

Large Lithium Soil Anomaly Outlined at Lake Johnston

ASX: FG1

ABN 82 644 122 216

CAPITAL STRUCTURE

Share Price: A\$0.042
Cash (31/12/23): A\$1.56M
Debt: Nil
Ordinary Shares:164.1M
Market Cap: A\$6.9M

Options: 3.4M

Performance Rights: 3.7M

BOARD OF DIRECTORS

Clive Duncan
Non-Executive Chair

Neil Marston
Managing Director and CEO

Sam Garrett
Technical Director

John Forwood

Non-Executive Director

COMPANY SECRETARY

Mathew Watkins

CONTACT

Level 4, 96-100 Albert Road South Melbourne, Victoria, 3205

+61 (0) 3 9692 7222

info@flynngold.com.au www.flynngold.com.au

Highlights

- Soil sampling outlines a large, high priority lithium anomaly at Flynn Gold's Lake Johnston Project in Western Australia
- Priority Target 1 presents as a large scale (4km x 1km), strong anomaly with twenty-three samples returning assay results over 100ppm Li₂O
- Anomaly remains open to the south and covers lithologies considered favourable to host pegmatites
- Priority Target 1 anomaly supported by geology and pathfinder element geochemistry
- Additional lithium targets identified near recently mapped pegmatites
- Planning underway for follow-up infill and extensional soil program

Flynn Gold Limited (ASX: FG1, "Flynn" or "the Company") is pleased to announce that assay results from first-pass soil sampling completed in late 2023 have identified a large, high priority lithium target at its 100% owned Lake Johnston Lithium Project in Western Australia.

The target is located 11km southeast of the **Burmeister**¹ lithium pegmatite discovery held by **TG Metals Limited (ASX:TG6)** and just 5km southeast of the **Mt Gordon Prospect**² held by **Charger Metals NL (ASX:CHR)** (see Figures 1 and 2).

Pegmatites were identified at the project³ on E63/2190 during an initial reconnaissance field trip in 2023. This soil sampling program was designed to provide first-pass geochemical coverage over this main trend.

Managing Director and CEO, Neil Marston commented,

"We are very pleased to report outstanding assay results from our first soil program at Lake Johnston, which is rapidly emerging as WA's newest lithium hotspot.

"Flynn has outlined a 4km-long strong lithium soil anomaly, along strike from the recent high-grade lithium discoveries at the nearby Burmeister, Jaegermeister and Mt Gordon prospects. This anomaly extends to the limit of the sampled area and has potential to be extended to the south by further sampling.

¹ See TG6 ASX Announcement dated 30 October 2023 for full details

² See CHR ASX Announcement dated 10 November 2023 for full details

³ See FG1 ASX Announcement dated 04 August 2023 for full details

"Over the last few months, Flynn has successfully outlined significant lithium soil anomalies at its Western Australian lithium projects. The company's Lake Johnston and Parker Dome projects in the Yilgarn region and Mt Dove project in the Pilbara are all well located near existing lithium deposits or operating mines.

"Flynn will now systematically advance these targets at Lake Johnston with value-adding, low-cost infill and extensional soil sampling and geological mapping."

Figure 1 - Location of Flynn's Lake Johnston project, other explorers' holdings and new soil lithium targets

Lake Johnston Soil Sampling Program

The results from a soil geochemistry program at the Lake Johnston project have been received and have outlined three substantial lithium soil anomalies, including one **large-scale (4km x 1km)**, high priority, lithium anomaly with supporting associated pathfinder geochemistry (Priority Target 1, Figure 2). Priority Target 1 occurs in an area of shallow transported sheetwash alluvium overlying a thick sequence of high-magnesium and tholeiitic basalts, lithologies considered favourable to host pegmatites.

Flynn's exploration licences at Lake Johnston were granted in July 2023 and during an initial reconnaissance field trip, three previously unmapped pegmatite outcrops⁴ were successfully identified on E63/2190. In addition to the Priority Target 1, the soil sampling program has subsequently outlined a 2km long by 400m wide lithium anomaly (Target 2) in the vicinity of the mapped pegmatites (Figure 2).

⁴ See FG1 ASX announcement dated 4 August 2023 for full details.

Page 2 of 26 | ABN 82 644 122 216 | ASX: FG1 Level 4, 96-100 Albert Road, South Melbourne, Victoria, 3205 info@flynngold.com.au | www.flynngold.com.au A third lithium soil anomaly is located in the northwest portion of the tenement.

Flynn believes these soil sampling results represents the first ever significant systematic exploration for lithium at its Lake Johnston project.

Recent nearby discoveries at the Burmeister, Jaegermeister and Mt Gordon lithium prospects indicate that soil values of interest, when targeting pegmatites in the Lake Johnston region, are generally considered to be greater than 100ppm Li₂O (see Figure 2). Flynn's Priority Target 1 contains twenty-three soil sample results over 100ppm Li₂O (with a maximum value of 136.9ppm Li₂O) (see Figure 3).

Figure 2 - Flynn Gold Limited's tenement E63/2190 showing lithium pegmatite targets over combined aeromagnetic and gravity image

In total 267 soil samples were collected⁵ during the soil program. The samples were sieved to -80 mesh (180μm) and assayed at SGS Australia Pty Ltd, for lithium and associated pathfinder elements by four-acid digest with an ICP-MS finish and gold by 30g fire assay.

The three anomalies outlined by the soil program have coincident and zoned pathfinder element support (see Figures 6 - 11).

Figure 3 - Soil lithium results (Li₂O ppm) over magnetic image on aerial photograph showing targets, pegmatites and Li₂O contours

⁵ See Table 1 and Appendix 1 for further details

The recently completed soil program was designed to target a 5km zone along strike, to the north and south of the mapped pegmatites on E63/2190. The soil sampling program was undertaken on a grid spacing of 400m x 200m with some closer spaced lines on a 200m x 200m or 200m x 100m spacing, completed near the mapped pegmatite outcrops. The soil program was not fully completed due to time constraints at the end of the year, leaving some gaps with lines unfinished or incomplete (see Figure 2). Extensional and infill soil sampling will be required to close off the anomalies.

Figure 4 - Soil lithium results (Li₂O ppm) over magnetic image showing targets and Li₂O contours

The three new Lake Johnston lithium soil anomalies are:

Priority Target 1 – this strong lithium anomaly and large-scale target is situated in the northern portion of E63/2190, approximately 5km southeast of the Mt Gordon Prospect held by Charger Metals NL (ASX:CHR) (Figure 2). The high-priority target has a total east-west strike length of 4,000m and a width of between 500m and 1,200m. The main anomaly contains twenty-three results over 100ppm Li₂O (with a maximum value of 136.9ppm Li₂O). The lithium anomaly has strongly coincident Cs, Rb, Be, Nb and Sn associated pathfinder anomalism (Figures 6 – 11). The tantalum values are less coherent with most of the Ta anomalism associated with the northern rim of the anomaly. The soil coverage has a significant gap on the southern margin of the anomaly due to early completion of the program. The anomaly remains open to the south. This high priority target requires a program of infill and extensional soil sampling and geological mapping prior to drill testing.

Target 2 – this lithium anomaly is located adjacent to an area containing three subparallel, outcropping to sub cropping pegmatites⁶ previously identified by reconnaissance sampling (Figures 4 and 5). The Target 2, lithium soil anomaly has a total north-south strike length of 2,100m and a width of between 200m and 800m. The lithium anomaly has strongly coincident Ta, Rb and Sn associated pathfinder anomalism and moderate, patchy Cs and Nb associated anomalism. The target is positioned over amphibolite, dolerite and minor felsic volcaniclastics just to the west the main granite contact and is bisected by several cross-cutting dolerite dykes. The target requires a program of infill and extensional soil sampling and geological mapping prior to drill testing.

Figure 5 - Pegmatite sample LJ0001 (left) and LJ0002 (right) – eastern mapped pegmatite at Target 2⁷

Target 3 – this lithium anomaly is located in the northwest corner of E63/2190, where three lines of wide spaced (400m x 200m) soil sampling has outlined a number of discrete lithium anomalies. Further infill soil sampling may improve continuity of this target and potentially link it with the Priority Target 1. The combined anomaly has a strike length of 1,800m and an approximate width of 300m. The lithium anomaly has strongly coincident Nb, Rb and Sn associated pathfinder anomalism and moderate, patchy Cs and Ta associated anomalism. The target requires a program of infill and extensional soil sampling and geological mapping prior to drill testing.

⁷ See FG1 ASX announcement dated 4 August 2023 for full details.

⁶ See FG1 ASX announcement dated 4 August 2023 for full details.

Figure 6 - Soil caesium (Cs) results (ppm) over magnetic image showing targets and Li₂O contours

Figure 7 - Soil tantalum (Ta) results (ppm) over magnetic image showing targets and Li₂O contours

Figure 8 - Soil niobium (Nb) results (ppm) over magnetic image showing targets and Li2O contours

Figure 9 - Soil rubidium (Rb) results (ppm) over magnetic image showing targets and Li₂O contours

Figure 10 - Soil beryllium (Be) results (ppm) over magnetic image showing targets and Li₂O contours

Figure 11 - Soil tin (Sn) results (ppm) over magnetic image showing targets and Li2O contours

Next Steps

The Company intends to continue low-cost, value-adding exploration activities on the Lake Johnston licences, including:

- Follow-up infill and extensional soil sampling, and
- Geological mapping and rock chip sampling.

Once the results of further soil sampling are received permitting activities to enable drilling can commence.

For more information contact:

Neil Marston
Managing Director & CEO
+61 3 9692 7222
info@flynngold.com.au

Ben Creagh

Media & Investor Relations
+61 (0) 417 464 233

benc@nwrcommunications.com.au

About Flynn Gold Limited

Flynn Gold is an Australian mineral exploration company with a portfolio of projects in Tasmania and Western Australia (see Figure 12). The Company has eight 100% owned tenements located in northeast Tasmania which are highly prospective for gold as well as tin/tungsten. The Company also has two zinclead-silver tenements on Tasmania's mineral-rich west coast. In addition, Flynn Gold has recently purchased the Warrentinna gold project and the Firetower gold and battery metals project from Greatland Gold plc, both located in northern Tasmania.

Flynn has also established a portfolio of gold-lithium exploration assets in the Pilbara and Yilgarn regions of Western Australia.

For further information regarding Flynn Gold please visit the ASX platform (ASX: FG1) or the Company's website www.flynngold.com.au.

Competent Person Statement

The information in this ASX Announcement that relates to Exploration Results is based on information compiled by Mr David Archer, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Archer is a consultant to Flynn Gold. Mr Archer has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Archer consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

This announcement includes information that relates to Exploration Results prepared and first disclosed under the JORC Code (2012) and extracted from the Company's previous ASX announcements as noted, and the Company's Prospectus dated 30 March 2021. Copies of these announcements are available from the ASX Announcements page of the Company's website: www.flynnngold.com.au.

The Company confirms that it is not aware of any new information or data that materially affects the information included within the Prospectus dated 30 March 2021.

Figure 12 - Location Plan of Flynn Gold projects

Forward Looking and Cautionary Statements

Some statements in this announcement regarding estimates or future events are forward-looking statements. They include indications of, and guidance on, future earnings, cash flow, costs and financial performance. Forward-looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "predict", "foresee", "proposed", "aim", "target", "opportunity", "could", "nominal", "conceptual" and similar expressions. Forward-looking statements, opinions and estimates included in this report are based on assumptions and contingencies which are subject to change without notice, as are statements about market and industry trends, which are based on interpretations of current market conditions. Forward-looking statements are provided as a general guide only and should not be relied on as a guarantee of future performance. Forward-looking statements may be affected by a range of variables that could cause actual results to differ from estimated or anticipated results and may cause the Company's actual performance and financial results in future periods to materially differ from any projections of future performance or results expressed or implied by such forward-looking statements. So, there can be no assurance that actual outcomes will not materially differ from these forward-looking statements.

Table 1 - Lake Johnston, Soil Sample Assay Results

IMM01		Sample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
LIM002											
LIM003											
LIMO04											
LIM005	7										
LIM006 294402.3 6396199.8 80.3 1.95 5.59 7.2 56.5 1.9 0.79 LIM007 294000.1 6396201.1 106.8 1.7 5 7 53.9 1.7 0.85 1.04 0.81 1.04 0.81 1.04 1.06 1.06 3.1 7.3 47 1.8 0.81 1.04 0.92	lan.		 								
LIM007 294000.1 6396200.1 80.7 1.7 5 7 53.9 1.7 0.85 LIM008 293599.1 6396204.1 106.8 1.66 3.1 7.3 47 1.8 0.81 LIM009 296402.3 6395800.3 89.1 1.3 2.34 6.3 40.7 1.8 0.62 LIM010 296202.4 6395800.3 89.1 1.3 2.34 6.3 40.7 1.8 0.62 LIM011 296003.5 6395806.4 65.4 1.05 2.14 6.2 31.7 1.5 0.69 LIM012 295799.3 6395798.7 127 2.69 3.7 6.4 45 1.6 0.65 LIM013 295602.4 6395802.3 135.8 2.98 3.02 6.7 41.7 1.8 0.63 LIM014 293599.0 6395797.9 82.2 1.37 2.45 6.9 36 1.7 0.72 LIM015 293800.7 6395799.4 93.9 1.62 2.6 6.7 41.5 1.6 0.65 LIM016 294006.8 6395799.5 103.8 1.86 3 7.4 48.4 2 0.73 LIM017 294201.0 6395795.6 93.2 1.8 3.74 7.2 54.5 2 0.79 LIM018 294391.9 6395800.9 79.2 1.42 3.47 6.2 44.7 1.4 0.7 LIM019 294596.9 6395801.7 97.5 1.98 4.96 7.9 60.2 1.7 1.1 LIM021 294797.8 6395804.9 96.9 2.12 4.77 7.2 57 1.8 0.82 LIM022 295004.0 6395804.3 94.9 2 4.66 6.5 52.7 1.5 0.69 LIM023 295199.4 6395803.7 103.5 2.17 3.23 6.2 46.9 1.5 0.66 LIM024 295405.2 6395803.7 103.5 2.17 3.23 6.2 46.9 1.5 0.66 LIM025 293399.3 6396207.8 72.5 1.19 2.67 6.3 37 1.6 0.68 LIM026 293201.3 6396198.6 84.2 1.6 2.89 6.9 40.4 1.6 0.76 LIM027 293300.0 6395201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LIM038 292805.2 6396211.5 85.2 1.58 2.34 6.7 35.1 1.4 0.84 LIM039 292908.3 6396208.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LIM031 292394.6 6396208.8 7.9 5.1 5.3 5.4 6.1 46.4 1.6 0.37 LIM032 292195.9 6396199.9 58.1 1.53 7.4 5.5 52.4 1.5 0.67 LIM034 291805.3 6396208.8 50.2 1.53 3.54 6.1 46.4 1.6 0.34 LIM037 291198.2 6396200.8 56.1 5.9 4.5											
LIM008 293599.1 6396204.1 106.8 1.66 3.1 7.3 47 1.8 0.81			 								
LIM009 296402.3 6395805.7 66.3 1.04 1.84 4.9 33.4 1.4 0.39 1.0010 296202.4 6395800.3 89.1 1.3 2.34 6.3 40.7 1.8 0.62 1.00111 296003.5 6395806.4 65.4 1.05 2.14 6.2 31.7 1.5 0.69 1.0012 295793 6395798.7 127 2.69 3.7 6.4 45 1.6 0.65 1.0013 295602.4 6395802.3 135.8 2.98 3.02 6.7 41.7 1.8 0.63 1.0014 293599.0 6395797.9 82.2 1.37 2.45 6.9 36 1.7 0.72 1.0015 1.0015 293800.7 6395799.5 93.2 1.62 2.6 6.7 41.5 1.6 0.65 1.0016 294006.8 6395799.5 103.8 1.86 3 7.4 48.4 2 0.73 1.0016 294006.8 6395799.5 93.2 1.8 3.74 7.2 54.5 2 0.79 1.0016 294301.0 6395800.7 97.5 1.98 4.96 7.9 60.2 1.7 1.1 1			 								
LIM010 29602.4 6395800.3 89.1 1.3 2.34 6.3 40.7 1.8 0.62											
LIM011 296003.5 6395806.4 65.4 1.05 2.14 6.2 31.7 1.5 0.69 1 1 1 1 2 2 2 3 3 3 4 6.2 3 1.7 1.5 0.69 1 1 1 1 1 1 2 2 3 3 5 3 3 3 4 5 1.6 0.65 1 1 1 1 1 1 1 1 1											
LIM012			 								
LIM013											
LIM014			 								
LIM015			 								
LIM016 294006.8 6395795.6 103.8 1.86 3 7.4 48.4 2 0.73 LIM017 294201.0 6395795.6 93.2 1.8 3.74 7.2 54.5 2 0.79 LIM018 294391.9 6395800.7 79.2 1.42 3.47 6.2 44.7 1.4 0.7 LIM012 294797.8 6395801.7 97.5 1.98 4.96 7.9 60.2 1.7 1.1 LIM021 294797.8 6395804.3 94.9 2 4.66 6.5 52.7 1.5 0.69 LIM023 29519.4 6395803.7 103.5 2.17 3.23 6.2 46.9 1.5 0.67 LIM024 295405.2 6395802.5 128.3 2.84 3.27 6.6 48 1.7 0.66 LIM025 293399.3 6396201.8 84.2 1.6 2.89 6.9 40.4 1.6 0.76 LIM027 293300.0 639											
LIM017 294201.0 6395795.6 93.2 1.8 3.74 7.2 54.5 2 0.79 LIM018 294391.9 6395800.9 79.2 1.42 3.47 6.2 44.7 1.4 0.7 LIM019 294596.9 6395801.7 97.5 1.98 4.96 7.9 60.2 1.7 1.1 1.4 LIM021 294797.8 6395804.9 96.9 2.12 4.77 7.2 57 1.8 0.82 LIM022 295004.0 6395804.3 94.9 2 4.66 6.5 52.7 1.5 0.69 LIM023 295199.4 6395803.7 103.5 2.17 3.23 6.2 46.9 1.5 0.67 LIM024 295405.2 6395802.5 128.3 2.84 3.27 6.6 48 1.7 0.66 LIM025 293399.3 6396207.8 72.5 1.19 2.67 6.3 37 1.6 0.68 LIM026 293201.3 6396198.6 84.2 1.6 2.89 6.9 40.4 1.6 0.76 LIM027 293300.0 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LIM028 292805.2 6396211.5 85.2 1.58 2.34 6.7 35.1 1.4 0.84 LIM029 292598.8 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LIM031 292394.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LIM032 292195.9 6396198.1 58.1 1.48 4.18 6.5 44.1 1.3 0.43 LIM033 292002.7 6396199.9 58.1 1.53 7.4 5.5 52.4 1.5 0.67 LIM034 291805.3 6396201.8 50.2 1.4 6.38 4 35.3 1.2 0.42 LIM035 291602.1 6396203.1 58.1 1.62 6.15 5.9 45.2 2.1 0.74 LIM036 291401.3 6396200.8 50.6 1.03 3.67 6.7 45.1 1.6 0.74 LIM037 291198.2 6396200.8 56 1.5 2.79 7.3 43 2 0.91 LIM037 291198.2 6396203.7 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LIM040 290603.8 6396195.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LIM041 292405.2 6390002.3 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LIM040 292405.2 6390002.3 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LIM040 292405.2 6390002.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LIM041 292405.2 6390002.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LIM042 292405.2 6390002.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LIM044 29											
LIM018 294391.9 6395800.9 79.2 1.42 3.47 6.2 44.7 1.4 0.7 LIM019 294596.9 6395801.7 97.5 1.98 4.96 7.9 60.2 1.7 1.1 LIM021 294797.8 6395804.9 96.9 2.12 4.77 7.2 57 1.8 0.82 LIM022 295004.0 6395803.7 103.5 2.17 3.23 6.2 46.9 1.5 0.69 LIM024 295405.2 6395807.5 128.3 2.84 3.27 6.6 48 1.7 0.66 LIM025 293399.3 6396207.8 72.5 1.19 2.67 6.3 37 1.6 0.68 LIM026 293201.3 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LIM028 292805.2 6396201.1 85.2 1.58 2.34 6.7 35.1 1.4 0.84 LIM031 292394.6											
LIM019 294596.9 6395801.7 97.5 1.98 4.96 7.9 60.2 1.7 1.1 LIM021 294797.8 6395804.9 96.9 2.12 4.77 7.2 57 1.8 0.82 LIM022 295004.0 6395803.3 94.9 2 4.66 6.5 52.7 1.5 0.69 LIM024 295405.2 6395802.5 128.3 2.84 3.27 6.6 48 1.7 0.66 LIM025 293399.3 6396207.8 72.5 1.19 2.67 6.3 37 1.6 0.66 LIM026 293201.3 6396198.6 84.2 1.6 2.89 6.9 40.4 1.6 0.76 LIM027 293300.0 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LIM028 292598.8 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LIM031 292195.9 63			 								
LIM021 294797.8 6395804.9 96.9 2.12 4.77 7.2 57 1.8 0.82 LIM022 295004.0 6395804.3 94.9 2 4.66 6.5 52.7 1.5 0.69 LIM023 295199.4 6395802.5 128.3 2.84 3.27 6.6 48 1.7 0.66 LIM025 293399.3 6396207.8 72.5 1.19 2.67 6.3 37 1.6 0.68 LIM026 293300.0 6396198.6 84.2 1.6 2.89 6.9 40.4 1.6 0.76 LIM027 293300.0 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LIM028 292805.2 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LIM031 292394.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LIM033 292195.9 6			 								
LIM022 295004.0 6395804.3 94.9 2 4.66 6.5 52.7 1.5 0.69 LIM023 295199.4 6395803.7 103.5 2.17 3.23 6.2 46.9 1.5 0.67 LIM024 295405.2 6395802.5 128.3 2.84 3.27 6.6 48 1.7 0.66 LIM025 293399.3 6396207.8 72.5 1.19 2.67 6.3 37 1.6 0.68 LIM026 293201.3 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LIM027 293300.0 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LIM028 292805.2 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LIM031 292934.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LIM033 292002.7 <			 								
LJM023 295199.4 6395803.7 103.5 2.17 3.23 6.2 46.9 1.5 0.67 LJM024 295405.2 6395802.5 128.3 2.84 3.27 6.6 48 1.7 0.66 LJM025 293399.3 6396207.8 72.5 1.19 2.67 6.3 37 1.6 0.68 LJM026 293201.3 6396198.6 84.2 1.6 2.89 6.9 40.4 1.6 0.76 LJM027 293300.0 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LJM028 292805.2 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LJM031 292394.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LJM032 292195.9 6396198.1 58.1 1.48 4.18 6.5 44.1 1.3 0.43 LJM033 292002.7											
LIM024 295405.2 6395802.5 128.3 2.84 3.27 6.6 48 1.7 0.66 LIM025 293399.3 6396207.8 72.5 1.19 2.67 6.3 37 1.6 0.68 LIM026 293201.3 6396198.6 84.2 1.6 2.89 6.9 40.4 1.6 0.76 LIM027 293300.0 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LIM028 292805.2 6396201.8 85.2 1.58 2.34 6.7 35.1 1.4 0.84 LIM031 292394.6 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LIM031 292394.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LIM032 292195.9 6396198.1 58.1 1.48 4.18 6.5 44.1 1.3 0.43 LIM033 292100.2											
LJM025 293399.3 6396207.8 72.5 1.19 2.67 6.3 37 1.6 0.68 LJM026 293201.3 6396198.6 84.2 1.6 2.89 6.9 40.4 1.6 0.76 LJM027 293300.0 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LJM028 292805.2 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LJM031 292394.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LJM032 292195.9 6396198.1 58.1 1.48 4.18 6.5 44.1 1.3 0.43 LJM033 292195.9 6396198.1 58.1 1.53 7.4 5.5 52.4 1.5 0.67 LJM034 291805.3 6396201.8 50.2 1.4 6.38 4 35.3 1.2 0.42 LJM035 291602.1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
LJM026 293201.3 6396198.6 84.2 1.6 2.89 6.9 40.4 1.6 0.76 LJM027 293300.0 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LJM028 292805.2 6396211.5 85.2 1.58 2.34 6.7 35.1 1.4 0.84 LJM029 292598.8 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LJM031 292394.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LJM032 292195.9 6396198.1 58.1 1.48 4.18 6.5 44.1 1.3 0.43 LJM033 292002.7 6396199.9 58.1 1.53 7.4 5.5 52.4 1.5 0.67 LJM034 291805.3 6396201.8 50.2 1.4 6.38 4 35.3 1.2 0.42 LJM035 291602.1 <											
LJM027 293300.0 6396201.1 86.1 1.77 2.41 7.2 43.7 2.1 0.55 LJM028 292805.2 6396211.5 85.2 1.58 2.34 6.7 35.1 1.4 0.84 LJM029 292598.8 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LJM031 292394.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LJM032 292195.9 6396198.1 58.1 1.48 4.18 6.5 44.1 1.3 0.43 LJM033 292002.7 6396199.9 58.1 1.53 7.4 5.5 52.4 1.5 0.67 LJM034 291805.3 6396201.8 50.2 1.4 6.38 4 35.3 1.2 0.42 LJM035 291602.1 6396203.1 58.1 1.62 6.15 5.9 45.2 2.1 0.74 LJM036 291401.3			 								
LIM028 292805.2 6396211.5 85.2 1.58 2.34 6.7 35.1 1.4 0.84 LIM029 292598.8 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LIM031 292394.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LIM032 292195.9 6396198.1 58.1 1.48 4.18 6.5 44.1 1.3 0.43 LIM033 292002.7 6396199.9 58.1 1.53 7.4 5.5 52.4 1.5 0.67 LIM034 291805.3 6396201.8 50.2 1.4 6.38 4 35.3 1.2 0.42 LIM035 291602.1 6396203.1 58.1 1.62 6.15 5.9 45.2 2.1 0.74 LIM036 291401.3 6396200.8 70.6 1.03 3.67 6.7 45.1 1.6 0.74 LIM037 291198.2			 								
LIM029 292598.8 6396201.8 83.5 1.6 2.95 7.6 40.5 2 0.85 LIM031 292394.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LIM032 292195.9 6396198.1 58.1 1.48 4.18 6.5 44.1 1.3 0.43 LIM033 292002.7 6396199.9 58.1 1.53 7.4 5.5 52.4 1.5 0.67 LIM034 291805.3 6396201.8 50.2 1.4 6.38 4 35.3 1.2 0.42 LIM035 291602.1 6396203.1 58.1 1.62 6.15 5.9 45.2 2.1 0.74 LIM036 291401.3 6396200.8 70.6 1.03 3.67 6.7 45.1 1.6 0.74 LIM037 291198.2 6396204.7 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LIM039 290800.0											
LIM031 292394.6 6396204.0 59.2 1.53 3.54 6.1 46.4 1.6 0.37 LIM032 292195.9 6396198.1 58.1 1.48 4.18 6.5 44.1 1.3 0.43 LIM033 292002.7 6396199.9 58.1 1.53 7.4 5.5 52.4 1.5 0.67 LIM034 291805.3 6396201.8 50.2 1.4 6.38 4 35.3 1.2 0.42 LIM035 291602.1 6396203.1 58.1 1.62 6.15 5.9 45.2 2.1 0.74 LIM036 291401.3 6396200.8 56 1.5 2.79 7.3 43 2 0.91 LIM037 291198.2 6396200.8 70.6 1.03 3.67 6.7 45.1 1.6 0.74 LIM038 291004.5 6396204.7 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LIM039 290800.0											
LIM032 292195.9 6396198.1 58.1 1.48 4.18 6.5 44.1 1.3 0.43 LIM033 292002.7 6396199.9 58.1 1.53 7.4 5.5 52.4 1.5 0.67 LIM034 291805.3 6396201.8 50.2 1.4 6.38 4 35.3 1.2 0.42 LIM035 291602.1 6396203.1 58.1 1.62 6.15 5.9 45.2 2.1 0.74 LIM036 291401.3 6396200.8 56 1.5 2.79 7.3 43 2 0.91 LIM037 291198.2 6396200.8 70.6 1.03 3.67 6.7 45.1 1.6 0.74 LIM038 291004.5 6396204.7 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LIM039 290800.0 6396205.2 49.3 0.68 2.2 5.1 35 1.2 0.59 LIM040 290603.8 639											
LIM033 292002.7 6396199.9 58.1 1.53 7.4 5.5 52.4 1.5 0.67 LIM034 291805.3 6396201.8 50.2 1.4 6.38 4 35.3 1.2 0.42 LIM035 291602.1 6396203.1 58.1 1.62 6.15 5.9 45.2 2.1 0.74 LIM036 291401.3 6396200.8 56 1.5 2.79 7.3 43 2 0.91 LIM037 291198.2 6396200.8 70.6 1.03 3.67 6.7 45.1 1.6 0.74 LIM038 291004.5 6396204.7 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LIM039 290800.0 6396205.2 49.3 0.68 2.2 5.1 35 1.2 0.59 LIM040 290603.8 6396195.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LIM041 290417.7 639											
LJM034 291805.3 6396201.8 50.2 1.4 6.38 4 35.3 1.2 0.42 LJM035 291602.1 6396203.1 58.1 1.62 6.15 5.9 45.2 2.1 0.74 LJM036 291401.3 6396200.8 56 1.5 2.79 7.3 43 2 0.91 LJM037 291198.2 6396200.8 70.6 1.03 3.67 6.7 45.1 1.6 0.74 LJM038 291004.5 6396204.7 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LJM039 290800.0 6396205.2 49.3 0.68 2.2 5.1 35 1.2 0.59 LJM040 290603.8 6396195.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LJM041 290417.7 6396194.3 75.6 1.16 2.4 8.5 46.7 2 0.92 LJM042 292405.2 63900											
LIM035 291602.1 6396203.1 58.1 1.62 6.15 5.9 45.2 2.1 0.74 LIM036 291401.3 6396200.8 56 1.5 2.79 7.3 43 2 0.91 LIM037 291198.2 6396200.8 70.6 1.03 3.67 6.7 45.1 1.6 0.74 LIM038 291004.5 6396204.7 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LIM039 290800.0 6396205.2 49.3 0.68 2.2 5.1 35 1.2 0.59 LIM040 290603.8 6396195.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LIM041 290417.7 6396194.3 75.6 1.16 2.4 8.5 46.7 2 0.92 LIM042 292405.2 6390002.3 52.7 0.73 2.01 4.4 34 1.1 0.49 LIM043 292501.5 6390											
LIM036 291401.3 6396200.8 56 1.5 2.79 7.3 43 2 0.91 LIM037 291198.2 6396200.8 70.6 1.03 3.67 6.7 45.1 1.6 0.74 LIM038 291004.5 6396204.7 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LIM039 290800.0 6396205.2 49.3 0.68 2.2 5.1 35 1.2 0.59 LIM040 290603.8 6396195.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LIM041 290417.7 6396194.3 75.6 1.16 2.4 8.5 46.7 2 0.92 LIM042 292405.2 6390002.3 52.7 0.73 2.01 4.4 34 1.1 0.49 LIM043 292501.5 6390001.7 61.1 0.85 2.05 4.7 35.2 1.1 0.55 LIM044 292605.2 6389											
LJM037 291198.2 6396200.8 70.6 1.03 3.67 6.7 45.1 1.6 0.74 LJM038 291004.5 6396204.7 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LJM039 290800.0 6396205.2 49.3 0.68 2.2 5.1 35 1.2 0.59 LJM040 290603.8 6396195.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LJM041 290417.7 6396194.3 75.6 1.16 2.4 8.5 46.7 2 0.92 LJM042 292405.2 6390002.3 52.7 0.73 2.01 4.4 34 1.1 0.49 LJM043 292501.5 6390001.7 61.1 0.85 2.05 4.7 35.2 1.1 0.55 LJM044 292605.2 6389999.2 53.4 0.8 1.87 4.2 30.5 1.1 0.45 LJM045 292801.9 <t< td=""><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		4									
LJM038 291004.5 6396204.7 58.1 0.92 3.97 5.9 52.6 1.5 0.65 LJM039 290800.0 6396205.2 49.3 0.68 2.2 5.1 35 1.2 0.59 LJM040 290603.8 6396195.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LJM041 290417.7 6396194.3 75.6 1.16 2.4 8.5 46.7 2 0.92 LJM042 292405.2 6390002.3 52.7 0.73 2.01 4.4 34 1.1 0.49 LJM043 292501.5 6390001.7 61.1 0.85 2.05 4.7 35.2 1.1 0.55 LJM044 292605.2 6389999.2 53.4 0.8 1.87 4.2 30.5 1.1 0.45 LJM045 292704.8 6390003.0 83.1 1.23 2.19 7.6 42.8 1.8 3.05 LJM046 292801.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
LJM039 290800.0 6396205.2 49.3 0.68 2.2 5.1 35 1.2 0.59 LJM040 290603.8 6396195.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LJM041 290417.7 6396194.3 75.6 1.16 2.4 8.5 46.7 2 0.92 LJM042 292405.2 6390002.3 52.7 0.73 2.01 4.4 34 1.1 0.49 LJM043 292501.5 6390001.7 61.1 0.85 2.05 4.7 35.2 1.1 0.55 LJM044 292605.2 6389999.2 53.4 0.8 1.87 4.2 30.5 1.1 0.45 LJM045 292704.8 6390003.0 83.1 1.23 2.19 7.6 42.8 1.8 3.05 LJM046 292801.9 6389999.4 58.8 0.82 1.68 5.5 31.9 1.5 0.75 LJM047 292412.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
LJM040 290603.8 6396195.3 58.3 0.82 4.15 6.3 44.7 1.4 0.64 LJM041 290417.7 6396194.3 75.6 1.16 2.4 8.5 46.7 2 0.92 LJM042 292405.2 6390002.3 52.7 0.73 2.01 4.4 34 1.1 0.49 LJM043 292501.5 6390001.7 61.1 0.85 2.05 4.7 35.2 1.1 0.55 LJM044 292605.2 6389999.2 53.4 0.8 1.87 4.2 30.5 1.1 0.45 LJM045 292704.8 6390003.0 83.1 1.23 2.19 7.6 42.8 1.8 3.05 LJM046 292801.9 6389999.4 58.8 0.82 1.68 5.5 31.9 1.5 0.75 LJM047 292412.7 6390197.6 80.5 0.77 2.24 4.5 35.7 1 0.39 LJM051 292697.7 <											
LJM041 290417.7 6396194.3 75.6 1.16 2.4 8.5 46.7 2 0.92 LJM042 292405.2 6390002.3 52.7 0.73 2.01 4.4 34 1.1 0.49 LJM043 292501.5 6390001.7 61.1 0.85 2.05 4.7 35.2 1.1 0.55 LJM044 292605.2 6389999.2 53.4 0.8 1.87 4.2 30.5 1.1 0.45 LJM045 292704.8 6390003.0 83.1 1.23 2.19 7.6 42.8 1.8 3.05 LJM046 292801.9 6389999.4 58.8 0.82 1.68 5.5 31.9 1.5 0.75 LJM047 292412.7 6390197.6 80.5 0.77 2.24 4.5 35.7 1 0.39 LJM051 292697.7 6390195.8 71.3 1.57 2.33 5.2 32.6 1.8 1.96											
LJM042 292405.2 6390002.3 52.7 0.73 2.01 4.4 34 1.1 0.49 LJM043 292501.5 6390001.7 61.1 0.85 2.05 4.7 35.2 1.1 0.55 LJM044 292605.2 6389999.2 53.4 0.8 1.87 4.2 30.5 1.1 0.45 LJM045 292704.8 6390003.0 83.1 1.23 2.19 7.6 42.8 1.8 3.05 LJM046 292801.9 6389999.4 58.8 0.82 1.68 5.5 31.9 1.5 0.75 LJM047 292412.7 6390197.6 80.5 0.77 2.24 4.5 35.7 1 0.39 LJM048 292499.4 6390200.4 78.8 0.75 2.3 9 37.3 1 3.58 LJM051 292697.7 6390195.8 71.3 1.57 2.33 5.2 32.6 1.8 1.96											
LJM043 292501.5 6390001.7 61.1 0.85 2.05 4.7 35.2 1.1 0.55 LJM044 292605.2 6389999.2 53.4 0.8 1.87 4.2 30.5 1.1 0.45 LJM045 292704.8 6390003.0 83.1 1.23 2.19 7.6 42.8 1.8 3.05 LJM046 292801.9 6389999.4 58.8 0.82 1.68 5.5 31.9 1.5 0.75 LJM047 292412.7 6390197.6 80.5 0.77 2.24 4.5 35.7 1 0.39 LJM048 292499.4 6390200.4 78.8 0.75 2.3 9 37.3 1 3.58 LJM051 292697.7 6390195.8 71.3 1.57 2.33 5.2 32.6 1.8 1.96		LJM042							34		0.49
LJM044 292605.2 6389999.2 53.4 0.8 1.87 4.2 30.5 1.1 0.45 LJM045 292704.8 6390003.0 83.1 1.23 2.19 7.6 42.8 1.8 3.05 LJM046 292801.9 6389999.4 58.8 0.82 1.68 5.5 31.9 1.5 0.75 LJM047 292412.7 6390197.6 80.5 0.77 2.24 4.5 35.7 1 0.39 LJM048 292499.4 6390200.4 78.8 0.75 2.3 9 37.3 1 3.58 LJM051 292697.7 6390195.8 71.3 1.57 2.33 5.2 32.6 1.8 1.96											
LJM045 292704.8 6390003.0 83.1 1.23 2.19 7.6 42.8 1.8 3.05 LJM046 292801.9 6389999.4 58.8 0.82 1.68 5.5 31.9 1.5 0.75 LJM047 292412.7 6390197.6 80.5 0.77 2.24 4.5 35.7 1 0.39 LJM048 292499.4 6390200.4 78.8 0.75 2.3 9 37.3 1 3.58 LJM051 292697.7 6390195.8 71.3 1.57 2.33 5.2 32.6 1.8 1.96											
LJM046 292801.9 6389999.4 58.8 0.82 1.68 5.5 31.9 1.5 0.75 LJM047 292412.7 6390197.6 80.5 0.77 2.24 4.5 35.7 1 0.39 LJM048 292499.4 6390200.4 78.8 0.75 2.3 9 37.3 1 3.58 LJM051 292697.7 6390195.8 71.3 1.57 2.33 5.2 32.6 1.8 1.96			 								
LJM047 292412.7 6390197.6 80.5 0.77 2.24 4.5 35.7 1 0.39 LJM048 292499.4 6390200.4 78.8 0.75 2.3 9 37.3 1 3.58 LJM051 292697.7 6390195.8 71.3 1.57 2.33 5.2 32.6 1.8 1.96									31.9		
LJM048 292499.4 6390200.4 78.8 0.75 2.3 9 37.3 1 3.58 LJM051 292697.7 6390195.8 71.3 1.57 2.33 5.2 32.6 1.8 1.96		LJM047									
LJM051 292697.7 6390195.8 71.3 1.57 2.33 5.2 32.6 1.8 1.96										1	
			 								
			 								

Sample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
LJM053	292509.2	6390401.4	76.2	0.83	2.69	5.4		l .	0.4
							41.5	1.4	
LJM054	292598.7	6390402.8	68.7	0.79	2.14	4.7	37.4	1.1	0.35
LJM055	292702.0	6390399.5	70	0.75	1.85	4.7	33.7	1	0.38
LJM056	292799.5	6390408.7	84	0.74	2.11	5.6	37.9	1.6	0.57
LJM062	292396.2	6390798.2	38.5	0.3	1.12	3.3	18.8	0.9	0.18
LJM063	292511.1	6390793.5	44.1	0.63	1.4	5.9	26.1	1.2	1.15
LJM064	292604.6	6390799.2	69.7	0.96	3.28	5.7	42.5	1.6	0.45
LJM065	292699.9	6390800.8	57.7	0.59	1.82	4.4	31.3	1.2	0.31
LJM066	292809.0	6390805.7	60.5	0.72	1.93	4.7	33.2	1.1	0.4
LJM067	292802.1	6391006.8	64.8	0.82	2.16	4.8	36.3	1.3	0.39
LJM068	292701.3	6391003.8	49.7	0.59	1.29	3.5	20.7	0.8	0.2
LJM069	292589.1	6390996.4	78.1	1.09	3.61	6.2	40.4	1.5	0.48
LJM070	292503.0	6391000.7	69.7	0.76	2.49	5.4	34.4	1	0.46
LJM071	292393.7	6390999.7	34.9	0.31	1.71	2.3	19.7	0.7	0.11
LJM072	292803.9	6391202.7	73.2	1.02	2.74	6.4	51.9	1.7	0.52
⊔M073	292694.7	6391204.8	49.9	0.74	2.23	4.9	37.9	1.4	0.32
⊔M074	292601.3	6391203.4	43.3	0.43	1.77	3.5	22.1	0.9	0.19
LJM075	292502.6	6391201.8	47.8	0.38	1.04	2.9	13.5	0.9	0.1
LJM076	292400.9	6391205.7	31.4	0.35	1.67	2.6	19.8	1	0.36
LJM077	292403.4	6391399.6	38.1	0.47	1.19	3.3	21	0.7	0.16
LJM078	292500.0	6391400.0	47.4	0.45	1.43	3.4	20.6	0.9	0.14
LJM079	292600.5	6391400.5	54.9	0.69	2.68	4.7	39.7	1	0.28
LJM081	292701.4	6391404.8	53.6	0.62	1.27	3.7	21.5	1	0.26
LJM082	292798.6	6391393.5	37	0.48	1.16	3.3	21.8	0.7	0.14
LJM083	292800.1	6391801.0	77.7	1.89	3.37	10	48	1.9	2.52
LJM084	292702.3	6391799.0	62.2	0.68	3.35	3.8	36.1	2.1	0.25
LJM085	292602.3	6391802.8	46.1	0.66	2.77	3.7	28.7	0.9	0.36
LJM086	292501.9	6391801.4	38.7	0.52	2.09	3.3	27.7	0.7	0.14
LJM087	292400.3	6391796.8	43.3	0.58	2.34	3.3	27.1	0.8	0.16
LJM088	292305.9	6391797.1	41.8	0.47	1.92	3.4	24.9	0.8	0.21
LJM089	292200.3	6391812.4	46.1	0.59	1.94	4	31.8	1	0.23
LJM091	292102.2	6391802.2	53.2	0.65	2.15	4.3	33.5	1.2	0.32
LJM092	291998.5	6391796.0	40.5	1.11	1.49	4.6	26.6	1	1.18
LJM093	292031.3	6389593.7	53.2	0.7	1.34	4	26	1	0.2
LJM094	292198.0	6389602.2	57	0.63	1.35	4	26.4	0.9	0.28
LJM095	292394.6	6389596.7	56.4	0.68	1.75	3.8	29.8	1.7	-0.05
LJM096	292599.3	6389600.7	59	1.57	1.42	4.6	27	1.4	0.18
LJM097	292803.6	6389598.6	83.7	0.92	1.72	5.1	35.7	1.6	0.31
LJM098	292803.6	6392603.3	79.2	0.81	1.94	5.3	35.8	1.1	0.39
LJM099	292697.5	6392593.3	57.7	0.73	1.89	4.7	36.4	1.4	0.47
LJM100	292603.9	6392597.4	70.4	0.99	2.55	5.2	49.6	1.4	0.64
LJM101	292503.7	6392603.6	57.5	1.95	2.97	4.5	46.7	2	1.03
LJM102	292405.8	6392596.6	41.5	0.65	2	3.5	29.5	0.9	0.33
LJM103	292298.9	6392598.5	48.4	0.71	2.14	4.4	38.5	1.4	0.4
LJM104	292197.3	6392598.0	45.2	0.65	1.85	4	34.4	1	0.35
LJM105	292104.3	6392599.7	47.8	0.67	2.03	4.7	38.1	1.2	0.44
LJM106	291997.0	6392602.4	60.9	0.73	2.19	4.6	41.9	1.4	0.43
LJM107	292799.9	6392203.1	82.7	0.91	2.44	5.3	41.1	1.5	0.9
LJM108	292702.2	6392200.3	90.4	0.62	1.53	4.1	24.8	1.4	0.5

Sample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
LJM109	292601.9	6392197.4	56.6		1.79	5.4		l .	3.55
				0.78			27.1	1.5	
LJM111	292503.9	6392200.9	42.4	0.66	2.48	4.1	38.6	1.1	0.38
LJM112	292401.9	6392201.2	41.1	0.41	1.2	2.6	17.5	0.8	0.29
LJM113	292300.1	6392208.6	41.1	0.57	2.47	3.7	27.3	1.2	0.33
LJM114	292002.3	6392202.7	61.1	0.59	1.97	3.9	32.4	1	0.41
LJM115	292106.6	6392203.0	34.7	0.56	1.92	3.3	31.6	1	0.28
LJM116	292199.3	6392204.2	27.8	0.44	1.54	2.7	21.7	0.8	0.21
LJM117	293201.6	6391003.9	88.7	0.92	2.05	4.5	40	1.4	0.43
LJM118	293000.2	6391005.7	70.0	0.86	1.7	4.3	36.1	1.5	0.49
LJM119	292801.1	6391998.1	87.6	0.86	2.48	4.8	43.1	1.5	0.55
LJM121	292004.1	6392000.1	29.7	0.5	1.65	3	24.6	0.8	0.27
LJM122	292104.5	6391996.1	47.1	0.72	2.06	3.7	42.8	1.2	0.33
LJM123	292300.6	6392000.5	43.1	0.63	1.76	3.1	34.6	0.8	0.28
LJM124	292205.9	6392000.9	50.2	0.63	1.61	3.3	36.9	0.9	0.29
LJM125	292397.9	6391998.0	43.3	0.59	1.86	3.3	33.8	0.8	0.29
LJM126	292502.4	6392002.1	53.2	0.83	5.13	3.5	46.9	1.2	0.4
LJM127	292000.4	6393803.2	36.4	0.58	2.36	3.1	31.6	0.8	0.32
LJM128	292200.4	6393799.2	63.3	1.03	5.71	3.7	50.2	1.2	0.35
LJM129	292398.2	6393802.1	94.9	1.48	3.33	4.6	49.6	1.1	0.72
LJM130	292607.2	6393802.0	98.2	1.2	2.78	5.1	51.9	1.5	0.47
LJM131	292800.0	6393800.0	77.9	1.1	2.36	4.6	39.6	1.3	0.43
LJM132	293000.3	6393806.4	63.1	0.95	1.89	4.3	36.4	1.3	0.43
LJM133	293000.0	6393600.0	98.8	1.25	2.11	5.1	43.9	1.4	0.43
LJM134	292006.1	6393602.5	79.9	0.99	4.98	5	64.5	1.4	0.44
LJM135	292202.3	6393596.8	54.9	0.83	4.17	3.9	42.7	1	0.37
LJM136	292408.9	6393604.2	93.6	1.37	3.45	4.7	51.9	1.7	0.41
LJM137	292599.7	6393601.4	72.1	0.92	1.79	4.1	33.7	1.2	0.37
LJM138	292807.4	6393597.7	97.3	1.18	1.71	4.7	38	1.6	0.41
LJM139	292002.2	6393405.2	74.3	1.05	3.09	4.9	58.4	1.7	0.44
LJM140	292199.4	6393409.7	55.8	0.73	2.09	3.9	31.5	1.2	0.36
LJM141	292403.4	6393403.0	85.9	1.26	2.31	4.9	40.6	1.5	0.59
LJM142	290399.9	6395398.4	62.4	0.96	1.33	5.6	24	1.4	1.03
LJM143	290600.9	6395404.5	50.2	0.85	2.22	4.6	44.4	1.1	0.45
LJM144 LJM145	290805.7 291002.1	6395396.2 6395400.4	53.2 68.9	0.77 0.93	2.25 2.23	4.7 7	39.7 45.7	1.1 1.6	0.49 0.62
LJM145 LJM146	291002.1	6395394.7	49.9	0.93	1.56	6.6	29.3	1.0	0.62
LJM146	291203.9	6395394.7	54.5	0.63	1.82	8.2	30.5	1.5	0.6
LJM147	291394.0	6395396.9	79.9	1.2	2.74	8.3	47.8	1.7	0.73
LJM148	291399.2	6395405.6				5.7			
LJM149 LJM151	291804.4	6395392.9	73.6 76.4	1.04 1.45	2.16 4.18	6.2	38.7 43.2	1.3 1.3	0.47 0.53
LJM151 LJM152	292014.0	6389196.5	34.9	0.66	1.38	4.8	45.2 35.9	1.3	1.66
LJM152	292042.3	6389205.8	23.5	0.39	0.84	3.7	19.5	0.8	0.29
LJM154	292406.4	6389199.5	32.7	0.39	1.23	3.6	26	0.8	0.29
LJM155	292400.4	6389199.4	24.1	0.43	0.73	2.6	15.4	0.9	0.31
LJM156	292799.5	6389200.7	79.0	1.03	2.54	8.1	48.3	1.9	0.12
LJN001	296201.3	6396198.1	124.6	1.45	4.63	10.4	56.4	1.9	1.14
LJN001 LJN002	295201.3	6396198.1	110.4	1.45	4.03	6.3	48	1.5	0.51
LJN002 LJN003	295801.8	6396200.8	92.1	1.79	3.63	6.8	50	1.5	0.51
LJN003	293394.6	6396198.0	88.3	1.52	3.43	7.3	46	2.4	0.49
LJINUU4	2J4JJ0.3	0.0510150.0	00.3	1.32	5.45	7.3	40	2.4	0.56

Sample ID	Easting	Northing	Li₂O	Be	Cs	Nb	Rb	Sn	Та
LJN005	294602.0	6396197.1	82.9	1.39	4.46	7.1	53.9	1.7	1.17
LJN006	294209.0	6396209.5	70.2	1.43	6.98	6.6	62.1	1.7	0.55
LJN007	293802.0	6396202.0	96.7	1.43	3.26	6.8	48.4	1.9	0.55
LJN007	296403.1	6395400.9	62.9	0.79	1.89	7.3	36.7	2.2	0.56
LJN009	296203.1	6395399.8	61.6	0.79	1.95	6	36.4	1.7	0.49
4			109.8	1.24	3.26	8.8			0.49
LJN010 LJN011	296002.4 295797.9	6395399.9 6395400.4	62.4	0.89	2.34	7.1	53.8 39.3	2.3 2.1	0.71
LJN011 LJN012	295604.0	6395398.0	79.4	1.11	4.06	6.1	56.9	2.1	0.43
LJN013	293602.3	6395400.0	103.8	1.11	2.7	7.3	42.8	1.8	0.48
LJN014	293802.3	6395400.6	117.5	1.23	3.15	7.3 8	50.4	2.2	0.65
LJN015	294000.2	6395406.0	96.9	1.06	2.62	6.9	37.8	1.5	0.57
LJN015	294200.5	6395399.5	122.7	1.4	3.82	9.2	53.9	2.7	0.71
LJN017	294200.3	6395400.6	117.1	1.33	3.74	7.8	52.1	2.7	0.71
LJN017	294604.0	6395400.8	136.9	1.57	3.64	7.8 8	56.9	2	0.73
LJN019	294802.0	6395400.8	119.9	1.38	4.11	6.5	56.2	1.9	0.55
LJN019	294802.0		120.6	1.55	5.55	7.5	64.2	2.3	0.62
LJN021 LJN022	295201.1	6395401.4 6395402.4	125.3	1.33	4.37	6.1	60.6	1.7	0.62
	295402.1		125.5		4.84	7.2	66.7		0.51
LJN023	293402.1	6395401.5	69.3	1.66 1.08		5.5		2.4	
LJN024 LJN025	293403.2	6395803.5 6395801.9	88.7	1.36	2.08 2.47	7.4	32.8 42.6	1.3 2.4	0.43 0.59
LJN025	292999.8	6395801.9	88.7	1.44	2.61	7.4	45.8	1.9	0.56
LJN020	292999.8	6395798.3	74.5	1.37	2.6	7.2	37.1	1.9	0.30
LJN027	292603.2	6395802.2	62.0	1.28	2.73	8.8	38.5	1.7	0.7
LJN029	292402.5	6395802.2	76.2	1.78	4.07	9.9	54.1	2	0.68
LJN029	292402.3	6395801.0	69.5		3.68	3.4	52.1	2.2	0.07
LJN031	292200.0	6395802.2	66.9	1.31 1.47	9.26	5.5	66.7	1.4	0.51
LJN032	291996.4	6395800.1	50.8	1.47	3.91	5.1	46.2	1.4	0.31
LJN033	291600.1	6395800.1	49.7	0.92	5.86	5.7	40.2	1.6	0.39
LJN034	291000.1	6395801.7	25.2	0.42	0.82	3.4	15.6	1.0	0.40
LJN036	291400.3	6395800.2	57.5	1.13	1.77	9.2	29.6	2.2	1.16
LJN037	290997.7	6395800.2	76	1.02	2.19	7	40.4	2.2	0.73
LJN037	290798.7	6395803.1	101.2	1.14	3.4	9	58.7	2.2	0.73
LJN039	290598.1	6395803.1	49.3	0.81	2.36	6.9	48.4	1.8	0.63
LJN040	290402.5	6395802.2	31.9	0.65	1.77	4.9	39.2	1.6	0.53
LJN046	292031.8	6389995.8	91.9	0.94	2.79	6.6	49.8	1.9	0.64
LJN047	292203.6	6390199.9	68.5	0.61	2.11	4.8	37.8	1.7	0.57
LJN048	292100.6	6390200.0	56.6	0.75	1.85	5.6	34.1	2.3	0.83
LJN049	292034.6	6390198.3	56.0	0.61	1.7	5.3	31.3	1.6	0.57
LJN051	292298.5	6390202.8	82.7	0.75	2.33	6.1	41	2.1	0.9
LJN052	292102.1	6390403.3	46.1	0.7	1.63	4.4	29.3	1.7	0.44
LJN053	292022.7	6390397.1	54.5	0.83	1.85	5.8	33	2.1	0.67
LJN054	292200.7	6390399.4	44.8	0.62	1.82	4.4	31.5	1.5	0.5
LJN055	292299.3	6390400.8	46.3	0.67	1.83	4.6	33.2	2.1	0.38
LJN056	292404.7	6390405.7	55.1	0.78	2.47	5	41.4	1.7	0.45
LJN057	292000.5	6390602.0	35.5	0.45	1.38	5.1	24.1	1.6	0.44
LJN058	292106.1	6390607.5	31.2	0.34	0.94	3	18.9	1.5	0.25
LJN059	292200.1	6390604.2	37.2	0.42	1.08	3.5	21.3	1.8	0.29
LJN061	292300.8	6390602.1	38.1	0.49	1.51	3.8	23.6	2	0.33
LJN062	292303.5	6390803.1	35.1			3.5	28.6		0.35
LJN062	292303.5	6390803.1	35.1	0.43	1.86	3.5	28.6	1.4	0.35

Commis ID	Faction	Nouthing	1: 0	Do	Co	NIL	Dh	Cin	To
Sample ID	Easting	Northing	Li₂O	Be	Cs	Nb	Rb	Sn	Та
LJN063	292200.8	6390800.0	28.2	0.31	1.31	3	22.9	1.4	0.34
LJN064	292102.4	6390801.5	22.0	0.24	0.61	2.5	9.2	1.3	0.25
LJN065	292001.2	6390798.4	22.0	0.32	0.96	3.6	11.7	1.2	0.39
LJN066	292000.6	6391000.4	25.2	0.39	1.21	4.1	19.3	1.8	0.31
LJN067	292100.6	6391000.6	31.4	0.48	1.64	3.5	28.6	1.3	0.3
LJN068	292199.2	6390999.9	36.4	0.52	1.99	4.1	30.3	1.8	0.4
LJN069	292299.9	6390999.4	31.0	0.48	1.58	3.6	25.1	1.7	0.31
LJN070	292301.6	6391199.4	30.4	0.47	1.46	4.2	26.7	2.3	0.53
LJN071	292200.5	6391198.3	29.7	0.41	1.49	3.5	22.3	1.5	0.28
LJN072	292098.7	6391203.8	32.5	0.53	1.53	4.3	29.1	2.1	0.31
LJN073	291999.8	6391200.8	29.1	0.34	0.89	2.7	16.9	1.3	0.24
LJN074	292001.4	6391402.5	33.6	0.5	1.52	4.1	32.6	1.8	0.34
LJN075	292101.5	6391400.2	39.0	0.54	2.42	4	36.8	1.4	0.36
LJN076	292199.6	6391399.4	36.6	0.54	1.53	4.1	30.4	1.7	0.35
LJN077	292800.3	6391597.7	49.3	0.57	2.42	4.1	35.7	1.6	0.38
LJN078	292707.8	6391598.9	46.5	0.58	2.99	4.7	41.8	1.9	0.42
LJN079	292601.9	6391600.6	46.5	0.5	2.26	3.7	30.2	1.4	0.38
LJN081	292500.8	6391601.5	48.0	0.43	2.75	3.3	27.1	1.3	0.33
LJN082	292404.6	6391598.8	42.4	0.35	1.58	2.6	20.2	1.3	0.23
LJN083	292300.3	6391596.6	42.8	0.49	2.37	3.7	32.6	1.5	0.33
LJN084	292202.2	6391601.2	31.2	0.29	1.2	2.7	18	1.2	0.22
LJN085	292101.0	6391601.3	43.3	0.55	1.84	3.7	33.7	1.5	0.35
LJN086	292002.8	6391597.8	43.7	0.59	1.76	3.7	36	1.5	0.47
LJN087	292002.8	6389800.9	68.2	0.8	1.81	5.3	38.9	2	0.52
LJN088	292201.7	6389802.3	102.9	1.03	2.87	5.9	56.3	2	0.6
LJN089	292401.5	6389800.6	70.2	0.84	2.01	4.9	39.8	1.8	0.47
LJN091	292600.8	6389803.4	48.7	0.66	1.62	4	31.7	1.5	0.38
LJN092	292799.3	6389801.4	72.3	0.81	1.8	4.9	38.4	1.5	0.5
LJN093	292801.4	6392801.7	77.1	0.91	1.88	6	39.7	1.6	0.68
LJN094	292703.8	6392801.0	78.4	1.02	1.94	6.4	39.2	1.4	0.73
LJN095	292600.1	6392801.5	61.8	0.9	2.75	5.4	47.1	1.5	0.51
LJN096	292498.9	6392800.6	55.5	0.89	2.96	5.4	49	1.6	0.61
LJN097	292399.7	6392798.6	51.4	0.72	1.89	5	34.7	1.7	0.43
LJN098	292301.8	6392796.6 6392802.8	54.9	0.86	2.04	4.9	37	1.5	0.46
LJN099	292198.6		105.1	1.26	2.74	6.6	43.3	2	0.68
LJN100	292102.3	6392801.4	67.4	1.13	2.8	5.9	50.6	1.6	0.53
LJN101 LJN102	291998.9 292799.6	6392800.7	60.5 67.2	0.96	2.81	5.5 4.5	52.5 29.1	1.6	0.51
	+ +	6392401.2		0.83	2.1		38.1	1.4	0.43
LJN103 LJN104	292704.2 292601.0	6392401.3 6392400.3	83.1 70.0	1.1	2.43	6.3	47.3	1.6	0.58
LJN104 LJN105	292501.0	6392398.9		1.02	3.36	5.8 4.8	54.4	1.6	0.58 0.44
LJN105	292501.0	6392398.9	56.8 45.9	0.91 0.69	3.01 2.78	3.8	43.3	1.4	
LJN106	292302.7	6392402.1	45.9 32.1	0.69	1.39	3.3	35.4 23.1	1.2 1.2	0.35 0.59
LJN107 LJN108	292302.7	6392402.2	42.4	0.47	2.17	3.3 4	34.8	1.3	0.38
LJN108	292201.2	6392402.1	46.5	0.57	2.17	4.5	43.4	1.7	0.38
LJN109 LJN112	292102.8	6392403.1	40.5	0.8	1.28	2.6	19.2	1.7	0.44
LJN112 LJN113	292398.1	6391398.8	40.0	0.51	1.59	4.2	32.6	1.6	0.24
LJN113	292300.0	6392000.4	58.8	0.59	1.88	4.2	31.7	1.3	1.29
LJN114 LJN115	292602.5	6392000.4	55.8	0.04	4.64	5.3	56.2	1.9	0.55
כדדאורז	232002.3	0332000.3	J3.8	0.93	4.04	5.3	30.2	1.9	0.55

Sample ID	Easting	Northing	Li₂O	Ве	Cs	Nb	Rb	Sn	Та
LJN116	292002.3	6393000.6	73.2	1.11	2.85	6.1	50.6	1.9	0.59
LJN117	292200.1	6393001.6	47.4	0.7	2.18	5.1	37.6	1.6	0.44
LJN118	292397.1	6392998.6	50.8	0.74	2.01	4.4	35.5	1.6	0.49
LJN119	292601.8	6393001.0	78.4	1.15	2.7	5.9	48.4	1.9	0.52
LJN121	292802.4	6392998.3	107.9	1.5	2.88	8.2	58.4	2.2	0.82
LJN123	291999.4	6393200.9	36.6	0.66	2.06	4.9	36.7	1.4	0.6
LJN124	292198.4	6393204.7	39.4	0.64	2.47	5	35.6	1.6	0.5
LJN125	292398.5	6393202.4	44.8	0.78	3.62	5.2	46.6	1.6	0.56
LJN126	292602.3	6393200.6	53.4	0.82	2.67	5.3	45.8	1.6	0.58
LJN127	292798.8	6393197.7	84.6	1.17	2.52	6.4	50.7	1.8	0.6
LJN128	293000.0	6393203.3	115.4	1.44	2.4	6.9	53.3	1.9	0.65
LJN129	292995.5	6393396.0	85.0	1.04	2.15	5.7	46.8	1.9	0.51
LJN130	292800.0	6393402.4	79.9	1.12	2.13	5.9	43.8	1.6	0.55
LJN131	292607.3	6393403.8	104.2	2.05	3.08	7.4	46	1.6	0.74
LJN132	292999.9	6395399.4	112.4	2.04	2.75	7.4	45.8	1.3	0.75
LJN133	292800.4	6395402.4	92.4	1.74	2.39	15.1	36.9	1.2	1.5
LJN134	292604.2	6395398.4	94.3	1.87	2.21	6.5	37.5	1	0.61
LJN135	292400.9	6395400.7	112.8	1.96	2.47	5.1	45.1	1.3	0.26
LJN136	292203.0	6395399.0	54.7	0.64	1.23	2.9	28	1.1	0.14
LJN137	292800.2	6389398.6	35.3	0.53	0.87	2.4	20.2	1.1	0.13
LJN138	292598.4	6389401.4	45.2	0.71	1.56	4.1	34.4	0.9	0.51
LJN139	292406.3	6389399.0	63.1	0.77	1.88	5.1	40.8	1.5	0.6
LJN140	292203.3	6389403.7	31.0	1.81	1.38	11.7	83	3.3	1.51

Notes:

- All soil samples collected are listed in the table (excluding standards and duplicates), results displayed include a selected suite of lithium pathfinder elements.
- All units are in ppm.
- Soil location and orientation information coordinates are MGA Zone 50, AHD RL.
- See Appendix 1 for additional details.
- BDL below detection level.

APPENDIX 1: LAKE JOHNSTON SOIL SAMPLING RESULTS

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Soil sampling: A total of 280 samples (including 267 soil samples, 6 standards and 7 duplicates) were collected by Galt Mining Solutions Pty Ltd for Flynn Gold Limited over the Lake Johnston project (E63/2190) during November 2023. The Lake Johnston soil sampling program was designed as a first pass soil sampling program targeting lithium pegmatite mineralisation at the Lake Johnston project. The soil samples were collected at a sample density of either 400m x 200m, 200m x 200m, or 200m by 100m. Industry-standard sampling practices for soil sampling adopted. Samples were collected in the field by removing any surface vegetation, lag and topsoil and then digging down to a nominal depth of approximately between 10cm and 20cm. The collected sample was sieved to -2mm and placed in a pre-numbered sample bag. All geochemical sampling completed by Galt Mining Solutions Pty Ltd was located on GDA94 MGA Zone 51, using a GPS. Industry-standard sampling practices for soil sampling adopted. Experienced field personnel supplied by Galt Mining Solutions Pty Ltd were always present when sampling to ensure the appropriate horizon was collected from each hole. Samples were transported to Galt Mining Solutions Perth compound where the soil samples were dried and screened to -80 mesh (180µm) Flynn Gold Limited submitted all soil samples to SGS Australia Pty Ltd — Perth for analysis, utilising sample preparation by sample drying (Code: G_DRY_KG) and pulverise, Cr-steel, nominal 85% passing 75 microns (Code: G_PUL). The soil samples were analysed for gold by fire assay by using lead collection technique with a 30g sample charge weight. MP-AES instrument finish (SGS Code: GO_FAP30V10) and trace level lithium and multi-elements were assayed by 4-acid digest (SGS Code: GE_DIG40Q20) ICP-MS finish (SGS Code: GE_IMS40Q20)
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling completed.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drilling completed. Recoveries were not assessed as they are not material to the type of sample collected Best endeavours were used to ensure sample recovery and splitting would deliver the best quality possible. Sample weights are issued by the laboratory with assays.

Criteria	JORC Code Explanation	Commentary				
Logging	Whether core and chip samples have been	No drilling completed.				
33 3	geologically and geotechnically logged to a	Basic surface geology was logged at each site.				
	level of detail to support appropriate Mineral	Sample colours were recorded.				
	Resource estimation, mining studies and	Only the specific sampled horizon was logged.				
		Only the specific sampled horizon was logged.				
	metallurgical studies.					
	Whether logging is qualitative or quantitative					
	in nature. Core (or costean, channel, etc)					
	photography.					
	The total length and percentage of the					
	relevant intersections logged.					
Sub-sampling	If core, whether cut or sawn and whether	Not applicable				
techniques	quarter, half or all core taken.	Sample depth (nominally 0.1m to 0.5m below surface) an				
and sample	If non-core, whether riffled, tube sampled,	location of soil sample recorded at each site.				
		·				
preparation	rotary split, etc and whether sampled wet or	Soil samples were prepared and analysed by independent				
	dry.	certified laboratory, SGS Australia Pty Ltd in Perth. All				
	For all sample types, the nature, quality and	samples can be considered a grab or scoop sample to coll				
	appropriateness of the sample preparation	enough material to prepare a sample weight of 2-3kg				
	technique.	All samples were dry sieved (-2mm) and approximately 2-				
	Quality control procedures adopted for all	3kg of minus 2mm material sampled in the field and bagg				
	sub-sampling stages to maximise	A 2-3Kg sample is considered appropriate for soil samplin				
	representivity of samples.	Soil samples were placed directly into pre-numbered bag				
	Measures taken to ensure that the sampling	the site location from which they were collected.				
	is representative of the in-situ material	Standards were submitted every 50 samples; duplicates				
	collected, including for instance results for	were taken every 50 samples.				
	field duplicate/second-half sampling.	Standards were also submitted by SGS Australia Pty Ltd.				
	Whether sample sizes are appropriate to the	The sampling practices were suitable for the stage of				
	grain size of the material being sampled.	exploration.				
		Samples were transported to Galt Mining Solutions Perth				
		compound where the soil samples were dried and screen				
		to -80 mesh (180μm)				
		No further sub-sampling was conducted.				
		Soil sampling is a first pass geochemical sampling program				
		screen the area it considered appropriate.				
		Sample sizes were considered appropriate for the grain si				
		of the sampled material.				
Quality of	The nature, quality and appropriateness of	Flynn Gold Limited submitted all soil samples to SGS				
assay data	the assaying and laboratory procedures used	Australia Pty Ltd – Perth for analysis, utilising sample dryi				
and	and whether the technique is considered	(Code: G_DRY_KG) and pulverise, Cr-steel, nominal 85%				
laboratory	partial or total.	passing 75 microns (Code: G_PUL). The soil samples were				
tests	For geophysical tools, spectrometers,	analysed for gold by fire assay by using lead collection				
	handheld XRF instruments, etc, the	technique with a 30g sample charge weight, MP-AES				
	parameters used in determining the analysis	instrument finish (SGS Code: GO_FAP30V10), and trace le				
	including instrument make and model,					
	,	lithium and multi-elements were assayed by 4-acid digest (SGS Code: GE_DIG40Q20) ICP-MS finish (SGS Code: GE_IMS40Q20) Gold detection limit of 0.01 ppm Au (10 part per billion).				
	reading times, calibrations factors applied					
	and their derivation, etc.					
	Nature of quality control procedures adopted					
	(e.g. standards, blanks, duplicates, external	Trace level lithium elements.				
	laboratory checks) and whether acceptable	Detection limits:				
	levels of accuracy (i.e. lack of bias) and	Ag 0.05 – 10 ppm Ga 0.2 – 1000 ppm				
	precision have been established.	As 1 – 1000 ppm Gd 0.1 – 1000 ppm				
	p. co.ord have been established.	Ba 1 – 2000 ppm Ge 0.2 – 250 ppm				
		Bi 0.01 – 1000 ppm Ho 0.05 – 500 ppm				
		Cd 0.02 – 1000 ppm In 0.005 – 500 ppm				
		Ce 0.05 – 1000 ppm La 0.05 – 1000 ppm				
	I and the second	Co 0.1 – 2000 ppm Li 0.1 – 1000 ppm				
		Cs 0.05 – 1000 ppm Lu 0.01 – 1000 ppm				
		Cs 0.05 – 1000 ppm Lu 0.01 – 1000 ppm Cu 0.5 – 2000 ppm Mn 0.5 – 2000 ppm				
		Cu 0.5 – 2000 ppm Mn 0.5 – 2000 ppm				

Criteria	JORC Code Explanation		Con	nmenta	ry
		Ni	2 – 2000 ppm	Te	0.05 – 1000 ppm
		Pb	0.5 – 2000 ppm	Th	0.01 – 1000 ppm
		Pr	0.05 – 1000 ppm	TI	0.02 – 1000 ppm
		Rb	0.05 – 1000 ppm	Tm	0.03 – 500 ppm
		Re	0.1 – 2500 ppm	U	0.05 – 1000 ppm
		Sb	0.05- 1000 ppm	w	0.1 – 1000 ppm
		Sc	0.1 – 1000 ppm	Υ	0.05 – 1000 ppm
		Se	1 – 1000 ppm	Yb	0.1 – 1000 ppm
		Sm	0.1 – 1000 ppm	Zn	5 – 5000 ppm
		Sn	0.2 – 1000 ppm	Zr	0.5 – 1000 ppm
		Sr	0.1 – 1000 ppm		, , , , , , , , , , , , , , , , , , ,
		Та	0.05 – 1000 ppm		
		Tb	0.05 – 1000 ppm		
			•		
					assay instrument types
		Standar duplica	tes were taken every	approxir / 50 sam	nately every 50 samples
		I	ds and duplicates w		
				-	nised industry specific
		laborat	ory. It is therefore ex	pected	that the reported assay
		results	achieved acceptable	levels o	of accuracy and precision
			relevant analytical m		
		I	npling program was		
			d reference material		
					al lab inserted blanks,
					laboratory checks have
				are not	t deemed material to
		these re	esults		
Verification of	The verification of significant intersections by	Not rele	evant for surface san	nples.	
sampling and	either independent or alternative company	No hole	twinning was under	rtaken.	
assaying	personnel.		results and standard		reviewed by the
, ,	The use of twinned holes.		ny's technical consul		· ,
		I			any databasa shaskad
	Documentation of primary data, data entry	I		ie comp	any database, checked,
	procedures, data verification, data storage	and ver			
	(physical and electronic) protocols.	I	is stored in a Compa	-	-
	Discuss any adjustment to assay data.	maintai	ned by the Database	Manag	ger.
		All data	below detection lim	nit have	been entered as zero.
		Assav d	ata is received as %	or nnm	dependent on the natu
					converted to Li ₂ O for
			on purposes of simil		
					rsion rate 2.1527 was
		I		m (Li pp	m) to Lithium di-oxide
		(Li₂0 pp	m).		
		Otherw	ise, there were no a	djustme	ents to assay data.
		<u> </u>			
Location of	Accuracy and quality of surveys used to	Soil san	ple locations are loc	cated by	handheld GPS to an
data points	locate drill holes (collar and down-hole		y of +/-5m.	,	
	surveys), trenches, mine workings and other		ns are given in GDA9	4 70ne	50.
	locations used in Mineral Resource				are provided in the
	I	_	is showing sample it	JUALIONS	are provided in the
	estimation.	report.			
	Specification of the grid system used.	-	ographic control is j	udged a	s adequate for
	Quality and adequacy of topographic control.	geoche	mical samples.		
Data spacing	Data spacing for reporting of Exploration	The soil	samples were collect	cted at a	a sample density of eith
and	Results.		200m, 200m x 200m		
distribution	Whether the data spacing and distribution is				g may be considered to
	sufficient to establish the degree of	I	and better resolve a		
	geological and grade continuity appropriate		meable for the repor	ring of (geochemical sampling
	for the Mineral Resource and Ore Reserve	results.			
	estimation procedure(s) and classifications		olicable for the repor	ting of a	geochemical sampling
	applied.	results.			
	Whether sample compositing has been				
	applied.				

	Criteria	JORC Code Explanation	Commentary
	Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Not applicable, this is early-stage exploration, geochemical sampling and the orientation of sampling to the mineralisation is not fully known. The data is primarily an initial exploration reconnaissance sampling program and is useful for identifying broad geological trends. The orientation of the sample lines is perpendicular to the strike of regional structures and geological contacts. The orientation of sampling is considered appropriate with respect to the structure and targets being tested and the reconnaissance nature of the sampling. Not applicable for this type of sampling.
	Sample security	The measures taken to ensure sample security.	The soil contractor despatched all samples as one batch to the SGS laboratory in Perth. Flynn were notified when samples arrived. The samples were not left unattended. The laboratory was sent a sample submission sheet detailing the sample numbers, method of sample preparation and analyses and a full list of analytes. The sample submission sheet was cross referenced with the samples on arrival at the laboratory. No sample preparation or analyses was to commence if there were any discrepancies.
- 1	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling and assaying techniques are industry-standard. No external audit has been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint	The Lake Johnston project targets that were sampled occur within exploration licence E63/2190 which is 100% owned by Flynn Gold Limited.
status	ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The tenement is located approximately 200km southwest of Southern Cross, in the Lake Johnston region of Western Australia.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Access to the project areas were achieved from the Hyden to Norseman Road, taking the Windy Hill camp turn off road to the Maggie Hayes airstrip then past Honman Ridge, Burmeister Hill, past the Lake Medcalf turnoff, then via bush tracks to the east of Mt Glasse. Alternatively, the tenements can be accessed from the south, from the Lake King to Norseman Road, then via bush tracks into the southern boundary of E63/2190.
		The tenement is located within the Dundas Mineral Field, 63 of Western Australia. The project lies on unallocated crown land.
		The tenement is located on Ngadju Determined Claim (WCD 2014/004) administered by the Native Title Services Goldfields (ARB 13).
		There are no impediments to the security of the tenement. The tenement is in good standing and there are no known impediments to exploration on the property.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous historical exploration work by other companies includes geochemical surface sampling, mapping, airborne and surface geophysical surveys, AC and RC drilling.

	Criteria	JORC Code Explanation	Commentary
			Historical geochemical samples have been collected by previous explorers including but not limited to Norilsk Nickel Ltd, Forrestania Gold NL, Lionore Australia Ltd, Maggie Hayes Nickel NL, White Cliff Minerals Ltd, Lake Johnston Pty Ltd, Hannans Reward Ltd, and Poseidon Nickel Ltd.
D	Geology	Deposit type, geological setting and style of mineralisation.	Exploration at the Lake Johnston project is targeting pegmatite style lithium-tantalum deposits such as Mt Holland and Archaean structurally controlled mesothermal lode gold deposits. Secondary targets include komatiite hosted nickel mineralisation such as Maggie Hayes and Flying Fox
			The Medcalf lithium project is located just 12km to the northeast of E63/2190 and the Mt Day pegmatite field is located 5km northwest of E63/2188.
			The Lake Johnston soil sampling program was designed to target for pegmatite hosted lithium-caesium-tantalum (LCT) mineralisation. In the Southern Cross region, lithium-rich pegmatites have a spatial, geochemical and geochronological association with post-tectonic granitic supersuite intrusions (ie Mt Holland).
			The Lake Johnston project can be considered prospective for pegmatite hosted lithium caesium-tantalum (LCT) style mineralisation associated with fertile magmatic intrusions. In the Yilgarn Craton, lithium-rich pegmatites have a spatial, geochemical and geochronological association with these post-tectonic granitic intrusions.
	Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not	Not applicable for the reporting of geochemical sampling results. No Drilling undertaken. No new drilling is discussed in this announcement; however, the following ASX Announcements are referenced: TG6 ASX Announcement dated 30 October 2023 CHR ASX Announcement dated 10 November 2023 FG1 ASX Announcement dated 04 August 2023 Coordinates of all soil samples are included in Table 1. No significant assay intercepts have been reported in this announcement.
		Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
	Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Flynn Gold Limited has reported raw assays for soil sampling with no further criteria applied. Not applicable for the reporting of soil sampling results. No metal equivalent values are used.

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Soil sampling generate a set of point data. In aggregation these may define an anomaly whose size and geometry becomes apparent. No structural context is gleaned from this dataset. Not applicable for the reporting of soil or rock chip sampling results. Not applicable for the reporting of soil or rock chip sampling results.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The company believes this announcement is a balanced report, and that all material information has been reported. The reporting level is appropriate for early-stage exploration. Results have been reported for the main elements targeted (Be, Cs, Li ₂ O, Nb, Rb, Sn, Ta) for all soil samples. Interpretation of other elements included in the assay method is ongoing. Results summarised in the report are referenced to appropriate detail for large datasets
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable for the reporting of soil sampling results. Refer to body of text and this appendix. All meaningful and material information has been included in the body of the text. The use of exploration data used as background for information in this report, has been referenced to earlier announcements where the data source and technical descriptions have been included. There is no other exploration data which is considered material to the results reported in this announcement.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work is described in the body of the announcement. Further work is proposed and is subject to both budgetary constraints and to new information coming to hand which may lead to changes in the proposed work. Refer to body of report.