

# **Quarterly Activities Report – December 2023**

# **Koppies Project**

Updated Koppies JORC Mineral Resource Estimate ("MRE") increased the Company's global uranium resources to 142 MIb U<sub>3</sub>O<sub>8</sub>

The MRE increase represented a 136% increase in the Koppies resource and a 42% increase in the Company's Namibian resources

The mineralisation is shallow with 95% of the resource within 15 metres of surface

Three drill rigs completed a total of 620 holes for 17,457 metres

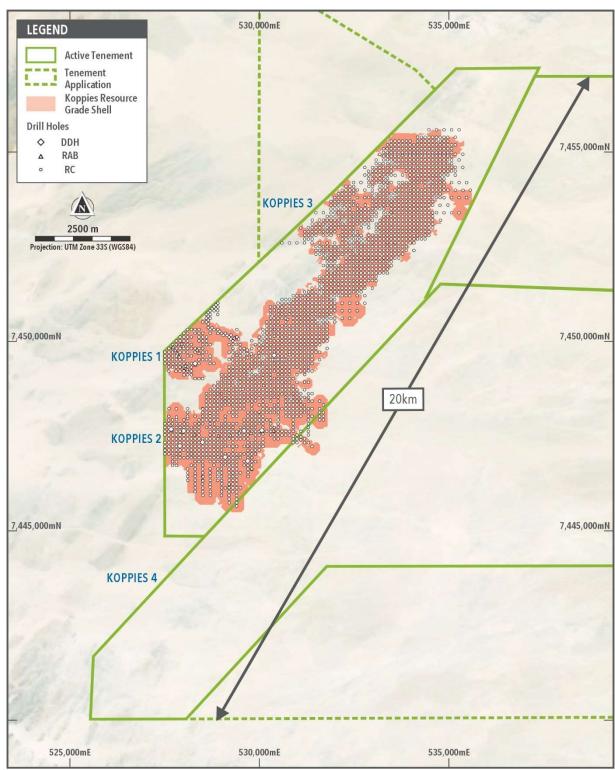
Four drill rigs commenced operation in mid-January with a fifth drill rig scheduled to commence later in the quarter

Resource drilling continues with the next update expected in March 2024

# Koppies Resource Update

During the December Quarter, the Company announced an updated JORC Inferred Mineral Resource Estimate ("MRE") of 48 Mlb eU₃O₅ for its Koppies Uranium Project in Namibia.

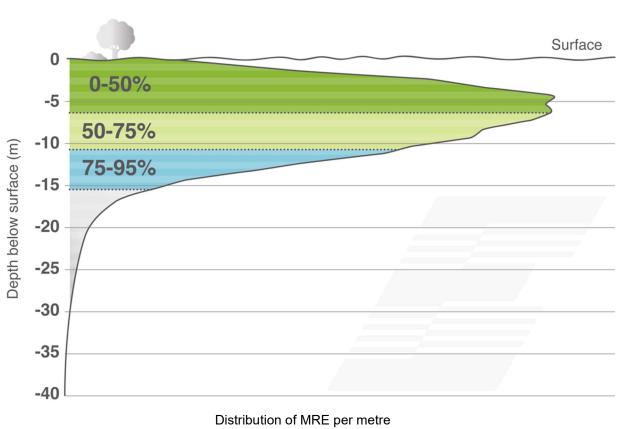
Updated Koppies JORC (2012) Inferred Mineral Resource Estimate at 100 ppm Cut-off Grade


|       | Mt    | eU₃Oଃ (ppm) | Mlb  |
|-------|-------|-------------|------|
| Total | 108.3 | 200         | 48.0 |

Note - Figures may not add due to rounding.

This significant upgrade of the Koppies MRE has also increased the Company's total global uranium resources to 142 Mlb, see Resource Table 3.

Figure 1 shows the current surface extent of the MRE, as well as all the drilling completed and included in the November 2023 resource update.






### Figure 1 Koppies Resource Surface Extent and Collar Locations



Figure 2 indicates how the mineralisation is distributed by depth throughout the MRE. Mineralisation is shallow, with 95% of the total mineral resource being within approximately 15 metres of the surface, and 50% of the resource within approximately 6 metres of the surface. These physical parameters support the potential for a low strip ratio, low-cost mining operation at Koppies.



### Figure 2 Distribution of Koppies MRE by Depth (metres)

Note - the scale on the left represents the cumulative depth, in metres, below surface. The diagram is not to scale.

### Table 1

JORC (2012) Inferred Mineral Resource Estimate at 100 ppm Cut-off Grade

|           | Mt    | eU <sub>3</sub> O <sub>8</sub> (ppm) | Mlb  |
|-----------|-------|--------------------------------------|------|
| Koppies 1 | 10.3  | 280                                  | 6.3  |
| Koppies 2 | 48.6  | 220                                  | 23.7 |
| Koppies 3 | 49.4  | 165                                  | 18.0 |
| Total     | 108.3 | 200                                  | 48.0 |

Note - Figures may not add due to rounding.

The 100 ppm  $eU_3O_8$  cut-off grade was selected based on mining studies at immediately adjacent properties and represents the most continuous mineralisation within the deposit.



|    |                            |      |              |     |      | -            | -    |      |              |      |       |                          |      |
|----|----------------------------|------|--------------|-----|------|--------------|------|------|--------------|------|-------|--------------------------|------|
|    | Cut off                    | K    | Coppies '    | 1   | ł    | Coppies 2    | 2    | ł    | Koppies :    | 3    |       | Total                    |      |
|    | (eU₃O <sub>8</sub><br>ppm) | Mt   | eU₃Oଃ<br>ppm | Mlb | Mt   | eU₃Oଃ<br>ppm | Mlb  | Mt   | eU₃Oଃ<br>ppm | Mlb  | Mt    | eU₃O <sub>8</sub><br>ppm | Mlb  |
|    | 50                         | 14.1 | 220          | 6.9 | 77.4 | 165          | 28.2 | 95.1 | 120          | 25.1 | 186.6 | 145                      | 60.1 |
| C  | 75                         | 11.8 | 255          | 6.6 | 58.4 | 200          | 25.6 | 66.6 | 145          | 21.3 | 136.9 | 175                      | 53.6 |
|    | 100                        | 10.3 | 280          | 6.3 | 48.6 | 220          | 23.7 | 49.4 | 165          | 18.0 | 108.3 | 200                      | 48.0 |
|    | 125                        | 8.8  | 305          | 5.9 | 38.3 | 250          | 21.2 | 34.1 | 190          | 14.2 | 81.2  | 230                      | 41.3 |
|    | 150                        | 7.7  | 330          | 5.6 | 30.5 | 280          | 18.8 | 23.1 | 215          | 10.9 | 61.3  | 260                      | 35.3 |
| (1 | 200                        | 5.9  | 380          | 4.9 | 19.1 | 345          | 14.5 | 10.5 | 265          | 6.1  | 35.4  | 325                      | 25.5 |

 Table 2
 Koppies – JORC (2012) Inferred MRE at Various Cut-off Grades

**Notes:** Figures have been rounded and totals may reflect small rounding errors.

Mineral resource grades are a combination of assay and downhole radiometric logging using calibrated probes.

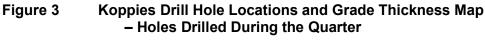
Downhole logging was completed using an independent geophysical contractor.

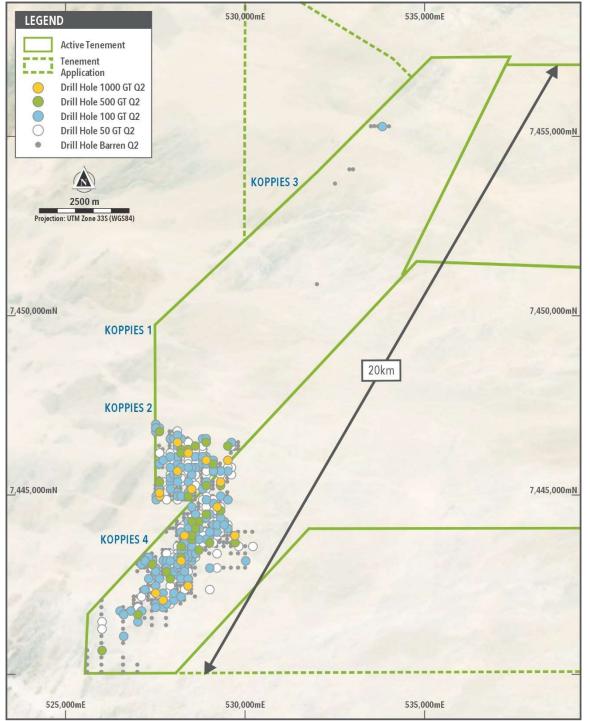
Please refer to the ASX Announcement titled "Koppies Resource up 136% to 48 Mlb" dated 8 November 2023, for full details of the mineral resource estimate.

Drilling to date shows that the mineralisation remains open, indicating potential for further expansion of the mineralised envelope as drilling activities progress. Therefore, drilling included in the November 2023 resource update has not tested the full extent of the Koppies 1, 2 or 3 mineralisation. It is expected that this will also be the case in the area of Koppies 4 and south of Koppies 2 where three drill rigs are currently undertaking a resource drilling program. Consequently, further drilling programs are planned to test for potential extensions of the currently estimated resource areas at Koppies.

## Koppies Resource Drilling Program – December Quarter

The following are highlights of the exploration activities for the December Quarter.


- A total of 620 holes were drilled for 17,457 metres at Koppies during the quarter. See Figure 3.
  - Ten of these holes were included in the resource update announced 8 November 2023, with the remainder to contribute to the next resource update scheduled for March 2024.
- Resource drilling was focused on the area south of Koppies 2 and Koppies 4 on the adjoining tenement.


Notable intersections from this drilling campaign include:

- ♦ GWR0599 1.5 m at 446 ppm eU<sub>3</sub>O<sub>8</sub> from 1.0 m
- GWR0613 5.0 m at 764 ppm eU<sub>3</sub>O<sub>8</sub> from 25.0 m
- GWR0750 5.5 m at 521 ppm eU<sub>3</sub>O<sub>8</sub> from 26.5 m
- ♦ GWR0789 5.5 m at 337 ppm eU<sub>3</sub>O<sub>8</sub> from 7.5 m
- KOR2628 2.0 m at 322 ppm eU<sub>3</sub>O<sub>8</sub> from 6.0 m
- ♦ KOR2686 3.0 m at 673 ppm eU<sub>3</sub>O<sub>8</sub> from 12.5 m
- ♦ KOR2701 1.0 m at 844 ppm eU<sub>3</sub>O<sub>8</sub> from 13.5 m
- ♦ KOR2783 2.0 m at 397 ppm eU<sub>3</sub>O<sub>8</sub> from 0.5 m



Figure 3 shows the drill hole locations and grade thickness ("GT") distribution of the 620 holes drilled at Koppies during the December Quarter.





Grade thickness ("GT") values represent ppm eU<sub>3</sub>O<sub>8</sub> grade multiplied by interval thickness (in metres).



# Koppies Resource Drilling Program January to March 2024

Subsequent to the end of the quarter, three drill rigs are undertaking resource drilling in the Koppies 2 and 4 areas. A total of 273 drill holes for 7,644 metres are planned to be drilled in this program (see Figure 4). This resource drilling is expected to be completed during the March Quarter 2024. Once completed, the results will allow estimation of an interim resource for these areas, which is also expected to be completed during the March 2024 Quarter.

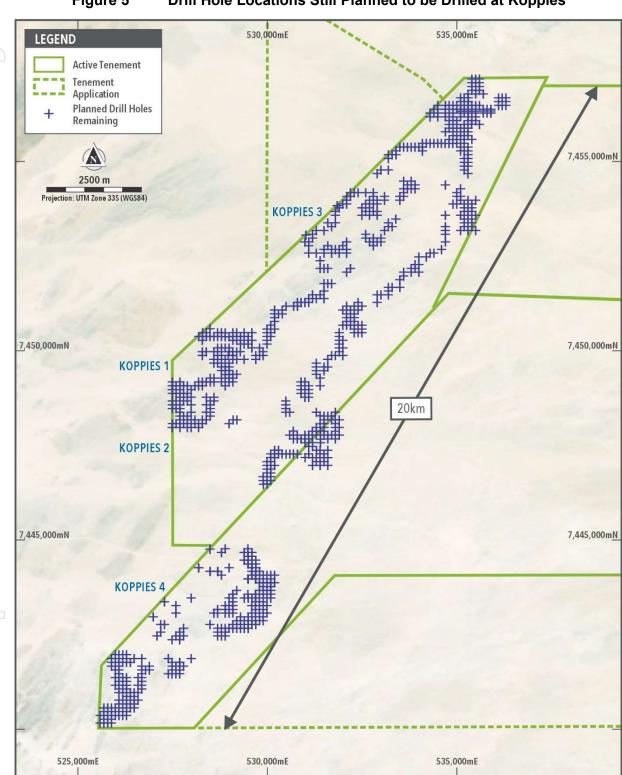
### Koppies Resource Update from Inferred to Indicated

Upon completion of the current Koppies 2 and 4 resource expansion drill program the drill rigs will commence an infill program to increase the Koppies resource confidence level from Inferred to Indicated JORC category to underpin the commencement of technical studies.

# Koppies Resource Extension Drilling Program

The resource drilling completed to date has identified multiple areas of open mineralisation on the edges of the Koppies 1, 2 and 3 domains. These areas represent potential extensions to the existing mineral resources at Koppies 1, 2 and 3.

Additional drilling programs are therefore planned to test these extension areas. Figure 5 illustrates the further planned hole locations to be drilled in the Koppies area including:


- testing the extension of Koppies 3 and the area in the north of the tenement,
- testing extensions of Koppies 1,
- testing extensions of Koppies 2, and
- testing potential extensions identified south of Koppies 2 and at Koppies 4.

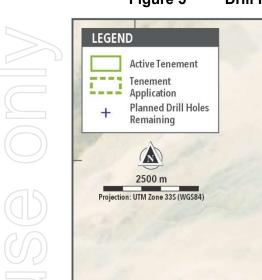
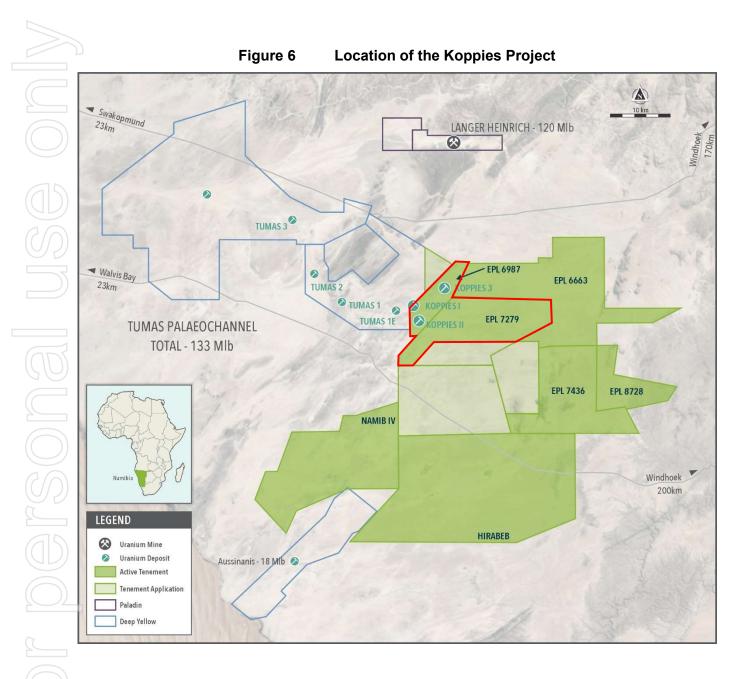

A total of 645 drill holes for 18,122 metres are planned to be drilled in these programs.

Figure 4 Koppies Drill Hole Rehabilitation Crew










#### Figure 5 Drill Hole Locations Still Planned to be Drilled at Koppies



The location and proximity of Koppies to the Company's other tenements in the Namib area is shown in Figure 6, with the proximity of Koppies to the Company's other Namibian tenements in Figure 7.







#### Figure 7 Location of Koppies and Ganab West (EPL 7279) with respect to **Elevate Uranium's Namibian tenements**



# Expenditure

During the December Quarter, the Group incurred exploration expenditure of \$1,317,961.

# Payments to Related Parties

During the December Quarter, the Company paid directors' fees plus superannuation to the nonexecutive directors, salary plus superannuation to the managing director and reimbursed expenses incurred on behalf of the Company. The total of all payments to related parties during the quarter was \$149,699.

# Authorisation

This report was authorised for release by the Board of Elevate Uranium Ltd.

### For more information, contact:

Managing Director - Murray Hill T: +61 8 6555 1816 E: murray.hill@elevateuranium.com.au

### Competent Persons Statement – General Exploration Sign-Off

The information in this announcement as it relates to exploration results, interpretations and conclusions was provided by Ms Asha Rao, who is a Member of both the AusIMM and the Australasian Institute of Geoscientists (AIG). Ms Rao, who is an employee of the Company, has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person, as defined in the JORC 2012 edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Ms Rao consents to the inclusion of this information in the form and context in which it appears.



#### Table 3

Elevate Uranium Ltd JORC Resource Summary

|                           |           | ·         | Cut-off            | To     | tal Resou        | rce              |             | Elevate | Share            |                  |
|---------------------------|-----------|-----------|--------------------|--------|------------------|------------------|-------------|---------|------------------|------------------|
| Deposit                   |           | Category  | (ppm               | Tonnes | U₃O <sub>8</sub> | U₃O <sub>8</sub> | Elevate     | Tonnes  | U₃O <sub>8</sub> | U₃O <sub>8</sub> |
|                           |           |           | U₃O <sub>8</sub> ) | (M)    | (ppm)            | (Mlb)            | Holding     | (M)     | (ppm)            | (Mlb)            |
| Namibia                   |           |           |                    |        |                  |                  |             |         |                  |                  |
| Koppies                   |           |           |                    |        |                  |                  |             |         |                  |                  |
| Koppies 1                 | JORC 2012 | Inferred  | 100                | 10.3   | 280              | 6.3              |             |         |                  |                  |
| Koppies 2                 | JORC 2012 | Inferred  | 100                | 48.6   | 220              | 23.7             |             |         |                  |                  |
| Koppies 3                 | JORC 2012 | Inferred  | 100                | 49.4   | 165              | 18.0             |             |         |                  |                  |
| Koppies Total             | JORC 2012 | Inferred  | 100                | 108.3  | 200              | 48.0             | 100%        | 108.3   | 200              | 48.0             |
| Marenica                  | JORC 2004 | Indicated | 50                 | 26.5   | 110              | 6.4              |             |         |                  |                  |
|                           |           | Inferred  | 50                 | 249.6  | 92               | 50.9             |             |         |                  |                  |
| MA7                       | JORC 2004 | Inferred  | 50                 | 22.8   | 81               | 4.0              |             |         |                  |                  |
| Marenica Uranium Proje    | ct Total  |           |                    | 298.9  | 93               | 61.3             | 75%         | 224.2   | 93               | 46.0             |
| Namibia Total             |           |           |                    | 407.2  | 122              | 109.3            |             | 332.5   | 128              | 94.0             |
| Australia - 100% Holding  |           |           |                    |        |                  |                  |             |         |                  |                  |
| Angela                    | JORC 2012 | Inferred  | 300                | 10.7   | 1,310            | 30.8             | 100%        | 10.7    | 1,310            | 30.8             |
| Thatcher Soak             | JORC 2012 | Inferred  | 150                | 11.6   | 425              | 10.9             | 100%        | 11.6    | 425              | 10.9             |
| 100% Held Resource Tota   | al        |           |                    | 22.3   | 850              | 41.7             | <b>100%</b> | 22.3    | 850              | 41.7             |
| Australia - Joint Venture | Holding   |           |                    |        |                  |                  |             |         |                  |                  |
| Bigrlyi Deposit           |           | Indicated | 500                | 4.7    | 1,366            | 14.0             |             |         |                  |                  |
|                           |           | Inferred  | 500                | 2.8    | 1,144            | 7.1              |             |         |                  |                  |
| Bigrlyi Total             | JORC 2004 | Total     | 500                | 7.5    | 1,283            | 21.1             | 20.82%      | 1.55    | 1,283            | 4.39             |
| Walbiri Joint Venture     |           |           |                    |        |                  |                  |             |         |                  |                  |
| Joint Venture             |           | Inferred  | 200                | 5.1    | 636              | 7.1              | 22.88%      | 1.16    | 636              | 1.63             |
| 100% EME                  |           | Inferred  | 200                | 5.9    | 646              | 8.4              |             |         |                  |                  |
| Walbiri Total             | JORC 2012 | Total     | 200                | 11.0   | 641              | 15.5             |             |         |                  |                  |
| Bigrlyi Joint Venture     |           |           |                    |        |                  |                  |             |         |                  |                  |
| Sundberg                  | JORC 2012 | Inferred  | 200                | 1.01   | 259              | 0.57             | 20.82%      | 0.21    | 259              | 0.12             |
| Hill One Joint Venture    | JORC 2012 | Inferred  | 200                | 0.26   | 281              | 0.16             | 20.82%      | 0.05    | 281              | 0.03             |
| Hill One EME              | JORC 2012 | Inferred  | 200                | 0.24   | 371              | 0.19             |             |         |                  |                  |
| Karins                    | JORC 2012 | Inferred  | 200                | 1.24   | 556              | 1.52             | 20.82%      | 0.26    | 556              | 0.32             |
| Malawiri Joint Venture    | JORC 2012 | Inferred  | 100                | 0.42   | 1,288            | 1.20             | 23.97%      | 0.10    | 1,288            | 0.29             |
| Joint Venture Resource T  | Total     | ·         |                    | 21.6   | 847              | 40.2             |             | 3.34    | 923              | 6.77             |
| Australia Total           |           |           |                    | 43.9   | 848              | 81.9             |             | 25.6    | 859              | 48.4             |
| TOTAL                     |           |           |                    |        |                  |                  |             |         |                  | 142.4            |

### Koppies Uranium Project:

The Company confirms that the Mineral Resource Estimates for the Koppies 1, Koppies 2 and Koppies 3 deposits have not changed since the ASX announcement titled "Koppies Resource up 136% to 48 Mlb", dated 8 November 2023. The Company is not aware of any new information, or data, that effects the information as disclosed in the announcement referred to above and confirms that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

#### Marenica Uranium Project:

The Company confirms that the Mineral Resource Estimates for the Marenica and MA7 deposits have not changed since the annual review disclosed in the 2023 Annual Report. The Company is not aware of any new information, or data, that effects the information in the 2023 Annual Report and confirms that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Mineral Resource Estimates for the Marenica and MA7 deposits were prepared in accordance with the requirements of the JORC Code 2004. They have not been updated since to comply with the 2012 Edition of the Australian Code for the Reporting of Exploration Results, Minerals Resources and Ore Reserves ("JORC Code 2012") on the basis that the information has not materially changed since they were last reported. A Competent Person has not undertaken sufficient work to classify the estimate of the Mineral Resource in accordance with the JORC Code 2012; it is possible that following evaluation and/or further exploration work the currently reported estimate may materially change and hence will need to be reported afresh under and in accordance with the JORC Code 2012.

#### Australian Uranium Projects:

The Company confirms that the Mineral Resource Estimates for Angela, Thatcher Soak, Bigrlyi, Sundberg, Hill One, Karins, Walbiri and Malawiri have not changed since the annual review disclosed in the 2023 Annual Report. The Company is not aware of any new information, or data, that effects the information in the 2023 Annual Report and confirms that all material assumptions and technical parameters



underpinning the estimates continue to apply and have not materially changed. The Mineral Resource Estimate for the Bigrlyi deposit was prepared in accordance with the requirements of the JORC Code 2004. The Mineral Resource Estimate was prepared and first disclosed under the 2004 Edition of the Australian Code for the Reporting of Exploration Results, Minerals Resources and Ore Reserves ("JORC Code 2004"). It has not been updated since to comply with the 2012 Edition of the Australian Code for the Reporting of Exploration Results, Minerals Resources and Ore Reserves ("JORC Code 2012") on the basis that the information has not materially changed since it was last reported. A Competent Person has not undertaken sufficient work to classify the estimate of the Mineral Resource in accordance with the JORC Code 2012; it is possible that following evaluation and/or further exploration work the currently reported estimate may materially change and hence will need to be reported afresh under and in accordance with the JORC Code 2012.



Table 4 details intervals greater than 100 ppm  $eU_3O_8$  with a minimum 0.5 metre thickness and Table 5 details collar locations for holes drilled around Koppies 1 and 2 and at Koppies 3 during the September Quarter. Intervals can include up to 0.5 metres of internal dilution.

| Hole ID | Depth From<br>(m) | Depth To<br>(m) | Interval<br>(m) | eU₃O₅<br>ppm |
|---------|-------------------|-----------------|-----------------|--------------|
| GWR0410 | 13.5              | 14.5            | 1.0             | 124          |
| GWR0411 | 13.0              | 14.0            | 1.0             | 108          |
| GWR0417 | 4.0               | 5.5             | 1.5             | 221          |
| GWR0418 | 5.0               | 6.0             | 1.0             | 101          |
| GWR0419 | 11.5              | 12.5            | 1.0             | 131          |
| GWR0420 | 16.0              | 17.0            | 1.0             | 107          |
| GWR0423 | 9.0               | 10.0            | 1.0             | 126          |
| and     | 12.0              | 15.5            | 3.5             | 189          |
| and     | 21.5              | 22.5            | 1.0             | 134          |
| GWR0424 | 3.5               | 4.0             | 0.5             | 101          |
| GWR0429 | 2.0               | 2.5             | 0.5             | 129          |
| GWR0431 | 24.0              | 24.5            | 0.5             | 126          |
| GWR0435 | 19.5              | 20.0            | 0.5             | 159          |
| GWR0437 | 1.5               | 2.0             | 0.5             | 103          |
| and     | 26.0              | 26.5            | 0.5             | 115          |
| GWR0438 | 4.0               | 4.5             | 0.5             | 152          |
| and     | 9.5               | 10.5            | 1.0             | 284          |
| GWR0439 | 13.5              | 14.0            | 0.5             | 116          |
| GWR0442 | 16.5              | 17.5            | 1.0             | 116          |
| GWR0443 | 6.0               | 7.0             | 1.0             | 130          |
| GWR0444 | 16.0              | 17.0            | 1.0             | 139          |
| and     | 19.0              | 19.5            | 0.5             | 126          |
| GWR0445 | 1.5               | 12.0            | 10.5            | 169          |
| and     | 20.0              | 20.5            | 0.5             | 117          |
| GWR0446 | 13.5              | 14.0            | 0.5             | 362          |
| GWR0451 | 18.5              | 19.0            | 0.5             | 109          |
| GWR0452 | 27.0              | 28.0            | 1.0             | 142          |
| GWR0454 | 2.5               | 3.0             | 0.5             | 127          |
| and     | 26.0              | 26.5            | 0.5             | 132          |
| GWR0455 | 11.0              | 11.5            | 0.5             | 131          |
| and     | 16.5              | 17.0            | 0.5             | 125          |
| GWR0456 | 6.0               | 6.5             | 0.5             | 112          |
| GWR0461 | 27.0              | 27.5            | 0.5             | 114          |
| GWR0476 | 19.0              | 19.5            | 0.5             | 127          |
| GWR0478 | 19.0              | 20.0            | 1.0             | 144          |
| GWR0484 | 11.5              | 12.5            | 1.0             | 182          |
| GWR0489 | 7.0               | 7.5             | 0.5             | 128          |
| GWR0491 | 3.0               | 4.5             | 1.5             | 154          |

| Table 4 Intersections Greater Than 100 ppm eU <sub>3</sub> O |
|--------------------------------------------------------------|
|--------------------------------------------------------------|



| Hole ID | Depth From<br>(m) | Depth To<br>(m) | Interval<br>(m) | eU₃O <sub>8</sub><br>ppm |
|---------|-------------------|-----------------|-----------------|--------------------------|
| and     | 5.5               | 6.5             | 1.0             | 138                      |
| GWR0492 | 5.0               | 6.0             | 1.0             | 128                      |
| and     | 7.0               | 11.0            | 4.0             | 211                      |
| GWR0498 | 10.0              | 11.0            | 1.0             | 196                      |
| GWR0501 | 9.0               | 10.0            | 1.0             | 272                      |
| GWR0511 | 5.0               | 10.0            | 5.0             | 118                      |
| GWR0514 | 6.0               | 6.5             | 0.5             | 101                      |
| GWR0515 | 15.0              | 15.5            | 0.5             | 132                      |
| GWR0524 | 11.0              | 13.5            | 2.5             | 150                      |
| GWR0526 | 14.5              | 15.0            | 0.5             | 118                      |
| and     | 17.5              | 18.5            | 1.0             | 161                      |
| GWR0529 | 25.5              | 26.0            | 0.5             | 122                      |
| GWR0532 | 4.0               | 25.5            | 21.5            | 153                      |
| GWR0533 | 17.0              | 17.5            | 0.5             | 105                      |
| GWR0537 | 25.0              | 25.5            | 0.5             | 190                      |
| GWR0538 | 21.0              | 25.5            | 4.5             | 178                      |
| and     | 27.0              | 28.0            | 1.0             | 195                      |
| GWR0542 | 17.5              | 18.0            | 0.5             | 139                      |
| and     | 19.5              | 20.5            | 1.0             | 126                      |
| and     | 22.5              | 23.5            | 1.0             | 166                      |
| GWR0543 | 15.5              | 16.0            | 0.5             | 107                      |
| GWR0545 | 9.0               | 9.5             | 0.5             | 112                      |
| and     | 19.0              | 19.5            | 0.5             | 108                      |
| and     | 24.5              | 28.0            | 3.5             | 148                      |
| GWR0546 | 4.5               | 6.0             | 1.5             | 166                      |
| GWR0551 | 8.0               | 8.5             | 0.5             | 129                      |
| GWR0552 | 9.5               | 10.0            | 0.5             | 104                      |
| GWR0553 | 3.0               | 4.0             | 1.0             | 114                      |
| and     | 11.5              | 12.0            | 0.5             | 253                      |
| GWR0555 | 11.0              | 11.5            | 0.5             | 104                      |
| and     | 17.5              | 18.0            | 0.5             | 120                      |
| and     | 20.5              | 21.0            | 0.5             | 130                      |
| GWR0558 | 3.0               | 4.0             | 1.0             | 159                      |
| and     | 18.0              | 19.0            | 1.0             | 133                      |
| GWR0559 | 18.0              | 21.0            | 3.0             | 170                      |
| GWR0560 | 7.5               | 8.0             | 0.5             | 177                      |
| GWR0561 | 7.5               | 9.0             | 1.5             | 109                      |
| and     | 10.5              | 14.5            | 4.0             | 129                      |
| GWR0564 | 13.0              | 13.5            | 0.5             | 115                      |
| GWR0565 | 21.5              | 22.0            | 0.5             | 112                      |
| GWR0567 | 23.5              | 25.0            | 1.5             | 311                      |
| GWR0570 | 28.5              | 29.0            | 0.5             | 148                      |
| GWR0571 | 7.0               | 8.0             | 1.0             | 170                      |
| GWR0573 | 16.5              | 17.0            | 0.5             | 178                      |



| Hole ID | Depth From<br>(m) | Depth To<br>(m) | Interval<br>(m) | eU₃O₅<br>ppm |
|---------|-------------------|-----------------|-----------------|--------------|
| GWR0577 | 19.5              | 20.0            | 0.5             | 112          |
| GWR0579 | 2.5               | 3.5             | 1.0             | 107          |
| and     | 16.0              | 16.5            | 0.5             | 117          |
| and     | 22.0              | 23.0            | 1.0             | 119          |
| GWR0581 | 4.5               | 5.5             | 1.0             | 117          |
| and     | 18.5              | 19.5            | 1.0             | 530          |
| GWR0582 | 11.0              | 11.5            | 0.5             | 122          |
| and     | 23.5              | 24.5            | 1.0             | 164          |
| GWR0587 | 8.0               | 8.5             | 0.5             | 100          |
| GWR0589 | 23.5              | 26.0            | 2.5             | 145          |
| GWR0591 | 8.0               | 8.5             | 0.5             | 182          |
| GWR0592 | 23.5              | 26.0            | 2.5             | 153          |
| GWR0594 | 27.5              | 28.0            | 0.5             | 132          |
| GWR0595 | 3.0               | 4.0             | 1.0             | 155          |
| and     | 13.5              | 14.5            | 1.0             | 184          |
| GWR0596 | 13.5              | 14.0            | 0.5             | 113          |
| GWR0599 | 1.0               | 2.5             | 1.5             | 446          |
| and     | 11.0              | 12.5            | 1.5             | 153          |
| and     | 13.5              | 16.0            | 2.5             | 188          |
| GWR0600 | 21.5              | 22.5            | 1.0             | 112          |
| GWR0601 | 13.0              | 14.5            | 1.5             | 139          |
| and     | 16.0              | 19.0            | 3.0             | 162          |
| GWR0603 | 16.0              | 16.5            | 0.5             | 107          |
| GWR0604 | 10.0              | 10.5            | 0.5             | 101          |
| GWR0606 | 4.0               | 4.5             | 0.5             | 120          |
| and     | 19.0              | 21.5            | 2.5             | 153          |
| GWR0608 | 5.5               | 6.0             | 0.5             | 144          |
| GWR0613 | 25.0              | 30.0            | 5.0             | 764          |
| GWR0615 | 16.0              | 19.0            | 3.0             | 216          |
| and     | 24.0              | 24.5            | 0.5             | 202          |
| GWR0616 | 4.5               | 6.0             | 1.5             | 130          |
| GWR0617 | 2.5               | 3.0             | 0.5             | 295          |
| and     | 12.0              | 13.0            | 1.0             | 125          |
| GWR0624 | 13.5              | 15.0            | 1.5             | 124          |
| GWR0625 | 8.5               | 9.5             | 1.0             | 194          |
| GWR0626 | 7.5               | 8.0             | 0.5             | 101          |
| and     | 9.0               | 10.0            | 1.0             | 178          |
| and     | 20.5              | 21.0            | 0.5             | 135          |
| and     | 27.5              | 28.0            | 0.5             | 141          |
| GWR0627 | 24.5              | 25.0            | 0.5             | 134          |
| GWR0629 | 27.0              | 27.5            | 0.5             | 105          |
| GWR0631 | 10.0              | 12.5            | 2.5             | 222          |
| GWR0632 | 7.5               | 8.0             | 0.5             | 107          |
| GWR0637 | 14.0              | 14.5            | 0.5             | 124          |



| Hole ID | Depth From<br>(m) | Depth To<br>(m) | Interval<br>(m) | eU₃O <sub>8</sub><br>ppm |
|---------|-------------------|-----------------|-----------------|--------------------------|
| and     | 15.0              | 17.0            | 2.0             | 277                      |
| GWR0638 | 23.5              | 24.0            | 0.5             | 162                      |
| GWR0640 | 10.0              | 10.5            | 0.5             | 124                      |
| and     | 13.5              | 14.0            | 0.5             | 109                      |
| GWR0643 | 9.0               | 9.5             | 0.5             | 116                      |
| and     | 18.5              | 20.0            | 1.5             | 161                      |
| GWR0644 | 11.0              | 11.5            | 0.5             | 147                      |
| and     | 24.5              | 26.0            | 1.5             | 188                      |
| GWR0646 | 19.5              | 20.5            | 1.0             | 203                      |
| GWR0648 | 0.0               | 0.5             | 0.5             | 138                      |
| and     | 27.0              | 28.0            | 1.0             | 165                      |
| and     | 34.0              | 35.0            | 1.0             | 158                      |
| and     | 36.0              | 36.5            | 0.5             | 102                      |
| and     | 37.5              | 38.0            | 0.5             | 167                      |
| GWR0656 | 11.0              | 11.5            | 0.5             | 127                      |
| GWR0657 | 7.5               | 8.0             | 0.5             | 114                      |
| GWR0658 | 4.0               | 5.5             | 1.5             | 181                      |
| and     | 17.0              | 17.5            | 0.5             | 162                      |
| GWR0659 | 1.0               | 1.5             | 0.5             | 110                      |
| and     | 3.0               | 3.5             | 0.5             | 118                      |
| and     | 11.0              | 11.5            | 0.5             | 141                      |
| GWR0662 | 11.0              | 11.5            | 0.5             | 104                      |
| and     | 21.5              | 22.0            | 0.5             | 137                      |
| GWR0668 | 27.5              | 28.0            | 0.5             | 100                      |
| GWR0669 | 1.0               | 2.0             | 1.0             | 130                      |
| and     | 27.0              | 27.5            | 0.5             | 113                      |
| GWR0670 | 2.0               | 3.5             | 1.5             | 130                      |
| and     | 16.0              | 18.0            | 2.0             | 152                      |
| and     | 23.0              | 23.5            | 0.5             | 258                      |
| GWR0671 | 25.5              | 26.5            | 1.0             | 119                      |
| GWR0672 | 8.5               | 9.0             | 0.5             | 174                      |
| and     | 24.5              | 25.5            | 1.0             | 163                      |
| GWR0673 | 1.5               | 2.5             | 1.0             | 117                      |
| and     | 6.5               | 8.0             | 1.5             | 116                      |
| and     | 16.0              | 16.5            | 0.5             | 192                      |
| GWR0674 | 18.0              | 18.5            | 0.5             | 111                      |
| GWR0679 | 7.5               | 9.0             | 1.5             | 142                      |
| and     | 13.0              | 13.5            | 0.5             | 132                      |
| and     | 17.0              | 17.5            | 0.5             | 388                      |
| GWR0680 | 9.5               | 10.0            | 0.5             | 209                      |
| GWR0681 | 10.0              | 10.5            | 0.5             | 148                      |
| GWR0682 | 5.0               | 5.5             | 0.5             | 197                      |
| and     | 15.5              | 16.0            | 0.5             | 112                      |
| GWR0683 | 10.0              | 11.0            | 1.0             | 163                      |



| Hole ID | Depth From<br>(m) | Depth To<br>(m) | Interval<br>(m) | eU₃O <sub>8</sub><br>ppm |
|---------|-------------------|-----------------|-----------------|--------------------------|
| and     | 27.5              | 29.0            | 1.5             | 162                      |
| GWR0684 | 12.0              | 14.0            | 2.0             | 171                      |
| GWR0686 | 20.5              | 21.0            | 0.5             | 115                      |
| and     | 27.5              | 30.5            | 3.0             | 151                      |
| GWR0691 | 26.0              | 26.5            | 0.5             | 135                      |
| GWR0692 | 2.5               | 3.0             | 0.5             | 119                      |
| and     | 17.5              | 18.0            | 0.5             | 108                      |
| GWR0693 | 4.5               | 5.0             | 0.5             | 128                      |
| and     | 12.5              | 13.0            | 0.5             | 122                      |
| GWR0694 | 25.5              | 26.0            | 0.5             | 110                      |
| GWR0700 | 15.5              | 16.5            | 1.0             | 173                      |
| GWR0703 | 7.0               | 7.5             | 0.5             | 143                      |
| and     | 10.0              | 10.5            | 0.5             | 158                      |
| GWR0704 | 17.0              | 18.0            | 1.0             | 194                      |
| GWR0708 | 10.5              | 11.5            | 1.0             | 125                      |
| GWR0711 | 10.0              | 11.5            | 1.5             | 117                      |
| and     | 16.5              | 17.5            | 1.0             | 148                      |
| and     | 23.0              | 24.0            | 1.0             | 176                      |
| GWR0713 | 10.0              | 10.5            | 0.5             | 106                      |
| and     | 17.5              | 18.0            | 0.5             | 131                      |
| and     | 23.0              | 23.5            | 0.5             | 124                      |
| GWR0715 | 15.5              | 16.0            | 0.5             | 117                      |
| GWR0716 | 3.0               | 3.5             | 0.5             | 116                      |
| and     | 4.0               | 4.5             | 0.5             | 103                      |
| GWR0717 | 1.5               | 2.0             | 0.5             | 120                      |
| GWR0719 | 18.5              | 20.5            | 2.0             | 116                      |
| and     | 22.5              | 23.5            | 1.0             | 159                      |
| GWR0721 | 13.5              | 14.0            | 0.5             | 132                      |
| and     | 24.0              | 25.0            | 1.0             | 118                      |
| GWR0722 | 1.5               | 2.0             | 0.5             | 159                      |
| and     | 8.0               | 8.5             | 0.5             | 109                      |
| and     | 14.0              | 14.5            | 0.5             | 129                      |
| and     | 20.5              | 21.0            | 0.5             | 127                      |
| GWR0723 | 3.5               | 4.0             | 0.5             | 114                      |
| GWR0724 | 7.0               | 7.5             | 0.5             | 135                      |
| and     | 8.0               | 8.5             | 0.5             | 107                      |
| GWR0727 | 12.0              | 12.5            | 0.5             | 302                      |
| GWR0729 | 1.5               | 3.0             | 1.5             | 165                      |
| and     | 8.0               | 9.0             | 1.0             | 161                      |
| and     | 15.0              | 16.5            | 1.5             | 120                      |
| GWR0730 | 9.5               | 10.0            | 0.5             | 128                      |
| GWR0732 | 3.0               | 4.5             | 1.5             | 133                      |
| and     | 6.5               | 7.0             | 0.5             | 116                      |
| GWR0734 | 17.5              | 18.0            | 0.5             | 118                      |



| Hole ID | Depth From<br>(m) | Depth To<br>(m) | Interval<br>(m) | eU₃O <sub>8</sub><br>ppm |
|---------|-------------------|-----------------|-----------------|--------------------------|
| and     | 19.5              | 20.0            | 0.5             | 177                      |
| and     | 27.5              | 28.0            | 0.5             | 144                      |
| GWR0744 | 8.5               | 9.0             | 0.5             | 116                      |
| and     | 10.5              | 11.0            | 0.5             | 131                      |
| GWR0745 | 0.5               | 1.0             | 0.5             | 136                      |
| GWR0750 | 9.5               | 10.0            | 0.5             | 177                      |
| and     | 20.0              | 23.5            | 3.5             | 116                      |
| and     | 26.5              | 32.0            | 5.5             | 521                      |
| GWR0753 | 7.5               | 8.5             | 1.0             | 212                      |
| GWR0757 | 7.5               | 8.0             | 0.5             | 117                      |
| GWR0762 | 4.5               | 13.5            | 9.0             | 230                      |
| and     | 14.0              | 16.0            | 2.0             | 161                      |
| and     | 25.0              | 26.0            | 1.0             | 105                      |
| and     | 27.0              | 29.5            | 2.5             | 199                      |
| and     | 30.0              | 31.0            | 1.0             | 152                      |
| GWR0764 | 3.5               | 4.0             | 0.5             | 142                      |
| and     | 13.0              | 13.5            | 0.5             | 128                      |
| GWR0765 | 2.5               | 3.0             | 0.5             | 102                      |
| GWR0767 | 1.5               | 2.5             | 1.0             | 128                      |
| and     | 25.5              | 26.0            | 0.5             | 172                      |
| GWR0776 | 10.5              | 11.0            | 0.5             | 197                      |
| GWR0781 | 11.5              | 12.0            | 0.5             | 102                      |
| GWR0789 | 6.0               | 7.0             | 1.0             | 166                      |
| and     | 7.5               | 13.0            | 5.5             | 337                      |
| and     | 14.0              | 15.0            | 1.0             | 212                      |
| and     | 16.0              | 16.5            | 0.5             | 108                      |
| and     | 19.0              | 19.5            | 0.5             | 123                      |
| GWR0790 | 9.5               | 10.0            | 0.5             | 103                      |
| GWR0792 | 11.0              | 11.5            | 0.5             | 321                      |
| and     | 13.0              | 13.5            | 0.5             | 138                      |
| GWR0799 | 14.0              | 15.0            | 1.0             | 203                      |
| GWR0800 | 5.0               | 5.5             | 0.5             | 106                      |
| GWR0801 | 14.5              | 15.0            | 0.5             | 111                      |
| GWR0804 | 8.0               | 8.5             | 0.5             | 218                      |
| GWR0806 | 14.5              | 15.0            | 0.5             | 155                      |
| and     | 19.0              | 19.5            | 0.5             | 145                      |
| and     | 22.5              | 23.0            | 0.5             | 271                      |
| GWR0809 | 3.0               | 4.0             | 1.0             | 460                      |
| GWR0812 | 1.0               | 4.5             | 3.5             | 119                      |
| GWR0813 | 5.0               | 5.5             | 0.5             | 136                      |
| GWR0815 | 21.0              | 23.5            | 2.5             | 133                      |
| KOR2625 | 12.0              | 12.5            | 0.5             | 159                      |
| and     | 14.5              | 15.0            | 0.5             | 190                      |
| KOR2626 | 6.0               | 7.0             | 1.0             | 106                      |



| Hole ID | Depth From<br>(m) | Depth To<br>(m) | Interval<br>(m) | eU₃O₅<br>ppm |
|---------|-------------------|-----------------|-----------------|--------------|
| KOR2627 | 1.0               | 1.5             | 0.5             | 124          |
| and     | 20.0              | 21.0            | 1.0             | 185          |
| KOR2628 | 6.0               | 8.0             | 2.0             | 322          |
| KOR2629 | 9.0               | 10.0            | 1.0             | 123          |
| and     | 12.5              | 13.0            | 0.5             | 209          |
| KOR2631 | 6.5               | 7.0             | 0.5             | 106          |
| KOR2634 | 3.5               | 4.0             | 0.5             | 136          |
| and     | 5.0               | 5.5             | 0.5             | 118          |
| and     | 7.0               | 7.5             | 0.5             | 109          |
| and     | 12.0              | 12.5            | 0.5             | 126          |
| KOR2636 | 2.5               | 3.5             | 1.0             | 191          |
| and     | 4.5               | 5.5             | 1.0             | 124          |
| and     | 9.5               | 12.0            | 2.5             | 248          |
| KOR2638 | 3.5               | 5.0             | 1.5             | 134          |
| and     | 16.0              | 17.0            | 1.0             | 288          |
| KOR2639 | 2.5               | 6.5             | 4.0             | 113          |
| and     | 7.5               | 10.0            | 2.5             | 237          |
| KOR2640 | 2.5               | 3.5             | 1.0             | 122          |
| and     | 5.5               | 7.0             | 1.5             | 101          |
| and     | 8.0               | 15.5            | 7.5             | 121          |
| KOR2645 | 8.0               | 8.5             | 0.5             | 101          |
| KOR2646 | 10.0              | 11.0            | 1.0             | 185          |
| KOR2650 | 1.0               | 1.5             | 0.5             | 144          |
| KOR2654 | 10.0              | 10.5            | 0.5             | 115          |
| and     | 14.0              | 14.5            | 0.5             | 142          |
| KOR2656 | 4.0               | 7.5             | 3.5             | 125          |
| KOR2657 | 4.0               | 4.5             | 0.5             | 121          |
| and     | 13.5              | 16.0            | 2.5             | 147          |
| KOR2658 | 5.5               | 6.0             | 0.5             | 172          |
| KOR2660 | 11.0              | 12.0            | 1.0             | 118          |
| KOR2662 | 4.0               | 4.5             | 0.5             | 104          |
| and     | 9.0               | 9.5             | 0.5             | 104          |
| KOR2663 | 18.0              | 18.5            | 0.5             | 159          |
| KOR2667 | 7.5               | 10.0            | 2.5             | 151          |
| KOR2671 | 22.0              | 23.0            | 1.0             | 129          |
| and     | 27.0              | 27.5            | 0.5             | 143          |
| KOR2672 | 3.5               | 4.0             | 0.5             | 168          |
| KOR2674 | 26.5              | 27.5            | 1.0             | 231          |
| KOR2678 | 16.0              | 16.5            | 0.5             | 106          |
| KOR2679 | 4.0               | 4.5             | 0.5             | 234          |
| and     | 5.5               | 6.5             | 1.0             | 154          |
| KOR2680 | 5.5               | 6.5             | 1.0             | 217          |
| and     | 15.0              | 16.0            | 1.0             | 149          |
| and     | 21.0              | 21.5            | 0.5             | 114          |



| Hole ID | Depth From<br>(m) | Depth To<br>(m) | Interval<br>(m) | eU₃O₅<br>ppm |
|---------|-------------------|-----------------|-----------------|--------------|
| KOR2683 | 1.5               | 2.5             | 1.0             | 142          |
| KOR2685 | 3.5               | 4.5             | 1.0             | 137          |
| and     | 14.5              | 15.0            | 0.5             | 119          |
| KOR2686 | 10.5              | 11.0            | 0.5             | 143          |
| and     | 12.5              | 15.5            | 3.0             | 673          |
| KOR2688 | 6.5               | 8.0             | 1.5             | 122          |
| KOR2690 | 7.0               | 8.5             | 1.5             | 121          |
| KOR2692 | 21.0              | 21.5            | 0.5             | 123          |
| KOR2693 | 6.5               | 7.0             | 0.5             | 107          |
| and     | 10.0              | 11.5            | 1.5             | 168          |
| KOR2694 | 4.5               | 8.5             | 4.0             | 238          |
| and     | 10.5              | 11.0            | 0.5             | 111          |
| KOR2695 | 6.0               | 6.5             | 0.5             | 104          |
| KOR2696 | 8.0               | 9.0             | 1.0             | 132          |
| KOR2697 | 9.0               | 9.5             | 0.5             | 139          |
| KOR2698 | 7.0               | 8.5             | 1.5             | 156          |
| KOR2700 | 6.0               | 6.5             | 0.5             | 151          |
| KOR2701 | 13.5              | 14.5            | 1.0             | 844          |
| KOR2702 | 4.5               | 9.0             | 4.5             | 141          |
| and     | 10.5              | 11.5            | 1.0             | 123          |
| KOR2708 | 11.0              | 11.5            | 0.5             | 104          |
| KOR2709 | 4.0               | 4.5             | 0.5             | 148          |
| KOR2713 | 25.5              | 26.0            | 0.5             | 225          |
| KOR2717 | 9.5               | 11.0            | 1.5             | 373          |
| KOR2718 | 7.0               | 7.5             | 0.5             | 219          |
| KOR2721 | 3.0               | 4.0             | 1.0             | 127          |
| and     | 8.0               | 8.5             | 0.5             | 106          |
| KOR2724 | 4.0               | 4.5             | 0.5             | 119          |
| KOR2725 | 7.0               | 8.0             | 1.0             | 126          |
| KOR2726 | 3.0               | 3.5             | 0.5             | 105          |
| KOR2727 | 6.5               | 7.0             | 0.5             | 145          |
| KOR2728 | 4.0               | 4.5             | 0.5             | 152          |
| KOR2729 | 9.0               | 10.0            | 1.0             | 152          |
| and     | 15.0              | 17.0            | 2.0             | 168          |
| and     | 22.0              | 23.5            | 1.5             | 456          |
| KOR2730 | 20.0              | 21.5            | 1.5             | 386          |
| and     | 23.5              | 24.5            | 1.0             | 375          |
| KOR2732 | 11.5              | 12.0            | 0.5             | 101          |
| KOR2734 | 5.5               | 6.5             | 1.0             | 212          |
| KOR2735 | 6.0               | 7.0             | 1.0             | 178          |
| KOR2736 | 5.0               | 5.5             | 0.5             | 132          |
| KOR2737 | 12.0              | 28.0            | 16.0            | 130          |
| KOR2743 | 4.5               | 5.0             | 0.5             | 125          |
| KOR2746 | 4.5               | 5.5             | 1.0             | 168          |



| Hole ID | Depth From<br>(m) | Depth To<br>(m) | Interval<br>(m) | eU₃O₅<br>ppm |
|---------|-------------------|-----------------|-----------------|--------------|
| and     | 8.5               | 9.0             | 0.5             | 128          |
| KOR2747 | 4.0               | 4.5             | 0.5             | 104          |
| KOR2749 | 4.0               | 5.5             | 1.5             | 172          |
| and     | 6.5               | 7.5             | 1.0             | 135          |
| KOR2750 | 9.0               | 9.5             | 0.5             | 127          |
| KOR2751 | 11.5              | 12.0            | 0.5             | 121          |
| KOR2752 | 8.5               | 10.5            | 2.0             | 276          |
| KOR2753 | 6.0               | 8.0             | 2.0             | 134          |
| KOR2755 | 7.5               | 8.0             | 0.5             | 106          |
| KOR2756 | 17.5              | 18.0            | 0.5             | 149          |
| KOR2757 | 6.5               | 7.0             | 0.5             | 172          |
| KOR2758 | 6.5               | 7.0             | 0.5             | 107          |
| and     | 8.0               | 8.5             | 0.5             | 140          |
| KOR2760 | 7.0               | 8.0             | 1.0             | 186          |
| KOR2766 | 22.5              | 23.5            | 1.0             | 138          |
| KOR2768 | 19.0              | 19.5            | 0.5             | 127          |
| KOR2769 | 7.0               | 7.5             | 0.5             | 146          |
| and     | 10.0              | 10.5            | 0.5             | 118          |
| and     | 13.0              | 14.0            | 1.0             | 182          |
| KOR2770 | 10.5              | 11.0            | 0.5             | 131          |
| KOR2771 | 11.5              | 12.0            | 0.5             | 180          |
| KOR2772 | 6.5               | 7.5             | 1.0             | 178          |
| and     | 9.5               | 10.0            | 0.5             | 100          |
| and     | 10.5              | 11.0            | 0.5             | 107          |
| and     | 13.5              | 14.5            | 1.0             | 317          |
| and     | 18.5              | 19.5            | 1.0             | 113          |
| KOR2773 | 4.0               | 5.0             | 1.0             | 237          |
| KOR2774 | 4.5               | 5.0             | 0.5             | 119          |
| KOR2775 | 19.5              | 20.0            | 0.5             | 117          |
| KOR2777 | 7.0               | 8.0             | 1.0             | 119          |
| KOR2778 | 9.0               | 9.5             | 0.5             | 288          |
| and     | 12.5              | 17.0            | 4.5             | 238          |
| and     | 18.5              | 19.5            | 1.0             | 541          |
| KOR2779 | 6.5               | 8.0             | 1.5             | 138          |
| KOR2783 | 0.5               | 2.5             | 2.0             | 397          |
| KOR2784 | 8.0               | 9.0             | 1.0             | 112          |
| KOR2785 | 4.0               | 4.5             | 0.5             | 141          |
| and     | 10.5              | 11.5            | 1.0             | 106          |
| KOR2786 | 10.5              | 15.0            | 4.5             | 129          |
| KOR2787 | 10.5              | 11.0            | 0.5             | 116          |
| and     | 16.0              | 16.5            | 0.5             | 125          |
| KOR2788 | 9.5               | 10.0            | 0.5             | 129          |
| and     | 11.0              | 11.5            | 0.5             | 109          |
| KOR2794 | 27.0              | 27.5            | 0.5             | 106          |



| Hole ID | Depth From<br>(m) | Depth To<br>(m) | Interval<br>(m) | eU₃O <sub>8</sub><br>ppm |
|---------|-------------------|-----------------|-----------------|--------------------------|
| KOR2796 | 24.5              | 26.0            | 1.5             | 328                      |
| KOR2798 | 11.5              | 12.5            | 1.0             | 152                      |
| and     | 22.5              | 25.5            | 3.0             | 177                      |
| KOR2799 | 9.0               | 9.5             | 0.5             | 102                      |
| and     | 10.5              | 12.5            | 2.0             | 114                      |
| and     | 17.5              | 18.5            | 1.0             | 591                      |
| and     | 19.5              | 20.5            | 1.0             | 566                      |
| KOR2801 | 22.5              | 23.0            | 0.5             | 133                      |
| KOR2802 | 7.0               | 7.5             | 0.5             | 115                      |
| and     | 11.0              | 12.0            | 1.0             | 122                      |
| KOR2805 | 12.0              | 12.5            | 0.5             | 108                      |
| and     | 17.5              | 20.5            | 3.0             | 241                      |
| KOR2806 | 5.0               | 6.5             | 1.5             | 125                      |
| and     | 9.0               | 12.0            | 3.0             | 183                      |
| and     | 13.0              | 13.5            | 0.5             | 130                      |
| and     | 23.5              | 24.0            | 0.5             | 110                      |
| and     | 25.0              | 26.5            | 1.5             | 189                      |
| and     | 27.5              | 28.0            | 0.5             | 154                      |
| KOR2808 | 26.0              | 26.5            | 0.5             | 100                      |
| KOR2809 | 25.0              | 26.0            | 1.0             | 217                      |
| KOR2815 | 4.0               | 5.5             | 1.5             | 151                      |
| and     | 27.0              | 27.5            | 0.5             | 115                      |
| KOR2817 | 12.0              | 12.5            | 0.5             | 114                      |
| KOR2819 | 15.5              | 16.0            | 0.5             | 106                      |
| KOR2824 | 15.0              | 15.5            | 0.5             | 101                      |
| KOR2825 | 21.5              | 22.5            | 1.0             | 123                      |
| KOR2847 | 6.0               | 6.5             | 0.5             | 103                      |
| and     | 7.0               | 7.5             | 0.5             | 120                      |
| KOR2855 | 1.5               | 3.0             | 1.5             | 130                      |
| KOR2856 | 7.0               | 9.0             | 2.0             | 174                      |
| and     | 18.5              | 19.5            | 1.0             | 116                      |
| KOR2863 | 4.5               | 6.0             | 1.5             | 122                      |
| KOR2864 | 4.5               | 5.0             | 0.5             | 103                      |
| KOR2865 | 2.0               | 2.5             | 0.5             | 113                      |



### Table 5

**Drill Hole Locations** 

|                    | T CIN         |         |          |                      |         |            |
|--------------------|---------------|---------|----------|----------------------|---------|------------|
| Hole ID            | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip        |
| GWR0407            | RC            | 528203  | 7444200  | 28                   | 0       | -90        |
| GWR0408            | RC            | 528603  | 7444200  | 28                   | 0       | -90        |
| GWR0409            | RC            | 529003  | 7444200  | 28                   | 0       | -90        |
| GWR0410            | RC            | 529203  | 7444200  | 28                   | 0       | -90        |
| GWR0411            | RC            | 529403  | 7444201  | 28                   | 0       | -90        |
| GWR0412            | RC            | 530202  | 7444000  | 28                   | 0       | -90        |
| GWR0413            | RC            | 530003  | 7444000  | 28                   | 0       | -90        |
| GWR0414            | RC            | 529803  | 7444000  | 28                   | 0       | -90        |
| GWR0415            | RC            | 529603  | 7444000  | 28                   | 0       | -90        |
| GWR0416            | RC            | 529403  | 7444000  | 28                   | 0       | -90        |
| GWR0417            | RC            | 529203  | 7444000  | 28                   | 0       | -90        |
| GWR0418            | RC            | 529003  | 7444000  | 28                   | 0       | -90        |
| GWR0419            | RC            | 528603  | 7444000  | 28                   | 0       | -90        |
| GWR0420            | RC            | 528202  | 7444000  | 28                   | 0       | -90        |
| GWR0421            | RC            | 527804  | 7444000  | 28                   | 0       | -90        |
| GWR0422            | RC            | 528203  | 7443800  | 28                   | 0       | -90        |
| GWR0423            | RC            | 528203  | 7443601  | 31                   | 0       | -90        |
| GWR0424            | RC            | 528603  | 7443600  | 28                   | 0       | -90        |
| GWR0425            | RC            | 529003  | 7443600  | 28                   | 0       | -90        |
| GWR0426            | RC            | 529203  | 7443600  | 28                   | 0       | -90        |
| GWR0427            | RC            | 529403  | 7443600  | 28                   | 0       | -90        |
| GWR0428            | RC            | 529605  | 7443598  | 28                   | 0       | -90        |
| GWR0429            | RC            | 529803  | 7443600  | 28                   | 0       | -90        |
| GWR0430            | RC            | 530003  | 7443600  | 28                   | 0       | -90        |
| GWR0431            | RC            | 530203  | 7443600  | 28                   | 0       | -90        |
| GWR0432            | RC            | 530003  | 7443400  | 28                   | 0       | -90        |
| GWR0433            | RC            | 529803  | 7443400  | 28                   | 0       | -90        |
| GWR0434            | RC            | 529603  | 7443400  | 28                   | 0       | -90        |
| GWR0435            | RC            | 529203  | 7443400  | 28                   | 0       | -90        |
| GWR0436            | RC            | 529003  | 7443400  | 28                   | 0       | -90        |
| GWR0437            | RC            | 528603  | 7443400  | 28                   | 0       | -90        |
| GWR0438            | RC            | 528203  | 7443400  | 28                   | 0       | -90        |
| GWR0439            | RC            | 527803  | 7443400  | 28                   | 0       | -90        |
| GWR0440            | RC            | 527403  | 7443400  | 28                   | 0       | -90        |
| GWR0440            | RC            | 527204  | 7443394  | 28                   | 0       | -90        |
| GWR0441<br>GWR0442 | RC            | 527204  | 7443200  | 28                   | 0       | -90        |
| GWR0442            | RC            | 527403  | 7443200  | 28                   | 0       | -90        |
| GWR0443<br>GWR0444 | RC            | 527803  | 7443200  | 28                   | 0       | -90<br>-90 |
| GWR0444<br>GWR0445 | RC            | 528203  | 7443200  | 20                   | 0       | -90<br>-90 |
| GWR0445<br>GWR0446 | RC            | 526203  | 7443200  | 20                   | 0       | -90<br>-90 |
| GWR0440<br>GWR0447 |               | 530003  |          | 20                   |         | -90<br>-90 |
|                    | RC            |         | 7443000  |                      | 0       |            |
| GWR0448            | RC            | 529803  | 7443000  | 28                   | 0       | -90        |
| GWR0449            | RC            | 529602  | 7443000  | 28                   | 0       | -90        |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| GWR0450 | RC            | 529403  | 7443000  | 28                   | 0       | -90 |
| GWR0451 | RC            | 529204  | 7443000  | 28                   | 0       | -90 |
| GWR0452 | RC            | 529004  | 7442999  | 32                   | 0       | -90 |
| GWR0453 | RC            | 528603  | 7443000  | 28                   | 0       | -90 |
| GWR0454 | RC            | 528203  | 7442999  | 28                   | 0       | -90 |
| GWR0455 | RC            | 527803  | 7443000  | 28                   | 0       | -90 |
| GWR0456 | RC            | 527403  | 7443000  | 28                   | 0       | -90 |
| GWR0457 | RC            | 527003  | 7443100  | 28                   | 0       | -90 |
| GWR0458 | RC            | 527003  | 7442900  | 28                   | 0       | -90 |
| GWR0459 | RC            | 527404  | 7442800  | 28                   | 0       | -90 |
| GWR0460 | RC            | 527803  | 7442800  | 28                   | 0       | -90 |
| GWR0461 | RC            | 528203  | 7442800  | 28                   | 0       | -90 |
| GWR0462 | RC            | 528603  | 7442800  | 28                   | 0       | -90 |
| GWR0476 | RC            | 529003  | 7442400  | 28                   | 0       | -90 |
| GWR0477 | RC            | 528603  | 7442200  | 28                   | 0       | -90 |
| GWR0478 | RC            | 528205  | 7442200  | 28                   | 0       | -90 |
| GWR0483 | RC            | 527403  | 7442000  | 28                   | 0       | -90 |
| GWR0484 | RC            | 527803  | 7442000  | 28                   | 0       | -90 |
| GWR0485 | RC            | 528203  | 7442000  | 28                   | 0       | -90 |
| GWR0486 | RC            | 527803  | 7441800  | 28                   | 0       | -90 |
| GWR0487 | RC            | 527403  | 7441801  | 28                   | 0       | -90 |
| GWR0488 | RC            | 527203  | 7441800  | 28                   | 0       | -90 |
| GWR0489 | RC            | 527004  | 7441900  | 28                   | 0       | -90 |
| GWR0490 | RC            | 526603  | 7441900  | 28                   | 0       | -90 |
| GWR0491 | RC            | 526603  | 7441700  | 28                   | 0       | -90 |
| GWR0492 | RC            | 527004  | 7441701  | 28                   | 0       | -90 |
| GWR0493 | RC            | 527203  | 7441600  | 28                   | 0       | -90 |
| GWR0494 | RC            | 527403  | 7441601  | 28                   | 0       | -90 |
| GWR0495 | RC            | 527803  | 7441600  | 28                   | 0       | -90 |
| GWR0496 | RC            | 527803  | 7441400  | 28                   | 0       | -90 |
| GWR0497 | RC            | 527403  | 7441401  | 28                   | 0       | -90 |
| GWR0498 | RC            | 527004  | 7441497  | 28                   | 0       | -90 |
| GWR0499 | RC            | 526603  | 7441501  | 28                   | 0       | -90 |
| GWR0500 | RC            | 526603  | 7441300  | 28                   | 0       | -90 |
| GWR0501 | RC            | 526603  | 7441100  | 28                   | 0       | -90 |
| GWR0502 | RC            | 526603  | 7440900  | 28                   | 0       | -90 |
| GWR0503 | RC            | 526604  | 7440500  | 28                   | 0       | -90 |
| GWR0504 | RC            | 526603  | 7440300  | 28                   | 0       | -90 |
| GWR0505 | RC            | 526603  | 7440100  | 28                   | 0       | -90 |
| GWR0506 | RC            | 527003  | 7440100  | 28                   | 0       | -90 |
| GWR0507 | RC            | 527003  | 7440300  | 28                   | 0       | -90 |
| GWR0508 | RC            | 526003  | 7440100  | 28                   | 0       | -90 |
| GWR0509 | RC            | 526003  | 7440300  | 28                   | 0       | -90 |
| GWR0510 | RC            | 526002  | 7440500  | 28                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| GWR0511 | RC            | 526003  | 7440700  | 28                   | 0       | -90 |
| GWR0512 | RC            | 526003  | 7440900  | 28                   | 0       | -90 |
| GWR0513 | RC            | 526003  | 7441100  | 28                   | 0       | -90 |
| GWR0514 | RC            | 526003  | 7441300  | 28                   | 0       | -90 |
| GWR0515 | RC            | 526003  | 7441500  | 28                   | 0       | -90 |
| GWR0516 | RC            | 526003  | 7441700  | 28                   | 0       | -90 |
| GWR0517 | RC            | 526003  | 7441900  | 28                   | 0       | -90 |
| GWR0518 | RC            | 526008  | 7442091  | 28                   | 0       | -90 |
| GWR0519 | RC            | 525603  | 7440702  | 28                   | 0       | -90 |
| GWR0520 | RC            | 525603  | 7440500  | 28                   | 0       | -90 |
| GWR0521 | RC            | 525603  | 7440301  | 28                   | 0       | -90 |
| GWR0522 | RC            | 525603  | 7440100  | 28                   | 0       | -90 |
| GWR0523 | RC            | 528703  | 7444800  | 28                   | 0       | -90 |
| GWR0524 | RC            | 529103  | 7444800  | 28                   | 0       | -90 |
| GWR0525 | RC            | 529303  | 7444800  | 28                   | 0       | -90 |
| GWR0526 | RC            | 528500  | 7444700  | 28                   | 0       | -90 |
| GWR0527 | RC            | 528603  | 7444700  | 28                   | 0       | -90 |
| GWR0528 | RC            | 528704  | 7444700  | 28                   | 0       | -90 |
| GWR0529 | RC            | 528903  | 7444700  | 30                   | 0       | -90 |
| GWR0530 | RC            | 529003  | 7444700  | 28                   | 0       | -90 |
| GWR0531 | RC            | 529103  | 7444700  | 28                   | 0       | -90 |
| GWR0532 | RC            | 529202  | 7444700  | 28                   | 0       | -90 |
| GWR0533 | RC            | 529303  | 7444700  | 28                   | 0       | -90 |
| GWR0534 | RC            | 528503  | 7444600  | 28                   | 0       | -90 |
| GWR0535 | RC            | 528703  | 7444600  | 31                   | 0       | -90 |
| GWR0536 | RC            | 528903  | 7444600  | 28                   | 0       | -90 |
| GWR0537 | RC            | 529103  | 7444600  | 29                   | 0       | -90 |
| GWR0538 | RC            | 529303  | 7444600  | 31                   | 0       | -90 |
| GWR0539 | RC            | 528299  | 7444504  | 28                   | 0       | -90 |
| GWR0540 | RC            | 528403  | 7444500  | 28                   | 0       | -90 |
| GWR0541 | RC            | 528504  | 7444500  | 28                   | 0       | -90 |
| GWR0542 | RC            | 528603  | 7444500  | 28                   | 0       | -90 |
| GWR0543 | RC            | 528704  | 7444500  | 28                   | 0       | -90 |
| GWR0544 | RC            | 528800  | 7444500  | 28                   | 0       | -90 |
| GWR0545 | RC            | 528904  | 7444500  | 32                   | 0       | -90 |
| GWR0546 | RC            | 529002  | 7444500  | 30                   | 0       | -90 |
| GWR0547 | RC            | 529103  | 7444500  | 28                   | 0       | -90 |
| GWR0548 | RC            | 529203  | 7444500  | 28                   | 0       | -90 |
| GWR0549 | RC            | 529303  | 7444500  | 28                   | 0       | -90 |
| GWR0550 | RC            | 528299  | 7444400  | 28                   | 0       | -90 |
| GWR0551 | RC            | 528499  | 7444400  | 28                   | 0       | -90 |
| GWR0552 | RC            | 528699  | 7444400  | 28                   | 0       | -90 |
| GWR0553 | RC            | 528903  | 7444400  | 28                   | 0       | -90 |
| GWR0554 | RC            | 529103  | 7444400  | 28                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| GWR0555 | RC            | 529304  | 7444392  | 28                   | 0       | -90 |
| GWR0556 | RC            | 528103  | 7444300  | 28                   | 0       | -90 |
| GWR0557 | RC            | 528303  | 7444300  | 28                   | 0       | -90 |
| GWR0558 | RC            | 528399  | 7444300  | 28                   | 0       | -90 |
| GWR0559 | RC            | 528503  | 7444300  | 28                   | 0       | -90 |
| GWR0560 | RC            | 528603  | 7444300  | 28                   | 0       | -90 |
| GWR0561 | RC            | 528703  | 7444300  | 28                   | 0       | -90 |
| GWR0562 | RC            | 528803  | 7444300  | 32                   | 0       | -90 |
| GWR0563 | RC            | 528903  | 7444300  | 28                   | 0       | -90 |
| GWR0564 | RC            | 529103  | 7444300  | 28                   | 0       | -90 |
| GWR0565 | RC            | 529203  | 7444300  | 28                   | 0       | -90 |
| GWR0566 | RC            | 529303  | 7444300  | 28                   | 0       | -90 |
| GWR0567 | RC            | 529403  | 7444300  | 32                   | 0       | -90 |
| GWR0568 | RC            | 529503  | 7444300  | 28                   | 0       | -90 |
| GWR0569 | RC            | 528099  | 7444200  | 28                   | 0       | -90 |
| GWR0570 | RC            | 528303  | 7444200  | 32                   | 0       | -90 |
| GWR0571 | RC            | 529103  | 7444200  | 28                   | 0       | -90 |
| GWR0572 | RC            | 529303  | 7444200  | 28                   | 0       | -90 |
| GWR0573 | RC            | 529503  | 7444200  | 28                   | 0       | -90 |
| GWR0574 | RC            | 527899  | 7444100  | 28                   | 0       | -90 |
| GWR0575 | RC            | 527999  | 7444100  | 28                   | 0       | -90 |
| GWR0576 | RC            | 528099  | 7444100  | 28                   | 0       | -90 |
| GWR0577 | RC            | 528203  | 7444100  | 28                   | 0       | -90 |
| GWR0578 | RC            | 528300  | 7444100  | 28                   | 0       | -90 |
| GWR0579 | RC            | 528400  | 7444100  | 28                   | 0       | -90 |
| GWR0580 | RC            | 528500  | 7444100  | 28                   | 0       | -90 |
| GWR0581 | RC            | 528603  | 7444100  | 28                   | 0       | -90 |
| GWR0582 | RC            | 528703  | 7444100  | 28                   | 0       | -90 |
| GWR0583 | RC            | 528903  | 7444100  | 28                   | 0       | -90 |
| GWR0584 | RC            | 529003  | 7444100  | 28                   | 0       | -90 |
| GWR0585 | RC            | 529103  | 7444100  | 28                   | 0       | -90 |
| GWR0586 | RC            | 529203  | 7444100  | 28                   | 0       | -90 |
| GWR0587 | RC            | 529303  | 7444100  | 28                   | 0       | -90 |
| GWR0588 | RC            | 529403  | 7444100  | 28                   | 0       | -90 |
| GWR0589 | RC            | 529503  | 7444100  | 29                   | 0       | -90 |
| GWR0590 | RC            | 528100  | 7444000  | 28                   | 0       | -90 |
| GWR0591 | RC            | 528300  | 7444000  | 28                   | 0       | -90 |
| GWR0592 | RC            | 528500  | 7444000  | 30                   | 0       | -90 |
| GWR0593 | RC            | 528703  | 7444000  | 28                   | 0       | -90 |
| GWR0594 | RC            | 528903  | 7444000  | 28                   | 0       | -90 |
| GWR0595 | RC            | 529103  | 7444000  | 28                   | 0       | -90 |
| GWR0596 | RC            | 529300  | 7444000  | 28                   | 0       | -90 |
| GWR0597 | RC            | 528100  | 7443900  | 28                   | 0       | -90 |
| GWR0598 | RC            | 528200  | 7443900  | 28                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| GWR0599 | RC            | 528300  | 7443900  | 28                   | 0       | -90 |
| GWR0600 | RC            | 528400  | 7443900  | 28                   | 0       | -90 |
| GWR0601 | RC            | 528500  | 7443900  | 28                   | 0       | -90 |
| GWR0602 | RC            | 528602  | 7443900  | 28                   | 0       | -90 |
| GWR0603 | RC            | 528700  | 7443900  | 28                   | 0       | -90 |
| GWR0604 | RC            | 528800  | 7443900  | 28                   | 0       | -90 |
| GWR0605 | RC            | 528905  | 7443901  | 28                   | 0       | -90 |
| GWR0606 | RC            | 529000  | 7443900  | 28                   | 0       | -90 |
| GWR0607 | RC            | 529100  | 7443900  | 28                   | 0       | -90 |
| GWR0608 | RC            | 529200  | 7443900  | 28                   | 0       | -90 |
| GWR0609 | RC            | 529300  | 7443900  | 28                   | 0       | -90 |
| GWR0610 | RC            | 529400  | 7443900  | 28                   | 0       | -90 |
| GWR0611 | RC            | 529500  | 7443900  | 28                   | 0       | -90 |
| GWR0612 | RC            | 529603  | 7443900  | 28                   | 0       | -90 |
| GWR0613 | RC            | 529700  | 7443900  | 33                   | 0       | -90 |
| GWR0614 | RC            | 528300  | 7443800  | 28                   | 0       | -90 |
| GWR0615 | RC            | 528500  | 7443800  | 28                   | 0       | -90 |
| GWR0616 | RC            | 528700  | 7443800  | 28                   | 0       | -90 |
| GWR0617 | RC            | 528900  | 7443800  | 28                   | 0       | -90 |
| GWR0618 | RC            | 529101  | 7443800  | 28                   | 0       | -90 |
| GWR0619 | RC            | 529300  | 7443800  | 28                   | 0       | -90 |
| GWR0620 | RC            | 529500  | 7443800  | 28                   | 0       | -90 |
| GWR0621 | RC            | 529700  | 7443800  | 28                   | 0       | -90 |
| GWR0622 | RC            | 528104  | 7443700  | 28                   | 0       | -90 |
| GWR0623 | RC            | 528200  | 7443700  | 28                   | 0       | -90 |
| GWR0624 | RC            | 528300  | 7443700  | 28                   | 0       | -90 |
| GWR0625 | RC            | 528399  | 7443699  | 28                   | 0       | -90 |
| GWR0626 | RC            | 528500  | 7443701  | 28                   | 0       | -90 |
| GWR0627 | RC            | 528601  | 7443701  | 28                   | 0       | -90 |
| GWR0628 | RC            | 528700  | 7443700  | 28                   | 0       | -90 |
| GWR0629 | RC            | 528799  | 7443701  | 28                   | 0       | -90 |
| GWR0630 | RC            | 528901  | 7443701  | 28                   | 0       | -90 |
| GWR0631 | RC            | 528996  | 7443707  | 28                   | 0       | -90 |
| GWR0632 | RC            | 529099  | 7443701  | 28                   | 0       | -90 |
| GWR0633 | RC            | 529287  | 7443714  | 28                   | 0       | -90 |
| GWR0634 | RC            | 529400  | 7443709  | 28                   | 0       | -90 |
| GWR0635 | RC            | 529494  | 7443699  | 28                   | 0       | -90 |
| GWR0636 | RC            | 529600  | 7443696  | 28                   | 0       | -90 |
| GWR0637 | RC            | 529703  | 7443706  | 28                   | 0       | -90 |
| GWR0638 | RC            | 528101  | 7443600  | 28                   | 0       | -90 |
| GWR0639 | RC            | 528300  | 7443600  | 28                   | 0       | -90 |
| GWR0640 | RC            | 528503  | 7443600  | 28                   | 0       | -90 |
| GWR0641 | RC            | 528700  | 7443600  | 28                   | 0       | -90 |
| GWR0642 | RC            | 528900  | 7443599  | 28                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| GWR0643 | RC            | 528204  | 7443500  | 28                   | 0       | -90 |
| GWR0644 | RC            | 528300  | 7443500  | 28                   | 0       | -90 |
| GWR0645 | RC            | 528400  | 7443500  | 28                   | 0       | -90 |
| GWR0646 | RC            | 528500  | 7443500  | 28                   | 0       | -90 |
| GWR0647 | RC            | 528600  | 7443500  | 28                   | 0       | -90 |
| GWR0648 | RC            | 528701  | 7443499  | 38                   | 0       | -90 |
| GWR0649 | RC            | 528806  | 7443499  | 28                   | 0       | -90 |
| GWR0650 | RC            | 528900  | 7443500  | 28                   | 0       | -90 |
| GWR0651 | RC            | 527706  | 7443500  | 28                   | 0       | -90 |
| GWR0652 | RC            | 527803  | 7443500  | 28                   | 0       | -90 |
| GWR0653 | RC            | 527903  | 7443500  | 28                   | 0       | -90 |
| GWR0654 | RC            | 528104  | 7443500  | 28                   | 0       | -90 |
| GWR0655 | RC            | 527704  | 7443399  | 28                   | 0       | -90 |
| GWR0656 | RC            | 527903  | 7443400  | 28                   | 0       | -90 |
| GWR0657 | RC            | 528103  | 7443400  | 28                   | 0       | -90 |
| GWR0658 | RC            | 528300  | 7443401  | 28                   | 0       | -90 |
| GWR0659 | RC            | 528500  | 7443400  | 28                   | 0       | -90 |
| GWR0660 | RC            | 528700  | 7443400  | 28                   | 0       | -90 |
| GWR0661 | RC            | 527200  | 7443300  | 28                   | 0       | -90 |
| GWR0662 | RC            | 527300  | 7443300  | 28                   | 0       | -90 |
| GWR0663 | RC            | 527400  | 7443300  | 28                   | 0       | -90 |
| GWR0664 | RC            | 527503  | 7443300  | 28                   | 0       | -90 |
| GWR0665 | RC            | 527704  | 7443300  | 28                   | 0       | -90 |
| GWR0666 | RC            | 527803  | 7443300  | 30                   | 0       | -90 |
| GWR0667 | RC            | 527899  | 7443300  | 28                   | 0       | -90 |
| GWR0668 | RC            | 528000  | 7443300  | 32                   | 0       | -90 |
| GWR0669 | RC            | 528100  | 7443300  | 28                   | 0       | -90 |
| GWR0670 | RC            | 528201  | 7443300  | 28                   | 0       | -90 |
| GWR0671 | RC            | 528300  | 7443300  | 28                   | 0       | -90 |
| GWR0672 | RC            | 528400  | 7443300  | 28                   | 0       | -90 |
| GWR0673 | RC            | 528501  | 7443300  | 28                   | 0       | -90 |
| GWR0674 | RC            | 528600  | 7443300  | 28                   | 0       | -90 |
| GWR0675 | RC            | 528700  | 7443300  | 28                   | 0       | -90 |
| GWR0676 | RC            | 527100  | 7443200  | 28                   | 0       | -90 |
| GWR0677 | RC            | 527300  | 7443200  | 28                   | 0       | -90 |
| GWR0678 | RC            | 527503  | 7443200  | 28                   | 0       | -90 |
| GWR0679 | RC            | 527703  | 7443201  | 28                   | 0       | -90 |
| GWR0680 | RC            | 527900  | 7443200  | 28                   | 0       | -90 |
| GWR0681 | RC            | 528099  | 7443200  | 28                   | 0       | -90 |
| GWR0682 | RC            | 528300  | 7443200  | 28                   | 0       | -90 |
| GWR0683 | RC            | 528500  | 7443200  | 33                   | 0       | -90 |
| GWR0684 | RC            | 527100  | 7443100  | 28                   | 0       | -90 |
| GWR0685 | RC            | 527300  | 7443100  | 28                   | 0       | -90 |
| GWR0686 | RC            | 527399  | 7443100  | 32                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| GWR0687 | RC            | 527503  | 7443100  | 28                   | 0       | -90 |
| GWR0688 | RC            | 527705  | 7443105  | 28                   | 0       | -90 |
| GWR0689 | RC            | 527807  | 7443102  | 30                   | 0       | -90 |
| GWR0690 | RC            | 527900  | 7443100  | 28                   | 0       | -90 |
| GWR0691 | RC            | 528000  | 7443100  | 30                   | 0       | -90 |
| GWR0692 | RC            | 528100  | 7443100  | 28                   | 0       | -90 |
| GWR0693 | RC            | 528203  | 7443100  | 28                   | 0       | -90 |
| GWR0694 | RC            | 528300  | 7443100  | 30                   | 0       | -90 |
| GWR0695 | RC            | 528402  | 7443101  | 28                   | 0       | -90 |
| GWR0696 | RC            | 528495  | 7443101  | 28                   | 0       | -90 |
| GWR0697 | RC            | 527100  | 7443000  | 28                   | 0       | -90 |
| GWR0698 | RC            | 527200  | 7443000  | 28                   | 0       | -90 |
| GWR0699 | RC            | 527300  | 7443000  | 28                   | 0       | -90 |
| GWR0700 | RC            | 527501  | 7442999  | 28                   | 0       | -90 |
| GWR0701 | RC            | 527703  | 7443000  | 28                   | 0       | -90 |
| GWR0702 | RC            | 527903  | 7443000  | 28                   | 0       | -90 |
| GWR0703 | RC            | 528103  | 7443000  | 28                   | 0       | -90 |
| GWR0704 | RC            | 528300  | 7443000  | 28                   | 0       | -90 |
| GWR0705 | RC            | 528500  | 7443001  | 28                   | 0       | -90 |
| GWR0706 | RC            | 527300  | 7442899  | 28                   | 0       | -90 |
| GWR0707 | RC            | 527400  | 7442900  | 28                   | 0       | -90 |
| GWR0708 | RC            | 527500  | 7442900  | 28                   | 0       | -90 |
| GWR0709 | RC            | 527600  | 7442900  | 28                   | 0       | -90 |
| GWR0710 | RC            | 527700  | 7442901  | 28                   | 0       | -90 |
| GWR0711 | RC            | 527804  | 7442895  | 28                   | 0       | -90 |
| GWR0712 | RC            | 527898  | 7442903  | 28                   | 0       | -90 |
| GWR0713 | RC            | 527995  | 7442901  | 28                   | 0       | -90 |
| GWR0714 | RC            | 528100  | 7442900  | 28                   | 0       | -90 |
| GWR0715 | RC            | 528200  | 7442900  | 28                   | 0       | -90 |
| GWR0716 | RC            | 528300  | 7442900  | 28                   | 0       | -90 |
| GWR0717 | RC            | 528399  | 7442901  | 28                   | 0       | -90 |
| GWR0718 | RC            | 528500  | 7442900  | 28                   | 0       | -90 |
| GWR0719 | RC            | 527498  | 7442803  | 28                   | 0       | -90 |
| GWR0720 | RC            | 527700  | 7442800  | 28                   | 0       | -90 |
| GWR0721 | RC            | 527901  | 7442800  | 28                   | 0       | -90 |
| GWR0722 | RC            | 528100  | 7442800  | 28                   | 0       | -90 |
| GWR0723 | RC            | 528300  | 7442800  | 28                   | 0       | -90 |
| GWR0724 | RC            | 527303  | 7442700  | 28                   | 0       | -90 |
| GWR0725 | RC            | 527400  | 7442700  | 28                   | 0       | -90 |
| GWR0726 | RC            | 527500  | 7442700  | 28                   | 0       | -90 |
| GWR0727 | RC            | 527600  | 7442701  | 28                   | 0       | -90 |
| GWR0728 | RC            | 527700  | 7442700  | 28                   | 0       | -90 |
| GWR0729 | RC            | 527900  | 7442700  | 28                   | 0       | -90 |
| GWR0730 | RC            | 528000  | 7442700  | 28                   | 0       | -90 |



| Hole ID            | Drill<br>Type | Easting          | Northing           | Hole<br>Depth<br>(m) | Azimuth | Dip        |
|--------------------|---------------|------------------|--------------------|----------------------|---------|------------|
| GWR0731            | RC            | 528099           | 7442698            | 28                   | 0       | -90        |
| GWR0732            | RC            | 528200           | 7442700            | 28                   | 0       | -90        |
| GWR0733            | RC            | 528300           | 7442700            | 28                   | 0       | -90        |
| GWR0734            | RC            | 528400           | 7442701            | 28                   | 0       | -90        |
| GWR0735            | RC            | 528500           | 7442701            | 28                   | 0       | -90        |
| GWR0736            | RC            | 527303           | 7442599            | 28                   | 0       | -90        |
| GWR0737            | RC            | 527502           | 7442595            | 28                   | 0       | -90        |
| GWR0738            | RC            | 527900           | 7442600            | 28                   | 0       | -90        |
| GWR0739            | RC            | 528100           | 7442600            | 28                   | 0       | -90        |
| GWR0740            | RC            | 528301           | 7442601            | 28                   | 0       | -90        |
| GWR0741            | RC            | 528500           | 7442600            | 28                   | 0       | -90        |
| GWR0742            | RC            | 527303           | 7442500            | 28                   | 0       | -90        |
| GWR0743            | RC            | 527400           | 7442500            | 28                   | 0       | -90        |
| GWR0744            | RC            | 527500           | 7442500            | 28                   | 0       | -90        |
| GWR0745            | RC            | 527900           | 7442500            | 28                   | 0       | -90        |
| GWR0746            | RC            | 528001           | 7442499            | 28                   | 0       | -90        |
| GWR0747            | RC            | 528100           | 7442500            | 28                   | 0       | -90        |
| GWR0748            | RC            | 528200           | 7442499            | 28                   | 0       | -90        |
| GWR0749            | RC<br>RC      | 528300           | 7442500            | 28<br>36             | 0       | -90        |
| GWR0750<br>GWR0751 | RC            | 528400<br>528500 | 7442500<br>7442500 | 28                   | 0       | -90<br>-90 |
| GWR0751<br>GWR0752 | RC            | 527101           | 7442500            | 20                   | 0       | -90<br>-90 |
| GWR0752<br>GWR0753 | RC            | 527200           | 7442400            | 28                   | 0       | -90<br>-90 |
| GWR0754            | RC            | 527300           | 7442400            | 28                   | 0       | -90        |
| GWR0755            | RC            | 527900           | 7442400            | 28                   | 0       | -90        |
| GWR0756            | RC            | 528100           | 7442400            | 28                   | 0       | -90        |
| GWR0757            | RC            | 528300           | 7442400            | 28                   | 0       | -90        |
| GWR0758            | RC            | 528500           | 7442400            | 28                   | 0       | -90        |
| GWR0759            | RC            | 527101           | 7442300            | 28                   | 0       | -90        |
| GWR0760            | RC            | 527300           | 7442300            | 28                   | 0       | -90        |
| GWR0761            | RC            | 527401           | 7442299            | 28                   | 0       | -90        |
| GWR0762            | RC            | 527500           | 7442300            | 32                   | 0       | -90        |
| GWR0763            | RC            | 527600           | 7442300            | 28                   | 0       | -90        |
| GWR0764            | RC            | 527700           | 7442300            | 28                   | 0       | -90        |
| GWR0765            | RC            | 527800           | 7442300            | 28                   | 0       | -90        |
| GWR0766            | RC            | 527900           | 7442300            | 28                   | 0       | -90        |
| GWR0767            | RC            | 528000           | 7442299            | 30                   | 0       | -90        |
| GWR0768            | RC            | 528100           | 7442300            | 28                   | 0       | -90        |
| GWR0769            | RC            | 528200           | 7442300            | 28                   | 0       | -90        |
| GWR0770            | RC            | 528300           | 7442300            | 28                   | 0       | -90        |
| GWR0771            | RC            | 528400           | 7442300            | 28                   | 0       | -90        |
| GWR0772            | RC            | 528500           | 7442300            | 28                   | 0       | -90        |
| GWR0773            | RC            | 527300           | 7442200            | 28                   | 0       | -90        |
| GWR0774            | RC            | 527499           | 7442201            | 28                   | 0       | -90        |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| GWR0775 | RC            | 527700  | 7442200  | 28                   | 0       | -90 |
| GWR0776 | RC            | 527900  | 7442199  | 28                   | 0       | -90 |
| GWR0777 | RC            | 528100  | 7442200  | 28                   | 0       | -90 |
| GWR0778 | RC            | 528303  | 7442200  | 28                   | 0       | -90 |
| GWR0779 | RC            | 526900  | 7442200  | 28                   | 0       | -90 |
| GWR0780 | RC            | 527000  | 7442200  | 28                   | 0       | -90 |
| GWR0781 | RC            | 527100  | 7442200  | 28                   | 0       | -90 |
| GWR0782 | RC            | 527200  | 7442200  | 28                   | 0       | -90 |
| GWR0783 | RC            | 526903  | 7442100  | 28                   | 0       | -90 |
| GWR0784 | RC            | 527101  | 7442100  | 28                   | 0       | -90 |
| GWR0785 | RC            | 527303  | 7442100  | 28                   | 0       | -90 |
| GWR0786 | RC            | 527400  | 7442102  | 28                   | 0       | -90 |
| GWR0787 | RC            | 527500  | 7442100  | 28                   | 0       | -90 |
| GWR0788 | RC            | 527600  | 7442100  | 28                   | 0       | -90 |
| GWR0789 | RC            | 527700  | 7442100  | 28                   | 0       | -90 |
| GWR0790 | RC            | 527799  | 7442100  | 28                   | 0       | -90 |
| GWR0791 | RC            | 527900  | 7442100  | 28                   | 0       | -90 |
| GWR0792 | RC            | 528000  | 7442101  | 28                   | 0       | -90 |
| GWR0793 | RC            | 528099  | 7442100  | 28                   | 0       | -90 |
| GWR0794 | RC            | 528203  | 7442100  | 28                   | 0       | -90 |
| GWR0795 | RC            | 528303  | 7442101  | 28                   | 0       | -90 |
| GWR0796 | RC            | 526900  | 7442000  | 28                   | 0       | -90 |
| GWR0797 | RC            | 527000  | 7442000  | 28                   | 0       | -90 |
| GWR0798 | RC            | 527100  | 7442000  | 28                   | 0       | -90 |
| GWR0799 | RC            | 527500  | 7442000  | 28                   | 0       | -90 |
| GWR0800 | RC            | 527700  | 7442000  | 28                   | 0       | -90 |
| GWR0801 | RC            | 527901  | 7441999  | 28                   | 0       | -90 |
| GWR0802 | RC            | 526900  | 7441900  | 28                   | 0       | -90 |
| GWR0803 | RC            | 527100  | 7441900  | 28                   | 0       | -90 |
| GWR0804 | RC            | 527500  | 7441900  | 28                   | 0       | -90 |
| GWR0805 | RC            | 527600  | 7441900  | 28                   | 0       | -90 |
| GWR0806 | RC            | 527700  | 7441900  | 28                   | 0       | -90 |
| GWR0807 | RC            | 527800  | 7441900  | 28                   | 0       | -90 |
| GWR0809 | RC            | 526503  | 7441800  | 28                   | 0       | -90 |
| GWR0810 | RC            | 526603  | 7441800  | 28                   | 0       | -90 |
| GWR0811 | RC            | 526700  | 7441800  | 28                   | 0       | -90 |
| GWR0812 | RC            | 526800  | 7441801  | 28                   | 0       | -90 |
| GWR0813 | RC            | 526900  | 7441800  | 28                   | 0       | -90 |
| GWR0814 | RC            | 527000  | 7441800  | 28                   | 0       | -90 |
| GWR0815 | RC            | 527100  | 7441800  | 28                   | 0       | -90 |
| KOR2624 | RC            | 527500  | 7446701  | 28                   | 0       | -90 |
| KOR2625 | RC            | 527500  | 7446800  | 28                   | 0       | -90 |
| KOR2626 | RC            | 527500  | 7446900  | 28                   | 0       | -90 |
| KOR2627 | RC            | 527500  | 7447000  | 28                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| KOR2628 | RC            | 527600  | 7446800  | 28                   | 0       | -90 |
| KOR2629 | RC            | 527600  | 7446900  | 28                   | 0       | -90 |
| KOR2630 | RC            | 527603  | 7446400  | 28                   | 0       | -90 |
| KOR2631 | RC            | 527604  | 7446200  | 28                   | 0       | -90 |
| KOR2632 | RC            | 527603  | 7446101  | 28                   | 0       | -90 |
| KOR2633 | RC            | 527603  | 7446000  | 28                   | 0       | -90 |
| KOR2634 | RC            | 527603  | 7445900  | 28                   | 0       | -90 |
| KOR2635 | RC            | 527603  | 7445500  | 28                   | 0       | -90 |
| KOR2636 | RC            | 527603  | 7445399  | 28                   | 0       | -90 |
| KOR2637 | RC            | 527603  | 7445299  | 28                   | 0       | -90 |
| KOR2638 | RC            | 527602  | 7445195  | 28                   | 0       | -90 |
| KOR2639 | RC            | 527600  | 7445094  | 28                   | 0       | -90 |
| KOR2640 | RC            | 527603  | 7445000  | 28                   | 0       | -90 |
| KOR2641 | RC            | 527703  | 7444900  | 28                   | 0       | -90 |
| KOR2642 | RC            | 527703  | 7445000  | 28                   | 0       | -90 |
| KOR2643 | RC            | 527703  | 7445200  | 28                   | 0       | -90 |
| KOR2644 | RC            | 527703  | 7445300  | 28                   | 0       | -90 |
| KOR2645 | RC            | 527703  | 7445400  | 28                   | 0       | -90 |
| KOR2646 | RC            | 527703  | 7446000  | 28                   | 0       | -90 |
| KOR2647 | RC            | 527703  | 7446100  | 28                   | 0       | -90 |
| KOR2648 | RC            | 527703  | 7446200  | 28                   | 0       | -90 |
| KOR2649 | RC            | 527703  | 7446300  | 28                   | 0       | -90 |
| KOR2650 | RC            | 527803  | 7444900  | 28                   | 0       | -90 |
| KOR2651 | RC            | 527903  | 7444900  | 28                   | 0       | -90 |
| KOR2652 | RC            | 527902  | 7445000  | 28                   | 0       | -90 |
| KOR2653 | RC            | 527908  | 7445097  | 28                   | 0       | -90 |
| KOR2654 | RC            | 527904  | 7445200  | 28                   | 0       | -90 |
| KOR2655 | RC            | 527903  | 7445299  | 28                   | 0       | -90 |
| KOR2656 | RC            | 527903  | 7445400  | 28                   | 0       | -90 |
| KOR2657 | RC            | 527909  | 7445513  | 28                   | 0       | -90 |
| KOR2658 | RC            | 527903  | 7445600  | 28                   | 0       | -90 |
| KOR2659 | RC            | 527903  | 7445700  | 28                   | 0       | -90 |
| KOR2660 | RC            | 527903  | 7445800  | 28                   | 0       | -90 |
| KOR2661 | RC            | 527903  | 7446000  | 28                   | 0       | -90 |
| KOR2662 | RC            | 527903  | 7446100  | 28                   | 0       | -90 |
| KOR2663 | RC            | 527903  | 7446200  | 28                   | 0       | -90 |
| KOR2664 | RC            | 527903  | 7446300  | 28                   | 0       | -90 |
| KOR2665 | RC            | 527903  | 7446400  | 28                   | 0       | -90 |
| KOR2666 | RC            | 527903  | 7446500  | 28                   | 0       | -90 |
| KOR2667 | RC            | 527903  | 7446600  | 28                   | 0       | -90 |
| KOR2668 | RC            | 527901  | 7446702  | 28                   | 0       | -90 |
| KOR2669 | RC            | 527900  | 7446801  | 28                   | 0       | -90 |
| KOR2670 | RC            | 528000  | 7446801  | 28                   | 0       | -90 |
| KOR2671 | RC            | 528004  | 7446600  | 28                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| KOR2672 | RC            | 528003  | 7446000  | 28                   | 0       | -90 |
| KOR2673 | RC            | 528004  | 7445803  | 28                   | 0       | -90 |
| KOR2674 | RC            | 528003  | 7445600  | 31                   | 0       | -90 |
| KOR2675 | RC            | 528003  | 7445400  | 28                   | 0       | -90 |
| KOR2676 | RC            | 528003  | 7445200  | 28                   | 0       | -90 |
| KOR2677 | RC            | 528003  | 7445000  | 28                   | 0       | -90 |
| KOR2678 | RC            | 528103  | 7444900  | 28                   | 0       | -90 |
| KOR2679 | RC            | 528103  | 7445000  | 28                   | 0       | -90 |
| KOR2680 | RC            | 528103  | 7445100  | 28                   | 0       | -90 |
| KOR2681 | RC            | 528103  | 7445200  | 29                   | 0       | -90 |
| KOR2682 | RC            | 528103  | 7445300  | 28                   | 0       | -90 |
| KOR2683 | RC            | 528105  | 7445399  | 28                   | 0       | -90 |
| KOR2684 | RC            | 528103  | 7445499  | 28                   | 0       | -90 |
| KOR2685 | RC            | 528104  | 7445600  | 28                   | 0       | -90 |
| KOR2686 | RC            | 528103  | 7445700  | 28                   | 0       | -90 |
| KOR2687 | RC            | 528103  | 7445800  | 28                   | 0       | -90 |
| KOR2688 | RC            | 528103  | 7445900  | 28                   | 0       | -90 |
| KOR2689 | RC            | 528103  | 7446000  | 28                   | 0       | -90 |
| KOR2690 | RC            | 528103  | 7446100  | 28                   | 0       | -90 |
| KOR2691 | RC            | 528103  | 7446200  | 28                   | 0       | -90 |
| KOR2692 | RC            | 528100  | 7446300  | 28                   | 0       | -90 |
| KOR2693 | RC            | 528100  | 7446400  | 28                   | 0       | -90 |
| KOR2694 | RC            | 528100  | 7446500  | 28                   | 0       | -90 |
| KOR2695 | RC            | 528100  | 7446600  | 28                   | 0       | -90 |
| KOR2696 | RC            | 528100  | 7446700  | 28                   | 0       | -90 |
| KOR2697 | RC            | 528097  | 7446813  | 28                   | 0       | -90 |
| KOR2698 | RC            | 528203  | 7446600  | 28                   | 0       | -90 |
| KOR2699 | RC            | 528203  | 7446500  | 28                   | 0       | -90 |
| KOR2700 | RC            | 528203  | 7446400  | 28                   | 0       | -90 |
| KOR2701 | RC            | 528203  | 7446300  | 28                   | 0       | -90 |
| KOR2702 | RC            | 528203  | 7446200  | 28                   | 0       | -90 |
| KOR2703 | RC            | 528203  | 7446100  | 28                   | 0       | -90 |
| KOR2704 | RC            | 528203  | 7446000  | 28                   | 0       | -90 |
| KOR2705 | RC            | 528203  | 7445900  | 28                   | 0       | -90 |
| KOR2706 | RC            | 528203  | 7445700  | 28                   | 0       | -90 |
| KOR2707 | RC            | 528202  | 7445600  | 28                   | 0       | -90 |
| KOR2708 | RC            | 528203  | 7445500  | 28                   | 0       | -90 |
| KOR2709 | RC            | 528203  | 7445401  | 28                   | 0       | -90 |
| KOR2710 | RC            | 528205  | 7445299  | 28                   | 0       | -90 |
| KOR2711 | RC            | 528203  | 7445201  | 28                   | 0       | -90 |
| KOR2712 | RC            | 528203  | 7445100  | 28                   | 0       | -90 |
| KOR2713 | RC            | 528203  | 7445000  | 30                   | 0       | -90 |
| KOR2714 | RC            | 528203  | 7444900  | 28                   | 0       | -90 |
| KOR2715 | RC            | 528303  | 7444900  | 28                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| KOR2716 | RC            | 528403  | 7444900  | 28                   | 0       | -90 |
| KOR2717 | RC            | 528404  | 7445001  | 28                   | 0       | -90 |
| KOR2718 | RC            | 528403  | 7445100  | 28                   | 0       | -90 |
| KOR2719 | RC            | 528403  | 7445201  | 28                   | 0       | -90 |
| KOR2720 | RC            | 528403  | 7445300  | 28                   | 0       | -90 |
| KOR2721 | RC            | 528403  | 7445399  | 28                   | 0       | -90 |
| KOR2722 | RC            | 528403  | 7445500  | 28                   | 0       | -90 |
| KOR2723 | RC            | 528403  | 7445601  | 28                   | 0       | -90 |
| KOR2724 | RC            | 528404  | 7445700  | 28                   | 0       | -90 |
| KOR2725 | RC            | 528403  | 7445800  | 28                   | 0       | -90 |
| KOR2726 | RC            | 528403  | 7445901  | 28                   | 0       | -90 |
| KOR2727 | RC            | 528403  | 7446000  | 28                   | 0       | -90 |
| KOR2728 | RC            | 528403  | 7446100  | 28                   | 0       | -90 |
| KOR2729 | RC            | 528403  | 7446201  | 28                   | 0       | -90 |
| KOR2730 | RC            | 528398  | 7446303  | 28                   | 0       | -90 |
| KOR2731 | RC            | 528403  | 7446400  | 28                   | 0       | -90 |
| KOR2732 | RC            | 528403  | 7446500  | 28                   | 0       | -90 |
| KOR2733 | RC            | 528402  | 7446603  | 28                   | 0       | -90 |
| KOR2734 | RC            | 528500  | 7445800  | 28                   | 0       | -90 |
| KOR2735 | RC            | 528499  | 7445600  | 28                   | 0       | -90 |
| KOR2736 | RC            | 528501  | 7445401  | 28                   | 0       | -90 |
| KOR2737 | RC            | 528500  | 7445199  | 28                   | 0       | -90 |
| KOR2738 | RC            | 528500  | 7445000  | 28                   | 0       | -90 |
| KOR2739 | RC            | 528602  | 7444901  | 28                   | 0       | -90 |
| KOR2740 | RC            | 528603  | 7445000  | 28                   | 0       | -90 |
| KOR2741 | RC            | 528602  | 7445100  | 28                   | 0       | -90 |
| KOR2742 | RC            | 528603  | 7445200  | 28                   | 0       | -90 |
| KOR2743 | RC            | 528603  | 7445300  | 28                   | 0       | -90 |
| KOR2744 | RC            | 528603  | 7445400  | 28                   | 0       | -90 |
| KOR2745 | RC            | 528604  | 7445499  | 28                   | 0       | -90 |
| KOR2746 | RC            | 528603  | 7445800  | 28                   | 0       | -90 |
| KOR2747 | RC            | 528603  | 7445900  | 28                   | 0       | -90 |
| KOR2748 | RC            | 528603  | 7446000  | 28                   | 0       | -90 |
| KOR2749 | RC            | 528602  | 7446100  | 28                   | 0       | -90 |
| KOR2750 | RC            | 528603  | 7446201  | 28                   | 0       | -90 |
| KOR2751 | RC            | 528600  | 7446299  | 28                   | 0       | -90 |
| KOR2752 | RC            | 528600  | 7446399  | 28                   | 0       | -90 |
| KOR2753 | RC            | 528803  | 7446601  | 28                   | 0       | -90 |
| KOR2754 | RC            | 528804  | 7446501  | 28                   | 0       | -90 |
| KOR2755 | RC            | 528803  | 7446400  | 28                   | 0       | -90 |
| KOR2756 | RC            | 528803  | 7446300  | 28                   | 0       | -90 |
| KOR2757 | RC            | 528803  | 7446201  | 28                   | 0       | -90 |
| KOR2758 | RC            | 528804  | 7446100  | 28                   | 0       | -90 |
| KOR2759 | RC            | 528803  | 7446000  | 28                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| KOR2760 | RC            | 528803  | 7445900  | 28                   | 0       | -90 |
| KOR2761 | RC            | 528803  | 7445800  | 28                   | 0       | -90 |
| KOR2762 | RC            | 528803  | 7445600  | 28                   | 0       | -90 |
| KOR2763 | RC            | 528803  | 7445500  | 28                   | 0       | -90 |
| KOR2764 | RC            | 528804  | 7445400  | 28                   | 0       | -90 |
| KOR2765 | RC            | 528803  | 7445300  | 28                   | 0       | -90 |
| KOR2766 | RC            | 528804  | 7445200  | 28                   | 0       | -90 |
| KOR2767 | RC            | 528803  | 7445100  | 28                   | 0       | -90 |
| KOR2768 | RC            | 528804  | 7444898  | 28                   | 0       | -90 |
| KOR2769 | RC            | 528904  | 7444899  | 28                   | 0       | -90 |
| KOR2770 | RC            | 528905  | 7444998  | 28                   | 0       | -90 |
| KOR2771 | RC            | 528902  | 7445200  | 28                   | 0       | -90 |
| KOR2772 | RC            | 528904  | 7445297  | 28                   | 0       | -90 |
| KOR2773 | RC            | 528904  | 7445398  | 28                   | 0       | -90 |
| KOR2774 | RC            | 528903  | 7445600  | 28                   | 0       | -90 |
| KOR2775 | RC            | 528904  | 7445700  | 28                   | 0       | -90 |
| KOR2776 | RC            | 528904  | 7445800  | 28                   | 0       | -90 |
| KOR2777 | RC            | 528901  | 7445899  | 28                   | 0       | -90 |
| KOR2778 | RC            | 528900  | 7446000  | 28                   | 0       | -90 |
| KOR2779 | RC            | 528900  | 7446100  | 28                   | 0       | -90 |
| KOR2780 | RC            | 528900  | 7446200  | 28                   | 0       | -90 |
| KOR2781 | RC            | 528901  | 7446300  | 28                   | 0       | -90 |
| KOR2782 | RC            | 528901  | 7446400  | 28                   | 0       | -90 |
| KOR2783 | RC            | 528899  | 7446501  | 28                   | 0       | -90 |
| KOR2784 | RC            | 528901  | 7446601  | 28                   | 0       | -90 |
| KOR2785 | RC            | 529099  | 7446000  | 28                   | 0       | -90 |
| KOR2786 | RC            | 529099  | 7445902  | 28                   | 0       | -90 |
| KOR2787 | RC            | 529103  | 7445801  | 28                   | 0       | -90 |
| KOR2788 | RC            | 529103  | 7445702  | 28                   | 0       | -90 |
| KOR2789 | RC            | 529104  | 7445600  | 28                   | 0       | -90 |
| KOR2790 | RC            | 529104  | 7445400  | 28                   | 0       | -90 |
| KOR2791 | RC            | 529104  | 7445301  | 28                   | 0       | -90 |
| KOR2792 | RC            | 529103  | 7445200  | 28                   | 0       | -90 |
| KOR2793 | RC            | 529104  | 7445000  | 28                   | 0       | -90 |
| KOR2794 | RC            | 529103  | 7444901  | 32                   | 0       | -90 |
| KOR2795 | RC            | 529303  | 7444901  | 28                   | 0       | -90 |
| KOR2796 | RC            | 529303  | 7445000  | 28                   | 0       | -90 |
| KOR2797 | RC            | 529304  | 7445200  | 28                   | 0       | -90 |
| KOR2798 | RC            | 529304  | 7445300  | 28                   | 0       | -90 |
| KOR2799 | RC            | 529304  | 7445399  | 28                   | 0       | -90 |
| KOR2800 | RC            | 529302  | 7445500  | 28                   | 0       | -90 |
| KOR2801 | RC            | 529303  | 7445608  | 28                   | 0       | -90 |
| KOR2802 | RC            | 529304  | 7445700  | 28                   | 0       | -90 |
| KOR2803 | RC            | 529303  | 7445800  | 28                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| KOR2804 | RC            | 529303  | 7445900  | 28                   | 0       | -90 |
| KOR2805 | RC            | 529504  | 7446400  | 28                   | 0       | -90 |
| KOR2806 | RC            | 529502  | 7446000  | 28                   | 0       | -90 |
| KOR2807 | RC            | 529503  | 7445900  | 28                   | 0       | -90 |
| KOR2808 | RC            | 529503  | 7445800  | 28                   | 0       | -90 |
| KOR2809 | RC            | 529504  | 7445699  | 28                   | 0       | -90 |
| KOR2810 | RC            | 529503  | 7445600  | 28                   | 0       | -90 |
| KOR2811 | RC            | 529503  | 7445501  | 28                   | 0       | -90 |
| KOR2812 | RC            | 529503  | 7445400  | 28                   | 0       | -90 |
| KOR2813 | RC            | 529503  | 7445100  | 28                   | 0       | -90 |
| KOR2814 | RC            | 529501  | 7445001  | 28                   | 0       | -90 |
| KOR2815 | RC            | 529503  | 7444901  | 28                   | 0       | -90 |
| KOR2816 | RC            | 529603  | 7444901  | 28                   | 0       | -90 |
| KOR2817 | RC            | 529603  | 7445600  | 28                   | 0       | -90 |
| KOR2818 | RC            | 529603  | 7445701  | 28                   | 0       | -90 |
| KOR2819 | RC            | 529602  | 7445799  | 28                   | 0       | -90 |
| KOR2820 | RC            | 529603  | 7445899  | 28                   | 0       | -90 |
| KOR2821 | RC            | 529604  | 7446000  | 28                   | 0       | -90 |
| KOR2822 | RC            | 529603  | 7446200  | 28                   | 0       | -90 |
| KOR2823 | RC            | 529604  | 7446300  | 28                   | 0       | -90 |
| KOR2824 | RC            | 529600  | 7446400  | 28                   | 0       | -90 |
| KOR2825 | RC            | 529606  | 7446499  | 28                   | 0       | -90 |
| KOR2826 | RC            | 529703  | 7446300  | 28                   | 0       | -90 |
| KOR2827 | RC            | 529803  | 7446300  | 28                   | 0       | -90 |
| KOR2828 | RC            | 529803  | 7446400  | 28                   | 0       | -90 |
| KOR2829 | RC            | 529803  | 7446500  | 28                   | 0       | -90 |
| KOR2844 | RC            | 533503  | 7455300  | 28                   | 0       | -90 |
| KOR2845 | RC            | 533600  | 7455303  | 28                   | 0       | -90 |
| KOR2846 | RC            | 533704  | 7455300  | 28                   | 0       | -90 |
| KOR2847 | RC            | 533803  | 7455300  | 28                   | 0       | -90 |
| KOR2848 | RC            | 533905  | 7455299  | 28                   | 0       | -90 |
| KOR2849 | RC            | 534004  | 7455300  | 28                   | 0       | -90 |
| KOR2850 | RC            | 532504  | 7453700  | 28                   | 0       | -90 |
| KOR2851 | RC            | 533003  | 7454100  | 28                   | 0       | -90 |
| KOR2852 | RC            | 532904  | 7454100  | 28                   | 0       | -90 |
| KOR2853 | RC            | 532000  | 7450900  | 28                   | 0       | -90 |
| KOR2854 | RC            | 527600  | 7444900  | 28                   | 0       | -90 |
| KOR2855 | RC            | 527510  | 7444900  | 28                   | 0       | -90 |
| KOR2856 | RC            | 527510  | 7445000  | 28                   | 0       | -90 |
| KOR2857 | RC            | 527510  | 7445100  | 28                   | 0       | -90 |
| KOR2858 | RC            | 527510  | 7445200  | 28                   | 0       | -90 |
| KOR2859 | RC            | 527510  | 7445301  | 28                   | 0       | -90 |
| KOR2860 | RC            | 527598  | 7445798  | 28                   | 0       | -90 |
| KOR2861 | RC            | 527700  | 7445800  | 28                   | 0       | -90 |



| Hole ID | Drill<br>Type | Easting | Northing | Hole<br>Depth<br>(m) | Azimuth | Dip |
|---------|---------------|---------|----------|----------------------|---------|-----|
| KOR2862 | RC            | 527700  | 7445900  | 28                   | 0       | -90 |
| KOR2863 | RC            | 528200  | 7445800  | 28                   | 0       | -90 |
| KOR2864 | RC            | 528600  | 7445600  | 28                   | 0       | -90 |
| KOR2865 | RC            | 528600  | 7445700  | 28                   | 0       | -90 |



# JORC Code, 2012 Edition – Table 1

### **Section 1 Sampling Techniques and Data**

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or<br/>specific specialised industry standard measurement tools appropriate<br/>to the minerals under investigation, such as down hole gamma<br/>sondes, or handheld XRF instruments, etc). These examples should<br/>not be taken as limiting the broad meaning of sampling.</li> </ul>                                                                                                                                                              | <ul> <li>In most holes uranium grade was estimated using downhole gamma<br/>probes. Some early holes used wet chemical analysis at a<br/>commercial laboratory and wet chemical analysis was used<br/>throughout to check the downhole gamma grades.</li> </ul>                                                                                                                                               |
|                        | <ul> <li>Include reference to measures taken to ensure sample representivity<br/>and the appropriate calibration of any measurement tools or systems<br/>used.</li> </ul>                                                                                                                                                                                                                                                                                                                                                       | • Gamma probes provide an estimate of uranium grade in a volume extending approximately 40 cm from the hole and thus provide much greater representivity than wet chemical samples which represents a much smaller fraction of this volume. Gamma probes were calibrated at the Pelindaba facility in South Africa and at borehole Garc065 on the Bannerman EPL in Alaskite and Chous Formation lithologies.  |
|                        | • Aspects of the determination of mineralisation that are Material to the Public Report.                                                                                                                                                                                                                                                                                                                                                                                                                                        | • Gamma data (as counts per second) from calibrated probes are converted into equivalent uranium values (eU <sub>3</sub> O <sub>8</sub> ) using appropriate calibration, water and casing factors. Gamma probes can overestimate uranium grade if high thorium is present or if disequilibrium exists between uranium and its daughters. Neither is thought to be an issue here.                              |
|                        | <ul> <li>In cases where 'industry standard' work has been done this would be<br/>relatively simple (e.g., 'reverse circulation drilling was used to obtain 1<br/>m samples from which 3 kg was pulverised to produce a 30 g charge<br/>for fire assay'). In other cases, more explanation may be required,<br/>such as where there is coarse gold that has inherent sampling<br/>problems. Unusual commodities or mineralisation types (e.g.,<br/>submarine nodules) may warrant disclosure of detailed information.</li> </ul> | • The method of drilling is reverse circulation, during which samples are obtained from every metre and split at the drill rig into smaller 2.5 kg samples. These samples are then stored and, following subsequent analysis of the downhole gamma data, are selectively chosen for wet chemical analysis as described earlier in this section.                                                               |
| Drilling<br>techniques | <ul> <li>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air<br/>blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple<br/>or standard tube, depth of diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                         | • Reverse circulation percussion (RC) is the main drilling technique used. Hole diameter is approximately 140 mm. Holes are relatively shallow (average 22 m) and vertical, therefore downhole dip and azimuth were not recorded. Early holes (prefix "KP") used the rotary air blast (RAB) technique. Eleven (11) diamond drillholes (DD) were drilled in 2022, but were included in the maiden MRE of 2022. |



| Criteria                                            | JORC Code explanation                                                                                                                                                                                                             |   |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Drill sample<br>recovery                            | <ul> <li>Method of recording and assessing core and chip sample recoveries<br/>and results assessed.</li> </ul>                                                                                                                   |   |
|                                                     | <ul> <li>Measures taken to maximise sample recovery and ensure<br/>representative nature of the samples.</li> </ul>                                                                                                               |   |
|                                                     | <ul> <li>Whether a relationship exists between sample recovery and grade<br/>and whether sample bias may have occurred due to preferential<br/>loss/gain of fine/coarse material.</li> </ul>                                      | • |
| ogging                                              | <ul> <li>Whether core and chip samples have been geologically and<br/>geotechnically logged to a level of detail to support appropriate<br/>Mineral Resource estimation, mining studies and metallurgical<br/>studies.</li> </ul> | • |
|                                                     | • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.                                                                                                                          | • |
| Sub-                                                | <ul> <li>The total length and percentage of the relevant intersections logged.</li> <li>If core, whether cut or sawn and whether quarter, half or all core taken</li> </ul>                                                       |   |
| sampling<br>techniques<br>and sample<br>preparation | <ul> <li>taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> </ul>                                                                                                 | • |
|                                                     | <ul> <li>For all sample types, the nature, quality and appropriateness of the<br/>sample preparation technique.</li> </ul>                                                                                                        | • |
|                                                     | <ul> <li>Quality control procedures adopted for all sub-sampling stages to<br/>maximise representivity of samples.</li> </ul>                                                                                                     |   |
|                                                     | <ul> <li>Measures taken to ensure that the sampling is representative of the in<br/>situ material collected, including for instance results for field<br/>duplicate/second-half sampling.</li> </ul>                              | • |
|                                                     | • Whether sample sizes are appropriate to the grain size of the material being sampled.                                                                                                                                           | • |
| Quality of<br>assay data                            | • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered                                                                                                  |   |

|                   | <ul> <li>recovery is assessed using the ratio of actual to ideal sample weight.</li> <li>Standard operating procedures are in place at the drill rig in order to ensure that sampling of the drilling chips is representative of the material being drilled.</li> </ul>                                               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d grade<br>ential | • In most cases grade is derived from gamma measurement and sample bias is not an issue. There is a possibility that some very fine uranium is lost during drilling, and this will be investigated by twinning some RC holes with diamond holes in a later campaign.                                                  |
| d<br>iate<br>ical | <ul> <li>Chip samples are visually logged to a basic level of detail.<br/>Parameters recorded include lithology, colour, sample condition (i.e.<br/>wet or dry) and total gamma count using a handheld scintillometer.<br/>This level of detail is deemed suitable for this mineral resource<br/>estimate.</li> </ul> |
| e (or             | • Logging is qualitative. Reference photographs are taken of RC chips in chip trays.                                                                                                                                                                                                                                  |
| s logged.         | All samples were logged.                                                                                                                                                                                                                                                                                              |
| core              | • Core holes have not yet been drilled at Koppies 3 or 4.                                                                                                                                                                                                                                                             |
| nd                | • 1 m RC chips were subsampled to approximately 1 kg using a 3-way riffle splitter mounted on the RC rig. A second 1 kg sample was collected as a field duplicate and reference sample. Samples for short holes (<12 m) were predominantly dry.                                                                       |

Bags containing 1 m of chip samples were weighed at the rig and weights recorded. The nominal weight of a 1 m sample is 25 kg and

- Pre-selected samples chosen for geochemical analysis are shipped to Intertek Genalysis preparation laboratory at Tschudi for crushing and grinding.
- Certified reference material, duplicate samples and blank samples are submitted at a rate of 1 per 20.
- Comparison of analyses of 1 kg field duplicate samples suggests that the mineralisation is somewhat nuggetty, however this is overcome by the use of gamma logging which measures a significantly larger volume.
- This has not yet been investigated as the values used in the MRE are derived from downhole gamma logging.
- Samples were analysed at Intertek Genalysis state of the art facility in Perth, Australia using a sodium peroxide fusion and ICP-MS finish

Commentary



which measures total uranium content of the samples. This method produces precise and accurate data and has no known issues with

The gamma probes used will be checked against assays by logging

drill holes for which the Company has geochemical assays. The

be similar to the adjacent Koppies 1, 2 and 3 deposits.

umpire) checks have been undertaken.

external verification has been undertaken as yet.

correlation between assays and derived equivalent uranium values is currently unknown for the prospect however it is assumed that it will

• Review of the company's QA/QC sampling and analysis confirms that

• Not yet verified by comparison of downhole gamma and wet chemical

grades, for the areas currently being drilled south of Koppies 2 and Koppies 4, but will be completed prior to the resource update. No

• Twin holes were drilled adjacent to shallow holes (2 to 4 m deep) to test for mineralisation beneath the base of the original hole.

hosted Datashed 5 database where eU<sub>3</sub>O<sub>8</sub> is calculated

database consultants, with data made available online.

No adjustment undertaken other than those based on standard

a handheld GPS unit. No downhole surveys were undertaken.

The grid system is Universal Transverse Mercator, zone 33S (WGS)

 Topographic control is provided by a digital elevation model derived from airborne geophysical surveys which provides adequate

Downhole gamma data are provided as LAS files by the company's

geophysical logging contractor which are imported into the company's

automatically. Data are stored on a secure server maintained by the

• Due to the nature of the drilling, most collar locations were fixed using

the analytical program has previously provided data with good

analytical precision and accuracy. No external laboratory (i.e.

|                                                | JORC Code explanation                                                                                                                                                                                                                                                                   |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and<br>laboratory<br>tests                     | <ul> <li>partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc<br/>the parameters used in determining the analysis including instrument<br/>make and model, reading times, calibration factors applied and their<br/>christian etc.</li> </ul> |
|                                                | <ul> <li>derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul>                              |
| Verification<br>of sampling<br>and<br>assaying | <ul> <li>The verification of significant intersections by either independent or<br/>alternative company personnel.</li> </ul>                                                                                                                                                           |
| assaying                                       | • The use of twinned holes.                                                                                                                                                                                                                                                             |
|                                                | <ul> <li>Documentation of primary data, data entry procedures, data<br/>verification, data storage (physical and electronic) protocols.</li> </ul>                                                                                                                                      |
|                                                | Discuss any adjustment to assay data.                                                                                                                                                                                                                                                   |
| Location of<br>data points                     | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> </ul>                                         |
|                                                | Quality and adequacy of topographic control.                                                                                                                                                                                                                                            |
| Data spacing                                   | Data spacing for reporting of Exploration Results.                                                                                                                                                                                                                                      |

| The early stages of this program were exploratory in nature and used<br>a variety of drill spacings. The drill line spacing varied from 200m-<br>500m x 100m-200m along the drill lines. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                          |

resolution for this level of investigation.

downhole gamma logging practices.

84 datum).

Page 40 of 46

Commentary

respect to uranium analysis.



|              | Criteria                                               | JORC (                                             |
|--------------|--------------------------------------------------------|----------------------------------------------------|
|              |                                                        | • Whe<br>degr<br>Reso<br>class                     |
|              |                                                        | • Whe                                              |
|              | Orientation<br>of data in<br>relation to<br>geological | <ul> <li>Whe poss the c</li> <li>If the</li> </ul> |
|              | structure                                              | of ke<br>sam                                       |
|              | Sample<br>security                                     | • The                                              |
|              | Audits or reviews                                      | • The                                              |
|              | Section 2 F                                            |                                                    |
|              | Criteria                                               | JORC                                               |
|              | Mineral<br>tenement<br>and land<br>tenure status       | • Type<br>agre<br>vent<br>histo                    |
| $(\bigcirc)$ | www.olovatourapiu                                      |                                                    |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | <ul> <li>Whether the data spacing and distribution is sufficient to establish the<br/>degree of geological and grade continuity appropriate for the Mineral<br/>Resource and Ore Reserve estimation procedure(s) and<br/>classifications applied.</li> </ul>                                                                                                                                       | <ul> <li>This spacing is believed sufficient to demonstrate continuity of mineralisation.</li> <li>Spacing of the current drilling program are 200 x 200m for the mineralisation definition stage, and 100 x 100m for the JORC inferred resource infill drilling phase.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                     | Whether sample compositing has been applied.                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Gamma measurements are taken every 10 cm downhole. 10 cm<br/>measurements are composited to 0.5 m intervals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>Uranium mineralisation is distributed in moderately continuous<br/>horizontal layers. All holes are drilled vertically and therefore<br/>intercepts represent the true thickness.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Samples at the drill rig are placed into plastic bags and transported<br/>from the drill site to a contract transport company in Swakopmund for<br/>transfer to the Genalysis sample preparation facility in Tschudi. A<br/>second split (field duplicate) is placed into plastic bags and<br/>transported to Elevate's storage shed in Swakopmund by company<br/>personnel where it is kept under lock and key. Upon completion of<br/>the preparation work the remainder of the drill chip sample bags for<br/>each hole are packed into drums and then stored in Elevate's<br/>dedicated sample storage shed in Swakopmund. Upon completion of<br/>the assay work the remainder of the drill chip sample bags for each<br/>hole will be packed back into drums and then stored in Elevate's<br/>dedicated sample storage shed in Swakopmund.</li> </ul> |
| Audits or<br>reviews                                                | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                            | No audits have been undertaken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria      | JORC Code explanation                                                            | Commentary                                                                             |
|---------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Mineral       | <ul> <li>Type, reference name/number, location and ownership including</li></ul> | <ul> <li>The Exploration Results relate to exclusive prospecting licence EPL</li></ul> |
| tenement      | agreements or material issues with third parties such as joint                   | 6987 "Koppies" and EPL 7279 "Ganab West", owned 100% by                                |
| and land      | ventures, partnerships, overriding royalties, native title interests,            | Marenica Ventures Pty Ltd, a 100%-owned subsidiary company of                          |
| tenure status | historical sites, wilderness or national park and environmental                  | Elevate Uranium Ltd. EPL 6987 was granted on 10 April 2019 and                         |



| Criteria                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | <ul> <li>settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>EPL 7279 was granted on 16 May 2019. Both EPL's are located within the Namib Naukluft National Park in Namibia. There are no known impediments to the project.</li> <li>EPL 6987 was renewed on 10 April 2022 for a period of two years. EPL 7279 was renewed on 10 June 2022 for a period of two years.</li> </ul>                                                                                                                                                                                                                 |
| Exploration<br>done by<br>other parties | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>General Mining is known to have previously explored the area<br/>covered by the tenement in the late 1970's. No drilling is recorded.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    |
| Geology                                 | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • Uranium mineralisation occurs as secondary carnotite enrichment in calcretised palaeochannel and sheet wash sediments and adjacent weathered bedrock. Uranium mineralisation is generally surficial, strata bound and hosted by Cenozoic and possibly Tertiary sediments, which include from top to bottom scree sand, gypcrete, calcareous sand and calcrete. The majority of the mineralisation is hosted in calcrete. Underlying weathered Proterozoic bedrock is occasionally also mineralised, occurring as calcite veins in schists. |
| Drill hole<br>Information               | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>620 holes for a total of 17,457 m have been drilled for the results<br/>included in this report. All holes were drilled vertically and<br/>intersections measured present true thicknesses. Table 5 lists all the<br/>drill hole locations.</li> </ul>                                                                                                                                                                                                                                                                              |
| Data<br>aggregation<br>methods          | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of</li> </ul>                                                                                                                                                                                                                                                                                                       | <ul> <li>Reported grades have not been cut.</li> <li>All grade intervals are arithmetic averages over the stated interval at a cut-off of 100 ppm eU<sub>3</sub>O<sub>8</sub>. Up to 0.5 m of waste is allowed in each interval.</li> </ul>                                                                                                                                                                                                                                                                                                  |



| Criteria                                                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                 |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          | <ul> <li>such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                                                                                 | Not relevant.                                                                                                                                                                              |
| Relationship<br>between<br>mineralisatio<br>n widths and | These relationships are particularly important in the reporting of Exploration Results.                                                                                                                                                                                                                                                                                               | <ul> <li>The mineralisation is sub-horizontal and the majority of the drilling<br/>was vertical, therefore, mineralised intercepts are considered to<br/>represent true widths.</li> </ul> |
| intercept                                                | <ul> <li>If the geometry of the mineralisation with respect to the drill hole<br/>angle is known, its nature should be reported.</li> </ul>                                                                                                                                                                                                                                           |                                                                                                                                                                                            |
| lengths                                                  | <ul> <li>If it is not known and only the down hole lengths are reported, there<br/>should be a clear statement to this effect (e.g. 'down hole length, true<br/>width not known').</li> </ul>                                                                                                                                                                                         | Not relevant.                                                                                                                                                                              |
| Diagrams                                                 | <ul> <li>Appropriate maps and sections (with scales) and tabulations of<br/>intercepts should be included for any significant discovery being<br/>reported These should include, but not be limited to a plan view of<br/>drill hole collar locations and appropriate sectional views.</li> </ul>                                                                                     | <ul> <li>Maps and sections are included in the text.</li> </ul>                                                                                                                            |
| Balanced<br>reporting                                    | <ul> <li>Where comprehensive reporting of all Exploration Results is not<br/>practicable, representative reporting of both low and high grades<br/>and/or widths should be practiced to avoid misleading reporting of<br/>Exploration Results.</li> </ul>                                                                                                                             | <ul> <li>Comprehensive reporting of all Exploration Results from this drilling<br/>program are detailed in this announcement.</li> </ul>                                                   |
| Other<br>substantive<br>exploration<br>data              | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | <ul> <li>Extensive drilling has been completed by the Company on EPL 6987<br/>and EPL 7279 over the past four years.</li> </ul>                                                            |
| Further work                                             | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                 | <ul> <li>A resource drilling program is currently underway at Koppies 2 south<br/>and Koppies 4.</li> <li>See text.</li> </ul>                                                             |



| N | Namibia   |                  |          |                     |             |  |  |
|---|-----------|------------------|----------|---------------------|-------------|--|--|
|   | Number    | Name             | Interest | Licence Status      | Expiry Date |  |  |
|   | MDRL 3287 | Marenica         | 75%      | Active              | 21/5/2025   |  |  |
|   | EPL 6663  | Arechadamab      | 90%      | Renewal Pending ECC | 18/9/2022   |  |  |
|   | EPL 6987  | Koppies          | 100%     | Active              | 9/4/2024    |  |  |
|   | EPL 7278  | Hirabeb          | 100%     | Active              | 9/6/2024    |  |  |
|   | EPL 7279  | Ganab West       | 100%     | Active              | 9/6/2024    |  |  |
|   | EPL 7436  | Amichab          | 100%     | Active              | 24/7/2024   |  |  |
|   | EPL 7508  | Capri            | 100%     | Pending Renewal     | 1/3/2023    |  |  |
|   | EPL 7662  | Namib IV         | 100%     | Renewal Pending ECC | 6/11/2022   |  |  |
|   | EPL 8728  | Hoasib           | 100%     | Active              | 27/6/2026   |  |  |
|   | EPL 8098  | Autseib          | 100%     | Application         | -           |  |  |
|   | EPL 8791  | Marenica North   | 100%     | Application         | -           |  |  |
|   | EPL 8792  | Marenica West    | 100%     | Application         | -           |  |  |
|   | EPL 8795  | Marenica East    | 100%     | Application         | -           |  |  |
|   | EPL 8822  | Ganab South      | 100%     | Application         | -           |  |  |
|   | EPL 8823  | Marenica Central | 100%     | Application         | -           |  |  |
|   | EPL 8978  | Autseib North    | 100%     | Application         | -           |  |  |
|   | EPL 9045  | Ganab South      | 100%     | Application         | -           |  |  |
|   | EPL 9653  | Ganab South 2    | 100%     | Application         | -           |  |  |
|   | EPL 9657  | Koppies West     | 100%     | Application         | -           |  |  |

#### Annexure A – Tenement Schedule

### Australia

| Number    | Name              | Interest | Status      | State | Expiry Date |
|-----------|-------------------|----------|-------------|-------|-------------|
| R 38/1    | Thatcher Soak     | 100%     | Granted     | WA    | 3/12/20231  |
| E 04/2297 | Oobagooma         | 100%     | Granted     | WA    | 20/2/2027   |
| EL 25758  | Angela            | 100%     | Granted     | NT    | 1/10/2024   |
| EL 32400  | Minerva           | 100%     | Granted     | NT    | 17/4/2027   |
| EL 25759  | Pamela            | 100%     | Application | NT    | -           |
| ELR 41    | Malawiri          | 23.97%   | Granted     | NT    | 17/7/2024   |
| ELR 45    | Walbiri           | 22.88%   | Granted     | NT    | 17/7/2024   |
| ELR32552  | Bigrlyi           | 20.82%   | Granted     | NT    | 15/11/2025  |
| EL 30144  | Dingos Rest South | 20.82%   | Granted     | NT    | 7/8/2024    |
| ELR 31319 | Sundberg          | 20.82%   | Granted     | NT    | 14/6/2027   |
| MLN 1952  | Karins            | 20.82%   | Application | NT    | -           |
| EL 1466   | Mount Gilruth     | 33.33%   | Application | NT    | -           |
| EL 3114   | Beatrice South    | 33.33%   | Application | NT    | -           |

### Namibian Licence Notes:

Pending Renewal – at this stage the mineral licence issued by Ministry of Mines & Energy ("MME") is pending renewal. The renewal application has been submitted to MME and is pending MME's licence review board decision on the renewal or otherwise of the licence.

Renewal Pending ECC – at this stage the MME has renewed the licence, however the MME is officially waiting for the renewal of the Environmental Clearance Certificate ("ECC") to be granted by Ministry of Environment Forestry & Tourism ("MEFT") in order to endorse the licence and transfer it to "Active" status. The ECC is renewed by the MEFT, this line ministry and the timeframe for renewing ECC's is highly variable from MEFT.



Renewal Process - The mineral licencing process in Namibia extends beyond the expiry date of a licence. Once the licence expiry date has been reached and assuming the holder has applied to extend the term of the licence, it enters a pending renewal period which can take many months or even years. If the MME ultimately decides that it intends to reject a license renewal, the cessation process of the licence begins when the MME issues a formal notice of its intention to reject renewal of the licence. There are several appeal processes that are allowed after that notice, including to the MME, the Minister and ultimately the High Court of Namibia. After any of these appeal processes the licence may ultimately be renewed.

### **Australian Licence Notes**

The licence renewal has been submitted.



## About Elevate Uranium

Elevate Uranium Ltd (ASX:EL8) (OTCQX:ELVUF) (NSX:EL8) is an Australian Securities Exchange listed company focused on uranium exploration, development and application of its *U***-pgrade**™ beneficiation process.

Elevate Uranium has a portfolio of tenements and projects in Namibia and Australia. which have yielded discoveries and are considered to be suitable for value add through application of the Company's proprietary U-pgrade<sup>TM</sup> process.

Elevate Uranium has a large tenement position in the globally recognised Erongo uranium province of Namibia, a country with an established and longstanding uranium mining industry. In Namibia, Elevate Uranium has two uranium exploration project areas, being the Namib Uranium Project Area and the Central Erongo Project Area ("CEPA"). At the Marenica Uranium Project (within the CEPA) the Company has a large, inferred uranium resource of 61 million pounds and at the Koppies Uranium Project (within the Namib Uranium Project Area), the Company has an inferred uranium resource of 20.3 million pounds. These project areas are located in the North and South-East of the greater Erongo region, which provides diversity and opportunity to explore a large tenement position.

In Australia, Elevate Uranium has tenements and joint venture interests containing substantial uranium resources. The Angela, Thatcher Soak, Minerva and Oobagooma project areas; and joint venture holdings in the Bigrlyi, Malawiri, Walbiri and Areva joint ventures, in total contain 48 Mlbs of high-grade uranium mineral resources.

### U-pgrade<sup>™</sup> Beneficiation Process

Elevate Uranium's portfolio of uranium projects in Namibia and Australia, contain uranium mineralisation suitable for processing via its proprietary *U-pgrade*™ beneficiation process.

A study on the Marenica Uranium Project, indicated that **U-pgrade**<sup>™</sup> can materially lower development and operating costs on calcrete hosted uranium projects.

## About U-pgrade<sup>™</sup>

*U-pgrade<sup>TM</sup>* is potentially an industry leading and economically transformational beneficiation process for upgrading surficial uranium ores.

This breakthrough process was developed on ore from Elevate Uranium's Marenica Uranium Project in Namibia and subsequently, testwork has been undertaken on ore samples from a number of other uranium resources.

In summary, Elevate Uranium has demonstrated, in bench scale testwork, that the **U-pgrade**<sup>™</sup> beneficiation process;

- Concentrates the uranium by a factor of 50
- Increases Marenica Project ore grade from 93 ppm to ~5,000 ppm U<sub>3</sub>O<sub>8</sub>
- > Rejects ~98% of the mass prior to leaching
- > Produces a high-grade concentrate in a low mass of ~2% (leach feed)
- Rejects acid consumers
- Potentially reduces operating costs by ~50% and capital costs by ~50% as compared to conventional processing.

Beyond application at the Marenica Uranium Project, Elevate Uranium has determined, through bench scale testing, that calcrete hosted uranium deposits in Namibia and Australia are amongst those that are amenable to the U- $pgrade^{TM}$  process.

## Appendix 5B

## Mining exploration entity or oil and gas exploration entity quarterly cash flow report

| Name of entity      |                                   |
|---------------------|-----------------------------------|
| Elevate Uranium Ltd |                                   |
| ABN                 | Quarter ended ("current quarter") |
| 71 001 666 600      | 31 December 2023                  |

| Con | solidated statement of cash flows              | Current quarter<br>\$A'000 | Year to date<br>(6 months)<br>\$A'000 |
|-----|------------------------------------------------|----------------------------|---------------------------------------|
| 1.  | Cash flows from operating activities           |                            |                                       |
| 1.1 | Receipts from customers                        | -                          | -                                     |
| 1.2 | Payments for                                   |                            |                                       |
|     | (a) exploration & evaluation                   | (1,752)                    | (3,620)                               |
|     | (b) development                                | -                          | -                                     |
|     | (c) production                                 | -                          | -                                     |
|     | (d) staff costs                                | (154)                      | (335)                                 |
|     | (e) administration and corporate costs         | (330)                      | (697)                                 |
| 1.3 | Dividends received (see note 3)                | -                          | -                                     |
| 1.4 | Interest received                              | 71                         | 162                                   |
| 1.5 | Interest and other costs of finance paid       | -                          | -                                     |
| 1.6 | Income taxes paid                              | -                          | -                                     |
| 1.7 | Government grants and tax incentives           | -                          | -                                     |
| 1.8 | Other (R&D Tax Refund)                         | -                          | -                                     |
| 1.9 | Net cash from / (used in) operating activities | (2,165)                    | (4,490)                               |

| 2.  | Cash flows from investing activities |      |      |
|-----|--------------------------------------|------|------|
| 2.1 | Payments to acquire or for:          |      |      |
|     | (a) entities                         | -    | -    |
|     | (b) tenements                        | -    | -    |
|     | (c) property, plant and equipment    | (29) | (39) |
|     | (d) exploration & evaluation         | -    | -    |
|     | (e) investments                      | -    | (11) |
|     | (f) other non-current assets         | -    | -    |

| Consolidated statement of cash flows |                                                   | Current quarter<br>\$A'000 | Year to date<br>(6 months)<br>\$A'000 |
|--------------------------------------|---------------------------------------------------|----------------------------|---------------------------------------|
| 2.2                                  | Proceeds from the disposal of:                    |                            |                                       |
|                                      | (a) entities                                      | -                          | -                                     |
|                                      | (b) tenements                                     | -                          | -                                     |
|                                      | (c) property, plant and equipment                 | -                          | -                                     |
|                                      | (d) investments                                   | -                          | -                                     |
|                                      | (e) other non-current assets                      | -                          | -                                     |
| 2.3                                  | Cash flows from loans to other entities           | -                          | -                                     |
| 2.4                                  | Dividends received (see note 3)                   | -                          | -                                     |
| 2.5                                  | Other (provide details if material)               | -                          | -                                     |
| 2.6                                  | Net cash from / (used in) investing<br>activities | (29)                       | (50)                                  |

| 3.   | Cash flows from financing activities                                                    |        |        |
|------|-----------------------------------------------------------------------------------------|--------|--------|
| 3.1  | Proceeds from issues of equity securities (excluding convertible debt securities)       | 10,884 | 10,884 |
| 3.2  | Proceeds from issue of convertible debt securities                                      | -      | -      |
| 3.3  | Proceeds from exercise of options                                                       | -      | -      |
| 3.4  | Transaction costs related to issues of equity securities or convertible debt securities | (615)  | (615)  |
| 3.5  | Proceeds from borrowings                                                                | -      | -      |
| 3.6  | Repayment of borrowings                                                                 | -      | -      |
| 3.7  | Transaction costs related to loans and<br>borrowings                                    | -      | -      |
| 3.8  | Dividends paid                                                                          | -      | -      |
| 3.9a | Proceeds from issues of equity securities to be allotted                                | -      | -      |
| 3.9b | Repayment of lease liabilities                                                          | (21)   | (49)   |
| 3.10 | Net cash from / (used in) financing activities                                          | 10,248 | 10,220 |

| 4.  | Net increase / (decrease) in cash and cash equivalents for the period |         |         |
|-----|-----------------------------------------------------------------------|---------|---------|
| 4.1 | Cash and cash equivalents at beginning of period                      | 7,684   | 10,059  |
| 4.2 | Net cash from / (used in) operating activities (item 1.9 above)       | (2,165) | (4,490) |
| 4.3 | Net cash from / (used in) investing activities (item 2.6 above)       | (29)    | (50)    |

| Con | solidated statement of cash flows                                   | Current quarter<br>\$A'000 | Year to date<br>(6 months)<br>\$A'000 |
|-----|---------------------------------------------------------------------|----------------------------|---------------------------------------|
| 4.4 | Net cash from / (used in) financing activities<br>(item 3.10 above) | 10,248                     | 10,220                                |
| 4.5 | Effect of movement in exchange rates on<br>cash held                | 1                          | -                                     |
| 4.6 | Cash and cash equivalents at end of<br>period                       | 15,739                     | 15,739                                |

| 5.  | Reconciliation of cash and cash<br>equivalents<br>at the end of the quarter (as shown in the<br>consolidated statement of cash flows) to the<br>related items in the accounts | Current quarter<br>\$A'000 | Previous quarter<br>\$A'000 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|
| 5.1 | Bank balances                                                                                                                                                                 | 3,739                      | 7,684                       |
| 5.2 | Call deposits                                                                                                                                                                 | 12,000                     | -                           |
| 5.3 | Bank overdrafts                                                                                                                                                               | -                          | -                           |
| 5.4 | Other (provide details)                                                                                                                                                       | -                          | -                           |
| 5.5 | Cash and cash equivalents at end of quarter (should equal item 4.6 above)                                                                                                     | 15,739                     | 7,684                       |

| 6.  | Payments to related parties of the entity and their associates                                                    | Current quarter<br>\$A'000  |
|-----|-------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 6.1 | Aggregate amount of payments to related parties and their associates included in item 1                           | 150                         |
| 6.2 | Aggregate amount of payments to related parties and their associates included in item 2                           | -                           |
|     | f any amounts are shown in items 6.1 or 6.2, your quarterly activity report must includ ation for, such payments. | le a description of, and an |

Payment of fees and salary plus superannuation to directors and reimbursement of expenses incurred on behalf of the Company.

#### Appendix 5B Mining exploration entity or oil and gas exploration entity quarterly cash flow report

| 7.  | <b>Financing facilities</b><br>Note: the term "facility' includes all forms of financing<br>arrangements available to the entity.<br>Add notes as necessary for an understanding of the<br>sources of finance available to the entity. | Total facility<br>amount at quarter<br>end<br>\$A'000  | Amount drawn at<br>quarter end<br>\$A'000 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|
| 7.1 | Loan facilities                                                                                                                                                                                                                        |                                                        |                                           |
| 7.2 | Credit standby arrangements                                                                                                                                                                                                            |                                                        |                                           |
| 7.3 | Other (please specify)                                                                                                                                                                                                                 |                                                        |                                           |
| 7.4 | Total financing facilities                                                                                                                                                                                                             |                                                        |                                           |
| 7.5 | Unused financing facilities available at qu                                                                                                                                                                                            | arter end                                              |                                           |
| 7.6 | Include in the box below a description of eac<br>rate, maturity date and whether it is secured<br>facilities have been entered into or are propo<br>include a note providing details of those facil                                    | or unsecured. If any add<br>used to be entered into af | tional financing                          |

| 8.  | Estim                                                                                                                                                                                                                | nated cash available for future operating activities                                                                                                                                                                   | \$A'000 |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| 8.1 | Net ca                                                                                                                                                                                                               | sh from / (used in) operating activities (item 1.9)                                                                                                                                                                    | (2,165) |  |
| 8.2 |                                                                                                                                                                                                                      | ents for exploration & evaluation classified as investing es) (item 2.1(d))                                                                                                                                            | -       |  |
| 8.3 | Total r                                                                                                                                                                                                              | elevant outgoings (item 8.1 + item 8.2)                                                                                                                                                                                | (2,165) |  |
| 8.4 | Cash a                                                                                                                                                                                                               | and cash equivalents at quarter end (item 4.6)                                                                                                                                                                         | 15,739  |  |
| 8.5 | Unuse                                                                                                                                                                                                                | ed finance facilities available at quarter end (item 7.5)                                                                                                                                                              | -       |  |
| 8.6 | Total a                                                                                                                                                                                                              | available funding (item 8.4 + item 8.5)                                                                                                                                                                                | 15,739  |  |
| 8.7 | Estimated quarters of funding available (item 8.6 divided by item 8.3)                                                                                                                                               |                                                                                                                                                                                                                        | 7.3     |  |
|     | Note: if the entity has reported positive relevant outgoings (ie a net cash inflow) in item 8.3, answer item 8.<br>Otherwise, a figure for the estimated quarters of funding available must be included in item 8.7. |                                                                                                                                                                                                                        |         |  |
| 8.8 | If item 8.7 is less than 2 quarters, please provide answers to the following questions:                                                                                                                              |                                                                                                                                                                                                                        |         |  |
|     | 8.8.1 Does the entity expect that it will continue to have the current level of net operating cash flows for the time being and, if not, why not?                                                                    |                                                                                                                                                                                                                        |         |  |
|     | Answe                                                                                                                                                                                                                | er: N/A                                                                                                                                                                                                                |         |  |
|     | 8.8.2                                                                                                                                                                                                                | 8.8.2 Has the entity taken any steps, or does it propose to take any steps, to raise further cash to fund its operations and, if so, what are those steps and how likely does it believe that they will be successful? |         |  |
|     | Answer: N/A                                                                                                                                                                                                          |                                                                                                                                                                                                                        |         |  |
|     |                                                                                                                                                                                                                      |                                                                                                                                                                                                                        |         |  |

8.8.3 Does the entity expect to be able to continue its operations and to meet its business objectives and, if so, on what basis?

Answer: N/A

Note: where item 8.7 is less than 2 quarters, all of questions 8.8.1, 8.8.2 and 8.8.3 above must be answered.

### **Compliance statement**

- This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Date: 29 January 2024

Authorised by: .The Board of Directors. (Name of body or officer authorising release – see note 4)

#### Notes

1

- This quarterly cash flow report and the accompanying activity report provide a basis for informing the market about the entity's activities for the past quarter, how they have been financed and the effect this has had on its cash position. An entity that wishes to disclose additional information over and above the minimum required under the Listing Rules is encouraged to do so.
- 2. If this quarterly cash flow report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly cash flow report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.
- 4. If this report has been authorised for release to the market by your board of directors, you can insert here: "By the board". If it has been authorised for release to the market by a committee of your board of directors, you can insert here: "By the [name of board committee – eg Audit and Risk Committee]". If it has been authorised for release to the market by a disclosure committee, you can insert here: "By the Disclosure Committee".
- 5. If this report has been authorised for release to the market by your board of directors and you wish to hold yourself out as complying with recommendation 4.2 of the ASX Corporate Governance Council's Corporate Governance Principles and Recommendations, the board should have received a declaration from its CEO and CFO that, in their opinion, the financial records of the entity have been properly maintained, that this report complies with the appropriate accounting standards and gives a true and fair view of the cash flows of the entity, and that their opinion has been formed on the basis of a sound system of risk management and internal control which is operating effectively.