

06 March 2024

Multiple Large Lithium Soil Anomalies Outlined at Parker Dome

Highlights

- Soil sampling outlines multiple, large-scale lithium anomalies of up to 187ppm Li₂O at the recently optioned Parker Dome project
- Lithium anomalies extend up to 2,300m length and 900m width
- Lithium-in-soil anomalies have corresponding and coincident anomalous values of caesium (Cs) and tantalum (Ta), considered key pathfinder elements for potential lithium mineralisation
- Anomalies overlie the Western and Eastern Pegmatite Trends defined by historic RAB drilling¹ where historic drill holes contain logged pegmatite with no assays for lithium
- Planning underway for a first-pass RC drilling program to test targets

Flynn Gold Limited (ASX: FG1, "Flynn" or "the Company") is pleased to announce results from its soil sampling program at its recently optioned² Parker Dome lithium-gold project, situated in the highly prospective Forrestania Belt in Western Australia.

The licences are located 50km north of the world class **Mount Holland lithium project** and 20km north-east of the **Rio lithium deposit** held by Zenith Minerals Limited (**ASX: ZNC**)³ (see Figure 1).

The soil sampling program was designed to provide first-pass geochemical coverage over the Western and Eastern pegmatite trends, delivering the first systematic lithium and associated pathfinder assays for the project.

Managing Director and CEO, Neil Marston commented,

"We are very pleased with the results of the first soil program at Parker Dome, which delineated a series of strong kilometre-long lithium soil anomalies in areas not yet drill tested for lithium, highlighting the exciting lithium potential of the project."

"The consistency and coherency of the lithium values within these large-scale anomalies is impressive. The coincident pathfinder elements like tantalum and caesium as well as the identification of logged pegmatite in historic drill holes make these areas compelling targets which have been cheaply delineated".

ASX: FG1

ABN 82 644 122 216

CAPITAL STRUCTURE

Share Price: **A\$0.0.041**Cash (31/12/23): **A\$1.56M**Debt: **Nil**

Ordinary Shares:164.1M Market Cap: A\$6.72M Options: 3.4M

Performance Rights: 3.7M

BOARD OF DIRECTORS

Clive Duncan
Non-Executive Chair

Neil Marston
Managing Director and CEO

Sam Garrett
Technical Director

John Forwood

Non-Executive Director

COMPANY SECRETARY

Mathew Watkins

CONTACT

Level 4, 96-100 Albert Road South Melbourne, Victoria 3205

+61 (0) 3 9692 7222

info@flynngold.com.au www.flynngold.com.au

¹ See FG1 ASX announcements dated 11th December 2023 and 15th December 2023 for full details.

² See FG1 ASX announcement dated 11th December 2023 for full details.

³ See ZNC ASX Announcement dated 28th September 2023 for full details.

Figure 1 - Location of Flynn's Forrestania and Lake Johnston projects and Parker Dome licences under option

Parker Dome Project - Soil Sampling Program

The results from an auger soil geochemistry program at the Parker Dome project have been received and have outlined six new, large-scale, high priority lithium anomalies⁴ with associated pathfinder geochemistry (Figures 2 - 10).

The soil program was designed to provide first-pass coverage over the Western and Eastern pegmatite trends. The pegmatite trends were outlined by historic, shallow RAB drilling which intersected multiple pegmatite intersections logged over a wide area⁵, with most holes ending in pegmatite up to 12m thick. The historic drill holes with pegmatite were not assayed for lithium. Flynn believes the soil sampling results announced in this release represent the first significant systematic exploration for lithium at the Parker Dome project.

The auger soil survey was completed on a spacing which varied between $200m \times 100m$ and $400m \times 100m$, with a total of 679 soil samples collected. Samples were sieved to -80 mesh (180um) and assayed at SGS Australia Pty Ltd, for lithium and associated pathfinder elements by four-acid digest with an ICP-MS finish and gold by 30g fire assay (refer Appendix 1 for further details). The auger soil program has outlined six, large, coherent lithium anomalies with coincident and zoned pathfinder element support (Figures 2-10). Three targets (Targets 3, 5 and 6) require further follow-up infill and extensional auger soil sampling. The six targets present as compelling, **high order drill targets**.

⁵ See FG1 ASX announcement dated 11th December 2023 for full details.

⁴ Refer to Table 1 and Appendix 1 for further details

Figure 2 – Auger soil lithium results (Li_2O ppm) over magnetic image on aerial photograph showing targets, pegmatite trends and Li_2O contours

Figure 3 – Auger soil lithium results (Li₂O ppm) over magnetic image showing targets and Li₂O contours

The six new high-priority soil anomalies are:

Westen Pegmatite Trend, SE Anomaly – this anomalous zone is located in the Western Pegmatite Trend adjacent to the Mt Day road. The zone incorporates several parallel lithium soil anomalies, with the main anomaly measuring 850m length x 380m width. The main anomaly contains two results over 100ppm Li₂O (119ppm and 125ppm Li₂O). The northern most parallel trend is also strongly anomalous in Sn, Ta and Nb, over a combined strike length of 2km adjacent to the ultramafic contact zone. The main anomaly is located just 250m to the southwest of an intersection of pegmatite logged in shallow RAB drilling (not assayed for lithium). This area presents as a **high order drill target**.

Western Pegmatite Trend, Central Anomaly – this large-scale anomalous zone is located in the Western Pegmatite Trend adjacent to a distinctive embayment/syncline of mafic units within the Parker Dome Gneiss. The main anomaly has a total strike length of 1,280m and a width of approximately 900m. The lithium anomaly has strongly coincident, Cs, Ta, Rb, Be, Nb and Sn associated pathfinder anomalism. The main anomaly trend is covered by one line of historic RAB drill holes along its western margin with three of those holes containing logged pegmatite (not assayed for lithium) (see Figure 4). In addition, two holes, located 480m along strike and to the southeast of the anomaly, also contain intervals of logged pegmatite (not assayed for lithium). This area presents as a high order drill target.

Figure 4 - Example of weakly weathered pegmatite drill chips observed in historic RAB drill hole JBR296 (left), and strongly weathered pegmatite from historic drill hole JBR140 (right) ⁶

Westen Pegmatite Trend, NW Anomaly – this anomalous zone is located in the Western Pegmatite Trend and incorporates several parallel lithium soil anomalies, with the combined anomaly measuring in total 1,900m x 380m. The lithium anomaly has strongly coincident Cs, Ta, Rb, Be, Nb and Sn associated pathfinder anomalism. The anomaly is located 500m to the east of a shallow RAB hole with logged pegmatite (not assayed for lithium). This anomaly requires additional infill auger soil sampling prior to drill testing.

Eastern Pegmatite Trend, SE Anomaly – this anomalous zone, situated in the Eastern Pegmatite Trend, comprises one main, large-scale lithium soil anomaly defined over a strike length of 2,300m and a width of approximately 320m. The area was targeted with auger soil sampling to follow-up on a trend containing two historic RAB drill holes with logged pegmatite intervals. The lithium soil anomaly outlined is situated just 150m to the southwest of the logged pegmatite interval. Interestingly, associated Cs, Ta, Nb and Be pathfinder anomalism, extends this anomaly

⁶ See FG1 ASX announcement dated 11th December 2023 for full details.

further to the northeast over the two RAB holes. An extensive zone of Ta, Sn and Nb anomalism joins Target 4 with Target 5, located 700m to the north-northwest. The area extending to Target 5 requires additional infill auger soil sampling. Target 4 presents as a **high order drill target**.

Eastern Pegmatite Trend, Central Anomaly – this anomalous zone, situated in the Eastern Pegmatite Trend, incorporates three main sub-parallel lithium soil anomalies defined by wide spaced auger soil lines. The area was targeted to test an interpreted internal felsic intrusive and folded mafic and ultramafic units, located along strike from pegmatites logged in historic RAB holes at Target 4. The north-eastern anomaly contains high Li₂O (187ppm), Sn (5.5ppm) and Ta (4.5ppm) values. This anomaly requires additional infill auger soil sampling prior to drill testing.

Eastern Pegmatite Trend, NW Anomaly – this anomalous zone, situated in the Eastern Pegmatite Trend, incorporates three sub-parallel lithium soil anomalies defined by wide spaced auger soil lines. The area was targeted to test a distinctive structural jog in the mafic/ultramafic sequence adjacent to an east-west striking dolerite dyke. The northern two trends in this anomaly are strongly supported by associated Sn, Ta and Nb anomalism. The southernmost trend is extended to the northwest by incorporating associated Cs, Be and Rb anomalism. This anomaly requires additional infill auger soil sampling prior to drill testing.

Significantly, all lithium soil anomalies have an association with elevated values for lithium pathfinder elements – particularly tantalum and caesium. This further supports the presence of a LCT (lithium-caesium-tantalum) pegmatite field that is prospective for lithium mineralisation.

Next Steps

Results from the Lake Johnston soil sampling program completed in December⁷ are expected to be received and reported in the coming week.

The Company intends to continue exploration activities on the Parker Dome licences, including:

- Follow-up infill and extensional auger soil sampling;
- Completion of permitting activities to enable RC drilling, and
- Re-processing and interpretation of a 2018 SkyTEM survey.

For more information contact:

Neil Marston
Managing Director & CEO
+61 3 9692 7222
info@flynngold.com.au

Ben Creagh

Media & Investor Relations
+61 (0) 417 464 233

benc@nwrcommunications.com.au

⁷ See FG1 ASX Announcement dated 1st December 2023 for full details.

Figure 5 – Auger soil Caesium results (Cs ppm) over magnetic image showing targets and Li_2O contours

Figure 6 – Auger soil Tantalum results (Ta ppm) over magnetic image showing targets and Li₂O contours

Figure 7 – Auger soil Niobium results (Nb ppm) over magnetic image showing targets and Li₂O contours

Figure 8 – Auger soil Rubidium results (Rb ppm) over magnetic image showing targets and Li₂O contours

Figure 9 – Auger soil Beryllium results (Be ppm) over magnetic image showing targets and Li₂O contours

Figure 10 – Auger soil Tin results (Sn ppm) over magnetic image showing targets and Li₂O contours

About Flynn Gold Limited

Flynn Gold is an Australian mineral exploration company with a portfolio of projects in Tasmania and Western Australia (see Figure 11). The Company has nine 100% owned tenements located in northeast Tasmania and has established a portfolio of gold-lithium exploration assets in the Pilbara and Yilgarn regions of Western Australia. The Company also has prospective tin projects within its northeast Tasmania gold project, as well as two zinc-silver tenements on Tasmania's mineral-rich west coast.

In addition, Flynn Gold has the Firetower gold and battery metals project located in northern Tasmania.

For further information regarding Flynn Gold please visit the ASX platform (ASX: FG1) or the Company's website www.flynngold.com.au.

Figure 11: Location Plan of Flynn Gold projects

Competent Person Statement

The information in this ASX Announcement that relates to Exploration Results is based on information compiled by Mr David Archer, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Archer is a consultant to Flynn Gold. Mr Archer has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Archer consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

This announcement includes information that relates to Exploration Results prepared and first disclosed under the JORC Code (2012) and extracted from the Company's previous ASX announcements as noted, and the Company's Prospectus dated 30 March 2021. Copies of these announcements are available from the ASX Announcements page of the Company's website: www.flynnngold.com.au.

The Company confirms that it is not aware of any new information or data that materially affects the information included within the Prospectus dated 30 March 2021.

Forward Looking and Cautionary Statements

Some statements in this announcement regarding estimates or future events are forward-looking statements. They include indications of, and guidance on, future earnings, cash flow, costs and financial performance. Forward-looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "predict", "foresee", "proposed", "aim", "target", "opportunity", "could", "nominal", "conceptual" and similar expressions. Forward-looking statements, opinions and estimates included in this report are based on assumptions and contingencies which are subject to change without notice, as are statements about market and industry trends, which are based on interpretations of current market conditions. Forward-looking statements are provided as a general guide only and should not be relied on as a guarantee of future performance. Forward-looking statements may be affected by a range of variables that could cause actual results to differ from estimated or anticipated results and may cause the Company's actual performance and financial results in future periods to materially differ from any projections of future performance or results expressed or implied by such forward-looking statements. So, there can be no assurance that actual outcomes will not materially differ from these forward-looking statements.

Table 1 - Parker Dome, Auger Soil Sample Assay Results

	Sample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
-	PD01001	757825	6502150	59.8	0.84	1.66	7.3	12.8	2.3	0.93
	PD01002	757894	6502217	68	1.12	1.39	6	23.3	1.3	0.67
	PD01003	757967	6502288	94.1	1.3	2.36	6.4	28.2	1.1	0.65
1	PD01004	758041	6502356	57.3	1	1.7	4.7	19.3	1.2	0.48
1	PD01005	758105	6502430	45	0.95	2.1	6.3	25.5	2.8	0.67
	PD01006	758181	6502500	20.7	0.61	1.31	2.7	15.7	0.7	0.32
1	PD01007	758669	6502416	25.2	0.94	0.81	6.9	12.7	2	0.86
)	PD01008	758741	6502490	39.6	1.13	1.82	6.2	19	1.7	0.85
_	PD01009	758599	6502345	12.1	0.56	0.56	24.1	4.3	4.9	4.06
	PD01010	758526	6502274	16.1	0.47	0.36	6.3	3.2	1.6	0.72
\	PD01011	758457	6502204	52.3	0.88	1.67	5.1	30.5	1.3	0.56
/	PD01012	758384	6502138	53.6	0.87	1.95	7	15.2	1.6	0.78
\	PD01013	758314	6502070	47.1	1.26	2.11	7.4	31.8	1.5	0.84
	PD01014	758242	6502001	25.4	0.83	0.82	3.6	9.2	1.3	0.42
1	PD01015	758177	6501926	35.3	0.79	1.64	7.3	17.1	1.5	0.94
)	PD01016	758107	6501858	82	1.17	1.51	10.4	18	3.7	2.76
	PD01017	758029	6501789	26.3	0.55	0.53	3.8	6.7	1.3	0.38
,	PD01018	757965	6501723	14.2	0.51	1.08	3.4	21.7	0.9	0.32
1	PD01019	757885	6501642	48.9	1.07	4.81	3.4	130	1.2	0.42
)	PD01020	757818	6501580	28.2	0.83	2.76	4.7	38.2	1.1	0.46
1	PD01021	757749	6501502	49.3	1.61	2.28	4.7	36.8	1.1	2.82
<u> </u>	PD01022	757679	6501437	58.1	1.22	2.42	4.5	38.7	1	0.47
1	PD01023	757889	6501081	30.4	1.24	3.41	3.7	42.4	1.2	0.34
\	PD01024	757963	6501156	15.7	0.48	1.79	3.2	31.8	0.7	0.34
/	PD01025	758035	6501228	24.1	0.77	1.79	3.9	19.2	0.9	0.3
١	PD01026	758102	6501296	31.6	0.92	1.16	4.2	19.4	1	0.37
/	PD01027	758175	6501368	25.8	0.96	0.95	5.2	13.8	1.1	0.48
1	PD01028 PD01029	758255 758320	6501437 6501509	21.7	0.8	1.34	6.3	9.6	1.2	1.68
				14	0.47	0.74	3.3	12.2	0.8	0.72
)	PD01030	758385	6501582 6501651	25.8	1.51	0.67	4.6	5.2	1.2	0.46
ŀ	PD01031 PD01032	758457 758529	6501726	27.3 42.6	0.84 1.34	1.22 0.62	5.5 7.3	10.9 3.8	1.3 1.5	0.8 1.3
)	PD01032	758602	6501726	19.6	0.53	0.62	6.7	6.2	1.7	0.69
	PD01033 PD01034	758674	6501796	22.4	0.38	0.45	9.6	4.4	2.9	1.35
ł	PD01034 PD01035	758745	6501934	28.8	1.2	1.31	8.2	15.2	1.5	2.77
1	PD01033	758817	6502004	25.4	0.78	1.7	6.9	14.2	1.5	0.82
\	PD01030	758817	6502075	18.1	1.08	1.1	3	13.1	2	0.82
/	PD01037	758957	6502145	7.3	0.38	0.6	2.1	11.6	0.7	0.34
-	PD01038	759029	6502216	25.8	1.11	1.07	5.9	27.3	1.7	0.56
	PD01033	759095	6502288	31.4	1.31	1.28	5.4	26.5	1.1	0.55
1	PD01040 PD01041	759169	6502355	23.9	1.02	1.36	4.4	21.2	0.9	0.33
ł	PD01041 PD01042	759239	6502427	37.7	1.32	1.30	5.4	24.7	1.2	0.43
ŀ	PD01042 PD01043	759307	6502493	43.7	0.86	1.11	4.3	19.7	1.2	0.32
ł	PD01043	759307	6501921	22.2	0.80	0.78	7	11.4	0.9	0.39
ŀ	PD01044 PD01045	759304	6501921	30.8	0.94	0.78	3.4	3	1.2	0.81
ŀ	PD01045 PD01046	759256	6501781	20	0.74	0.38	5.5	2.5	2.2	0.28
	PD01040 PD01047	759093	6501710	36.8	0.43	0.38	3.3	6.1	2.2	0.93
ł	PD01047 PD01048	759093	6501710	29.7	0.51	0.93	5.4	5	2.2	0.9
	FD01046	133011	0301043	29.7	U./I	0.00	5.4	5	۷.۷	0.72

S	ample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
	PD01049	758946	6501569	48.7	0.9	0.95	6.2	5.6	1.8	0.67
	PD01049	758878	6501503	40.9	0.66	1.25	7.3	12.1	1.3	1.17
	PD01052	758803	6501431	73.8	1.48	1.56	6.8	23.7	1.5	0.77
_	PD01053	758745	6501365	66.5	1.48	1.26	5.5	20.3	1.3	0.77
_	PD01055	758661	6501289	74.1	1.42	1.24	5.9	20.6	1.3	0.55
	PD01055	758593	6501215	77.3	1.42	2.28	7.1	29.8	1.4	0.53
	PD01030	758523	6501213	64.6	1.49	2.28	7.1	26.4	1.4	0.08
_	PD01037	758448	6501079	57.5	1.14	2.04	6.2	27.7	1.3	0.74
	PD01038	758374	6501079	62	1.14	1.9	5.9	27.6	1.2	0.56
-	PD01055	758306	6500937	64.8	1.25	2.01	5.9	29.5	1.3	0.56
	PD01061	758235	6500871	62	1.27	1.78	5.3	26	1.1	0.49
_	PD01062	758233	6500871	67.4	1.29	1.83	5.2	26.8	1.1	0.49
	PD01063	758171	6500730	55.3	1.04	1.75	4.5	23.7	0.8	0.49
	PD01064	758380	6500441	59.6	0.98	0.91	4.7	14.6	1.4	0.41
	PD01065	758455	6500516	68.9	1.12	1.1	5.9	20.5	1.1	0.41
	PD01065	758525	6500516	62.4	1.12	1.52	4.7	24.3	1.1	0.00
_	PD01000	758525	6500655	57.7	1.14	1.56	4.7	25.3	1	0.43
-	PD01067	758669	6500731	66.3	1.14	1.77	5.7	29.7	1.2	0.51
	PD01008	758731	6500796	66.7	1.21	1.57	6.1	25.3	1.2	0.51
-	PD01003	758812	6500868	63.9	1.26	1.75	5.9	29.1	1.3	0.55
_	PD01070	758812	6500940	64.4	1.18	1.68	5.7	28.1	1.2	0.55
	PD01071	758950	6501017	53.6	1.10	1.08	5.1	21.7	1.5	-0.05
-	PD01072	759025	6501017	61.6	2.3	1.22	6.7	21.9	1.4	0.99
	PD01073	759091	6501156	57.7	1.11	1.4	5.8	20.8	1.4	0.53
	PD01075	759158	6501228	40.9	1.07	1.25	5.7	16.7	1.4	0.59
	PD01076	759236	6501296	21.5	0.96	0.33	2.8	2.3	0.8	0.29
	PD01077	759303	6501367	23	0.53	0.26	8.5	1.6	1	0.69
	PD01078	755062	6501666	54	0.69	1.3	3.7	20.1	0.7	0.36
	PD01079	754995	6501587	57.9	0.73	1.4	4.4	21.7	0.8	0.39
_	PD01080	754921	6501518	61.8	1.04	1.3	4.5	21.2	0.8	0.39
	PD01081	754844	6501440	57.5	0.79	1.44	4.1	22.6	0.7	0.45
	PD01082	754781	6501373	63.7	1.05	1.57	5.4	27.3	1.1	0.57
	PD01083	754709	6501304	44.3	0.63	1.27	3.7	21.3	0.6	0.43
	PD01084	754641	6501236	44.8	0.73	1.56	3.8	24.8	0.7	0.34
	PD01085	754638	6500672	29.5	0.39	0.87	2.1	9.5	0.5	0.21
	PD01086	754702	6500745	27.1	0.35	0.9	2.2	12.4	0.4	0.21
	PD01087	754777	6500822	27.1	0.3	0.62	1.7	6.2	0.4	0.13
	PD01088	754852	6500890	37.2	0.56	1.25	3.2	14.9	0.7	0.32
ı	PD01089	754912	6500960	31.2	0.51	0.85	2.2	13.4	0.5	0.21
ı	PD01090	754994	6501025	30.8	0.35	0.78	2.5	14.1	0.6	0.25
ı	PD01091	755064	6501093	43.3	0.56	1.47	4.8	29.2	0.9	0.52
ı	PD01092	755138	6501163	39.2	0.48	1.29	4	25.8	0.8	0.35
ı	PD01093	755199	6501238	48.7	1.37	1.43	4.3	26.9	1.2	0.47
ı	PD01094	755278	6501307	51.2	0.54	1.25	5.2	24.9	1	0.5
ı	PD01095	755346	6501368	34.4	0.45	1.18	4.1	23.9	0.8	0.34
ı	PD01096	755561	6501026	35.5	0.63	1.56	4.5	30.1	1	0.34
ı	PD01097	755491	6500952	32.1	0.54	1.36	4.3	27.1	0.8	0.54
ı	PD01098	755410	6500878	21.7	0.33	0.61	2.5	12.2	0.5	0.34
ı	PD01099	755341	6500805	24.1	0.38	0.97	3.4	18.9	0.7	0.32

Sample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
PD01102	755273	6500739	43.1	0.79	1.84	5.3	33.4	1.1	0.48
PD01103	755200	6500666	20.7	0.3	0.7	2.7	14.8	0.6	0.24
PD01104	755130	6500598	21.7	0.37	0.76	2.8	14.8	0.5	0.26
PD01105	755060	6500525	24.1	0.42	0.85	4.1	11.2	0.7	0.39
PD01106	754980	6500450	20.9	0.26	0.76	2.5	14.4	0.5	0.18
PD01107	754919	6500389	12.3	0.26	0.21	1.4	4.3	0.3	0.1
PD01108	754841	6500312	34	0.6	1.78	4.6	26.6	0.8	0.35
PD01109	754768	6500247	21.5	0.24	0.8	5.7	14.3	0.5	1.11
PD01110	754698	6500173	24.3	0.37	1.13	3.7	19.1	0.7	0.28
PD01111	754636	6500104	25.2	0.27	0.88	2.7	14.7	0.5	0.16
PD01112	754626	6499540	49.3	0.73	2.01	5.4	32.8	1	0.38
PD01113	754696	6499615	46.7	0.7	2.37	5.8	35.8	1.2	0.42
PD01114	754770	6499686	34.2	0.4	1.48	3.5	21.9	0.7	0.25
PD01115	754841	6499754	41.1	0.63	2.27	5.3	34.7	1	0.44
PD01116	754914	6499826	32.5	0.58	1.86	5.1	29	1	0.41
PD01117	754985	6499897	30.6	0.48	1.6	4.3	25.9	0.8	0.44
PD01118	755053	6499968	25	0.42	1.3	3.5	21.8	0.7	0.24
PD01119	755131	6500040	21.5	0.38	1.08	3.6	20.3	0.7	0.31
PD01120	755200	6500114	20	0.33	0.89	3.5	17.6	0.6	0.32
PD01121	755271	6500176	20.7	0.29	0.79	2.7	15.2	0.5	0.25
PD01122	755344	6500244	18.5	0.16	0.58	1.9	10.2	0.4	0.13
PD01123	755407	6500322	20.2	0.32	0.93	3	15.8	0.6	0.22
PD01124	755480	6500387	7.3	0.14	0.17	1.4	4.2	0.3	0.09
PD01125	755551	6500457	28.4	0.62	1.44	4.5	25.2	0.9	0.34
PD01126	755631	6500528	20.9	0.37	0.92	3.3	14.7	0.6	0.23
PD01127	755698	6500600	18.7	0.23	0.68	2.4	14.3	0.5	0.2
PD01128	755766	6500676	19.8	0.36	1.04	3.3	21.1	0.6	0.27
PD01129	755972	6500307	31.9	0.5	1.3	4.5	24.5	0.9	0.38
PD01130	755904	6500241	28.6	0.45	1.22	4.1	22.6	0.8	0.36
PD01131	755839	6500168	25.4	0.45	0.93	3	15.4	0.6	0.22
PD01132	755761	6500095	25	0.43	1.09	3.6	21.9	0.7	0.29
PD01133	755688	6500023	32.3	0.62	1.73	4.8	29.6	1	0.34
PD01134	755620	6499954	25.2	0.44	1.23	3.6	14.2	0.8	0.25
PD01135	755546	6499891	45.4	1.59	2.57	6.8	39.9	1.8	0.56
PD01136	755467	6499811	36	0.58	1.81	5	30.3	1	0.37
PD01137	755404	6499752	39.6	0.67	1.65	5.4	34.9	1	0.57
PD01138	755342	6499673	47.1	0.83	1.98	6.1	39.5	1.2	0.48
PD01139	755269	6499606	34.2	0.6	1.52	4.9	29.2	1	0.37
PD01140	755192	6499530	34.9	2.58	1.55	4.7	26.9	1.6	0.68
PD01141	755129	6499463	35.1	0.59	1.7	7.4	30.9	1	0.57
PD01142	755054	6499395	37	0.6	1.47	4.3	28.4	0.9	0.34
PD01143	754990	6499322	47.6	0.81	1.8	6	37.1	1.1	1.13
PD01144	754913	6499249	40.7	0.61	1.5	5.3	30.3	0.9	0.52
PD01145	754843	6499184	44.8	0.69	1.76	6.8	34.9	1.1	1.08
PD01146	754767	6499114	57.7	0.83	1.93	6.5	40	1.2	0.49
PD01147	754695	6499045	45.9	0.6	1.69	5.7	35.4	1.1	0.44
PD01148	755192	6498973	53.4	0.83	2.01	6.6	42.1	1.3	0.56
PD01149	755265	6499040	34.7	0.7	1.33	5.1	28.5	1.1	0.5
PD01152	755343	6499120	50.6	1	1.89	6.7	41.3	1.3	1.49

Sample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
PD01153	755397	6499186	34.2	0.5	1.19	4.3	25.8	0.7	0.38
PD01154	755481	6499258	30.6	0.38	1.01	3.8	22.3	0.7	0.31
PD01155	755555	6499328	31.4	0.55	1.3	5.4	29.8	1	0.5
PD01156	755627	6499407	32.1	0.59	1.33	4.6	29	0.8	0.35
PD01157	755694	6499469	27.8	0.52	1.12	4.1	25.3	0.8	0.7
PD01157	755765	6499542	31.9	0.52	1.43	5.8	29.9	0.9	0.63
PD01159	755835	6499612	27.1	0.46	1.15	3.8	20.7	0.7	0.3
PD01160	755903	6499686	24.1	0.41	1.1	4	20.8	0.7	0.38
PD01161	755980	6499758	20	0.42	0.55	2.5	14.2	0.5	0.25
PD01162	756044	6499821	26	0.35	0.81	3.9	20.9	0.7	0.48
PD01163	756109	6499893	48	0.82	1.81	6.1	39.7	1.3	0.47
PD01164	756193	6499966	38.1	0.66	1.43	5.3	31.7	1.1	0.39
PD01165	756261	6500036	32.9	0.53	1.09	4.7	25.7	0.9	0.7
PD01166	756609	6499814	17	0.33	0.89	2.7	21.6	0.6	0.25
PD01167	756538	6499744	15.9	0.29	0.57	2.7	14.7	0.6	0.22
PD01168	756464	6499673	24.3	0.44	0.91	3.5	22.3	0.6	0.98
PD01169	756393	6499601	34	0.6	1.43	5	30.5	0.9	0.59
PD01170	756324	6499534	16.4	0.22	0.55	2.9	14.6	0.5	0.31
PD01171	756248	6499457	20	0.24	0.91	2.7	16.8	0.5	0.2
PD01172	756182	6499389	37	0.35	10.57	2.6	34.9	1.2	0.32
PD01173	756115	6499326	21.7	0.35	0.77	3.4	15.2	0.6	0.34
PD01174	756038	6499248	17.4	0.21	0.98	2.4	15	0.5	0.2
PD01175	755962	6499174	25.8	2.49	0.78	3.9	16.7	1	0.56
PD01176	755897	6499106	28	0.5	1.25	4.3	26.6	0.9	0.35
PD01177	755826	6499039	27.8	0.35	1.12	3.7	22.7	0.7	0.29
PD01178	755758	6498963	31.6	0.44	1.19	5.5	26.6	0.8	0.68
PD01179	756255	6498899	30.6	0.62	1.62	5.5	27.6	0.9	0.71
PD01180	756324	6498969	24.3	0.47	1.18	4.4	23.3	0.8	0.37
PD01181	756390	6499040	32.1	0.62	1.58	5.6	28.8	1	0.41
PD01182	756462	6499108	26.5	0.39	0.93	3.1	19.9	0.8	0.33
PD01183	756535	6499183	36	0.45	1.11	3.4	22.1	0.8	0.39
PD01184	756607	6499259	28.4	0.3	0.92	2.8	15.9	0.6	0.41
PD01185	756676	6499319	47.1	0.75	1.71	5.5	32.8	1.3	0.56
PD01186	756752	6499401	45.6	0.72	1.72	5	33.9	1.3	0.5
PD01187	756822	6499464	45	0.65	1.49	4.7	28.1	1.1	0.56
PD01188	756891	6499530	42.6	0.61	1.32	4.1	25.9	1.1	0.43
PD01189	757171	6499247	47.4	0.7	1.53	6.1	29.6	1.3	0.88
PD01190	757104	6499175	45.9	0.74	1.73	5.4	32.8	1.2	0.57
PD01191	757027	6499108	24.5	0.4	1.05	4.3	20.3	0.8	0.68
PD01192	756957	6499034	32.1	0.53	1.38	3.9	25.8	0.9	0.56
PD01193	756894	6498969	31.4	0.56	1.42	4.2	24.9	1	0.39
PD01194	756821	6498898	22.6	0.37	0.92	3.2	16.4	0.7	0.29
PD01195	757384	6498897	22.6	0.48	1	3.5	17.3	0.9	0.35
PD01196	757455	6498965	44.8	2.25	1.72	4.9	30.2	1.7	0.66
PD01197	757529	6499034	39	0.75	1.43	4.3	26.7	1.1	0.56
PD01198	757804	6498759	79.9	1.2	0.4	4	4.2	1.2	0.45
PD01199	757736	6498681	44.6	1.19	0.58	5.6	5.5	1.4	0.92
PD01202	758161	6498538	69.7	1.1	1.93	7.4	37	1.8	0.87
PD01203	758089	6498461	68.9	1.59	2.07	8.3	32.7	2.1	0.96

	Sample ID	Easting	Northing	Li ₂ O	Ве	Cs	Nb	Rb	Sn	Та
	PD01204	758019	6498393	40	0.64	1.4	4.5	27.5	1.1	0.49
ŀ	PD01205	757948	6498324	37	0.65	1.05	3.9	20.6	0.9	0.45
ŀ	PD01206	757885	6498243	30.6	0.5	0.88	3.1	18.7	0.8	0.34
ŀ	PD01207	757801	6498185	35.7	0.52	1.11	3.4	20.7	0.8	0.35
	PD01207	757734	6498113	43.1	0.71	1.94	5.7	34.2	1.3	0.54
F	PD01209	757799	6497616	77.7	0.71	1.75	6.1	37.5	1.4	0.64
-	PD01210	757878	6497694	135.6	1.2	2.28	8.9	47.1	2	1.3
F	PD01210	757939	6497766	84	0.93	1.86	7.6	38.6	1.7	0.7
-	PD01211	757939	6497840	80.9	0.93	2.07	7.0	38.5	1.7	0.7
ŀ	PD01213	758091	6497902	66.7	0.9	1.97	6.9	35.2	1.6	0.71
<u> </u>	PD01214	758155	6497973	70	1	2.18	7.7	38.5	1.8	0.71
ŀ	PD01214	758133	6498047	69.5	0.97	2.10	7.7	37.8	1.7	0.68
ŀ	PD01215	758298	6498115	70.4	0.94	1.91	7.1	35.4	1.6	0.68
 	PD01217	758238	6498186	74.9	0.97	1.94	7.1	37.2	1.7	0.84
ŀ	PD01217	758373	6498255	81.8	1.1	2.46	7.5	43.4	1.7	0.78
-	PD01219	758658	6497906	64.4	0.91	2.09	7.2	36.5	2	0.73
ŀ	PD01219	758584	6497820	82.2	1.05	2.32	7.2	44.3	1.9	0.72
-	PD01221	758508	6497759	88.3	1.01	2.31	8.1	44.3	1.9	0.77
ŀ	PD01221 PD01222	758438	6497684	69.1	0.83	1.85	6.9	34.6	1.5	1.67
-	PD01222	758365	6497613	54.2	0.83	1.43	5.3	28.8	1.2	0.53
ŀ	PD01223	758303	6497548	40.9	0.55	1.11	4.3	22.5	1.2	0.33
ŀ	PD01224 PD01225	758302	6497477	28.8	0.33	0.85	3.9	17.3	0.7	0.47
\ 	PD01223	758159	6497406	25.8	0.43	0.83	3.4	16.3	0.7	0.39
_	PD01227	758436	6497117	32.5	0.52	1.07	3.5	20.9	0.8	0.42
ŀ	PD01227	758509	6497188	25.4	0.36	0.68	2.7	14.2	0.7	0.31
ŀ	PD01228	758578	6497268	30.8	0.30	0.08	4.1	21.6	0.7	0.59
 	PD01229	758641	6497333	42.8	0.48	1.05	5	21.4	1.1	0.59
ŀ	PD01230	758723	6497405	75.8	1.11	0.34	3.2	5.9	1.1	0.38
 	PD01231	758723	6497477	58.8	0.75	1.44	7.3	26.7	1.4	1.19
ŀ	PD01232	758860	6497540	32.9	0.73	0.99	4	20.9	0.8	0.47
ŀ	PD01234	759143	6497261	53.4	1.02	1.8	6.3	33.7	1.9	0.8
1	PD01235	759075	6497187	33.4	0.66	1.28	5.2	24.7	1.2	1.44
ŀ	PD01236	759000	6497121	28.8	0.69	1.36	4.7	23.9	1.1	0.72
ŀ	PD01237	758941	6497043	30.8	0.65	1.77	4.4	30.2	1.1	0.46
ŀ	PD01237	758863	6496983	37	0.65	1.67	4.6	30.4	1.1	0.5
\mid	PD01239	759289	6496826	34.4	0.59	1.21	4.5	23.6	1.3	0.88
	PD01240	759362	6496902	46.5	0.84	1.8	6.1	33.5	1.8	0.78
H	PD01241	759424	6496976	50.4	0.95	1.9	6.6	35.5	1.9	0.7
+	PD01242	759499	6497037	46.9	1	1.94	6.2	31.5	2.3	0.72
ŀ	PD01242	759632	6496904	45	0.77	1.64	5.6	30.3	1.8	0.59
ŀ	PD01244	759572	6496830	42	0.81	1.69	5.3	31.5	1.7	0.55
	PD01245	759497	6496759	25.4	0.4	0.8	3.2	16.8	0.8	0.49
ŀ	PD01246	759424	6496685	35.7	0.55	1.28	5.2	27	1.2	0.56
ŀ	PD01247	759357	6496619	46.9	0.74	1.7	5.6	31.3	1.5	0.65
ŀ	PD01248	759286	6496552	42	0.71	1.7	6.2	31.9	1.6	1.27
ŀ	PD01249	759282	6496267	47.6	0.69	1.54	5.6	31.1	1.4	0.68
ŀ	PD01252	759356	6496348	58.6	1.02	2.05	6.9	41.1	1.8	0.82
ŀ	PD01253	759433	6496408	44.8	0.69	1.76	5.6	33.5	1.5	0.59
ŀ	PD01254	759502	6496490	49.7	0.91	1.77	6.4	33.3	1.7	0.72

Sa	ample ID	Easting	Northing	Li₂O	Be	Cs	Nb	Rb	Sn	Та
	D01255	759566	6496551	39.8	0.71	1.56	5.5	30.9	1.5	0.62
_	D01255	759640	6496620	43.1	0.71	1.49	5.5	30.9	1.6	0.59
	D01250	759707	6496699	39.6	0.73	1.49	4.3	25.8	1.3	0.39
	D01257	759782	6496761	37.5	0.57	1.15	4.5	25.8	1.2	1.66
_	D01258	759997	6496691	55.8	1.12	2.08	7	43.2	1.8	0.76
-			6496614							
	D01260 D01261	759927	6496549	59.4	1.18	1.82	8.2	34.2	1.9	0.93
		759850 759778	0.000.0	47.4	0.82	1.42	5.4	29.2 25.9	1.4 1.3	0.65
	D01262	759778	6496475 6496409	41.3 49.3	0.59 0.75	1.26 1.68	4.9 5.9	33.5	1.3	0.56
	D01263	759634	6496330	45.4	0.73	1.46	6.8	30.2	1.4	2.45
_										
	D01265	759555 759494	6496266	43.1	0.65	1.44	9.2	30.4	1.4	2.24
	D01266	759494 759422	6496190	59.6	0.74	1.68	6.1	35	1.5	0.64
	D01267		6496118	68.7	0.94	2.05	7.7	42.5	1.8	0.86
	D01268	759347	6496052 6495982	64.6	0.91	2.13	7.5	44.4	1.8	0.8
	D01269	759279	0.0000=	62.9	0.97	2.12	7.2	44.3	1.8	0.8
	D01270	759284	6495706	69.7	0.95	1.84	7.3	36.7	1.6	0.91
	D01271	759347	6495782	81.2	1.02	1.82	8.4	39.5	1.9	0.82
	D01272	759422	6495847	71.5	0.88	1.86	7.6	38.2	1.7	0.77
	D01273	759497	6495920	78.8	1.03	1.58	7.3	34.9	1.7	0.7
	D01274	759569	6495991	63.1	0.84	1.78	6.2	34.7	1.5	0.66
	D01275	759639	6496061	71.3	0.96	1.9	6.5	36.7	1.6	0.66
	D01276	759709	6496132	68.5	0.94	1.76	6	33.3	1.5	0.6
	D01277	759779	6496202	74.9	0.98	1.93	6.4	36.7	1.6	0.67
	D01278	759847	6496278	63.1	0.95	1.86	6.3	35.1	1.6	0.71
	D01279	759914	6496337	69.3	1.2	1.94	7	38.6	1.8	0.68
	D01280	759990	6496417	70.2	1.11	2.19	7.3	40.1	1.7	0.91
_	D01281	760068	6496480	64.6	1.03	1.94	7.3	33.9	1.8	0.72
	D01282	760134	6496548	58.1	1.02	1.96	7.1	35.2	1.8	0.66
	D01283	760266	6496400	58.8	0.94	1.96	6.5	34.9	1.6	0.63
	D01284	760198	6496330	56.2	0.91	2	6.2	36.3	1.6	0.92
	D01285	760129	6496265	58.8	0.96	1.95	6.6	34.5	1.7	0.61
	D01286	760057	6496196	60.9	0.97	2.09	7	36.4	1.7	0.65
	D01287	759987	6496117	60.1	0.92	2.15	6.6	36	1.7	0.64
	D01288	759924	6496062	74.5	1.1	2.29	7.8	41.2	1.8	0.77
	D01289	759849	6495984	82.7	1.11	2.06	7.9	42.2	1.9	0.73
_	D01290	759768	6495913	82.2	1.1	1.52	8.5	35.8	1.0	0.86
	D01291	759702 759624	6495839	80.7	1.1	2.46	7.8	45.3	1.9	0.75
	D01292	759634	6495773	78.6	1.06	1.62	8.4	36.8	1.9	0.85
	D01293	759559	6495705	73.2	0.99	2.12	7.9	37.9	1.7	0.96
	D01294	759486	6495638	80.9	1.08	2.38	7.4	40.9	1.8	0.74
	D01295	759416	6495560	75.8	1.13	2.43	7.6	40.1	1.8	0.82
	D01296	759344 759278	6495497 6495420	77.7 79	1.16	2.12	8 9 1	38.5 34.8	1.7	0.94
	D01297	759278	6495345	59.8	1.09 0.84	1.63 1.19	8.1 6.4	23.8	1.7	0.83
				59.8					1.4	
	D01299	759282	6495140		0.85	1.37	5.6	23.4	1.1	0.71
	D01302	759347	6495208	72.5	1.32	1.82	6.4	34.3	1.4	0.94
	D01303	759422 759492	6495278 6495353	65 61.1	1.03 0.95	1.76	6.9 7	32.4 34.9	1.6	0.8
						1.93			1.5	1.4
_ P	D01305	759558	6495424	84.2	1.23	2.6	8.8	46.2	2	0.9

	Sample ID	Easting	Northing	Li₂O	Ве	Cs	Nb	Rb	Sn	Та
	PD01306	759635	6495494	68.7	1.04	1.79	6.9	31.9	1.6	0.83
	PD01307	759774	6495632	78.6	1.13	2.21	8.1	39.7	1.9	0.84
r	PD01308	759700	6495555	66.3	0.99	2.13	7.2	36.7	1.7	0.75
r	PD01309	759836	6495698	79.6	1.06	2.53	8.4	44.1	1.9	0.89
3	PD01310	759913	6495772	87.4	1.13	2.22	8.5	43.6	2.1	0.79
ľ	PD01311	759985	6495845	83.1	1.17	2.01	8	40.7	1.9	0.75
r	PD01312	760053	6495923	82.9	1.2	2.6	8.1	46.8	2	0.74
	PD01313	760133	6495981	72.1	1.09	2.39	7.8	42	1.8	0.8
r	PD01314	760198	6496056	51.2	0.89	1.77	6.4	31	1.5	0.58
r	PD01315	760280	6496133	61.8	0.95	2.03	6.4	36.6	1.5	0.63
r	PD01316	760344	6496198	45.9	0.66	1.46	5.4	27.1	1.2	0.61
r	PD01317	760414	6496269	49.1	0.73	1.61	6.3	31.3	1.5	0.67
r	PD01318	760619	6496192	59.4	0.82	1.92	5.4	27.2	1.2	0.58
r	PD01319	760554	6496121	75.6	0.93	2.29	6.6	34.3	1.5	0.66
r	PD01320	760480	6496056	88	1.02	2.28	7.8	37.2	1.7	0.75
r	PD01321	760415	6495980	70.2	0.84	2.32	6.8	34	1.4	0.76
r	PD01322	760340	6495909	50.2	0.61	1.54	5.1	23.1	1.1	0.5
r	PD01323	760266	6495838	64.4	0.83	1.93	6.4	30.1	1.1	0.62
r	PD01324	760193	6495763	85.2	1	2.33	7.3	36.8	1.6	0.76
r	PD01325	760119	6495685	87.2	1.03	2.33	7.6	38.7	1.6	0.74
r	PD01326	760046	6495627	86.1	0.97	2.51	7.6	39.3	1.6	0.8
r	PD01327	759977	6495554	94.9	1.06	1.67	7.9	32.4	1.7	0.81
-	PD01328	759910	6495485	98.4	1.21	1.95	8.6	35.4	1.8	1.2
	PD01329	759838	6495416	71.3	0.95	1.81	6.6	28.4	1.3	0.82
-	PD01330	759767	6495344	87	1.19	2.3	8.1	39.1	1.8	1.42
	PD01331	759700	6495275	74.7	0.89	2.77	10.4	35.7	1.7	1.22
r	PD01332	759629	6495205	62.9	0.63	1.1	6.4	21.5	1	0.86
r	PD01333	759565	6495130	63.7	0.76	1.29	5.9	23.8	1.1	0.75
	PD01334	759841	6495143	53.4	0.63	1.31	6.1	21.7	1.2	0.78
	PD01335	759912	6495217	85	1.08	2.29	10.1	37.9	1.6	1.35
	PD01336	759985	6495279	63.7	0.93	1.32	6.5	23.9	1.3	0.76
	PD01337	760058	6495353	62.2	0.87	1.47	6.9	26.1	1.4	0.76
	PD01338	760128	6495418	74.9	1	1.88	7.4	30.5	1.6	1.24
	PD01339	760204	6495491	100.5	1.17	2.79	8.7	43.4	2	0.87
T	PD01340	760263	6495563	94.7	1.15	2.23	8.7	38.1	1.9	0.92
	PD01341	760342	6495628	92.4	1.09	2.49	8.5	39.4	1.7	2.01
	PD01342	760411	6495703	58.8	0.74	1.84	6	27.6	1.3	0.65
	PD01343	760479	6495770	85.9	1.09	2.74	7.8	38.5	1.8	0.88
	PD01344	760552	6495845	96	1.15	2.88	8.9	41	1.9	1.11
	PD01345	760624	6495912	84.6	1.04	1.93	8.2	31.7	1.8	0.84
	PD01346	760691	6495980	102.9	1.2	2.09	8.2	32	1.9	0.98
	PD01347	760772	6496050	84.2	1.12	2.39	9.2	33.1	1.8	1.35
	PD01348	760909	6495909	89.1	0.95	2.47	6.8	38.1	1.6	0.73
	PD01349	760832	6495834	90.4	1.05	2.22	7.4	36.3	1.7	0.8
	PD01352	760766	6495768	92.4	1.1	2.11	7.4	35.1	1.7	1.06
	PD01353	760695	6495700	63.7	0.69	1.66	5.6	26.2	1.2	0.71
	PD01354	760628	6495629	95.8	1.1	1.97	7.8	34.8	1.8	2
	PD01355	760553	6495555	88.7	0.96	2.21	7.8	35.4	1.6	0.81
	PD01356	760480	6495481	82.9	0.99	1.96	7.5	33.5	1.7	0.74

	Sample ID	Easting	Northing	Li ₂ O	Ве	Cs	Nb	Rb	Sn	Та
ł	PD01357	760411	6495426	97.7	1.14	2.43	8.3	40.6	1.8	0.82
ŀ	PD01357	760343	6495347	83.1	1	2.37	7.8	37.2	1.6	0.88
ŀ	PD01359	760265	6495281	70.6	1.06	1.72	7.4	29.1	1.5	0.72
ŀ	PD01360	760203	6495195	91.7	1.16	2.32	8.3	37	1.8	0.72
	PD01361	760125	6495132	80.1	1.10	2.32	8.1	37.4	1.7	0.84
}	PD01361	760407	6495133	55.1	0.86	2.57	8.8	40.3	1.7	0.84
ŀ	PD01362 PD01363	760480	6495205	49.7	0.64	1.43	6.5	28.7	1.7	0.94
ŀ	PD01363	760548	6495276	55.1	0.63	1.43	6.1	33.1	1.4	0.67
ŀ	PD01365	760620	6495351	54.2	0.68	2.04	7	38.6	1.4	0.07
ŀ	PD01366	760628	6495428	60.7	0.08	1.77	6	32	1.3	0.75
ŀ	PD01367	760760	6495485	54.7	0.65	2.2	7.4	38.7	1.5	0.83
ŀ	PD01367	760835	6495552	51.4	0.59	2.08	6.6	38.1	1.4	0.92
ŀ	PD01368	760910	6495620	40.7	0.59	1.54	4.9	28.1	1.4	0.63
ŀ	PD01309 PD01370	760910	6495709	41.1	0.3	1.37	4.7	25.6	0.9	0.52
ŀ	PD01370 PD01371	761048	6495771	36.4	0.44	1.35	4.7	25.3	0.9	0.32
ŀ										
-	PD01372 PD01373	761118 761255	6495837 6495694	49.1 39.2	0.67 0.47	1.54 1.35	6.1 5	31.1 25.5	1.4	0.68 0.55
ŀ	PD01373 PD01374		6495617		-		5			
ŀ	PD01374 PD01375	761192 761125	6495547	35.5 34.9	0.5 0.5	1.38 1.47	5.2	26.1 27.4	1.1	0.71 0.75
ŀ	PD01375 PD01376	761123	6495478	34.4	0.51	1.68	5.3	29.2	1.1	0.73
ŀ	PD01370 PD01377	761048	6495411	37.2	0.51	1.68	5.5	31.1	1.1	0.57
ŀ	PD01377 PD01378	760972	6495336	53.6	0.33	2.14	6.9	39	1.5	0.37
ŀ	PD01378	760907	6495273	48	0.78	1.72	5.8	32.8	1.3	0.73
ŀ	PD01379 PD01380	760764	6495200	47.8	0.64	1.72	5.9	33.7	1.3	0.65
ŀ	PD01380 PD01381	760696	6495127	51	0.58	1.66	5.4	30.2	1.3	0.56
ŀ	PD01381 PD01382	760996	6495127	47.8	0.58	1.84	5.4	35.2	1.3	0.56
-	PD01382 PD01383	761040	6495139	47.8	0.64	1.64	5.7	36.5	1.3	0.63
ŀ	PD01383	761040	6495271	36	0.54	1.76	5.6	30.3	1.2	0.03
ŀ	PD01384 PD01385	761111	6495344	37.7	0.56	1.35	4.9	27	0.9	0.74
ŀ	PD01385	761261	6495413	44.3	0.50	1.43	5.2	29	1.1	1.08
ŀ	PD01380	761340	6495483	49.3	0.62	1.35	4.7	26.4	1.1	0.65
ŀ	PD01387	761401	6495548	43.3	0.57	1.56	5.3	29.4	1.2	0.59
ŀ	PD01388	761401	6495486	51.7	0.63	1.16	6.1	24.1	1.3	0.53
ŀ	PD01389	761511	6495400	33.2	0.46	1.14	4.5	21.7	1.3	0.55
	PD01391	761350	6495338	36	0.46	1.29	4.7	24.3	1	0.52
ŀ	PD01391	761403	6495259	43.9	0.40	1.88	5.4	34.4	1.2	0.54
ŀ	PD01393	761330	6495193	38.1	0.62	1.7	5.5	30.3	1.2	0.76
+	PD01394	761350	6495132	37.2	0.56	1.61	5.5	29.6	1.2	0.52
ŀ	PD01395	761535	6495126	41.5	0.68	1.79	5.4	32.7	1.3	0.55
ŀ	PD01396	761620	6495201	37	0.56	1.66	4.8	29.2	1.3	0.56
ŀ	PD01397	761673	6495273	23.5	0.42	0.98	3.2	17.8	0.7	0.35
ŀ	PD01398	761773	6495326	28.2	0.55	1.32	4.1	22.8	0.9	0.33
ŀ	PD01399	761893	6495202	34.4	0.62	1.52	5.4	30.9	1.2	0.94
ŀ	PD01402	761838	6495123	32.5	0.52	1.26	3.8	22.8	0.9	0.54
ŀ	PD01403	761746	6495047	40.5	0.65	1.66	5.3	31.2	1.3	0.63
ŀ	PD01404	762035	6495055	36.6	0.73	1.52	5.3	27.6	1.3	0.59
ŀ	PD01405	762104	6495126	26.7	1.07	0.52	4.1	5.4	1.7	0.45
ŀ	PD01406	762310	6495058	24.8	0.65	0.42	9.4	4.7	4.3	0.92
ł	PD01407	762457	6494918	23.7	0.72	0.32	4	2.9	2.3	0.43

Sample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
PD01408	762395	6494844	54.2	0.86	1.81	5.1	25.9	1.7	0.57
PD01409	762670	6494839	50.6	1.27	1.69	7.1	22.3	2.4	1
PD01410	762598	6494766	55.8	0.92	0.42	7.1	3.5	1.7	1.5
PD01411	762537	6494700	47.4	0.32	0.42	6	6.2	1.3	1.08
PD01411	762465	6494619	42.8	0.76	1.52	6.7	26.8	1.2	0.69
PD01412	762396	6494563	24.1	0.73	1.02	3.5	13.6	0.9	0.42
PD01414	762335	6494276	59.8	1.15	2.19	7.4	40.8	1.7	0.42
PD01415	762449	6494344	45.6	0.74	1.75	6.3	33.4	1.3	1.32
PD01416	762513	6494413	46.9	0.74	1.83	5.7	36.7	1.3	0.6
PD01417	762595	6494490	32.9	0.55	1.21	4.8	23.1	1	0.54
PD01417	762664	6494560	57.3	1.02	1.6	7.8	33.8	1.5	1.16
PD01419	762730	6494627	47.8	0.72	0.65	7.3	7.5	1.9	0.83
PD01410	762806	6494698	71	1.43	1.75	6.6	24.5	2.1	0.73
PD01421	762940	6494563	53.6	0.81	1.73	7	36.5	1.6	0.73
PD01422	762884	6494484	60.9	0.92	1.91	7.6	38.4	1.5	1.16
PD01423	762803	6494420	54	0.32	1.79	7.0	35	1.5	0.8
PD01424	762747	6494344	50.8	1.08	1.78	7	36.1	1.4	0.81
PD01425	762670	6494275	51.4	1.03	1.75	7.5	35.4	1.6	0.91
PD01426	762579	6494193	62.6	1.05	2.17	7.8	42.9	1.5	1.06
PD01427	762523	6494132	44.1	0.77	1.4	5.4	27.9	1.1	0.72
PD01428	762457	6494058	65.2	0.77	1.78	6.5	35.8	1.4	0.72
PD01429	762382	6493997	66.3	1	1.61	7.2	30.7	1.5	0.97
PD01430	762382	6493718	83.5	1.24	1.73	7.4	35.4	1.5	0.9
PD01431	762455	6493778	79.6	1.06	1.93	8.3	35.9	1.6	1.02
PD01432	762530	6493846	85.2	1.2	1.83	7.8	33.7	1.5	1.05
PD01433	762597	6493920	125.1	1.76	2.99	10.7	57.6	2.1	1.14
PD01434	762665	6493992	76.2	0.98	1.41	7.6	31.4	1.5	0.93
PD01435	762733	6494067	54.9	1	1.46	6.6	28.6	1.2	0.74
PD01436	762798	6494129	68.9	1.08	1.49	8.5	33.8	1.7	0.94
PD01437	762877	6494206	75.6	1.09	1.85	8.6	37.9	1.7	0.93
PD01438	762952	6494278	58.3	0.8	1.59	6.5	31.6	1.2	0.83
PD01439	763023	6494344	51.9	0.8	1.55	7	30.9	1.3	1.09
PD01440	763089	6494413	59.8	0.89	1.64	8.7	31.7	1.6	1.3
PD01441	763164	6494484	55.8	0.77	1.56	9.2	29.6	1.6	2.65
PD01442	763305	6494344	65.9	0.89	1.54	7.8	31.5	1.5	1.13
PD01443	763235	6494270	64.2	0.92	1.72	7.7	37.6	1.4	1.02
PD01444	763166	6494199	61.8	0.91	2.08	8	40.1	1.6	1.06
PD01445	763096	6494130	74.1	1.09	1.7	9.8	39.8	1.7	1.75
PD01446	763030	6494048	56.6	0.82	1.71	7	32.9	1.3	1.02
PD01447	762953	6493989	60.5	0.9	1.98	7	35.2	1.5	0.88
PD01448	762878	6493925	74.5	1.11	2.23	7.9	42.3	1.6	0.96
PD01449	762802	6493851	70.2	0.92	1.31	8.1	27.6	1.4	1.07
PD01452	762741	6493773	119.3	1.45	2.1	10.1	48.3	1.9	1.12
PD01453	762670	6493712	83.3	1.17	1.52	10.9	31.8	1.5	2.33
PD01454	762598	6493638	62.6	1.09	1.4	5.2	23.9	0.9	0.56
PD01455	762526	6493562	62.4	1.04	1.35	5.1	25.3	0.9	0.59
PD01456	762454	6493497	64.4	1.07	1.41	4.9	26.4	0.9	0.58
PD01457	762381	6493429	59.6	1.04	1.39	5	25.6	0.8	0.5
PD01458	762450	6493223	49.5	0.89	1.28	4.7	23.2	0.8	0.57

	Sample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
ľ	PD01459	762515	6493293	49.9	0.95	1.37	5.2	23.4	0.9	0.6
-	PD01460	762593	6493358	59.8	1.09	1.44	5.3	25.6	1	0.64
-	PD01461	762667	6493428	60.5	1.06	1.52	5.4	25.4	1	0.61
-	PD01461	762734	6493495	72.5	1.21	1.54	5.8	28.1	1	0.66
	PD01463	762809	6493566	72.3	1.38	1.56	6	30.6	1	0.71
7	PD01463 PD01464	762875	6493637	79.9 80.5	1.34	1.81	6.6	31.9	1.1	0.71
-	PD01464 PD01465	762946	6493708	81.2	1.34	1.77	6.6	31.6	1.1	0.79
F	PD01465	763016	6493782	53.4	0.95	1.77	5	23.7	1.1	0.73
-	PD01467	763010	6493847	56.2	1.02	1.77	5.8	30.9	1.1	0.75
-	PD01468	763162	6493925	66.3	1.37	1.77	6.7	34.9	1.2	0.73
-	PD01469	763230	6493991	48.7	1.01	1.45	5.4	26.3	1.2	0.77
-	PD01409 PD01470	763230	6494069	52.3	1.13	1.43	6.9	27.5	1.1	0.07
-	PD01470 PD01471	763368	6494139	51	1.13	1.38	6.2	25.8	1.1	0.94
-	PD01471 PD01472	763443	6494198	47.6	1.13	1.38	6.9	22.5	1.1	8.89
-	PD01472 PD01473	763510	6494270	70.2	1.35	2.07	10.4	31.2	1.1	1.45
-	PD01473	763648	6494133	45	1.33	1.3	6.3	13.6	1.3	0.8
-	PD01474 PD01475	763590	6494155	66.7	1.52	1.8	6.5	18.9	1.5	0.8
-	PD01473	763520	6493985	66.5	1.61	2.25	7.8	26	1.6	0.79
-	PD01476 PD01477	763320	6493912	55.5	1.3	1.96	6.4	30.9	1.3	0.79
-	PD01477 PD01478	763374	6493845	36.8	0.82	1.3	5	20.9	0.8	1.16
-	PD01478 PD01479	763302	6493774	36.4	0.82	1.3	4.4	20.9	0.8	0.49
-	PD01479 PD01480	763229	6493699	40.9	0.78	1.36	5	23.6	0.8	0.49
-	PD01480 PD01481	763229	6493632	59.4	1.07	1.44	5.7	26.7	0.8	0.34
-	PD01481	763084	6493567	67.4	1.07	1.56	5.8	28.6	1	0.71
-	PD01482	763015	6493487	67.2	1.17	1.73	6.1	29.1	1.1	0.83
-	PD01483	762947	6493418	58.6	1.07	1.62	5.9	29.5	1.1	0.69
-	PD01484	762875	6493352	56.4	0.99	1.52	5.1	28.1	0.8	0.09
-	PD01486	762806	6493278	60.3	1.21	1.63	5.7	27.9	0.9	0.63
-	PD01487	762735	6493215	51.4	0.98	1.49	5.7	25.1	0.9	0.52
	PD01488	763011	6493213	56	1.11	1.78	5.9	31.2	1.1	0.63
	PD01489	763011	6493283	56.4	1.01	1.69	6.1	31.4	1.1	0.79
-	PD01490	763161	6493354	53.6	0.89	1.44	5.1	26.2	0.9	0.48
-	PD01491	763231	6493429	62.4	1.01	1.76	5.8	30.1	1	0.59
-	PD01492	763300	6493500	53	0.95	1.49	5.2	25	1	0.58
÷	PD01493	763370	6493569	59.2	1.04	1.77	5.1	30.2	1	0.57
	PD01494	763444	6493640	43.3	0.85	1.48	4.2	24.5	0.8	0.39
-	PD01495	763516	6493709	42	0.88	1.42	4.3	23.5	0.8	0.42
-	PD01496	763583	6493777	42.4	1.01	1.69	4.8	28.3	1	0.47
	PD01497	763654	6493848	34.7	0.82	1.55	4.1	23	0.8	0.4
	PD01498	763725	6493916	45	0.95	1.21	4.9	19.4	1	0.56
	PD01499	763795	6493984	52.7	1.16	0.57	3.8	5.9	0.8	0.27
r	PD01502	764005	6493918	50.2	0.97	1.47	5.4	25.2	1.2	0.88
F	PD01503	763930	6493838	54	0.92	1.5	4.8	25.1	0.9	4.52
F	PD01504	763869	6493771	65.4	1.19	2.09	6.2	33	1.3	0.91
r	PD01505	763797	6493706	56.2	1.06	1.78	5.3	27.7	1	0.7
r	PD01506	763724	6493633	52.7	1.01	1.37	5.8	23.3	1.2	0.64
r	PD01507	763654	6493562	53.4	0.99	1.55	4.6	26.2	0.9	0.51
r	PD01508	763587	6493490	56.2	0.81	1.49	4.6	24.5	0.9	0.39
r	PD01509	763517	6493422	62	0.87	1.44	4.6	25.7	0.8	0.37

	Sample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
ł	PD01510	763444	6493348	71.7	0.98	1.55	5.5	27.7	1	0.56
ŀ	PD01510 PD01511	763371	6493284	66.3	0.98	1.55	4.7	27.7	0.9	0.30
ŀ	PD01511 PD01512	763371	6493211	62	0.91	1.68	4.7 5	29.5	0.9	0.48
ŀ	PD01512 PD01513	763579	6493211	54.9	0.75	1.41	4.6	29.5	0.8	0.31
	PD01514	763654	6493281	59	0.84	1.36	4.9	25.2	0.9	0.41
ŀ	PD01515	763727 763797	6493358 6493423	67.8 50.6	1.04	1.61	5.4	28.2	1.1	0.57
ŀ	PD01516	763869			0.81 1.06	1.08 1.55	4.5 4.9	20.1	0.8	0.53 0.48
ŀ	PD01517 PD01518	763939	6493496 6493571	56.6 41.3	0.81	1.35	3.9	20.3	0.8	0.48
ŀ	PD01518 PD01519	763939	6493634	45.6	0.86	1.26	4.9	27.5	0.8	0.37
-	PD01519 PD01520	764081	6493709	49.1	0.80	2.04	4.9	33.2	0.9	0.73
ŀ	PD01520 PD01521	764153	6493774	49.1	0.99	1.74	4.6	28.9	0.9	0.61
ŀ	PD01521 PD01522	764292	6493635	37.7	0.74	1.74	4.6	27.1	0.9	0.49
-	PD01522 PD01523	764230	6493572	36.2	0.74	1.72	4.4	24.4	0.8	0.33
ŀ	PD01523 PD01524	764250	6493489	43.1	0.84	1.46	4.1	26.8	0.8	0.33
ŀ			6493489						1.1	
+	PD01525 PD01526	764081 764007	6493418	51.2 50.4	0.95 1.02	1.56 1.58	5.6 5.3	28.3 27.2	1.1	0.61 0.5
+	PD01526 PD01527	764007	6493350	50.4	0.84	1.58	5.3	25.8	0.9	0.5
ŀ	PD01527 PD01528	763866	6493205	49.5	0.82	1.42	4.7	23.9	0.9	0.3
ŀ	PD01528	764148	6493205	55.1	0.82	1.76	5.6	28.5	1.1	0.40
ŀ	PD01529 PD01530	764215	6493271	48.2	0.91	1.76	5.5	29.3	1.1	0.65
ŀ	PD01530	764213	6493353	51.9	0.96	1.89	5.8	30.2	1.1	0.50
+	PD01531	764359	6493422	51.9	0.90	1.89	5.9	30.7	1.2	0.83
ŀ	PD01533	764433	6493488	47.8	0.84	1.83	5.3	28.9	1.2	0.54
ŀ	PD01534	764655	6493421	36.2	0.65	1.43	3.3	21.4	0.8	0.35
ŀ	PD01535	764567	6493344	40.7	0.73	1.69	4.9	25.3	0.8	0.65
1	PD01536	764497	6493278	40.7	0.76	1.54	5.3	23.5	0.8	0.66
ŀ	PD01537	764432	6493212	43.3	0.70	1.57	5.4	27.9	0.3	0.61
1	PD01538	764636	6493142	41.8	0.83	1.45	5.1	24.7	0.9	0.51
ŀ	PD01539	764718	6493209	53.2	0.98	2.03	6.7	31.2	1.2	0.77
ŀ	PD01540	764790	6493280	42	0.73	1.79	5.6	27.1	1.1	0.54
ŀ	PD01541	762182	6496328	79.2	1.29	1.64	6.1	28.6	1.1	2.47
ŀ	PD01542	762251	6496396	55.5	1.02	1.52	5	24.8	1	0.57
ŀ	PD01543	762324	6496470	54.2	0.88	1.23	5.5	12.1	1	1.01
	PD01544	762405	6496540	72.3	0.91	1.22	6.9	23.6	1.5	1.19
ł	PD01545	762475	6496608	67.6	0.82	1.08	5.3	23.5	1.2	0.81
ŀ	PD01546	762540	6496681	57.3	1	1.9	25.5	30.5	1.3	4.92
ŀ	PD01547	762604	6496754	36.4	0.58	1.26	4.9	23.5	0.8	1.08
+	PD01548	762676	6496814	28.4	0.56	0.6	9	4.3	2.2	1.25
ł	PD01549	762963	6496821	29.1	0.35	1.24	8.8	9.9	1.4	2.08
ł	PD01552	762891	6496751	20	1.04	0.31	6.2	1	1.6	0.81
ŀ	PD01553	762825	6496682	46.9	0.47	0.27	6.3	1.3	1.4	0.93
ŀ	PD01554	762745	6496609	31.2	0.48	1.04	3.9	23.1	0.8	0.54
ŀ	PD01555	762682	6496541	46.3	0.87	1.64	7.7	20.4	1.4	1.45
ŀ	PD01556	762609	6496471	58.3	0.79	1.58	5.1	25.8	1.1	1.25
t	PD01557	762538	6496404	45.2	0.74	1.4	6.3	16.1	1.1	0.81
ŀ	PD01558	762467	6496328	68.2	1.04	1.6	6.3	26.3	1.2	0.81
ŀ	PD01559	762397	6496255	59	1.06	1.54	6.9	24.5	1.2	0.85
t	PD01560	762320	6496191	60.5	0.97	1.28	5.7	24.7	1.1	0.65

	Sample ID	Easting	Northing	Li ₂ O	Be	Cs	Nb	Rb	Sn	Та
	PD01561	762467	6496039	60.7	1.01	1.74	7.1	26.8	1.3	0.78
H	PD01562	762536	6496113	67.6	1.16	1.6	7.5	26.5	1.4	0.82
H	PD01563	762609	6496187	90.2	1.37	2.25	8	36.3	1.5	0.8
H	PD01564	762678	6496254	74.9	1.08	1.67	6.7	28.4	1.8	0.68
	PD01565	762748	6496326	63.5	0.91	1.39	6.8	26.7	1.4	0.81
))	PD01566	762813	6496402	32.7	0.68	1.14	6.1	17.6	1.3	0.69
H	PD01567	762888	6496466	40.9	0.79	1.14	8	18.1	1.6	2.64
\vdash	PD01568	762958	6496533	51.9	0.79	1.43	6.6	11.3	1.5	0.76
H	PD01569	763029	6496607	33.4	0.94	1.12	7.4	12.8	1.3	1.82
H	PD01509	763102	6496676	27.3	0.37	1.37	8.8	14.1	1.1	2.37
H	PD01570	763175	6496468	25.6	0.37	1.34	7	11.1	1.1	1.58
H	PD01571	763173	6496388	29.7	0.32	1.34	6.7	13	1.2	0.91
H	PD01572 PD01573	763101	6496323	27.1	0.43	1.33	7	13.4	1.3	0.91
H	PD01573	762959	6496246	36.4	0.58	1.67	7	17	1.3	0.91
H	PD01574	762888	6496183	61.6	0.03	2.02	8.9	38	1.8	1.06
\vdash	PD01575 PD01576	762821	6496109	71	1.05	2.02	5.6	29.5	1.4	0.56
\vdash	PD01576 PD01577	762750	6496109	29.5	0.69	0.57	5.1	7.8	0.9	0.57
\vdash		762677	6495970				5.3			
H	PD01578 PD01579	762677	6495970	42.8 62.6	0.73 1.07	1.48 1.66	6.5	28.6 33.5	1.1 1.3	0.62 0.58
H	PD01579	762745	6495759	67.8	0.94	1.93	5.9	34.2	1.2	0.54
H	PD01580	762743	6495832	67.8	1.02	1.46	5.6	26.8	1.2	1.09
H	PD01581	762888	6495899	76.4	1.02	1.40	7	34.8	1.5	0.65
H	PD01582	762959	6495972	49.9	0.98	1.73	6.6	35.8	1.2	0.67
H	PD01583	763027	6496041	56.8	1.15	2.13	7.6	43.7	1.4	0.07
H	PD01584	763101	6496110	56.2	1.13	2.13	7.3	42.2	1.4	0.74
H	PD01585 PD01586	763173	6496110	39.6	0.92	1.46	3.6	18.5	0.9	0.36
\vdash	PD01586 PD01587	763246	6496259	26.3	0.92	0.91	3.1	16.5	0.9	0.36
H	PD01587	763374	6496108	35.7	0.47	1.27	4.8	18.1	1	0.4
H	PD01588	763309	6496036	40.9	0.71	1.57	4.6	26.5	0.9	0.30
H	PD01589	763243	6495964	47.6	1.01	2.68	4.9	38.3	0.9	0.44
H	PD01591	763176	6495898	52.3	1.38	2.83	5.9	51.1	1.1	0.62
H	PD01592	763098	6495825	65.7	1.21	2.25	7.2	40.3	1.3	0.02
H	PD01593	763038	6495754	74.9	1.08	1.75	6.5	31.7	1.2	0.71
H	PD01594	762957	6495685	96.7	1.26	1.83	10.7	35.1	1.3	1.53
þ	PD01595	762887	6495620	89.6	1.27	1.87	7	32.1	1.2	0.56
\vdash	PD01596	763025	6495481	81.8	1.27	1.81	7.2	34.7	1.3	0.50
\vdash	PD01597	763100	6495545	75.8	1.16	1.99	6.7	36	1.3	0.66
\vdash	PD01598	763174	6495618	63.9	1.12	1.61	5.9	32.3	1.2	0.6
\vdash	PD01599	763241	6495689	55.8	1.07	1.93	5.9	36.3	1.1	0.75
F	PD01602	763316	6495764	60.5	1.3	3.1	5.6	47.7	1	0.52
H	PD01603	763313	6495830	60.5	1.38	3.46	6.3	52.7	1.3	1.91
H	PD01604	763454	6495898	52.1	1.15	3.06	5.8	48.5	1.2	0.61
H	PD01605	763518	6495686	72.1	1.51	3.03	12	46.4	1.2	1.92
H	PD01606	763446	6495611	84.4	1.57	2.92	8.3	46.6	1.3	2.18
F	PD01607	763382	6495542	78.4	1.44	1.96	6.5	34.6	1.1	0.64
F	PD01608	763311	6495471	74.7	1.3	1.5	7.6	30	1.4	1.06
F	PD01609	763238	6495402	72.1	1.31	1.69	7.0	29.6	1.4	0.77
F	PD01610	763169	6495335	65.4	1.11	1.63	5.5	22.7	1.3	0.54
\vdash	PD01611	763375	6495264	109.8	1.96	1.59	7.1	26.5	1.4	1.17

	Sample ID	Easting	Northing	Li₂O	Be	Cs	Nb	Rb	Sn	Та
	PD01612	763449	6495333	66.5	1.18	1.72	7.4	29.7	1.2	0.68
H	PD01612	763520	6495405	79	1.18	1.72	6.1	26.9	1.1	0.56
H	PD01613	763520	6495481	85.9	1.23	1.08	7.2	19.7	1.1	2.98
H	PD01614 PD01615	763665	6495546	66.5	1.43	1.74	5.8	26.4	1.2	0.69
	PD01615	763731	6495326	76.9	1.43	2.42	8.8	46.8	1.5	0.09
))										
\vdash	PD01617 PD01618	763662	6495260 6495178	79.9	1.56	1.91	8.3	37.8	1.6	0.86
\vdash		763591 763519		86.8	1.31	1.67 1.6	7.7 7.6	31.8 31.5	1.4	0.79
H	PD01619 PD01620	763669	6495121 6494977	77.1 53	1.59 1.67	0.86	8.3	7.7	1.3 1.3	0.88
\vdash	PD01620 PD01621	763728	6494977	66.9	1.14	1.87	9.4	29.6	1.7	1.52
H										1.32
\vdash	PD01622 PD01623	763803	6495118	79.4	1.49	1.84	9.8 7	28.8	1.8	
\vdash	PD01623 PD01624	762037 762112	6496468	69.3	1.21	1.69 1.34	7.6	28	1.3	0.72
H		-	6496549	55.1	0.9			12.5	1.3	
H	PD01625 PD01626	762175	6496615	32.3	0.41	0.97	6.5	8.6		1.08 0.74
H		762253	6496685	33.2	0.28	0.99	4.6	6.6	0.8	
H	PD01627	762321 762391	6496753	32.3	0.44	0.85	9.2	9.6	0.8	2.89
H	PD01628		6496821 6497105	33.8	0.59	0.76	6.6	14.8	0.8	1.08
H	PD01629	762395	0.01.00	32.9	1.07	0.32	10.8	1.8	2.2	1.5
H	PD01630	762320	6497038	29.7	0.61	0.36	8.9	2.1	2.1	1.13
H	PD01631	762250	6496961	31.4	0.43	0.98	6.3	9.6	0.9	1.38
H	PD01632 PD01633	762179	6496895	36.4	0.41	1.19	6.8	11.9	1.1	
H	PD01633 PD01634	762112 762038	6496825	45.6	0.42	1.44	6.4	13.2	1.1	0.81
\vdash	PD01634 PD01635	762038	6496745 6496674	37.7 43.1	0.69 0.64	0.49	7.4 7.1	4.8	1.5 1.2	0.72
\vdash										
H	PD01636	761898	6496615	35.1	0.49	0.93	5.2	8.5	1	1.04
H	PD01637	761622	6496896	59.4	0.97	1.37	7.1	24	1.5	1.2
H	PD01638 PD01639	761688 761765	6496972 6497040	74.7	1.17	2.01	6.8	34	1.5	1.17
\vdash	PD01639 PD01640	761839	6497040	50.6 66.3	0.93	1.39	5.4	26.7 26	0.9 1.4	0.9 1.01
\vdash					1.53	1.31	5.8			
\vdash	PD01641 PD01642	761901 761969	6497180 6497251	44.1 63.5	0.58 1.19	1.46 2.19	7.2 7.7	16 31.8	1.4	1.21
H	PD01642 PD01643	762038		84.8			6.7		1.7	0.92
H	PD01643 PD01644	762120	6497316 6497386	63.7	2.18 1.16	2.19 1.07	7.5	26.4 11	2.3	5.72
H	PD01645	762128	6497467	41.3	0.89	1.26	7.6	13.5	1.6	1.41
+	PD01646	762256	6497531	70	1.42	1.72	8	23.9	1.9	1.12
H	PD01647	762339	6497592	64.4	1.19	3.91	19.5	71.4	4.3	3.84
\vdash	PD01647	762339	6497672	67.6	1.19	1.69	8.7	24.6	1.7	3.98
\vdash	PD01648	762336	6498166	71.5	1.33	1.96	4.9	37	1.7	0.73
\vdash	PD01649 PD01652	762261	6498089	48.4	1.33	1.35	9.2	17	1.7	2.19
H	PD01653	762186	6498024	69.1	1.59	2.18	5.1	19.2	4.4	1.1
H	PD01654	762130	6497947	70.8	2.6	6.46	8.5	54.3	2.8	1.77
\vdash	PD01655	762044	6497875	52.1	2.08	2.5	5.3	34.7	1.3	1.01
\vdash	PD01656	761976	6497810	74.9	2.68	2.15	7.4	32.5	1.8	1.15
\vdash	PD01657	761908	6497739	57.7	1.27	1.81	6.2	27.3	1.4	1.69
\vdash	PD01658	761834	6497679	54.9	0.87	2.01	4.4	27.8	0.9	0.69
\vdash	PD01658	761766	6497596	52.1	0.87	1.03	6.4	9.1	1.5	1.51
\vdash	PD01659 PD01660	761693	6497528	40.3	0.87	1.36	4.3	21.6	1.3	1.43
\vdash	PD01661	761623	6497468	73.8	1.15	1.33	7.1	22.5	1.4	1.43
\vdash	PD01662	761552	6497393	64.6	1.13	1.33	5.5	22.6	1.3	0.86
L	LD01007	/01227	0497393	04.6	Т	1.33	5.5	22.0	1.5	0.80

	Sample ID	Easting	Northing	Li ₂ O	Ве	Cs	Nb	Rb	Sn	Та
ľ	PD01663	761480	6497312	66.9	1.2	1.63	6.1	28.3	1.3	1.59
	PD01664	761415	6497247	63.5	1.05	1.09	4.7	20.4	1	0.53
	PD01665	761338	6497177	66.3	1	1.37	6.3	13.9	1.4	0.74
	PD01666	761054	6497455	60.3	1.21	1.37	5.4	26.5	1.2	0.48
	PD01667	761136	6497530	57.5	1.1	1.41	5.8	29.4	1.1	0.52
	PD01668	761199	6497606	58.3	1.08	1.5	5.3	29.2	1.1	0.54
	PD01669	761270	6497674	52.7	1.04	1.24	4.5	26	0.9	0.54
	PD01670	761338	6497754	64.4	1.11	1.23	5.4	23.9	1.1	0.61
	PD01671	761407	6497814	42.6	0.62	1.01	5.3	13.2	0.9	1.11
	PD01672	761480	6497884	76	1.45	1.53	8	21.9	1.2	1.51
	PD01673	761553	6497956	76.6	1.35	1.37	5.9	27.6	1.4	0.61
	PD01674	761622	6498029	79	1.22	1.45	5	22.4	1.3	0.61
	PD01675	761694	6498095	49.9	1.09	1.54	6.5	16.5	1.4	0.94
	PD01676	761771	6498159	33.8	1.1	0.58	6.5	7	1.8	0.96
	PD01677	761835	6498244	14.2	0.66	0.27	3.8	1.3	1.5	0.37
	PD01678	761914	6498310	42.8	1.38	3.54	5.1	27.3	1.1	0.55
	PD01679	761975	6498380	187.3	8.85	13.22	12.8	118	5.5	4.53
	PD01680	762052	6498454	67.4	1.92	5.44	7.4	77.5	1.6	2.08
	PD01681	762125	6498516	40.5	0.89	2.4	3.4	41.5	0.7	1.23
	PD01682	761763	6498739	46.1	0.88	1.94	4.1	34.8	0.9	0.66
	PD01683	761697	6498663	59.8	1.12	2.24	4.9	37.1	1.2	0.85
	PD01684	761619	6498601	57.3	1.08	1.8	8	28.5	1.1	2.1
	PD01685	761556	6498526	38.3	0.75	1.11	5.5	27.7	1.5	0.64
	PD01686	761489	6498454	36.6	0.76	1.18	4.4	22	1	0.45
	PD01687	761416	6498388	48.9	0.77	1.39	4.4	28.9	0.9	0.54
	PD01688	761344	6498308	41.1	0.58	1.36	3.6	25.3	0.8	0.37
	PD01689	761271	6498245	46.3	0.66	1.08	3.8	22.1	0.8	0.55
	PD01690	761207	6498172	44.8	0.75	1.71	4.9	34.9	1	0.64
	PD01691	761138	6498101	58.3	0.97	1.48	6.2	35.4	1.1	1.57
L	PD01692	761056	6498021	50.8	0.89	1.43	4.6	33.8	0.9	0.53
L	PD01693	760993	6497964	45.4	0.91	1.42	4.4	32.3	0.9	0.5
	PD01694	760916	6497889	48.7	0.88	1.13	4.8	27.4	0.9	0.53
	PD01695	760847	6497822	46.5	0.89	1.18	4.3	29.1	0.9	0.47
	PD01696	760556	6498103	67.2	1.17	1.47	5.4	34.1	1.1	0.52
	PD01697	760632	6498177	64.8	1.2	1.48	5.8	36.8	1.2	0.5
	PD01698	760711	6498249	49.7	0.91	1.31	5.6	28.1	1	0.65
	PD01699	760777	6498317	49.9	0.9	1.54	5.6	30.7	1.1	0.58
	PD01702	760846	6498390	48.2	0.81	1.21	5.8	25.6	1.2	0.78
	PD01703	760922	6498463	48	0.66	1.03	4.3	20	1	0.53
	PD01704	760988	6498524	23.9	0.23	0.9	4.3	10.1	0.8	0.58
ļ	PD01705	761061	6498597	30.6	0.45	0.46	7	5.1	1.5	0.71
	PD01706	761130	6498664	18.9	0.43	0.54	5.2	6.4	0.9	0.6
	PD01707	761203	6498738	35.3	0.99	0.6	4.4	8	1.1	0.5

Notes:

- All auger soil samples collected are listed in the table (excluding standards and duplicates), results displayed include a selected suite of lithium pathfinder elements.
- All units are in ppm.
- Auger soil location and orientation information coordinates are MGA Zone 50, AHD RL.
- See Appendix 1 for additional details.
- BDL below detection level.

APPENDIX 1: PARKER DOME AUGER SOIL SAMPLING RESULTS

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Auger Soil sampling: A total of 707 auger soil samples (including 14 standards and 14 duplicates) were collected by Gyro Australia Pty Ltd for Flynn Gold Limited over the Parker Dome project (E77/2091 and E77/1965) during December 2023. The Parker Dome auger soil sampling program was designed as a first pass soil sampling program targeting lithium pegmatite mineralisation at the parker Dome project. The auger soil samples were collected at a sample density of either 400m x 100m, or 200m by 100m. Auger samples were collected using an auger rig mounted on a 4-wheel drive, contracted from Gyro Drilling, with a dual GPS location and navigation system. The vertical auger holes went to blade refusal and a maximum depth up to 1.5m, collecting one representative sample from each hole. The technique and medium collected is considered a surface geochemical sample. All geochemical sampling completed by Gyro Australia Pty Ltd was located on GDA94 MGA Zone 50, using a GPS. Industry-standard sampling practices for auger soil sampling adopted. Samples were collected in the field by auger drilling to a nominal depth of approximately between 0.5m and 1.5m. The collected sample was sieved to -2mm and placed in a pre-numbered sample bag. Experienced field personnel supplied by the auger company were always present when sampling to ensure the appropriate horizon is collected from each hole. Flynn Gold Limited submitted all soil samples to SGS Australia Pty Ltd – Perth for analysis, utilising sample preparation by screen soils to -80 mesh (180um) (Code: G_SCR_D), Sample drying (Code: G_DRY_KG) and pulverise, Cr-steel, nominal 85% passing 75 microns (Code: G_PUL). The soil samples were analysed for gold by fire assay by using lead collection technique with a 30g sample charge weight. MP-AES instrument finish (SGS Code: GO_FAP30V10) and trace level lithium and multi-elements were assayed by 4-acid digest (SGS Code: GE_DIG40Q20) ICP-MS finish (SGS Code: GE_IMS40Q20)
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Auger sampling - Auger drilling for soil sampling. Auger holes drilled to a depth of between 0.5 to 1.5m Auger sampling was completed using Gyro Drilling's Ute mounted auger, with dual GPS tracking and Hydrochloric Acid reaction assessment. Auger drilling with a 3.35inch (85mm) drill bit with depths ranging from 0.5 to 1.5m
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Recoveries were not assessed as they are not material to the type of sample collected Best endeavours were used to ensure sample recovery and splitting would deliver the best quality possible. Sample weights are issued by the laboratory with assays.

Criteria	JORC Code Explanation	Commentary			
Logging	Whether core and chip samples have been	Basic surface geology was logged at each site.			
- 33 3	geologically and geotechnically logged to a	Sample colours were recorded.			
	level of detail to support appropriate Mineral	Only the specific sampled horizon was logged.			
	Resource estimation, mining studies and	Hydrochloric Acid reaction assessment was undertaker			
	metallurgical studies.	Gyro Drilling.			
	Whether logging is qualitative or quantitative	Gyro Brilling.			
	in nature. Core (or costean, channel, etc)				
	photography.				
	The total length and percentage of the				
	relevant intersections logged.				
Sub-	If core, whether cut or sawn and whether	Not applicable			
sampling	quarter, half or all core taken.	Sample depth (nominally 0.5m to 1.5m below surface) ar			
techniques	If non-core, whether riffled, tube sampled,	location of soil sample recorded at each site.			
and sample	rotary split, etc and whether sampled wet or	Soil samples are prepared and analysed by independent			
preparation	dry.	certified laboratory, SGS Australia Pty Ltd in Perth All			
огерагистоп	For all sample types, the nature, quality and	samples can be considered a grab or scoop sample to col			
	appropriateness of the sample preparation	enough material to prepare a sample weight of 2-3kg			
	technique.				
	•	All samples were dry sieved (-2mm) and approximately 2-3 of minus 2mm material sampled in the field and bagged. N further subsampling is conducted. A 2-3Kg sample is considered appropriate for sail sampling.			
	Quality control procedures adopted for all sub-sampling stages to maximise				
	representivity of samples.				
	Measures taken to ensure that the sampling	considered appropriate for soil sampling Soil samples were placed directly into pre-numbered bags			
	is representative of the in-situ material	the site location from which they were collected.			
	collected, including for instance results for	Standards were submitted every 50 samples; duplicates			
	field duplicate/second-half sampling.	were taken every 50 samples.			
	Whether sample sizes are appropriate to the	Standards were also submitted by SGS Australia Pty Ltd.			
	grain size of the material being sampled.	The sampling practices were suitable for the stage of			
	gram size of the material being sampled.	exploration.			
		Auger sampling is a first pass geochemical sampling prog			
		to screen the area it considered appropriate.			
		Sample sizes were considered appropriate for the grain s			
		of the sampled material.			
Quality of	The nature, quality and appropriateness of	Flynn Gold Limited submitted all soil samples to SGS			
assay data	the assaying and laboratory procedures used	Australia Pty Ltd – Perth for analysis, utilising sample			
and	and whether the technique is considered	preparation by screen soils to -80 mesh (180um) (Code: G_SCR_D), sample drying (Code: G_DRY_KG) and pulverise, Cr-steel, nominal 85% passing 75 microns (Code: G_PUL). The soil samples were analysed for gold by fire assay by			
laboratory	partial or total.				
tests	For geophysical tools, spectrometers,				
	handheld XRF instruments, etc, the				
	parameters used in determining the analysis				
	including instrument make and model,				
	reading times, calibrations factors applied				
	and their derivation, etc.	were assayed by 4-acid digest (SGS Code: GE DIG40Q20)			
	Nature of quality control procedures adopted	ICP-MS finish (SGS Code: GE IMS40Q20)			
	(e.g. standards, blanks, duplicates, external	Gold detection limit of 0.01 ppm Au (10 part per billion).			
	laboratory checks) and whether acceptable	Trace level lithium elements.			
	levels of accuracy (i.e. lack of bias) and	Detection limits:			
	precision have been established.	Ag 0.05 – 10 ppm Ga 0.2 – 1000 ppm			
		As 1 – 1000 ppm Gd 0.1 – 1000 ppm			
		Ba 1 – 2000 ppm Ge 0.2 – 250 ppm			
		Be 0.05 – 1000 ppm Hf 0.02 – 1000 ppm			
		Bi 0.01 – 1000 ppm Ho 0.05 – 500 ppm			
		Cd 0.02 – 1000 ppm In 0.005 – 500 ppm			
		Ce 0.05 – 1000 ppm La 0.05 – 1000 ppm			
		Co 0.1 – 2000 ppm Li 0.1 – 1000 ppm			
		Cs 0.05 – 1000 ppm Lu 0.01 – 1000 ppm			
		Cu 0.5 – 2000 ppm Mn 0.5 – 2000 ppm			
		Dy 0.01 – 1000 ppm Mo 0.1 – 1000 ppm			
		Er 0.01 – 1000 ppm Nb 0.1 – 1000 ppm			
	I and the second	Eu 0.05 – 500 ppm Nd 0.1 – 1000 ppm			

	Criteria	JORC Code Explanation		Con	nmentar	у	
Γ			Ni	2 – 2000 ppm	Те	0.05 – 1000 ppm	
L			Pb	0.5 – 2000 ppm	Th	0.01 – 1000 ppm	
			Pr	0.05 – 1000 ppm	TI	0.02 – 1000 ppm	
			Rb	0.05 – 1000 ppm	Tm	0.03 – 500 ppm	
			Re	0.1 – 2500 ppm	U	0.05 – 1000 ppm	
			Sb	0.05– 1000 ppm	W	0.1 – 1000 ppm	
			Sc	0.1 – 1000 ppm	Y	0.05 – 1000 ppm	
			Se	1 – 1000 ppm	Yb	0.1 – 1000 ppm	
			Sm	0.1 – 1000 ppm	Zn	5 – 5000 ppm	
			Sn Sr	0.2 – 1000 ppm 0.1 – 1000 ppm	Zr	0.5 – 1000 ppm	
			Ta	0.05 – 1000 ppm			
			Tb	0.05 – 1000 ppm			
					or non a	scay instrument types	
						ssay instrument types	
				ed in the analyses re			
					-	samples; duplicates	
L				ken every 50 sample			
L				ds and duplicates w		•	
					_	nised industry specific	
				-		that the reported assay	
L						f accuracy and precision	
				relevant analytical m			
			The sampling program was conducted using a suite of certified reference materials including duplicates, and				
						al lab inserted blanks,	
						aboratory checks have	
			not been conducted as they are not deemed material to				
L			these results				
	Verification The verification of significant intersections by of sampling and either independent or alternative company personnel.		Not relevant for surface samples.				
			No hole twinning was undertaken.				
			Sample results and standards were reviewed by the				
l	assaying	The use of twinned holes.	company's technical consultants.				
l		Documentation of primary data, data entry			e comp	any database, checked,	
		procedures, data verification, data storage	and ver				
		(physical and electronic) protocols.		is stored in a Compa			
l		Discuss any adjustment to assay data.		ned by the Database	_		
						been entered as zero.	
			Assay d	ata is received as % (dependent on the natura	
ı						onverted to Li₂O for	
			elemen	tal abundance. Li pp			
۱			elemen discussi	on purposes of simil	ar indus	try trends and	
			elemen discussi explora	on purposes of simil tion results. An oxid	ar indus e conve	try trends and rsion rate 2.1527 was	
			elemen discussi explora used to	on purposes of simil tion results. An oxid convert from Lithiur	ar indus e conve	try trends and	
			elemen discussi explora used to (Li ₂ 0_pr	on purposes of simil tion results. An oxid convert from Lithiur om).	ar indus e conve m (Li_pp	try trends and rsion rate 2.1527 was m) to Lithium di-oxide	
			elemen discussi explora used to (Li ₂ 0_pp Otherw	on purposes of simil tion results. An oxid convert from Lithiur om). ise there were no ac	ar indus e conve n (Li_pp ljustmer	try trends and rsion rate 2.1527 was m) to Lithium di-oxide nts to assay data.	
4	Location of	Accuracy and quality of surveys used to	elemen discussi explora used to (Li ₂ 0_pp Otherw Soil sam	on purposes of simil tion results. An oxid convert from Lithiu om). ise there were no ac aple locations are loc	ar indus e conve n (Li_pp ljustmer	try trends and rsion rate 2.1527 was m) to Lithium di-oxide	
4	Location of data points	locate drill holes (collar and down-hole	elemen discussi explora used to (Li ₂ 0_pp Otherw Soil sam accurac	on purposes of simil tion results. An oxid convert from Lithiun om). ise there were no ac uple locations are loc y of +/-5m.	ar indus e conver m (Li_pp ljustmer cated by	try trends and rsion rate 2.1527 was im) to Lithium di-oxide hts to assay data.	
4	-	locate drill holes (collar and down-hole surveys), trenches, mine workings and other	elemen discussi explora used to (Li ₂ 0_pp Otherw Soil sam accurac Location	on purposes of simil tion results. An oxid convert from Lithium om). ise there were no ac uple locations are loc y of +/-5m. ns are given in GDA9	ar indus e convei n (Li_pp ljustmer cated by	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an	
4	-	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	elemen discussi explora used to (Li ₂ 0_pp Otherw Soil sam accurac Location Diagran	on purposes of simil tion results. An oxid convert from Lithiun om). ise there were no ac uple locations are loc y of +/-5m.	ar indus e convei n (Li_pp ljustmer cated by	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an	
4	-	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	elemendiscussi exploraused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagran report.	on purposes of simil tion results. An oxid convert from Lithiur om). ise there were no ac iple locations are loc y of +/-5m. ns are given in GDA9 ns showing sample lo	ar indus e convei m (Li_pp ljustmer cated by 4 Zone 5	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide ats to assay data. handheld GPS to an are provided in the	
	-	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used.	elemendiscussi exploraused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagran report.	on purposes of simil tion results. An oxid convert from Lithium om). ise there were no act iple locations are loc y of +/-5m. ns are given in GDA9 ns showing sample loc	ar indus e convei m (Li_pp ljustmer cated by 4 Zone 5	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide ats to assay data. handheld GPS to an are provided in the	
	data points	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	elemendiscussi exploraused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagran report. The top geochel	on purposes of simil tion results. An oxid convert from Lithium om). ise there were no act ple locations are locally of +/-5m. is are given in GDA9 as showing sample local samples.	ar indus e convei m (Li_pp ljustmer cated by 4 Zone ! ocations	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide ats to assay data. handheld GPS to an are provided in the sadequate for	
	data points Data	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration	elemendiscussi explora used to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagram report. The top geocher	on purposes of simil tion results. An oxid convert from Lithium om). ise there were no act tiple locations are loc y of +/-5m. In sare given in GDA9 in showing sample loc ographic control is junical samples. samples were collect	ar indus e convei m (Li_pp ljustmer cated by 4 Zone ! ccations udged as	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide ats to assay data. handheld GPS to an are provided in the	
_	data points Data spacing and	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results.	elemendiscussi explorarused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagran report. The top geocher 200m x	on purposes of similition results. An oxid convert from Lithium om). ise there were no actiple locations are located of the sample locations are given in GDA9 as showing sample locations are given in GDA9 as showing sample located ographic control is junical samples. samples were collect 100m, or 400m by 1	ar indus e convei m (Li_pp ljustmer cated by 4 Zone ! ocations udged as cted at a 00m.	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an are provided in the sadequate for a sample density of either	
_	data points Data	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is	elemendiscussi explorarused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagran report. The top geocher The soil 200m x Further	on purposes of similition results. An oxid convert from Lithium (m), ise there were no active the control of the control is provided to the control of the control is provided to the control of the cont	ar indus e convei m (Li_pp ljustmer cated by 4 Zone s cations udged as cted at a 00m. ampling	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an 50. are provided in the s adequate for a sample density of either may be considered to	
_	data points Data spacing and	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of	elemendiscussi explorarused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagran report. The top geocher The soil 200m x Further tighten	on purposes of similition results. An oxid convert from Lithium om), ise there were no acouple locations are located of the following sample locations are given in GDA9 as showing sample locations are given in GDA9 as showing sample located samples. Samples were collected to the following in fill soil sand better resolve a	ar indus e convei m (Li_pp ljustmer cated by 4 Zone 9 ccations udged as cted at a 00m. ampling reas of I	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an 50. are provided in the sadequate for sample density of either may be considered to ithium anomalism.	
_	data points Data spacing and	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate	elemendiscussi explorarused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagran report. The top geocher The soil 200m x Further tighten	on purposes of similition results. An oxid convert from Lithium om), ise there were no acouple locations are located of the following sample locations are given in GDA9 as showing sample locations are given in GDA9 as showing sample located samples. Samples were collected to the following in fill soil sand better resolve a	ar indus e convei m (Li_pp ljustmer cated by 4 Zone 9 ccations udged as cted at a 00m. ampling reas of I	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an 50. are provided in the s adequate for a sample density of either may be considered to	
	data points Data spacing and	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of	elemendiscussi explorarused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagran report. The top geocher The soil 200m x Further tighten	on purposes of similition results. An oxid convert from Lithium om), ise there were no acouple locations are located of the following sample locations are given in GDA9 as showing sample locations are given in GDA9 as showing sample located samples. Samples were collected to the following in fill soil sand better resolve a	ar indus e convei m (Li_pp ljustmer cated by 4 Zone 9 ccations udged as cted at a 00m. ampling reas of I	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an 50. are provided in the sadequate for sample density of either may be considered to ithium anomalism.	
_	data points Data spacing and	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate	elemendiscussi explorarused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagran report. The top geocher The soil 200m x Further tighten Not appresults.	on purposes of similition results. An oxid convert from Lithium om), ise there were no acouple locations are located by of +/-5m. In some showing sample locations are given in GDA9 as showing sample located by ographic control is junical samples. samples were collected by the	ar indus e convei m (Li_pp ljustmer cated by 4 Zone 9 cocations udged as cted at a 00m. ampling reas of l ting of g	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an 50. are provided in the sadequate for sample density of either may be considered to ithium anomalism.	
	data points Data spacing and	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve	elemendiscussi explorarused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagran report. The top geocher The soil 200m x Further tighten Not appresults.	on purposes of similition results. An oxid convert from Lithium om), ise there were no acouple locations are located by of +/-5m. In some showing sample locations are given in GDA9 as showing sample located by ographic control is junical samples. samples were collected by the	ar indus e convei m (Li_pp ljustmer cated by 4 Zone 9 cocations udged as cted at a 00m. ampling reas of l ting of g	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an are provided in the sadequate for asample density of either may be considered to ithium anomalism. geochemical sampling	
	data points Data spacing and	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications	elemendiscussi explorarused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagram report. The top geocher The soil 200m x Further tighten Not appresults. Not app	on purposes of similition results. An oxid convert from Lithium om), ise there were no acouple locations are located by of +/-5m. In some showing sample locations are given in GDA9 as showing sample located by ographic control is junical samples. samples were collected by the	ar indus e convei m (Li_pp ljustmer cated by 4 Zone 9 cocations udged as cted at a 00m. ampling reas of l ting of g	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an are provided in the sadequate for asample density of either may be considered to ithium anomalism. geochemical sampling	
_	data points Data spacing and	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	elemendiscussi explorarused to (Li ₂ 0_pp Otherw Soil samaccurac Location Diagram report. The top geocher The soil 200m x Further tighten Not appresults. Not app	on purposes of similition results. An oxid convert from Lithium om), ise there were no acouple locations are located by of +/-5m. In some showing sample locations are given in GDA9 as showing sample located by ographic control is junical samples. samples were collected by the	ar indus e convei m (Li_pp ljustmer cated by 4 Zone 9 cocations udged as cted at a 00m. ampling reas of l ting of g	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an are provided in the sadequate for asample density of either may be considered to ithium anomalism. geochemical sampling	
	data points Data spacing and	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been	elemendiscussi explora used to (Li ₂ 0_pr Otherw Soil samaccurac Location Diagram report. The top geocher The soil 200m x Further tighten Not appresults. Not appresults.	on purposes of similition results. An oxid convert from Lithium om). ise there were no actiple locations are located by of +/-5m. In the sample showing sample to ographic control is junical samples. In the samples were collected by the samples were collected by the samples were collected by the sample sample samples were collected by the samples were collected by	ar indus e convein (Li_pp ljustmer cated by 4 Zone socations added as 200m. ampling reas of I ting of g	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide hts to assay data. handheld GPS to an are provided in the sadequate for asample density of either may be considered to ithium anomalism. geochemical sampling	
	Data spacing and distribution	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	elemendiscussi explora used to (Li ₂ 0_pr Otherw Soil samaccurac Location Diagram report. The top geocher The soil 200m x Further tighten Not appresults. Not appresults.	on purposes of similition results. An oxid convert from Lithium om). ise there were no actiple locations are located by of +/-5m. In the sample showing sample to ographic control is junical samples. In the samples were collected by the samples were collected by the samples were collected by the sample sample samples were collected by the samples were collected by	ar indus e convein (Li_pp ljustmer cated by 4 Zone socations cated at a 00m. ampling reas of I ting of g	try trends and rsion rate 2.1527 was sm) to Lithium di-oxide ats to assay data. handheld GPS to an ace provided in the sadequate for a sample density of either may be considered to ithium anomalism. geochemical sampling geochemical sampling	

Criteria	JORC Code Explanation	Commentary
geological	known, considering the deposit type.	The data is primarily an initial exploration reconnaissance
structure	If the relationship between the drilling	sampling program and is useful for identifying broad
	orientation and the orientation of key	geological trends.
	mineralised structures is considered to have	The orientation of the sample lines is perpendicular to the
	introduced a sampling bias, this should be	strike of regional structures and geological contacts.
	assessed and reported if material.	The orientation of sampling is considered appropriate with
		respect to the structure and targets being tested and the reconnaissance nature of the sampling.
		Not applicable for this type of sampling.
Sample	The measures taken to ensure sample	The auger contractor despatched all samples as one batch to
security	security.	the SGS laboratory in Perth. Flynn were notified when
security	security.	samples arrived. The samples were not left unattended.
		The laboratory was sent a sample submission sheet detailing
		the sample numbers, method of sample preparation and
		analyses and a full list of analytes.
		The sample submission sheet was cross referenced with the
		samples on arrival at the laboratory.
		No sample preparation or analyses was to commence if
		there were any discrepancies.
Audits or	The results of any audits or reviews of	Sampling and assaying techniques are industry-standard.
reviews	sampling techniques and data.	No external audit has been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties,	The Parker Dome project, comprising exploration licences E77/2091 and E77/1965, is located on the north-eastern flank of the Parker Dome granitoid, positioned approximately 25km southeast of Marvel Loch and 54km
status	native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	southeast of Southern Cross, at 119°44′E and 31° 37′S. The project is situated on the Cheritons Find 1:100,000 (SH 50-16 2834) GSWA Map sheet and the Southern Cross 1:250,000 (SH 50-16) GSWA Map sheet. Flynn Gold Limited has entered into a binding Option Agreement to acquire the two exploration licences (E77/1965 and E77/2091). Refer to FG1 ASX announcement dated 11 Dember 2023 for details of the commercial terms.
		The project is located on Unallocated Crown Land, within the Yilgarn Mineral Field (77). The eastern margin of E77/2091 clips the Jilbadji C Class Nature Reserve (R 24049). The project is situated within the Marlinyu Ghoorlie Native Title Claim, (WC2017/007). The region is administered by the South West Aboriginal Land and Sea Corporation, (ARB) 15, Aboriginal Representative Body.
		There are no impediments to the security of tenements
		The tenements are in good standing and there are no known impediments to exploration on the properties.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous historical exploration work by other companies includes geochemical surface sampling, mapping, airborne and surface geophysical surveys, RAB, AC, RC and diamond drilling.
		The most significant historical exploration has been undertaken by: • Kennecott Exploration (Australia) Pty Ltd • Sons of Gwalia Ltd Gondwana Resources Ltd • Southern Cross Goldfields Ltd • Black Oak Minerals Limited

Cuitoria	IODC Code Fundamentian	Commandon
Criteria Geology	JORC Code Explanation Deposit type, geological setting and style of mineralisation.	Exploration at the Parker Dome project is targeting lithium pegmatite deposits such as Mt Holland. Secondary targets include Archaean structurally controlled mesothermal lode gold deposits such as Nevoria and Yilgarn Star and komatiite hosted nickel mineralisation such as Flying Fox.
		The Parker Dome project is located in the Southern Cross Granite-Greenstone Terrane within the southern portion of the Yilgarn Mineral Field, centred approximately 25km southeast of the township of Marvel Loch. The Parker Dome project overlies the structurally complex granite-greenstone package of the Parker Range Greenstone Belt, flanking the north-eastern perimeter of the north-westerly elongated 'ovoid shaped' gneissic Parker Dome.
		The project contains an interlayered mafic/ultramafic/sediment/felsic volcanic package over a strike of 12km presenting pegmatite lithium targets, sheared mafic/ultramafic contact gold mineralisation targets, multihorizon BIF related gold targets and ultramafic nickel targets.
		Regionally the greenstone lithologies of the Southern Cross Province consist of tholeiitic basalt, silicate facies Banded Iron Formation, basaltic komatiite, komatiite and metasedimentary pelitic to psammitic rocks with layered para-amphibolites developed along the margins of the intrusive granitic-gneissic domes.
		The project is located approximately 13km southeast of the Nevoria gold mine, 3.5km east of the Southern Star open cut gold mine, 8.6km east of the Centenary gold mine, and 6.5 km southeast of the Yilgarn Star open cut gold mine. The project is located 20km northeast of the Rio lithium pegmatite target, 21km northeast of the Dulcie West lithium pegmatite target, 22km northeast of the Estrella lithium prospect and 49km north of the Mt Holland lithium mine. The project is located 16km east of the Mt Cauden iron ore mine and 92km north of the Flying Fox nickel mine.
		The Parker Dome project can be considered prospective for pegmatite hosted lithium caesium-tantalum (LCT) style mineralisation associated with fertile magmatic intrusions. In the Yilgarn Craton, lithium-rich pegmatites have a spatial, geochemical and geochronological association with these post-tectonic granitic intrusions.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole	Not applicable for the reporting of geochemical sampling results. No Drilling undertaken. No new drilling is discussed in this announcement; however, the following ASX Announcements are referenced:
	collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	ASX Announcement 11 December 2023 – Lithium Project Acquired in Mt. Holland Belt with Multiple Pegmatite Drill Targets
	 dip and azimuth of the hole down hole length and interception depth hole length. 	ASX Announcement 15 December 2023 – Soil Sampling Program Commences at Parker Dome Lithium Project. Coordinates of all auger samples are included in Table 1.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No significant assay intercepts have been reported in this announcement.

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Flynn Gold Limited has reported raw assays for soil sampling with no further criteria applied. Not applicable for the reporting of soil sampling results. No metal equivalent values are used.
Relationship between mineralisati on widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Soil sampling generate a set of point data. In aggregation these may define an anomaly whose size and geometry becomes apparent. No structural context is gleaned from this dataset. Not applicable for the reporting of soil or rock chip sampling results. Not applicable for the reporting of soil or rock chip sampling results.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The company believes this announcement is a balanced report, and that all material information has been reported. The reporting level is appropriate for early-stage exploration. Results have been reported for the main elements targeted (Be, Cs, Li ₂ O, Nb, Rb, Sn, Ta) for all soil samples. Interpretation of other elements included in the assay method is ongoing. Results summarised in the report are referenced to appropriate detail for large datasets Not applicable for the reporting of soil sampling results.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Refer to body of text and this appendix. All meaningful and material information has been included in the body of the text. The use of exploration data used as background for information in this report, has been referenced to earlier announcements where the data source and technical descriptions have been included. There is no other exploration data which is considered material to the results reported in this announcement.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work is described in the body of the announcement Further work is proposed and is subject to both budgetary constraints and to new information coming to hand which may lead to changes in the proposed work. Refer to body of report.

