ASX RELEASE / 06 February 2024 Near surface high grade drilling results provide positive indicators for development at Adina #### **HIGHLIGHTS** - Assay results from circa 4,700m of resource delineation drilling undertaken in Q4 2023 continue to demonstrate the thick, shallow, high-grade nature of mineralisation at the largescale Adina Lithium Deposit. - The Adina Lithium Deposit includes a substantial zone of near surface mineralisation (Main Zone) highlighting the potential for open pit mining with a low waste to ore strip ratio. - Results from the Main Zone (MZ) include: - o 61.9m at 1.40% Li₂O from 3.5m (AD-23-135, MZ) - o 52.8m at 1.46% Li₂O from 19.0m (AD-23-129, MZ) - 40.5m at 1.93% Li₂O from 69.5m (AD-23-093, MZ) - o 27.1m at 1.72% Li₂O from 52.2m (AD-23-123, MZ) - New intersections in the Footwall Zone (FWZ) continue to return high grade results, enabling higher value zones of mineralisation to be targeted in initial mining scenarios: - o 25.9m at 1.59% Li₂O from 275.0m (AD-23-093, FWZ) - o 29.4m at 1.21% Li₂O from 286.6m (AD-23-106, FWZ) - o 15.3m at 1.60% Li₂O from 229.3m (AD-23-111, FWZ) - o 14.2m at 1.53% Li₂O from 234.9m & 14.3m at 1.26% Li₂O from 264.7m (AD-23-115) - o 6.6m at 1.89% Li₂O from 208.7m & 27.9m at 1.31% Li₂O from 225.3m (AD-23-125) - o 34.9m at 1.09% Li₂O from 235.4m incl. 17.6m at 1.46% Li₂O (AD-23-130A, FWZ) - Regular receipt of assay results ensures update to Adina Inferred Mineral Resource Estimate of 59Mt at 1.12% Li₂O on track for completion in H1 2024 - Project studies are advancing and on track for completion in H2 2024 Lithium explorer / developer Winsome Resources (ASX:WR1; "Winsome" or "the Company") is pleased to announce further excellent results from resource delineation drilling at its 100%-owned Adina Lithium Project in the Eeyou Istchee James Bay region of Quebec, Canada. Results continue to highlight the large scale and positive grade characteristics of the Adina Lithium Project as the Company progresses towards a Mineral Resource Update towards the end of H1 2024 and initial project studies in H2 2024. #### WINSOME'S MANAGING DIRECTOR CHRIS EVANS SAID: "It is pleasing to be able to provide our shareholders with another set of assay results from the 2023 resource delineation drill programme. The aim is to provide consistency for resource modelling and project studies and these intersections are certainly consistent with the previous excellent results at Adina. What is especially encouraging is the mineralisation is oriented in a manner likely to be favourable to a low strip open pit operation, which I anticipate will prove positive in our development studies later this year. The board and I have been through previous lithium price cycles in recent years and therefore understand the ingredients for a successful, profitable project, regardless of the prevailing short-term commodity pricing environment. We anticipate the current project studies will demonstrate Adina is a robust project which will be attractive to investors and funding partners. We look forward to sharing the results of these studies when they are completed later this year." Recently received drilling results are summarised in Table 1 below and are from 13 infill resource delineation holes representing 4,693 metres of drilling completed in Q4 2023 at Adina. Assay results are pending from another 13,000m of drilling completed in 2023, which continue to be received in line with expected turn-around times as advised previously due to the use of multiple laboratory contractors. Winsome remains confident all 2023 results will be received in the near term enabling it to proceed with an update to the Mineral Resource Estimate (MRE) for Adina which currently sits at 59Mt at 1.12% Li₂O, classified in the Inferred category (refer to ASX Announcement 11 December 2023). This update is expected to include material in the higher confidence Indicated category due to the closer spacing of drill data now available. Table 1. New mineralised intercepts from infill drilling, Adina Main | Hole | Intercepts | Setting | Zone | |-----------|--|---------|----------| | AD-23-093 | 1.93% Li ₂ O over 40.5m from 69.5m to 110.0m | Infill | Main | | | 0.88% Li ₂ O over 11.5m from 249.0m to 260.5m & | 1 | Footwall | | | 1.59% Li ₂ O over 25.9m from 275.0m to 300.9m | | | | AD-23-106 | 1.66% Li ₂ O over 27.6m from 107.2m to 134.8m | Infill | Main | | | 1.29% Li ₂ O over 8.9m from 267.1m to 276.0m & | | Footwall | | | 1.21% Li ₂ O over 29.4m from 286.6m to 316.0m | | | | AD-23-108 | 1.48% Li ₂ O over 23.8m from 32.1m to 55.9m & | Infill | Main | | | 2.19% Li ₂ O over 11.4m from 91.8m to 103.2m | | | | AD-23-111 | 1.44% Li ₂ O over 9.8m from 17.9m to 27.7m | Infill | Main | | | 1.54% Li ₂ O over 11.0m from 197.6m to 208.6m & | | Footwall | | | 1.60% Li ₂ O over 15.3m from 229.3m to 244.6m | | | | AD-23-115 | 1.50% Li ₂ O over 17.8m from 34.2m to 52.0m | Infill | Main | | | 1.53% Li ₂ O over 14.2m from 234.9m to 249.1m & | | Footwall | | | 1.26% Li ₂ O over 14.3m from 264.7m to 279.0m | | | | AD-23-123 | 1.72% Li ₂ O over 27.1m from 52.2m to 79.3m | Infill | Main | | AD-23-125 | 2.78% Li ₂ O over 6.7m from 6.2m to 12.9m & | Infill | Main | | | 1.44% Li ₂ O over 32.9m from 30.5m to 63.4m | | | | Hole | Intercepts | Setting | Zone | |------------|--|---------|----------| | | 1.89% Li ₂ O over 6.6m from 208.7m to 215.3m & 1.31% Li ₂ O over 27.9m from 225.3m to 279.0m | | Footwall | | AD-23-129 | 1.46% Li ₂ O over 52.8m from 19.0m to 71.8m | Infill | Main | | | 1.13% Li ₂ O over 13.5m from 217.1m to 230.6m & 0.99% Li ₂ O over 10.4m from 239.6m to 250.0m | | Footwall | | AD-23-130A | 1.26% Li ₂ O over 45.9m from 35.6m to 81.5m incl. 2.00% Li ₂ O over 12.4m from 35.6m to 48.0m incl. 2.19% Li ₂ O over 9.7m from 55.3m to 65.0m | Infill | Main | | | 1.09% Li ₂ O over 34.9m from 235.4m to 270.3m incl 1.46% Li ₂ O over 17.6m from 235.4m to 253.0m & 1.52% Li ₂ O over 7.2m from 385.9m to 393.2m | | Footwall | | AD-23-135 | 1.40% Li ₂ O over 61.9m from 3.5m to 65.4m incl 1.95% Li ₂ O over 19.1m from 3.5m to 22.6m | Infill | Main | | | 1.46% Li ₂ O over 8.7m from 230.5m to 239.2m & 1.44% Li ₂ O over 11.6m from 257.5m to 269.1m | | Footwall | #### **Commentary on Main Zone Results** Drilling results from the Main Zone continue to return thick, high grade intersections close to surface as shown in Table 1 and Figures 1 and 2. Resource delineation drilling is designed to intersect pegmatite zones as close as possible to perpendicular meaning the thicknesses reported here are believed to approximate true thickness. In addition to the positive grade and thickness of these intersections the infill drilling is also confirming the morphology of the pegmatites of the Main Zone could be favourable for the development of Adina. The Main Zone is relatively shallow dipping in the northern part of the Adina Deposit (refer Figure 1) which is anticipated to result in a potential low strip open pit operation (based on initial mine design work). Figure 1. Cross Section 668860mE showing Main Zone drilling intersections (refer Figure 5 for location) 06 February 2024 Winsome is progressing on the development pathway for Adina, with initial project studies planned to be published in H2 2024. Environmental baseline and infrastructure studies **have recommenced** for 2024, in consultation with representatives from the local Eeyou Istchee James Bay Cree people and other local stakeholders in Quebec. Figure 2. Cross Section 669220mE showing recent drilling intersections (refer Figure 5 for location) #### **Commentary on Footwall Zone Results** Drilling results from the Footwall Zone has successfully defined discrete zones of increased grade and thickness, such as - - 25.9m at 1.59% Li₂O (AD-23-093) - 15.3m at 1.60% Li₂O from 229.3m, (AD-23-111) - 14.2m at 1.53% Li₂O from 234.9m and 14.3m at 1.26% Li₂O (AD-23-115). These complement previously announced excellent results of 20.4m at 1.64% Li₂O (AD-23-087), 49.1m at 1.51% Li₂O (AD-23-124) and 35.5m at 1.49% Li₂O (AD-23-134A)¹. ¹ "High grade infill drilling results at Adina Lithium Project" ASX Announcement 17 January 2024 06 February 2024 It is worth noting certain drillholes are intersecting a significant cumulative thickness of pegmatite mineralisation, for example 91.6m at approximately 1.2% Li₂O in AD-23-129 and 88.0m at approximately 1.3% Li₂O in AD-23-130A. These drillholes are believed to have intersected dilation zones formed by the pegmatite dyke swarms, related to openings along the structures where these dykes have been injected. Figure 3. Adina Lithium Project tenure highlighting Adina Main (hosts both Main Zone and Footwall Zone) #### **Commentary on Current Drilling** Recent drilling at Adina has focussed on extensions to mineralisation, outside the Mineral Resource, as shown on Figure 4. Drilling has tested extensions to mineralisation to the north (up dip from intersections presented in this announcement and previous), to the west (between 2023 drilling and the previous Metals Tech drilling) and to the east (testing areas between the Main Zone and Adina East as well as testing extensions to mineralisation at Adina East). Drilling aims to systematically test for mineralisation along the 3.1 kilometres of strike where lithium mineralisation has been intersected to date (Figure 3). In addition, drilling will test targets identified by the interpretation of gravity surveys and recent magnetic surveys. These will seek to identify similar geological settings to those which host Adina, as well as increasing the global Adina Mineral Resource. This announcement is authorised for release by the Board of Winsome Resources Limited. For further information please contact: #### INVESTORS Chris
Evans - Managing Director Winsome Resources administration@winsomeresources.com.au #### **MEDIA** **Josh Nyman** - General Manager Spoke josh@hellospoke.com.au +61 413 243 440 #### ABOUT WINSOME RESOURCES Winsome Resources (ASX: WR1) is a Perth-based, lithium focused exploration and development company with four project areas in Quebec, Canada. All of Winsome's projects – Adina, Cancet, Sirmac-Clappier and Tilly are 100% owned by the Company. Recently the Company acquired a further 47km² of claims at the Tilly Project, located near Adina, and 29 claims of the Jackpot Property, immediately north of Adina. The most advanced of Winsome's projects - Adina and Cancet, provide shallow, high grade lithium deposits and are strategically located close to established infrastructure and supply chains. In addition to its impressive portfolio of lithium projects in Quebec, Winsome Resources owns 100% of the offtake rights for lithium, caesium and tantalum from Power Metals Corp (TSXV:PWM) Case Lake Project in Eastern Ontario, as well as a 19.6% equity stake in PWM. The Company recently divested Decelles and Mazerac, two early stage projects located near the Quebec mining town of Val-d'Or, to PWM in exchange for an increased shareholding. Winsome is led by a highly qualified team with strong experience in lithium exploration and development as well as leading ASX listed companies. **More details:** www.winsomeresources.com.au #### **CAUTION REGARDING FORWARD-LOOKING INFORMATION** This document contains forward-looking statements concerning Winsome. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory, including environmental regulation and liability and potential title disputes. Forward-looking statements in this document are based on the Company's beliefs, opinions and estimates of Winsome as of the dates the forward-looking statements are made, and no obligation is assumed to update forward-looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. #### COMPETENT PERSON'S STATEMENT The information in this announcement relating to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Antoine Fournier, VP Exploration of Winsome Resources Ltd. Mr Fournier is a member of the Quebec Order of Geologists (OGQ #0516), a Registered Overseas Professional Organisation as defined in the ASX Listing Rules, and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Fournier consents to the inclusion in this release of the matters based on the information in the form and context in which they appear. #### PREVIOUSLY ANNOUNCED EXPLORATION RESULTS Winsome confirms it is not aware of any new information or data which materially affects the information included in the original market announcements referred to in this announcement. Winsome confirms the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements. -ends- Figure 4: Overview of Adina Main showing Mineral Resource wireframes and drilling (including drilling where assays awaited). Figure 5: Detailed view of Mineral Resource area showing recent drilling results. 06 February 2024 ### WINSOMERESOURCES **Appendix 1**: Significant Drillhole Lithium Intercepts – New Results Adina Main ². | Hole ID | Easting
(NAD83) | Northing
(NAD83) | RL
(m) | Dip
(degrees) | Azimuth (degrees) | From
(m) | To (m) | Length
(m) | Li₂O
% | Zone | |-----------|--------------------|---------------------|-----------|------------------|-------------------|-------------|---------------|---------------|-----------|------| | | | | | | | | | | | | | AD-23-093 | 668869 | 5908740 | 519 | -50 | 360 | 69.5 | 110.0 | 40.5 | 1.93 | Mair | | | | | | | | 249.0 | 260.5 | 11.5 | 0.88 | FW | | | | | | | | 275.0 | 300.9 | 25.9 | 1.59 | FW | | AD-23-098 | 668876 | 5909008 | 519 | -45 | 360 | 9.0 | 26.0 | 17 | 1.02 | Mair | | | | | | | | 35.8 | 41.0 | 5.2 | 1.93 | Mair | | | | | | | | 178.3 | 181.6 | 3.3 | 1.00 | FW | | | | | | | | 208.9 | 211.6 | 2.7 | 1.96 | FW | | | | | | | | 233.9 | 237.0 | 3.1 | 0.72 | FW | | | | | | | | 245.0 | 252.2 | 7.2 | 1.18 | FW | | AD-23-106 | 668966 | 5908702 | 512 | -50 | 360 | 107.2 | 134.8 | 27.6 | 1.66 | Mai | | | | | | | | 267.1 | 276.0 | 8.9 | 1.29 | FW | | | | | | | | 286.6 | 316.0 | 29.4 | 1.21 | FW | | AD-23-108 | 668547 | 5908711 | 515 | -50 | 360 | 32.1 | 55.9 | 23.8 | 1.48 | Maii | | | | | | | | 91.8 | 103.2 | 11.4 | 2.19 | Maii | | | | | | | | 225.6 | 230.8 | 5.2 | 1.19 | FW | | | | | | | | 253.3 | 271.7 | 18.4 | 0.82 | FW | | AD-23-111 | 669217 | 5908887 | 515 | -50 | 360 | 17.9 | 27.7 | 9.8 | 1.44 | Maii | | | | | | | | 197.6 | 208.6 | 11.0 | 1.54 | FW | | | | | | | | 229.3 | 244.65 | 15.3 | 1.60 | FW | | | | | | | | 249.9 | 253.0 | 3.1 | 0.64 | FW | | | | | | | | 258.1 | 261.7 | 3.6 | 0.97 | FW | $^{^2}$ Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 5m thickness and widths including up to 7m internal dilution. 06 February 2024 ### WINSOMERESOURCES | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Length | Li ₂ O | Zon | |------------|-----------|----------|-----|-----------|-----------|-------|-------|--------|-------------------|-----| | | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | AD-23-115 | 668635 | 5908730 | 516 | -50 | 360 | 34.2 | 52.0 | 17.8 | 1.50 | Mai | | | | | | | | 92.5 | 102.3 | 9.7 | 0.78 | Mai | | | | | | | | 234.9 | 249.1 | 14.2 | 1.53 | FV | | | | | | | | 264.7 | 279.0 | 14.3 | 1.26 | F۷ | | AD-23-122 | 668582 | 5908633 | 513 | -80 | 360 | 199.3 | 206.3 | 7.0 | 1.80 | | | AD-23-123 | 668582 | 5908749 | 517 | -45 | 360 | 24.3 | 27.7 | 3.4 | 0.99 | Ма | | | | | | | | 52.2 | 79.3 | 27.1 | 1.72 | Ma | | | | | | | | 113.5 | 118.6 | 5.1 | 0.87 | FV | | | | | | | | 212.5 | 220.8 | 8.3 | 0.94 | FV | | AD-23-125 | 669218 | 5908835 | 515 | -50 | 360 | 6.2 | 12.9 | 6.7 | 2.78 | Ma | | | | | | | | 30.5 | 63.4 | 32.9 | 1.44 | Ma | | | | | | | | 208.7 | 215.3 | 6.6 | 1.89 | F۷ | | | | | | | | 225.3 | 253.2 | 27.9 | 1.31 | F۷ | | AD-23-129 | 668914 | 5908820 | 519 | -50 | 360 | 19.0 | 71.8 | 52.8 | 1.46 | Ма | | | | | | | | 205.1 | 209.7 | 4.6 | 1.38 | F۷ | | | | | | | | 217.1 | 230.6 | 13.5 | 1.13 | F۷ | | | | | | | | 239.6 | 250 | 10.4 | 0.99 | F۷ | | | | | | | | 281.6 | 291.9 | 10.3 | 0.78 | F۷ | | AD-23-130A | 669224 | 5908795 | 515 | -60 | 360 | 35.6 | 81.5 | 45.9 | 1.26 | Ма | | | including | | | | | 35.6 | 48.0 | 12.4 | 2.00 | Ма | | | including | | | | | 55.3 | 65.0 | 9.7 | 2.19 | Ма | | | | | | | | 235.4 | 270.3 | 34.9 | 1.09 | F۷ | | | including | | | | | 235.4 | 253.0 | 17.6 | 1.46 | F۷ | | | | | | | | 385.9 | 393.2 | 7.2 | 1.52 | F۷ | | AD-23-135 | 668858 | 5908865 | 526 | -50 | 360 | 3.5 | 65.4 | 61.9 | 1.40 | Ма | | | including | | | | | 3.5 | 22.6 | 19.1 | 1.95 | Ма | | | including | | | | | 28.6 | 46.4 | 17.8 | 1.81 | Ма | | Hole ID | Easting
(NAD83) | Northing
(NAD83) | RL
(m) | Dip (degrees) | Azimuth (degrees) | From
(m) | To (m) | Length
(m) | Li ₂ O
% | Zone | |-----------|--------------------|---------------------|-----------|----------------------|-------------------|-------------|---------------|---------------|------------------------|------| | | (1 11 12 00) | (1111200) | () | (4.59.555) | (4.09.000) | 213.1 | 217.1 | 4.0 | 1.31 | FW | | | | | | | | 230.45 | 239.15 | 8.7 | 1.46 | FW | | | | | | | | 257.5 | 269.1 | 11.6 | 1.44 | FW | | AD-23-142 | 668550 | 5908667 | 516 | -50 | 360 | 61.2 | 70.4 | 9.2 | 1.04 | Main | | | | | | | | 98.7 | 105.2 | 6.5 | 1.21 | Main | | | | | | | | 114.15 | 118.8 | 4.7 | 1.70 | Main | | | | | | | | 124.1 | 129.3 | 5.2 | 1.54 | Main | | | | | | | | 137.6 | 144.1 | 6.5 | 0.99 | Main | | | | | | | | 255.6 | 257.5 | 1.9 | 1.74 | FW | | | | | | | | 275.75 | 281.75 | 6.0 | 0.84 | FW | #### Appendix 2. Mineral Resources at the Adina Lithium Project | Zone | | Inferred | | Total | | | | | |----------|----------------|--------------------------|-----------------------|----------------|--------------------------|-----------------------|--|--| | | Tonnes
(Mt) | Li ₂ O
(%) | Contained
LCE (Mt) | Tonnes
(Mt) | Li ₂ O
(%) | Contained
LCE (Mt) | | | | Main | 28.6 | 1.12 | 0.79 | 28.6 | 1.12 | 0.79 | | | | Footwall | 29.9 | 1.12 | 0.83 | 29.9 | 1.12 | 0.83 | | | | Total | 58.5 | 1.12 | 1.62 | 58.5 | 1.12 | 1.62 | | | Refer to the Appendices in the ASX Announcement of 11 December 2022 for drilling data and other information prescribed by the JORC Code. Winsome confirms it is not aware of any new information or data which materially affects the Mineral Resource or the supporting information included in the original market announcements referred to in this announcement. The Company also confirms all material assumptions and parameters underpinning the Mineral Resource estimates
continue to apply and have not materially changed. The Company notes, as disclosed in this announcement and in previous announcements, drilling is currently underway at Adina and results presented in this announcement will be incorporated into an update to the Mineral Resource currently planned for the first half of 2024. Winsome confirms the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements. Appendix 3: Significant Drillhole Lithium Intercepts – Previous Results ³. All Results included in Mineral Resource. | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li ₂ O | Zone | |-------------------------|-----------|-------------------|-----|-----------|-----------|------|-------|-----------|-------------------|------| | | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | AD-22-001 ² | 668477 | 5908772 | 511 | -45 | 135 | 3.0 | 66.1 | 63.1 | 1.35 | Main | | | including | | | | | 3.0 | 11.0 | 8.0 | 1.61 | Main | | | including | | | | | 23.0 | 39.0 | 16.0 | 2.16 | Main | | | including | | | | | 60.4 | 66.1 | 5.7 | 2.37 | Main | | | including | | | | | 73.1 | 85.8 | 12.7 | 1.89 | Main | | | | further including | | | | 73.1 | 77.2 | 4.1 | 4.19 | Main | | AD-22-002 ² | 668503 | 5908851 | 511 | -45 | 135 | 6.0 | 11.0 | 5.0 | 0.60 | Mair | | AD-22-003 ³ | 668555 | 5908901 | 513 | -45 | 135 | 85.0 | 89.0 | 4.0 | 2.08 | Mair | | AD-22-004 ³ | 668513 | 5908739 | 512 | -45 | 135 | 87.1 | 90.2 | 3.1 | 1.50 | Mair | | | | | | | | 93.0 | 96.0 | 3.0 | 1.18 | Mair | | AD-22-005 ¹ | 668542 | 5908812 | 513 | -45 | 135 | 2.3 | 109.9 | 107.6 | 1.34 | Mair | | | including | | | | | 2.3 | 23.0 | 20.7 | 1.52 | Mair | | | including | | | | | 41.0 | 71.0 | 30.0 | 2.21 | Mair | | AD-22-005A ² | 668542 | 5908812 | 513 | -45 | 315 | 4.6 | 28.5 | 23.9 | 1.52 | Mair | | | including | | | | | 4.6 | 18.5 | 13.9 | 2.04 | Mair | | | | | | | | 78.6 | 84.4 | 5.8 | 1.59 | Mair | | AD-22-006 ³ | 668596 | 5908861 | 515 | -45 | 135 | 2.2 | 57 | 54.8 | 1.14 | Mair | | | including | | | | | 2.2 | 8 | 5.8 | 1.88 | Mair | | | including | | | | | 10 | 20 | 10.0 | 1.69 | Mair | | | including | | | | | 27 | 32 | 5.0 | 1.37 | Mair | | | including | | | | | 45 | 51 | 6.0 | 1.54 | Mair | | | | | | | | 66.2 | 78 | 11.8 | 0.55 | Mair | | AD-22-006B ³ | 668596 | 5908861 | 515 | -45 | 315 | 1 | 11 | 10.0 | 0.89 | Mair | ³ Refer footnotes to table for announcement details. Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 5m thickness and widths including up to 7m internal dilution. ### WINSOMERESQUECES 06 February 2024 | Hala ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li₂O | Zone | |------------------------|-----------|----------|-----|-----------|-----------|-------|-------|-----------|------|------| | Hole ID | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | | | | | | 34.1 | 37.45 | 3.35 | 1.46 | Main | | AD-22-007 ² | 668430 | 5908809 | 510 | -45 | 135 | 88.6 | 105.6 | 17.0 | 1.56 | Main | | | including | | | | | 98.6 | 105.6 | 7.0 | 2.72 | Main | | | | | | | | 141.9 | 151.4 | 9.5 | 0.69 | Main | | | | | | | | 232.8 | 287.0 | 54.2 | 1.04 | Main | | | including | | | | | 232.8 | 238.8 | 6.0 | 2.14 | Main | | | including | | | | | 249.0 | 260.0 | 11.0 | 1.14 | Main | | | including | | | | | 275.3 | 287.0 | 11.7 | 1.77 | Main | | | | | | | | 324.6 | 343.6 | 19.0 | 0.88 | Main | | | including | | | | | 324.6 | 329.6 | 4.6 | 2.01 | Main | | AD-22-008 ² | 668460 | 5908892 | 510 | -45 | 135 | 41.9 | 65.7 | 23.8 | 0.88 | Main | | | including | | | | | 41.9 | 48.9 | 7.0 | 1.31 | Main | | | including | | | | | 51.9 | 54.9 | 3.0 | 1.34 | Main | | | including | | | | | 60.5 | 63.5 | 3.0 | 1.89 | Main | | AD-22-009 ³ | 668512 | 5908942 | 511 | -45 | 135 | 33.9 | 37.9 | 4.0 | 0.26 | Main | | AD-23-010 ⁷ | 668441 | 5908641 | 511 | -55 | 360 | 106.3 | 133.0 | 26.7 | 1.01 | Main | | | including | | | | | 111.4 | 116.0 | 4.6 | 2.11 | Main | | | | | | | | 210.5 | 214.5 | 4.0 | 1.01 | FW | | | | | | | | 231.9 | 251.2 | 19.3 | 0.91 | FW | | | including | | | | | 237.0 | 240.8 | 3.8 | 2.20 | FW | | | including | | | | | 245.5 | 249.5 | 4.0 | 1.39 | FW | | | | | | | | 271.3 | 278.7 | 7.4 | 0.85 | FW | | AD-22-011 ³ | 668687 | 5908776 | 517 | -45 | 320 | 13.6 | 37.0 | 23.4 | 0.88 | Main | | | including | | | | | 28.0 | 37.0 | 9.0 | 1.70 | Main | | | | | _ | | | 51.0 | 72.0 | 21.0 | 0.82 | Main | | | including | | | | | 51.0 | 66.0 | 15.0 | 1.00 | Main | | | | | | | | 94.8 | 102.2 | 7.4 | 0.53 | Main | ### WINSOMERESQUECES 06 February 2024 | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li ₂ O | Zone | |------------------------|-----------|----------|-----|-----------|-----------|-------|-------|-----------|-------------------|------| | Hole ID | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | | | | | | | | | | | | AD-23-012 ⁹ | 669381 | 5908956 | 520 | -45 | 350 | 189.7 | 194.7 | 5.0 | 1.18 | FW | | | | | | | | 217.7 | 236.0 | 18.3 | 1.04 | FW | | AD-23-013 ⁹ | 669482 | 5908995 | 520 | -45 | 338 | 201.3 | 205.3 | 4.0 | 0.84 | FW | | | | | | | | 224.2 | 231.9 | 7.7 | 0.56 | FW | | AD-23-014 ⁹ | 669478 | 5908900 | 522 | -60 | 350 | 26.2 | 39.8 | 13.6 | 1.24 | Main | | AD-23-015 ⁹ | 669560 | 5908732 | 521 | -50 | 330 | 80.3 | 81 | 0.7 | 2.01 | Main | | | | | | | | 93.7 | 95 | 1.3 | 2.43 | Main | | | | | | | | 390.0 | 395.4 | 5.4 | 0.97 | FW | | | | | | | | 448.6 | 449.3 | 0.7 | 1.36 | FW | | AD-23-016 ⁹ | 669583 | 5908994 | 522 | -55 | 328 | 6.2 | 14.5 | 8.3 | 1.23 | Main | | | | | | | | 189 | 193.4 | 4.4 | 1.01 | FW | | | | | | | | 216.8 | 222 | 5.2 | 0.80 | FW | | AD-23-017 ⁹ | 669877 | 5908995 | 529 | -45 | 330 | 65.3 | 77.6 | 12.3 | 0.95 | Main | | AD-23-021 ⁷ | 669186 | 5908747 | 513 | -55 | 360 | 77.0 | 99.4 | 22.4 | 1.09 | Main | | | | | | | | 251.2 | 286.6 | 35.4 | 1.98 | FW | | AD-23-022 ⁶ | 669174 | 5908833 | 514 | -55 | 360 | 35.4 | 77 | 41.6 | 1.08 | Main | | | including | | | | | 35.4 | 42.2 | 6.8 | 1.97 | Main | | | including | | | | | 52.1 | 60.8 | 8.7 | 1.80 | Main | | | | | | | | 191.4 | 197.0 | 5.6 | 1.27 | FW | | | | | | | | 215.3 | 232.6 | 17.3 | 1.72 | FW | | | | | | | | 252.6 | 260.8 | 8.2 | 1.43 | FW | | AD-23-023 ⁷ | 669195 | 5908663 | 517 | -75 | 360 | 129.3 | 134.5 | 5.2 | 4.03 | Main | | | | | | | | 209.5 | 214.0 | 4.5 | 1.00 | Main | | | | | | | | 345.3 | 365.6 | 20.4 | 1.62 | FW | | AD-23-024 ⁷ | 669271 | 5908856 | 515 | -45 | 360 | 8.9 | 70.1 | 61.2 | 1.37 | Main | | | including | | | | | 29.0 | 36.0 | 7.0 | 2.10 | Main | | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li ₂ O | Zone | |-------------------------|-----------|----------|-----|-----------|-----------|-------|-------|-----------|-------------------|------| | noie iD | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | including | | | | | 62.0 | 70.1 | 8.1 | 2.60 | Main | | | | | | | | 217.1 | 224.4 | 7.3 | 1.35 | FW | | | | | | | | 239.0 | 242.6 | 3.6 | 1.25 | FW | | | | | | | | 254.0 | 259.2 | 5.2 | 2.30 | FW | | AD-23-024A ⁷ | 669271 | 5908856 | 515 | -50 | 360 | 9.0 | 21.4 | 12.4 | 1.01 | Main | | | | | | | | 32.4 | 60.0 | 27.6 | 1.59 | Main | | | including | | | | | 32.4 | 49.0 | 16.6 | 1.97 | Main | | | | | | | | 198.1 | 208.3 | 10.2 | 1.18 | FW | | | | | | | | 227.3 | 260.6 | 33.3 | 1.24 | FW | | | including | | | | | 249.1 | 260.6 | 11.5 | 1.89 | FW | | AD-23-025 ⁶ | 668898 | 5908704 | 514 | -55 | 340 | 110.5 | 140 | 29.5 | 1.16 | Main | | | including | | | | | 114.5 | 121.5 | 6.0 | 2.21 | Main | | | | | | | | 157.2 | 160.3 | 3.1 | 1.33 | Main | | | | | | | | 255.5 | 275.7 | 20.2 | 0.91 | FW | | | | | | | | 290.0 | 317.4 | 27.4 | 1.11 | FW | | | including | | | | | 290.0 | 312.0 | 22.0 | 1.26 | FW | | AD-23-026 ⁶ | 668898 | 5908704 | 514 | -78 | 340 | 135.5 | 171.0 | 35.5 | 0.89 | Main | | | including | | | | | 149.0 | 163.0 | 14.0 | 1.46 | Main | | AD-23-027 ⁶ | 668827 | 5908751 | 525 | -50 | 350 | 57 | 83.4 | 26.4 | 2.04 | Main | | | | | | | | 116.7 | 142.2 | 25.5 | 1.93 | Main | | | | | | | | 245.7 | 255.7 | 10.0 | 1.65 | Main | | | | | | | | 271.3 | 313.0 | 41.7 | 1.03 | FW | | | including | | | | | 271.3 | 290.8 | 19.5 | 1.32 | FW | | | including | | | | | 298.0 | 306.0 | 8.0. | 1.45 | FW | | | _ | | | | | 375.6 | 379.7 | 4.1 | 1.23 | FW | | AD-23-028 ⁵ | 668735 | 5908748 | 518 | -50 | 350 | 35.2 | 45.2 | 10 | 2.09 | Main | | | | | | | | 95.7 | 104.0 | 8.3 | 0.99 | Main | | Mr. Committee | | | | ~ C/ | | /////////////////////////////////////// | |---------------|-------------|------------|----------|--------------------|--------|---| | | | | - 2 | | | | | W . W A | | . . | | | | | | 1 ' A ' A L | ' ' | 1 1 4 1 | | | | 11/11 | | | | | | | | | | | | | | THE REAL PROPERTY. | 1 and | //// | | WI | , , , | | \cdots | | VIII - | 1/// | | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li₂O | Zone | |------------------------|-----------|----------|-----|-----------|-----------|--------|-------|-----------|------|------| | HOIE ID | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | | | | | | 253.0 | 276.2 | 23.2 | 1.02 | FW | | | | | | | | 284.2 | 294 | 9.8 | 0.46 | FW | | AD-23-029 ⁷ | 669002 | 5908666 | 514 | -55 | 350 | 139.0 | 170.0 | 31.0 | 1.45 | Main | | | including | | | | | 140.0 | 150.0 | 10.0 | 2.32 | Main | | | | | | | | 272.0 | 277.0 | 5.0 | 1.24 | FW | | | | | | | | 302.8 | 312.0 | 9.2 | 0.94 | FW | | | | | | | | 329.0 | 356.9 | 27.9 | 1.85 | FW | | AD-23-030 ⁵ | 668789 | 5908668 | 512 | -60 | 350 | 161.2 | 178.5 | 17.3 | 0.46 | Main | | | including | | | | | 174.4 | 178.5 | 4.1 | 1.24 | Main | | | | | | | | 204.6 | 210.5 | 5.9 | 0.67 | Main | | AD-23-031 ⁵ | 669002 | 5908666 | 514 | -75 | 350 | 158 | 216.9 | 58.9 | 0.37 | Main | | |
including | | | | | 191.3 | 198.4 | 7.1 | 0.84 | Main | | | including | | | | | 214.0 | 216.9 | 2.9 | 0.81 | Main | | AD-23-032 | 669381 | 5908756 | 520 | -50 | 350 | 75.7 | 76.7 | 1.0 | 2.41 | Main | | | | | | | | 278.6 | 290 | 11.4 | 1.23 | FW | | | | | | | | 312.45 | 323.7 | 11.3 | 1.14 | FW | | AD-23-033 ⁶ | 668521 | 5908640 | 512 | -75 | 360 | 172.7 | 178.0 | 5.3 | 1.41 | Main | | | | | | | | 378.2 | 381.2 | 3.0 | 1.11 | FW | | AD-22-034 ³ | 668852 | 5908687 | 517 | -45 | 340 | 112.9 | 129.9 | 17.0 | 1.32 | Main | | | including | | | | | 112.9 | 117.9 | 5.0 | 1.93 | Main | | | including | | | | | 121.9 | 128.9 | 7.0 | 1.67 | Main | | | | | | | | 156.9 | 164.4 | 7.5 | 1.28 | Main | | AD-22-035 ³ | 668634 | 5908726 | 519 | -45 | 315 | 41.6 | 101 | 59.4 | 1.26 | Main | | | including | | | | | 41.6 | 63 | 21.4 | 1.71 | Main | | | including | | | | | 78 | 101 | 23.0 | 1.49 | Main | | AD-22-036 ³ | 668687 | 5908776 | 517 | -45 | 360 | 28 | 83.5 | 55.5 | 1.35 | Main | | | including | | | | | 49 | 58 | 9.0 | 2.40 | Main | | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li ₂ O | Zone | |--------------------------|-----------|----------|-----|-----------|-----------|-------|--------|-----------|-------------------|------| | Hole ID | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | including | | | | | 62 | 71 | 9.0 | 1.51 | Main | | | including | | | | | 74 | 83.5 | 9.5 | 1.17 | Main | | | | | | | | 101.8 | 107.7 | 5.9 | 0.36 | Main | | | | | | | | 227.7 | 234.5 | 6.8 | 0.76 | Main | | AD-22-037 ³ | 668702 | 5908651 | 515 | -55 | 315 | 162.3 | 190.7 | 28.4 | 1.12 | Main | | | including | | | | | 162.3 | 179.7 | 17.4 | 1.48 | Main | | | | | | | | 207.7 | 213.1 | 5.4 | 1.75 | Main | | AD-22-039 ³ | 668702 | 5908651 | 515 | -45 | 360 | 135 | 142 | 7.0 | 0.59 | Main | | | | | | | | 154 | 160 | 6.0 | 2.37 | Main | | | | | | | | 166 | 170.6 | 4.6 | 0.97 | Main | | AD-23-038A ⁵ | 668789 | 5908668 | 511 | -60 | 350 | 152 | 162 | 10.0 | 1.17 | Main | | | | | | | | 303.4 | 337.5 | 34.1 | 0.69 | FW | | | including | | | | | 306.4 | 314.4 | 8.0 | 1.00 | FW | | | including | | | | | 318.8 | 323.6 | 4.8 | 1.47 | FW | | AD-23-040 ^{5,6} | 668769 | 5908781 | 519 | -45 | 360 | 49.9 | 92.7 | 42.8 | 1.71 | Main | | | | | | | | 244.2 | 255.5 | 11.3 | 1.38 | FW | | | | | | | | 270.6 | 294.1 | 23. 5 | 1.15 | FW | | | including | | | | | 270.6 | 278.7 | 8.1 | 1.55 | FW | | | including | | | | | 283.7 | 294.1 | 10.4 | 1.32 | FW | | AD-22-041 ³ | 668872 | 5908797 | 520 | -45 | 360 | 26.3 | 71 | 44.7 | 1.56 | Main | | | including | | | | | 26.3 | 41.4 | 15.1 | 2.00 | Main | | | including | | | | | 48 | 66 | 18.0 | 1.92 | Main | | AD-22-042 ³ | 668968 | 5908803 | 520 | -45 | 340 | 32.7 | 80.1 | 47.4 | 1.64 | Main | | | including | | | | | 32.7 | 47.3 | 14.6 | 2.15 | Main | | | including | | | | | 55.1 | 78.1 | 23.0 | 1.78 | Main | | | | | | | | 100.4 | 104.65 | 4.25 | 1.39 | Main | | AD-22-043 ⁴ | 670003 | 5909088 | 531 | -45 | 340 | 62.3 | 74.5 | 12.2 | 1.50 | Main | | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li ₂ O | Zone | |------------------------|-----------|----------|-----|-----------|-----------|-------|-------|-----------|-------------------|------| | Hole ID | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | including | | | | | 62.3 | 69.5 | 7.2 | 2.08 | Main | | AD-23-044 ⁴ | 670165 | 5909126 | 533 | -45 | 340 | 83.4 | 89.4 | 6.0 | 1.77 | Main | | | including | | | | | 83.4 | 85.4 | 2.0 | 3.63 | Main | | AD-23-045 ⁴ | 670312 | 5909224 | 533 | -45 | 330 | 47.4 | 62.4 | 15.0 | 1.26 | Main | | | including | | | | | 50.4 | 54.4 | 4.0 | 2.51 | Main | | AD-22-046 ³ | 668968 | 5908803 | 520 | -65 | 340 | 45 | 66 | 21.0 | 1.09 | Main | | | including | | | | | 45 | 49 | 4.0 | 1.20 | Main | | | including | | | | | 52 | 65 | 13.0 | 1.33 | Main | | | | | | | | 84 | 90 | 6.0 | 2.82 | Main | | AD-23-047 ⁶ | 669031 | 5908845 | 520 | -45 | 340 | 17.8 | 64.25 | 46.45 | 1.73 | Main | | | | | | | | 84.1 | 87.0 | 2.9 | 1.52 | Main | | | | | | | | 215.5 | 241.5 | 26.0 | 1.32 | FW | | | including | | | | | 219.5 | 229.2 | 9.7 | 2.32 | FW | | | | | | | | 257.7 | 263.9 | 6.2 | 1.76 | FW | | | | | | | | 281.7 | 293.1 | 11.4 | 1.71 | FW | | | | | | | | 314.6 | 320.0 | 5.4 | 0.80 | FW | | | | | | | | 410.2 | 417.7 | 7.5 | 1.28 | FW | | AD-23-048 ⁵ | 668702 | 5908651 | 515 | -75 | 0 | 198.7 | 201.7 | 3.0 | 3.32 | Main | | | | | | | | 208 | 211 | 30.0 | 1.35 | Main | | AD-23-049 ⁹ | 669381 | 5908756 | 520 | -70 | 350 | 130.5 | 133.5 | 3.0 | 1.16 | Main | | | | | | | | 142.6 | 145.6 | 3.0 | 1.43 | Main | | AD-23-050 ⁵ | 668789 | 5908668 | 512 | -75 | 350 | 181.5 | 184.5 | 30.0 | 1.14 | Main | | | | | | | | 307.4 | 317.9 | 10.5 | 0.90 | FW | | AD-23-051 ⁵ | 668769 | 5908781 | 519 | -75 | 0 | 15.9 | 31.1 | 15.2 | 1.29 | Main | | | | | | | | 70.5 | 75.5 | 5.0 | 1.50 | Main | | | | | | | | 219.9 | 230 | 10.1 | 2.44 | FW | | | | | | | | 260.6 | 281.6 | 21.0 | 1.10 | FW | | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li ₂ O | Zone | |-------------------------|-----------|----------|-----|-----------|-----------|--------|--------|-----------|-------------------|------| | HOIE ID | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | | | | | | | | | | | | AD-23-052 ¹⁰ | 668566 | 5908827 | 518 | -60 | 360 | 4.3 | 13.5 | 9.2 | 1.31 | Main | | | | | | | | 47.2 | 53.2 | 6.0 | 1.04 | Main | | | | | | | | 68.6 | 75.2 | 6.6 | 1.00 | Main | | | | | | | | 166.3 | 168.35 | 2.0 | 2.52 | FW | | | | | | | | 177.3 | 180.6 | 3.3 | 1.78 | FW | | | | | | | | 207.5 | 212 | 4.5 | 1.15 | FW | | | | | | | | 231.6 | 234.3 | 2.7 | 0.94 | FW | | AD-23-053 ⁵ | 669034 | 5908748 | 512 | -45 | 360 | 73.5 | 115.2 | 41.7 | 0.83 | Mair | | | | | | | | 80.6 | 99.2 | 18.6 | 1.16 | Mair | | AD-23-054 ⁵ | 669090 | 5908854 | 512 | -45 | 360 | 20.2 | 64.2 | 44.0 | 0.48 | Mair | | | | | | | | 200.7 | 214.7 | 14.0. | 1.29 | FW | | AD-22-055 ³ | 668944 | 5908718 | 512 | -55 | 330 | 95.5 | 105.5 | 10 | 1.55 | Mair | | AD-23-057 ⁵ | 669034 | 5908748 | 512 | -65 | 360 | 66.5 | 99.1 | 32.6 | 1.34 | Mair | | | including | | | | | 66.5 | 78.2 | 11.7 | 2.27 | Mair | | | including | | | | | 86.9 | 94.9 | 8.0 | 1.61 | Maiı | | AD-23-058 ¹⁰ | 669381 | 5908670 | 517 | -70 | 350 | 348.0 | 357.0 | 9.0 | 0.69 | FW | | AD-22-059 ³ | 668944 | 5908718 | 512 | -82 | 330 | 123 | 167 | 44.0 | 1.08 | Mair | | | including | | | | | 123 | 133 | 10.0 | 1.37 | Maiı | | AD-23-060 ⁵ | 669034 | 5908748 | 512 | -85 | 240 | 57.5 | 62.0 | 4.5 | 3.59 | Maiı | | | | | | | | 126.0 | 160.0 | 34.0 | 1.68 | Maii | | | | | | | | 139.2 | 158.0 | 18.8 | 2.42 | Maiı | | AD-23-061 ¹⁰ | 668600 | 5908813 | 519 | -70 | 360 | 8.8 | 45 | 36.2 | 1.27 | Maiı | | | including | • | | | | 8.8 | 13.2 | 4.4 | 2.00 | Mai | | | _ | | | | | 216.55 | 224.9 | 8.35 | 1.34 | FW | | AD-23-062 ¹⁰ | 668641 | 5908834 | 517 | -50 | 360 | 38.7 | 40.7 | 2.0 | 1.09 | Mai | | | | | | | | 54.9 | 57.0 | 2.1 | 0.80 | Maii | | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li₂O | Zone | |-------------------------|-----------|----------|-----|-----------|-----------|--------|--------|-----------|------|------| | noie iD | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | | | | | | 205.1 | 209.8 | 4.7 | 0.87 | FW | | | | | | | | 238.5 | 249.6 | 11.1 | 0.82 | FW | | | | | | | | 246.85 | 249.6 | 2.75 | 2.13 | FW | | AD-23-065 ¹⁰ | 668687 | 5908825 | 516 | -45 | 360 | 13.3 | 51.4 | 38.1 | 1.59 | Main | | | including | | | | | 22.0 | 27.0 | 5.0 | 3.20 | Main | | | | | | | | 72.4 | 77.5 | 5.1 | 0.69 | Main | | | | | | | | 224.2 | 227.2 | 3.0 | 1.15 | FW | | | | | | | | 278.8 | 279.8 | 1.0 | 1.07 | FW | | AD-23-068 ⁶ | 669102 | 5908677 | 517 | -82 | 0 | 111 | 114 | 3 | 1.79 | Main | | | | | | | | 236 | 250 | 14 | 0.96 | Main | | | including | | | | | 236 | 246 | 10 | 1.10 | Main | | | | | | | | 364.55 | 369.25 | 4.7 | 2.04 | FW | | AD-23-069 ¹⁰ | 668723 | 5908806 | 516 | -50 | 360 | 19.4 | 65.0 | 45.6 | 1.70 | Main | | | | | | | | 105.5 | 108.3 | 2.8 | 1.02 | Main | | | | | | | | 198.5 | 202.1 | 3.6 | 1.27 | FW | | | | | | | | 214.3 | 216.9 | 2.6 | 0.82 | FW | | | | | | | | 226.7 | 233.0 | 6.3 | 2.25 | FW | | | | | | | | 257.0 | 270.7 | 12.7 | 1.70 | FW | | AD-23-070 ⁹ | 668780 | 5909054 | 516 | -50 | 360 | 21.95 | 25.85 | 3.9 | 0.97 | Main | | | | | | | | 155.15 | 158 | 2.85 | 1.05 | FW | | AD-23-071 ⁵ | 669094 | 5908773 | 512 | -85 | 360 | 59 | 75 | 16.0 | 1.41 | Main | | AD-23-072 ⁵ | 669094 | 5908773 | 512 | -65 | 360 | 43.4 | 62 | 18.6 | 2.25 | Main | | | | | | | | 83.5 | 103.5 | 20.0 | 0.74 | Main | | | | | | | | 236.1 | 240.1 | 4.0 | 1.46 | FW | | AD-23-073 ⁵ | 669094 | 5908773 | 512 | -45 | 360 | 49.9 | 94 | 44.1 | 1.38 | Main | | | including | | | | | 49.9 | 61.3 | 11.4 | 2.36 | Main | | | | | | | | 221.5 | 236.9 | 15.5 | 1.57 | FW | ### WINSOMERESQUECES 06 February 2024 | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li₂O | Zone | |-------------------------|-----------|----------|-----|-----------|-----------|-------|-------|-----------|------|------| | поје јр | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | AD-23-074 ¹¹ | 669195 | 5908663 | 517 | -58 | 360 | 121.9 | 126.7 | 4.8 | 1.37 | Main | | | | | | | | 168.4 | 183.8 | 15.4 | 0.71 | Main | | | | | | | | 357.0 | 375.0 | 18.0 | 1.42 | FW | | AD-23-075 ⁷ | 669269 | 5908768 | 516 | -50 | 360 | 67.5 | 98.3 | 30.8 | 1.35 | Main | | | including | | | | | 88.0 | 98.3 | 10.3 | 2.66 | Main | | | | | | | | 244.9 | 254.0 | 9.1 | 1.29 | FW | | | | | | | | 268.5 | 292.6 | 24.1 | 2.18 | FW | | AD-23-076 ⁹ | 669269 | 5908768 | 516 | -75 | 360 | 93.4 | 105.5 | 12.1 | 1.52 | Main | | | | | | | | 286.0 | 290.3 | 4.3 | 1.15 | FW | | AD-23-077 ⁷ | 669270 | 5908672 | 517 | -75 | 360 | 127.0 | 132.1 | 5.1 | 2.00 | Main | | | | | | | | 184.4 | 194.0 |
9.7 | 1.57 | Main | | | | | | | | 352.0 | 363.0 | 11.0 | 1.65 | FW | | AD-23-077A ⁷ | 669270 | 5908672 | 517 | -70 | 360 | 136.8 | 140.0 | 3.2 | 3.17 | Main | | | | | | | | 186.5 | 194.8 | 8.3 | 0.66 | Main | | | | | | | | 340.9 | 343.9 | 3.0 | 2.03 | FW | | AD-23-078A ⁹ | 668970 | 5909079 | 522 | 45 | 340 | 15.5 | 24.5 | 9.0 | 1.63 | Main | | | | | | | | 198.8 | 201.4 | 2.6 | 2.14 | FW | | | | | | | | 222.7 | 224.7 | 2.0 | 0.97 | FW | | AD-23-080 ¹¹ | 668811 | 5908790 | 521 | -50 | 360 | 17.5 | 85.6 | 68.1 | 1.11 | Main | | | | | | | | 233.2 | 242.6 | 9.4 | 1.62 | FW | | | | | | | | 250.6 | 267 | 16.4 | 1.55 | FW | | AD-23-083 ⁸ | 669281 | 5908956 | 519 | -45 | 360 | 51.4 | 54.4 | 3.0 | 1.35 | Main | | | | | | | | 226.3 | 235.3 | 9.0 | 1.11 | FW | | AD-23-085 ⁸ | 669084 | 5908977 | 522 | -45 | 360 | 13.6 | 23.9 | 10.3 | 1.44 | Main | | | | | | | | 183.0 | 199.9 | 16.9 | 1.06 | FW | | | | | | | | 245.7 | 250.7 | 5.0 | 0.86 | FW | | AD-23-086 8 | 668981 | 5908938 | 531 | -45 | 360 | 2.8 | 31.3 | 28.5 | 1.28 | Main | | 1000 | | | | //////// | |-----------|---------|---------------------------|------|----------| | | | | | | | AVA W P V | | | | 7 2/12 | | | | | OURC | | | | | The state of the state of | | | | | 1 1 1 1 | | | | | Hala ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li ₂ O | Zone | |-------------------------|---------|----------|-----|-----------|-----------|-------|-------|-----------|-------------------|------| | Hole ID | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | | | | | | 237.0 | 260.4 | 23.4 | 1.80 | FW | | | | | | | | 245.7 | 250.7 | 5.0 | 0.86 | FW | | AD-23-087 ¹¹ | 668827 | 5908806 | 520 | -45 | 360 | 9.1 | 61 | 51.9 | 1.71 | Main | | | | | | | | 73.4 | 79.3 | 5.9 | 0.91 | Main | | | | | | | | 231.0 | 240.0 | 9.0 | 1.49 | FW | | | | | | | | 262.4 | 282.8 | 20.4 | 1.64 | FW | | AD-23-089 ⁹ | 668683 | 5908906 | 518 | -45 | 360 | 14.6 | 25.6 | 11.0 | 1.11 | Main | | AD-23-090 ¹¹ | 668794 | 5908776 | 522 | -45 | 360 | 47.0 | 100.5 | 53.5 | 1.55 | Main | | | | | | | | 260.4 | 270.6 | 10.2 | 1.21 | FW | | | | | | | | 293.2 | 308.0 | 14.8 | 1.20 | FW | | AD-23-091 ⁹ | 668782 | 5908901 | 518 | -45 | 360 | 15.0 | 39.25 | 24.3 | 1.23 | Main | | | | | | | | 55.4 | 60.0 | 4.7 | 1.25 | Main | | | | | | | | 209.6 | 213.9 | 4.3 | 1.29 | FW | | | | | | | | 246.2 | 256.4 | 10.2 | 1.79 | FW | | AD-23-092 ⁹ | 668881 | 5908898 | 528 | -45 | 360 | 16.0 | 54.0 | 38.0 | 1.26 | Main | | | | | | | | 229.4 | 235.0 | 5.6 | 1.72 | FW | | | | | | | | 290.7 | 293.3 | 2.6 | 0.87 | FW | | AD-23-095 ⁸ | 669181 | 5908952 | 516 | -55 | 360 | 14.8 | 37.0 | 22.2 | 1.18 | Main | | | | | | | | 159.3 | 185.7 | 26.4 | 1.55 | FW | | | | | | | | 206.9 | 214.7 | 7.8 | 1.29 | FW | | AD-23-099 ⁷ | 668440 | 5908717 | 512 | -55 | 360 | 92.0 | 97.0 | 5.0 | 0.50 | Main | | | | | | | | 171.0 | 181.0 | 10.0 | 0.70 | FW | | | | | | | | 194.0 | 208.0 | 14.0 | 1.62 | FW | | AD-23-100 ⁷ | 668441 | 5908641 | 511 | -75 | 360 | 162.6 | 165.7 | 3.1 | 1.06 | Main | | | | | | | | 315.3 | 322.7 | 9.4 | 1.16 | FW | | AD-23-102 ⁷ | 668343 | 5908635 | 506 | -75 | 360 | 40.6 | 45.0 | 4.4 | 1.96 | Main | | | | | | | | 140.0 | 149.0 | 9.0 | 1.45 | Main | | | 11 | | | | . 66 | | | | |-----|-----------|---|---------|-------|------------|---|--------------|------| | w | | | | - E | | | $\neg \circ$ | | | ٧, | 4 V # B k | 1 | 1111 | | | 1 | | 4/1 | | A 7 | | | ' I M I | 3//// | De IV | | | 1/19 | | | | | | | The second | | | 1 | | Hole ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li₂O | Zone | |-------------------------|-----------|----------|-----|-----------|-----------|--------|-------|-----------|------|------| | Hole ID | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | | | | | | 248.8 | 252.4 | 3.6 | 1.47 | FW | | | | | | | | 264.6 | 273.3 | 8.6 | 1.14 | FW | | AD-23-103 ⁷ | 668343 | 5908635 | 506 | -55 | 360 | 31.1 | 35.0 | 3.9 | 1.91 | Main | | | | | | | | 100.0 | 130.0 | 30.0 | 0.99 | Main | | | including | | | | | 109.5 | 114.0 | 4.5 | 2.18 | Main | | | | | | | | 221.7 | 230.5 | 8.8 | 0.80 | FW | | | | | | | | 245.1 | 254.1 | 9.0 | 1.78 | FW | | AD-23-104 ⁹ | 668343 | 5908730 | 510 | -50 | 360 | 129.4 | 136.2 | 6.8 | 1.07 | FW | | | | | | | | 149.5 | 160.1 | 10.6 | 1.19 | FW | | AD-23-105 | 668516 | 5908738 | 515 | -75 | 360 | 20.1 | 55.0 | 34.9 | 1.72 | Main | | | | | | | | 77.7 | 84.0 | 6.3 | 1.66 | FW | | AD-23-107 ⁹ | 668240 | 5908732 | 508 | -50 | 360 | 60.5 | 61.5 | 1.0 | 2.89 | Main | | | | | | | | 109.3 | 113.5 | 4.2 | 1.07 | FW | | | | | | | | 147.0 | 148.1 | 1.1 | 1.12 | FW | | AD-23-112 11 | 668786 | 5908646 | 511 | -70 | 360 | 162.6 | 195.7 | 33.1 | 0.47 | Main | | AD-23-113 ¹¹ | 669063 | 5908701 | 513 | -60 | 360 | 99.0 | 110.6 | 11.6 | 1.23 | Main | | | | | | | | 139.25 | 146.5 | 7.25 | 0.94 | Main | | | | | | | | 166.0 | 170.0 | 4.0 | 2.25 | Main | | | | | | | | 271.6 | 279.7 | 8.1 | 1.94 | FW | | | | | | | | 324.0 | 332.0 | 8.0 | 0.97 | FW | | | | | | | | 381.8 | 386.8 | 5.0 | 1.97 | FW | | AD-23-114 ¹¹ | 669177 | 5908889 | 514 | -50 | 360 | 10.2 | 48.25 | 38.1 | 0.97 | Main | | | including | | | | | 20.6 | 33.5 | 12.9 | 2.01 | Main | | | | | | | | 179.7 | 193.8 | 14.1 | 1.54 | FW | | | | | | | | 224.6 | 237.9 | 13.3 | 1.57 | FW | | AD-23-117 ¹¹ | 669135 | 5908893 | 514 | -50 | 360 | 6.6 | 44.0 | 37.4 | 0.86 | Main | | | | | | | | 181.5 | 193.1 | 11.6 | 1.69 | FW | ### WINSOMERESQUECES 06 February 2024 | Hala ID | Easting | Northing | RL | Dip | Azimuth | From | То | Thickness | Li ₂ O | Zone | |-------------------------|-----------|----------|-----|-----------|-----------|--------|--------|-----------|-------------------|------| | Hole ID | (NAD83) | (NAD83) | (m) | (degrees) | (degrees) | (m) | (m) | (m) | % | | | | | | | | | 243.7 | 253.2 | 9.5 | 1.53 | FW | | AD-23-118 ¹⁰ | 669141 | 5908700 | 515 | -75 | 360 | 145.1 | 171.0 | 25.9 | 1.00 | Main | | | including | | | | | 150.0 | 162.4 | 12.4 | 1.04 | Main | | | | | | | | 331.0 | 337.2 | 6.2 | 1.50 | FW | | AD-23-119 ¹⁰ | 668634 | 5908650 | 515 | -65 | 360 | 144.4 | 192.6 | 48.2 | 1.50 | Main | | | | | | | | 313.2 | 345.0 | 31.8 | 0.80 | FW | | | including | | | | | 313.2 | 319.0 | 5.8 | 1.500 | FW | | AD-23-120 ¹⁰ | 668580 | 5908684 | 515 | -55 | 360 | 52.3 | 61.7 | 9.4 | 1.96 | Main | | | | | | | | 99.9 | 106.4 | 6.5 | 1.60 | Main | | | | | | | | 128.2 | 140.2 | 12.0 | 0.89 | Main | | | | | | | | 249.5 | 258.4 | 8.9 | 1.03 | FW | | AD-23-121A 11 | 669139 | 5908841 | 513 | -60 | 360 | 39.4 | 65.2 | 25.8 | 1.06 | Main | | | | | | | | 175.2 | 183.9 | 8.7 | 0.76 | FW | | | | | | | | 207.55 | 219.55 | 12.0 | 1.20 | FW | | | | | | | | 230.0 | 245.5 | 15.5 | 1.95 | FW | | AD-23-124 ¹¹ | 669059 | 5908752 | 513 | -55 | 360 | 59.2 | 72.4 | 13.2 | 2.67 | Main | | | including | | | | | 59.2 | 63.6 | 4.4 | 4.25 | Main | | | | | | | | 90.2 | 108.7 | 18.5 | 1.20 | Main | | | | | | | | 250.6 | 299.7 | 49.1 | 1.51 | FW | | | | | | | | 409.6 | 414.8 | 5.2 | 1.13 | FW | | AD-23-126A 11 | 668521 | 5908640 | 511 | -55 | 360 | 132.5 | 144 | 11.5 | 1.59 | Main | | | | | | | | 152.0 | 163.4 | 11.4 | 1.08 | Main | | AD-23-127 ¹¹ | 668540 | 5908817 | 516 | -45 | 360 | 3.9 | 27.0 | 23.1 | 1.72 | Main | | AD-23-128 ¹¹ | 668480 | 5908640 | 511 | -55 | 360 | 115.4 | 138.7 | 23.3 | 0.75 | Main | | | | _ | | | | 247.2 | 261 | 13.8 | 0.78 | FW | | | | | | | | 276.9 | 290 | 13.1 | 1.43 | FW | | | | | | | | 321.0 | 324.0 | 3.0 | 1.81 | FW | | Hole ID | Easting
(NAD83) | Northing
(NAD83) | RL
(m) | Dip (degrees) | Azimuth (degrees) | From
(m) | To
(m) | Thickness
(m) | Li₂O
% | Zone | |--------------------------|--------------------|---------------------|-----------|----------------------|-------------------|-------------|-----------|------------------|-----------|------| | AD-23-134A ¹¹ | 669140 | 5908785 | 511 | -60 | 360 | 44.1 | 54.4 | 10.3 | 1.76 | Main | | | | | | | | 70.7 | 94.1 | 23.4 | 1.50 | Main | | | | | | | | 207.0 | 212.3 | 5.3 | 0.70 | FW | | | | | | 240.0 | 275.5 | 35.5 | 1.49 | FW | | | | AD-23-139 11 | 669141 | 5908738 | 510 | -65 | 360 | 85.0 | 104.0 | 19.0 | 0.93 | Main | | | | | | | | 125.5 | 129.2 | 2.7 | 1.68 | FW | | | | | | | | 286.1 | 292.0 | 5.9 | 3.17 | FW | | | | | | | | 329.3 | 333.8 | 4.5 | 1.35 | FW | ¹ Assays previously reported. "Strong lithium mineralisation recorded from first Adina drill hole assays" ASX Announcement 6 January 2023 ² Assays previously reported. "New assay results confirm strong lithium mineralisation at Adina" ASX Announcement 14 February 2023 ³ Assays previously reported. "Assays confirm Adina as a robust, high-grade lithium project" ASX Announcement 23 March 2023 ⁴ Assays previously reported. "Over 3km of lithium mineralisation confirmed at Adina" ASX Announcement 3 April 2023 ⁵ Assays previously reported. "New Lithium Bearing Pegmatite Dyke Swarm at Adina" ASX Announcement 10 May 2023 ⁶ Assays previously reported. "New results confirm multiple zones and continuation of lithium mineralisation at Adina" ASX Announcement 13 June 2023 ⁷ Assays previously reported. "Substantial high-grade intersections continue to grow Adina" ASX Announcement 1 August 2023 ⁸ Assays previously reported. "Key intersections confirm extent of Footwall Zone at Adina" ASX Announcement 4 September 2023 ⁹ Assays previously reported. "300m extension discovered at Adina increases strike to over 1,300m" ASX Announcement 27 November 2023 ¹⁰ Assays previously reported. "Globally significant MRE of 59MT at Adina Lithium Project" ASX Announcement 11 December 2023 ¹¹ Assays previously reported. "High grade infill drilling results at Adina Lithium Project" ASX Announcement 17 January 2024 Appendix 4: Diamond Drilling Summary for Winsome's drilling program at Adina. | 11.1.15 | Easting | Northing | RL | Dip | Azimuth | Total Depth | |------------|---------|----------|-----|-----------|-----------|-------------| | Hole ID | (NAD83) | (NAD83) | (m) | (Degrees) |
(Degrees) | (m) | | AD-22-001 | 668477 | 5908772 | 511 | -45 | 135 | 171.0 | | AD-22-002 | 668503 | 5908851 | 511 | -45 | 135 | 213.0 | | AD-22-003 | 668555 | 5908901 | 513 | -45 | 135 | 138.0 | | AD-22-004 | 668513 | 5908739 | 511 | -45 | 135 | 147.0 | | AD-22-005 | 668542 | 5908812 | 513 | -45 | 135 | 261.0 | | AD-22-005A | 668542 | 5908812 | 513 | -45 | 315 | 162.0 | | AD-22-006 | 668596 | 5908861 | 515 | -45 | 135 | 118.0 | | AD-22-006B | 668596 | 5908861 | 515 | -45 | 315 | 56.5 | | AD-22-007 | 668430 | 5908809 | 510 | -45 | 135 | 390.0 | | AD-22-008 | 668460 | 5908892 | 510 | -45 | 135 | 210.2 | | AD-22-009 | 668512 | 5908942 | 511 | -45 | 135 | 246.0 | | AD-22-011 | 668687 | 5908776 | 517 | -45 | 320 | 150.0 | | AD-22-034 | 668688 | 5909055 | 519 | -45 | 340 | 196.4 | | AD-22-035 | 668634 | 5908726 | 519 | -45 | 315 | 186.0 | | AD-22-036 | 668687 | 5908776 | 517 | -45 | 360 | 243.0 | | AD-22-037 | 668702 | 5908651 | 515 | -45 | 315 | 228.0 | | AD-22-039 | 668702 | 5908651 | 515 | -45 | 360 | 201.0 | | AD-22-041 | 668872 | 5908797 | 520 | -45 | 360 | 213.0 | | AD-22-042 | 668968 | 5908803 | 520 | -45 | 340 | 150.0 | | AD-22-043 | 670003 | 5909088 | 531 | -45 | 340 | 141.1 | | AD-22-046 | 668968 | 5908803 | 520 | -75 | 340 | 186.0 | | AD-22-055 | 668944 | 5908718 | 512 | -55 | 330 | 300.0 | | AD-22-059 | 668944 | 5908718 | 512 | -82 | 330 | 204.0 | | AD-23-010 | 668441 | 5908641 | 511 | -55 | 360 | 300.0 | | AD-23-012 | 669380 | 5908952 | 519 | -45 | 350 | 351.0 | | AD-23-013 | 669482 | 5908995 | 520 | -45 | 338 | 246.0 | | AD-23-014 | 669478 | 5908900 | 522 | -60 | 350 | 207.0 | | AD-23-015 | 669560 | 5908732 | 521 | -50 | 330 | 459.0 | | AD-23-016 | 669583 | 5908994 | 522 | -55 | 328 | 243.0 | | AD-23-017 | 669877 | 5908995 | 529 | 45 | 330 | 294.0 | | AD-23-018 | 668829 | 5909258 | 510 | -60 | 335 | 304.0 | | AD-23-019 | 668829 | 5909261 | 510 | -45 | 335 | 330.0 | | AD-23-020 | 670048 | 5909022 | 530 | -45 | 330 | 229.0 | | AD-23-021 | 669185 | 5908751 | 514 | -55 | 360 | 363.0 | | AD-23-022 | 669174 | 5908833 | 514 | -55 | 360 | 450.0 | | AD-23-023 | 669195 | 5908663 | 517 | -75 | 360 | 384.0 | | AD-23-024 | 669271 | 5908859 | 515 | -45 | 330 | 384.0 | | AD-23-024A | 669271 | 5908859 | 515 | -50 | 360 | 259.2 | | AD-23-025 | 668898 | 5908704 | 514 | -55 | 340 | 396.0 | | | Easting | Northing | RL | Dip | Azimuth | Total Depth | |------------|---------|----------|-----|-----------|-----------|-------------| | Hole ID | (NAD83) | (NAD83) | (m) | (Degrees) | (Degrees) | (m) | | AD-23-026 | 668898 | 5908704 | 514 | -78 | 340 | 408.0 | | AD-23-027 | 668827 | 5908751 | 525 | -50 | 350 | 444.4 | | AD-23-028 | 668735 | 5908748 | 518 | -50 | 350 | 315.7 | | AD-23-029 | 669002 | 5908666 | 514 | -55 | 350 | 402.0 | | AD-23-030 | 668874 | 5908645 | 508 | -75 | 340 | 402.0 | | AD-23-031 | 669002 | 5908666 | 514 | -75 | 350 | 387.0 | | AD-23-032 | 669384 | 5908756 | 520 | -50 | 350 | 351.0 | | AD-23-033 | 668521 | 5908640 | 512 | -75 | 360 | 408.0 | | AD-23-038A | 668789 | 5908668 | 512 | -60 | 350 | 420.0 | | AD-23-040 | 668769 | 5908781 | 519 | -45 | 360 | 384.0 | | AD-23-044 | 670165 | 5909126 | 533 | -45 | 340 | 168.0 | | AD-23-045 | 670312 | 5909224 | 533 | -45 | 330 | 114.0 | | AD-23-047 | 669031 | 5908845 | 520 | -45 | 340 | 444.0 | | AD-23-048 | 668702 | 5908651 | 515 | -75 | 360 | 297.0 | | AD-23-049 | 669384 | 5908756 | 520 | -70 | 350 | 375.0 | | AD-23-050 | 668789 | 5908668 | 512 | -75 | 350 | 378.0 | | AD-23-051 | 668769 | 5908781 | 519 | -75 | 360 | 392.5 | | AD-23-052 | 668566 | 5908827 | 518 | -60 | 360 | 294.0 | | AD-23-053 | 669034 | 5908748 | 512 | -45 | 360 | 187.0 | | AD-23-054 | 669090 | 5908854 | 512 | -45 | 360 | 231.0 | | AD-23-056 | 670203 | 5909041 | 533 | -45 | 340 | 276.0 | | AD-23-057 | 669037 | 5908748 | 512 | -65 | 360 | 213.0 | | AD-23-058 | 669382 | 5908671 | 517 | -70 | 350 | 411.0 | | AD-23-060 | 669036 | 5908750 | 512 | -85 | 360 | 240.0 | | AD-23-061 | 668600 | 5908813 | 519 | -70 | 360 | 288.0 | | AD-23-062 | 668641 | 5908834 | 517 | -50 | 360 | 351.0 | | AD-23-063 | 670366 | 5908963 | 530 | -45 | 330 | 254.0 | | AD-23-064 | 668689 | 5909085 | 512 | -60 | 335 | 348.0 | | AD-23-065 | 668687 | 5908825 | 516 | -45 | 360 | 330.0 | | AD-23-066 | 670095 | 5908783 | 520 | -45 | 330 | 294.0 | | AD-23-067 | 669920 | 5908688 | 515 | -50 | 330 | 249.0 | | AD-23-068 | 669102 | 5908677 | 517 | -82 | 360 | 462.0 | | AD-23-069 | 668723 | 5908806 | 516 | -50 | 360 | 352.5 | | AD-23-070 | 668780 | 5909054 | 516 | -50 | 360 | 303.0 | | AD-23-071 | 669094 | 5908773 | 512 | -85 | 360 | 324.0 | | AD-23-072 | 669094 | 5908773 | 512 | -65 | 360 | 252.0 | | AD-23-073 | 669094 | 5908773 | 512 | -45 | 360 | 292.1 | | AD-23-074 | 669195 | 5908663 | 517 | -58 | 360 | 393.0 | | AD-23-075 | 669269 | 5908768 | 516 | -50 | 360 | 372.0 | | AD-23-076 | 669269 | 5908768 | 516 | -75 | 360 | 350.0 | | | Easting | Northing | RL | Dip | Azimuth | Total Depth | |------------|---------|----------|-----|-----------|-----------|-------------| | Hole ID | (NAD83) | (NAD83) | (m) | (Degrees) | (Degrees) | (m) | | AD-23-077 | 669270 | 5908672 | 517 | -75 | 360 | 367.3 | | AD-23-077A | 669270 | 5908672 | 517 | -70 | 0 | 408.0 | | AD-23-078 | 668970 | 5909079 | 522 | -50 | 340 | 153.4 | | AD-23-078A | 668970 | 5909079 | 522 | -45 | 340 | 255.0 | | AD-23-079 | 669670 | 5908840 | 525 | -50 | 330 | 282.0 | | AD-23-080 | 668811 | 5908790 | 521 | -50 | 360 | 321.0 | | AD-23-081 | 669462 | 5908746 | 522 | -50 | 330 | 258.0 | | AD-23-082 | 669117 | 5909149 | 522 | -50 | 340 | 273.0 | | AD-23-083 | 669281 | 5908956 | 519 | -45 | 360 | 258.0 | | AD-23-084 | 669685 | 5909105 | 524 | -50 | 330 | 228.0 | | AD-23-085 | 669084 | 5908977 | 522 | -45 | 360 | 378.0 | | AD-23-086 | 668981 | 5908938 | 531 | -45 | 360 | 378.0 | | AD-23-087 | 668827 | 5908806 | 520 | -45 | 360 | 300.0 | | AD-23-088 | 669325 | 5909077 | 521 | -50 | 340 | 366.0 | | AD-23-089 | 668683 | 5908906 | 518 | -45 | 360 | 31.3 | | AD-23-090 | 668794 | 5908776 | 522 | -45 | 360 | 321.0 | | AD-23-091 | 668782 | 5908901 | 518 | -45 | 360 | 351.0 | | AD-23-092 | 668881 | 5908898 | 528 | -45 | 360 | 399.0 | | AD-23-093 | 668869 | 5908740 | 519 | -50 | 360 | 406.5 | | AD-23-094 | 669184 | 5909040 | 523 | -45 | 0 | 252.0 | | AD-23-095 | 669181 | 5908952 | 516 | -55 | 360 | 264.0 | | AD-23-096 | 669084 | 5909070 | 520 | -45 | 360 | 150.0 | | AD-23-097 | 669381 | 5908856 | 519 | -45 | 350 | 320.0 | | AD-23-098 | 668876 | 5909008 | 519 | -45 | 0 | 336.0 | | AD-23-099 | 668440 | 5908717 | 512 | -55 | 360 | 261.0 | | AD-23-100 | 668441 | 5908641 | 511 | -75 | 360 | 390.0 | | AD-23-101 | 668780 | 5908999 | 521 | -50 | 0 | 241.9 | | AD-23-102 | 668343 | 5908635 | 506 | -75 | 360 | 375.0 | | AD-23-103 | 668343 | 5908635 | 506 | -55 | 360 | 384.0 | | AD-23-104 | 668343 | 5908730 | 510 | -50 | 360 | 417.0 | | AD-23-105 | 668516 | 5908738 | 515 | -75 | 360 | 375.0 | | AD-23-106 | 668966 | 5908702 | 512 | -50 | 360 | 414.0 | | AD-23-107 | 668240 | 5908732 | 508 | -50 | 360 | 306.0 | | AD-23-108 | 668547 | 5908711 | 515 | -50 | 360 | 342.0 | | AD-23-109 | 668579 | 5908947 | 516 | -50 | 360 | 324.0 | | AD-23-110 | 669313 | 5908885 | 519 | -50 | 360 | 297.0 | | AD-23-111 | 669217 | 5908887 | 515 | -50 | 360 | 291.0 | | AD-23-112 | 668786 | 5908646 | 511 | -70 | 360 | 365.0 | | AD-23-113 | 669063 | 5908701 | 513 | -60 | 360 | 406.1 | | AD-23-114 | 669177 | 5908889 | 514 | -50 | 360 | 254.6 | | | Easting | Northing | RL | Dip | Azimuth | Total Depth | |------------|---------|----------|-----|-----------|-----------|-------------| | Hole ID | (NAD83) | (NAD83) | (m) | (Degrees) | (Degrees) | (m) | | AD-23-115 | 668635 | 5908730 | 516 | -50 | 360 | 324.0 | | AD-23-116 | 668708 | 5908639 | 512 | -63 | 360 | 411.0 | | AD-23-117 | 669135 | 5908893 | 514 | -50 | 360 | 309.0 | | AD-23-118 | 669141 | 5908700 | 515 | -75 | 360 | 387.4 | | AD-23-119 | 668634 | 5908650 | 515 | -65 | 360 | 420.0 | | AD-23-120 | 668580 | 5908684 | 515 | -55 | 360 | 344.2 | | AD-23-121A | 669139 | 5908841 | 513 | -60 | 360 | 354.0 | | AD-23-122 | 668582 | 5908633 | 513 | -80 | 360 | 435.0 | | AD-23-123 | 668582 | 5908749 | 517 | -45 | 360 | 356.5 | | AD-23-124 | 669059 | 5908752 | 513 | -55 | 360 | 444.0 | | AD-23-125 | 669218 | 5908835 | 515 | -50 | 360 | 357.0 | | AD-23-126A | 668521 | 5908640 | 511 | -55 | 360 | 375.0 | | AD-23-127 | 668540 | 5908817 | 516 | -45 | 360 | 312.0 | | AD-23-128 | 668480 | 5908640 | 511 | -55 | 360 | 375.0 | | AD-23-129 | 668914 | 5908820 | 519 | -50 | 360 | 303.0 | | AD-23-130A | 669224 | 5908795 | 515 | -60 | 360 | 350.0 | | AD-23-131 | 668683 | 5908906 | 518 | -50 | 360 | 306.0 | | AD-23-132 | 668236 | 5908636 | 506 | -75 | 360 | 393.0 | | AD-23-133 | 668985 | 5909320 | 509 | -55 | 335 | 342.0 | | AD-23-134A | 669140 | 5908785 | 511 | -60 | 360 | 402.0 | | AD-23-135 | 668858 | 5908865 | 526 | -50 | 360 | 325.5 | | AD-23-136 | 668236 | 5908636 | 506 | -55 | 360 | 363.0 | | AD-23-137 | 669072 | 5909322 | 511 | -40 | 335 | 327.0 | | AD-23-138 | 668440 | 5908809 | 510 | -50 | 360 | 306.0 | | AD-23-139 | 669141 | 5908738 | 510 | -65 | 360 | 423.0 | | AD-23-140 | 669086 | 5908921 | 520 | -50 | 360 | 250.0 | | AD-23-141 | 669325 | 5909255 | 525 | -55 | 335 | 250.0 | | AD-23-142 | 668550 | 5908667 | 516 | -50 | 360 | 453.0 | | AD-23-143 | 669000 | 5908805 | 520 | -45 | 360 | 381.0 | | AD-23-144 | 669231 | 5908737 | 513 | -60 | 360 | 408.0 | | AD-23-145 | 669181 | 5909160 | 523 | -50 | 360 | 300.4 | | AD-23-146 | 668210 | 5908374 | 500 | -55 | 360 | 438.4 | | AD-23-147 | 668010 | 5908374 | 500 | -55 | 360 | 486.2 | | AD-23-148 | 668677 | 5909009 | 518 | -45 | 360 | 252.0 | | AD-23-149 | 669761 | 5908950 | 526 | -60 | 330 | 395.5 | | AD-23-150 | 669180 | 5909003 | 521 | -50 | 0 | 273.0 | | AD-23-151 | 668632 | 5908704 | 518 | -70 | 360 | 438.0 | | AD-23-152 | 669269 | 5908918 | 515 | -45 | 360 | 288.0 | | AD-23-153 | 668010 | 5908274 | 505 | -55 | 360 | 531.0 | | AD-23-154 | 669555 | 5908845 | 522 |
-55 | 330 | 393.3 | | Hele ID | Easting | Northing | RL | Dip | Azimuth | Total Depth | |------------|---------|----------|-----|-----------|-----------|-------------| | Hole ID | (NAD83) | (NAD83) | (m) | (Degrees) | (Degrees) | (m) | | AD-23-155 | 668670 | 5908706 | 517 | -55 | 360 | 400.0 | | AD-24-156 | 669131 | 5909005 | 520 | -50 | 360 | 300.0 | | AD-24-157 | 668010 | 5908469 | 501 | -55 | 360 | 429.0 | | AD-24-158 | 669314 | 5908780 | 519 | -60 | 360 | 369.0 | | AD-24-159 | 667963 | 5908441 | 499 | -50 | 335 | 384.0 | | AD-24-160 | 668595 | 5908662 | 517 | -65 | 360 | 447.0 | | AD-24-161 | 668096 | 5908479 | 504 | -45 | 340 | 324.0 | | AD-24-162 | 669131 | 5909096 | 518 | -45 | 360 | 345.0 | | AD-23-M001 | 668689 | 5908771 | 517 | -65 | 360 | 351.0 | | AD-23-M002 | 668881 | 5908792 | 518 | -65 | 360 | 351.0 | | AD-23-M003 | 669041 | 5908746 | 512 | -80 | 360 | 189.0 | #### Legend for Appendix 4: AD-22-005 Assays previously reported AD-22-001 Assays reported in this announcement AD-22-006 Assays awaited, collar/lithological data reported previously AD-22-060 Assays awaited, collar/lithological data reported in this announcement #### JORC Code, 2012 edition Table 1 #### **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | on apply to all succeeding sections.) | |--|--| | Sampling techniques | All core is NQ (76mm outer diameter, 47.6mm core diameter) in this program. Core sample intervals were geologically logged, measured for average length, photographed, and placed into numbered core trays. | | | RC drilling utilised face sampling hammers with samples split down to a
2kg sample size. | | | Samples from Adina were sent to SGS Minerals Geochemistry under
standard preparation procedures. | | | Gravity data obtained by ground measurements at regular intervals. | | Drilling techniques | NQ diamond drilling was completed at Adina. | | | Oriented core drilling was not completed. Downhole surveying was
conducted using a gyro-based system. | | Drill sample recovery | The recovery of the diamond drilling samples was reported by the operators and supervised by our consulting geologist. | | | No sample bias has been established. | | Logging | NQ core was logged and cut according to geological boundaries, with ~1 m intervals targeted for individual samples. | | | For RC and DD drilling features such as rock type, modal mineralogy, rock
textures, alteration were recorded. Geological logging information was
recorded directly onto the GeoticLog system and compiled onto Database
platform, with weekly backups. | | | The core is stored in the Geological consultants (Technominex) yard in Rouyn-Noranda which is a secure location. | | | Various qualitative and quantitative logs were completed. All core has
been photographed. | | | The logging database contains lithological data for all intervals in all holes in the database. | | Sub-sampling
techniques and
sample preparation | Adina drill core was split (sawn) at the Winsome core logging and cutting
facility located at the project base in Eeyou Istchee James Bay, with half
core samples intervals submitted to SGS or MSA preparation facilities in
Val-d'Or, Quebec. | | | Half core NQ samples are believed to be representative of the
mineralisation targeted. Sampling intervals are based on geological
boundaries to aid representivity. | | | Samples are crushed, milled and split at the laboratory (SGS & MSA) to
achieve a 250g sub-sample for assay. Laboratory QC procedures for
sample preparation include quality control on checks crushing and milling
to ensure representivity. | | Criteria | Explanation | |--|---| | Quality control & Quality of assay data and laboratory tests | Assay and laboratory procedures have been selected following a review of techniques provided by laboratories in Canada. SGS, AGAT and MSA are all internationally certified independent service providers. Industry standard assay quality control techniques were used for lithium related elements. | | | Samples are submitted for multi-element ICP analysis by SGS. AGAT
and MSA Laboratories which is an appropriate technique for high-grade
lithium analysis. | | (15) | Sodium Peroxide Fusion is used followed by combined ICP-AES and
ICP-MS analyses (56 elements). Li is reported by the lab and converted
to Li₂O for reporting using a factor of 2.153. | | | No handheld instruments were used for analysis. | | | Comparison of results with standards indicate sufficient quality in data. No external laboratory checks have been used but are planned to be completed shortly. | | | Different grades of certified reference material (CRM) for lithium mineralisation were inserted, as well as field duplicates, and blanks. The CRM's submitted represented a weakly mineralised pegmatite (OREAS 750), and a moderate lithium mineralised pegmatite (AMIS 0341) to high grade lithium mineralised pegmatite (OREAS 752 & 753). Quality Assurance and Quality Control utilised standard industry practice, using prepared standards, field blanks (approximately 0.4 kg), duplicates sampled in the field and pulp duplicates at the lab. | | | Blank samples were submitted at a rate of approximately 5%, same for duplicates and repeat assay determinations, whereas standards were submitted at a rate of approximately 20%. | | Verification of sampling and | Significant intersections have been estimated by consultants to the company and cross checked. | | assaying | Hard copy field logs are entered into and validated on an electronic database, which is maintained by Winsome on site in Eeyou Istchee James Bay and backed up regularly by the Company's IT consultants in Val D'Or. | | | Data verification is carried out by the Project Geologist on site, and a final verification was performed by the Senior Geologist and the geologist responsible for database management. An independent verification is carried out by consultants to the company. | | | No assays have been adjusted. A factor of 2.153 has been applied to
the reported Li assays by the laboratory so to report as Li₂O. | | Location of data points | The drill holes have been reported as being located by hand-held GPS. Historical drill holes have been verified by GPS. | | | The grid datum is NAD83. Zone 18N. | | | Topographic elevation and landmarks are readily visible from a Digital Elevation Model with a 50cm grid resolution and orthophoto obtained from Lidar surveys performed in 2017 and 2022 over the property. | | Criteria | Explanation | |---|--| | | Government topographic maps have been used for topographic validation. The GPS is otherwise considered sufficiently accurate for elevation data. | | | Down hole dip surveys were taken at approximately 30m intervals and at
the bottom of the diamond drill holes. | | Data spacing and distribution | In this early delineation stage, drilling is largely set along sections at
100m spacing and aiming to intercept targeted horizon at 80-100m
centres. | | 15 | No assessment has been made regarding the current drill hole location
and intersections with respect to resources or reserve estimation. | | | No sample compositing has been completed. However, internal dilution
of non-mineralised material into calculated grade over widths reported
herein may occur but is not considerable. | | Orientation of data in relation to geological structure | Drilling is designed to confirm the historical drilling results and test potential mineralisation. They were oriented sub-perpendicular to the potential mineralised trend and stratigraphic contacts as determined by field data and cross section interpretation. Intersection widths will therefore be longer than true widths. | | | No significant sample bias has been identified from drilling due to the
optimum drill orientation described above. Where present, sample bias
will be reported. | | Sample security | The company takes full responsibility on the custody of the samples including the sampling process itself and transportation. | | | Samples are shipped during the weekly supply run and delivered directly
to the respective laboratories. | |
Audits or reviews | No external audit of the database has been completed, apart from by consulting geologists acting on behalf of the company. | #### **Section 2 Reporting of Exploration Results** (Criteria in the preceding section also apply to this section.) | Criteria | Explanation | |---|--| | Mineral tenement
and land tenure
status | The Winsome Adina Lithium Project is 100% owned by Winsome Adina Lithium Inc. All tenements are in good standing and have been legally validated by a | | Explanation dama by | Quebec lawyer specialising in the field. | | Exploration done by other parties | Initial Exploration and Review was undertaken by MetalsTech Limited. Government mapping records multiple lithium bearing pegmatites within the project areas with only regional data available. | | Geology | The mineralisation encountered at the Adina project is typical of a Lithium-Caesium-Tantalum (LCT) type of pegmatite. The pegmatite body is oriented sub-parallel to the general strike of the host rocks. The host rocks are composed of Archean Lac Guyer greenstone rocks, which include mafic and ultramafic rocks interlayered with horizons of metasedimentary and felsic volcanic rocks | | Drill hole Information | For the current drill program, the following information has been included for all holes reported: | | | easting and northing of the drill hole collar | | | elevation or RL (reduced level – elevation above sea level in metres) of the drill hole collar | | | dip and azimuth of the hole | | | down hole length and interception level | | | hole length | | | A summary of historical drill hole information was included in the Independent Geologists Report prepared by Mining Insights within the Company's prospectus | | Data aggregation methods | No sample weighting or metal equivalent values have been used in reporting. | | | Aggregation issues are not considered material at this stage of project definition. No metal equivalent values were used | | Relationship
between
mineralisation widths
and intercept lengths | The pierce angle of the drilling varies from hole to hole, in order to attempt, wherever possible, to represent true widths | | Diagrams | See figures and maps provided in the text of the announcement. | | Balanced reporting | Winsome Resources Ltd will endeavour to produce balanced reports accurately detailing all results from any exploration activities. | | | All drillholes and intersections have been presented in this announcement and in previous announcements. | | Criteria | Explanation | |------------------------------------|---| | Other substantive exploration data | All substantive exploration data has been included in ASX Announcements. No other substantive exploration data is available at this time. | | Further work | Winsome Resources Ltd continues to complete further site investigations. | | | Further work planned includes comprehensive data interpretation, field
mapping and exploration drilling. |