	42	47	5	@	1.76	5.63	3.60
AAX-DD-024	50	60	10	@	1.71	4.91	3.80
AAX-DD-025	1	2	1	@	2.30	5.88	1.64
AAX-DD-025	4	4.5	0.5	@	1.28	3.44	1.66
AAX-DD-025	4.9	6.05	1.15	@	1.83	6.22	2.65
AAX-DD-025	10	14	4	@	1.88	7.40	1.86
AAX-DD-025	12	13	1	incl.	3.06	9.24	2.00
AAX-DD-025	20	24	4	@	1.31	5.20	2.67
AAX-DD-025	29	32	3	@	1.81	8.02	5.49
AAX-DD-025	36	42	6	@	1.77	6.70	4.19
AAX-DD-025	41	42	1	incl.	3.38	7.11	3.05
AAX-DD-025	43	44	1	@	1.31	5.52	4.89
AAX-DD-025	49	52	3	@	1.74	4.64	4.59
AAX-DD-025	53	55	2	@	1.27	3.29	4.77

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-025	56	58	2	@	1.55	5.80	7.05
AAX-DD-025	59	59.4	0.4	@	1.57	6.64	6.85
AAX-DD-026	3	4	1	@	1.07	3.72	2.81
AAX-DD-026	5	6	1	@	1.01	3.17	3.27
AAX-DD-026	9	10	1	@	1.72	7.43	2.14
AAX-DD-026	12	13	1	@	1.09	9.46	2.47
AAX-DD-026	20	21	1	@	1.80	7.92	4.43
AAX-DD-026	31	33	2	@	2.61	5.99	1.81
AAX-DD-026	32	33	1	incl.	3.96	5.83	1.43
AAX-DD-026	35	41	6	@	1.39	5.18	5.37
AAX-DD-026	45	49	4	@	1.45	6.48	5.13
AAX-DD-026	50	52	2	@	1.56	5.51	7.25
AAX-DD-026	53	61	8	@	1.62	6.10	5.81
AAX-DD-027	0	1	1	@	1.11	2.50	4.08
AAX-DD-027	4	7	3	@	1.16	5.31	4.94
AAX-DD-027	9	10	1	@	1.06	4.98	3.76
AAX-DD-027	14.21	16	1.79	@	1.40	5.47	3.41
AAX-DD-027	25	26	1	@	1.49	5.11	5.11
AAX-DD-027	37	38	1	@	1.04	7.58	1.32
AAX-DD-027	41	42	1	@	1.65	3.73	1.18
AAX-DD-027	54	55	1	@	1.27	3.24	5.37
AAX-DD-027	56	58	2	@	1.51	5.63	3.38
AAX-DD-028	0	2	2	@	2.14	12.14	6.40
AAX-DD-028	5	8	3	@	1.82	5.79	3.27
AAX-DD-028	13	14	1	@	1.23	6.57	2.05
AAX-DD-028	15	16	1	@	1.10	8.73	1.86
AAX-DD-028	19	21	2	@	1.33	14.58	2.82
AAX-DD-028	25	26	1	@	1.29	6.84	5.87
AAX-DD-028	27	31	4	@	1.57	8.57	3.36
AAX-DD-028	32.8	34	1.2	@	1.12	5.18	10.00
AAX-DD-028	38	39	1	@	1.01	4.88	7.83
AAX-DD-028	40	42	2	@	1.17	6.15	4.81
AAX-DD-028	52	53.85	1.85	@	1.76	4.85	4.16
AAX-DD-028	58	59	1	@	1.75	4.23	3.57
AAX-DD-028	60	61	1	@	1.02	7.55	5.94
AAX-DD-029	0	14	14	@	2.26	10.38	13.82
AAX-DD-029	8	12	4	incl.	3.55	15.95	9.99
AAX-DD-029	18	19	1	@	1.10	4.65	2.96
AAX-DD-029	21	23	2	@	1.47	8.88	6.40
AAX-DD-029	24	25	1	@	1.13	6.69	7.41

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-029	28	30	2	@	1.22	5.27	8.12
AAX-DD-029	31	32	1	@	1.69	3.23	12.45
AAX-DD-029	41	42	1	@	1.19	3.45	6.81
AAX-DD-029	48	49	1	@	1.06	3.37	9.09
AAX-DD-029	51	53	2	@	1.07	5.73	12.65
AAX-DD-029	57	58	1	@	1.06	3.93	5.13
AAX-DD-030	0	18	18	@	1.99	10.75	12.70
AAX-DD-030	4	5	1	incl.	4.76	11.68	15.60
AAX-DD-030	8	9	1	incl.	4.86	11.80	8.70
AAX-DD-030	19	22	3	@	2.09	6.35	7.89
AAX-DD-030	19	20	1	incl.	3.48	7.50	5.83
AAX-DD-030	23	24	1	@	1.85	4.09	7.83
AAX-DD-030	25	27	2	@	1.23	3.85	12.34
AAX-DD-030	28	32	4	@	1.54	3.25	15.52
AAX-DD-030	33	41	8	@	1.46	4.63	10.64
AAX-DD-030	44.89	47	2.11	@	1.81	2.91	21.77
AAX-DD-030	49	50	1	@	1.02	4.30	14.50
AAX-DD-030	54	56	2	@	1.73	6.25	14.13
AAX-DD-031	0	5	5	@	1.90	8.45	12.50
AAX-DD-031	6	8	2	@	2.60	9.93	12.85
AAX-DD-031	7	8	1	incl.	3.53	12.21	13.45
AAX-DD-031	10	11	1	@	1.38	5.58	6.52
AAX-DD-031	15	16	1	@	1.15	4.48	3.34
AAX-DD-031	19	20	1	@	1.02	5.65	4.07
AAX-DD-031	23	24	1	@	1.21	3.29	3.31
AAX-DD-032	1	2	1	@	1.10	8.18	7.21
AAX-DD-032	17	18	1	@	1.64	7.84	5.66
AAX-DD-032	20	21	1	@	1.01	3.76	3.59
AAX-DD-032	24	25	1	@	1.07	3.72	2.77
AAX-DD-032	33	34	1	@	1.65	3.33	4.09
AAX-DD-032	36	37	1	@	1.47	5.43	3.74
AAX-DD-032	45	49	4	@	1.16	3.30	12.10
AAX-DD-032	54	55	1	@	2.07	4.82	7.21
AAX-DD-032	76	77	1	@	2.57	3.21	3.97
AAX-DD-032	78	79	1	@	1.12	8.63	5.00
AAX-DD-032	82	83	1	@	1.19	5.45	10.40
AAX-DD-033	1	3	2	@	1.51	6.67	16.30
AAX-DD-033	5	7	2	@	3.65	9.92	14.13
AAX-DD-033	6	7	1	incl.	5.14	8.81	11.90
AAX-DD-033	9	11.5	2.5	@	1.41	6.64	5.09

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-033	15.9	17	1.1	@	1.32	2.95	3.75
AAX-DD-033	21	24	3	@	1.64	5.03	5.73
AAX-DD-033	36	40	4	@	1.42	4.29	15.68
AAX-DD-033	48	50	2	@	1.23	7.97	14.60
AAX-DD-033	58	60	2	@	1.05	4.99	7.35
AAX-DD-034	3	8	5	@	1.16	5.79	19.19
AAX-DD-034	9	11	2	@	1.04	5.02	10.52
AAX-DD-034	15	16	1	@	1.13	6.45	9.61
AAX-DD-034	20	23	3	@	1.15	2.36	3.20
AAX-DD-034	24	26	2	@	1.65	4.66	4.03
AAX-DD-034	32.9	34	1.1	@	1.36	5.21	9.26
AAX-DD-034	42	43	1	@	2.30	4.34	10.65
AAX-DD-034	45	46	1	@	1.41	2.15	12.30
AAX-DD-034	47	50	3	@	1.49	3.03	11.53
AAX-DD-034	59.4	60.2	0.8	@	1.17	5.53	2.37
AAX-DD-035	9	10	1	@	1.06	4.20	15.50
AAX-DD-035	36	37	1	@	1.15	1.93	3.36
AAX-DD-036	5	16	11	@	3.00	8.61	15.96
AAX-DD-036	6	8	2	incl.	4.01	8.32	16.18
AAX-DD-036	9	10	1	incl.	3.65	7.36	14.60
AAX-DD-036	11	12	1	incl.	3.63	8.59	17.00
AAX-DD-036	13	15	2	incl.	3.83	15.57	16.73
AAX-DD-036	19	22	3	@	2.97	5.28	3.87
AAX-DD-036	20	22	2	incl.	3.84	4.65	3.21
AAX-DD-036	26	27	1	@	1.14	2.97	8.37
AAX-DD-036	37	40.3	3.3	@	1.54	4.49	7.77
AAX-DD-037	27	38	11	@	2.37	9.22	12.82
AAX-DD-037	27	29	2	incl.	4.39	11.45	13.45
AAX-DD-038	16	29	13	@	1.57	8.47	14.58
AAX-DD-038	30	32	2	@	1.72	5.13	10.23
AAX-DD-038	35	36.9	1.9	@	1.11	6.90	6.03
AAX-DD-039	0	1	1	@	1.02	3.12	6.41
AAX-DD-039	17	19	2	@	1.14	10.03	12.78
AAX-DD-039	22	23	1	@	1.32	14.64	6.65
AAX-DD-039	25	26.75	1.75	@	1.81	7.58	6.23
AAX-DD-039	30	34	4	@	1.52	4.41	8.29
AAX-DD-040	10	11	1	@	2.53	10.79	12.85
AAX-DD-040	14	15	1	@	1.66	5.17	9.11
AAX-DD-040	21	23	2	@	1.23	9.26	6.34
AAX-DD-040	39.45	40.4	0.95	@	1.06	4.83	6.88

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-041	5	6	1	@	1.02	4.93	6.33
AAX-DD-041	7	9	2	@	1.33	5.08	5.73
AAX-DD-041	10	12	2	@	1.18	5.20	4.04
AAX-DD-041	14	15	1	@	1.09	3.46	7.75
AAX-DD-041	19	21	2	@	1.66	5.74	7.64
AAX-DD-041	22	23	1	@	1.49	8.78	12.55
AAX-DD-041	24	27	3	@	1.22	7.57	11.39
AAX-DD-041	28	31	3	@	1.52	7.21	10.58
AAX-DD-041	38	40	2	@	1.38	10.22	8.48
AAX-DD-042	6	13	7	@	2.56	9.75	13.16
AAX-DD-042	6	7	1	incl.	3.43	10.95	17.25
AAX-DD-042	8	9	1	incl.	3.10	16.79	14.35
AAX-DD-042	17	18	1	@	1.67	5.68	8.74
AAX-DD-042	21	23	2	@	1.26	4.29	6.32
AAX-DD-042	29	31	2	@	1.43	5.51	5.82
AAX-DD-042	32	33	1	@	2.11	2.51	15.70
AAX-DD-042	38.05	40	1.95	@	1.09	3.72	1.64
AAX-DD-043	4.9	6	1.1	@	1.21	7.04	18.70
AAX-DD-043	8	9	1	@	1.20	12.22	15.20
AAX-DD-043	14	14.5	0.5	@	1.02	8.40	9.69
AAX-DD-043	15.4	17	1.6	@	1.74	6.34	12.64
AAX-DD-043	20.05	24	3.95	@	1.50	4.82	8.32
AAX-DD-043	25	29	4	@	1.27	4.80	6.64
AAX-DD-043	33	34	1	@	1.10	4.37	6.29
AAX-DD-044	0	5	5	@	2.33	13.20	13.21
AAX-DD-044	1.85	3	1.15	incl.	3.10	14.65	13.70
AAX-DD-044	6	7	1	@	1.19	13.97	9.46
AAX-DD-044	8.5	10.35	1.85	@	2.08	9.46	5.89
AAX-DD-044	9.55	10.35	0.8	incl.	3.00	14.02	8.16
AAX-DD-044	11	13	2	@	1.55	6.05	5.09
AAX-DD-044	19	20	1	@	1.07	3.39	1.86
AAX-DD-044	24	25	1	@	2.09	5.42	8.96
AAX-DD-044	26	29	3	@	1.26	8.29	6.50
AAX-DD-045	0	43	43	@	1.56	6.49	12.82
AAX-DD-045	46	51.4	5.4	@	2.58	5.17	7.46
AAX-DD-045	49	50	1	incl.	6.17	2.79	3.07
AAX-DD-045	58	61	3	@	1.62	3.63	6.97
AAX-DD-045	75	76	1	@	1.02	2.95	10.85
AAX-DD-045	82	84	2	@	1.04	4.05	11.80
AAX-DD-045	86	87	1	@	1.37	4.82	8.82

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-045	91.2	97	5.8	@	2.14	5.19	10.52
AAX-DD-045	92	94	2	incl.	3.16	6.95	8.42
AAX-DD-045	101.63	102	0.37	@	1.06	2.21	12.70
AAX-DD-045	122	123.5	1.5	@	1.71	2.86	7.49
AAX-DD-045	130	131	1	@	1.26	16.53	6.87
AAX-DD-045	132	134	2	@	1.25	12.54	5.75
AAX-DD-045	135	136	1	@	2.27	8.91	4.21
AAX-DD-045	137	139	2	@	1.27	8.97	7.54
AAX-DD-045	141	142.2	1.2	@	1.42	8.59	14.80
AAX-DD-045	145.2	148	2.8	@	1.52	7.68	12.50
AAX-DD-045	149.1	151.9	2.8	@	1.17	16.28	9.10
AAX-DD-046	20	24	4	@	1.62	7.34	17.06
AAX-DD-046	26	33	7	@	1.98	8.98	12.70
AAX-DD-046	31	32	1	incl.	3.58	14.14	9.95
AAX-DD-046	34	36	2	@	1.98	10.64	12.60
AAX-DD-046	38	39	1	@	1.10	3.50	11.20
AAX-DD-046	52	57	5	@	1.35	4.68	5.87
AAX-DD-046	58	59	1	@	1.62	5.65	11.25
AAX-DD-046	64	64.55	0.55	@	2.78	13.21	6.63
AAX-DD-046	69	72	3	@	1.20	4.10	8.86
AAX-DD-046	73	74	1	@	1.58	7.78	6.92
AAX-DD-046	77	78	1	@	1.49	4.26	15.80
AAX-DD-046	82	83	1	@	1.05	3.39	6.67
AAX-DD-046	86	87	1	@	1.27	2.90	10.45
AAX-DD-046	95	96	1	@	1.16	3.33	10.00
AAX-DD-046	100	103	3	@	1.52	4.24	16.32
AAX-DD-046	105.75	107	1.25	@	1.26	4.36	13.60
AAX-DD-046	108	109	1	@	1.28	4.83	11.45
AAX-DD-046	148.2	149	0.8	@	1.37	7.67	13.40
AAX-DD-046	155	156.95	1.95	@	2.31	12.85	9.57
AAX-DD-047	0	3.3	3.3	@	1.59	6.53	7.27
AAX-DD-047	4.27	5.6	1.33	@	1.50	5.84	5.02
AAX-DD-047	6	19	13	@	2.15	6.12	5.05
AAX-DD-047	12	13	1	incl.	3.10	6.38	3.99
AAX-DD-047	15	16	1	incl.	4.41	5.85	4.28
AAX-DD-047	20	21	1	@	1.21	5.01	6.04
AAX-DD-048	6	8.3	2.3	@	1.42	5.01	4.83
AAX-DD-048	9.3	10.1	0.8	@	1.33	4.09	4.88
AAX-DD-048	11	12	1	@	1.11	3.56	4.06
AAX-DD-048	14.82	19	4.18	@	1.52	3.85	6.59

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-048	20	26	6	@	1.50	5.22	9.44
AAX-DD-049	2	4.75	2.75	@	1.16	6.11	17.56
AAX-DD-049	6	11	5	@	1.40	10.57	15.77
AAX-DD-049	13	14.8	1.8	@	1.74	6.43	10.12
AAX-DD-049	16	17	1	@	1.16	4.80	7.04
AAX-DD-049	26.25	26.77	0.52	@	1.51	7.92	16.40
AAX-DD-050	0	1	1	@	1.70	3.46	3.88
AAX-DD-050	6	14	8	@	1.68	7.50	17.94
AAX-DD-050	13	14	1	incl.	3.02	11.85	12.10
AAX-DD-050	15.7	20	4.3	@	1.63	9.07	11.05
AAX-DD-051	8	19	11	@	1.49	5.93	13.33
AAX-DD-051	21	23	2	@	1.64	4.67	2.11
AAX-DD-051	25	25.93	0.93	@	1.45	2.40	3.55
AAX-DD-051	27	28	1	@	1.04	2.62	3.48
AAX-DD-051	31	32	1	@	1.12	4.81	3.14
AAX-DD-051	35	36	1	@	1.13	5.87	4.69
AAX-DD-051	68	70	2	@	2.26	4.04	6.55
AAX-DD-051	68	69	1	incl.	3.38	4.62	3.85
AAX-DD-051	75	77	2	@	1.35	2.72	17.08
AAX-DD-051	78	83	5	@	2.29	4.37	9.00
AAX-DD-051	81	82	1	incl.	5.87	8.75	6.74
AAX-DD-051	86	88	2	@	1.39	6.28	6.33
AAX-DD-051	91	93	2	@	1.15	8.93	12.48
AAX-DD-051	95	97	2	@	1.49	7.95	13.40
AAX-DD-051	98	102	4	@	1.42	6.61	10.02
AAX-DD-051	103	107.01	4.01	@	1.52	8.72	11.66
AAX-DD-051	109.64	113.4	3.76	@	1.40	10.50	6.08
AAX-DD-052	0	4	4	@	1.90	3.75	6.92
AAX-DD-052	2	3	1	incl.	3.09	3.84	5.69
AAX-DD-052	5	12.8	7.8	@	2.39	11.69	14.91
AAX-DD-052	11.75	12.8	1.05	incl.	4.21	8.23	7.12
AAX-DD-052	30	30.6	0.6	@	1.21	3.26	12.30
AAX-DD-053	0	10.1	10.1	@	1.87	8.63	14.37
AAX-DD-053	16	16.95	0.95	@	1.11	9.75	7.74
AAX-DD-053	17.4	18	0.6	@	1.19	18.78	15.15
AAX-DD-053	20	21	1	@	1.03	8.35	7.42
AAX-DD-053	23	25	2	@	1.24	7.13	7.76
AAX-DD-053	30	30.55	0.55	@	1.57	4.89	13.45
AAX-DD-054	1.61	4	2.39	@	1.67	4.76	7.17
AAX-DD-054	5	6	1	@	1.30	10.72	20.60

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-054	8	17	9	@	2.53	16.74	19.61
AAX-DD-054	11	14	3	incl.	4.70	20.50	20.27
AAX-DD-054	21	23	2	@	1.39	6.41	7.10
AAX-DD-054	26	28	2	@	1.30	6.47	10.30
AAX-DD-054	29	30	1	@	1.08	3.17	17.65
AAX-DD-055	0	1	1	@	1.18	4.77	11.60
AAX-DD-055	3.53	8	4.47	@	2.50	12.83	16.19
AAX-DD-055	5	6	1	incl.	3.28	10.58	17.10
AAX-DD-055	9	10	1	@	1.10	12.95	10.50
AAX-DD-055	12	13.15	1.15	@	1.11	5.77	6.77
AAX-DD-055	20	20.7	0.7	@	1.03	4.39	4.45
AAX-DD-055	22.51	23.6	1.09	@	2.45	2.51	5.11
AAX-DD-056	0	1	1	@	1.41	7.18	13.80
AAX-DD-056	2	9	7	@	1.66	12.14	17.84
AAX-DD-056	6	7	1	incl.	3.06	23.14	19.10
AAX-DD-056	16.2	20.08	3.88	@	2.14	14.66	11.99
AAX-DD-056	18.6	20.08	1.48	incl.	3.19	16.50	12.75
AAX-DD-057	1.65	3.45	1.8	@	1.34	4.30	7.48
AAX-DD-057	11.65	13	1.35	@	1.44	8.65	15.70
AAX-DD-057	14	16.46	2.46	@	1.19	9.06	8.16
AAX-DD-057	17	18	1	@	1.04	7.84	12.70
AAX-DD-057	24	25	1	@	1.07	7.70	8.76
AAX-DD-057	26	29	3	@	1.11	3.32	13.77
AAX-DD-058	7	8	1	@	1.03	3.23	8.03
AAX-DD-058	8.9	10	1.1	@	1.67	5.24	8.09
AAX-DD-059	0	1	1	@	1.10	2.88	5.53
AAX-DD-059	4	5	1	@	2.06	3.92	4.69
AAX-DD-059	14	15	1	@	1.02	6.13	4.37
AAX-DD-059	16	17	1	@	1.35	3.49	9.13
AAX-DD-059	18.48	19.65	1.17	@	1.75	3.83	2.92
AAX-DD-059	20	33	13	@	2.80	5.05	5.77
AAX-DD-059	23	25	2	incl.	3.23	5.02	1.96
AAX-DD-059	26.83	28	1.17	incl.	8.30	3.91	2.37
AAX-DD-059	30	32	2	incl.	4.06	5.87	2.97
AAX-DD-059	37	39	2	@	1.37	3.15	13.60
AAX-DD-060	0	1	1	@	1.01	6.94	4.94
AAX-DD-060	10	11	1	@	1.22	2.36	2.28
AAX-DD-060	12	14	2	@	1.49	5.96	2.48
AAX-DD-060	21	23	2	@	1.13	5.82	5.02
AAX-DD-060	24	25	1	@	1.14	4.24	6.43

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
AAX-DD-060	26	27	1	@	1.04	2.46	5.67
AAX-DD-060	34.35	36	1.65	@	1.35	8.75	6.48
AAX-DD-061	15	16	1	@	1.69	2.98	6.54
AAX-DD-062	40	41	1	@	1.09	5.09	6.07
AAX-DD-062	45	46	1	@	1.05	5.80	5.71
AAX-DD-063	9.3	10.35	1.05	@	1.14	6.36	6.21
AAX-DD-063	36	37	1	@	1.51	0.98	1.61
AAX-DD-064	29	30	1	@	1.47	5.63	7.59
AAX-DD-064	32	33	1	@	1.06	10.29	6.37
AAX-DD-065	0	16	16	@	2.06	7.83	10.82
AAX-DD-065	11	12	1	incl.	3.09	9.93	6.29
AAX-DD-065	13	14	1	incl.	3.51	6.89	3.64
AAX-DD-065	17	19	2	@	1.39	2.47	2.58
AAX-DD-065	26	31	5	@	1.39	5.23	3.04
AAX-DD-065	33	34	1	@	1.39	6.25	2.91
AAX-DD-065	37	38	1	@	2.17	4.92	5.42
AAX-DD-065	51	52	1	@	1.40	3.54	8.69
AAX-DD-065	53	54	1	@	1.77	7.28	16.40
AAX-DD-065	59	61	2	@	1.90	4.08	5.73
AAX-DD-065	63	64	1	@	3.09	5.05	10.25
AAX-DD-065	81	83	2	@	2.25	7.23	8.02
AAX-DD-065	86	87	1	@	1.01	2.15	16.65
AAX-DD-065	90	91	1	@	1.81	5.18	20.70
AAX-DD-065	93	95	2	@	1.80	6.47	9.66
AAX-DD-065	96	99	3	@	1.20	4.18	10.48
AAX-DD-065	102	103	1	@	1.62	7.44	4.79
AAX-DD-065	105	108	3	@	3.51	8.05	6.83
AAX-DD-065	105	106	1	incl.	6.08	6.73	4.17
AAX-DD-065	110	114	4	@	1.41	13.39	7.21
AAX-DD-065	115	117	2	@	1.77	7.41	4.19
AAX-DD-065	119	120	1	@	1.69	6.60	4.07
AAX-DD-066	7	10	3	@	1.19	7.12	4.39
AAX-DD-066	34	35.11	1.11	@	1.25	1.05	5.74
AAX-DD-066	95	98	3	@	1.35	0.58	4.21
0XVIL0	1.23	3.37	2.14	@	1.42	4.26	20.96
0XVIL0	3.99	18.26	14.27	@	3.00	2.80	20.28
0XVIL0	9.34	12.39	3.05	incl.	3.59	3.17	21.16
0XVIL0	14.92	16.46	1.54	incl.	5.27	1.97	13.00
0XVIL0	17.26	18.26	1	incl.	3.79	1.91	10.60
0XVIL0	18.75	19.91	1.16	@	7.22	3.30	10.30

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
0XVIL0	25.36	28.97	3.61	@	1.28	9.10	5.17
0XVIL0	31.16	32.84	1.68	@	1.04	2.31	4.92
0XVL7	2.5	10	7.5	@	2.33	1.69	8.03
0XVL7	5	7.5	2.5	incl.	3.72	0.94	10.30
0XVL7	12.5	17.5	5	@	1.20	2.49	4.10
0XVL7	20	27.5	7.5	@	1.13	2.75	4.17
1XVIK0	20	32.5	12.5	@	1.88	3.29	11.44
1XVIK0	22.5	25	2.5	incl.	3.08	3.18	10.20
1XVIK0	35	40	5	@	1.31	6.11	11.75
1XVIK0	42.5	50	7.5	@	1.27	4.59	6.53
1XVIK0	52.5	55	2.5	@	1.36	5.25	9.90
1XVIK0	70	72.5	2.5	@	1.72	4.13	4.60
1XVIK0	80	85	5	@	1.59	6.03	15.20
1XVIK0	87.5	90	2.5	@	1.18	0.91	12.40
1XVIK0	115	117.5	2.5	@	1.03	4.85	16.80
1XVIK0	120	122.5	2.5	@	1.00	2.72	11.90
1XVIK0	125	135	10	@	1.16	5.79	11.08
1XVIK0	150	155	5	@	1.04	2.65	14.40
1XVIK3	0	2.5	2.5	@	1.24	3.49	16.10
1XVIK3	5	10	5	@	1.12	5.67	12.35
1XVIK3	22.5	25	2.5	@	1.07	3.43	5.90
1XVIK3	27.5	30	2.5	@	1.04	3.71	5.30
1XVIK3	32.5	35	2.5	@	1.04	3.86	4.90
1XVIK3	37.5	42.5	5	@	1.28	4.45	6.20
1XVK7	25	27.5	2.5	@	1.01	6.86	7.10
1XVK7	30	32.5	2.5	@	1.16	17.66	16.20
2.5XVIK1.5	5	20	15	@	1.67	3.69	12.27
2.5XVIK1.5	27.5	32.5	5	@	1.39	7.64	4.30
2.5XVK8.5	12.5	32.5	20	@	1.49	7.63	9.71
2.5XVK8.5	45	50	5	@	1.66	20.15	16.10
2.5XVK8.5	57.5	60	2.5	@	1.00	5.38	8.20
2XVIIM2	40	42.5	2.5	@	1.70	6.53	5.90
2XVIIM2	100	102.5	2.5	@	2.00	18.55	4.30
3XVIIL9	15	17.5	2.5	@	1.12	6.70	6.40
4XVIK0	0	20	20	@	2.00	4.72	10.35
4XVIK0	10	12.5	2.5	incl.	3.69	4.01	9.40
4XVIK0	22.5	25	2.5	@	1.15	2.71	2.80
4XVIK0	37.5	45	7.5	@	1.35	5.76	13.37
4XVIK0	47.5	50	2.5	@	1.01	3.56	7.20
4XVIK3	15	17.5	2.5	@	1.22	2.14	3.10

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
4XVIK3	40	42.5	2.5	@	1.01	3.36	3.30
4XVK7	7.5	12.5	5	@	1.55	0.79	11.80
4XVK7	15	17.5	2.5	@	1.81	5.61	4.00
4XVK7	22.5	30	7.5	@	1.42	10.67	4.90
4XVK7	50	52.5	2.5	@	1.24	2.88	12.40
5.5XVIK1.5	2.5	12.5	10	@	1.11	1.76	6.98
5.5XVIK1.5	17.5	20	2.5	@	1.24	1.66	3.80
5.5XVIK1.5	52.5	55	2.5	@	1.02	5.93	27.00
5.5XVIK1.5	62.5	65	2.5	@	1.75	10.06	5.80
5.5XVIK1.5	72.5	75	2.5	@	1.98	20.93	5.70
5.5XVIK1.5	77.5	80	2.5	@	1.26	20.31	7.00
5.5XVK8.5	0	2.5	2.5	@	1.71	5.26	12.70
5.5XVK8.5	5	7.5	2.5	@	1.14	3.50	4.70
5.5XVK8.5	12.5	15	2.5	@	1.06	14.18	2.90
5.5XVK8.5	25	30	5	@	1.32	9.69	12.30
5.5XVK8.5	32.5	35	2.5	@	1.28	4.21	11.20
5.5XVK8.5	50	55	5	@	1.02	8.23	7.55
5XVIIJ5	50	52.5	2.5	@	1.39	4.51	6.10
5XVIIJ5	87.5	90	2.5	@	1.20	18.31	12.70
5XVIK9	2.5	7.5	5	@	1.20	7.03	7.35
5XVIK9	12.5	15	2.5	@	1.55	5.13	4.40
7XVIK0	0	12.5	12.5	@	1.96	10.30	6.88
7XVIK0	2.5	5	2.5	incl.	3.54	15.52	10.10
7XVIK0	42.5	47.5	5	@	1.01	3.68	9.60
7XVIK3	0	2.5	2.5	@	1.47	0.00	9.50
7XVIK3	17.5	20	2.5	@	1.01	3.11	3.90
7XVIK3	45	47.5	2.5	@	1.20	1.81	5.50
7XVIK3	50	52.5	2.5	@	1.27	3.69	5.40
7XVK7	20	30	10	@	1.85	7.72	4.08
7XVK7	27.5	30	2.5	incl.	3.24	14.33	3.30
7XVK7	32.5	40	7.5	@	1.45	10.12	7.90
9XVL9	0.81	1.27	0.46	@	1.06	3.87	3.50
9XVL9	1.67	3.33	1.66	@	1.22	4.55	3.50
9XVL9	27.58	30.29	2.71	@	1.32	4.13	12.15
9XVL9	33.64	33.94	0.3	@	1.39	8.05	7.00
9XVL9	44.8	45.83	1.03	@	1.16	3.11	6.65
9XVL9	46.33	46.9	0.57	@	1.12	4.38	6.50
9XVL9	75.3	76.03	0.73	@	1.59	3.79	1.40
BAR01	48	51	3	@	1.19	6.83	7.02
BAR04	108	111	3	@	1.98	3.99	14.49

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		Nb2O5 %	TREO %	P2O5 %
BAR04	114	120	6	@	1.44	1.64	17.71
BAR04	198	200.95	2.95	@	1.10	0.00	7.00
BAR05	0	9	9	@	1.13	0.00	7.60
BAR05	18	27	9	@	1.32	0.46	13.05
BAR05	30	36	6	@	1.20	0.00	15.65
BAR06	15	18	3	@	1.00	0.00	19.60
BAR06	21	24	3	@	1.04	1.40	18.83
BAR06	27	30	3	@	1.40	0.00	21.90
BAR06	36	48	12	@	1.95	0.41	21.39
FPBEO	20	25	5	@	2.60	7.00	16.80
FPBEO	40	45	5	@	1.10	3.00	10.20
FPBEO	145	150	5	@	1.20	3.10	11.00
FPBE5	35	40	5	@	1.00	2.80	16.50
FS01A	15	22.5	7.5	@	1.99	8.24	5.96
FS02A	0	17.5	17.5	@	2.17	9.09	12.89
FS02A	7.5	10	2.5	incl.	3.15	12.21	10.10
FS02A	20	22.5	2.5	@	1.16	4.30	7.67
FS02A	25	27.5	2.5	@	1.30	5.09	5.29
FS02A	30	55	25	@	1.42	3.86	5.23
FS03A	0	10	10	@	1.69	8.02	5.28
FS03A	17.5	30	12.5	@	1.39	6.02	10.38
FS03A	35	42.5	7.5	@	1.30	3.50	14.45
FS03A	47.5	50	2.5	@	1.02	3.38	5.83
FS03A	60	65	5	@	1.44	4.96	11.48
FS03A	92.5	97.5	5	@	1.23	4.32	6.27
FS03A	100	105	5	@	1.35	4.46	5.44
FS04A	0	17.5	17.5	@	2.45	17.07	15.30
FS04A	10	12.5	2.5	incl.	3.66	22.21	15.50
FS04A	27.5	35	7.5	@	1.61	7.47	9.15
FS04A	40	42.5	2.5	@	2.07	3.96	3.17
FS04A	45	47.5	2.5	@	1.30	3.93	17.39
FS05A	12.5	15	2.5	@	1.21	3.73	4.18
FS05A	22.5	27.5	5	@	1.09	5.40	4.09

Table 3b: List of significant intercepts (cut-off grade of 2% TREO):

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-001	1.05	18.7	17.65	@	4.74	1.05	4.53
AAX-DD-001	19.7	20.65	0.95	@	4.73	1.10	2.91

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-001	21.12	22.4	1.28	@	4.95	0.78	3.01
AAX-DD-001	23.25	24	0.75	@	2.14	0.46	4.97
AAX-DD-001	25.77	33.75	7.98	@	3.74	0.66	5.31
AAX-DD-001	33.95	35.9	1.95	@	3.40	1.12	5.09
AAX-DD-001	37	42	5	@	3.58	0.92	6.23
AAX-DD-001	43	43.6	0.6	@	2.00	0.42	10.28
AAX-DD-001	45	53	8	@	4.06	0.77	7.17
AAX-DD-001	47.8	48.1	0.3	incl.	10.84	0.50	4.88
AAX-DD-001	55	65.15	10.15	@	4.86	0.82	13.50
AAX-DD-002	0	16.72	16.72	@	4.52	0.80	5.41
AAX-DD-002	17.25	17.8	0.55	@	5.06	0.62	3.42
AAX-DD-002	17.95	23.05	5.1	@	4.49	0.49	3.80
AAX-DD-002	23.45	25.45	2	@	4.57	0.71	3.41
AAX-DD-002	26.13	36.23	10.1	@	4.43	0.72	4.78
AAX-DD-002	37	38.55	1.55	@	2.02	0.52	7.59
AAX-DD-002	40.06	41.23	1.17	@	2.35	0.44	9.76
AAX-DD-002	41.95	43.6	1.65	@	2.86	0.64	10.43
AAX-DD-002	44.4	54.69	10.29	@	5.23	0.79	12.41
AAX-DD-002	55.4	56.75	1.35	@	3.24	0.59	8.20
AAX-DD-002	60	60.95	0.95	@	2.20	0.45	2.78
AAX-DD-002	62.55	63.2	0.65	@	2.05	1.03	5.57
AAX-DD-002	63.85	65.28	1.43	@	3.24	0.65	12.31
AAX-DD-002	66	66.9	0.9	@	7.58	0.31	2.29
AAX-DD-002	67.7	74.4	6.7	@	3.97	0.72	8.57
AAX-DD-002	76	79.35	3.35	@	3.32	0.91	5.09
AAX-DD-002	79.8	81.36	1.56	@	3.67	1.62	6.55
AAX-DD-003	0	9.35	9.35	@	3.56	0.59	7.35
AAX-DD-003	10.2	11.05	0.85	@	5.23	0.33	4.65
AAX-DD-003	12.95	13.8	0.85	@	3.07	0.54	3.47
AAX-DD-003	14.29	14.6	0.31	@	2.26	0.41	3.27
AAX-DD-003	17.57	19.7	2.13	@	3.72	1.27	4.83
AAX-DD-003	20.51	57.12	36.61	@	4.94	0.86	7.68
AAX-DD-003	58.1	63.3	5.2	@	3.32	0.60	13.52
AAX-DD-004	0	1.6	1.6	@	3.45	0.74	6.77
AAX-DD-004	2	7.62	5.62	@	3.82	0.69	3.63
AAX-DD-004	8.65	13	4.35	@	3.46	0.74	4.99
AAX-DD-004	15	16	1	@	2.50	0.54	4.06
AAX-DD-004	17.18	34.15	16.97	@	4.58	1.30	4.29
AAX-DD-004	25.05	27	1.95	incl.	10.60	2.20	5.54
AAX-DD-004	37	38.7	1.7	@	2.44	0.44	7.69

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-004	39.9	44.9	5	@	3.29	0.38	16.02
AAX-DD-004	45.65	50.66	5.01	@	4.01	0.39	10.29
AAX-DD-005	0	9.6	9.6	@	6.13	1.67	7.99
AAX-DD-005	4.47	6.55	2.08	incl.	12.51	3.53	12.06
AAX-DD-005	10.49	14.46	3.97	@	3.13	0.44	5.35
AAX-DD-005	15	41	26	@	4.67	1.02	6.76
AAX-DD-005	43	46	3	@	2.87	0.80	7.93
AAX-DD-005	48	50.39	2.39	@	2.12	0.38	12.42
AAX-DD-006	0	3	3	@	4.90	0.88	4.58
AAX-DD-006	4	5	1	@	2.72	0.62	3.80
AAX-DD-006	6	12	6	@	4.69	1.26	7.59
AAX-DD-006	14	32	18	@	3.77	0.93	5.69
AAX-DD-006	33	40	7	@	4.11	0.57	9.00
AAX-DD-006	42	54	12	@	4.18	0.58	11.50
AAX-DD-006	54	55.55	1.55	@	5.00	1.57	7.16
AAX-DD-007	0	15.75	15.75	@	13.41	2.69	14.60
AAX-DD-007	1	13	12	incl.	16.03	3.12	15.94
AAX-DD-007	16.2	18.7	2.5	@	5.57	1.39	7.04
AAX-DD-007	18.85	33.45	14.6	@	7.67	1.89	14.27
AAX-DD-007	22	23	1	incl.	10.26	2.38	14.85
AAX-DD-007	26	28	2	incl.	12.98	3.93	20.92
AAX-DD-007	34.15	37.55	3.4	@	3.80	0.82	6.72
AAX-DD-007	37.9	39	1.1	@	6.34	1.37	9.79
AAX-DD-007	39.2	40.55	1.35	@	4.81	2.03	8.39
AAX-DD-008	0	17.2	17.2	@	14.63	2.32	10.99
AAX-DD-008	1	3	2	incl.	11.54	2.22	17.28
AAX-DD-008	4	11	7	incl.	23.03	3.34	14.03
AAX-DD-008	13	14	1	incl.	10.30	1.40	5.04
AAX-DD-008	17.55	17.8	0.25	@	4.85	1.61	1.81
AAX-DD-008	17.95	19.35	1.4	@	9.27	0.97	6.37
AAX-DD-008	18.74	19.35	0.61	incl.	12.12	1.18	6.30
AAX-DD-008	19.8	24.7	4.9	@	4.01	0.82	10.01
AAX-DD-008	24.8	26.25	1.45	@	3.43	0.23	1.72
AAX-DD-008	27	27.8	0.8	@	6.53	0.51	7.15
AAX-DD-008	28	32	4	@	4.11	1.16	6.80
AAX-DD-008	33	38	5	@	4.09	1.35	6.36
AAX-DD-008	39.15	39.7	0.55	@	6.44	0.95	2.50
AAX-DD-009	0	29	29	@	10.30	2.16	3.80
AAX-DD-009	2	12	10	incl.	19.91	3.22	5.66
AAX-DD-009	30	31	1	@	3.26	0.41	5.19

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-009	32	34	2	@	3.05	0.71	4.92
AAX-DD-009	35	38.81	3.81	@	4.65	0.56	3.75
AAX-DD-010	0	40.2	40.2	@	5.45	1.15	9.08
AAX-DD-010	2	6	4	incl.	14.77	2.34	14.25
AAX-DD-011	0	4.2	4.2	@	5.37	1.51	6.46
AAX-DD-011	4.75	7.7	2.95	@	4.04	1.25	3.44
AAX-DD-011	7.9	17.05	9.15	@	3.66	0.99	6.24
AAX-DD-011	17.3	18	0.7	@	2.62	0.34	2.98
AAX-DD-011	19	35	16	@	3.65	0.71	3.88
AAX-DD-011	39.7	41.8	2.1	@	6.56	2.00	9.55
AAX-DD-012	0	11.1	11.1	@	8.63	2.00	9.68
AAX-DD-012	3	4	1	incl.	12.39	2.84	13.61
AAX-DD-012	5	7	2	incl.	11.33	3.26	14.23
AAX-DD-012	11.2	15	3.8	@	4.33	0.96	4.54
AAX-DD-012	16	19	3	@	2.37	0.72	3.66
AAX-DD-012	22.95	24	1.05	@	3.16	0.63	4.10
AAX-DD-012	26	39	13	@	4.11	0.87	5.60
AAX-DD-013	1	14.05	13.05	@	13.66	2.96	11.18
AAX-DD-013	3	13	10	incl.	16.03	3.33	12.35
AAX-DD-013	14.4	14.8	0.4	@	7.13	1.39	5.02
AAX-DD-013	15.8	27.4	11.6	@	6.75	0.85	6.54
AAX-DD-013	20	21	1	incl.	10.80	0.77	6.71
AAX-DD-013	23	24	1	incl.	10.33	1.08	5.55
AAX-DD-013	29.3	29.7	0.4	@	3.50	0.71	3.48
AAX-DD-013	29.9	30.3	0.4	@	5.58	1.34	3.44
AAX-DD-014	7.1	9.05	1.95	@	11.58	2.12	16.45
AAX-DD-014	7.1	8	0.9	incl.	13.81	2.60	16.55
AAX-DD-014	10.1	10.8	0.7	@	13.97	2.09	10.24
AAX-DD-014	12.45	28.99	16.54	@	5.73	1.53	9.79
AAX-DD-014	12.45	13	0.55	incl.	11.17	1.93	8.50
AAX-DD-014	30	35.93	5.93	@	5.30	1.83	9.08
AAX-DD-014	36.35	38.9	2.55	@	3.32	1.10	6.26
AAX-DD-014	39.4	44.53	5.13	@	4.52	1.09	6.73
AAX-DD-014	47.6	49.7	2.1	@	5.82	0.82	13.62
AAX-DD-014	52.1	52.5	0.4	@	4.10	0.94	5.66
AAX-DD-014	58.1	60.38	2.28	@	2.42	0.61	15.82
AAX-DD-014A	0	10	10	@	14.75	2.32	13.80
AAX-DD-014A	1	2	1	incl.	13.24	2.12	16.50
AAX-DD-014A	4	10	6	incl.	19.97	2.94	13.07
AAX-DD-015	0	31	31	@	5.71	1.66	6.82

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-015	6	11	5	incl.	12.26	4.10	9.68
AAX-DD-015	25	26	1	incl.	11.02	1.47	9.83
AAX-DD-015	32	33	1	@	6.73	1.30	4.77
AAX-DD-015	34	47.11	13.11	@	4.66	1.16	7.14
AAX-DD-015	48.3	54	5.7	@	3.42	0.67	9.11
AAX-DD-015	57	58	1	@	2.55	0.37	16.59
AAX-DD-015	60	60.8	0.8	@	2.03	0.32	14.30
AAX-DD-016	0	2.08	2.08	@	4.65	0.90	8.16
AAX-DD-016	2.57	3.02	0.45	@	7.37	0.77	6.16
AAX-DD-016	3.82	31.65	27.83	@	6.67	1.17	8.32
AAX-DD-016	3.82	4.52	0.7	incl.	11.82	1.41	3.37
AAX-DD-016	32.8	45	12.2	@	3.94	0.91	14.94
AAX-DD-016	48	60.7	12.7	@	3.73	0.97	10.97
AAX-DD-017	0	38.55	38.55	@	9.13	1.90	10.57
AAX-DD-017	5	21	16	incl.	13.93	2.63	15.03
AAX-DD-017	23	24	1	incl.	10.60	2.07	5.29
AAX-DD-017	40.6	44.9	4.3	@	3.51	1.50	8.29
AAX-DD-017	46	60	14	@	3.61	1.01	8.02
AAX-DD-018	0	20.55	20.55	@	9.39	2.21	11.13
AAX-DD-018	9	10	1	incl.	14.87	3.10	8.53
AAX-DD-018	11	17	6	incl.	15.02	3.15	9.16
AAX-DD-018	21.5	22.6	1.1	@	5.73	1.12	2.61
AAX-DD-018	23.2	35	11.8	@	4.48	1.36	5.27
AAX-DD-018	36	38	2	@	4.35	1.23	4.21
AAX-DD-018	39.2	53.8	14.6	@	3.69	0.97	10.84
AAX-DD-018	56.2	57	0.8	@	2.47	0.58	10.91
AAX-DD-018	58	60.45	2.45	@	2.88	0.75	11.94
AAX-DD-019	0	58.2	58.2	@	5.5	1.33	9.09
AAX-DD-019	0	11.95	11.95	incl.	7.12	1.57	5.13
AAX-DD-019	12.95	14	1.05	incl.	13.87	2.53	9.49
AAX-DD-019	15	17	2	incl.	11.03	2.56	9.49
AAX-DD-019	37	47	10	incl.	3.89	1.18	8.31
AAX-DD-019	48	58	10	incl.	4.75	1.06	10.75
AAX-DD-020	0	28	28	@	5.37	0.90	5.08
AAX-DD-020	29	49.27	20.27	@	3.96	0.70	5.60
AAX-DD-020	51.02	54.08	3.06	@	6.88	0.65	9.75
AAX-DD-020	52	53	1	incl.	11.82	0.58	5.91
AAX-DD-020	54.64	60.4	5.76	@	4.91	1.04	14.47
AAX-DD-020	59	59.67	0.67	incl.	12.61	1.80	9.88
AAX-DD-021	0	21.8	21.8	@	4.72	1.00	6.07

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-021	23.31	26.19	2.88	@	4.32	0.99	6.56
AAX-DD-021	27.9	30.95	3.05	@	6.35	0.75	8.88
AAX-DD-021	32.1	34	1.9	@	3.42	0.71	10.66
AAX-DD-021	35.77	39	3.23	@	5.03	0.71	6.25
AAX-DD-021	40	41	1	@	2.05	0.33	9.83
AAX-DD-021	42	44	2	@	2.55	0.52	10.32
AAX-DD-021	47	48	1	@	4.39	0.46	5.39
AAX-DD-021	49	55	6	@	4.10	0.69	9.00
AAX-DD-021	56	59.83	3.83	@	4.57	1.07	11.83
AAX-DD-022	0	35.05	35.05	@	7.13	1.83	7.72
AAX-DD-022	5	10	5	incl.	16.65	2.85	15.54
AAX-DD-022	29	30	1	incl.	10.51	2.31	8.85
AAX-DD-022	37.15	38.63	1.48	@	3.84	1.26	2.28
AAX-DD-022	40.2	50	9.8	@	3.82	0.75	9.55
AAX-DD-022	51	52	1	@	3.84	0.70	9.49
AAX-DD-022	53	53.89	0.89	@	6.20	0.71	9.76
AAX-DD-022	56	58.16	2.16	@	5.45	0.74	6.93
AAX-DD-023	0	2	2	@	3.41	0.76	8.79
AAX-DD-023	11	21	10	@	7.95	1.41	14.97
AAX-DD-023	17	19	2	incl.	16.14	3.31	18.40
AAX-DD-023	23	29	6	@	3.02	0.83	6.52
AAX-DD-023	31	32	1	@	2.83	0.41	9.95
AAX-DD-023	35	39	4	@	3.10	0.40	6.73
AAX-DD-023	39.5	40.2	0.7	@	2.97	0.40	13.66
AAX-DD-023	41	46	5	@	4.28	0.85	15.00
AAX-DD-023	47	48	1	@	3.26	0.45	18.91
AAX-DD-023	49.45	56	6.55	@	4.72	1.04	11.88
AAX-DD-023	57	60.45	3.45	@	2.73	0.62	15.08
AAX-DD-024	4	5	1	@	2.76	0.33	1.37
AAX-DD-024	7	10.05	3.05	@	2.81	0.80	1.49
AAX-DD-024	12.15	22.65	10.5	@	4.21	1.48	1.55
AAX-DD-024	22.9	23.45	0.55	@	5.25	2.37	1.08
AAX-DD-024	23.7	25	1.3	@	2.42	0.95	5.43
AAX-DD-024	27	31.9	4.9	@	6.80	1.42	5.98
AAX-DD-024	32.4	47.76	15.36	@	4.89	0.97	6.50
AAX-DD-024	49.2	60	10.8	@	4.93	1.63	4.06
AAX-DD-025	0	4.5	4.5	@	3.68	1.22	1.86
AAX-DD-025	4.9	42	37.1	@	5.51	1.11	4.17
AAX-DD-025	43	59.4	16.4	@	4.05	1.14	5.77
AAX-DD-026	0	22.7	22.7	@	5.45	0.78	4.24

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-026	11	12	1	incl.	11.72	0.99	3.32
AAX-DD-026	23.7	26.05	2.35	@	5.45	0.31	5.16
AAX-DD-026	27.05	43	15.95	@	4.79	1.16	5.42
AAX-DD-026	44	61.69	17.69	@	5.65	1.42	6.06
AAX-DD-026	55	56	1	incl.	10.13	1.17	2.40
AAX-DD-027	0	22	22	@	4.13	0.78	4.71
AAX-DD-027	24	27.9	3.9	@	4.45	0.82	4.85
AAX-DD-027	30.95	45	14.05	@	4.16	0.68	2.82
AAX-DD-027	46	49.3	3.3	@	3.47	0.56	6.98
AAX-DD-027	50.88	60.32	9.44	@	3.83	0.82	4.69
AAX-DD-028	0	2	2	@	12.14	2.14	6.40
AAX-DD-028	3	23	20	@	6.06	0.96	3.48
AAX-DD-028	20	21	1	incl.	19.45	1.36	2.78
AAX-DD-028	24	47	23	@	5.88	0.92	5.56
AAX-DD-028	30.25	31	0.75	incl.	11.22	1.41	2.27
AAX-DD-028	48	57	9	@	3.77	0.78	3.48
AAX-DD-028	58	61.55	3.55	@	4.91	1.14	5.57
AAX-DD-029	2	42	40	@	6.79	1.29	10.32
AAX-DD-029	7	12	5	incl.	17.01	3.36	12.55
AAX-DD-029	13	14	1	incl.	12.55	2.35	7.96
AAX-DD-029	22	24	2	incl.	12.39	1.17	6.48
AAX-DD-029	44.05	46	1.95	@	2.92	0.56	10.51
AAX-DD-029	48	50.5	2.5	@	4.71	0.99	7.18
AAX-DD-029	51	54.5	3.5	@	5.14	0.83	11.42
AAX-DD-029	55.2	60.15	4.95	@	3.49	0.57	9.52
AAX-DD-030	0	42	42	@	6.93	1.63	12.19
AAX-DD-030	1	5	4	incl.	12.57	2.68	15.01
AAX-DD-030	7	9	2	incl.	11.47	3.17	9.60
AAX-DD-030	10	14	4	incl.	15.35	1.99	10.63
AAX-DD-030	44.89	59.57	14.68	@	4.73	0.90	13.44
AAX-DD-031	0	9	9	@	7.67	1.80	10.89
AAX-DD-031	3	4	1	incl.	16.00	2.48	16.20
AAX-DD-031	7	8	1	incl.	12.21	3.53	13.45
AAX-DD-031	10	60	50	@	4.69	0.60	9.58
AAX-DD-032	0	3	3	@	5.63	0.92	5.01
AAX-DD-032	4	5	1	@	2.71	0.38	2.81
AAX-DD-032	6	7	1	@	3.35	0.59	3.06
AAX-DD-032	8	30	22	@	4.32	0.79	4.30
AAX-DD-032	31	55.99	24.99	@	4.82	0.70	6.45
AAX-DD-032	37	38	1	incl.	11.86	0.71	4.32

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-032	55	55.99	0.99	incl.	10.16	0.85	6.10
AAX-DD-032	57	58.04	1.04	@	2.79	0.61	1.70
AAX-DD-032	58.44	59.84	1.4	@	5.48	0.39	6.83
AAX-DD-032	62.24	72	9.76	@	7.37	0.53	5.29
AAX-DD-032	73	85	12	@	5.24	0.92	7.16
AAX-DD-032	86	93	7	@	4.16	0.53	9.59
AAX-DD-032	96	102	6	@	3.47	0.56	6.58
AAX-DD-032	104	107	3	@	3.34	0.46	8.12
AAX-DD-033	0	3.7	3.7	@	5.05	1.19	13.67
AAX-DD-033	4	7	3	@	7.90	2.73	12.60
AAX-DD-033	5	6	1	incl.	11.02	2.16	16.35
AAX-DD-033	9	11.5	2.5	@	6.64	1.41	5.09
AAX-DD-033	11.7	14.7	3	@	2.98	0.79	5.19
AAX-DD-033	15.9	30	14.1	@	4.67	0.88	6.64
AAX-DD-033	20	21	1	incl.	11.03	0.27	5.71
AAX-DD-033	32	42	10	@	3.92	0.98	13.24
AAX-DD-033	43	56	13	@	5.92	0.72	13.65
AAX-DD-033	58	61.3	3.3	@	3.99	0.83	12.00
AAX-DD-034	0	11.85	11.85	@	4.92	0.98	15.78
AAX-DD-034	12.25	14	1.75	@	4.67	0.67	7.99
AAX-DD-034	15	17	2	@	5.05	1.03	7.97
AAX-DD-034	20	22	2	@	2.55	1.20	3.31
AAX-DD-034	24	31	7	@	3.82	0.90	4.91
AAX-DD-034	32.9	34	1.1	@	5.21	1.36	9.26
AAX-DD-034	35	36.9	1.9	@	2.49	0.47	14.77
AAX-DD-034	40.1	46	5.9	@	3.32	1.06	8.09
AAX-DD-034	48	50	2	@	3.63	1.38	12.08
AAX-DD-034	51	52	1	@	3.01	0.87	12.25
AAX-DD-034	53	54	1	@	3.09	0.65	9.71
AAX-DD-034	55	56.8	1.8	@	4.28	0.44	16.44
AAX-DD-034	57.75	58.45	0.7	@	7.15	0.85	6.74
AAX-DD-034	59.4	60.2	0.8	@	5.53	1.17	2.37
AAX-DD-035	0	13	13	@	4.24	0.70	15.87
AAX-DD-035	14	20	6	@	2.99	0.50	10.58
AAX-DD-035	21	30	9	@	3.48	0.52	5.16
AAX-DD-035	34	36	2	@	2.78	0.53	5.11
AAX-DD-035	38	39	1	@	2.18	0.52	11.20
AAX-DD-036	0	3	3	@	2.74	0.68	6.76
AAX-DD-036	4	18	14	@	7.42	2.49	14.30
AAX-DD-036	13	15	2	incl.	15.57	3.83	16.73

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-036	19	24	5	@	4.34	2.08	4.39
AAX-DD-036	25	27	2	@	2.56	0.93	9.71
AAX-DD-036	28	32	4	@	2.49	0.51	10.94
AAX-DD-036	34	36	2	@	2.79	0.25	16.93
AAX-DD-036	37	40.3	3.3	@	4.49	1.54	7.77
AAX-DD-037	0	3	3	@	2.55	0.61	5.59
AAX-DD-037	20	40.4	20.4	@	7.32	1.56	13.15
AAX-DD-037	28	31	3	incl.	14.17	2.87	15.27
AAX-DD-037	36	37	1	incl.	11.60	2.45	8.97
AAX-DD-038	0	2	2	@	2.38	0.61	5.51
AAX-DD-038	10	11	1	@	2.02	0.46	5.98
AAX-DD-038	13	36.9	23.9	@	7.15	1.28	12.01
AAX-DD-038	21	23	2	incl.	10.80	2.11	15.50
AAX-DD-038	26	27	1	incl.	10.56	1.80	16.20
AAX-DD-038	38.3	40.15	1.85	@	5.59	0.43	2.01
AAX-DD-039	0	26.75	26.75	@	8.12	0.60	12.42
AAX-DD-039	6	8	2	incl.	11.10	0.15	18.83
AAX-DD-039	14	15	1	incl.	15.24	0.19	16.95
AAX-DD-039	16	18	2	incl.	12.23	0.78	12.28
AAX-DD-039	19	20	1	incl.	10.19	0.78	9.18
AAX-DD-039	21	23	2	incl.	14.54	1.16	6.61
AAX-DD-039	27.25	36	8.75	@	4.78	0.92	9.19
AAX-DD-039	37	41.5	4.5	@	3.20	0.39	10.94
AAX-DD-040	0	18	18	@	5.89	0.49	10.43
AAX-DD-040	7	8	1	incl.	10.39	0.08	17.95
AAX-DD-040	9	11	2	incl.	12.96	1.38	14.48
AAX-DD-040	19	27.5	8.5	@	5.42	0.67	5.46
AAX-DD-040	22	23	1	incl.	10.04	1.39	7.23
AAX-DD-040	27.9	34.05	6.15	@	7.50	0.45	4.39
AAX-DD-040	32.75	33.25	0.5	incl.	11.44	0.28	4.37
AAX-DD-040	34.35	37.25	2.9	@	4.45	0.32	10.87
AAX-DD-040	37.5	40.4	2.9	@	3.62	0.88	8.11
AAX-DD-041	0	13	13	@	5.03	0.79	8.58
AAX-DD-041	2	3	1	incl.	10.17	0.16	20.30
AAX-DD-041	14	15	1	@	3.46	1.09	7.75
AAX-DD-041	17.4	18	0.6	@	2.70	0.66	10.80
AAX-DD-041	19	35.7	16.7	@	6.27	1.18	11.57
AAX-DD-041	36.4	40	3.6	@	8.13	0.99	7.27
AAX-DD-041	38	39	1	incl.	11.91	1.72	10.45
AAX-DD-042	0	20.28	20.28	@	6.45	1.31	13.97

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-042	4	5	1	incl.	11.87	0.49	15.95
AAX-DD-042	6	10	4	incl.	12.49	2.68	14.89
AAX-DD-042	21	25	4	@	3.88	0.94	11.00
AAX-DD-042	27	40	13	@	3.63	0.87	11.79
AAX-DD-043	1	14.5	13.5	@	5.97	0.79	11.50
AAX-DD-043	8	9	1	incl.	12.22	1.20	15.20
AAX-DD-043	15.4	18.9	3.5	@	4.40	1.17	8.21
AAX-DD-043	19.4	32	12.6	@	4.39	1.14	6.50
AAX-DD-043	33	34.9	1.9	@	4.27	0.79	4.84
AAX-DD-043	35.7	40.4	4.7	@	2.97	0.60	4.98
AAX-DD-044	0	13	13	@	10.53	1.69	8.77
AAX-DD-044	1	4	3	incl.	15.63	2.80	14.15
AAX-DD-044	5	8	3	incl.	11.95	0.93	7.31
AAX-DD-044	9.55	10.35	0.8	incl.	14.02	3.00	8.16
AAX-DD-044	13.65	15.75	2.1	@	4.54	0.50	12.92
AAX-DD-044	17	18	1	@	6.16	0.65	11.90
AAX-DD-044	19	20	1	@	3.39	1.07	1.86
AAX-DD-044	21	30.9	9.9	@	5.93	1.09	9.31
AAX-DD-045	0	35.4	35.4	@	6.76	1.56	14.03
AAX-DD-045	17	22.3	5.3	incl.	12.81	2.25	9.37
AAX-DD-045	30	31	1	incl.	11.58	2.08	12.80
AAX-DD-045	35.9	51.4	15.5	@	4.82	1.75	8.13
AAX-DD-045	52.4	53.6	1.2	@	2.26	0.68	3.02
AAX-DD-045	55	62.25	7.25	@	3.27	1.04	6.15
AAX-DD-045	64	67.12	3.12	@	3.74	0.67	8.65
AAX-DD-045	68.39	70	1.61	@	3.38	0.64	7.52
AAX-DD-045	72	78	6	@	2.77	0.79	11.39
AAX-DD-045	81	89.7	8.7	@	3.71	0.74	12.65
AAX-DD-045	91	98	7	@	4.70	1.88	10.37
AAX-DD-045	99	103	4	@	2.56	0.62	11.25
AAX-DD-045	105	106	1	@	2.18	0.33	8.94
AAX-DD-045	110	110.5	0.5	@	2.58	0.24	6.01
AAX-DD-045	112	114.6	2.6	@	4.16	0.68	6.95
AAX-DD-045	115.43	123.5	8.07	@	4.04	0.86	5.67
AAX-DD-045	126.05	142.2	16.15	@	8.66	0.99	11.66
AAX-DD-045	130	133	3	incl.	14.21	1.17	8.53
AAX-DD-045	145.2	153.3	8.1	@	9.90	1.06	10.38
AAX-DD-045	149.1	151.9	2.8	incl.	16.28	1.17	9.10
AAX-DD-046	0	1.3	1.3	@	2.88	0.84	6.10
AAX-DD-046	1.65	3.05	1.4	@	2.15	0.59	5.05

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-046	10	11	1	@	2.22	0.52	5.77
AAX-DD-046	18	46.25	28.25	@	6.53	1.28	12.57
AAX-DD-046	26	27	1	incl.	11.41	1.36	6.38
AAX-DD-046	29	30	1	incl.	11.07	2.08	14.15
AAX-DD-046	31	32	1	incl.	14.14	3.58	9.95
AAX-DD-046	35	36	1	incl.	12.84	2.52	14.80
AAX-DD-046	47.75	57	9.25	@	4.32	0.97	7.87
AAX-DD-046	58	64.55	6.55	@	5.06	0.96	14.91
AAX-DD-046	64	64.55	0.55	incl.	13.21	2.78	6.63
AAX-DD-046	66.07	68	1.93	@	4.10	0.76	1.39
AAX-DD-046	69	87	18	@	3.64	0.96	10.39
AAX-DD-046	93	94	1	@	3.77	0.85	11.40
AAX-DD-046	95	97	2	@	3.49	0.77	10.43
AAX-DD-046	100	103	3	@	4.24	1.52	16.32
AAX-DD-046	105.75	109	3.25	@	5.13	1.12	12.19
AAX-DD-046	110	111	1	@	3.89	0.65	11.80
AAX-DD-046	113	115	2	@	2.66	0.53	12.35
AAX-DD-046	118	124	6	@	3.00	0.54	15.33
AAX-DD-046	125	126	1	@	3.41	0.89	9.67
AAX-DD-046	127	128	1	@	2.16	0.43	11.75
AAX-DD-046	129	133	4	@	2.81	0.67	11.97
AAX-DD-046	140	142	2	@	2.37	0.36	12.68
AAX-DD-046	143	144	1	@	2.44	0.69	16.75
AAX-DD-046	148.2	149.55	1.35	@	5.78	1.16	13.36
AAX-DD-046	151.15	156.95	5.8	@	10.97	1.01	9.22
AAX-DD-046	152	156.95	4.95	incl.	12.15	1.10	8.18
AAX-DD-047	0	5.6	5.6	@	5.88	1.44	6.30
AAX-DD-047	2.57	3.3	0.73	incl.	13.86	2.85	10.10
AAX-DD-047	6	26.3	20.3	@	5.29	1.64	4.64
AAX-DD-047	13	14	1	incl.	12.04	2.07	6.98
AAX-DD-047	27.65	29.4	1.75	@	4.95	0.81	3.26
AAX-DD-047	29.85	30.4	0.55	@	2.31	0.11	0.84
AAX-DD-048	0	2.05	2.05	@	4.98	0.70	3.88
AAX-DD-048	6	8.3	2.3	@	5.01	1.42	4.83
AAX-DD-048	9.3	30.4	21.1	@	4.06	1.13	8.64
AAX-DD-049	0	14.8	14.8	@	7.14	1.20	14.23
AAX-DD-049	8	11	3	incl.	12.60	1.61	15.95
AAX-DD-049	15.25	17.85	2.6	@	4.17	0.80	6.49
AAX-DD-049	18.65	19.55	0.9	@	6.41	0.83	5.87
AAX-DD-049	20	22	2	@	2.19	0.46	4.90

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-049	23	30	7	@	3.90	0.69	7.52
AAX-DD-050	0	3.35	3.35	@	3.11	0.99	7.05
AAX-DD-050	4.4	14	9.6	@	7.07	1.54	18.25
AAX-DD-050	12	14	2	incl.	11.56	2.47	14.60
AAX-DD-050	15.7	23	7.3	@	6.58	1.15	8.86
AAX-DD-050	15.7	16.69	0.99	incl.	11.38	2.40	13.05
AAX-DD-050	19	20	1	incl.	11.10	1.34	9.02
AAX-DD-050	24.65	27	2.35	@	4.46	0.14	9.10
AAX-DD-050	28	30	2	@	2.63	0.53	9.99
AAX-DD-051	0	2.5	2.5	@	2.57	0.74	5.62
AAX-DD-051	5	29	24	@	4.84	1.17	8.79
AAX-DD-051	30	33	3	@	3.48	0.93	2.93
AAX-DD-051	34.1	38.6	4.5	@	4.67	0.70	4.47
AAX-DD-051	40.2	53	12.8	@	3.49	0.61	7.44
AAX-DD-051	55	59	4	@	4.11	0.35	10.40
AAX-DD-051	61	63	2	@	2.69	0.59	13.33
AAX-DD-051	64	72	8	@	3.41	1.01	8.15
AAX-DD-051	75	77	2	@	2.72	1.35	17.08
AAX-DD-051	78	79	1	@	3.14	1.40	14.00
AAX-DD-051	80	84	4	@	4.98	2.40	10.12
AAX-DD-051	85	88	3	@	5.09	1.06	9.49
AAX-DD-051	89	107.01	18.01	@	6.84	1.18	13.50
AAX-DD-051	92	93	1	incl.	14.81	1.29	10.30
AAX-DD-051	104	106	2	incl.	10.64	1.47	11.02
AAX-DD-051	108.52	113.4	4.88	@	10.88	1.24	6.34
AAX-DD-051	108.52	109.64	1.12	incl.	12.15	0.70	7.20
AAX-DD-051	111	112	1	incl.	11.45	1.87	8.10
AAX-DD-051	113	113.4	0.4	incl.	16.93	1.17	5.04
AAX-DD-052	0	17.6	17.6	@	7.39	1.68	9.90
AAX-DD-052	8	11.75	3.75	incl.	17.13	2.52	16.55
AAX-DD-052	18.25	30.6	12.35	@	4.01	0.58	7.24
AAX-DD-053	0	10.1	10.1	@	8.63	1.87	14.37
AAX-DD-053	8	10.1	2.1	incl.	18.98	2.53	18.65
AAX-DD-053	10.5	16.95	6.45	@	8.32	0.64	6.48
AAX-DD-053	12.6	13.05	0.45	incl.	13.93	0.90	8.99
AAX-DD-053	15	16	1	incl.	10.48	0.86	8.11
AAX-DD-053	17.4	30.55	13.15	@	6.42	0.81	8.74
AAX-DD-053	17.4	18	0.6	incl.	18.78	1.19	15.15
AAX-DD-053	19	20	1	incl.	10.44	0.64	6.73
AAX-DD-054	0	30	30	@	8.80	1.50	12.85

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-054	5	6	1	incl.	10.72	1.30	20.60
AAX-DD-054	10	18	8	incl.	18.04	2.59	17.65
AAX-DD-055	0	14.1	14.1	@	8.84	1.37	13.15
AAX-DD-055	4.25	8	3.75	incl.	14.02	2.75	15.46
AAX-DD-055	9	11	2	incl.	12.74	0.92	12.08
AAX-DD-055	16.82	24.2	7.38	@	3.50	0.98	6.82
AAX-DD-055	25.2	30.1	4.9	@	3.55	0.59	10.08
AAX-DD-056	0	10.95	10.95	@	9.44	1.38	15.35
AAX-DD-056	3	8	5	incl.	14.18	1.80	18.58
AAX-DD-056	12.3	24.7	12.4	@	7.50	1.12	8.10
AAX-DD-056	16.2	20.08	3.88	incl.	14.66	2.14	11.99
AAX-DD-056	25.8	30	4.2	@	5.56	0.45	7.44
AAX-DD-057	0.9	5	4.1	@	4.38	1.07	7.85
AAX-DD-057	6	20	14	@	8.52	0.87	10.89
AAX-DD-057	6.95	9	2.05	incl.	12.10	0.75	12.25
AAX-DD-057	10	11.65	1.65	incl.	11.23	0.76	8.19
AAX-DD-057	14	14.88	0.88	incl.	11.28	1.14	8.33
AAX-DD-057	21	30	9	@	3.86	0.81	10.09
AAX-DD-058	0	2.55	2.55	@	2.95	0.82	6.81
AAX-DD-058	5.9	31.05	25.15	@	3.18	0.61	5.96
AAX-DD-059	0	3.5	3.5	@	3.00	0.83	5.37
AAX-DD-059	4	7	3	@	3.11	1.25	4.07
AAX-DD-059	10.95	22	11.05	@	3.74	0.95	6.97
AAX-DD-059	23	41.25	18.25	@	4.50	2.21	9.89
AAX-DD-060	0	5.25	5.25	@	5.12	0.71	6.08
AAX-DD-060	6.05	29.85	23.8	@	4.74	0.80	5.03
AAX-DD-060	31.35	32.95	1.6	@	6.50	0.70	6.70
AAX-DD-060	34.35	45	10.65	@	4.04	0.69	7.70
AAX-DD-060	34.35	35	0.65	incl.	12.10	1.39	6.21
AAX-DD-060	46.15	47.35	1.2	@	2.42	0.39	6.97
AAX-DD-060	47.9	48.95	1.05	@	4.95	0.21	4.55
AAX-DD-060	50	51	1	@	2.62	0.20	4.91
AAX-DD-060	52	53	1	@	2.06	0.43	4.93
AAX-DD-060	56.05	61	4.95	@	3.52	0.52	14.99
AAX-DD-060	65	70.35	5.35	@	4.42	0.60	13.03
AAX-DD-061	0	11	11	@	2.71	0.44	8.09
AAX-DD-061	12	13	1	@	5.75	0.53	6.90
AAX-DD-061	14	18	4	@	2.71	0.87	5.96
AAX-DD-061	19	23	4	@	3.17	0.43	5.90
AAX-DD-061	24	26	2	@	2.50	0.43	5.65

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-061	34	35	1	@	2.08	0.43	8.15
AAX-DD-061	36	40.8	4.8	@	3.51	0.41	6.83
AAX-DD-061	41.95	47	5.05	@	2.41	0.47	7.57
AAX-DD-061	50	51	1	@	2.48	0.39	15.10
AAX-DD-061	52	53.15	1.15	@	2.45	0.18	3.56
AAX-DD-061	53.65	58	4.35	@	2.60	0.23	11.34
AAX-DD-061	59	60.05	1.05	@	2.91	0.16	19.15
AAX-DD-062	1	4.9	3.9	@	2.34	0.26	7.64
AAX-DD-062	6	8	2	@	2.86	0.42	6.85
AAX-DD-062	9	13	4	@	3.33	0.33	6.46
AAX-DD-062	15	18	3	@	2.55	0.22	4.82
AAX-DD-062	19	21.4	2.4	@	2.31	0.14	7.32
AAX-DD-062	21.8	23	1.2	@	2.91	0.25	7.95
AAX-DD-062	24	25	1	@	2.12	0.28	9.06
AAX-DD-062	27	28	1	@	2.85	0.35	6.52
AAX-DD-062	29	35	6	@	3.30	0.25	5.58
AAX-DD-062	36	46	10	@	3.95	0.61	5.18
AAX-DD-062	47	49	2	@	2.55	0.18	8.08
AAX-DD-062	53	56	3	@	3.24	0.22	5.38
AAX-DD-062	57	61	4	@	4.21	0.37	6.03
AAX-DD-062	62	63	1	@	3.58	0.20	16.95
AAX-DD-063	0	24	24	@	6.02	0.26	3.92
AAX-DD-063	26	31	5	@	3.64	0.47	6.08
AAX-DD-063	41	42	1	@	2.71	0.33	5.74
AAX-DD-063	45	46	1	@	4.73	0.53	6.64
AAX-DD-063	48	54	6	@	4.98	0.36	5.31
AAX-DD-063	60	60.7	0.7	@	3.41	0.27	5.26
AAX-DD-064	0	2	2	@	2.59	0.40	4.91
AAX-DD-064	3	12	9	@	4.55	0.65	6.07
AAX-DD-064	13	43	30	@	5.67	0.61	6.89
AAX-DD-064	18	21	3	incl.	13.94	0.43	10.22
AAX-DD-064	32	33	1	incl.	10.29	1.06	6.37
AAX-DD-064	44	45	1	@	2.54	0.24	8.04
AAX-DD-064	50	53	3	@	3.49	0.34	7.31
AAX-DD-064	58	60.05	2.05	@	3.30	0.14	4.18
AAX-DD-065	0	61	61	@	5.01	1.22	7.62
AAX-DD-065	3	4	1	incl.	12.29	1.65	17.10
AAX-DD-065	8.31	9.19	0.88	incl.	15.27	1.93	11.25
AAX-DD-065	12	13	1	incl.	14.52	2.50	8.16
AAX-DD-065	63	64	1	@	5.05	3.09	10.25

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
AAX-DD-065	70	71	1	@	2.45	0.35	15.75
AAX-DD-065	76.8	78.12	1.32	@	14.77	0.47	5.56
AAX-DD-065	79.62	87	7.38	@	4.11	1.11	11.85
AAX-DD-065	88	124.05	36.05	@	7.17	1.28	8.78
AAX-DD-065	95	96	1	incl.	12.62	0.68	5.08
AAX-DD-065	107	109	2	incl.	11.74	1.33	6.53
AAX-DD-065	111	113	2	incl.	17.93	1.34	9.72
AAX-DD-065	125.6	126.2	0.6	@	3.33	0.79	5.10
AAX-DD-065	136	139	3	@	3.60	0.43	1.26
AAX-DD-065	141	142	1	@	2.78	0.17	0.98
AAX-DD-065	146	147	1	@	3.19	0.13	1.14
AAX-DD-065	148	149	1	@	4.78	0.03	0.74
AAX-DD-066	0	28.23	28.23	@	4.62	0.59	4.69
AAX-DD-066	2	3	1	incl.	12.86	0.77	6.35
AAX-DD-066	29.64	31	1.36	@	3.09	0.14	1.68
AAX-DD-066	32	33	1	@	2.52	0.34	3.94
AAX-DD-066	35.11	37	1.89	@	2.68	0.54	12.01
AAX-DD-066	38	39	1	@	2.69	0.17	9.60
AAX-DD-066	41	42	1	@	2.08	0.22	9.52
AAX-DD-066	44	45	1	@	2.75	0.40	7.52
AAX-DD-066	47	48.1	1.1	@	2.01	0.27	8.57
AAX-DD-066	50	57	7	@	3.97	0.26	4.75
AAX-DD-066	78	79	1	@	3.25	0.62	2.55
AAX-DD-066	85	86	1	@	2.87	0.08	0.28
AAX-DD-066	88.05	90	1.95	@	2.89	0.24	1.75
AAX-DD-066	92	93	1	@	2.68	0.29	2.98
AAX-DD-066	100	103	3	@	3.62	0.22	0.62
AAX-DD-066	111	112	1	@	5.65	0.18	0.26
0XVIL0	0	0.89	0.89	@	2.99	0.92	9.33
0XVIL0	1.23	3.37	2.14	@	4.26	1.42	20.96
0XVIL0	3.99	4.81	0.82	@	2.78	1.45	23.80
0XVIL0	6.49	13.52	7.03	@	3.62	3.00	22.68
0XVIL0	16.46	17.26	0.8	@	2.50	2.27	9.60
0XVIL0	18.26	19.91	1.65	@	3.18	5.27	7.72
0XVIL0	20	28.97	8.97	@	6.03	0.92	4.55
0XVIL0	25.36	27.73	2.37	incl.	10.63	1.04	4.73
0XVIL0	29.89	30.47	0.58	@	2.21	0.38	1.90
0XVIL0	31.16	32.84	1.68	@	2.31	1.04	4.92
0XVL7	0	5	5	@	5.63	0.91	4.85
0XVL7	12.5	17.5	5	@	2.49	1.20	4.10

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
0XVL7	20	35	15	@	3.19	0.76	10.63
0XVL7	37.5	52.5	15	@	4.37	0.28	18.12
0XVL7	55	75.3	20.3	@	6.58	0.38	13.61
0XVL7	65	70	5	incl.	12.23	0.29	13.00
1XVIK0	0	2.5	2.5	@	2.16	0.48	5.30
1XVIK0	5	20	15	@	3.10	0.44	7.95
1XVIK0	22.5	87.5	65	@	4.57	1.09	11.72
1XVIK0	92.5	100	7.5	@	2.87	0.55	13.43
1XVIK0	105	117.5	12.5	@	3.78	0.56	18.92
1XVIK0	120	122.5	2.5	@	2.72	1.00	11.90
1XVIK0	125	140	15	@	4.69	1.02	10.08
1XVIK0	145	163.6	18.6	@	3.24	0.66	11.56
1XVIK3	0	25	25	@	4.15	0.80	10.26
1XVIK3	27.5	45	17.5	@	4.11	0.98	6.30
1XVIK3	50	60	10	@	3.13	0.57	7.23
1XVK7	0	60	60	@	11.05	0.52	14.30
1XVK7	27.5	57.5	30	incl.	16.91	0.51	15.50
2.5XVIK1.5	0	5	5	@	2.23	0.74	21.30
2.5XVIK1.5	7.5	15	7.5	@	5.76	1.98	14.07
2.5XVIK1.5	17.5	55	37.5	@	7.64	0.63	7.43
2.5XVIK1.5	25	27.5	2.5	incl.	10.26	0.57	2.40
2.5XVIK1.5	35	40	5	incl.	13.09	0.37	6.35
2.5XVIK1.5	57.5	60.2	2.7	@	3.94	0.77	18.10
2.5XVK8.5	0	7.5	7.5	@	3.82	0.51	3.93
2.5XVK8.5	10	12.5	2.5	@	6.34	0.63	4.20
2.5XVK8.5	15	60	45	@	14.44	1.12	12.36
2.5XVK8.5	22.5	27.5	5	incl.	11.78	1.90	7.05
2.5XVK8.5	40	47.5	7.5	incl.	31.55	0.90	12.7
2.5XVK8.5	52.5	55	2.5	incl.	10.30	0.66	11.00
2XVIIM2	0	2.5	2.5	@	8.32	0.15	2.00
2XVIIM2	5	7.5	2.5	@	4.85	0.11	2.10
2XVIIM2	10	15	5	@	9.99	0.06	2.35
2XVIIM2	12.5	15	2.5	incl.	12.90	0.10	2.40
2XVIIM2	17.5	30	12.5	@	3.96	0.57	9.16
2XVIIM2	32.5	37.5	5	@	3.52	0.86	6.60
2XVIIM2	40	42.5	2.5	@	6.53	1.70	5.90
2XVIIM2	45	55	10	@	4.10	0.36	8.90
2XVIIM2	57.5	70	12.5	@	4.09	0.40	10.04
2XVIIM2	75	106	31	@	17.03	0.21	5.46
2XVIIM2	82.5	106	23.5	incl.	20.66	0.25	4.00

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
3XVIIL9	0	42.5	42.5	@	5.24	0.32	5.98
3XVIIL9	45	47.5	2.5	@	3.26	0.10	5.20
3XVIIL9	50	55	5	@	3.05	0.12	3.70
3XVIIL9	57.5	128.9	71.4	@	6.22	0.11	2.25
3XVIIL9	70	80	10	incl.	15.09	0.11	3.63
4XVIK0	0	45	45	@	4.19	1.38	9.03
4XVIK0	47.5	55	7.5	@	4.04	0.79	9.30
4XVIK0	57.5	60.1	2.6	@	8.50	0.53	8.80
4XVIK3	0	20	20	@	3.00	0.73	3.65
4XVIK3	22.5	25	2.5	@	2.62	0.88	3.10
4XVIK3	27.5	60	32.5	@	3.65	0.60	4.87
4XVK7	0	7.5	7.5	@	3.69	0.50	8.87
4XVK7	12.5	45	32.5	@	8.39	0.89	8.41
4XVK7	25	27.5	2.5	incl.	13.29	1.88	4.80
4XVK7	30	35	5	incl.	11.33	0.64	6.50
4XVK7	47.5	57.5	10	@	4.26	0.71	14.63
5.5XVIK1.5	0	7.5	7.5	@	2.37	1.04	7.70
5.5XVIK1.5	15	17.5	2.5	@	3.16	0.92	7.80
5.5XVIK1.5	22.5	55	32.5	@	4.11	0.58	9.41
5.5XVIK1.5	57.5	90	32.5	@	14.05	0.85	7.66
5.5XVIK1.5	62.5	87.5	25	incl.	16.52	0.96	7.48
5.5XVIK1.5	92.5	95	2.5	@	7.13	0.37	15.20
5.5XVIK1.5	97.5	127.3	29.8	@	6.71	0.17	7.24
5.5XVIK1.5	110	112.5	2.5	incl.	10.80	0.18	6.60
5.5XVIK1.5	117.5	120	2.5	incl.	10.33	0.05	2.50
5.5XVK8.5	0	2.5	2.5	@	5.26	1.71	12.70
5.5XVK8.5	5	7.5	2.5	@	3.50	1.14	4.70
5.5XVK8.5	10	17.5	7.5	@	9.81	0.78	4.90
5.5XVK8.5	12.5	15	2.5	incl.	14.18	1.06	2.90
5.5XVK8.5	20	22.5	2.5	@	14.58	0.49	19.80
5.5XVK8.5	25	60	35	@	6.14	0.80	10.70
5.5XVK8.5	25	27.5	2.5	incl.	11.17	1.19	13.90
5XVIIJ5	0	7.5	7.5	@	4.62	0.41	5.73
5XVIIJ5	10	25	15	@	5.31	0.24	6.70
5XVIIJ5	27.5	35	7.5	@	3.32	0.18	5.60
5XVIIJ5	37.5	52.5	15	@	4.44	0.38	8.97
5XVIIJ5	55	60	5	@	5.85	0.32	5.75
5XVIIJ5	62.5	65	2.5	@	4.10	0.56	5.80
5XVIIJ5	67.5	168.4	100.9	@	7.72	0.24	7.44
5XVIIJ5	77.5	80	2.5	incl.	12.97	0.12	6.90

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
5XVIIJ5	85	100	15	incl.	18.99	0.56	9.08
5XVIIJ5	115	127.6	12.6	incl.	12.48	0.06	2.92
5XVIIJ5	162.5	165	2.5	incl.	11.02	0.58	10.80
5XVIJ5	0	10	10	@	4.31	0.33	5.90
5XVIJ5	12.5	15	2.5	@	6.73	0.28	8.20
5XVIJ5	17.5	50	32.5	@	4.66	0.39	6.32
5XVIJ5	52.5	67.5	15	@	3.49	0.32	6.40
5XVIJ5	75	77.5	2.5	@	2.49	0.19	16.90
5XVIJ5	82.5	90	7.5	@	3.83	0.29	16.53
5XVIJ5	92.5	95	2.5	@	7.37	0.28	15.10
5XVIJ5	97.5	139.05	41.55	@	6.90	0.16	4.94
5XVIJ5	97.5	100	2.5	incl.	12.01	0.54	9.10
5XVIK9	0	30	30	@	6.31	0.73	7.23
5XVIK9	32.5	65	32.5	@	3.88	0.41	11.69
5XVIK9	72.5	133	60.5	@	6.79	0.12	7.03
5XVIK9	117.5	133	15.5	incl.	14.35	0.10	3.50
5XVIN1	0	70	70	@	8.90	0.09	1.80
5XVIN1	0	25	25	incl.	14.57	0.08	1.76
5XVIN1	30	32.5	2.5	incl.	10.60	0.10	2.00
5XVIN1	72.5	85	12.5	@	3.41	0.10	1.64
5XVIN1	87.5	159.2	71.7	@	6.47	0.14	2.83
5XVIN1	145	147.5	2.5	incl.	14.85	0.21	5.40
5XVIN1	150	159.2	9.2	incl.	15.06	0.42	5.44
7XVIK0	0	15	15	@	9.87	1.76	6.82
7XVIK0	0	5	5	incl.	16.17	2.53	9.20
7XVIK0	17.5	20	2.5	@	5.73	0.96	4.80
7XVIK0	22.5	52.5	30	@	4.51	0.73	11.52
7XVIK0	55	60	5	@	4.35	0.49	13.80
7XVIK3	2.5	40	37.5	@	3.70	0.60	5.59
7XVIK3	42.5	45	2.5	@	2.47	0.72	8.90
7XVIK3	47.5	60	12.5	@	3.37	0.81	5.56
7XVK7	0	25	25	@	7.68	0.77	5.08
7XVK7	15	20	5	incl.	13.35	0.69	4.00
7XVK7	27.5	60	32.5	@	7.59	1.01	13.44
7XVK7	27.5	30	2.5	incl.	14.33	3.24	3.30
7XVK7	32.5	37.5	5	incl.	11.03	1.58	7.30
9XVL9	0	1.27	1.27	@	4.26	0.98	3.59
9XVL9	1.67	5.54	3.87	@	3.87	0.79	3.80
9XVL9	6.46	9.22	2.76	@	3.99	0.15	6.43
9XVL9	10.63	19.25	8.62	@	3.68	0.62	19.12

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
9XVL9	20.77	45.38	24.61	@	5.08	0.59	7.84
9XVL9	45.83	47.51	1.68	@	4.04	0.83	8.10
9XVL9	48.21	56.84	8.63	@	4.10	0.15	16.87
9XVL9	58.23	58.58	0.35	@	5.93	0.15	13.30
9XVL9	59.16	59.38	0.22	@	12.98	0.01	0.70
9XVL9	59.68	59.76	0.08	@	3.18	0.03	1.50
9XVL9	60.19	80.47	20.28	@	4.96	0.32	11.94
9XVL9	62.74	63.26	0.52	incl.	12.61	0.17	27.30
BAR01	6	9	3	@	5.65	0.32	4.31
BAR01	48	54	6	@	6.15	0.95	8.19
BAR01	78	81	3	@	4.30	0.37	24.82
BAR01	99	105	6	@	5.59	0.28	15.60
BAR04	108	111	3	@	3.99	1.98	14.49
BAR04	114	117	3	@	3.29	1.88	21.03
BAR04	123	126	3	@	2.68	0.81	11.79
BAR04	132	135	3	@	2.93	0.07	13.18
BAR04	144	147	3	@	3.31	0.46	8.56
BAR04	153	159	6	@	2.74	0.26	15.69
BAR04	174	177	3	@	2.45	0.56	15.42
FPBEO	20	55	35	@	4.21	1.13	13.70
FPBE0	60	90	30	@	3.27	0.65	13.42
FPBEO	95	105	10	@	2.36	0.54	11.90
FPBEO	140	150	10	@	3.40	0.80	13.10
FPBEO	155	180	25	@	5.10	0.78	15.64
FPBE5	0	5	5	@	3.50	0.45	8.30
FPBE5	10	15	5	@	3.10	0.35	10.00
FPBE5	20	45	25	@	3.10	0.64	15.06
FS01A	0	7.5	7.5	@	4.02	0.94	4.57
FS01A	10	40	30	@	5.17	1.03	12.89
FS01A	17.5	20	2.5	incl.	10.08	2.64	4.89
FS02A	0	60.15	60.15	@	5.45	1.49	8.62
FS02A	2.5	10	7.5	incl.	12.22	2.67	15.46
FS03A	0	42.5	42.5	@	5.64	1.27	11.08
FS03A	47.5	55	7.5	@	3.23	0.87	9.57
FS03A	60	70	10	@	4.18	1.01	11.74
FS03A	72.5	80	7.5	@	3.22	0.61	7.94
FS03A	82.5	115	32.5	@	3.38	0.84	6.89
FS04A	0	72	72	@	7.74	1.32	11.38
FS04A	2.5	15	12.5	incl.	20.83	2.89	17.18
FS05A	0	10	10	@	4.47	0.52	4.82

HOLE ID	FROM (m)	TO (m)	INTERV. (m)		TREO %	Nb2O5 %	P2O5 %
FS05A	12.5	40	27.5	@	3.61	0.72	4.89

Table 3c: List of drillhole details. All holes in SAD69 UTM Zone 23S.

HOLE ID	EASTING	NORTHING	ELEV	DEPTH	DIP	AZIMUTH	DRILL
							ТҮРЕ
AAX-DD-001	296927	7826396	1071	65.15	-90	360	DD
AAX-DD-002	296929	7826358	1073	81.36	-90	360	DD
AAX-DD-003	296999	7826245	1101	65.75	-90	360	DD
AAX-DD-004	296930	7826246	1087	51.75	-90	360	DD
AAX-DD-005	296889	7826360	1070	51.13	-90	360	DD
AAX-DD-006	296930	7826280	1086	55.55	-90	360	DD
AAX-DD-007	296809	7826320	1069	40.55	-90	360	DD
AAX-DD-008	296850	7826320	1069	40.2	-90	360	DD
AAX-DD-009	296932	7826331	1075	38.81	-90	360	DD
AAX-DD-010	296890	7826320	1071	40.2	-90	360	DD
AAX-DD-011	296913	7826343	1072	41.8	-90	360	DD
AAX-DD-012	296957	7826354	1076	40.9	-90	360	DD
AAX-DD-013	296970	7826320	1080	31.4	-90	360	DD
AAX-DD-014	296873	7826316	1070	60.38	-90	360	DD
AAX-DD-014A	296870	7826318	1070	10	-90	360	DD
AAX-DD-015	296870	7826339	1069	60.8	-90	360	DD
AAX-DD-016	296869	7826299	1072	60.7	-90	360	DD
AAX-DD-017	296830	7826325	1069	60	-90	360	DD
AAX-DD-018	296828	7826341	1067	60.45	-90	360	DD
AAX-DD-019	296827	7826297	1070	60.2	-90	360	DD
AAX-DD-020	296854	7826388	1064	60.4	-90	360	DD
AAX-DD-021	296845	7826355	1067	60.43	-90	360	DD
AAX-DD-022	296847	7826341	1068	60.36	-90	360	DD
AAX-DD-023	296730	7826279	1070	60.45	-90	360	DD
AAX-DD-024	296771	7826279	1074	60	-90	360	DD
AAX-DD-025	296809	7826286	1072	59.4	-90	360	DD
AAX-DD-026	296850	7826281	1072	61.69	-90	360	DD
AAX-DD-027	296893	7826393	1068	60.32	-90	360	DD
AAX-DD-028	296881	7826284	1075	61.55	-90	360	DD
AAX-DD-029	296968	7826296	1085	60.15	-90	360	DD
AAX-DD-030	296855	7826298	1071	60.17	-90	360	DD
AAX-DD-031	297008	7826284	1088	60	-90	360	DD
AAX-DD-032	296860	7826398	1064	116.39	-90	360	DD
AAX-DD-033	296845	7826252	1076	61.3	-90	360	DD

HOLE ID	EASTING	NORTHING	ELEV	DEPTH	DIP	AZIMUTH	DRILL TYPE
AAX-DD-034	296806	7826254	1077	60.2	-90	360	DD
AAX-DD-035	296764	7826251	1077	40.3	-90	360	DD
AAX-DD-036	296691	7826279	1068	40.3	-90	360	DD
AAX-DD-037	296691	7826319	1063	40.4	-90	360	DD
AAX-DD-038	296651	7826322	1060	40.15	-90	360	DD
AAX-DD-039	296651	7826359	1056	41.5	-90	360	DD
AAX-DD-040	296612	7826313	1058	40.4	-90	360	DD
AAX-DD-041	296607	7826280	1062	40	-90	360	DD
AAX-DD-042	296649	7826280	1066	40	-90	360	DD
AAX-DD-043	296702	7826382	1060	40.4	-90	360	DD
AAX-DD-044	296909	7826307	1076	30.9	-90	360	DD
AAX-DD-045	296778	7826326	1068	154.4	-90	360	DD
AAX-DD-046	296728	7826310	1068	156.95	-90	360	DD
AAX-DD-047	296945	7826338	1075	30.4	-90	360	DD
AAX-DD-048	296889	7826256	1081	30.4	-90	360	DD
AAX-DD-049	296731	7826252	1073	30	-90	360	DD
AAX-DD-050	296689	7826241	1072	30.7	-90	360	DD
AAX-DD-051	296772	7826355	1064	113.4	-90	360	DD
AAX-DD-052	296651	7826242	1070	31.35	-90	360	DD
AAX-DD-053	296602	7826242	1066	30.55	-90	360	DD
AAX-DD-054	296568	7826244	1062	30	-90	360	DD
AAX-DD-055	296573	7826280	1059	30.1	-90	360	DD
AAX-DD-056	296562	7826306	1056	30	-90	360	DD
AAX-DD-057	296611	7826359	1056	30	-90	360	DD
AAX-DD-058	296662	7826394	1057	31.05	-90	360	DD
AAX-DD-059	296786	7826302	1071	41.25	-90	360	DD
AAX-DD-060	296808	7826584	1070	70.35	-90	360	DD
AAX-DD-061	296765	7826803	1065	60.05	-90	360	DD
AAX-DD-062	296709	7826990	1067	63.85	-90	360	DD
AAX-DD-063	296631	7826822	1056	60.7	-90	360	DD
AAX-DD-064	296631	7826705	1047	60.05	-90	360	DD
AAX-DD-065	296810	7826360	1065	160.35	-90	360	DD
AAX-DD-066	296564	7826573	1036	113.95	-90	360	DD
0XVIL0	297019	7826334	1087	32.84	-90	360	DD
0XVL7	297019	7826242	1099	75.3	-90	360	DD
1XVIK0	296752	7826334	1067	163.6	-90	360	DD
1XVIK3	296749	7826424	1067	60	-90	360	DD
1XVK7	296750	7826242	1076	60	-90	360	DD
2.5XVIK1.5	296794	7826379	1062	60.2	-90	360	DD
2.5XVK8.5	296795	7826289	1072	60	-90	360	DD

HOLE ID	EASTING	NORTHING	ELEV	DEPTH	DIP	AZIMUTH	DRILL TYPE
2XVIIM2	297368	7826635	1100	106	-90	360	DD
3XVIIL9	297068	7826906	1098	128.9	-90	360	DD
4XVIK0	296840	7826334	1068	60.1	-90	360	DD
4XVIK3	296840	7826424	1064	60	-90	360	DD
4XVK7	296842	7826243	1077	60.35	-90	360	DD
5.5XVIK1.5	296885	7826379	1069	127.3	-90	360	DD
5.5XVK8.5	296885	7826288	1075	60	-90	360	DD
5XVIIJ5	296563	7826775	1044	168.4	-90	360	DD
5XVIJ5	296563	7826775	1044	139.05	-90	360	DD
5XVIK9	296863	7826605	1063	133	-90	360	DD
5XVIN1	297763	7826370	1103	159.2	-90	360	DD
7Χνικο	296929	7826334	1074	60	-90	360	DD
7XVIK3	296928	7826424	1070	60	-90	360	DD
7XVK7	296931	7826243	1087	60	-90	360	DD
9XVL9	297268	7826315	1101	204.86	-90	360	DD
BAR01	297120	7826080	1107	122.8	-90	360	DD
BAR02	297145	7826780	1097	125.1	-90	360	DD
BAR03	297450	7826785	1110	157.5	-90	360	DD
BAR04	297450	7826570	1096	200.95	-90	360	DD
BAR05	296165	7826545	988	83.05	-90	360	DD
BAR06	296020	7826305	978	126.6	-90	360	DD
FPBEO	296679	7826266	1069	190.25	-90	360	DD
FPBE5	296261	7826271	992	87.45	-90	360	DD
FS01A	296889	7826266	1080	40	-90	360	DD
FS02A	296820	7826318	1069	60.15	-90	360	DD
FS03A	296896	7826303	1071	118.5	-90	360	DD
FS04A	296986	7826315	1083	72	-90	360	DD
FS05A	296819	7826499	1072	40	-90	360	DD

The following section is provided for compliance with requirements for the reporting of exploration results under the JORC Code, 2012 Edition.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	<i>Diamond Core Sampling:</i> The sections of the core that are selected for assaying are marked up and then recorded on a sample sheet for cutting and sampling at the certified assay laboratory. Samples of HQ or NQ2 core are cut just to the right of the orientation line where available using a diamond core saw, with half core sampled lengthways for assay.
	Include reference to measures taken to ensure sample representivity and the appropriate	Diamond Core Sampling: For diamond core samples, blank samples are inserted in the first position of the batch. Certified sample standards
	calibration of any measurement tools or systems used.	for phosphate and REE are inserted in subsequent positions in the batch, and there is a tendency to insert them every 15 to 20m. Duplicate samples presented the same standard material insertion
		pattern, and are inserted along with CRM, indicating mineralized zones.
		The number of samples per batch varies between 30 to 52.
		Core recovery calculations are made through a reconciliation of the actual core and the driller's records.
		No downhole surveys were conducted due to planned vertical drilling of all holes. The drill-hole collar locations are recorded using a tacheometer (Total Station) which has an accuracy of +/- 10cm.
		Geological logging of core is completed at site with core being stored in drill core trays.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg	<i>Diamond Core Sampling:</i> Diamond core (both HQ and NQ2) are half- core sampled to geological boundaries with an average sample size of 1 meter. A minimum size of 20 cm and maximum of 4m. 95% of samples are less than 1.1 meters.
	'reverse circulation drilling was used to obtain	The samples are prepared according to the following procedure:
	1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual	Whole samples drying and weighing, crushing of sample to -2mm followed by homogenization and splitting to a 1kg sub-sample. Samples pulverization to 95% passing -150 mesh and splitting of pulverized material to 50-gram pulp.
	commodities or mineralisation types (eg	Elements for all suites go through the following analytical method:
	submarine nodules) may warrant disclosure of detailed information.	Elements were analysed by ALS Laboratories using Lithium Metaborate fusion and an ICP-MS/XRF finish. These elements are: As, Ba, Bi, Co, Cr, Cu, Fe, Mn, Mo, Nb, Ni, P, Pb, Rb, S, Sb, Sn, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb, Zn, Zr, Al2O3, CaO, CeO2, HfO2, La2O3, MgO, SiO2, TiO2, Y2O3
		Elements were analysed by SGS Geosol Laboratories using Lithium Metaborate fusion and an ICP-MS/XRF finish. These elements are:

Criteria	JORC Code explanation	Commentary
		Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th, Tm, U, Y, Yb, Al2O3, BaO, CaO, Fe2O3, MgO, MnO, P2O5, Na2O, K2O, SiO2, TiO2, Nb2O5, CeO2, La2O3, Pr6O11, Nd2O3, Sm2O3, Y2O3 andGd2O3.
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	<i>Diamond Core Sampling:</i> The diamond holes were drilled from surface through the regolith to planned depth using triple-tube core barrels to preserve the sample integrity.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Diamond Core Sampling: Diamond core recoveries are recorded during drilling and reconciled during the core processing and geological logging. The core length recovered is measured for each run and recorded which is used to calculate core recovery as a percentage.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	<i>Diamond Core Sampling:</i> Measures taken to maximise core recovery include using appropriate triple-tubing through the weathered zone.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no sample recovery issues have yet been identified that would impact on potential sample bias in the soil/regolith profile or sampling methods.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Logging of samples records lithology, mineralogy, mineralisation, structures (core only), weathering, colour and other noticeable features. All core was photographed in sequence within core trays.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging is both qualitive and quantitative in nature, with sample recovery and volume being recorded.
	The total length and percentage of the relevant intersections logged.	All drill holes are geologically logged in full. The data relating to the elements analysed is used to determine further information regarding the detailed rock composition.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond Core Sampling: Diamond core was drilled with HQ and NQ2 size and sampled as complete half core to produce a bulk sample for analysis. Intervals selected varied from 0.2 – 4m (maximum) where 95% of samples are less than 1.1 meters. The HQ and NQ2 core is cut in half length ways using a diamond core saw. All samples are collected from the same side of the core where practicable.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Not applicable as all drilling was diamond core.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Assay preparation procedures include drying and weighing of whole sample are crushed to -2mm. Sample homogenization and splitting to a 1kg sub-sample. Pulverization to 95% passing -150 mesh and splitting of pulverized material to 50-gram pulp.

Criteria	JORC Code explanation	Commentary
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Quality control procedures include submission of Certified Reference Materials (standards), duplicates and blanks with each sample batch. QAQC results are routinely reviewed to identify and resolve any issues.
2		<i>Diamond Core Sampling:</i> Drill core is cut in half lengthways and the total half-core submitted as the sample. This meets industry standards where 50% of the total sample taken from the diamond core is submitted.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Duplicate samples are selected during analysis at the laboratory. Samples comprise of coarse rejects of the original sample were submitted to a rate of 3.56% of all samples.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent type and style of mineralisation and associated geology based on: Style (supergene deposit), the thickness and consistency of the intersections and the sampling methodology.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The assay method and detection limits are appropriate for analysis of the elements required.
	For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were utilised during reported drilling.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks, umpire assays and pulp duplicates as part of in-house procedures. The Company also submits a suite of CRMs, blanks, umpire assays and selects appropriate samples for duplicates at an overall rate of 17%. Blank samples represent 2.96% of the database; duplicates, 3.56%; umpire checks, 3%; and certified reference materials, for phosphate and REE, has a 7.52% insertion rate in the program.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections and assays are verified by the Company's Technical Director and Consulting Geologist.
	The use of twinned holes.	Any twinned holes have been drilled in order to validate assay figures of historic drilling programmes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is captured onto paper form (hard copy) and subsequently transferred to a digital format using logging software and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is entered into the company's central SQL database which is managed by external consultants.
	Discuss any adjustment to assay data.	No adjustment has been made to the Nb assay results other than the accepted factors applied to report Nb2O5 rather than Nb as per the industry standards
		No adjustment has been made to the REE assay results other than the accepted factors applied to report REO rather than REE as per the industry standards
		Multielement results (REE) are converted to stoichiometric oxide (REO) using the following element-to-oxide conversion factors:

Criteria	JORC Code explanation	Commentary			
		Element	Conversion Factor	Oxide	
		Ce ppm	1.228	CeO2 ppm	
		La ppm	1.173	La2O3 ppm	
		Y ppm	1.27	Y2O3 ppm	
		Dy ppm	1.148	Dy2O3 ppm	
		Er ppm	1.143	Er2O3 ppm	
		Eu ppm	1.158	Eu2O3 ppm	
		Gd ppm	1.153	Gd2O3 ppm	
		Ho ppm	1.146	Ho2O3 ppm	
		Lu ppm	1.137	Lu2O3 ppm	
		Nd ppm	1.166	Nd2O3 ppm	
		Pr ppm	1.208	Pr6O11 ppm	
		Sm ppm	1.16	Sm2O3 ppm	
		Tb ppm	1.176	Tb4O7 ppm	
		Tm ppm	1.142	Tm2O3 ppm	
		Yb ppm	1.139	Yb2O3 ppm	
		summation of Dy2O3 HREO (Heavy Ra the following e	etic Rare Earth Oxides) the following elements: I are Earth Oxides) calculation lements: Eu2O3 + Gd2O3 + + Y2O3 + Yb2O3	Pr6O11+ Nd2O3+ T s include the summa	b407+
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.		picked up by RR Topografia e rveyors using a Total Stati 10cm.	0 1	
	Specification of the grid system used.	The coordinate georeferenced	s were provided in following to spindle 23S.	format: SAD 69 dati	um -
	Quality and adequacy of topographic control.		olanialtimetric maps was cor ng a Total Station (tacheome		
Data spacing and distribution	Data spacing for reporting of Exploration Results.	the lease area.	ithin the drilling area corres The spacing between holes is the rest of the lease area ho	between 25 and 60	metres
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation	degree of geolo	drilling at the Project is no ogical and grade continuity t ce and Reserves and the cl code.	o support the definit	ition of
	procedure(s) and classifications applied.	mineralized zor	ried out leaves open the g ne in depth and laterally. T lume of mineral resources w	There is an opportu	nity to

Criteria	JORC Code explanation	Commentary
	Whether sample compositing has been applied.	No compositing has been applied to the exploration results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The mineralisation is flat lying and occurs within the saprolite/clay zone of a deeply developed regolith (reflecting topography and weathering). Vertical sampling from the drill holes is therefore appropriate.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation-based sampling bias has been identified in the data to date.
Sample security	The measures taken to ensure sample security.	Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A high-level due diligence is being carried by independent Brazilian- based consulting firm, GE21 Consultoria Mineral.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title	The Araxa Project is comprised of three granted permits held by Itafos Araxá Mineracao E Fertilizantes S.A ("Itafos Araxá"), which is being acquired 100% by St George.
	 interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Tenement 831.972/1985 is an application for a mining concession that is progressing through the application process. Further submissions to ANM (the relevant mining authority) are required to finalise the application including environmental and geotechnical studies. Additional information may also be requested by ANM. There is no certainty that the application will be granted or granted on conditions that are acceptable.
		Tenements 832.150/1989 (Exploration Licence) and 831.436/1988 (Application for Mining Concession) are subject to renewal and extension applications to ANM (the relevant mining authority). Additional information may be requested by ANM to complete the process for renewal or extension. There is no certainty that the renewal and extension requests will be granted or granted on conditions that are acceptable.
		Some areas within the project site are classified as legal reserve or APP. Further exploration work (including drilling), mining activities and any other suppression of vegetation in these areas will require certain submissions and undertakings to the relevant authorities and the approval of those authorities. There is no certainty that approvals will be granted in the future or granted on conditions that are acceptable.
		Some areas within the project site are a listing and preservation zone by the municipality, according to the current master plan, recognized by Brazil and the State of Minas Gerais, according to the Geoenvironmental Study of Hydromineral Sources/Araxá Project conducted by CPRM/Geological Service of Brazil. This classification is designed to protect water resources and vegetation within the designated area. Approvals are required from the relevant authorities to conduct exploration and mining activities in these areas, presenting a significant environmental management risk to the project. There is no certainty that approvals will be granted in the future or granted on conditions that are acceptable.
		A royalty is payable to Extramil, a former owner of the project. The royalty is a specified percentage of the revenue on Net Smelter Returns (NSR). The following percentages apply:-
		• 3.5% NSR on phosphate;
		• 3.0% - 10.5% NSR on REEs and niobium, on a sliding scale according to the actual Internal Rate of Return of the Araxá Project, more specifically:-
		• 3.0% NSR for IRR =<25%;

Criteria	JORC Code explanation	Commentary
		• 4.5% NSR for IRR =>25% < 30%;
		• 6.0% NSR for IRR =>30% < 50%;
		• 7.5% NSR for IRR =>50% < 70%; or
		• 10.5% NSR for IRR => 90%.
		A Government royalty is also payable which can range between 0.2% to 3% of revenue depending or the product produced.
		The land on which the project tenements are situated is owned either by the State of Minas Gerai or by CBMM. The approval of the landowner is required to access the project area. Access arrangements for the project have previously been agreed but there is no certainty that access arrangements will be agreed in the future or the timeframe in which such arrangements can be agreed.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	Historical exploration within the area of the Araxa Project is known to have occurred since 1965. Known historical exploration includes:
		1965 to 1974: Exploration by the Brazilian government under the auspices of the DNPM and by CBMM and Canopu Holding SA (Canopus). Exploration included the drilling and sampling of 24 diamond boreholes and the excavation and sampling of 59 pits.
		2004 to 2008: Exploration was conducted by Extramil an Companhia Industrial Fluminense (CIF) within th Araxá Project boundary. Exploration included th drilling and sampling of 11 diamond boreholes an 31 auger holes.
		2011 to 2012: Exploration By Itafos (previously called MBA Fertilizer Corp) which included mapping topographical surveys, 36 auger drillholes and 6 diamond core drillholes. Itafos also complete preliminary metallurgical testwork and resourc estimates.
Geology	• Deposit type, geological setting and style of mineralization.	St George is targeting Carbonatite hosted supergen- style Niobium, +/- Rare Earth mineralisation at the Araxa project.
		This is based on geological interpretations an existing operating mines within the vicinity of th Barreiro Carbonatite complex.
		The project lies within the Barreiro Carbonatit complex. The host mineral for niobium at Araxá i pyrochlore, and the host mineral for REEs i monazite.
		This complex is known to host high grade supergen (superficial) niobium, rare-earths and phosphat with two existing mines currently operating withi the intrusion since as early as the 1950's.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	This ASX Release is not reporting new exploratio results.

	0.11	
	Criteria	JORC Code explanation
		 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.
0181 USB (Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.
	Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').
	Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.
	Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to

	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	This ASX Release is not reporting new exploration results. For historical drill holes, see Table 3 in the ASX Release. For methodology of historical drilling, see Section 1 of this JORC Table.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	This ASX Release is not reporting new exploration results. For historical drill holes, see Table 3 in the ASX Release. For methodology of historical drilling, see Section 1 of this JORC Table.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	A prospect location map and section are shown in the body of the ASX Release.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This ASX Release is not reporting new exploration results. For historical drill holes, see Table 3 in the ASX Release. For methodology of historical drilling, see Section 1 of this JORC Table.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; 	This ASX Release is not reporting new exploration results.
	3	

Commentary

Section 1 of this JORC Table.

For historical drill holes, see Table 3 in the ASX

Release. For methodology of historical drilling, see

Criteria	JORC Code explanation	Commentary
	metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	For historical drill holes, see Table 3 in the ASX Release. For methodology of historical drilling, see Section 1 of this JORC Table.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	A discussion of further exploration work is contained in the body of the ASX Release. Further exploration will be planned based on ongoing drill results, geophysical surveys and geological assessment of prospectivity.