EMU

GEORGETOWN PROJECT UPDATE

"Significant and Pervasive" Copper Mineralisation Discovery Confirmed by pXRF Geochemistry Survey at Fiery Creek

Highlights

- pXRF geochemistry programme has confirmed an <u>extensive broad copper mineralised</u> <u>zone</u>
- The mineralised discovery zone, tested by pXRF over soil, termite mound and rock chip sample mediums, covers an area approximately <u>720m long x 480m wide</u>
- The highest copper grade recorded was 32.5% from 27 rock chip samples
- Significant copper grades up to 2,484ppm were recorded from pXRF soil samples whilst the highest termite mound sample recorded 1,674ppm copper
- Samples from the programme have been dispatched to the laboratory for wet geochemistry testing to confirm and correlate the pXRF in field results
- Results indicate the mineralisation is significant and pervasive between outcropping high-grade copper veining and stockwork veining within the discovery zone and is interpreted to be a subset of a <u>much broader and significant system</u>
- Additional sampling has defined a mineralised, copper anomalous, shear zone extending at least 2.5 km to the SE
- Drone LiDAR and photogrammetry works now complete with data processing underway
- Ground pole dipole, IP resistivity and MT survey scheduled for August
- Airborne aeromagnetic survey over Yataga Igneous Complex scheduled between July and October
- Maiden drilling programme planned for October 2024 following ground geophysics assessment

EMU NL ("**EMU**" or "the **Company**") is pleased to provide an update on recent exploration work completed at the Company's Fiery Creek Copper Prospect located within the Georgetown Project in North Queensland.

www.emunl.com.au info@emunl.com.au 10 Walker Avenue WEST PERTH WA 6005

Portable XRF (**pXRF**) geochemistry results have extended previously defined high-grade copper mineralisation and aided the interpretation of structural controls. The pXRF programme forms part of a wider suite of geochemical surveys designed to confirm and extend the known mineralisation of this significant copper porphyry discovery.

EMU Non-Executive Chairman Peter Thomas commented,

"The initial pXRF results from the field are highly encouraging with broad disseminated copper mineralisation reported from the discovery zone potentially providing EMU with an immediate drill target. Whilst geophysics planned over the next few months will tighten drilling vectors, we are optimistic the results support our interpretation that Fiery Creek could host a large bulk multimillion tonne copper – silver porphyry system.

The pXRF survey was designed to extend our previous laboratory analysed geochemistry surveys results. The advantage of pXRF is that it gives immediate feedback in field which can substantially reduce on ground cost and time. The confirmation of significant copper mineralisation in the discovery zone by pXRF is only bettered by the fact that pXRF results from termite mounds in the adjacent zones suggest an even broader envelope of copper mineralisation than first thought."

Geochemistry Programme

EMU successfully completed a soil sampling program on an 80m x 20m grid, covering the discovery area of the Fiery Creek Copper Prospect (**FCCP**). The soil sampling survey measures 720m (north-south) by 480m (east-west). Soil sampling was supplemented by the collection of additional rock chip and termite mound samples.

The sampling followed standard geochemical exploration procedures by taking samples below the sheetwash sand and gravels in the clay horizon developed immediately above weathered bedrock. All samples were analysed in the field by pXRF. The soil geochemical sampling grid is shown below in Figure 3.

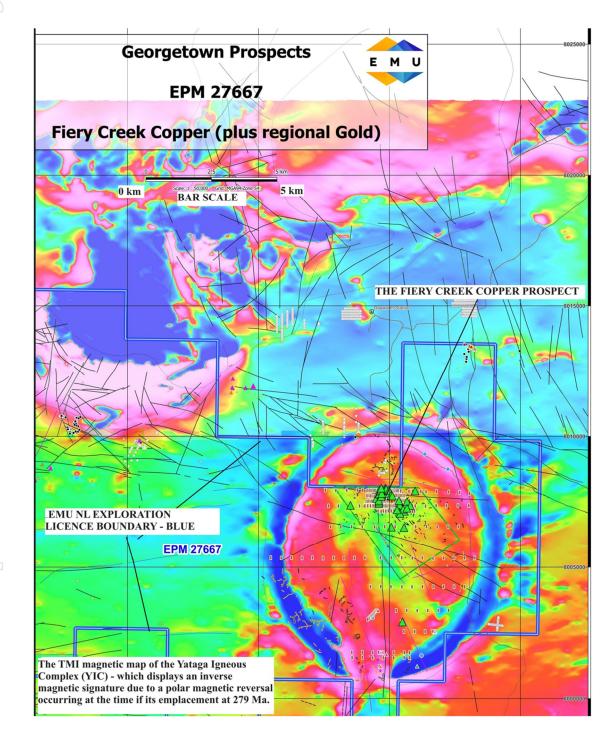

Understanding these results in their geologic context is important to ascertain where they sit in respect of the overall exploration potential of the large prospect area.

Figure 1 shows the location of the FCCP within the Yataga Igneous Complex (**YIC**) as outlined by the inverted aeromagnetic signature, which was caused by the intrusion of the YIC at around 286 Ma (Lower Permian age) when the magnetic pole of the Earth was reversed.

Figure 2 shows the YIC aeromagnetic signature, and the structural geologic features as interpreted by Consultant Economic Geologist, Mr Nigel Maund. Most noteworthy is the impact of the late NE striking shear corridor, which has geologically modified the YIC and impacted the Fiery Creek Cu–Bi–Ag mineralised shear zone. These shear zones are hosting the mineralisation and are a very important structural feature that will focus EMU's exploration to their occurrences across the broader discovery area in future work.

Emu explored the area to the SE of the FCCP and located a substantial zone of copper mineralisation which is most likely the faulted continuation of the FCCP as suggested in this structural analysis. This area will be systematically soil sampled during the next quarter.

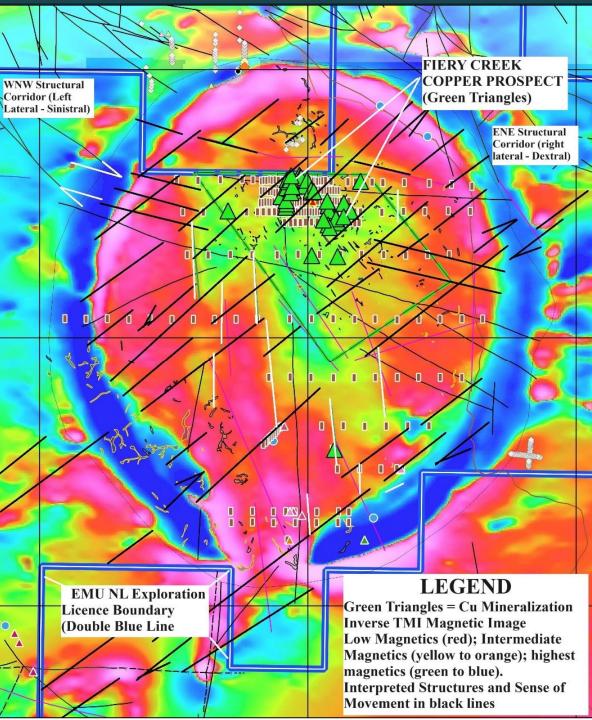


Figure 1: The TMI aeromagnetic map showing the ovoid (8 x 5 km) Yataga Igneous Complex (YIC) and the location of the initial rock chip sampling (green triangles) at the Fiery Creek Copper Prospect.

www.emunl.com.au info@emunl.com.au

10 Walker Avenue WEST PERTH WA 6005

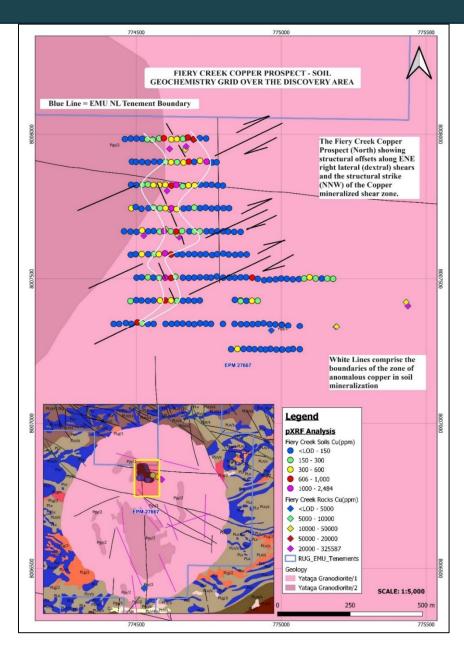


Figure 2: EMU's structural geologic interpretation of the YIC TMI aeromagnetic map. The key structural geologic features identified are the earlier WNW striking shear corridor which brackets the FCCP. This corridor has been modified by the subsequent ENE striking largely right lateral left lateral shear corridor which impacts the entire YIC. Importantly these structural shear zones control FCCP mineralisation and are responsible for controlling late emplacement of a porphyry intrusive event. This intrusive is interpreted to be located to the immediate south the FCCP, and displaces the FCCP copper mineralization towards the east.

www.emunl.com.au info@emunl.com.au

10 Walker Avenue WEST PERTH WA 6005

Figure 3: A summary geologic map of the Fiery Creek Copper Prospect (**FCCP**) discovery area showing the location of some original rock chip samples (diamonds) and the recently implemented soil sampling grid and the handheld pXRF copper results given in ppm and coloured according to the legend on the Figure. The white line shows the outline of the copper anomalous zone. The offsetting of the mineralized zone shows the consistent right lateral (dextral) offsetting of the host FCCP zone.

The results of the soil sampling have defined a copper anomalous shear zone, developed within the moderately potassic altered (biotite + K feldspar) medium grained, equigranular, granodiorite. This shear zone strikes NNW (340°) and generally dips vertically in outcrop. As Figure 3 shows, the mineralized shear zone is offset by elements of an ENE striking (50° to 60°) shear corridor.

www.emunl.com.au info@emunl.com.au 10 Walker Avenue WEST PERTH WA 6005

Soil samples from FCCP were taken from the red brown clay hardpan developed below surficial unconsolidated sheetwash sand and gravels. Generally, soil sample Cu results exhibit values at a fraction of those collected in bedrock oxide copper + goethite (after pyrite) mineralisation. Hence, unsurprisingly, the soil values vary between 100 and 2484 ppm Cu with significantly anomalous values being above 300 ppm, as compared to values up to 32.5% returned from rock chip samples taken from sub-crop and outcrop. This implies that the shear zone hosted mineralisation, within the initial discovery area of the FCCP, varies from a width of 60 m to a maximum of 150 m over a sampled strike length of 480 m.

Termite mound geochemistry has been undertaken to the east and southeast of the discovery FCCP area where further copper mineralisation has been discovered. Exploration in the areas outside the primary zone remains a work in progress and will be reported upon in detail once additional sampling programmes have been completed.

It should be stated that exploration of the FCC prospect is very much in its early days, with a considerable amount of grid-based soil sampling yet to be completed, along with accompanying detailed geologic mapping. LiDAR & orthophotography drone surveying was recently completed and the data taken from the programme is currently undergoing processing.

Ground geophysical work is scheduled to be undertaken during the coming quarter following geochemical, LiDAR and geologic mapping work being completed and analysed to identify specific targets for appropriate IP and MT geophysical surveys.

Upon the completion of geochemical and geophysical surveys over the broader Project area, a maiden drilling program is envisaged to be undertaken towards the end of this year, perhaps as early as October.

Termite Mound Sampling

Sampling of termite mounds is an extremely effective exploration method to rapidly assess areas prospective for gold and base metal mineralisation. Termites collect organic and inorganic material for nest construction from burrowed corridors within the soil, bringing material upwards from deep-seated environments. Previous studies¹ suggest termites transport materials from depths of over 8.5m and up to 70m. The height of termitaria is directly proportional to the depth of burrowed materials from sub surface environment. As the termites collect material from underling rocks and mineralisation, anomalies defined by sampling of termitaria represent in situ mineralisation.

¹ Coventry, Holt and Sinclair, 1988, Nutrient cycling by mound building termites in low fertility soils of semi-arid tropical Australia, Australian Journal of Soil Research 26(2) 375 - 390

www.emunl.com.au info@emunl.com.au

10 Walker Avenue WEST PERTH WA 6005

Figure 4. An example of a typical termite mound located within the Georgetown Fiery Creek Copper Prospect area

www.emunl.com.au info@emunl.com.au

10 Walker Avenue WEST PERTH WA 6005

AUTHORISED FOR RELEASE BY THE BOARD

For further information, please contact:

Doug Grewar Chief Executive Officer EMU NL info@emunl.com.au

Investors can sign into our interactive investor hub and join in on the conversation with Emu NL.

https://investorhub.emunl.com.au/auth/signup

www.emunl.com.au info@emunl.com.au

10 Walker Avenue WEST PERTH WA 6005

EMU NL

ABN 50 127 291 927

ASX Codes: EMU and EMUCA

10 Walker Ave West Perth, WA 6005

T +61 8 9226 4266 E <u>info@emunl.com.au</u>

PO Box 1112 West Perth, WA 6872

Fully paid shares (listed)

76,872,966 (net of 620,000 the subject of the ATM which EMU can buy back for nil consideration)

Contributing Shares (listed)

1,349,586 paid to \$0.90, \$0.90 to pay

Contributing Shares (Unlisted)

1,166,670 paid to \$0.003, \$1.20 to pay, no call before 31 December 2025

Options (unlisted)

5,748,486 options to acquire fully paid shares, exercisable at \$0.30 each, on or before 7 October 2024

10,579,193 options to acquire fully paid shares, exercisable at \$0.09 each, on or before 31 December 2026

Performance Rights (Unlisted)

1,619,051 performance rights in relation to acquisition of Gnows Nest project (can be repurchased for \$20k if Gnows Nest disposed of before 22.9.2025)

Directors:

Peter Thomas Non-Executive Chairman

Terry Streeter Non-Executive Director

Gavin Rutherford Non-Executive Director

Tim Staermose Non-Executive Director

Investor enquiries: Doug Grewar CEO M +61 419 833 604

E <u>info@emunl.com.au</u>

COMPETENT PERSON'S STATEMENT

The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by compiled by Mr Nigel Maund, a Competent Person who is consulting economic geologist. Mr Maund is a Fellow of the Australian Institute of Geoscientists, a Fellow of the Australian Institute of Mining and Metallurgy. Mr Maund is a consultant to EMU NL and has sufficient experience in the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Maund consents to the inclusion herein of the matters based upon his information in the form and context in which it appears.

FORWARD LOOKING STATEMENTS

As a result of a variety of risks, uncertainties and other factors, actual events and results may differ materially from any forward looking and other statements herein not purporting to be of historical fact. Any statements concerning mining reserves, resources and exploration results are forward looking in that they involve estimates based on assumptions. Forward looking statements are based on management's beliefs, opinions, and estimates as of the respective dates they are made. The Company does not assume any obligation to update forward looking statements even where beliefs, opinions and estimates change or should do so given changed circumstances and developments.

NEW INFORMATION OR DATA

EMU confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources, which all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially changed from the original market announcement.

ASX RELEASE | ASX:EMU

Table 1: Empirical pXRF (Nikon XL5 Plus) Analysis Results - Traditional Soil

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ES0001	774461	8007983	55	45	41		
ES0002	774481	8007985	26	28	32		
ES0003	774501	8007985	36	29	45		
ES0004	774521	8007984	103	31	39		
ES0005	774538	8007982	176	26	35	18	
ES0006	774557	8007980	266	35	35	18	
ES0007	774579	8007985	252	35	51	12	
ES0008	774595	8007986	956	60	58	22	
ES0009	774621	8007982	376	70	68		
ES0010	774640	8007983	416	36	55		
ES0011	774661	8007984	267	32	27		
ES0012	774678	8007988	913	85	77		
ES0013	774699	8007983	753	36	50		
ES0014	774719	8007986	86	27	28		
ES0015	774741	8007985		14	13		
ES0016	774485	8007905		25	26		
ES0017	774499	8007904		21	24		
ES0018	774520	8007904		25	30		
ES0019	774540	8007902	38	23	20		
ES0020	774562	8007905	60	23	27		
ES0021	774582	8007904	128	24	31	4	
ES0022	774601	8007904	161	29	33		
ES0023	774620	8007903	352	21	40	4	
ES0024	774641	8007903	227	17	30		
ES0025	774663	8007902	348	22	41		
ES0026	774681	8007905	879	26	68		
ES0027	774700	8007904	53	17	26		
ES0028	774720	8007908	365	18	33		
ES0029	774743	8007905	1328	528	93		
ES0030	774762	8007902	43	12	43		
ES0031	774777	8007903	21	13	80		
ES0032	774482	8007825	75	83	117		
ES0033	774500	8007824	70	38	46		

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ES0034	774521	8007825	287	34	54		
ES0035	774540	8007826	166	30	68	3	
ES0036	774559	8007824	461	35	62	9	
ES0037	774579	8007824	355	69	79	12	
ES0038	774600	8007825	594	58	63	27	
ES0039	774621	8007822	924	59	89	4	
ES0040	774638	8007825	1024	31	43		
ES0041	774660	8007820	268	24	29		
ES0042	774680	8007823	384	20	40		
ES0043	774701	8007823	332	23	38		
ES0044	774721	8007825	59	17	26		
ES0045	774741	8007825	16	11	31		
ES0046	774760	8007825	21	11	58		
ES0047	774781	8007823	26	13	68		
ES0048	774799	8007822	26	12	87		
ES0049	774483	8007744	461	59	76	3	
ES0050	774498	8007748	118	36	56		
ES0051	774518	8007742	53	18	28		
ES0052	774542	8007744	116	28	72		
ES0053	774560	8007746	236	28	57	3	
ES0054	774582	8007744	229	30	41		
ES0055	774601	8007744	328	28	80		
ES0056	774621	8007744	1665	29	86	8	
ES0057	774639	8007741	521	33	57		
ES0058	774663	8007743	77	24	50		
ES0059	774681	8007744	90	18	24		
ES0060	774700	8007746	155	16	45		
ES0061	774720	8007744	117	22	37		
ES0062	774739	8007746		13	35		
ES0063	774760	8007743		10	32		
ES0064	774780	8007744		8	30		
ES0065	774801	8007744		12	31		
ES0066	774820	8007744		12	24		

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ES0067	774458	8007664	40	19	25		
ES0068	774480	8007663	103	22	26		
ES0069	774501	8007662	107	21	16		
ES0070	774520	8007667	329	36	21	11	
ES0071	774541	8007664	44	16	23		
ES0072	774560	8007665	132	18	39		
ES0073	774581	8007663	181	14	27		
ES0074	774596	8007665	1077	32	84	3	
ES0075	774619	8007664	220	15	33		
ES0076	774638	8007663	761	32	68	10	
ES0077	774658	8007665	282	36	50	4	
ES0078	774683	8007664	118	23	45		
ES0079	774700	8007664	173	17	47		
ES0080	774719	8007664	268	131	73		
ES0081	774742	8007664	71	17	58		
ES0082	774760	8007664	38	19	67		
ES0083	774780	8007664	44	25	86		
ES0084	774800	8007664	43	30	87		
ES0085	774817	8007663	18	19	64		
ES0086	774838	8007662	84	79	118		
ES0087	774860	8007662	47	21	64		
ES0088	774481	8007583		16	48		
ES0089	774498	8007585	58	19	34		
ES0090	774519	8007585	598	23	53		
ES0091	774541	8007585	110	23	53		
ES0092	774561	8007585	186	24	49		
ES0093	774578	8007585	352	45	93		
ES0094	774599	8007588	2122	36	101		
ES0095	774620	8007584	743	35	71		
ES0096	774641	8007585	98	19	31		
ES0097	774659	8007584	37	22	28		
ES0098	774681	8007585	114	23	34		
ES0099	774701	8007585		17	5		
ES0100	774721	8007584		20	10		
ES0101	774740	8007585	32	16	55		

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ES0102	774762	8007582	16	22	59		
ES0103	774779	8007585	38	17	68		
ES0104	774800	8007587		14	50		
ES0105	774819	8007584		27	69		
ES0106	774841	8007583		18	50		
ES0107	774860	8007584	73	47	161		
ES0108	774881	8007584	60	142	303		
ES0109	774501	8007504		18	29		
ES0110	774519	8007505	40	24	45		
ES0111	774540	8007505	288	23	75		
ES0112	774559	8007504	25	17	43		
ES0113	774579	8007503	232	34	84		
ES0114	774600	8007504	2484	98	297	7	
ES0115	774620	8007503	706	37	85		
ES0116	774635	8007507	270	37	58		
ES0117	774661	8007504	46	17	42		
ES0118	774681	8007503	21	17	28		
ES0119	774700	8007504	13	15	22		
ES0120	774720	8007505		16	27		
ES0121	774742	8007505	20	28	34		
ES0122	774758	8007504	17	21	48		
ES0123	774778	8007508	19	29	57		
ES0124	774800	8007504	74	50	85		
ES0125	774821	8007504	39	42	130		
ES0126	774840	8007504		23	53		
ES0127	774860	8007505	77	429	899		
ES0128	774879	8007505		35	155		
ES0129	774900	8007504	750	88	168		
ES0130	774540	8007424	120	24	73		
ES0131	774560	8007425	115	23	72		
ES0132	774582	8007425	478	20	55		
ES0133	774600	8007425	754	22	84		
ES0134	774620	8007425	439	22	58		
ES0135	774640	8007424	231	18	48		
ES0136	774661	8007424	65	20	50		

10 Walker Avenue WEST PERTH WA 6005

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ES0137	774680	8007425	61	18	41		
ES0138	774700	8007424		19	26		
ES0139	774719	8007425		15	21		
ES0141	774840	8007427		28	23		
ES0142	774860	8007425	47	29	60		
ES0143	774880	8007424	25	25	218		
ES0144	774899	8007424	374	57	74		
ES0145	774919	8007424	201	32	38		
ES0146	774560	8007344	139	36	185		
ES0147	774860	8007423	256	23	58		
ES0148	774601	8007344	126	18	71		
ES0149	774622	8007344	106	67	131		
ES0150	774641	8007345	77	22	63		
ES0151	774660	8007345	61	21	72		
ES0152	774681	8007344	44	23	71		
ES0153	774700	8007343	14	23	110		
ES0154	774720	8007346	33	21	93		
ES0155	774740	8007345		27	50		
ES0156	774758	8007344		18	42		
ES0157	774799	8007344		25	11		
ES0158	774839	8007344		18	17		
ES0159	774861	8007343		24	21		
ES0160	774881	8007343	12	17	31		
ES0161	774901	8007343	40	27	60		
ES0162	774920	8007344	26	20	54		
ES0163	774939	8007346	39	26	112		
ES0164	774960	8007343	86	26	125		
ES0165	774980	8007342		19	53		
ES0166	775002	8007341	23	24	79		
ES0167	775002	8007340		20	51		
ES0168	775024	8007338	19	18	74		
ES0169	775064	8007336		28	87		
ES0170	775064	8007255		18	58		
ES0171	775041	8007256		14	63		
ES0172	775025	8007254	41	16	70		

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ES0173	775004	8007254	33	58	103		
ES0174	774983	8007254	65	101	246		
ES0175	774963	8007256	26	26	115		
ES0176	774946	8007254	32	23	69		
ES0177	774929	8007255	27	22	93		
ES0178	774480	8007423	168	33	131		
ES0179	774500	8007426	32	21	72		
ES0180	774518	8007425	29	35	79		
ES0181	774441	8007344	117	483	953		
ES0182	774464	8007347	28	20	71		
ES0183	774483	8007344	71	22	63		
ES0184	774504	8007349	602	56	164	3	
ES0185	774520	8007346	236	40	100		
ES0186	774540	8007344	40	22	62		
ES0187	774827	8007255	20	44	70		
ES0188	774849	8007256	310	73	120		
ES0189	774870	8007256	97	34	50		
ES0190	774890	8007256	18	24	75		
ES0191	774908	8007255	20	20	100		
ES0192	774422	8007344	101	72	174		
ES0193	774919	8007500	135	72	104		
ES0194	774941	8007495	103	25	34		
ES0195	774960	8007497	99	21	25		
ES0196	774981	8007498	115	24	27		
ES0197	775000	8007501	85	24	8		
ES0198	775019	8007500	71	20	6		
ES0199	775040	8007498	103	24	8		
ES0200	775061	8007499	98	18	8		
ES0201	775079	8007501	204	20	30		
ES0202	775098	8007505	308	26	32		
ES0203	775119	8007501	188	20	22		
ES0204	775140	8007501	140	34	73		
ES0206	775159	8007501	190	26	37		
ES0207	775179	8007500	158	27	38		

Table 2: Empirical pXRE (Nikon XL5 Plus) Analysis Results - Termite Mound Soil

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS02014	770309	7975635		49	74		
ESS02015	770279	7975644	38	129	202		
ESS02164	770227	7975655		57	103		
ESS02165	770182	7975646		51	80		
ESS02307	770128	7975646		67	77		
ESS02308	770065	7975656	27	46	66		
ESS02309	770351	7975639	37	107	226		
ESS02310	770398	7975613	28	128	225		
ESS02311	770426	7975619	16	49	107		
ESS02312	770492	7975605	63	28	87		
ESS02313	770514	7975618	148	22	83		
ESS02314	770599	7975610		26	31		
ESS02317	770220	7975257	208	174	678		
ESS02318	770167	7975258	21	44	245		
ESS02319	770115	7975261		50	45		
ESS02320	770070	7975248		40	64		
ESS02321	770010	7975250		42	50		
ESS02510	770254	7975255		43	163		
ESS02511	770306	7975256		39	95		
ESS02512	770346	7975251		36	82		
ESS02513	770390	7975260	49	35	169		
ESS02514	770457	7975273	77	20	100		
ESS02518	770221	7974913		33	59		
ESS02519	770272	7974896	21	23	71		
ESS02520	770309	7974914	26	25	77		
ESS02537	770172	7974916		34	64		
ESS02538	770120	7974921	24	18	68		
ESS02539	770060	7974910		19	64		
ESS02540	770024	7974935	13	28	91		
ESS02563	760483	8011025	52	19	64		
ESS02564	760516	8010963	76	17	81		

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS02565	760551	8010919	37	17	53		
ESS02566	760600	8010890	76	27	74		
ESS02567	760645	8010858	20	21	83		
ESS02568	760649	8010804	65	17	66		
ESS02569	760706	8010808	38	18	80		
ESS02570	760742	8010764	33	11	60		
ESS02571	760777	8010727	28	28	49		
ESS02572	760812	8010687		41	42		
ESS02573	760457	8011067	16	21	76		
ESS02574	760420	8011118	11	19	67		
ESS02575	760384	8011151		17	64		
ESS02576	760331	8011159	18	20	94		
ESS02577	760298	8011199		18	77		
ESS02580	760890	8011149		38	51		
ESS02587	760634	8011094	45	18	95		
ESS02599	774463	8007984	78	45	65		
ESS02687	774584	8007432	726	16	86		
ESS02688	774597	8007429	733	14	91		
ESS02689	774623	8007425	863	19	117		
ESS02690	774638	8007416	126	17	30		
ESS02691	774664	8007437	40	21	40		
ESS02692	774686	8007430	45	16	57		
ESS02693	774710	8007423	23	15	63		
ESS02694	774697	8007422	29	13	49		
ESS02695	774743	8007414	18	19	51		
ESS02696	774568	8007421	54	17	69		
ESS02697	774543	8007421	58	19	78		
ESS02700	774770	8007404	33	21	56		
ESS02701	774477	8007988	47	20	34		
ESS02702	774494	8007990	101	49	94		
ESS02703	774513	8007981	50	12	59		

www.emunl.com.au info@emunl.com.au

10 Walker Avenue WEST PERTH WA 6005

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS02704	774533	8007982	184	21	66	5	
ESS02705	774554	8007982	269	25	44	10	
ESS02706	774583	8007982	321	26	66	15	
ESS02707	774604	8007985	1282	57	58	21	
ESS02708	774622	8007991	316	42	47		
ESS02709	774646	8007984	437	42	64		
ESS02710	774662	8007990	415	36	70		
ESS02711	774682	8007980	931	138	156		
ESS02712	774703	8007986	544	34	63		
ESS02713	774718	8007996	134	26	45		
ESS02714	774737	8007981	75	16	44		
ESS02715	774763	8007973		8	30		
ESS02716	774783	8007973		10	45		
ESS02717	774776	8007908		7	49		
ESS02718	774758	8007909	73	12	58		
ESS02719	774743	8007909	361	24	49		
ESS02720	774721	8007903	195	11	26		
ESS02724	774480	8007919	24	22	54		
ESS02725	774501	8007897	56	38	54		
ESS02726	774527	8007916	38	22	31		
ESS02727	774554	8007926	53	17	44		
ESS02728	774557	8007905	138	23	46	5	
ESS02729	774578	8007915	121	22	31	5	
ESS02730	774598	8007913	184	25	51	3	
ESS02731	774618	8007901	339	33	68	2	
ESS02732	774645	8007903	326	15	48		
ESS02733	774656	8007903	268	14	48		
ESS02734	774673	8007896	305	13	55		
ESS02735	774703	8007900	37	11	30		
ESS02736	774717	8007910	101	9	26		
ESS02737	774743	8007908	349	21	51		
ESS02738	774761	8007907	103	16	75		
ESS02739	774781	8007908		9	58		

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS02741	760922	8011111	21	36	53		
ESS02742	760957	8011071		29	53		
ESS02743	761032	8007237	23	37	73		
ESS02744	761030	8010998		17	55		
ESS02745	761069	8010958	15	29	52		
ESS02746	761103	8010909	22	30	75		
ESS02747	761134	8010868	30	38	86		
ESS02748	759037	8010401		32	58		
ESS02751	759941	8013459		33	81		
ESS02752	759980	8013489		19	41		
ESS02753	760017	8013517	17	12	29		
ESS02754	760040	8013560	35	17	56		
ESS02755	760073	8013591	26	12	58		
ESS02756	760118	8013616		28	36		
ESS02757	760162	8013656		25	42		
ESS02758	760100	8013597	17	32	94		
ESS02760	760322	8013524		31	65		
ESS02761	760784	8011255	12	30	47		
ESS02762	760861	8011190		31	37		
ESS02763	760819	8011223		31	30		
ESS02764	760747	8011291	37	17	78		
ESS02765	760696	8011325	34	30	87		
ESS02766	760285	8013484		14	49		
ESS02767	760249	8013449		27	41		
ESS02768	760196	8013413	52	14	44		
ESS02769	760143	8013402	28	24	48		
ESS02770	760112	8013351	55	11	46		
ESS02771	760077	8013323	16	36	62		
ESS02772	760030	8013284	35	24	31		
ESS02773	760251	8013480		16	37		
ESS02774	760186	8013515		30	54		
ESS02775	760148	8013547		25	41		
ESS02776	760124	8013591		26	39		

ESS02777 ESS02781	760103	8013633				
ESS02781		0010000		24	40	
	759233	8014468	55	23	54	
ESS02782	759189	8014444	62	30	64	
ESS02783	759152	8014415	15	42	65	
ESS02784	759112	8014368		16	68	
ESS02785	758936	8014217	187	36	51	
ESS02786	758846	8014150		27	52	
ESS02787	758763	8014089		19	65	
ESS02788	758670	8014031	50	8	60	
ESS02789	758572	8014000		19	36	
ESS02791	759351	8014449	43	16	90	
ESS02792	759412	8014544	116	19	55	
ESS02793	759417	8014548	25	18	52	
ESS02794	759430	8014570	15	41	58	
ESS02795	759457	8014572	37	23	74	
ESS02796	759537	8014611		36	41	
ESS02797	759637	8014662	19	39	94	
ESS02800	758565	8014507		20	25	
ESS02801	758520	8014489		21	95	
ESS02802	758475	8014405		27	40	
ESS02803	758361	8014358	33	18	71	
ESS02804	758441	8014177		24	43	
ESS02805	758522	8014239		14	56	
ESS02806	758608	8014288		66	91	
ESS02807	758670	8014343		17	59	
ESS02808	762133	8008897	88	129	150	
ESS02809	762104	8008907	46	57	138	
ESS02810	762087	8008916	31	12	62	
ESS02812	762025	8008960	11	22	49	
ESS02813	762155	8008884	34	14	61	
ESS02814	762172	8008862		81	21	
ESS02815	762193	8008845	18	16	42	107
ESS02818	762034	8008788	19	19	49	

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS02819	762015	8008803		10	36		
ESS02820	762000	8008820	22	15	55		
ESS02822	761978	8008830	14	22	62		
ESS02823	761970	8008856		17	40		
ESS02824	762062	8008763		15	41		
ESS02825	762077	8008738	15	14	59		
ESS02826	762101	8008717		16	46		
ESS02827	762119	8008694		12	33		
ESS02830	762131	8009034	18	15	51		
ESS02831	762120	8009055	22	32	61		
ESS02832	762089	8009078	48	18	76		
ESS02833	762214	8008968		18	69		
ESS02834	762231	8008958	17	19	74		
ESS02835	762253	8008939		16	102		
ESS02836	762277	8008918	22	27	108		
ESS02841	761056	8007216	124	27	100		
ESS02842	761097	8007194	124	34	127		
ESS02844	761032	8007233	23	90	111		
ESS02845	761018	8007250		50	103		
ESS02846	760975	8007278	50	47	91		
ESS02847	760958	8007296	87	14	108		
ESS02848	760915	8007315		28	51		
ESS02849	761035	8007358	61	23	99		
ESS02850	761139	8007183	52	52	59		
ESS02851	761191	8007185	98	19	98		
ESS02852	761058	8007346	16	43	87		
ESS02853	761012	8007368	26	18	67		
ESS02854	760990	8007379	27	23	75		
ESS02855	760966	8007387	25	35	84		
ESS02856	760933	8007398	31	27	76		
ESS02857	761082	8007341		60	58		
ESS02858	761113	8007315	39	44	74		
ESS02859	761144	8007301	45	41	63		

www.emunl.com.au info@emunl.com.au

10 Walker Avenue WEST PERTH WA 6005

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS02860	761179	8007285	122	15	116		
ESS02862	761117	8007498		399	316		
ESS02863	761080	8007536	211	70	137		
ESS02864	761044	8007549	334	32	131		
ESS02865	761017	8007561	109	17	110		
ESS02866	760968	8007579	74	26	75		
ESS02867	761136	8007485		132	141		
ESS02868	761160	8007482	20	94	127		
ESS02869	761187	8007464	39	18	69		
ESS02870	761230	8007456	34	41	71		
ESS02871	761109	8007501	352	37	51		
ESS02872	774556	8007982	43	18	41		
ESS02877	773640	8006393	28	29	21		
ESS02880	773405	8006210	21	23	51		
ESS02883	774634	8007834	321	21	41		
ESS02884	774671	8007808	220	18	40		
ESS02885	774682	8007821	315	16	50		
ESS02886	774699	8007831	376	17	53		
ESS02887	774725	8007823	86	18	40		
ESS02888	774752	8007808	13	13	45		
ESS02889	774755	8007816		13	75		
ESS02890	774765	8007811	14	9	61		
ESS02891	774810	8007813	23	13	60		
ESS02892	774486	8007752	322	57	50		
ESS02893	774497	8007740	141	27	44		
ESS02894	774531	8007739	110	17	39		
ESS02895	774543	8007733	251	25	52		
ESS02896	774556	8007763	174	31	102		
ESS02897	774581	8007735	406	25	60		
ESS02898	774603	8007745	489	24	86		
ESS02900	774628	8007743	769	21	58		
ESS02901	774638	8007732	330	25	64		
ESS02902	774684	8007742	107	15	38		

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS02903	774675	8007745	79	15	50		
ESS02904	774695	8007747	202	13	54		
ESS02905	774715	8007747	135	17	59		
ESS02906	774746	8007755		10	66		
ESS02907	774758	8007741		8	73		
ESS02908	774766	8007755	20	12	54		
ESS02909	774788	8007737		13	44		
ESS02910	774817	8007740		10	50		
ESS02912	774468	8007663	115	24	48		
ESS02913	774478	8007652	310	22	68		
ESS02914	774488	8007674	326	25	61	4	
ESS02916	774517	8007663	919	53	53	23	
ESS02918	774543	8007669	175	19	54		
ESS02919	774563	8007656	334	22	88		
ESS02920	774576	8007677	402	24	103		
ESS02921	774596	8007657	1674	26	127		
ESS02923	774612	8007665	587	22	77		
ESS02924	774616	8007653	614	22	62	3	
ESS02925	774642	8007675	205	20	51		
ESS02926	774677	8007667	118	18	31		
ESS02927	774687	8007654	246	26	55		
ESS02928	774722	8007676	99	43	72		
ESS02929	774719	8007664		11	39		
ESS02930	774755	8007680	32	18	59		
ESS02931	774786	8007694		19	70		
ESS02932	774804	8007672	27	15	85		
ESS02933	774806	8007674	31	15	67		
ESS02934	774834	8007655	28	22	75		
ESS02935	774860	8007675	15	15	58		
ESS02936	774487	8007577		11	53		
ESS02937	774501	8007582	59	13	61		
ESS02938	774520	8007596	152	25	76		
ESS02939	774525	8007596	78	15	72		

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS02940	774565	8007591	294	25	84		
ESS02941	774589	8007579	623	32	118		
ESS02942	774594	8007576	503	25	45		
ESS02943	774625	8007582	42	13	33		
ESS02944	774648	8007584	49	15	40		
ESS02945	774661	8007591	34	17	35		
ESS02946	774685	8007586	115	24	34		
ESS02947	774692	8007594	56	19	32		
ESS02948	774735	8007584	19	17	43		
ESS02949	774750	8007589	18	16	71		
ESS02950	774757	8007583	23	17	87		
ESS02951	774783	8007594	23	17	51		
ESS02952	774789	8007580		14	53		
ESS02953	774822	8007598	22	25	91		
ESS02954	774836	8007585		18	55		
ESS02955	774863	8007628	26	42	105		
ESS02956	774889	8007583		55	157		
ESS02957	774507	8007499	15	15	44		
ESS02958	774523	8007491	20	18	54		
ESS02959	774536	8007502	144	24	101		
ESS02960	774563	8007525	97	20	90		
ESS02961	774579	8007488	168	23	79		
ESS02962	774595	8007491	515	44	169		
ESS02963	774626	8007507	544	54	99	8	
ESS02964	774618	8007499	83	10	62		
ESS02965	774664	8007503	33	15	45		
ESS02966	774681	8007499	17	14	41		
ESS02967	774698	8007501	13	16	38		
ESS02968	774719	8007505		12	29		
ESS02969	774745	8007509		19	23		
ESS02970	774760	8007490		15	30		
ESS02971	774782	8007513		29	59		
ESS02972	774803	8007509	27	19	69		

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS02973	774830	8007515	17	17	100		
ESS02974	774835	8007507		12	39		
ESS02975	774857	8007511		58	144		
ESS02976	774876	8007479	105	21	68		
ESS02977	774898	8007503	174	64	120		
ESS02978	774561	8007333	80	21	102		
ESS02979	774583	8007327	568	17	134		
ESS02980	774603	8007342	258	25	91		
ESS02981	774628	8007361	178	18	119		
ESS02982	774649	8007339	84	44	161		
ESS02983	774652	8007331	42	15	69		
ESS02984	774679	8007346		19	101		
ESS02985	774707	8007349	27	24	122		
ESS02986	774720	8007353	24	18	84		
ESS02987	774745	8007343	29	23	100		
ESS02988	774761	8007340	31	29	80		
ESS02990	774816	8007347	34	25	35		
ESS02991	774815	8007347	65	21	49		
ESS02992	774867	8007362	22	20	45		
ESS02993	774654	8006961	57	34	76		
ESS02994	774708	8006950	29	27	66		
ESS02995	774764	8006951		29	80		
ESS02996	774829	8006948	36	28	75		
ESS02997	774897	8006970	36	17	60		
ESS02998	774955	8006963	120	19	80		
ESS03000	775058	8006957	18	19	33		
ESS03001	775127	8006953	45	15	30		
ESS03002	775186	8006952	124	32	50		
ESS03003	775254	8006953	93	23	56		3
ESS03004	775312	8006952	294	16	63		
ESS03005	775383	8006968	159	10	62		
ESS03006	775533	8008024	50	17	38		
ESS03007	775611	8008019	182	23	53		

www.emunl.com.au info@emunl.com.au

10 Walker Avenue WEST PERTH WA 6005

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS03008	775687	8008024	33	15	54		
ESS03010	776085	8007989	32	16	58		
ESS03011	776157	8008000	62	25	41		
ESS03012	776237	8007989	31	21	64		
ESS03013	776309	8007997		14	58		
ESS03014	775998	8008012	14	17	54		
ESS03015	775915	8008012	15	16	29		
ESS03016	775847	8008001	24	15	51		
ESS03017	775760	8008022		16	57		
ESS03018	773279	8005603	303	30	54		
ESS03019	773357	8005665	324	24	43		
ESS03020	773440	8005721		62	95		
ESS03021	773509	8005783	111	59	83		
ESS03022	773587	8005857	70	28	29		
ESS03023	773698	8005821	386	22	39		
ESS03024	773753	8005972	123	27	29		
ESS03025	773831	8006038		22	22		
ESS03026	773908	8006096	37	25	53		
ESS03027	774005	8006149	38	26	39		
ESS03028	774062	8006231	49	19	37		
ESS03029	774138	8006285	166	22	51		
ESS03030	774217	8006338	69	27	45		
ESS03031	774306	8006412	23	22	68		
ESS03032	774028	8006710		13	35		
ESS03033	773960	8006652	18	26	65		
ESS03034	773854	8006576		29	66		
ESS03035	774898	8007259	43	27	82		
ESS03036	774869	8007253	147	26	39		
ESS03037	774855	8007249	96	29	59		
ESS03038	774832	8007254	63	58	163		
ESS03039	774537	8007346	40	13	62		
ESS03040	774520	8007342	237	34	108		
ESS03041	774820	8007428	17	32	34		
ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
SS03077	774963	8007255	53	21	107		

U IU	EAST	NORTH	Cu	PD	Zn	ы	Ag
ESS03077	774963	8007255	53	21	107		
ESS03078	774947	8007255	28	15	97		
ESS03079	774916	8007247	28	15	97		
ESS03080	774916	8007246	13	20	97		
ESS03081	774933	8006772		16	32		
ESS03082	774876	8006765	45	37	57		
ESS03083	774817	8006764		20	45		
ESS03084	774759	8006759	23	15	39		
ESS03085	774692	8006769	77	39	83		
ESS03086	776321	8008104	47	18	54		
ESS03088	776224	8008104		25	51		
ESS03089	776113	8008098		33	69		
ESS03090	776027	8008101	21	14	43		
ESS03091	775921	8008097	12	17	25		
ESS03092	775840	8008105	13	18	36		
ESS03093	775760	8008110		21	34		
ESS03094	775593	8008113	13	10	23		
ESS03095	775678	8008102		24	37		
ESS03096	775523	8008113	25	10	48		
ESS03099	773559	8006327	31	18	30		
ESS03100	773253	8006086	137	20	25	4	
ESS03101	773682	8006459	416	157	180		
ESS03102	773647	8006485	91	41	51		
ESS03103	773619	8006503	100	38	37		
ESS03104	773586	8006520	141	62	102		
ESS03105	773551	8006515	176	110	126		
ESS03106	774908	8007520	116	68	143		
ESS03107	774938	8007510	93	26	49		
ESS03108	774966	8007503	85	24	60		
ESS03109	774984	8007497	85	25	29		
ESS03110	775002	8007499	52	23	20		
ESS03111	775018	8007499	72	24	19		
ESS03112	775038	8007500	73	22	39		

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS03042	774842	8007425		25	48		
ESS03043	774864	8007424	20	24	80		
ESS03044	774885	8007427	132	38	425		
ESS03045	774902	8007422	319	32	63		
ESS03046	774921	8007425	83	19	59		
ESS03047	774973	8007344	24	13	77		
ESS03048	774940	8007357	577	45	104		
ESS03049	774924	8007345	14	19	90		
ESS03050	774898	8007342	35	22	63		
ESS03051	774879	8007341	55	24	74		
ESS03052	774493	8007353	269	27	93		
ESS03053	774481	8007342	54	26	56		
ESS03054	774467	8007358	231	24	77		
ESS03055	774442	8007342	189	85	144		
ESS03056	774420	8007349	128	45	150		
ESS03057	774482	8007418	260	43	211		
ESS03058	774504	8007423	37	26	95		
ESS03059	774520	8007417	29	43	137		
ESS03061	773173	8006030	58	23	25		
ESS03062	773099	8005955	37	29	45		
ESS03063	773011	8005897	68	21	39		
ESS03064	773726	8006452	64	73	104		
ESS03065	773788	8006533	16	29	72		
ESS03066	774983	8007335	20	17	88		
ESS03067	775011	8007345	20	19	87		
ESS03068	775023	8007334		19	58		
ESS03069	775042	8007343	19	15	66		
ESS03005	775060	8007343	26	17	103		
ESS03070	775063	8007355	20	17	69		
ESS03071	775044	8007257		19	59		
ESS03072	775026		57	20	86		
		8007257					
ESS03074	775002	8007255	51	71	154		
ESS03076	774987	8007254		25	113		
ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS03113	775066	8007497	244	20	38		0
ESS03114	775078	8007499	231	22	25		
ESS03115	775095	8007501	177	19	34		
ESS03118	775114	8007496	222	20	46		
ESS03119	775136	8007506	112	20	63		
ESS03120	775157	8007300	123	24	59		
ESS03120	775181	8007494	224	25	72		
						_	
ESS03122	775210	8007500	326	28	55		
ESS03123	775199	8007506	411	38	91		
ESS03124	775240	8007503	143	28	60	-	
ESS03126	774880	8007660	291	64	103	3	
ESS03127	774903	8007661	236	19	42	4	
ESS03128	774919	8007660	202	21	53	4	
ESS03129	774940	8007658	281	26	41	3	
ESS03130	774960	8007666	239	18	31		
ESS03131	774977	8007659	199	18	68		
ESS02122	77/1992	2007655	217	15	22		

ASX Code: FMU	

ABN: 50 127 291 927

ESS03132

ESS03133

ESS03135

ESS03136

ESS03139

ESS03140

ESS03141

ESS03142

ESS03143

ESS03144

ESS03145

ESS03146

ESS03147

ESS03148

ESS03150

ESS03151

ESS03152

www.emunl.com.au info@emunl.com.au

10 Walker Avenue WEST PERTH WA 6005

\geq	
	Table 3: Empirical pXRF (Ni

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS03153	775043	8007821	420	20	76		
ESS03154	775058	8007820	246	10	29		
ESS03155	775077	8007816	244	16	86		
ESS03156	775098	8007824	242	21	42		
ESS03157	775120	8007819	412	19	44		
ESS03158	775138	8007809	219	16	53		
ESS03161	775119	8007650	344	21	49		
ESS03162	775138	8007659	188	14	27		
ESS03163	775156	8007656	218	21	58		
ESS03164	775177	8007665	229	19	48	3	
ESS03165	775199	8007663	247	21	58		
ESS03166	775211	8007655	277	19	43		

Fable 3: Empirical pXRF (Nikon XL5 Plus) Analysis Results - Crushed Rock

ID	EAST	NORTH	Cu	Pb	Zn	Bi	Ag
ESS02588	774669	8007947	10889	42	157	4	
ESS02589	774672	8007957	80433	178	860	7	18
ESS02590	774615	8007949	63714	235	111	47	14
ESS02591	775189	8007333	122889	3611	4178	191	
ESS02592	775191	8007334	33601	1649	634	232	86
ESS02593	775437	8007406	325587	321	470	26	81
ESS02594	775431	8007419	39734	185	133	48	58
ESS02595	774600	8007668	61083	66	228	19	
ESS02596	774606	8007804	52237	1528	416	184	31
ESS02597	774618	8007738	51334	107	159	70	22
ESS02598	774602	8007671	32027	74	868	16	7
ESS02600	775666	8007258	82230	113	319		29
ESS02698	774691	8001213	1139	236	333	9	
ESS02699	774707	8001221	3124	44570	2066	114	309
ESS02721	774966	8007320	2258	264	146		
ESS02872	774556	8007982	11040	746	420	2921	29
ESS02873	774643	8007985	674	97	74	20	
ESS02874	774671	8007986	2738	1499	1254	51	20
ESS02875	774697	8007980	55229	938	311	496	
ESS02881	774641	8007661	93298	772	1948	941	23
ESS02882	774648	8007644	107082	489	413	1873	113
ESS02899	774613	8007741	17068	84	35	6	
ESS02911	774640	8007654	13269	330	306	194	32
ESS02917	774526	8007649	211396	2372	110	8993	
ESS02922	774603	8007670	10491	36	119	19	
ESS03075	774999	8007254	69	169	432		
ESS03097	775427	8008488	1090	333	33	75	

Appendix 2 JORC Tables

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Griteria	JORG Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 No drill assays are presented in this update. Traditional soil samples as well as termite mound samples were collected at 20m spacings. A further 200-300g sample (where submitted) will be crushed and a sub-fraction obtained for pulverisation. Samples have been dispatched to both LabWest and Nagrom laboratories in Perth. Rock samples were collected where available and for both lithological identification and geochemical analysis. All sample mediums were sieved to passing -1mm mesh before pXRF analysis. Field samples were located using hand-held GPS. Sampling was carried out under Emu NL protocols and QAQC procedures as per current industry practice. Sample quality was supervised by experienced field geologists and field technicians under geologist supervision. All LabWest samples will be analysed using Microwave digest (MD), Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) to finish. 62 element analysis by ICP-MS/OES. All Nagrom samples will be analysed using a 50g Fire assay method.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamont tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling was done.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery & grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling was done.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the 	 All samples were logged geologically by Company geologists, using EMU logging codes. Logging is both qualitative and quantitative in nature, and includes lithology, mineralogy, mineralisation, weathering, & colour. Photographs taken for each sample and stored in a database. In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral

10 Walker Avenue WEST PERTH WA 6005

Criteria	JORC Code explanation	Commentary
	relevant intersections logged.	abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation (if reported) in preliminary geological logging.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Current sampling includes comprehensive and industry standard QAQC inclusive of split and duplicate samples, and applicable and representative standards for copper and gold. <u>pXRF Analysis</u> pXRF analysis of soil samples is deemed fit for purpose as a preliminary exploration screening technique. pXRF provides a spot reading on sample locations with variable grain sizes and states of homogenisation. High grade results were repeated at multiple locations to confirm repeatability. The competent person considers this acceptable within the context of reporting preliminary exploration results.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 pXRF screening of soil sample points by preliminary analysis was obtained with a Niton XL5 portable XRF. NOTE 1: pXRF (portable x-ray fluorescence) assay results are semi-quantitative only. NOTE 2: pXRF – Only a selection of pathfinder elements are analysed with pXRF analyser: Cu, As, (add other elements of interest) Elements detected by pXRF at ppm levels include: Ag, As, Au, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, K, K, La, Mn, Mo, Nb, Nd, Ni
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Analytical QC is monitored by the laboratory using standards, blanks and repeat assays. Independent standards were submitted by the Company at a rate of 1:25 samples. Independent field duplicates were included at regular intervals.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations were captured using a handheld Garmin RINO GPS using the UTM coordinate system, with an accuracy of +/- 5m Map coordinates: all recorded in MGA94, Zone 54 GDA
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 Sample spacing is suitable for reporting of exploration results. Sample spacing is not suitable for Mineral Resource estimation. Soil surveys were undertaken on a typical spacing of 20 x 80m in the interpreted mineralised shear zone areas and up to 100 x 200m in semi-regional

Criteria	JORC Code explanation	Commentary
Criteria		Commentary
	 Whether sample compositing has been applied. 	investigations.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Soil sampling was undertaken at a perpendicular angle to the targeted lithological unit. Sampling is regarded to be unbiased with respect to the orientation of the lithologies.
Sample security	 The measures taken to ensure sample security. 	 Samples are given individual samples numbers for tracking. The sample chain of custody is overseen by the Company's Exploration Manager. Samples were transported in secure sealed bags to the laboratory. Sample security and integrity is in place to industry standards
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 The sampling techniques and analytical data are monitored by the Company's geologists and IT consultants. External audits of the data have not been completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The tenure hosting the Georgetown Project in this news release is owned 100% by Rugby Resources Ltd. EMU NL has the right to earn up to 80% interest in three EPM's under a Heads of Agreement and JVA with Rugby Resources Ltd. The three EPM's are: 276642 27664; and 27667 All works undertaken and reported in this ASX announcement were completed within these tenements. The project tenements are all in good standing.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Historical prospecting, sampling and drilling activities have been undertaken in different areas within the project tenements intermittently by multiple third parties over a period of at least 50 years. Historic RC drilling at Camp-oven Creek and Turth Creek was undertaken by Georgetown Mining Pty Ltd. Historic RC drilling at Munitions Creek was undertaken by Diatreme Resources Ltd.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Intrusive related epithermal vein system mineralisation and Cu-Mo Porphyry-style mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No drilling done.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations used for any reporting of metal equivalent values should be clearly stated. 	 No weighting techniques or grade truncation has been applied to results. Results rounded to nearest ppm.
Relationship between mineralisation	 stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its 	No drilling done.

(Criteria listed in the preceding section also apply to this section.)

www.emunl.com.au info@emunl.com.au

10 Walker Avenue WEST PERTH WA 6005

Criteria	JORC Code explanation	Commentary
widths and intercept lengths	 nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to figures in this announcement with sections and map plans created using QGIS software. Refer to maps and figures in body of the announcement. Geological interpretations are based on current knowledge and will change with further exploration.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 No inference to economic mineralisation has been stated. Key findings and location information has been reported in body of text. Reporting is considered balanced.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All of the relevant data has been included in this report. Geological interpretations have been taken from published maps, geophysical interpretation, historical and ongoing exploration.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 On-going field reconnaissance exploration in the project area continues and is a high priority for the Company. Exploration is likely to include further lithological and structural mapping, rockchip sampling, acquisition of high-resolution geophysical data and arial drone imagery to assist geological interpretation, target identification, pXRF soil sampling campaigns and drilling.