ASX: AWJ | ACN 635 470 843

auricmining

RC Drilling at Spargoville – Fugitive Prospect

HIGHLIGHTS

- Six-hole RC program completed at Fugitive Prospect.
- Scissor holes lead to geological reinterpretation.
- Results include 2m @ 3.82g/t Au, 3m @ 1.18g/t Au and 1m @ 6.08g/t Au within a broader mineralised zone.
- Mineralised zone represents highly prospective target for further drilling.

MANAGEMENT COMMENT

Mr. Mark English, Managing Director:

"The Fugitive Prospect is midway between two prominent, high-grade gold deposits; Wattle Dam and Spargos Reward at Spargoville. Our first-pass drilling has highlighted similarities with both deposits. We're looking forward to the next phase when we will get the opportunity to test that model."

Mr. John Utley, Technical Director:

"Historic drilling has outlined a zone of supergene gold mineralisation at Fugitive. Whilst there's only sparse drilling below 50m vertical depth, we can see evidence for a plumbing system extending beneath the shallow mineralisation. It's an enticing drill target, over almost 700 metres of strike length."

RC Drilling at The Fugitive Prospect. Photo 15 April 2024.

THE ANNOUNCEMENT

Auric Mining Limited (ASX: **AWJ**) (**Auric** or **the Company**) is pleased to announce that results have been returned for a small RC drilling program recently completed at the Fugitive Prospect, Spargoville Project, Western Australia.

Geological logging and interpretation of the new holes show that lithological contacts and mineralisation controls dip to the west. Most of the historic drillholes were also inclined to the west but would have been more effective at defining mineralised geometry if drilled to the east. Nevertheless, the historic drillholes identified a zone of supergene (ie, remobilised) mineralisation in weathered rock. The current drilling which targeted mineralisation in fresh rock has defined significant mineralisation at a 0.5g/t Au cut-off beneath the supergene. That fresh rock mineralisation includes:

ASRC001; 3m @ 1.18g/t Au from 69m and 1m @ 6.08g/t Au from 82m ASRC003; 2m @ 3.82g/t Au from 96m ASRC005; 2m @ 2.78g/t Au from 114m

The significant assays occur within a gold mineralised envelope confined to a basalt unit and defined by gold concentrations above 0.1g/t Au. The mineralised envelope has barely been tested in fresh rock. It has potential to host a gold deposit beneath the prominent auger-soil gold anomaly shown in Figure 1, at depth and/or along strike and represents a logical target for ongoing exploration.

Figure 1. The Fugitive Prospect, defined by auger-soil gold anomalism, with Auric and historic drill holes collars.

Fugitive Prospect Drilling

The Fugitive Prospect lies within Auric's Spargoville Project centred 4km west of the Coolgardie-Esperance Highway and 35km southwest of Kambalda. It is outlined by a large and prominent auger-soil anomaly and was targeted by previous explorers with RAB, Aircore and shallow RC holes (Figure 1). The prospect was described in a previous announcement¹ which included a summary of drilling by earlier explorers Ramelius Resources Limited (**Ramelius**) and Tychean Resources Limited (**Tychean**). Historic drilling by Breakaway Resources Limited is summarised in this announcement (Appendices 2 and 3).

The historic holes, with the exception of Ramelius' holes at the southern end of the Fugitive Prospect, were inclined at 60° and drilled to the west implying that mineralisation dipped to the east. This orientation was uncertain and a key aspect of Auric's drill planning was to obtain a better understanding of the orientations of lithological contacts and gold mineralisation as a precursor to further drilling.

Six RC holes were drilled in the current program for a total of 822m by Kalgoorliebased Kennedy Drilling. All of the holes were sampled at 1m intervals via a fixedcone splitter and duplicate samples together with commercial standards submitted representing 10% of the total samples submitted for assay. A more detailed description of sampling techniques and various reporting criteria are included in JORC Table attached as Appendix 1.

Four of the Auric holes were drilled as two pairs of scissor holes to potentially provide the orientation of lithological contacts. This was achieved with holes ASRC004 and ASRC005 (Figure 2) which show that the basalt-ultramafic contact dips steeply to the west. Future drill holes will be inclined to the east.

Drill hole details for the Auric drill holes are shown in Table 1 and significant gold intersections at a 0.5g/t cut-off in Table 2.

Significant intersections in fresh rock are associated with quartz veining and with trace to 2% sulphides, predominantly pyrite but also including pyrrhotite and sphalerite in several intervals.

Historic drill intercepts included 25m @ 1.67g/t Au from 44m in Tychean aircore drill hole SPAC142. The majority of the historic drill holes, including SPAC142, were drilled to blade-refusal, typically ending in partially oxidised rocks and the broad intercepts in those holes are interpreted to represent supergene ie, remobilised gold mineralisation in the weathered rock. The deeper drilling in the Auric RC holes and an earlier Tychean RC hole (SPRC027) have intersected narrow zones of gold mineralisation at a 0.5g/t cut-off within a broader mineralised envelope (Figures 2 and 3).

¹ (ASX:AWJ): 2 March 2021. Auric Mining Limited Resources Summary and Exploration Update

The mineralised envelope corresponds with the strong auger-soil gold anomaly at surface and with gold mineralisation intersected in historic drill holes over an almost 700m strike length – it represents a logical focus for further drilling. The target in this area is a substantial deposit such as the 185,000oz Spargos Reward gold deposit² 8km to the north of Fugitive or the 266,000oz Wattle Dam gold deposit³ 8km to the south east.

Hole_ID	Туре	Hole Depth (m)	MGA_East	MGA_North	Orig_RL	Dip	MGA_Azi
ASRC001	RC	140	353150	6534750	390	-60	270
ASRC002	RC	140	352880	6535240	390	-60	090
ASRC003	RC	140	353015	6535234	390	-60	270
ASRC004	RC	138	352860	6535360	390	-60	090
ASRC005	RC	138	352971	6535360	390	-60	270
ASRC006	RC	126	352666	6535663	390	-60	090

Table 1. Auric RC Drillhole Details

Table 2. Auric Drill Holes - Significant gold intersections at 0.5g/t cut-off

Hole ID	From (m)	To (m)	Downhole Interval (m)	Au (g/t)
ASRC001	0	1	1	1.83
ASRC001	38	39	1	0.73
ASRC001	43	45	2	0.61
ASRC001	53	54	1	0.71
ASRC001	69	72	3	1.18
ASRC001	82	83	1	6.08
ASRC002	115	118	3	0.60
ASRC003	96	98	2	3.82
ASRC003	111	113	2	0.95
ASRC004	30	31	1	1.03
ASRC004	84	85	1	0.65
ASRC004	89	90	1	0.55
ASRC004	111	112	1	0.64
ASRC005	39	40	1	0.56
ASRC005	114	116	2	2.78
ASRC006	23	25	2	1.46

² Technical Report (NI 43-101) 4 January 2024. Higginsville-Lakewood Operation Eastern Goldfields, Western Australia

³ Maximus Resources website – Company Overview – accessed 15 May 2024

Figure 3. Fugitive Cross Section 6535240N – refer Figure 1 for location.

Next Steps

- Aircore drilling along several traverses toward centre of the prospect to infill current 100m drill traverse spacing in that area.
- RC drilling beneath the historic and latest drill holes to target the mineralised zone in fresh rock approximately 75 to 100m and more below surface note that all of the high grades at Wattle Dam occur below weathering.

COMPLIANCE STATEMENT

The information in this announcement that relates to exploration targets and exploration results is based on and fairly represents information and supporting documentation compiled by Mr John Utley, who is a full-time employee of Auric Mining Limited. Mr Utley is a Competent Person and a member of the Australian Institute of Geoscientists. Mr Utley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Utley consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

This announcement has been approved for release by the Board.

Corporate Enquiries

Mark English Managing Director Auric Mining Limited +61 409 372 775 menglish@auricmining.com.au

Appendix 1: Fugitive Prospect RC Drilling JORC Table 1 Checklist

Section 1 Sampling Techniques and Data (Criteria in this section apply to the succeeding section)

\square	Criteria	JORC Code explanation	Commentary
	Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 RC drill samples were taken at 1m intervals via a cyclone and fixed cone splitter. Samples of nominally 2.5kg were collected in calico bags and submitted to the Intertek Genalysis sample preparation facility in Kalgoorlie. Samples were pulverised to a nominal 85% passing 75µm. Approximately 200g of the pulverised product from each sample was then transferred to the Intertek Genalysis facility in Perth. Samples were analysed for Au via 50g fire assay with an ICP-OES determination of gold concentration The samples for each 1m interval remaining after removal of the nominal 2.5kg split were laid out in rows at the drill site and this material used for geological logging
	Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC drilling using a face-sampling hammer with a drill bit (hole) diameter of approximately 133mm.
	Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	• Sample recovery is assessed as having been reasonable overall. Samples submitted for assay were weighed at the lab and sample weights reported

	Measures taken to maximize sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 they show some small samples in the 1st few metres of drill holes, a maximum weight of 4.8kg and an average weight of 2.1kg There is no evidence of sample bias
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Drill chips were logged at 1m intervals corresponding to the sample intervals and according to Auric's coding system in sufficient detail to support mineral resource estimation, mining studies and metallurgical studies. The logging is qualitative in nature. Chips were not photographed but a small proportion of chips from each interval have been retained in compartmentalised chip trays. The total length logged is 822m which is 100% of the drilled intervals
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 RC chips were sampled at 1m intervals via a fixed cone splitter and all samples were dry. A duplicate sample was taken with every 15th sample using a 2nd chute on the splitter and a pulp standard was inserted after every 30 samples such that 10% of samples submitted for assay are either duplicates or standards. The duplicate assays show reasonable correlation. Sample sizes (nominally 2.5kg) were pulverised prior to subsampling of 50g for fire assay and are considered appropriate.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations	 In addition to standards submitted by Auric, the laboratory (Intertek Genalysis) analysed standards and blanks inserted with each fire assay batch. Comparison of expected results for standards with the assays received for the RC samples indicates accurate and precise laboratory data.

Verification of sampling and assaying	factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	•	Anomalous assays have been verified by alternative Auric personnel. No twinned holes have been drilled. Field sample records are merged with assay results from the lab and various cross reference checks, both manual and computational used to ensure data integrity. Data is stored on two separate computers and backed up routinely. No adjustment has been made to
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	•	assay data Hole collar positions were located using a hand-held GPS referenced to MGA-GDA94, Zone 51 and are accurate to within 5m. Downhole surveys were taken by the drilling contractor using a gyro at approximately 10m intervals. Collar surveys included an elevation measurement and are located within the MGA-GDA94 grid system, Zone 51
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.		6 holes were drilled over a strike length of approx. 1km within a prominent auger-soil gold anomaly and intercalated with historic, generally shallow drill holes. At this exploration stage, the data is dominated by historic drilling with insufficient QA to be incorporated into a resource estimate. No sample compositing
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this	•	The current drilling has allowed a new interpretation of the mineralisation geometry. As a consequence, it appears that mineralized intercepts in drill holes inclined at 60° to the west represent ~40% of true width and intercepts in holes inclined at 60° to the east represent ~70%

	should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	 Auric personnel were present during all drilling and sampling and individual samples were bagged and sealed in larger polywoven bags with no opportunity for tampering. Samples were transported to the lab by Auric personnel
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 There have been no reviews of sampling techniques and data related to the current program.

Criteria	JORC Code explanation	Commentary
Mineral tenement and la tenure status	Type, reference name/number, location and ownership including agreements and material issues with third parties such a joint ventures, partnerships, overridin royalties, native title interests, historic sites, wilderness or national park an environmental settings. The security of the tenure held at the time of reporting along with any know impediments to obtaining a licence operate in the area.	 E15/1688 which is held by Spargoville Minerals Pty Ltd, a wholly owned subsidiary of Auric Mining Ltd. There are no known impediments to obtaining a licence to explore or mine in the area beyond routine compliance requirements
Exploratio done other part	by exploration by other parties.	 Auric have undertaken auger sampling within E15/1689 to complement earlier auger sampling by Breakaway resources. All drilling within the Spargoville project prior to the current RC program was undertaken by other parties including 117 air core and RAB holes and 12 RC holes drilled by Ramelius Resources, Tychean Resources and Breakaway Resources.
Geology	Deposit type, geological setting an style of mineralisation.	

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 Refer to: Table 1: RC Drillhole Details Table 2: Significant gold intervals at 0.5g/t cut-off
	 easting and northing of the drill hole collar 	
\square	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
15	 o dip and azimuth of the hole. o down hole length and interception depth 	
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregatio n methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Samples were collected at 1m intervals and aggregate intervals incorporate only 1m intervals. Samples were aggregated at a 0.5g/t cut-off with no top-cut applied
15	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some	
	typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation		 Mineralisation widths are between 40% and 70% of down hole intercept lengths.
widths and intercept lengths	respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts	Refer to Figures 1-3 and Tables 1-2

Criteria	JORC Code explanation	Commentary
	should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Reporting is balanced – only significant Au values at a 0.5g/t cut- off are tabulated and this is acknowledged
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• Not applicable
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	• At the Fugitive Prospect, further RC drilling will target an Au-mineralized envelope hosted within a basalt unit defined in fresh rock, beneath most of the historic drilling. Further drilling may also be used to quantify supergene mineralization within the weathered profile.

Appendix 2: Breakaway Resources – Spargoville Project RAB, RC and Diamond Drill Hole Details

(Including Significant Assays at 0.5g/t Cut-off)

Drill Hole	Location	eakaway Reso	Orientation			own-hole inte	arval
DHILHOLE	Easting	Northing	Dip/Azi	Hole Depth (m)	D Interval	own-noie inte Length	Grade
	Easting	Northing		(m)	(m)	(m)	Au (g/t)
06KWRB055	353031.76	6538555.202	-60/270	11	(111)	NSI	
			-				
06KWRB056 06KWRB085	353133.76	6538550.202	-60/270 -60/270	13 2		NSI NSI	
06KWRB085	354042.765 354137.766	6539167.205	•	2		NSI	
1		6539161.205	-60/270				
06KWRB087	353647.763	6539365.206	-60/270	12		NSI	
06KWRB088	353728.764	6539357.206	-60/270	38		NSI	
06KWRB089	353838.764	6539357.206	-60/270	2		NSI	
06KWRB090	353937.765	6539354.206	-60/270	2		NSI	
06KWRB091	354038.765	6539352.206	-60/270	5		NSI	
06KWRB106	352520.756	6534557.183	-60/270	44		NSI	
06KWRB107	352635.757	6534549.183	-60/270	33		NSI	
06KWRB108	352733.757	6534553.183	-60/270	31		NSI	
06KWRB109	352835.758	6534557.183	-60/270	26		NSI	
06KWRB110	352941.758	6534557.183	-60/270	38	0-8 36-40	8 2	1.54 0.6
06KWRB111	353042.759	6534556.182	-60/270	46	0-4	4	1.35
			, -	_	36-40	4	0.66
06KWRB112	353143.759	6534558.182	-60/270	44		NSI	
06KWRB113	352448.756	6534954.185	-60/270	62		NSI	
06KWRB114	352548.757	6534958.185	-60/270	49		NSI	
06KWRB115	352628.757	6534957.185	-60/270	50		NSI	
06KWRB116	352736.757	6535024.185	-60/270	55		NSI	
06KWRB117	352820.758	6534956.185	-60/270	35		NSI	
06KWRB118	352912.758	6534957.185	-60/270	18		NSI	
06KWRB119	353043.759	6534954.184	-60/270	51		NSI	
06KWRB120	353121.759	6534936.184	-60/270	48		NSI	
06KWRB121	353230.76	6534949.184	-60/270	28		NSI	
06KWRB122	351830.754	6537746.199	-60/270	56		NSI	
06KWRB122	351943.754	6537768.199	-60/270	50		NSI	
06KWRB123	352036.755	6537754.199	-60/270	47		NSI	
06KWRB124	352133.755	6537751.199	-60/270	16		NSI	
06KWRB126	352233.756	6537762.199	-60/270	35		NSI	
06KWRB120	351821.754	6537962.2	-60/270	43		NSI	
06KWRB127	351934.754	6537956.2	-60/270	59		NSI	
06KWRB128	352040.755	6537961.2	-60/270	62		NSI	
06KWRB129	352132.755	6537959.2	-60/270	38		NSI	
06KWRB130	352236.756	6537961.2	-60/270	29		NSI	
06KWRB131	35230.756	6537958.199	-60/270	53		NSI	
06KWRB132	352328.756	6538155.201	-60/270	34		NSI	

	06KWRB134	351934.754	6538149.201	-60/270	36		NSI	
	06KWRB135	352040.755	6538162.201	-60/270	10		NSI	
	06KWRB136	352134.755	6538159.201	-60/270	29		NSI	
	06KWRB137	352242.756	6538162.201	-60/270	20		NSI	
_	06KWRB138	352326.756	6538159.2	-60/270	36		NSI	
7	BRC001	352968.759	6535807.189	-60/90	100		NSI	
	BRC002	352921.759	6535807.189	-60/90	149		NSI	
	BRC003	352816.758	6535807.189	-60/90	149		NSI	
	BRC004	352921.759	6535932.189	-60/90	149		NSI	
	BRC005	352966.759	6535932.189	-60/90	107		NSI	
	BRC006	352976.759	6535707.188	-60/90	100		NSI	
4	BRC007	352911.759	6535707.188	-60/90	149		NSI	
╞	BRC008	352616.757	6535662.188	-60/90	115	145-	2	3.36
75	BREEDE	552010.757	0555002.100	00,50	149	147	2	3.50
Ŀ	BRC009	352966.759	6535777.189	80	-60/90	177	NSI	
	BRC010	352886.758	6535918.189	241	-63/100		NSI	
/}	LFC0001	352994.759	6535231.186	80	-60/270	36-41	5	0.64
ľ		332334./39	0000201.100	80	-00/270	36-41 45-46	5	0.52
						45-46 76-78	1 2	0.52 1.97
-	LFC0002	352955.759	6535237.186	80	-60/270	8-10	2	1.53
	LFC0002	552955.759	0555257.100	80	-00/2/0	28-32	2 4	1.55
						28-32 38-39	4 1	0.71
							2	0.62
Ų	1500002	252006 850	6535287.186	0.4	-60/270	49-51		0.02
1	LFC0003	352996.859		84	-	12.14	NSI	1 50
	LFC0004	352956.359	6535287.186	00	-60/270	13-14	1 3	1.58 0.8
-			6525220 406	80	<u> </u>	54-57		0.8
	LFC0005	352976.559	6535338.186	80	-60/270	24.22	NSI	1 11
4	LFC0006	352936.159	6535337.186	80	-60/270	31-32	1	1.41
\bigwedge						39-40	1	0.57
1						44-50	6	0.65
_						52-53	1	0.95
71		252006 450	6525226 406	00	60/270	59-61	2	0.82
	LFC0007	352896.458	6535336.186	80	-60/270	19-20	1	0.78
4	LFC0008	352976.559	6535386.187	80	-60/270	17.40	NSI	0.07
	LFC0009	352937.259	6535386.187	80	-60/270	17-19	2	0.87
-						37-38	1	0.74
						70-71	1	1.08
	1500040	252006 456	6525206 405	00	60/272	74-75	1	2.59
	LFC0010	352896.158	6535386.187	80	-60/270	1-5	4	0.43
						28-30	2	0.73
_	/	252072 255			co /2=2	44-46	2	0.84
┝	LFC0011	352970.959	6535437.187	80	-60/270		NSI	
	LFC0012	352936.259	6535437.187	80	-60/270		NSI	
	LFC0013	352897.758	6535437.187	70	-60/270		NSI	
	LFC0014	352847.658	6535387.187	100	-60/90	46-48	2	0.82
						53-54	1	0.53
Ļ						82-83	1	0.54
L	LFC0023	352986.559	6535334.186	80	-60/270		NSI	

								1
	LFC0039	352976.759	6535237.186		-60/270	26-27	1	0.53
						37-38	1	1.9
						44-45	1	1.34
				80		58-59	1	0.94
	LFC0040	352916.758	6535337.186	80	-60/270	8-9	1	3.1
						20-21	1	0.52
						36-37	1	0.83
						76-77	1	1.49
	LFC0041	352956.759	6535337.186	100	-60/270	30-32	2	0.89
						61-66	5	0.65
)						78-81	3	0.86
P						85-89	4	0.59
	LFC0042	352916.758	6535387.187	80	-60/270	18-21	3	0.89
5						31-41	10	0.90
IJ	LFR0001	354956.767	6529057.155	40	-60/270		NSI	
5	LFR0002	354996.767	6529057.155	40	-60/270	10-12	2	1.22
())	LFR0003	355036.767	6529057.155	52	-60/270		NSI	
K	LFR0004	355036.767	6528957.154	40	-60/270		NSI	
)	LFR0005	355076.767	6528957.154	27	-60/270		NSI	
2	LFR0006	355116.767	6528957.154	40	-60/270	14-16	2	1.6
	LFR0014	353235.76	6534792.184	26	-60/270	1.10	NSI	1.0
	LFR0015	353195.06	6534787.184	43	-60/270		NSI	
7	LFR0016	353154.659	6534793.184	60	-60/270		NSI	
\rightarrow	LFR0017	353154.059	6534791.184	68	-60/270	24-26	2	0.51
	LFRUUI/	333113.139	0334791.104	08	-00/2/0	24-20 36-38	2	4.28
						30-38 46-48	2	4.28 0.51
	LFR0018	353075.659	6534794.184	69	60/270		2	
					-60/270	52-54		0.61
1	LFR0019	353034.759	6534790.184	64	-60/270	40.50	NSI	0.75
	LFR0020	353134.759	6534881.184	59	-60/270	48-50	2	0.75
Ð	1500004	252005 250	6524070 404	F.2	60/270	53-54	1	1.08
	LFR0021	353095.359	6534879.184	53	-60/270	22.22	NSI	0.00
	LFR0022	353056.159	6534880.184	53	-60/270	32-33	1	8.33
\rightarrow	LFR0023	353018.159	6534881.184	55	-60/270		NSI	
1	LFR0024	353070.359	6534991.185	60	-60/270		NSI	
	LFR0025	353033.059	6534990.185	51	-60/270		NSI	
12	LFR0026	352988.759	6534995.185	40	-60/270		NSI	
	LFR0027	352949.458	6534996.185	28	-60/270		NSI	
	LFR0028	352911.258	6534997.185	30	-60/270		NSI	
	LFR0029	352877.958	6535000.185	40	-60/270		NSI	
2	LFR0030	353030.959	6535087.185	51	-60/270	34-36	2	0.74
1	LFR0031	352992.159	6535090.185	54	-60/270	24-25	1	1.53
	LFR0032	352952.159	6535089.185	36	-60/270		NSI	
	LFR0033	353022.859	6535187.186	28	-60/270		NSI	
	LFR0034	352983.259	6535186.186	48	-60/270		NSI	
	LFR0035	352943.759	6535187.186	52	-60/270	39-41	2	1.75
	LFR0036	352903.158	6535183.186	30	-60/270		NSI	
	LFR0037	352863.658	6535187.186	35	-60/270		NSI	
	LFR0038	352824.158	6534986.185	22	-60/270		NSI	
					-			
	LFR0039	352786.958	6535187.186	40	-60/270		NSI	

	LFR0041	352972.559	6535280.186	38	-90/0	11-15	4	5.45
_	LFR0041	352933.259	6535280.180	46	-60/270	11-15	4 NSI	5.45
_	LFR0042	352953.059	6535382.180	50	-60/270	31-35	4	0.99
_	LFR0043	352923.458	6535384.187	50	-60/270	22-23	1	5.01
	LI 10044	552525.450	0555564.187	50	-00/2/0	33-50	17	1.31
≽	LFR0045	352877.458	6535385.187	48	-60/270	33-30	NSI	1.51
	LFR0045	352836.958	6535387.187	38	-60/270		NSI	
	LFR0047	352476.757	6536827.194	31	-60/270		NSI	
	LFR0048	352436.757	6536827.194	41	-60/270	19-21	2	3.26
F	LFR0049	352396.756	6536827.194	39	-60/270	15 21	NSI	5.20
h	LFR0050	352356.756	6536827.194	42	-60/270	26-28	2	0.51
₽	LFR0051	352316.756	6536827.194	48	-60/270	20 20	NSI	0.51
\vdash	LFR0051	352276.756	6536827.194	48	-60/270		NSI	
5	LFR0052	352296.756	6536937.194	31	-60/270		NSI	
H	LFR0055	352416.756	6537057.195	48	-60/270		NSI	
F								
))	LFR0055	352376.756	6537057.195	44	-60/270		NSI	
K	LFR0056	352336.756	6537057.195	32	-60/270	7.0	NSI	0.62
22	LFR0057	352296.756	6537057.195	36	-60/270	7-8	1	0.63
P		252256 756		40	60/270	22-24	2	0.64
_	LFR0058	352256.756	6537057.195	42	-60/270		NSI	
	LFR0060	352376.756	6537137.195	48	-60/270		NSI	
2	LFR0061	352136.755	6537137.195	50	-60/270		NSI	
J)	LFR0067	352216.756	6537477.197	30	-60/270		NSI	
ĥ	LFR0068	352176.755	6537477.197	30	-60/270		NSI	
	LFR0069	352196.756	6537607.198	33	-60/270		NSI	
Ľ	LFR0070	352116.755	6537607.198	32	-60/270		NSI	
	LFR0071	352456.757	6536827.194	65	-60/270	34-36	2	0.96
\mathcal{V}	LFR0072	352316.756	6537057.195	50	-60/270	28-29	1	0.57
D						31-33	2	1.28
Ľ					/	36-38	2	0.59
	LFR0073	352276.756	6537057.195	50	-60/270	16-19	3	1.21
	LFR0179	352416.756	6536787.194	47	-60/270		NSI	
))	LFR0180	352436.757	6536787.194	35	-60/270		NSI	
Ľ	LFR0181	352456.757	6536787.194	62	-60/270		NSI	
Þ)	LFR0182	352416.756	6536827.194	31	-60/270		NSI	
72	LFR0183	352416.756	6536867.194	32	-60/270		NSI	
	LFR0184	352436.757	6536867.194	52	-60/270		NSI	
	LFR0185	352456.757	6536867.194	54	-60/270		NSI	
Ľ	LFR0186	352256.756	6537017.195	54	-60/270		NSI	
D)	LFR0187	352276.756	6537017.195	38	-60/270		NSI	
2	LFR0188	352296.756	6537017.195	36	-60/270		NSI	
	LFR0189	352316.756	6537017.195	32	-60/270		NSI	
	LFR0190	352336.756	6537017.195	32	-60/270		NSI	
	LFR0191	352356.756	6537057.195	20	-60/270		NSI	
	LFR0196	352336.756	6537097.195	31	-60/270		NSI	
	LFR0197	352056.755	6537137.196	10	-60/270		NSI	
	LFR0198	352096.755	6537137.196	10	-60/270		NSI	
	LFR0199	352116.755	6537207.196	33	-60/270		NSI	
	LFR0200	352156.755	6537207.196	41	-60/270		NSI	
	LFR0261	352136.755	6537097.195	29	-60/270		NSI	

-		1						
	LFR0262	352156.755	6537097.195	39	-60/270		NSI	
	LFR0266	352196.755	6537057.195	41	-60/270		NSI	
	LFR0267	352216.756	6537057.195	45	-60/270		NSI	
	LFR0268	352236.756	6537057.195	48	-60/270		NSI	
-	LFR0269	352196.755	6537017.195	36	-60/270		NSI	
7	LFR0270	352216.755	6537017.195	42	-60/270		NSI	
	LFR0271	352236.756	6537017.195	45	-60/270		NSI	
	LFR0329	355156.768	6528957.154	45	-60/270		NSI	
	LFR0330	355196.768	6528957.154	50	-60/270		NSI	
1	LFR0331	355236.768	6528957.154	70	-60/270		NSI	
\mathcal{D}	LFR0353	352851.758	6535287.186	50	-60/270		NSI	
1	LFR0354	352891.758	6535287.186	50	-60/270		NSI	
	LFR0355	352911.758	6535287.186	50	-60/270	32-36	4	0.74
5	LFR0356	352916.758	6535237.186	50	-60/270		NSI	
Þ	LFR0357	352936.759	6535237.186	49	-60/270	8-12	4	3.01
5	LFR0358	353036.759	6535237.186	54	-60/270	0-4	4	3.66
Ð	LFR0359	352856.758	6535387.187	52	-60/270		NSI	5.00
E	LFR0360	352776.758	6535437.187	41	-60/270		NSI	
D	LFR0361	352816.758	6535437.187	50	-60/270		NSI	
F	LFR0362	352856.758	6535437.187	36	-60/270		NSI	
	LFR0364	352136.755	6537287.196	50	-60/270		NSI	
E	LFR0367	352130.755	6537327.196	57	-60/270		NSI	
K	LFR0368	352136.755	6537367.190	50	-60/270		NSI	
Y	LFR0368 LFR0371	352136.755	6537477.197	50	-60/270		NSI	
	LFR0371 LFR0372	352096.755	6537477.197	40	-60/270		NSI	
	LFR0372 LFR0373	352136.755	6537607.197	40 50			NSI	
-					-60/270			
Ð	LFR0374	352156.755	6537607.198	50	-60/270		NSI	
¥	SR0172	354536.766	6532422.172	2	-90/0		NSI	
$\left(\right)$	SR0173	354546.766	6532422.171	1	-90/0		NSI	
P	SR0174	354556.766	6532422.171	1	-90/0		NSI	
	SR0175	354566.766	6532422.171	1	-90/0		NSI	
4	SR0176	354576.766	6532422.171	2	-90/0		NSI	
D)	SR0177	354586.766	6532422.171	2	-90/0		NSI	
K	SR0178	354596.766	6532422.171	2	-90/0		NSI	
D	SR0179	354606.766	6532422.171	2	-90/0		NSI	
12	SR0180	354616.766	6532422.171	2	-90/0		NSI	
	SR0181	354626.766	6532422.171	2	-90/0		NSI	
	SR0182	354636.766	6532422.171	2	-90/0		NSI	
	SR0183	354646.766	6532422.171	3	-90/0		NSI	
\mathbf{D}	SR0184	354656.766	6532422.171	2	-90/0		NSI	
P	SR0185	354666.766	6532422.171	2	-90/0		NSI	
	SR0186	354676.766	6532422.171	3	-90/0		NSI	
	SR0187	354686.766	6532422.171	1	-90/0		NSI	
	SR0188	354536.766	6532222.171	3	-90/0		NSI	
	SR0189	354546.766	6532222.171	6	-90/0		NSI	
	SR0190	354556.766	6532222.171	6	-90/0		NSI	
	SR0191	354566.766	6532222.171	6	-90/0		NSI	
	SR0192	354576.766	6532222.171	6	-90/0		NSI	
	SR0193	354586.766	6532222.17	9	-90/0		NSI	
	SR0194	354596.766	6532222.17	5	-90/0		NSI	

SR0195	354606.766	6532222.17	3	-90/0	NSI	
SR0196	354616.766	6532222.17	5	-90/0	NSI	
SR0197	354626.766	6532222.17	3	-90/0	NSI	
SR0198	354636.766	6532222.17	3	-90/0	NSI	
SR0199	354936.767	6532022.169	6	-90/0	NSI	
SR0200	354946.767	6532022.169	2	-90/0	NSI	
SR0201	354956.768	6532022.169	6	-90/0	NSI	
SR0202	354966.768	6532022.169	3	-90/0	NSI	
SR0203	354976.768	6532022.169	3	-90/0	NSI	
SR0204	354986.768	6532022.169	1	-90/0	NSI	
SR1212	353036.76	6538422.202	2	-90/0	NSI	
SR1213	353046.76	6538422.202	2	-90/0	NSI	
SR1214	353056.76	6538422.202	2	-90/0	NSI	
SR1215	353066.76	6538422.202	3	-90/0	NSI	
SR1216	353076.76	6538422.202	3	-90/0	NSI	
SR1217	353086.76	6538422.202	3	-90/0	NSI	
SR1218	353096.76	6538422.202	3	-90/0	NSI	
SR1219	353106.76	6538422.202	3	-90/0	NSI	
SR1220	353116.76	6538422.202	3	-90/0	NSI	
SR1221	353126.76	6538422.202	3	-90/0	NSI	
SR1261	352736.758	6538022.2	3	-90/0	NSI	
🚽 SR1262	352746.758	6538022.2	2	-90/0	NSI	
SR1263	352756.758	6538022.2	3	-90/0	NSI	
SR1264	352766.758	6538022.2	6	-90/0	NSI	
SR1265	352776.759	6538022.2	3	-90/0	NSI	
SR1266	352786.759	6538022.2	3	-90/0	NSI	
SR1267	352796.759	6538022.2	1	-90/0	NSI	
SR1268	352806.759	6538022.2	3	-90/0	NSI	
SR1269	352816.759	6538022.2	3	-90/0	NSI	
SR1270	352826.759	6538022.2	3	-90/0	NSI	
SR1271	352836.759	6538022.2	3	-90/0	NSI	
SR1326	352836.759	6537622.198	1	-90/0	NSI	
SR1327	352846.759	6537622.198	3	-90/0	NSI	
SR1328	352856.759	6537622.198	3	-90/0	NSI	
SR1329	352866.759	6537622.198	3	-90/0	NSI	
SR1330	352876.759	6537622.198	3	-90/0	NSI	
SR1331	352886.759	6537622.198	1	-90/0	NSI	
SR1421	352986.759	6536822.194	3	-90/0	NSI	
SR1422	352996.759	6536822.194	2	-90/0	NSI	
SR1423	353006.759	6536822.194	2	-90/0	NSI	
SR1424	353016.759	6536822.194	2	-90/0	NSI	
SR1425	353026.759	6536822.194	2	-90/0	NSI	
SR1426	353036.759	6536822.194	5	-90/0	NSI	
SR1427	353046.76	6536822.194	2	-90/0	NSI	
SR1428	353056.76	6536822.194	2	-90/0	NSI	
SR1429	353066.76	6536822.194	3	-90/0	NSI	
SR1430	353076.76	6536822.194	2	-90/0	NSI	
SR1431	353086.76	6536822.194	2	-90/0	NSI	
SR1662	354836.767	6531622.167	3	-90/0	NSI	
SR1663	354846.767	6531622.167	3	-90/0	NSI	

		CE21C22 1C7	2	00/0	NC]
SR1664	354856.767	6531622.167	3	-90/0	NSI	
SR1665	354866.767	6531622.167	3	-90/0	NSI	
SR1666	354876.767	6531622.167	3	-90/0	NSI	
SR1667	354886.767	6531622.167	2	-90/0	NSI	
SR1668	354896.767	6531622.167	10	-90/0	NSI	
SR1669	354906.767	6531622.167	10	-90/0	NSI	
SR1670	354916.767	6531622.167	12	-90/0	NSI	
SR1671	354926.767	6531622.167	3	-90/0	NSI	
SR1672	354936.767	6531622.167	9	-90/0	NSI	
SR1673	354896.767	6531222.165	21	-90/0	NSI	
SR1674	354906.767	6531222.165	21	-90/0	NSI	
SR1675	354916.767	6531222.165	21	-90/0	NSI	
SR1676	354926.767	6531222.165	24	-90/0	NSI	
SR1677	354936.767	6531222.165	12	-90/0	NSI	
SR1678	354946.767	6531222.165	18	-90/0	NSI	
SR1679	354956.767	6531222.165	24	-90/0	NSI	
SR1680	354936.767	6531222.165	3	-90/0	NSI	
SR1681	354946.767	6531222.165	3	-90/0	NSI	
SR1682	354956.767	6531222.165	3	-90/0	NSI	
SR1683	354966.767	6531222.165	3	-90/0	NSI	
SR1684	354976.767	6531222.165	3	-90/0	NSI	
🚽 SR1685	354986.767	6531222.165	1	-90/0	NSI	
SR1686	355236.769	6530822.163	1	-90/0	NSI	
SR1687	355246.769	6530822.163	3	-90/0	NSI	
SR1688	355256.769	6530822.163	3	-90/0	NSI	
SR1689	355266.769	6530822.163	3	-90/0	NSI	
SR1690	355276.769	6530822.163	3	-90/0	NSI	
SR1691	355286.769	6530822.163	3	-90/0	NSI	
WS1019	355504.87	6532509.172	231.2	-45/90	NSI	
WS1023	355500.17	6532325.171	306.9	-45/90	NSI	
WS4037	353085.759	6535802.189	264.2	-45/258	NSI	
WS4040	352971.759	6536082.19	221.58	-45/258	NSI	
WS4045	353065.759	6536043.19	152.4	-45/258	NSI	
WS4048	352911.759	6536335.191	268.52	-45/258	NSI	
WS4053	353040.759	6535858.189	120.39	-45/258	NSI	
WS4056	352809.758	6535563.188	130.1	-45/78	NSI	

page | <mark>21</mark>

Appendix 3: Spargoville Project – Breakaway Resources (Historic) Drilling JORC Table 1 checklist

	Section 1 Sampling Technic	
Criteria	(Criteria in this section apply to all JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Breakaway drilled 705 Auger holes at a spacing of 200m by 25m and 200m by 100m with 300g collected. RAB and RC drilling completed within the Spargoville project by Breakaway comprised 42 RAB holes and 10 RC for a total of 2,771 m. Breakaway RAB drilling. One metre down-hole samples dumped onto the ground. Four metre composite samples were collected using a PVC spear into a numbered calico bag and analysis for gold by 30g fire assay. Breakaway RC drill samples were collected over one metre intervals in green mining bags. One metre rifle split sample were collected from across visible ore zones and four composite samples collected through the remainder of the hole. Any four-metre composite samples returning anomalous nickel (>2500ppmNi) or gold (>0.5ppmAu) assays results were re-split and sampled at one metre intervals.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling completed within the Spargoville project by Breaker Resources comprised 42 RAB holes and 10 RC holes for a total of 2,771m. Breaker Resources RAB holes were inclined to the west at 60° and drilled to blade refusal. RC holes drilled dipping 60° towards the east.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Auger samples are considered a qualitative exploration method. Sample recoveries were not recorded. No relationship between sample recovery and grade has been identified. For RAB and RC drilling sample recoveries were not recorded. Drill cyclones, sample hoses and sample buckets were cleaned when necessary to minimise contamination. No relationship between sample recovery and grade has been identified. Scoop sampling is considered a qualitative technique.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All RAB holes were geologically logged to industry standard methods for exploration drilling, which is not intended to support Mineral Resource estimation, mining studies and metallurgical studies. There is insufficient detail in WAMEX reports to qualify the data for mineral resource estimation and as such the data is qualitative.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the 	 Breakaway RAB drilling was sampled over one metre down-hole intervals and composited by scoop sampling, generally over four metre intervals for analysis. Breakaway RC drilling samples were collected over one metre down-hole metres into green mining plastic bags. One metre riffle split sample were collected from across visible ore zones and four metre composite samples collected through the remainder of the hole. Any four metre composite samples returning anomalous nickel (>2500ppmNi) or gold (>0.5ppmAu) assay results were re-split and sampled on a one metre basis.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Auger samples were analysed for gold by 25g aqua regia digest and AT/OES for multi elements. Breakaway RAB samples were analysed by ALS. After oven drying, crushing and pulverising the entire sampled to 90% passing 75 microns, the samples were analysed for gold by fire assay of a 30g charge and bottom two to four metre composite samples for each hole were analysed for multi-element suite. One metre down-hole samples collected from Breakaway RC drilling were composited over four metre intervals except where one metre samples were taken in visible ore zones. The samples were submitted to Genalysis Laboratory Services in Perth for sample preparation and analysis for a routine suite of elements including Ni, Cu, Co, Fe, S, As, Mg, Mn, Zn (AT/OES) and Au, Pt, Pd (FA50/AAS). Any ore zone containing greater than 1%Ni or 1ppmAu was also reanalysed for Au, Pt and Pd (FA50/MS). The laboratories conducted routine check assays, blanks and standards. No duplicates were collected. The analyses are considered total. Acceptable levels of accuracy have been achieved for early-stage exploration sampling.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Auric have verified the calculated significant intercepts from the supplied assay information. No twin holes have been drilled at Spargoville. Breakaway drilling field and laboratory data were collected electronically and validated visually. Assay results were not adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, 	 Breakaway Auger and RAB drilling was completed on an AMG 84_51 grid system and collars pick up using

Criteria	JORC Code explanation	Commentary
	 mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 a hand help GPS. RC collar locations were determined by handheld GPS utilising AGD1984 MGA Zone 51 coordinates. RAB holes were not down-hole surveyed and assumed to run straight at designed orientations. RC holes were not downhole surveyed. Hole path locations have been adequately defined for early-stage exploration sampling.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Auger sample spacing varied from 200m x 25m and 200m by 100m. Breakaway RAB and RC holes represent early-stage reconnaissance drilling. RAB drilling comprised drill lines approximately 200m apart with holes spaced approximately 100m apart along the lines. Samples were composited to generally 4m intervals for analysis. RC drilling targeted auger-soil geochemical anomalies with samples analysed at 4m composite or 1m intervals if a mineralised zone was visible.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• Evaluation of the project is at an early stage, and the association between down-hole lengths and true mineralisation widths is unknown. Available information suggests the drilling orientation achieves unbiased sampling.
Sample security	 The measures taken to ensure sample security. 	 Auger samples were collected by the auger drilling contractor and securely stored until programme completion when all samples were submitted to the laboratory. Details of security measures for samples from Breakaway RAB and RC drilling are unknown.

page | <mark>25</mark>

Criteria		JORC Code explanation	Commentary
Audits reviews	or	• The results of any audits or reviews of sampling techniques and data.	 No audits ore reviews have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Spargoville Project comprises of granted Exploration Licence, E15/1688 and E15/1689 held by Auric's wholly owned subsidiary, Spargoville Minerals Pty Ltd. E15/1688 and E15/1689 lies within an area subject to a native title claim by the Marlinyu Ghoorlie people. Breakaway holds a 1.5% Net Smelter Royalty for any gold produced from E15/1688 and E15/1689.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 All exploration completed within the project to date was by other parties, including 75 aircore holes and 2 RC Ramelius and Tychean for a total of 3,319m. Resolute Samantha drilled 125 RAB holes for 6,144m. A further 101 RAB holes were drilled for 441m and 8 Diamond Holes for 1695.29m by companies' unknown in the Breakaway annual reports.
Geology	• Deposit type, geological setting and style of mineralisation.	• Geology of the area is interpreted to comprise a north south striking sequence of ultramafic and mafic volcanics, and felsic volcanic rocks. The project is at an early stage of evaluation and mineralisation styles are not yet well understood.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 Relevant drill hole information is included in the report.

Criteria	JORC Code explanation	Commentary
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole. down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregatio n methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Relevant drill hole information is included in the report. Intercept grades are length weighted, with no upper cuts applied. No metal equivalents are reported.
Relationshi p between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• Evaluation of the project is at an early stage, and the association between down-hole lengths and true mineralisation widths is unknown.

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• Appropriate diagrams and tables are included in the report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drill hole intercepts meeting the specified criteria are reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• Not applicable.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further RC drilling is proposed in the Fugitive Prospect building on latest Auric RC drilling. Aircore drilling will expand drill coverage in the Fugitive Prospect where shallow historic drilling is sparse. Aircore drilling is proposed that will target Auger-soil Au and Ni anomalies within E15/1688 and E15/1689