

ASX ANNOUNCEMENT

3 May 2024

Black Mountain Drilling Results

HIGHLIGHTS:

- Completed Black Mountain Phase 1 Drill Program consisting of nine (9) shallow holes, with a total of 1,132m drilled
- The Phase 1 Drill Program intersected high-grade spodumene mineralisation and has confirmed the exploration potential of Black Mountain and resulted in the identification of a potentially large pegmatite stock at a shallow depth (100 200m) to the east of the Phase 1 Drill Program area
- The first three holes (as announced on 2 February 2024), which tested the outcropping pegmatites returned high grade intercepts of 0.8 to 1.12% Li₂O over intervals of + 14m
- The last six holes which were assayed subsequent to 2 February 2024, (BMDDH23_04 to 09) intersected broad intervals, 40-85m, containing thin, <1m pegmatite dikes, averaging between 0.1% to 0.2 % Li₂O
- Reprocessing and reinterpretation of ground magnetics data shows a large magnetic low at depths of 100m or more, which is likely to be a pegmatite stock and the source of the folded pegmatite sills which are exposed at-surface
- The high-Li and, more significantly, the low-Li pegmatites were both highly fractionated indicating a potential for the low-Li pegmatites to be petrogenetically linked to the spodumene pegmatites as an the low-Li edges of a larger Li-rich pegmatite
- The Company is preparing to lodge an "exploration plan of operations" for the Phase 2 Drill Program that would increase the limit of disturbance from the mere 5 acres under which the Company is currently operating to 2,500 acres

Chariot Corporation Limited ("**Chariot**" or the "**Company**") advises it has received the results of drill holes four to nine (the "**Last Six Holes**") from the Phase 1 Drill Program at the Black Mountain Project, in Wyoming, U.S.A. ("**Black Mountain**").

The Phase 1 Drill Program was concluded on 22 February 2024 with a total of 1,132m drilled through nine (9) diamond drill holes (the "**Phase 1 Drill Program**"). The Phase 1 Drill Program assay results are summarized in Table 1.

Chariot commenced the Phase 1 Drill Program at Black Mountain on 9 November 2023 to determine the widths and grade of outcropping pegmatite dikes in the central portion of the Black Mountain Project with a Boart Longyear LF90 surface diamond core drill rig. The First Three Holes (which were

announced on 2 February 2024) tested the outcropping pegmatites and returned high grade intercepts of 0.8 to 1.12% Li₂O over intervals of + 14m.

Subsequent to the announcement on 2 February 2024, the Company completed the drilling and assaying of the Last Six Holes, which intersected broad intervals, 40-85m, containing thin, <1m pegmatites dikes, which typically assayed between 0.1% to 0.2 % Li_2O .

The Phase 1 Drill Program has provided encouraging results from the First Three Holes. The assay results from the Last Six Holes yielded lower lithium grades but were nevertheless encouraging in terms of the anomalous lithium values and more particularly in terms of the level of fractionation, as shown by the geochemistry of the low-Li pegmatites.

The high-Li and, more significantly, certain of the low-Li pegmatites were both highly fractionated indicating a potential for the low-Li pegmatites to be genetically (and potentially physically) linked to the spodumene pegmatites as the low-Li edges of a larger Li-rich pegmatite.

The Company has in conjunction with the Phase 1 Drill Program, reprocessed and reinterpreted the surface mapping and ground magnetics data, causing the Company's geologists to modify their initial structural interpretation of the pegmatite dikes as folded but steeply dipping to folded sills (See Figures 1, 2 and 3). Under the revised structural interpretation, it would appear that what is exposed at surface and what was drilled under the Phase 1 Drill Program were folded pegmatite sills which are offshoots from a large unexposed Pegmatite Stock, which manifests as a large magnetic low at depths of 100m or more to the southeast of the location of the Phase 1 Drill Program area (Figure 1).

The intersection of high lithium grades in the First Three Holes, combined with the geochemistry showing similarly high levels of fractionation in both the high-Li and certain of the low-Li pegmatites, and the reprocessed ground magnetics data indicate the potential for a large LCT pegmatite system that should be tested through additional exploration.

The combination of a restrictive 5 acre disturbance limit under the drilling permit obtained by the Company and adverse weather conditions severely limited the extent of drilling that could be completed during the Phase 1 Drilling Program.

The Company is eager to advance to the next phase of drilling at Black Mountain and is positioning itself to do so with a substantially liberalized disturbance limit.

Drill Hole	From (m)	To (m)	Interval (m)	Li₂O%	Ta₂O₅ ppm
BMDDH23_01	2.74	18.23	15.48 (14*)	1.12	78.8
Including	4.15	5.49	1.34	1.91	68.0
and	9.94	14.2	4.27	2.46	128.4
BMDDH23_02	1.83	16.15	14.33 (13*)	0.84	61.3
Including	10.67	12.95	2.29	3.09	137.7
BMDDH23_03 Includes 2.29m of core loss between 45.26m and 47.55m	45.26	62.73	18.81 (8*)	0.85	98.4
Including	47.55	53.34	5.79	1.08	104.9
BMDDH23_04	40.23	48.77	8.50	0.16	9.0
And					
BMDDH23_04	69.95	72.05	2.10	0.25	58.2
BMDDH23_05	24.99	29.57	4.57	0.20	38.8
And					
BMDDH23_05	30.78	34.75	3.96	0.19	5.4
And					
BMDDH23_05	42.67	45.81	3.44	0.16	30.6
BMDDH23_06		Ν	o significant interce	pts	
BMDDH23_07		Ν	o significant interce	pts	
BMDDH23_08	30.48	41.39	9.39	0.15	26.3
BMDDH23_09	17.22	19.51	2.29	0.11	34.1

Table 1: Summary of Phase 1 Drill Program assay data. Refer to Chariot ASX announcement dated 2 February 2024 for further details on BMDDH23_01 – 03. Significant intervals deemed to be intervals >2m at >0.1% Li₂O. * denotes estimated true widths.

Phase 1 Drill Program

First Three Holes

The first three holes ("**First Three Holes**") were sited to intersect outcropping pegmatite dikes at shallow depths, and all intersected high-grade spodumene mineralisation confirming the potential of the Black Mountain LCT pegmatites, with notable results including: (1) BMDDH23_01 15.48m @ 1.12% Li₂O and 79ppm Ta₂O₅ from 2.74m; (2) BMDDH23_02 14.33m @ 0.84% Li₂O and 61ppm Ta₂O₅ from 1.83m; and (3) BMDDH23_03 18.81m @ 0.85% Li₂O and 98ppm Ta₂O₅ from 45.26m.

Last Six Holes

The Last Six Holes (being BMDDH23_04 to BMDDH23_09) were drilled to test the down-dip extensions of the outcropping pegmatite dikes. While four of the six holes intersected highly anomalous lithium, tantalum and cesium mineralisation, the individual intercepts were significantly thinner (less than 1m thick dikes / veins of pegmatite) than those encountered with the First Three Holes. These results, together with a reinterpretation of surface mapping and magnetics, has led the Company's geologists to modify their initial structural interpretation of the pegmatite dikes as folded but steeply dipping to folded sills (See Figures 1, 2 and 3). Under the revised structural interpretation, some of the deeper holes drilled in the latter part of the program may have passed under the pegmatite sills without

intersecting them. Reprocessing and reinterpretation of the central part of the magnetic survey has refined the position of a large magnetic low at depths of 100m or more, which is interpreted to be a pegmatite stock (the "**Pegmatite Stock**"), and to be the source of what are now believed to be folded pegmatite sills exposed at surface (Figures 2 and 3).

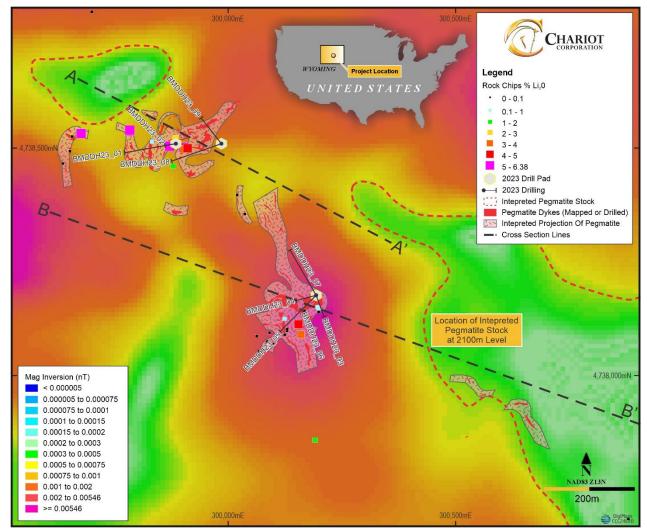
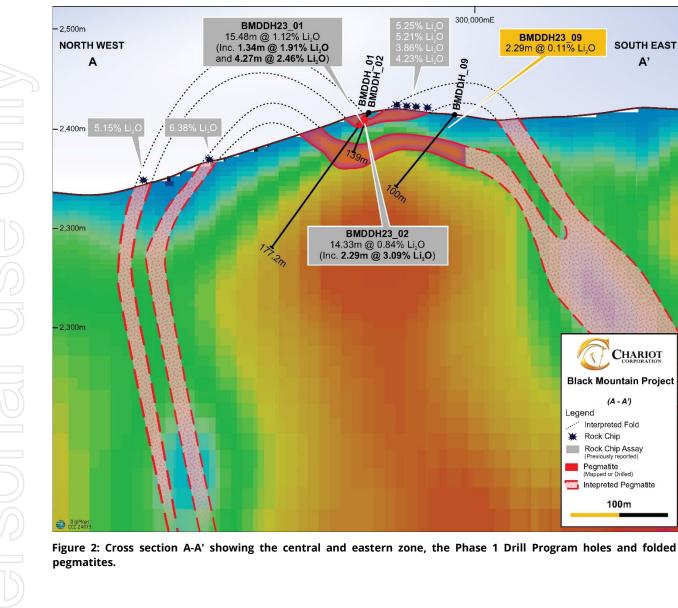



Figure 1: Project Scale map of Black Mountain showing the location of a large magnetic low (a NW-SE trending green area in the 2,100m slice through the 3D Inversion Model) in relation to outcropping pegmatites and the Phase 1 Drill Program area.

A'

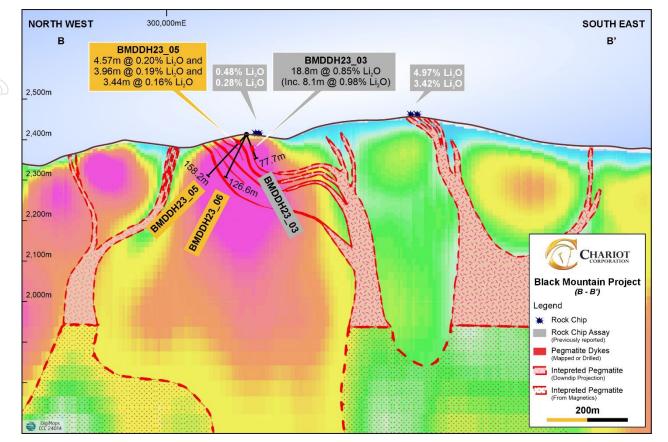


Figure 3: Cross section B-B' showing Phase 1 Drill Program collars relative to the interpreted pegmatite stock.

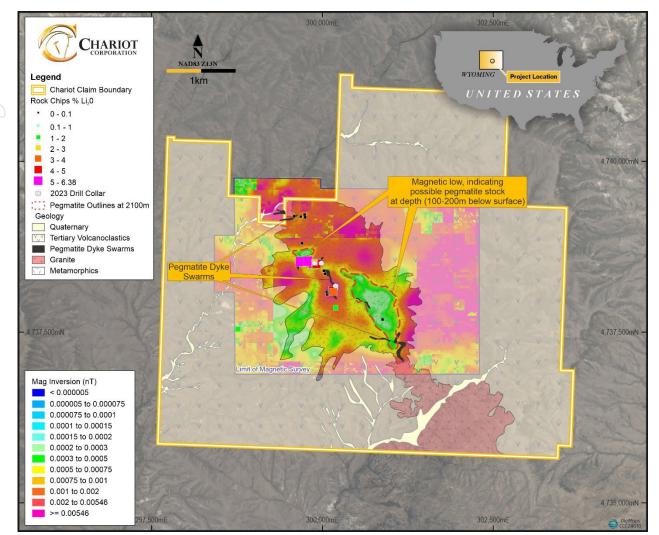


Figure 4: Black Mountain Phase 1 Drill Program collars with magnetics overlaid.

Geochemistry Shows Highly Fractionated Pegmatite Systems

The downhole geochemistry, geochemistry of the surface soil and rock chip samples indicate high degrees of fractionation of the high-Li spodumene-bearing pegmatites and a group of pegmatites that have a significantly lower lithium contents. It is noted that there are also a number of low lithium, poorly fractionated pegmatites that are considered less prospective.

While high-Li pegmatites were only intersected by a few drill holes, several of the low-Li pegmatites have a highly fractionated signature based on the K/Rb, K/Cs and Al/Ga ratios (indicators of magmatic fractionation), and usually have elevated Nb, Ta and Sn, which is another geochemical characteristic of LCT-type pegmatites.

The low-Li but highly fractionated pegmatite and aplite intersections are interpreted to be petrogenetically linked to the spodumene-bearing pegmatites (the high-Li fractionated pegmatites). Highly fractionated low-Li pegmatites are interpreted to represent individual offshoots or septa, or, in some cases, zones of larger spodumene-bearing pegmatites, but this will need to be tested through

additional exploration. Equivalent geochemical signatures are also recognised in the soil sampling data of the area that has been the focus of the current drilling. Refer to Company's ASX announcement dated 2 February 2024.

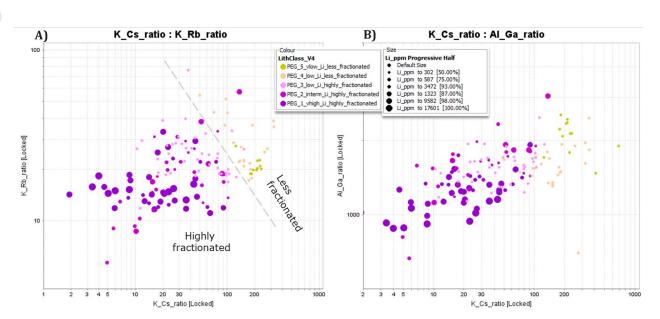


Figure 5: Geochemical discrimination diagrams of A) K/Rb vs K/Cs and B) Al/Ga vs K/Cs ratios of assay data from the pegmatites intersected in the recent drilling programme; points sized according to lithium grade. Lower the ratios (i.e. higher Rb and Cs relative to K and high Ga relative to Al) indicate higher degrees of fractionation the more prospective the pegmatite is for lithium.

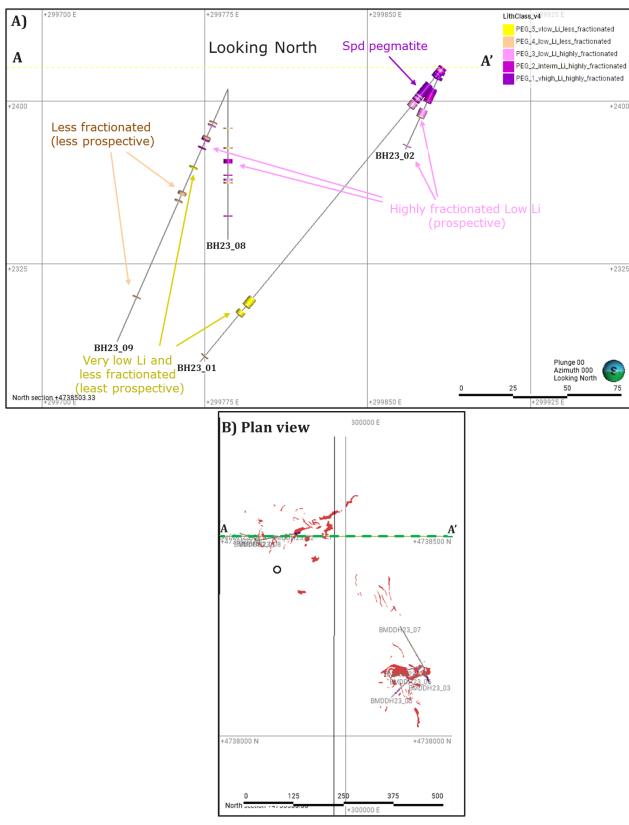


Figure 6: A) Section of the northern drill holes looking north showing the spatial association of the pegmatites as per geochemical classification and B) plan view showing location and orientation of section.

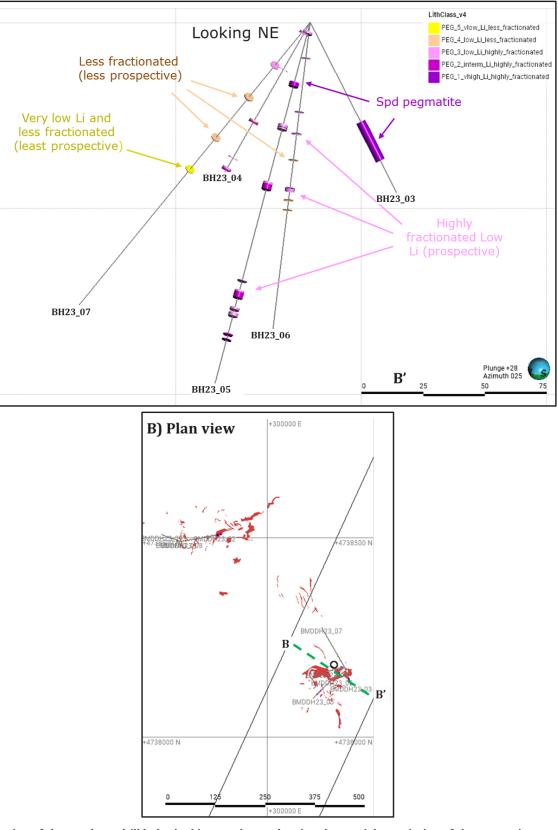


Figure 7: A) Section of the southern drill holes looking northeast showing the spatial association of the pegmatites as per geochemical classification and B) plan view showing location and orientation of section.

Despite significant spodumene hosted lithium mineralisation (i.e. intersections with $Li_2O>1\%$) being intersected in 3 of the 9 drill holes – 2 holes, BMDDH23_01, 02 in the north and one hole, BMDDH23_03 in the south – Black Mountain remains prospective for LCT-type pegmatites considering the highly fractionated nature of many of the intersected low-Li pegmatites, and this is also supported by the soil geochemistry in these areas.

Exploration Permitting

Exploration permitting in Wyoming on federal land is a bifurcated process with two alternative permitting pathways. Approval from United States Bureau of Land Management in Wyoming ("**BLM**") is required regardless of the chosen pathway. At "notice of intent" ("**NOI**") levels of exploration (a basic level), a maximum disturbance of only five (5) acres is permitted and, if disturbance is likely to exceed this level, a more thorough "exploration plan of operations" ("**EPO**") must be submitted. An EPO, which typically requires biological and cultural/archaeological studies, can take 6-12 months to complete, but once approved will increase the limit on the area of the disturbance to the amount specified under our EPO application, which will be 2,500 acres.

The Phase 1 Drill Program was completed under an NOI and limited to the currently permitted seven (7) drill pads based on the 5-acre limit on disturbance, which applies to both access roads and the drill pads. The disturbance limit materially restricted the Company's ability to explore the east of the project area in the Phase 1 Drill Program.

Chariot is preparing to lodge an EPO to increase the area of disturbance from 5 acres under the NOI to up to 2,500 acres for the Phase 2 Drill Program.

Focus of the Next Phase of Drilling Activities

The focus of exploration will shift to the Pegmatite Stock which is an area extending 2km to the southeast of the Phase 1 Drill Program area (the "**Phase 2 Drill Targets**") (refer to Figures 3 and 4).

Chariot is unlikely to have an EPO approved by the BLM until late Q3/ early Q4 2024, so in the interim Chariot is considering whether to conduct a limited drill program from the existing 7 drill pads which were constructed within the 5 acres of disturbance under the NOI(the "**Limited Drill Program**"). Chariot is evaluating whether the distance of the expected location of the interpreted Pegmatite Stock from the existing drill pads will render exploration for the Pegmatite Stock from the existing drill pads uneconomic. If Chariot so concludes, then further drilling will be deferred until it is possible to locate new drill pads closer to the believed location of the Pegmatite Stock under an EPO.

If undertaken, the Limited Drill Program would be conducted following the onset of drier weather conditions in the upcoming North American summer and the positioning of drill holes would be informed by additional geological mapping and geochemical sampling undertaken over the expected location of the Pegmatite Stock in May 2024. The drill holes would be drilled in a south-easterly direction exploring the area of the Pegmatite Stock (refer to Figure 4).

The data from the Phase 1 Drill Program, the May 2024 geological and geochemical mapping and the Limited Drill Program (in the 2024 North American summer), will inform the site selection process for the Phase 2 Drill Program with an expected 2,000 – 3,000m drilling under an EPO (the "**Phase 2 Drill Program**").

The commencement of Phase 2 Drill Program is contingent upon approval of the EPO by the BLM, which is expected in late Q3/ early Q4 2024.

The NOI has limited the Company to drill within a 5-acres of disturbance. An EPO will provide the Company with the flexibility to access and test the interpreted Pegmatite Stock, where the Company believes the potential exists to discover a large pegmatite stock, from which the folded dikes drilled to-date are believed to have emanated.

Independent Technical Guidance and Review of Exploration Results

ERM Australia Consultants Pty Ltd (previously CSA Global), ERM Sustainable Mining Services ("**ERM**"), have provided technical guidance for the development of the Black Mountain exploration plan and completed an independent review of the data, geological interpretations and exploration results pertaining to this announcement. ERM are satisfied these scientific and technical disclosures were appropriate to support the reporting of these Exploration Results.

Authorised on behalf of the Board of Directors.

Shanthar Pathmanathan Managing Director Chariot Corporation Ltd

Competent Person Statement - Exploration Results

Information in this announcement that relates to exploration results is based on information compiled by Dr E Max Baker who is a Geological Consultant to Chariot. Dr Baker is a Fellow of The Australian Institute of Mining and Metallurgy and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking, to qualify as Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Baker consents to the inclusion in this announcement of the information pertaining to exploration results in the form and context in which it appears.

Dr Baker holds 7,926,860 ordinary shares in Chariot (equal to a 5.3% interest in the undiluted shares on issue of Chariot). Dr Baker is also engaged as a consultant by Chariot.

Important Notice

Statements in this announcement are made only as of the date of this announcement unless otherwise stated and the information in this announcement remains subject to change without notice.

To the maximum extent permitted by law, neither Chariot nor any of its affiliates, related bodies corporate, their respective officers, directors, employees, advisors and agents or any other person accepts any liability as to or in relation to the accuracy or completeness of the information, statements, opinions or matters (express or implied) arising out of, contained in or derived from this announcement or any omission from this announcement or of any other written or oral information or opinions provided now or in the future to any person.

This announcement may contain some references to forecasts, estimates, assumptions and other forward-looking statements. Although the Company believes that its expectations, estimates and projected outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved.

About Chariot

Chariot Corporation Limited is a mineral exploration company focused on discovering and developing high-grade and near surface lithium opportunities in the United States. Chariot has twelve (12) lithium projects, including two core projects (the "**Core Projects**") and a number of exploration pipeline projects which Chariot majority owns and operates. In addition, Chariot holds interests in a number of projects which have either been sold or conditionally divested through option agreements to publicly-listed companies (the "**Divested Projects**").

The Core Projects include Chariot's flagship Black Mountain Project (which is prospective for hard rock lithium) in Wyoming, USA and the Resurgent Project (which is prospective for claystone lithium) in Nevada and Oregon, USA. Initial survey results from the Core Projects indicate high-grade lithium mineralisation at surface.

Chariot holds an interest in six exploration pipeline projects located in Wyoming, USA, including, the Copper Mountain Project, the South Pass Project and four other hard rock lithium projects.

Chariot holds an interest in the Lida and Amargosa projects in Nevada, USA which are prospective for claystone hosted lithium.

Chariot holds an interest in a hard rock lithium project in Zimbabwe which is prospective for spodumene bearing pegmatites and an early-stage hard rock lithium exploration project in Western Australia.

Each of the Divested Projects is operated or explored by Chariot's publicly-listed counterparty under the relevant sale or option agreement and, depending upon the particular transaction, may generate additional revenues for Chariot dependent on the counterparty's exploration success and financial wherewithal, the achievement of prescribed milestones, the mere effluxion of time or the production of saleable minerals payable under a net smelter royalty.

Appendix 1 – Drill Collar Table¹

DDH No	EAST (m)	NORTH (m)	RL (mASL)	Azimuth (°)	Dip (°)	Total Depth (m)	Assay Status
BMDDH23_01	299879.6	4738511.6	2415.5	260	50	177.3	Assays reported
BMDDH23_02	299879.6	4738511.6	2415.5	260	65	42.4	Assays reported
BMDDH23_03	300196.8	4738191.6	2414.5	160	50	77.7	Assays reported
BMDDH23_04	300196.8	4738191.6	2414.5	255	50	81.7	Assays reported
BMDDH23_05	300196.8	4738191.6	2414.5	225	45	158.2	Assays reported
BMDDH23_06	300196.8	4738191.6	2414.5	225	70	126.6	Assays reported
BMDDH23_07	300193.2	4738176.0	2414.5	330	55	131.7	Assays reported
BMDDH23_08	299988.7	4738509.4	2412.9	260	50	172.4	Assays reported
BMDDH23_09	299985.9	4738505.5	2412.9	330	45	164.0	Assays reported

¹ All coordinates are in NAD83 Z13N

Appendix 2 – Drill Assay Data

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_01	0.0	1.2	1.2	34	26902	589	0.13%	0	35.3	95
BMDDH23_01	1.2	2.4	1.2	27	16217	134	0.03%	0	66.7	100
BMDDH23_01	2.4	2.7	0.3	<lod< td=""><td>4456</td><td>189</td><td>0.04%</td><td>0</td><td>19.4</td><td>24</td></lod<>	4456	189	0.04%	0	19.4	24
BMDDH23_01	2.7	3.2	0.5	<lod< td=""><td>20995</td><td>1323</td><td>0.28%</td><td>0</td><td>37.1</td><td>40</td></lod<>	20995	1323	0.28%	0	37.1	40
BMDDH23_01	3.2	4.0	0.7	<lod< td=""><td>6790</td><td>3551</td><td>0.76%</td><td>0</td><td>41</td><td>51</td></lod<>	6790	3551	0.76%	0	41	51
BMDDH23_01	4.0	4.1	0.2	9	5225	148	0.03%	0	42.1	43
BMDDH23_01	4.1	4.7	0.5	<lod< td=""><td>6303</td><td>7256</td><td>1.56%</td><td>0</td><td>41.3</td><td>23</td></lod<>	6303	7256	1.56%	0	41.3	23
BMDDH23_01	4.7	5.5	0.8	<lod< td=""><td>7193</td><td>9969</td><td>2.15%</td><td>0</td><td>65.6</td><td>34</td></lod<>	7193	9969	2.15%	0	65.6	34
BMDDH23_01	5.5	5.9	0.4	<lod< td=""><td>6229</td><td>3146</td><td>0.68%</td><td>0</td><td>50</td><td>40</td></lod<>	6229	3146	0.68%	0	50	40
BMDDH23_01	0.0	0.0	0.0	20	8677	6996	1.51%	0	43.2	83
BMDDH23_01	5.9	6.7	0.8	531	57694	355	0.08%	0	9.1	119
BMDDH23_01	6.7	7.8	1.1	162	47846	200	0.04%	0	10.8	91
BMDDH23_01	7.8	9.5	1.7	204	86144	885	0.19%	0	2.1	211
BMDDH23_01	9.5	9.9	0.4	34	88335	1565	0.34%	0	1.2	142
BMDDH23_01	9.9	10.5	0.6	<lod< td=""><td>6080</td><td>7497</td><td>1.61%</td><td>0</td><td>76.5</td><td>18</td></lod<>	6080	7497	1.61%	0	76.5	18
BMDDH23_01	10.5	11.0	0.5	<lod< td=""><td>8447</td><td>14186</td><td>3.05%</td><td>0</td><td>88.3</td><td>33</td></lod<>	8447	14186	3.05%	0	88.3	33
BMDDH23_01	11.0	12.0	1.0	<lod< td=""><td>7225</td><td>7555</td><td>1.63%</td><td>0</td><td>92.2</td><td>58</td></lod<>	7225	7555	1.63%	0	92.2	58
BMDDH23_01	12.0	12.7	0.7	<lod< td=""><td>6806</td><td>9582</td><td>2.06%</td><td>0</td><td>168.2</td><td>39</td></lod<>	6806	9582	2.06%	0	168.2	39
BMDDH23_01	12.7	13.1	0.4	<lod< td=""><td>9184</td><td>17383</td><td>3.74%</td><td>0</td><td>88.8</td><td>45</td></lod<>	9184	17383	3.74%	0	88.8	45
BMDDH23_01	13.7	14.2	0.5	<lod< td=""><td>7039</td><td>11153</td><td>2.40%</td><td>0</td><td>81.3</td><td>44</td></lod<>	7039	11153	2.40%	0	81.3	44
BMDDH23_01	14.2	14.7	0.5	<lod< td=""><td>4525</td><td>4973</td><td>1.07%</td><td>0</td><td>134.7</td><td>13</td></lod<>	4525	4973	1.07%	0	134.7	13
BMDDH23_01	14.7	15.3	0.6	<lod< td=""><td>3937</td><td>2226</td><td>0.48%</td><td>0</td><td>91.1</td><td>8</td></lod<>	3937	2226	0.48%	0	91.1	8
BMDDH23_01	15.3	16.0	0.7	<lod< td=""><td>8459</td><td>9162</td><td>1.97%</td><td>0</td><td>74.7</td><td>51</td></lod<>	8459	9162	1.97%	0	74.7	51
BMDDH23_01	16.0	16.4	0.4	8	28882	1183	0.25%	0	53	106
BMDDH23_01	16.4	16.8	0.4	<lod< td=""><td>8053</td><td>1405</td><td>0.30%</td><td>0</td><td>104.5</td><td>72</td></lod<>	8053	1405	0.30%	0	104.5	72
BMDDH23_01	16.8	17.7	0.9	<lod< td=""><td>5989</td><td>112</td><td>0.02%</td><td>0</td><td>100.2</td><td>45</td></lod<>	5989	112	0.02%	0	100.2	45
BMDDH23_01	17.7	18.2	0.5	<lod< td=""><td>12826</td><td>2490</td><td>0.54%</td><td>0</td><td>87.6</td><td>147</td></lod<>	12826	2490	0.54%	0	87.6	147
BMDDH23_01	0.0	0.0	0.0	<lod< td=""><td>12070</td><td>2349</td><td>0.51%</td><td>0</td><td>71.7</td><td>145</td></lod<>	12070	2349	0.51%	0	71.7	145
BMDDH23_01	18.2	18.7	0.5	<lod< td=""><td>5989</td><td>76</td><td>0.02%</td><td>0</td><td>49.1</td><td>64</td></lod<>	5989	76	0.02%	0	49.1	64
BMDDH23_01	18.7	19.4	0.6	<lod< td=""><td>7148</td><td>95</td><td>0.02%</td><td>0</td><td>72.6</td><td>76</td></lod<>	7148	95	0.02%	0	72.6	76
BMDDH23_01	19.4	20.1	0.7	22	21179	282	0.06%	0	188.1	265
BMDDH23_01	20.1	20.7	0.6	249	128295	302	0.07%	0	32.6	427
BMDDH23_01	20.7	21.5	0.8	32	21431	61	0.01%	0	52.4	117
BMDDH23_01	21.5	21.9	0.5	51	19094	95	0.02%	0	74.8	191
BMDDH23_01	21.9	22.6	0.6	63	24992	68	0.01%	0	48.2	240

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_01	22.6	23.4	0.9	115	109279	84	0.02%	0	38.2	190
BMDDH23_01	23.4	23.8	0.3	6012	201027	100	0.02%	0	66.5	1294
BMDDH23_01	23.8	25.0	1.2	660	159070	201	0.04%	0	0.8	1991
BMDDH23_01	32.5	32.9	0.3	1258	159818	305	0.07%	0	1.7	3958
BMDDH23_01	36.8	37.6	0.9	609.8	163569	161	0.03%	79	0.55	3540
BMDDH23_01	39.2	39.7	0.5	479.3	159839	452	0.10%	46	1.81	3829
BMDDH23_01	41.1	41.8	0.7	359.8	130186	27	0.01%	18	0.18	1292
BMDDH23_01	42.7	43.1	0.4	776.9	250000	313	0.07%	34	0.51	3778
BMDDH23_01	43.1	43.4	0.3	769.2	229656	371	0.08%	33	0.7	3326
BMDDH23_01	44.9	45.5	0.6	670.6	224385	149	0.03%	30	1.02	3640
BMDDH23_01	45.5	45.9	0.4	1213.5	250000	224	0.05%	48	0.51	5103
BMDDH23_01	0.0	0.0	0.0	26.6	29573	24	0.01%	60	0.86	90
BMDDH23_01	47.2	47.5	0.3	1222.4	206162	254	0.05%	76	0.46	3017
BMDDH23_01	64.0	64.9	0.9	1227.8	157227	229	0.05%	345	1.54	177
BMDDH23_01	121.0	121.7	0.7	3891.2	149484	311	0.07%	154412	10.8	9931
BMDDH23_01	138.5	139.0	0.5	5	10234	54	0.01%	0	82.4	291
BMDDH23_01	139.0	139.7	0.7	17	5116	16	0.00%	0	40.2	361
BMDDH23_01	139.7	140.1	0.4	<lod< td=""><td>3646</td><td>30</td><td>0.01%</td><td>0</td><td>23.8</td><td>315</td></lod<>	3646	30	0.01%	0	23.8	315
BMDDH23_01	140.1	140.7	0.6	<lod< td=""><td>3601</td><td>17</td><td>0.00%</td><td>0</td><td>30.5</td><td>321</td></lod<>	3601	17	0.00%	0	30.5	321
BMDDH23_01	140.7	141.1	0.4	<lod< td=""><td>3382</td><td>8</td><td>0.00%</td><td>0</td><td>16.1</td><td>295</td></lod<>	3382	8	0.00%	0	16.1	295
BMDDH23_01	141.1	141.6	0.5	<lod< td=""><td>2682</td><td>18</td><td>0.00%</td><td>0</td><td>6.4</td><td>345</td></lod<>	2682	18	0.00%	0	6.4	345
BMDDH23_01	142.2	142.7	0.5	<lod< td=""><td>5538</td><td>46</td><td>0.01%</td><td>0</td><td>34.9</td><td>261</td></lod<>	5538	46	0.01%	0	34.9	261
BMDDH23_01	142.7	143.5	0.8	<lod< td=""><td>7194</td><td>38</td><td>0.01%</td><td>0</td><td>25.3</td><td>122</td></lod<>	7194	38	0.01%	0	25.3	122
BMDDH23_01	143.5	145.4	1.9	32	98293	371	0.08%	0	3.5	2804
BMDDH23_01	145.4	146.3	0.9	10	107414	151	0.03%	0	4.3	2067
BMDDH23_01	146.3	147.0	0.6	<lod< td=""><td>4625</td><td>29</td><td>0.01%</td><td>0</td><td>29.2</td><td>226</td></lod<>	4625	29	0.01%	0	29.2	226
BMDDH23_01	147.0	147.6	0.6	<lod< td=""><td>4276</td><td>18</td><td>0.00%</td><td>0</td><td>44.4</td><td>182</td></lod<>	4276	18	0.00%	0	44.4	182
BMDDH23_01	147.6	148.1	0.5	<lod< td=""><td>6114</td><td>62</td><td>0.01%</td><td>0</td><td>71.4</td><td>141</td></lod<>	6114	62	0.01%	0	71.4	141
BMDDH23_01	148.1	148.7	0.5	5	5160	32	0.01%	0	19.8	177
BMDDH23_01	148.7	149.5	0.9	43	92231	157	0.03%	0	4	1151
BMDDH23_01	172.5	173.2	0.7	128	144747	408	0.09%	0	1.7	4242
BMDDH23_01	173.2	173.7	0.4	<lod< td=""><td>20404</td><td>79</td><td>0.02%</td><td>0</td><td>62.5</td><td>820</td></lod<>	20404	79	0.02%	0	62.5	820
BMDDH23_01	173.7	174.7	1.0	32	112291	237	0.05%	0	2.5	1440
BMDDH23_02	0.0	0.8	0.8	25	75598	237	0.05%	0	1.4	224
BMDDH23_02	0.8	1.2	0.5	7	76974	495	0.11%	0	5	304
BMDDH23_02	1.2	1.8	0.6	27	72312	339	0.07%	0	1.2	169
BMDDH23_02	1.8	2.7	0.9	<lod< td=""><td>23584</td><td>769</td><td>0.17%</td><td>0</td><td>53.2</td><td>90</td></lod<>	23584	769	0.17%	0	53.2	90

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li ₂ O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_02	2.7	3.4	0.6	<lod< th=""><th>10000</th><th>4949</th><th>1.07%</th><th>0</th><th>42.5</th><th>104</th></lod<>	10000	4949	1.07%	0	42.5	104
BMDDH23_02	3.4	4.3	0.9	<lod< td=""><td>57981</td><td>1250</td><td>0.27%</td><td>0</td><td>14.9</td><td>168</td></lod<>	57981	1250	0.27%	0	14.9	168
BMDDH23_02	4.3	4.7	0.5	14	60538	1202	0.26%	0	21.8	220
BMDDH23_02	4.7	5.3	0.6	<lod< td=""><td>7708</td><td>8149</td><td>1.75%</td><td>0</td><td>58.7</td><td>37</td></lod<>	7708	8149	1.75%	0	58.7	37
BMDDH23_02	5.3	5.9	0.6	<lod< td=""><td>5999</td><td>3516</td><td>0.76%</td><td>0</td><td>33</td><td>35</td></lod<>	5999	3516	0.76%	0	33	35
BMDDH23_02	5.9	6.6	0.6	43	63851	1895	0.41%	0	3	75
BMDDH23_02	6.6	7.0	0.5	13	74942	1872	0.40%	0	0.9	110
BMDDH23_02	7.0	9.6	2.6	16	70704	1823	0.39%	0	2.5	121
BMDDH23_02	9.6	10.1	0.5	44	81958	1280	0.28%	0	0.5	86
BMDDH23_02	10.1	10.7	0.6	22	92141	1573	0.34%	0	2.1	111
BMDDH23_02	10.7	11.1	0.5	<lod< td=""><td>8881</td><td>11404</td><td>2.46%</td><td>0</td><td>117.6</td><td>35</td></lod<>	8881	11404	2.46%	0	117.6	35
BMDDH23_02	11.1	11.9	0.8	<lod< td=""><td>11053</td><td>15472</td><td>3.33%</td><td>0</td><td>136.4</td><td>73</td></lod<>	11053	15472	3.33%	0	136.4	73
BMDDH23_02	11.9	12.2	0.3	<lod< td=""><td>11991</td><td>15766</td><td>3.39%</td><td>0</td><td>71.4</td><td>84</td></lod<>	11991	15766	3.39%	0	71.4	84
BMDDH23_02	12.2	13.0	0.7	<lod< td=""><td>10167</td><td>14384</td><td>3.10%</td><td>0</td><td>104.2</td><td>57</td></lod<>	10167	14384	3.10%	0	104.2	57
BMDDH23_02	13.0	14.5	1.5	59	77195	729	0.16%	0	97.7	417
BMDDH23_02	14.5	15.3	0.8	38	95135	518	0.11%	0	81.5	164
BMDDH23_02	15.3	16.2	0.9	31	35979	1412	0.30%	0	95.1	192
BMDDH23_02	16.2	17.0	0.9	27	36377	320	0.07%	0	55.2	214
BMDDH23_02	17.0	17.7	0.6	158	134084	330	0.07%	0	82.3	572
BMDDH23_02	17.7	18.4	0.7	242	163215	94	0.02%	0	10.3	217
BMDDH23_02	18.4	19.2	0.8	190	176611	131	0.03%	0	13.9	637
BMDDH23_02	19.2	20.2	1.0	103	131557	54	0.01%	0	2.4	819
BMDDH23_02	20.2	21.2	1.0	44	128142	65	0.01%	0	8.8	1189
BMDDH23_02	21.2	22.3	1.1	96	41534	80	0.02%	0	130.4	465
BMDDH23_02	22.3	23.0	0.8	40	38851	113	0.02%	0	70.2	278
BMDDH23_02	23.0	23.4	0.4	415	65441	138	0.03%	0	93	317
BMDDH23_02	23.4	24.1	0.7	121	61499	82	0.02%	0	34.7	671
BMDDH23_02	24.1	24.7	0.6	124	52638	77	0.02%	0	68.4	549
BMDDH23_02	24.7	25.3	0.6	19	21962	61	0.01%	0	70.4	181
BMDDH23_02	25.3	26.2	0.9	202	86047	224	0.05%	0	29	942
BMDDH23_02	26.2	38.4	12.2	112	109919	188	0.04%	0	3.4	428
BMDDH23_02	38.4	39.6	1.2	59	107651	245	0.05%	0	1.1	140
BMDDH23_02	39.6	39.9	0.3	<lod< td=""><td>9747</td><td>80</td><td>0.02%</td><td>0</td><td>46.3</td><td>59</td></lod<>	9747	80	0.02%	0	46.3	59
BMDDH23_02	39.9	41.1	1.2	38	107547	302	0.07%	0	1.5	125
BMDDH23_03	39.3	39.9	0.6	43	91907	255	0.05%	0	1.6	101
BMDDH23_03	39.9	40.8	0.9	32	90802	237	0.05%	0	1.5	96
BMDDH23_03	40.8	40.9	0.2	61	84235	234	0.05%	0	1.3	103

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_03	40.9	42.1	1.1	23	83816	246	0.05%	0	7.1	94
BMDDH23_03	42.1	42.9	0.9	27	80594	209	0.04%	0	1	95
BMDDH23_03	42.9	43.5	0.5	<lod< td=""><td>83751</td><td>230</td><td>0.05%</td><td>0</td><td>0.9</td><td>94</td></lod<>	83751	230	0.05%	0	0.9	94
BMDDH23_03	43.5	43.9	0.5	170	105247	401	0.09%	0	1.2	119
BMDDH23_03	45.3	45.3	0.0	<lod< td=""><td>12179</td><td>4846</td><td>1.04%</td><td>0</td><td>115.2</td><td>32</td></lod<>	12179	4846	1.04%	0	115.2	32
BMDDH23_03	46.0	46.0	0.0	<lod< td=""><td>6429</td><td>6504</td><td>1.40%</td><td>0</td><td>88.1</td><td>12</td></lod<>	6429	6504	1.40%	0	88.1	12
BMDDH23_03	46.7	46.7	0.0	<lod< td=""><td>7360</td><td>1970</td><td>0.42%</td><td>0</td><td>91.6</td><td>41</td></lod<>	7360	1970	0.42%	0	91.6	41
BMDDH23_03	47.5	48.5	0.9	<lod< td=""><td>7437</td><td>4919</td><td>1.06%</td><td>0</td><td>123.9</td><td>28</td></lod<>	7437	4919	1.06%	0	123.9	28
BMDDH23_03	48.5	49.1	0.6	<lod< td=""><td>7420</td><td>7879</td><td>1.70%</td><td>0</td><td>147.6</td><td>18</td></lod<>	7420	7879	1.70%	0	147.6	18
BMDDH23_03	49.1	50.0	0.9	<lod< td=""><td>6331</td><td>4989</td><td>1.07%</td><td>0</td><td>99.2</td><td>16</td></lod<>	6331	4989	1.07%	0	99.2	16
BMDDH23_03	50.0	50.9	0.9	<lod< td=""><td>5443</td><td>3074</td><td>0.66%</td><td>0</td><td>68.7</td><td>23</td></lod<>	5443	3074	0.66%	0	68.7	23
BMDDH23_03	50.9	51.8	0.9	<lod< td=""><td>6120</td><td>4222</td><td>0.91%</td><td>0</td><td>88.2</td><td>25</td></lod<>	6120	4222	0.91%	0	88.2	25
BMDDH23_03	51.8	52.4	0.6	<lod< td=""><td>4215</td><td>1545</td><td>0.33%</td><td>0</td><td>36.5</td><td>15</td></lod<>	4215	1545	0.33%	0	36.5	15
BMDDH23_03	52.4	53.3	0.9	<lod< td=""><td>5871</td><td>8398</td><td>1.81%</td><td>0</td><td>41.2</td><td>13</td></lod<>	5871	8398	1.81%	0	41.2	13
BMDDH23_03	53.3	54.4	1.1	<lod< td=""><td>4509</td><td>3477</td><td>0.75%</td><td>0</td><td>37.2</td><td>12</td></lod<>	4509	3477	0.75%	0	37.2	12
BMDDH23_03	54.4	55.3	0.9	<lod< td=""><td>4230</td><td>1346</td><td>0.29%</td><td>0</td><td>39.5</td><td>17</td></lod<>	4230	1346	0.29%	0	39.5	17
BMDDH23_03	55.3	56.3	1.0	<lod< td=""><td>4880</td><td>2260</td><td>0.49%</td><td>0</td><td>45.3</td><td>21</td></lod<>	4880	2260	0.49%	0	45.3	21
BMDDH23_03	56.3	57.3	1.0	<lod< td=""><td>5243</td><td>3472</td><td>0.75%</td><td>0</td><td>66.5</td><td>15</td></lod<>	5243	3472	0.75%	0	66.5	15
BMDDH23_03	57.3	58.2	0.9	<lod< td=""><td>5136</td><td>1533</td><td>0.33%</td><td>0</td><td>67.6</td><td>21</td></lod<>	5136	1533	0.33%	0	67.6	21
BMDDH23_03	58.2	59.2	1.0	<lod< td=""><td>5079</td><td>2675</td><td>0.58%</td><td>0</td><td>103.8</td><td>15</td></lod<>	5079	2675	0.58%	0	103.8	15
BMDDH23_03	59.2	60.4	1.2	<lod< td=""><td>6300</td><td>3032</td><td>0.65%</td><td>0</td><td>151</td><td>26</td></lod<>	6300	3032	0.65%	0	151	26
BMDDH23_03	60.4	61.1	0.8	<lod< td=""><td>6551</td><td>4539</td><td>0.98%</td><td>0</td><td>117.2</td><td>24</td></lod<>	6551	4539	0.98%	0	117.2	24
BMDDH23_03	61.1	61.8	0.6	<lod< td=""><td>5077</td><td>4414</td><td>0.95%</td><td>0</td><td>49.6</td><td>28</td></lod<>	5077	4414	0.95%	0	49.6	28
BMDDH23_03	61.8	62.7	0.9	7	7629	6573	1.42%	0	79	37
BMDDH23_03	62.7	64.3	1.6	37	30895	163	0.04%	0	2.1	51
BMDDH23_03	74.1	74.9	0.8	23	73165	263	0.06%	0	2.7	107
BMDDH23_04	3.7	4.6	0.9	193	104047	226	0.05%	0	2.4	110
BMDDH23_04	4.6	5.6	1.0	6	12749	96	0.02%	0	140.4	111
BMDDH23_04	5.6	5.8	0.2	134	97386	383	0.08%	0	3.8	110
BMDDH23_04	5.8	6.7	0.9	36	85860	622	0.13%	0	2.9	124
BMDDH23_04	6.7	7.6	0.9	49	89620	385	0.08%	0	1.5	109
BMDDH23_04	20.1	21.0	0.9	287	91637	420	0.09%	0	1.5	117
BMDDH23_04	21.0	21.9	0.9	52	94724	458	0.10%	0	4.3	133
BMDDH23_04	21.9	22.1	0.2	16	6717	125	0.03%	0	110.6	6
BMDDH23_04	22.1	22.9	0.8	34	85532	461	0.10%	0	4.7	111
BMDDH23_04	22.9	23.8	0.9	55	87672	375	0.08%	0	1.2	129
BMDDH23_04	23.8	24.4	0.6	60	93260	294	0.06%	0	0.6	131

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_04	24.4	25.2	0.9	155	101768	408	0.09%	(ppiii) 0	2.5	97
BMDDH23 04	25.2	25.7	0.4	15	46318	442	0.10%	0	55	89
BMDDH23_04	25.7	26.8	1.2	68	95229	485	0.10%	0	2	158
BMDDH23 04	26.8	27.7	0.9	165	96197	328	0.07%	0	1.6	128
BMDDH23 04	27.7	28.7	0.9	177	112092	487	0.10%	0	1.3	133
BMDDH23_04	28.7	29.4	0.7	357	104258	373	0.08%	0	10.9	105
BMDDH23_04	29.4	30.1	0.7	<lod< td=""><td>28016</td><td>308</td><td>0.07%</td><td>0</td><td>68.2</td><td>61</td></lod<>	28016	308	0.07%	0	68.2	61
BMDDH23_04	30.1	31.1	1.0	61	107795	1224	0.26%	0	0.9	120
BMDDH23_04	31.1	32.0	0.9	53	106193	1200	0.26%	0	1.2	133
BMDDH23_04	40.2	41.1	0.9	22	115858	632	0.14%	0	0.9	141
BMDDH23_04	41.1	42.0	0.9	44	113869	515	0.11%	0	1.1	137
BMDDH23_04	42.0	42.2	0.2	23	40659	404	0.09%	0	52.6	61
BMDDH23_04	42.2	43.0	0.8	43	114709	626	0.13%	0	1.4	138
BMDDH23_04	43.0	43.9	0.9	38	114105	713	0.15%	0	1.8	134
BMDDH23_04	43.9	44.8	0.9	42	115970	700	0.15%	0	2	135
BMDDH23_04	44.8	45.6	0.8	39	114569	1366	0.29%	0	1.8	148
BMDDH23_04	45.6	46.2	0.6	111	5411	97	0.02%	0	22.5	22
BMDDH23_04	46.2	46.8	0.7	<lod< td=""><td>10475</td><td>236</td><td>0.05%</td><td>0</td><td>47</td><td>49</td></lod<>	10475	236	0.05%	0	47	49
BMDDH23_04	46.8	47.9	1.0	158	110976	1452	0.31%	0	1.2	146
BMDDH23_04	47.9	48.8	0.9	46	114310	747	0.16%	0	0.9	146
BMDDH23_04	56.7	57.6	0.9	44	89314	306	0.07%	0	0.7	147
BMDDH23_04	57.6	58.4	0.8	69	94849	207	0.04%	0	1.7	144
BMDDH23_04	58.4	58.9	0.5	75	82217	154	0.03%	0	1.4	114
BMDDH23_04	58.9	59.7	0.8	92	84991	220	0.05%	0	1.1	162
BMDDH23_04	59.7	60.7	0.9	68	87425	248	0.05%	0	0.7	149
BMDDH23_04	60.7	61.6	0.9	97	89283	247	0.05%	0	3.2	233
BMDDH23_04	61.6	63.0	1.4	50	88764	500	0.11%	0	0.9	143
BMDDH23_04	63.0	63.3	0.3	57	18275	152	0.03%	0	73.3	261
BMDDH23_04	63.3	64.3	1.0	1032	84509	499	0.11%	0	2.1	109
BMDDH23_04	64.3	65.2	0.9	88	97926	414	0.09%	0	1.2	116
BMDDH23_04	65.2	66.1	0.9	540	103595	446	0.10%	0	0.7	116
BMDDH23_04	66.1	67.1	0.9	159	103025	667	0.14%	0	1.3	159
BMDDH23_04	67.1	67.6	0.5	257	104400	627	0.13%	0	1	166
BMDDH23_04	67.6	68.3	0.7	<lod< td=""><td>7936</td><td>188</td><td>0.04%</td><td>0</td><td>23</td><td>52</td></lod<>	7936	188	0.04%	0	23	52
BMDDH23_04	68.3	69.0	0.8	1015	13203	320	0.07%	0	30.8	35
BMDDH23_04	69.0	70.0	0.9	418	153471	477	0.10%	0	1.1	155
BMDDH23_04	70.0	70.6	0.6	380	92153	1146	0.25%	0	67.5	144

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_04	70.6	71.0	0.4	576	21883	334	0.07%	0	104.7	107
BMDDH23_04	71.0	72.1	1.1	64	88566	1492	0.32%	0	16.1	145
BMDDH23_04	72.1	72.5	0.5	117	6888	149	0.03%	0	35.7	35
BMDDH23_04	72.5	73.5	0.9	123	6850	169	0.04%	0	32.9	32
BMDDH23_04	73.5	74.0	0.5	375	6348	61	0.01%	0	29.2	25
BMDDH23_04	74.0	75.0	1.0	87	100653	1058	0.23%	0	7.2	134
BMDDH23_04	75.0	75.9	0.9	155	101168	435	0.09%	0	0.6	122
BMDDH23_05	0.9	1.8	0.9	57	91140	255	0.05%	0	1	109
BMDDH23_05	1.8	3.5	1.7	120	100097	284	0.06%	0	1.1	121
BMDDH23_05	3.5	4.3	0.8	70	90640	484	0.10%	0	0.6	129
BMDDH23_05	4.3	5.2	0.9	354	15103	138	0.03%	0	151.5	130
BMDDH23_05	5.2	5.9	0.8	69	88515	748	0.16%	0	3.4	120
BMDDH23_05	5.9	6.9	0.9	134	95176	364	0.08%	0	6.9	130
BMDDH23_05	6.9	7.9	1.1	62	92308	466	0.10%	0	1.3	114
BMDDH23_05	24.1	25.0	0.9	730	135939	463	0.10%	0	1.7	138
BMDDH23_05	25.0	26.1	1.1	517	93250	877	0.19%	0	12.4	123
BMDDH23_05	26.1	26.7	0.5	149	11393	527	0.11%	0	42.5	29
BMDDH23_05	26.7	27.3	0.6	60	3630	816	0.18%	0	19.9	9
BMDDH23_05	27.3	27.9	0.6	12	6004	290	0.06%	0	78.3	22
BMDDH23_05	27.9	28.7	0.7	27	99438	1411	0.30%	0	59.9	155
BMDDH23_05	28.7	29.6	0.9	154	117033	1385	0.30%	0	2.1	130
BMDDH23_05	30.8	31.7	0.9	47	114997	854	0.18%	0	1.2	124
BMDDH23_05	31.7	32.6	0.9	70	114534	1400	0.30%	0	3.3	131
BMDDH23_05	32.6	32.9	0.3	389	34115	236	0.05%	0	31.8	53
BMDDH23_05	32.9	33.8	0.9	57	118252	848	0.18%	0	1.5	160
BMDDH23_05	33.8	34.7	0.9	72	117244	567	0.12%	0	2.5	156
BMDDH23_05	42.7	43.6	0.9	20	112864	779	0.17%	0	2.2	134
BMDDH23_05	43.6	44.5	0.9	67	112607	1282	0.28%	0	2.3	149
BMDDH23_05	44.5	45.7	1.2	25	10510	160	0.03%	0	67.6	40
BMDDH23_05	45.4	45.8	0.4	44	110879	1186	0.26%	0	4.3	146
BMDDH23_05	46.0	46.6	0.6	11	13686	116	0.02%	0	56.2	103
BMDDH23_05	46.6	47.5	1.0	54	114196	366	0.08%	0	2.3	157
BMDDH23_05	47.5	48.5	0.9	52	113163	276	0.06%	0	1.3	130
BMDDH23_05	58.5	59.4	0.9	112	103245	216	0.05%	0	1.5	117
BMDDH23_05	59.4	60.4	0.9	71	90856	474	0.10%	0	1.7	109
BMDDH23_05	60.4	60.7	0.3	13	43543	270	0.06%	0	65.9	163
BMDDH23_05	60.7	61.6	0.9	65	107505	313	0.07%	0	2.9	129

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_05	61.6	67.4	5.8	77	114964	545	0.12%	0	1.1	143
BMDDH23_05	67.4	68.3	0.9	136	120746	405	0.09%	0	1.9	138
BMDDH23_05	68.3	69.3	1.1	136	105207	1032	0.22%	0	6.5	127
BMDDH23_05	69.3	70.3	0.9	18	9302	113	0.02%	0	51.8	154
BMDDH23_05	70.3	71.2	0.9	8	8867	233	0.05%	0	57.4	113
BMDDH23_05	71.2	72.1	0.9	14	4490	249	0.05%	0	21.8	36
BMDDH23_05	72.1	72.5	0.5	11	7349	317	0.07%	0	30.1	31
BMDDH23_05	72.5	73.8	1.2	101	91109	985	0.21%	0	7.2	123
BMDDH23_05	73.8	74.7	0.9	65	99727	358	0.08%	0	1.3	133
BMDDH23_05	74.7	75.6	0.9	51	105070	378	0.08%	0	3.5	132
BMDDH23_05	75.6	76.5	0.9	93	102356	299	0.06%	0	0.9	129
BMDDH23_05	86.0	86.9	0.9	45	106835	219	0.05%	0	3.9	130
BMDDH23_05	86.9	87.8	0.9	62	89809	264	0.06%	0	1.1	103
BMDDH23_05	87.8	88.7	0.9	67	105130	214	0.05%	0	3.1	145
BMDDH23_05	88.7	89.7	1.0	57	103776	263	0.06%	0	1.4	152
BMDDH23_05	89.7	89.9	0.2	50	89090	224	0.05%	0	64.4	219
BMDDH23_05	89.9	90.8	0.9	40	109877	505	0.11%	0	1.8	202
BMDDH23_05	90.8	91.7	0.9	49	105533	325	0.07%	0	2.6	175
BMDDH23_05	96.6	97.5	0.9	88	104768	194	0.04%	0	0.4	141
BMDDH23_05	97.5	98.5	0.9	49	107554	182	0.04%	0	0.7	144
BMDDH23_05	98.5	98.8	0.3	58	40305	114	0.02%	0	12.6	59
BMDDH23_05	98.8	99.7	0.9	160	101314	181	0.04%	0	1	123
BMDDH23_05	99.7	100.6	0.9	116	107831	179	0.04%	0	1.3	138
BMDDH23_05	110.0	110.9	0.9	55	66417	231	0.05%	0	4	96
BMDDH23_05	110.9	111.9	1.0	103	66570	225	0.05%	0	7.6	116
BMDDH23_05	111.9	112.2	0.3	482	30335	187	0.04%	0	40	111
BMDDH23_05	112.2	113.1	0.9	194	57233	165	0.04%	0	2.2	75
BMDDH23_05	113.1	114.0	0.9	584	52230	79	0.02%	0	3.3	57
BMDDH23_05	114.0	114.9	0.9	93	50147	66	0.01%	0	2.8	47
BMDDH23_05	114.9	115.8	0.9	42	47352	20	0.00%	0	2.2	45
BMDDH23_05	115.8	116.3	0.5	40	51254	101	0.02%	0	8.8	110
BMDDH23_05	116.3	117.0	0.7	<lod< td=""><td>18247</td><td>142</td><td>0.03%</td><td>0</td><td>31.5</td><td>102</td></lod<>	18247	142	0.03%	0	31.5	102
BMDDH23_05	117.0	118.0	0.9	<lod< td=""><td>60786</td><td>306</td><td>0.07%</td><td>0</td><td>52</td><td>223</td></lod<>	60786	306	0.07%	0	52	223
BMDDH23_05	118.0	118.8	0.8	<lod< td=""><td>50848</td><td>342</td><td>0.07%</td><td>0</td><td>80.7</td><td>210</td></lod<>	50848	342	0.07%	0	80.7	210
BMDDH23_05	118.8	119.5	0.7	35	54436	216	0.05%	0	89	234
BMDDH23_05	119.5	120.5	1.1	<lod< td=""><td>73192</td><td>209</td><td>0.04%</td><td>0</td><td>4.2</td><td>167</td></lod<>	73192	209	0.04%	0	4.2	167
BMDDH23_05	120.5	121.6	1.1	5	65596	239	0.05%	0	2.6	132

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_05	121.6	122.5	0.9	12	58856	294	0.06%	0	8	102
BMDDH23_05	122.5	122.8	0.3	9	44650	205	0.04%	0	17.6	79
BMDDH23_05	122.8	123.7	0.9	12	62231	243	0.05%	0	9.5	117
BMDDH23_05	123.7	124.7	0.9	<lod< td=""><td>24413</td><td>152</td><td>0.03%</td><td>0</td><td>41.1</td><td>77</td></lod<>	24413	152	0.03%	0	41.1	77
BMDDH23_05	124.7	125.9	1.2	<lod< td=""><td>53913</td><td>232</td><td>0.05%</td><td>0</td><td>38.2</td><td>129</td></lod<>	53913	232	0.05%	0	38.2	129
BMDDH23_05	125.9	126.8	0.9	<lod< td=""><td>8479</td><td>164</td><td>0.04%</td><td>0</td><td>79.6</td><td>30</td></lod<>	8479	164	0.04%	0	79.6	30
BMDDH23_05	126.8	127.4	0.6	<lod< td=""><td>6245</td><td>87</td><td>0.02%</td><td>0</td><td>62.6</td><td>7</td></lod<>	6245	87	0.02%	0	62.6	7
BMDDH23_05	127.4	128.3	0.9	134	52329	69	0.01%	0	3.8	71
BMDDH23_05	128.3	129.2	0.9	87	53424	98	0.02%	0	1.4	54
BMDDH23_05	129.2	130.1	0.9	24	51269	148	0.03%	0	20.1	65
BMDDH23_05	130.1	131.1	0.9	19	50468	28	0.01%	0	1.4	44
BMDDH23_05	131.1	132.0	0.9	33	53625	113	0.02%	0	0.9	97
BMDDH23_05	132.0	132.9	0.9	19	47192	195	0.04%	0	22.9	104
BMDDH23_05	132.9	133.8	0.9	<lod< td=""><td>51351</td><td>148</td><td>0.03%</td><td>0</td><td>42.4</td><td>67</td></lod<>	51351	148	0.03%	0	42.4	67
BMDDH23_05	133.8	135.0	1.2	74	59151	182	0.04%	0	15.5	152
BMDDH23_05	135.0	135.5	0.5	<lod< td=""><td>26531</td><td>334</td><td>0.07%</td><td>0</td><td>247.2</td><td>62</td></lod<>	26531	334	0.07%	0	247.2	62
BMDDH23_05	135.5	136.2	0.8	52	53204	180	0.04%	0	3.9	58
BMDDH23_05	136.2	137.4	1.2	11	58197	204	0.04%	0	6.3	74
BMDDH23_05	137.4	137.6	0.2	<lod< td=""><td>8273</td><td>230</td><td>0.05%</td><td>0</td><td>275.7</td><td>18</td></lod<>	8273	230	0.05%	0	275.7	18
BMDDH23_05	137.6	138.4	0.7	36	54493	84	0.02%	0	3.8	61
BMDDH23_05	138.4	139.3	0.9	100	59295	147	0.03%	0	1.6	62
BMDDH23_05	139.3	140.2	0.9	24	60733	120	0.03%	0	0.9	68
BMDDH23_05	140.2	141.1	0.9	76	58240	64	0.01%	0	1.8	49
BMDDH23_05	141.1	142.0	0.9	35	57300	98	0.02%	0	5.2	54
BMDDH23_05	142.0	143.0	0.9	<lod< td=""><td>59918</td><td>96</td><td>0.02%</td><td>0</td><td>0.5</td><td>59</td></lod<>	59918	96	0.02%	0	0.5	59
BMDDH23_06	0.0	1.2	1.2	53	101012	172	0.04%	0	0.8	107
BMDDH23_06	1.2	2.1	0.9	84	100235	159	0.03%	0	1.2	121
BMDDH23_06	2.1	3.4	1.2	70	99736	209	0.04%	0	2.4	115
BMDDH23_06	3.4	4.8	1.5	183	99319	289	0.06%	0	1.6	114
BMDDH23_06	14.1	14.8	0.7	38	114819	374	0.08%	0	1.1	139
BMDDH23_06	14.8	14.9	0.2	6	8653	155	0.03%	0	5.5	5
BMDDH23_06	14.9	15.6	0.7	47	113984	588	0.13%	0	6.1	145
BMDDH23_06	24.1	24.9	0.8	31	113131	291	0.06%	0	1.1	144
BMDDH23_06	24.9	25.6	0.7	68	119689	292	0.06%	0	1.9	149
BMDDH23_06	25.6	26.5	0.9	9	127505	296	0.06%	0	0.5	168
BMDDH23_06	26.5	27.6	1.1	1202	138409	348	0.07%	0	1	187
BMDDH23_06	27.6	28.3	0.7	18	121285	329	0.07%	0	2.3	169

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_06	28.3	29.3	1.0	58	127738	624	0.13%	0	1.1	207
BMDDH23_06	29.3	30.1	0.8	13	119587	397	0.09%	0	0.8	164
BMDDH23_06	30.1	30.8	0.7	24	122904	409	0.09%	0	1	170
BMDDH23_06	30.8	32.5	1.6	35	110324	376	0.08%	0	1.5	140
BMDDH23_06	36.3	37.0	0.7	43	114552	512	0.11%	0	4	151
BMDDH23_06	37.0	37.2	0.2	<lod< td=""><td>8860</td><td>111</td><td>0.02%</td><td>0</td><td>127.4</td><td>47</td></lod<>	8860	111	0.02%	0	127.4	47
BMDDH23_06	37.2	37.7	0.5	21	117546	522	0.11%	0	2.5	151
BMDDH23_06	45.2	45.8	0.6	147	119513	471	0.10%	0	2.8	145
BMDDH23_06	45.8	46.2	0.5	<lod< td=""><td>5893</td><td>90</td><td>0.02%</td><td>0</td><td>74.6</td><td>29</td></lod<>	5893	90	0.02%	0	74.6	29
BMDDH23_06	46.2	46.9	0.6	59	119955	688	0.15%	0	2.4	160
BMDDH23_06	56.1	56.8	0.7	38	113066	437	0.09%	0	5.7	168
BMDDH23_06	56.8	57.0	0.2	8	7222	61	0.01%	0	92.9	19
BMDDH23_06	57.0	57.6	0.6	59	115418	448	0.10%	0	1.7	141
BMDDH23_06	67.4	68.3	0.9	27	110799	495	0.11%	0	4.3	145
BMDDH23_06	68.3	69.7	1.5	<lod< td=""><td>8951</td><td>80</td><td>0.02%</td><td>0</td><td>46.9</td><td>67</td></lod<>	8951	80	0.02%	0	46.9	67
BMDDH23_06	69.7	70.2	0.5	24	63176	484	0.10%	0	37.3	113
BMDDH23_06	70.2	71.1	0.9	11	79247	734	0.16%	0	34.2	163
BMDDH23_06	71.1	72.0	0.9	<lod< td=""><td>70098</td><td>584</td><td>0.13%</td><td>0</td><td>43.3</td><td>179</td></lod<>	70098	584	0.13%	0	43.3	179
BMDDH23_06	72.0	72.7	0.7	14	54840	211	0.05%	0	45.6	183
BMDDH23_06	72.7	73.2	0.5	10	110107	355	0.08%	0	3.2	169
BMDDH23_06	73.2	73.5	0.4	<lod< td=""><td>7426</td><td>47</td><td>0.01%</td><td>0</td><td>44.1</td><td>64</td></lod<>	7426	47	0.01%	0	44.1	64
BMDDH23_06	73.5	74.4	0.8	30	111682	379	0.08%	0	1	194
BMDDH23_06	76.1	76.8	0.6	<lod< td=""><td>88558</td><td>337</td><td>0.07%</td><td>0</td><td>1.7</td><td>162</td></lod<>	88558	337	0.07%	0	1.7	162
BMDDH23_06	76.8	77.3	0.5	<lod< td=""><td>83472</td><td>197</td><td>0.04%</td><td>0</td><td>23.6</td><td>130</td></lod<>	83472	197	0.04%	0	23.6	130
BMDDH23_06	77.3	77.5	0.2	<lod< td=""><td>10130</td><td>64</td><td>0.01%</td><td>0</td><td>68.9</td><td>58</td></lod<>	10130	64	0.01%	0	68.9	58
BMDDH23_06	77.5	78.3	0.8	260	171434	498	0.11%	0	8.6	231
BMDDH23_06	98.1	99.1	0.9	112	110014	153	0.03%	<lod< td=""><td>0.7</td><td>110</td></lod<>	0.7	110
BMDDH23_06	99.1	99.8	0.8	128	108636	202	0.04%	<lod< td=""><td>0.8</td><td>122</td></lod<>	0.8	122
BMDDH23_06	99.8	100.2	0.3	127	87862	297	0.06%	<lod< td=""><td>17.4</td><td>107</td></lod<>	17.4	107
BMDDH23_06	100.2	100.9	0.7	74	112317	114	0.02%	<lod< td=""><td>0.5</td><td>107</td></lod<>	0.5	107
BMDDH23_06	100.9	101.8	0.9	110	119630	113	0.02%	<lod< td=""><td>1.1</td><td>122</td></lod<>	1.1	122
BMDDH23_06	118.0	118.9	0.9	67	100519	22	0.00%	<lod< td=""><td>1.5</td><td>100</td></lod<>	1.5	100
BMDDH23_06	118.9	119.8	0.9	111	89077	27	0.01%	<lod< td=""><td>0.4</td><td>103</td></lod<>	0.4	103
BMDDH23_06	119.8	120.7	0.9	157	83042	31	0.01%	<lod< td=""><td>0.5</td><td>101</td></lod<>	0.5	101
BMDDH23_06	120.7	121.6	0.9	153	67825	37	0.01%	7	0.3	91
BMDDH23_06	121.6	122.5	0.9	117	74027	35	0.01%	8	0.3	95
BMDDH23_06	122.5	123.4	0.9	140	75307	39	0.01%	7	0.4	114

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_06	123.4	124.4	0.9	174	74147	16	0.00%	6	0.8	94
BMDDH23_06	124.4	125.3	0.9	139	79285	33	0.01%	7	0.4	104
BMDDH23_07	13.4	14.3	0.9	118	94045	302	0.07%	<lod< td=""><td>0.3</td><td>100</td></lod<>	0.3	100
BMDDH23_07	14.3	15.2	0.9	305	97587	212	0.05%	<lod< td=""><td>0.7</td><td>100</td></lod<>	0.7	100
BMDDH23_07	15.2	16.2	0.9	163	107940	361	0.08%	<lod< td=""><td>0.4</td><td>116</td></lod<>	0.4	116
BMDDH23_07	29.9	30.2	0.3	54	81701	675	0.15%	<lod< td=""><td>20.1</td><td>129</td></lod<>	20.1	129
BMDDH23_07	30.2	30.5	0.3	24	6786	62	0.01%	10	215.9	15
BMDDH23_07	30.5	31.4	0.9	73	110122	270	0.06%	<lod< td=""><td>1.9</td><td>118</td></lod<>	1.9	118
BMDDH23_07	52.6	53.2	0.6	41	8809	45	0.01%	6	161.2	44
BMDDH23_07	53.2	54.4	1.2	83	100832	166	0.04%	<lod< td=""><td>1.4</td><td>109</td></lod<>	1.4	109
BMDDH23_07	80.2	81.3	1.1	186	96300	131	0.03%	<lod< td=""><td>1.1</td><td>116</td></lod<>	1.1	116
BMDDH23_07	81.3	81.7	0.4	8	16714	61	0.01%	8	104.7	88
BMDDH23_07	81.7	82.8	1.1	67	86869	132	0.03%	<lod< td=""><td>1.5</td><td>115</td></lod<>	1.5	115
BMDDH23_07	82.8	83.5	0.8	275	94509	254	0.05%	4	6.7	137
BMDDH23_07	102.7	103.6	0.9	195	102669	197	0.04%	3	0.7	113
BMDDH23_07	103.6	103.9	0.3	13	8359	27	0.01%	3	59.7	30
BMDDH23_07	103.9	104.9	0.9	88	86136	177	0.04%	<lod< td=""><td>1.1</td><td>105</td></lod<>	1.1	105
BMDDH23_08	17.8	18.3	0.5	61	18536	112	0.02%	19	64.9	130
BMDDH23_08	26.2	27.0	0.8	91	49347	709	0.15%	12	7.5	108
BMDDH23_08	27.0	27.7	0.8	12	7278	66	0.01%	11	133.6	39
BMDDH23_08	27.7	28.7	0.9	140	54160	598	0.13%	11	1.4	94
BMDDH23_08	30.5	31.4	0.9	156	54078	736	0.16%	13	0.9	102
BMDDH23_08	31.4	32.4	1.0	105	55856	802	0.17%	20	0.9	122
BMDDH23_08	32.4	33.5	1.2	11	7843	1005	0.22%	10	67.4	42
BMDDH23_08	33.5	34.4	0.9	8	13719	587	0.13%	17	25.2	44
BMDDH23_08	34.4	35.4	0.9	84	50894	816	0.18%	11	27.7	121
BMDDH23_08	35.4	36.3	0.9	93	53285	635	0.14%	14	1.7	102
BMDDH23_08	37.8	38.7	0.9	175	56699	456	0.10%	18	3.1	122
BMDDH23_08	38.7	39.6	0.9	111	59420	502	0.11%	16	2.2	135
BMDDH23_08	39.6	39.9	0.4	10	14022	250	0.05%	16	60.1	77
BMDDH23_08	39.9	40.8	0.9	96	52844	573	0.12%	10	5.1	215
BMDDH23_08	40.8	41.4	0.6	40	38524	687	0.15%	15	70.9	288
BMDDH23_08	41.4	42.3	0.9	<lod< td=""><td>13339</td><td>116</td><td>0.02%</td><td>13</td><td>38.7</td><td>73</td></lod<>	13339	116	0.02%	13	38.7	73
BMDDH23_08	42.3	43.0	0.7	<lod< td=""><td>51873</td><td>519</td><td>0.11%</td><td>13</td><td>25.8</td><td>246</td></lod<>	51873	519	0.11%	13	25.8	246
BMDDH23_08	43.0	43.7	0.8	24	9811	64	0.01%	13	30.2	55
BMDDH23_08	58.4	58.9	0.5	448	89967	290	0.06%	14	50.1	1983
BMDDH23_08	58.9	59.7	0.8	31	131215	966	0.21%	<lod< td=""><td>1.5</td><td>165</td></lod<>	1.5	165

Level 8, 216 St Georges Terrace Perth WA 6000 chariotcorporation.com

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_08	59.7	60.7	0.9	20	116630	454	0.10%	<lod< th=""><th>0.8</th><th>152</th></lod<>	0.8	152
 BMDDH23 08	66.9	69.0	2.1	107	101658	263	0.06%	3	0.6	148
BMDDH23_08	69.0	69.6	0.5	45	51235	329	0.07%	10	1.1	90
BMDDH23_08	69.6	70.6	1.0	89	105405	816	0.18%	4	0.7	292
BMDDH23_08	70.6	70.9	0.3	13	36855	264	0.06%	9	28.9	266
BMDDH23_08	70.9	71.3	0.5	93	120804	503	0.11%	11	2	904
BMDDH23_08	71.3	71.8	0.5	65	31208	141	0.03%	43	79.6	788
BMDDH23_08	71.8	72.5	0.8	80	119410	631	0.14%	<lod< td=""><td>1.2</td><td>666</td></lod<>	1.2	666
BMDDH23_08	72.5	74.0	1.5	122	120375	436	0.09%	<lod< td=""><td>0.6</td><td>188</td></lod<>	0.6	188
BMDDH23_08	74.0	75.2	1.2	93	110582	643	0.14%	<lod< td=""><td>0.4</td><td>204</td></lod<>	0.4	204
BMDDH23_08	75.2	75.4	0.2	166	107062	328	0.07%	<lod< td=""><td>0.5</td><td>228</td></lod<>	0.5	228
BMDDH23_08	75.4	76.2	0.8	33	43457	439	0.09%	4	55.5	93
BMDDH23_08	76.2	79.4	3.2	97	113322	379	0.08%	<lod< td=""><td>1.6</td><td>134</td></lod<>	1.6	134
BMDDH23_08	87.8	89.3	1.5	96	108946	242	0.05%	3	1.5	131
BMDDH23_08	89.3	89.6	0.3	90	72343	295	0.06%	5	44.3	119
BMDDH23_08	89.6	91.4	1.8	142	114601	257	0.06%	<lod< td=""><td>0.7</td><td>134</td></lod<>	0.7	134
BMDDH23_08	94.9	96.6	1.6	121	114712	551	0.12%	<lod< td=""><td>1.3</td><td>160</td></lod<>	1.3	160
BMDDH23_08	96.6	97.0	0.4	20	11797	135	0.03%	9	58.7	50
BMDDH23_08	97.0	98.7	1.7	110	107745	410	0.09%	<lod< td=""><td>1.3</td><td>133</td></lod<>	1.3	133
BMDDH23_08	103.0	104.2	1.2	116	103846	402	0.09%	<lod< td=""><td>40</td><td>128</td></lod<>	40	128
BMDDH23_08	104.2	104.9	0.6	77	78187	432	0.09%	<lod< td=""><td>62</td><td>112</td></lod<>	62	112
BMDDH23_08	104.9	105.5	0.6	68	94011	365	0.08%	<lod< td=""><td>22.8</td><td>115</td></lod<>	22.8	115
BMDDH23_08	105.5	106.1	0.6	104	26821	158	0.03%	7	56.6	52
BMDDH23_08	106.1	106.8	0.8	66	67731	311	0.07%	4	30	104
BMDDH23_08	106.8	108.5	1.7	57	97258	336	0.07%	<lod< td=""><td>17.3</td><td>148</td></lod<>	17.3	148
BMDDH23_08	124.0	125.5	1.5	87	103911	179	0.04%	<lod< td=""><td>0.6</td><td>137</td></lod<>	0.6	137
BMDDH23_08	125.5	125.8	0.3	216	99934	167	0.04%	<lod< td=""><td>0.4</td><td>103</td></lod<>	0.4	103
BMDDH23_08	125.8	127.8	2.0	86	111082	185	0.04%	<lod< td=""><td>0.7</td><td>121</td></lod<>	0.7	121
BMDDH23_08	127.8	128.2	0.5	93	115668	216	0.05%	<lod< td=""><td>0.5</td><td>126</td></lod<>	0.5	126
BMDDH23_08	128.2	128.9	0.7	97	31798	147	0.03%	5	18	67
BMDDH23_08	128.9	129.8	0.9	146	94981	204	0.04%	<lod< td=""><td>1.4</td><td>130</td></lod<>	1.4	130
BMDDH23_08	129.8	130.5	0.6	145	106053	294	0.06%	<lod< td=""><td>1.2</td><td>120</td></lod<>	1.2	120
BMDDH23_08	160.9	162.1	1.2	71	115477	277	0.06%	<lod< td=""><td>0.5</td><td>137</td></lod<>	0.5	137
BMDDH23_08	162.1	163.0	0.9	17	24549	256	0.06%	14	142.2	45
BMDDH23_08	163.0	164.0	0.9	8	12429	74	0.02%	23	136.1	22
BMDDH23_08	164.0	165.5	1.5	101	119657	243	0.05%	<lod< td=""><td>2.6</td><td>132</td></lod<>	2.6	132
BMDDH23_09	16.8	17.2	0.5	48	13335	64	0.01%	10	92.2	106

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li₂O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_09	17.2	18.3	1.1	54	45337	499	0.11%	11	2.2	167
BMDDH23_09	18.3	18.8	0.5	<lod< td=""><td>10207</td><td>119</td><td>0.03%</td><td>17</td><td>122.5</td><td>161</td></lod<>	10207	119	0.03%	17	122.5	161
BMDDH23_09	18.8	19.5	0.7	137	57270	848	0.18%	9	2.5	87
BMDDH23_09	23.8	24.2	0.5	48	48587	494	0.11%	11	17	167
BMDDH23_09	24.2	25.3	1.1	29	11955	61	0.01%	16	54.5	83
BMDDH23_09	25.3	26.2	0.9	67	20733	264	0.06%	18	83.6	105
BMDDH23_09	26.2	27.1	0.9	464	119001	330	0.07%	4	9.9	91
BMDDH23_09	27.1	28.0	0.9	497	126702	196	0.04%	5	9.6	215
BMDDH23_09	28.0	29.0	0.9	228	111177	693	0.15%	<lod< td=""><td>0.8</td><td>303</td></lod<>	0.8	303
BMDDH23_09	29.0	29.8	0.8	88	114536	321	0.07%	<lod< td=""><td>0.8</td><td>198</td></lod<>	0.8	198
BMDDH23_09	29.8	30.2	0.4	82	43482	330	0.07%	12	54.4	146
BMDDH23_09	30.2	31.2	1.1	119	99954	397	0.09%	6	1.6	164
BMDDH23_09	38.7	39.6	0.9	109	62872	416	0.09%	17	2.4	142
BMDDH23_09	39.6	40.2	0.6	13	7689	33	0.01%	27	48.3	37
BMDDH23_09	40.2	41.1	0.9	69	65064	348	0.07%	19	2.6	268
BMDDH23_09	51.2	52.3	1.1	94	100344	648	0.14%	<lod< td=""><td>1</td><td>241</td></lod<>	1	241
BMDDH23_09	52.3	53.0	0.8	37	9953	85	0.02%	25	166.9	59
BMDDH23_09	53.0	53.7	0.7	61	10013	99	0.02%	19	55.5	116
BMDDH23_09	53.7	54.6	0.8	156	108380	588	0.13%	<lod< td=""><td>0.8</td><td>189</td></lod<>	0.8	189
BMDDH23_09	54.6	55.6	1.1	117	106158	470	0.10%	<lod< td=""><td>1.2</td><td>131</td></lod<>	1.2	131
BMDDH23_09	55.6	56.7	1.0	105	110872	575	0.12%	<lod< td=""><td>1</td><td>138</td></lod<>	1	138
BMDDH23_09	56.7	57.3	0.6	89	6486	62	0.01%	23	19	23
BMDDH23_09	105.0	105.7	0.7	95	85161	233	0.05%	7	16.1	644
BMDDH23_09	105.7	105.9	0.3	40	28548	71	0.02%	11	62.2	177
BMDDH23_09	105.9	106.4	0.4	118.3	53438	156	0.03%	0	9.27	0
BMDDH23_09	106.4	107.3	0.9	245.8	95119	206	0.04%	0	0.26	0
BMDDH23_09	107.3	108.2	0.9	219.3	51996	217	0.05%	0	0.2	0
BMDDH23_09	108.2	109.1	0.9	199	64898	201	0.04%	0	0.34	0
BMDDH23_09	109.1	110.0	0.9	387.9	85989	181	0.04%	0	0.32	0
BMDDH23_09	110.0	110.6	0.6	296	141364	175	0.04%	0	0.29	0
BMDDH23_09	110.6	111.9	1.2	937.3	97539	140	0.03%	0	0.57	0
BMDDH23_09	111.9	112.8	0.9	567.2	100776	153	0.03%	0	0.39	0
BMDDH23_09	112.8	113.7	0.9	306.4	>25000 0	54	0.01%	0	0.52	0
BMDDH23_09	113.7	114.6	0.9	361.2	135775	112	0.02%	0	0.17	0
BMDDH23_09	114.6	115.5	0.9	467.5	85647	191	0.04%	0	0.3	0
BMDDH23_09	115.5	116.4	0.9	463.3	109501	148	0.03%	0	0.23	0
BMDDH23_09	116.4	117.3	0.9	359.6	80059	145	0.03%	0	0.3	0

Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Fe (ppm)	Li (ppm)	Li2O (%)	Pb (ppm)	Ta (ppm)	Zn (ppm)
BMDDH23_09	117.3	118.3	0.9	156.6	58017	149	0.03%	0	0.48	0
BMDDH23_09	118.3	119.2	0.9	352.8	84390	119	0.03%	0	0.44	0
BMDDH23_09	119.2	120.1	0.9	294.7	94034	95	0.02%	0	0.34	0
BMDDH23_09	120.1	121.0	0.9	220	59837	68	0.01%	0	0.46	0
BMDDH23_09	121.0	121.9	0.9	338.4	97230	88	0.02%	0	0.42	0
BMDDH23_09	121.9	122.8	0.9	306.1	73115	76	0.02%	0	0.51	0
BMDDH23_09	122.8	123.7	0.9	243.5	103319	104	0.02%	0	0.65	0
BMDDH23_09	123.7	124.7	0.9	294.8	78505	85	0.02%	0	0.56	0
BMDDH23_09	124.7	125.6	0.9	66.9	53927	58	0.01%	0	0.67	0
BMDDH23_09	125.6	126.5	0.9	76.1	50296	102	0.02%	0	0.65	0
BMDDH23_09	126.5	127.4	0.9	156.7	60607	103	0.02%	0	0.58	0
BMDDH23_09	127.4	128.6	1.2	136.9	66995	72	0.02%	0	0.26	0
BMDDH23_09	128.6	129.2	0.6	91	161675	52	0.01%	0	0.48	0
BMDDH23_09	129.2	130.5	1.2	110.4	57282	137	0.03%	0	0.29	0

Note: Less than limit of detection ("<LoD")

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling which produces drill core has been utilised to sample the pegmatite below ground surface. This method is recognised as providing high quality information and samples of the unexposed geology. The drill core was split in half longitudinally using a core saw, and the half core was sampled on variable intervals typically between 0.25m and 1.5m intervals. Sampling was based primarily on rock type taking care not to include pegmatite and schist in the one sample, in larger dikes samples were further divided based on mineralogy. Sample mass ranged between 0.5kg and 1.5kg primarily reflecting sample interval width, the typical mass averaged approximately 1kg.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond core drilling was completed using HQ (triple tube) rods from surface with a Longyear LF90 rig at the Black Mountain Project from November 2023 to February 2024. Most holes were inclined at between 45° and 70° to intersect the moderately to steeply dipping pegmatites. Core was oriented with typical gyroscopic setup on the top of the core barrel,

Criteria	JORC Code explanation	Commentary
		downhole surveys taken every 30m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries were based on measured recovered intervals between the core-blocks. Core recoveries were generally very high except in the rare highly fractured fault zones which were typically 0.5m to 1m in width comprising less than several percent overall. Intervals of broken core were sampled separately and where down-hole contamination, if present, was rare and was noted with the interval not included in assay reporting. Overall core recovery was +97%. There was no apparent relationship between core recovery and grade due to the overall high recoveries. The weathering was not intense and was restricted to the upper 2m to 5m. Weathering did not have any effect on the core recoveries.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Quantitative and qualitative core logging was conducted on an ongoing basis during the drill program. Detailing lithologies, alteration and mineral species present along with oxidation etc, were the basis for selecting sampling intervals Core was photographed with recoveries and RQD measured prior to splitting. All core was geologically logged before splitting and sampling for assaying. All logging and photographic data are stored in the database. Core was oriented and a reference line drawn along the top of the core, cut line was drawn adjacent to the orientation line, the half without the orientation line was sampled. The half retained after sampling was that with the reference line.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of 	 Core was sawn in half, and the half core was sampled on variable intervals typically between 0.25m and 1.5m intervals. Standards, duplicates, and blanks are inserted sequentially every 10th sample. The half core samples were dried in the Lab, crushed to >70% - 2mm; split, then pulverized 500g to >85% -75 micron. Duplicate samples were taken in the laboratory, the crushed core was split into two sub samples, which were pulverized and analysed. The Company provide a numbered sample bag for any remaining coarse reject from the duplicate. The drilling produced HQ drill core and is considered to provide a representative.

	Criteria	JORC Code explanation	Commentary
		 samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	sample of the pegmatite which is coarse-grained and half core samples collected ranging from 0.25-1.5m from the hanging wall to footwall contacts.
UO ƏSM IBUOSJƏ	Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The samples were assayed for a suite of 50 elements including: Co, Cs, Fe, Li, Ni, Pb, Rb, Sn, Ta and Zn. Sample pulps were analysed at American Assay Labs (1506 Glendale Ave, Sparks, NV 89431, USA) using a sodium peroxide fusion with ICP-OES finish (method code IMNF53). Over limit values (> 10,000 ppm Li) were re-assayed using ICP analysis. Intervals of sulfide mineralisation were assayed using method IM-4AB52 (a 4-acid digest). Peroxide fusion results in the complete digestion of the sample into a molten flux. As fusion digestions are more aggressive than acid digestion methods, they are suitable for many refractory, difficult-to-dissolve minerals such as chromite, ilmenite, spinel, cassiterite and minerals of the tantalum-niobium solid solution series. They also provide a more-complete digestion of some silicate mineral species and are considered to provide the most reliable determinations of lithium mineralisation. Sodium peroxide fusion is a total digest and considered the preferred method of assaying pegmatite samples. A standard industry accepted Quality Assurance and Quality Control ("QA/QC") program was employed to monitor the precision, accuracy and general reliability of the assay results from the drilling program. The protocol included the insertion of duplicates, blanks and certified reference materials (CRMs) into the sample stream. In addition, American Assay Labs also incorporated its own internal QA/QC procedures to monitor its assay results prior to release to Chariot. OREAS standards were checked for laboratory accuracy, blanks checked for evidence of laboratory contamination and duplicate assays on crushed core reviewed for potential nugget effects and subsampling reproducibility. Variations, where present, were within acceptable limits.
\bigcirc			31

The Competent Person is satisfied that the results of the QA/QC are acceptable nd that the assay data from American Assay Labs is suitable for the reporting f the exploration results.
lo independent reviews or check sampling or assays have been conducted. The sampling served to verify historical mapping and sampling results. ogging was entered on field logs. Data was entered and stored electronically in in Access database. Il core photos are stored on the Company database. Io material data recording issues have been identified. ithium assays in ppm are converted to % Li ₂ O grades by multiplying by a factor of 2.153 and then dividing by 10,000 to get to % Li ₂ O. Tantalum assays in ppm are converted to Ta ₂ O ₅ in ppm by multiplying by a factor of 1.2211. Io other assay data has been adjusted.
Drill hole collar location and elevations are determined from the handheld GPS and are suitable for the reporting of exploration results (approximately 2.5m ertical and 5m vertical). Elevations were checked against the available USGS DTM with 3m resolution. Locations were recorded using a handheld Garmin GPS. Angled holes were surveyed using standard a standard drilling gyroscopic tool. All coordinates are reported in UTM NAD83 Zone 13N.
The first phase of exploration drilling at Black Mountain was designed to confirm the thickness, orientation and grade of mineralisation beneath the identified outcropping pegmatites in preparation for a more detailed closer spaced and ystematic second phase of resource definition drilling. Camples are typically between 0.25 and 1.5m in length, no compositing of amples will be done at this early stage.
The pegmatite dikes dip at between 70° and 90° degrees. The inclination of the rill holes varied between 45° and 70° and orientated normal to the strike of the egmatite.
s T d

Criteria	JORC Code explanation	Commentary
geological structure	 deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Reported intervals are apparent widths which are greater than the true widths. Based on the drill hole orientations relative to the pegmatite orientation the estimated, true widths range between 40% and 90% of the apparent width but have not been accurately established at this point. The relationship between drilling orientation and mineralisation is considered appropriate and should not introduce any sampling bias.
Sample security	The measures taken to ensure sample security.	 Sample security is not considered to be an issue for the Black Mountain Project. Core was promptly removed from the drill site to the core logging facility where it remained until being shipped to the laboratory by Chariot personnel.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 ERM Sustainable Mining Services (previously CSA Global) ("ERM"), have provided technical guidance for the development of the Black Mountain exploration plan and completed an independent review of the data, geological interpretations and exploration results pertaining to this announcement. ERM are satisfied these scientific and technical disclosures were appropriate to support the reporting of these Exploration Results.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Black Mountain project area comprises 352 unpatented lode mining claims covering an area of 2,686 ha in Natrona Country, Wyoming. Chariot currently holds a 93.9% interest in Wyoming Lithium Pty Ltd which holds a 100% interest in Panther Lithium Corporation ("PLC"). PLC holds 100% interest in the Black Mountain Project. There are no known impediments to the company tenure nor related issues which affect our ability to conduct exploration.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The Black Mountain pegmatite deposit is first described by Love (1942). A single spodumene dyke striking ENE with a dip of 30° to 60° to SSE. The dyke is described as 250 feet (75 m) in strike length and up to 10 feet (3 m) in thickness. The dyke in obscured by alluvium on its south-western end and is folded and irregular. The pegmatite contains spodumene with coarse K-

Criteria	JORC Code explanation	Commentary
		 feldspar, white quartz, mica and tourmaline. At this time development consisted of two small prospecting pits. A number of other exploration pits thought to date back to this period have also been identified from satellite imagery but is possibly related to some undocumented exploration. A comprehensive description of pegmatite occurrences in Wyoming and Colorado was compiled by the USGS and is provided by Hanley et al. (1950). This study describes 114 pegmatite occurrences in these states with an emphasis on beryl bearing pegmatites as the main commodity of economic interest at that time. Other commodities considered in this study were beryllium, lithia (Li₂O), muscovite, columbium-tantalum, potash feldspar and rare earth pegmatites. Two types of lithium-bearing pegmatite are known in Colorado and Wyoming. In one variety, the lithia is predominantly in the mineral lepidolite, a lithium mica, and in the other it is in the minerals spodumene and amblygonite.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Black Mountain is a typical LCT-type Pegmatite dike swarm with coarse grained spodumene outcropping at surface. The Pegmatite dikes are hosted within Archean Greenstones and are assumed to be associated with Late-Archean to Lower Proterozoic dated between 2.6 Ga and 2.5 Ga. The LCT-type pegmatite dike swarm is located within the Granite Mountains of Central Wyoming, USA, comprising part of the Archean-Neoproterozoic supracrustal belt of North America.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	 Drillhole collars, survey and assay data are summarised in Appendix 1 and Appendix 2 of this announcement.

	hole length.If the exclusion of this information is justified on	
	the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intervals are reported as weighted averages based on interval lengths. No cut-off grades are applied to these exploration results. No equivalent values are used or reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The majority of samples were taken at 0.25-1.5m lengths. Downhole lengths are reported. The pegmatite dikes dip at between 70 and 90 degrees, the azimuth of the drill holes was normal to the pegmatite strike and the inclination of the drill holes varied between 50 and 65 degrees, typically intersecting the dikes at an angle between 45° and 70°. Since most drilling intersections do not represent the true thickness and the estimated true widths range between 40% and 90% of the mineralised drill intervals reported in this announcement. The relationship between drilling orientation and mineralisation is considered appropriate and should not introduce any sampling bias.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These 	 Refer to the body of the announcement for the appropriate section and plan view maps.

Criteria	JORC Code explanation	Commentary
	should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All exploration results applicable to the Black Mountain Project have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All information that is considered material has been reported.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Chariot plans to conduct a detailed re-logging of the Phase 1 Program drill core along with a detailed petrographic study of the mineralisation and selection and submittal of samples for initial metallurgical testing. Additional geological mapping and geochemical sampling will be undertaken over the Pegmatite Stock in May 2024 to inform the Limited Drill Program. The Company is planning to embark on a Limited Drill Program from the existing drill pads during the upcoming North American summer to test the Pegmatite Stock as interpreted by the 3D inversion model. The Phase 2 Drill Program will be contingent on the approval of the EPO (anticipated in late Q3 2024) and comprises 2,000 to 3,000m of drilling.

Section 3 (Estimation and Reporting of Mineral Resources) has been excluded as no Mineral Resources have been estimated for the Black Mountain Project to date.