Oceana Lithium Limited ACN 654 593 290

Level 8, 99 St Georges Tce Perth WA 6000 Australia

www.oceanalithium.com.au info@oceanalithium.com.au P: +61 8 9486 4036

Directors and Management

Dr Qingtao ZengNon-Executive Chairman

Caue (Paul) Araujo Chief Executive Officer

Aidan Platel
Non-Executive Director

Daniel SmithNon-Executive Director and Company
Secretary

Mike Sousa
Exploration Manager / Competent
Person, Brazil

Cintia Maia Corporate Director, Brazil

Carolina Carvalho Manager Legal Affairs, Brazil

<u>Projects</u>

Solonópole Project (Ceará, BRAZIL)

Napperby Project (Northern Territory, AUSTRALIA)

Щ

Shares on Issue

82,498,000

Tradeable Shares 52,476,500

ASX Code

OCN

30 April 2024

Uranium Anomaly Delineated by Soil Results at Napperby Project

Highlights

Napperby Project, Northern Territory, Australia

- Soil sampling results have delineated a large uranium anomaly in excess of 4.5km in length and up to 700m in width
- Re-examination of hyperspectral data by HyVista supports 'roll-front' style uranium mineralisation interpretation for the anomaly
- Follow-up mapping of the identified uranium and sulphide targets to commence, with results to refine / generate drill targets
- Field exploration activities will assess lithium-caesium-tantalum (LCT)
 pegmatites potential along with uranium and Rare Earth Elements

Oceana Lithium Limited (ASX: OCN, "Oceana" or "the Company") is pleased to announce that the results of recent soil sampling have defined a uranium anomaly in excess of 4.5km in length and up to 700m in width at its 100% owned Napperby Project in the Northern Territory, Australia.

The Napperby Project is located within the highly prospective Arunta Province, which is endowed with some of the most prospective rocks for lithium (Li), Rare Earth Elements (REEs) and uranium (U) mineralisation in the Northern Territory.

As announced on 21 February 2024, the Paleoproterozoic Wangala and Ennugan Mountains granites have long been recognised as "Hot Granites" and known to be anomalously enriched in a range of elements including U, thorium and REEs. Both granite plutons show outstanding uranium/thorium ratios and are almost fully encapsulated within Oceana's Napperby Project leases EL32836 and ELA32841 (under application), as shown in **Figure 1**.

A soil geochemistry infill sampling program was completed during the December quarter in the southeast corner of EL32836 to better define and understand the lithium anomalies highlighted by the 2022 soil sampling program (refer to ASX Announcement dated 28 November 2022).

A total of 107 samples were collected in the last campaign at 200m spacings for approximately 30 line-km, infilling the previous 2km line spacing to 500m. Although initially targeting lithium, the results from the soil sampling have defined a large arcuate uranium anomaly, as shown in **Figure 2**.

Figure 1: Map showing U/Th ratios and known uranium, thorium and REE mineral occurrences at Napperby Project

Figure 2: Large uranium anomaly in soils - Line spacing is 500m and sample centres of 200m

The uranium anomaly is mostly covered by Quaternary sediments and residual soils. The relatively low absolute values for the anomaly (500 - 3,680 ppb U) are the result of using mobile metal ion sampling techniques which enables field teams to sample large areas without the need to carry large heavy samples around in the field. Because the samples are not crushed and pulverized, it is only unbound or weakly attached metal ions that are removed from soils and as such it is not the absolute values of elements that are of interest but the relative differences of values within a given data set.

Modelling and interpretation of the available hyperspectral data at Napperby was completed by HyVista Pty Ltd (HyVista). Modelling of the geochemical alteration zones interpreted from the hyperspectral data relative to the uranium surface anomaly confirmed that the anomaly has the potential to host significant "roll-front" type uranium mineralisation.

HyVista has also examined the data for potential sulphide mineralisation. Specific VNIR ternary images were generated for the tenement based on mapped surface mineralogy to highlight potential surface sulphide alteration from background oxide mineralogy. The ternary RGB images highlight jarosite (a product of the oxidation of sulphide minerals) in red with spectrally haloed goethite or hematite in green and background oxides in blue. A number of potential targets were defined including that shown in **Figure 3** below, where the splash of red in the third image demonstrates potential sulphide mineralisation.

Figure 3: Left to right are three ENVI displays of Tanami-A1_EL32836 showing increasing zoom top to bottom with full and SWIR wavelength spectra at right for the pixel at 206546 mE, Left: 7555011 mΝ OCC_016-008-003 as a true colour at surface composite; Centre: VNIR all classes multi-mineral RC stack; Right: Ternary RGB Jrs-Hem.C-Mgh to highlight potential ironsulphide alteration.

As the Northern Territory field season is starting to kick off, Oceana is planning another round of field work to map and sample the uranium anomaly. The main objective is to define targets for a first pass drilling program.

Table 1 below shows the coordinates and uranium results for the soil samples collected to date.

Table 1: Coordinates and uranium results for the soil samples collected to date.

Sample ID	Easting	Northing	U PPB	Sample ID	Easting	Northing	U PPB	Sample ID	Easting	Northing	U PPB
MDS0001	227519.5	7543982	385	MDS0060	221519	7544385	145	MDS0120	229516.2	7550022	127
MDS0002	227520.2	7543780	104	MDS0061	221520.4	7544182	354	MDS0121	229525.6	7550225	81.6
MDS0003	227520.6	7543582	117.5	MDS0062	221521.9	7543983	204	MDS0122	229524.4	7550424	103
MDS0004	227519.2	7543381	328	MDS0063	221520.6	7543781	271	MDS0123	229520.2	7550624	138
MDS0005	227518.8	7543185	222	MDS0064	221524.1	7543585	712	MDS0124	229525.4	7550824	125
MDS0006	227514.8	7542980	163.5	MDS0065	221520.2	7543387	682	MDS0125	229523.4	7551029	393
MDS0007	227521.1	7542779	79.2	MDS0066	221520.9	7543183	544	MDS0126	229524	7551224	318
MDS0008	227519	7542581	111.5	MDS0067	221518.7	7542980	429	MDS0127	231525.2	7546624	373
MDS0009	227522	7542383	92	MDS0068	221519	7542776	433	MDS0128	231525	7546826	319
MDS0010	227519.6	7542180	172	MDS0069	221519.5	7542582	219	MDS0129	231523	7547024	336
MDS0011	227523.8	7541980	125	MDS0070	221521.1	7542381	196.5	MDS0130	231524.4	7547221	226
MDS0012	227517.4	7541787	100.5	MDS0071	221529	7542187	241	MDS0131	231520.6	7547424	176.5
MDS0013	218520.1	7542383	174.5	MDS0072	221520.5	7541986		MDS0132	231515.3	7547624	97.6
MDS0014	218528.5	7542185	154	MDS0073	221517	7541779		MDS0149	231527.8		111.5
MDS0015	218521.1	7541984	105.5	MDS0074	221525.3	7541584		MDS0133	231526	7548023	81
MDS0016	218521.1	7541780	379	MDS0075	221522.4	7541380		MDS0134	231527	7548223	136.5
MDS0017	218520.8	7541581	274	MDS0076	221528.2	7541179		MDS0135	231525.1	7548424	102
MDS0018	218520.1	7541381	249	MDS0077	221522.5	7540980		MDS0136	231524.4	7548626	154.5
MDS0019	218522.6	7541180	129	MDS0077	221518.7	7540780		MDS0137	231523.7	7548824	146.5
MDS0020	218521.8	7540985	943	MDS0079	227521.4	7544384		MDS0137	231523.7	7549023	201
MDS0020	218519.9	7540782	101.5	MDS0080	227518.9	7544584		MDS0139	231524.3	7549227	79.5
MDS0022	225520.7	7541583	273	MDS0081	227519.7	7544782		MDS0133	231523.2	7549428	231
MDS0022	225520.7	7541780	175.5	MDS0081	227520.1	7544982	227	MDS0140	231523.2	7549625	141.5
MDS0024	225523.9	7541780	208	MDS0082	227520.1	7545181		MDS0141	231523.5	7549824	195.5
MDS0025	225519.9	7542186		MDS0083	227521.1	7545386		MDS0142	231523.3		194
MDS0025	225519.3	7542381	82.7	MDS0085	227520.1	7545583		MDS0143	231524.7	7550223	53.5
MDS0027	225513.3	7542598	97	MDS0085	227520.1	7545780		MDS0145	231524.7	7550426	65.4
MDS0027	225517.2	7542781	120	MDS0087	227520.0	7545982		MDS0145	231527.1	7550623	55.6
	225518.6				227519.1	7546182			231527.1		76.1
MDS0029 MDS0030	225520.3	7542981 7543182	141	MDS0088 MDS0089		7546383	220	MDS0147 MDS0148	231525.4		
MDS0030	225520.9	7543182	158	MDS0089	227518.5 227522.1	7546574			231525.5	7551026	100.5 51.8
	225520.9		1160			7546574		MDS0150	231524.1		42
MDS0032	225521.1	7543581 7543785	614	MDS0091	227522.2 227522.8	7546986		MDS0151	231524.8	7551428 7551628	39.8
MDS0033			110.5	MDS0092				MDS0152			
MDS0034	225513.7	7543984	248	MDS0093	227521.7	7547188		MDS0153	231525.3	7551825	32.8
MDS0035	225520.7	7544182	155	MDS0094	227519.4	7547386		MDS0154	231526.3	7552026	20.4
MDS0036		7544381	649	MDS0095	227523.8	7547579		MDS0155	231523.8		30.9
MDS0037	223520.4	7544181	1990	MDS0096	227505.4	7547789		MDS0156	231525.2	7552425	32.2
MDS0038	223522.9	7543983 7543763	3680	MDS0097	227523.6	7547985		MDS0157	231524	7552624	24 32.5
MDS0039	223519.6		1065	MDS0098	227521.6	7548184		MDS0158	231525.4	7552826	
MDS0040			491	MDS0099	227521.4	7548383		MDS0159			36.3
MDS0041			136	MDS0101		7548776		MDS0160			40.8
MDS0042		7543180		MDS0102	227514.7	7548984		MDS0161	231526.2		44.9
MDS0043			88.2	MDS0103	229523.9	7546626		MDS0162	231525.4		43.4
MDS0044		7542783	160	MDS0104	229525.7	7546825		MDS0163	229523.9		50.9
MDS0045		7542580		MDS0105	229525	7547024		MDS0164	229525.6		50.9
MDS0046			81.6	MDS0106	229525.3	7547226		MDS0165	229525.8		96.6
MDS0047			80.1	MDS0107	229524.2	7547426		MDS0166	229527.5		49.3
MDS0048			83.7	MDS0108	229524.5	7547624		MDS0167	229524		97.8
MDS0049		7541781	130.5	MDS0109	229524.3	7547825		MDS0168	229526.6		39.3
MDS0050		7541577	61.2	MDS0110	229533.8	7548032		MDS0169	229522.9		44.7
MDS0051	223521.9	7541380		MDS0111	229524.4	7548225		MDS0170	229525.1		91
MDS0052		7541181	56.8	MDS0112	229524.2	7548428		MDS0171	229526.1		79.1
MDS0053		7540980		MDS0113	229525.8	7548625		MDS0172	229523.3		101
MDS0054			102	MDS0114		7548823		MDS0173	229529.4		122
MDS0055				MDS0115	229520.1	7549020		MDS0174	229524.5		257
MDS0056			139	MDS0116	229525.6	7549225		MDS0175	227014.4		240
MDS0057		7544982	83.7	MDS0117	229524.5	7549423		MDS0176	227017		565
MDS0058				MDS0118		7549624		MDS0177		7543277	191
MDS0059	221517.8	7544584	376	MDS0119	229524.4	7549825	248	MDS0178	227017.9	7543077	147.5

	Sample ID	Easting	Northing	U PPB	Sample ID	Easting	Northing	U PPB	Sample ID	Easting	Northing	U PPB
	MDS0179	227016.3	7542876	192.5	MDS0216	224017.7	7543875	2590	MDS0253	229024.5	7549126	49
	MDS0180	227016.8	7542676	155.5	MDS0217	224016.9	7544076	2540	MDS0254	229024.9	7548925	11:
	MDS0181	227018.9	7542477	119.5	MDS0218	224017	7544275	207	MDS0255	229024.3	7548726	13
>>	MDS0182	227016.8	7542277	87.9	MDS0219	223015.6	7543677	2190	MDS0256	229025.6	7548525	57.
	MDS0183	226517.2	7542175	153.5	MDS0220	223017.9	7543875	947	MDS0257	229025.5	7548325	163.
	MDS0184	226516.9	7542375	129	MDS0221	223017.9	7544076	524	MDS0258	229026	7548125	16
	MDS0185	226517.5	7542575	95	MDS0222	223016.1	7544276	282	MDS0259	229024.4	7547923	26
	MDS0186	226517.1	7542775	224	MDS0223	222516.6	7544177	223	MDS0260	229024.6	7547726	13:
	MDS0187	226515.8	7542975	233	MDS0224	222516.8	7543975	441	MDS0261	229025.2	7547527	239
	MDS0188	226518.6	7543175	186	MDS0225	222516.1	7543776	1010	MDS0262	229025.6	7547325	239
	MDS0189	226517.4	7543375	346	MDS0226	222516.4	7543576	1530	MDS0263	228525.6	7547226	17:
	MDS0190	226516.5	7543575	239	MDS0227	222517	7543377	2030	MDS0264	228525.6	7547424	192
	MDS0191	226517.2	7543776		MDS0228		7543176	291	MDS0265	228524.7	7547624	243
1	MDS0192	226016.3	7543876	423	MDS0229	222016.8	7543077	603	MDS0266	228524.3	7547826	199.5
1)	MDS0193	226016.8	7543676	1865	MDS0230	222016.6	7543275	1205	MDS0267	228525.8		156.5
	MDS0194	226017.2	7543477	934	MDS0231	222018	7543476	489	MDS0268	228525.5	7548226	504
	MDS0195	226017.3	7543269	819	MDS0232	222017	7543676	1835	MDS0269	228527.9	7548426	263
	MDS0196	226016.6		227	MDS0233		7543875	519	MDS0270	228525.3		90.3
1	MDS0197	226016.2	7542873	143.5	MDS0234	230025.7	7548525	153.5	MDS0271	228525.3	7548826	77.1
1	MDS0198	226017.7	7542685		MDS0235	1	7548324	111	MDS0272	228526.2		98.6
\ \ \ \ \	MDS0199	226017.2	7542477	129.5	MDS0236	230024.3	7548125	196	MDS0275	221017.4		224
	MDS0200	226015.4	7542276	101	MDS0237	230023.6	7547924	126.5	MDS0276	221017	7543275	322
	MDS0201	225017.4	7542675		MDS0238	230025.2	7547727	123.5	MDS0277	221016.6		219
	MDS0202	225016.6		127.5	MDS0239		7547527	119	MDS0278			194.5
	MDS0203	225017.3	7543075		MDS0240	230026	7547325	200	MDS0279	221016.2	7543876	184
	MDS0204	225016.8	7543275	257	MDS0241	230523.6	7547222	417	MDS0280	232530.1	7547221	51.7
\cup	MDS0205	225016.7	7543477	2760	MDS0242	230522.8	7547420	161	MDS0281	232529		36.8
	MDS0206	225017	7543676	3230	MDS0243		7547620	157.5	MDS0282	232530.9		50.1
	MDS0207	225017.1	7543876	157	MDS0244	230521	7547819	257	MDS0283	232529		72.8
	MDS0208	224519.4	7544175		MDS0245		7548017	168	MDS0284	232528.6		65.5
1	MDS0209	224513.6			MDS0246		7548222	225	MDS0285	232529		68.6
	MDS0210	224517.5	7543776		MDS0247	231025.9	7548323	102.5	MDS0286	232024.7	7548126	112
	MDS0211	224517.1	7543576		MDS0248		7548120	153	MDS0287	232026.2		125
	MDS0212	224516.9		374	MDS0249		7547924	86.4	MDS0288	232025.6		80.5
/ /)	MDS0213	224517.1	7543177	161.5	MDS0250		7547726	332	MDS0289	232025		87.4
/ / /	MDS0214	224516.9			MDS0251	231025.3	7547524		MDS0290	232024.7		90.4
1	MDS0215	224018.1	7543675		MDS0252	231026.7	7547327	183				

Authorised for release by the Board of Oceana Lithium Ltd.

For further information please contact:

Caue 'Paul' Araujo Chief Executive Officer

E: info@oceanalithium.com.au W: www.oceanalithium.com.au Luke Forrestal GRA Partners +61 411 479 144

luke.forrestal@grapartners.com.au

Competent Person Statement

The information in this announcement that relates to exploration results is based on information reviewed, collated and fairly represented by Mr Graeme Fraser who is a Member of AusIMM. Mr Fraser visited the project site and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Fraser consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. Mr Fraser confirms information in this market announcement is an accurate representation of the available data for the exploration areas mentioned herein.

The exploration results contained in this announcement were first reported by the Company in its prospectus dated 4 April 2022 and announced to ASX on 29 June 2022, 28 November 2022 and 21 February 2024. The Company confirms that it is not aware of any new information or data that materially affects the information included in the Prospectus.

About Oceana Lithium

Oceana Lithium Limited is a mineral exploration and development company with advanced + early-stage Lithium exploration projects in prime mining jurisdictions in Brazil and Australia.

Oceana's Chief Executive is Brazilian born and educated Caue Araujo who has wide industry experience in mining project development, including critical minerals. Having had his early training as a geologist with Vale in Brazil, Caue has a practical understanding of local operating conditions including social and cultural sensitivities and corporate and compliance challenges that must be respected to successfully operate in Brazil. Cintia Maia, Director of the Company's wholly owned subsidiary in Brazil, Ceará Lítio Mineração, provides local knowledge and support to the Company's Brazil exploration team led by Mr Mike Sousa. Non-Executive Chairman and geologist Dr Qingtao Zeng provides oversight of the Company's exploration effort at the Napperby Project in the Northern Territory. Non-Executive Director Mr Aidan Platel has held numerous executive and non-executive director roles in ASX listed exploration companies and has a proven track-record of exploration success both in Australia and Brazil. Mr Daniel Smith, an experienced company director, is Non-Executive Director and Company Secretary.

APPENDIX 1

JORC CODE, 2012 EDITION - TABLE 1

1.1 Section 1 Sampling Techniques and Data

(Criteria in this	section apply to all succeeding sections.)	
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Soil samples of a weight of about 200 grams were taken from a depth of approximately 1 to 15 cm below surface. They were sieved or site to -2mm and placed in plastic snap seal bags for transport to the laboratory. The soil samples were taken at 200m spacing along lines spaced at 500m. The lines were oriented perpendicular to the overall mappe geological structure. Enough samples were taken to establish the background values of the metals and elements that can be used to determine a level of anomalism. The soil samples were taken using industry standard procedures and were only handled by the Oceana's consultants / geologists. The were posted through TNT logistic from Alice Spring to Perth and sent to ALS Perth. Soil samples were analysed using ALS code ME_MS23.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling was undertaken.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative 	No drilling was undertaken.

Criteria	JORC Code explanation	Commentary
D	 nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Soil sample locations and descriptions were recorded in the field.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The size and distribution of the soil samples is appropriate for regional exploration within the scale of the Napperby project. No resources reported, so no full QA/QC report carried out to date.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) 	 ALS is an accredited laboratory. They insert blanks, standards and repeats to ensure the quality of their analysis. No resources reported, so no full QA/QC report carried out to date.

Criteria	JORC Code explanation	Commentary
	and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	No significant adjustments to the assay data were required.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Soil sample locations and descriptions were recorded in the field using Handheld GPS Garmin 65.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The soil samples were taken along lines spaced at 500m with sample centers of 200m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	There are dominant east west trends in the area. Therefore, soil geochemistry lines were designed along a north-south orientation.
Sample security	The measures taken to ensure sample security.	 Samples were collected under supervision of the geologist and kept under supervision until freight to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There has been no review of the sampling techniques and data.

1.2 Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 EL32836 is 100% owned by Oceana NT Pty Lt ELA32841 is in application stage and will nee liaison with the Central Land Council of the Northern Territory. There are no contested overlaps. Oceana NT Pty Ltd is a fully owned subsidiary of Oceana Lithium Ltd.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 All open-file Company Reports relating to the Napperby Tenements have been assessed an those directly relevant are summarised in the announcement. Oceana has no reason not to trust the sampling positions, method, or results provided by previous explorers.
Geology	Deposit type, geological setting and style of mineralisation.	 Napperby lies in the Aileron Province on the southern margin of the North Australian Craton. They cover radiogenic, high-heat generating granite related to Yambah Orogeny. LCT pegmatite intrusions occur within EL32836.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly 	No drilling was undertaken.

Criteria	JORC Code explanation	Commentary
5	explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No drilling or sample aggregation undertaken.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	No drilling was undertaken.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Plan maps of soil and rock sample results provided.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Relevant historical data to uranium, lithium, REEs and pegmatite minerals was included in the announcement. All grades reported in Tables or map legends.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of 	 All meaningful available exploration data, previous geological mapping and geochemical sampling has been considered herein. New meaningful and material data will be reported on as it becomes available.

Criteria	JORC Code explanation	Commentary
	treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive 	 The next phases of work may include soil sampling, trenching and mapping & channel sampling, as well as various results driven campaigns of RC and core drilling Further work will be detailed in future announcements.