

MORE LITHIUM-BEARING CLAYS INTERSECTED AT ALTAIR LITHIUM PROJECT, USA

Lithium claystone mineralisation now confirmed over 1.9km of strike

Key Highlights

- Follow-up drill-hole AL03 intersected 13.7m (45ft) @ 365ppm Li from 163m (535ft) to end-of-hole.
- The intersection in AL03 confirms that the mineralised Siebert Formation claystone extends over 1.9km of strike.
- Hole ended in lithium mineralisation, indicating further potential beyond the hole depth (176.8m/580ft).
- Drill-hole AL02 intersected anomalous lithium over
 100ppm in four 1.5m zones, with a peak assay of
 148.5ppm.
- The lithium mineralisation at Altair remains open to the north, west and at depth around holes AL01 and AL03, highlighting continued exploration potential.

Astute Metals NL (ASX: ASE) ("ASE", "Astute" or "the Company") is pleased to advise that it has intersected further lithium mineralisation in recent follow-up drilling at its highly prospective 100%-owned Altair Lithium Project in Nevada, USA. Drill-hole AL03 intersected:

• 13.7m @ 365ppm Li from 163m (535ft) to End-Of-Hole (176.8m/580ft).

This result has confirmed an extension of the mineralised Siebert Formation claystone 1.9km to the east of the initial discovery hole AL01, which intersected two previously announced significant zones of lithium mineralisation³, namely:

- 33.5m @ 481ppm Li from 80.8m (265ft); and
- **33.5m 6 508ppm Li from 147.8m** (485ft) to End-of-Hole (181.4m/595ft).

In addition, hole AL02, which was drilled at the eastern extent of the Altair Project approximately 5.4km east of AL03, intersected four zones of anomalous lithium-in-clays where lithium values peak over 100ppm. It is unclear at this early stage whether the intercalated claystone and fine gravels at this hole belong to the Siebert Formation or are part of younger, Quaternary-aged sequences. However, the fact that the clays are lithium-bearing suggests the potential for higher grades nearby if they do belong to the Siebert Formation. A full table of assay results is provided in Appendix 3.

To continue building on the exploration success achieved to date at Altair, the Company intends to permit additional holes to test for further intersections of lithium claystone to the north and west of the Altair Project in H1 of 2024, with further drilling planned in H2.

Astute Executive Chairman, Tony Leibowitz, said:

"These very encouraging results from Holes 2 and 3 wrap-up what was an extremely successful first year of drilling for Astute at Altair. The significant intercept in Hole 3 confirms that the mineralized Siebert Formation horizon extends over a strike length of 1.9km, building on previously reported drilling. We have lots of unfinished business at Altair and we plan to permit additional holes there while we progress exploration activities at the exciting new Red Mountain Project."

Background

Centred south-west of the township of Tonopah, in the heart of one of the world's most active lithium exploration districts, the Altair Project was strategically staked proximal to outcropping tertiary sedimentary host rock (known locally as the Siebert Formation) that is known to host claystone lithium deposits around Nevada. Such deposits include the 15.8Mt LCE (lithium carbonate equivalent) Tonopah Flats deposit¹ and the 9.79Mt LCE TLC Lithium Project² (Figure 4).

The Company completed the first hole at Altair in Q3 2023, with drill-hole AL01 successfully intersecting two zones of lithium mineralisation:

- 33.5m @ 481ppm Li from 80.8m (265ft); and
- 33.5m @ 508ppm Li from 147.8m (485ft) to End-of-Hole (181.4m/595ft).

The Company re-commenced drilling at Altair in November 2023 with a higher-powered Reverse Circulation (RC) drill rig more appropriate to contend with the challenging drilling conditions encountered previously at the Project (Figure 1). Two holes were drilled at Altair for a combined 312.4m (1,025ft), successfully intersecting claystone in both holes AL03 and AL02⁴.

Figure 1. Drill rig set up at site AL03.

Interpretation

There is strong similarity between the soft blue-green nature and lithium grade of the clays intersected in AL01 and AL03, indicating that the clays intersected in AL03 are an extension of the Siebert Formation encountered in hole AL01.

The deepening of the claystone intersected in AL03 is interpreted to potentially be due to a paleochannel where Siebert Formation clays may have been eroded away and fine gravels deposited in place (see Schematic Section in Figure 2)

Given the variation in depth of intersection, thickness and grade of the claystones between the easternmost hole AL02 and those in AL01 and AL03, it remains unclear if the claystones intersected in AL02 belong to the Siebert Formation and this will only be resolved with additional drilling.

Based on the drilling to date, the mineralisation remains open to the west and the north of the project, with excellent potential to expand the extent of lithium-bearing clays. In addition, the mineralisation also remains open, to an unknown degree, between AL03 and AL02 (Figure 3).

Next Steps

The Company will work to permit additional holes in the west and north of the project, and between holes AL03 and AL02. Permitting is expected to be completed in H1 of 2024, allowing further drilling to take place in the second half of 2024.

478.000mE

AL02

TD 445ft

Li (ppm)

>700

>700 600 - 700 500 - 600 400 - 500 300 - 400 200 - 300 100 - 200 <100

Figure 3. Altair Project drill-hole location plan and arrows indicating lithium clay extension potential.

Hole ID	Easting	Northing	Dip	Depth
AL01	470859	4189179	-90°	181.4m (595ft)
AL02	478236	4188869	-90°	135.6m (445ft)
AL03	472767	4189133	-90°	176.8m (580ft)

Table 1. Drill collar locations

Figure 4. Location of Polaris and Altair Projects, lithium deposits and exploration projects.

OTCMKTS: ABML 26 February 2023 'Technical Report Summary For The Tonopah Flats Lithium Project, Esmeralda..' TSX.V: LI 17 March 2023 'Tonopah Lithium Claims project NI 43-101 technical report – Preliminary Economic Assessment' ASX: ASE 23 August 2023 'Broad lithium hits in first Altair drillhole'

4 ASX: ASE 23 November 2023 'More Claystone Intersected at Altair Project'

Authorisation

This announcement has been authorised for release by the Board of Astute.

More Information

Matt Healy General Manager – Exploration <u>mhealy@astutemetals.com</u> +61 (0) 431 683 952

Nicholas Read Media & Investor Relations <u>nicholas@readcorporate.com.au</u> +61 (0) 419 929 046

Suite 6, Level 5, 189 Kent St, Sydney NSW 2000 | GPO Box 2733, Sydney NSW 2001 +61 (0) 2 8046 2799 | admin@astutemetals.com www.astutemetals.com

Competent Persons

The information in this report that relates to Sampling Techniques and Data (Section 1) is based on information compiled by Mr Matthew Healy, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM Member number 303597). Mr Healy is a full-time employee of Astute Metals NL and is eligible to participate in a Loan Funded Share incentive plan of the Company. Mr Healy has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Healy consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Reporting of Exploration Results (Section 2) is based on information compiled by Mr Richard Newport, principal partner of Richard Newport & Associates – Consultant Geoscientists. Mr Newport is a member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person under the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Newport consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Section 1 - Sampling Techniques and Data

Criter	a JORC Code explanation	Commentary
Sampli technic	ng Nature and quality of sampling (eg cut channels, random chips, or specific specialisedindustry standard measurem tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheldXRF instruments, etc)	5.5" reverse circulation and 5.25" tricone drilling was undertaken for drill sample collection. Samples were collected on a 5-foot basis in calico bags, with a 50% split retained from a rotary cone splitter for lab assay.
$\overline{\bigcirc}$	These examples should not be taken as limiting the broad meaning of sampling.	Nominal small drill sample was collected for chip tray and sandwich-sized ziplock bags
DSD IPU	 Include reference to measures taken to ensuresample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work habeen done this would be relatively simpl (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for f assay'). In other cases more explanation may be required, suchas where there is coarse gold that has inherentsampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Samples were air dried on elevated grid mesh until practical to transport Claystone hosted lithium deposits are thought to form as a result of the weathering of lithium-bearing volcanic glass within tertiary-aged tuffaceous lacustrine sediments of the mapped Ts3 unit. Inputs of lithium from geothermal sources have also been proposed.
Drilling techniq	Drill type (eg core, reverse circulation, ope holehammer, rotary air blast, auger, Bangl sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond face-sampling bit or other type, whether isoriented and if so, by what method, etc).	en- ka, sethods employed. Water was injected to assist with transport of sample from bit to surface, as required. core
Drill san	Method of recording and assessing core andchip sample recoveries and results assessed.Measures taken to maximise sample recoveryand ensure representative natu of the samples.Whether a relationship exists between sample recovery and grade and whethe sample bias may have occurred due to preferential loss/gainof fine/coarse mate	Sample recovery established by dry sample weights undertaken by independent laboratory prior to sample preparation and analysis re Challenging ground conditions arising from the drilling of quaternary alluvial and soft claystones did result in poor recovery in some instances. er Instances of poor recovery are not expected tomaterially impact interpretation of results
Logging	 Whether core and chip samples have been geologically and geotechnically logged to alevel of detail to support appropriate MineralResource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative innature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Drill cuttings for entire hole logged for lithology by company geologists Logging is qualitative Photography of material intersections of claystone taken of relevant chip trays See Appendix 2 for summary lithology logging

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotarysplit, etc and whether sampled wet or dry.	Samples, 50% split using a rotary cone splitter, were submitted to ALS Laboratories in Reno for preparation and analysis.
	For all sample types, the nature, quality and appropriateness of the sample preparationtechnique. Quality control procedures adopted for all sub-sampling stages to maximise representivityof samples. Measures taken to ensure that the sampling isrepresentative of the in situ material collected,including for instance results for field duplicate/second-half sampling.	
Quality of assay data and laboratory tests	 Whether sample sizes are appropriate to thegrain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial ortotal. For geophysical tools, spectrometers, handheldXRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precisionhave been established. 	Samples analysed by method ME-MS41 which is an ICP-MS method employing an aqua-regia digest. Aqua-regia is not considered a 'total' digest for many elements however is considered fit for purpose for lithium and has been used extensively by other parties exploring for lithium claystone deposits in the USA. Assay quality was monitored using pulp blanks, as well as certified reference materials (CRMs) at a range of lithium grades. Pulp blank results indicated no material contamination of samples from sample preparation or during the analytical process. CRM results were within 3 standard deviations of certified values. No material systematic bias nor other accuracy related issues were identified.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entryprocedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Sample intervals to be assigned a unique sample identification number prior to sample despatch Lithium-mineralised claystone Certified Reference Materials (standards), pulp blanks and coarse blanks to be inserted into the sample stream at regular intervals to monitor lab accuracy and potential contamination during sample prep and analytical processes
Location of data points	Accuracy and quality of surveys used to locatedrill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Drill collar locations determined using hand- held GPS with location reported in NAD83 UTM Zone 11. Expected hole location accuracy of +/- 10m No downhole surveys conducted on vertical holes

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the MineralResource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Drill spacing is appropriate for early exploration purposes 5-foot sample interval widely adopted as standard practice in air drilling in the USA.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Claystone beds are regionally sub-horizontal withshallow dip of <5° although locally this may vary
Sample security	The measures taken to ensure sample security.	Samples picked up from the Company's yard in Tonopah by ALS Laboratories for direct delivery to Reno laboratory
Audits or reviews	The results of any audits or reviews of samplingtechniques and data.	Not applicable

Section 2 - Reporting of Exploration Results

	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Altair Claims held in 100% Astute subsidiary Needles Holdings Inc. Claims located on Federal (BLM) Land Drilling conducted on claims certified by the Bureau of Land Management (BLM)
5	Exploration done by other parties	Acknowledgment and appraisal of exploration byother parties.	No known previous lithium exploration conducted on Altair. Exploration conducted in the region by other explorers referenced in announcement body text
	Geology	Deposit type, geological setting and style of mineralisation.	The principal target deposit style is claystone hosted lithium mineralisation. Claystone hosted lithium deposits are thought to form as a result of the weathering of lithium-bearing volcanic glass within tertiary-aged tuffaceous lacustrine sediments of the mapped Ts3 unit. Lacustrine environments formed as a result of extensional tectonic regime that produced 'basin and range' topography observed across the stateof Nevada. Inputs of lithium from geothermal sources have also been proposed.
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drillhole locations and drilled depths are tabulated in body report All holes drilled vertically
	Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shownin detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Intersections, where quoted are weighted by length. A 300ppm Li cut-off was used to quote headline intersections, with allowance for 5ft of internal dilution by lower grade material. No cut-off has been employed where the full intersection of prospective lithology (i.e. Siebert formation). Spot grades also quoted for single drill sample intervals where anomalous Sample assays from overlying alluvium were excluded from all quoted intersections.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary		
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	Insufficient information available due to early exploration status		
intercept lengths	to the drill hole angle is known, its nature should be reported.			
\square	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').			
Diagrams	Appropriate maps and sections (with scales) andtabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included in ASX announcement		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This release describes all relevant information		
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysicalsurvey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This release describes all relevant information		
Further work	The nature and scale of planned further work (egtests for lateral extensions or depth extensions orlarge-scale step-out drilling).	Drill results demonstrate further work at the Altair project is warranted.		
D	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.			

APPENDIX 2 – Altair Drilling Summary Lithology Logging

	Hole ID	From (ft)	To (ft)	Rock Formation	Summary Lithology	Comments
	AL02	0	55	Unconsolidated	Gravel med-coarse	Polymictic coarse grained
	AL02	55	75	Unknown	Gravel - fine	Polymictic fine grained
4	AL02	75	85	Unknown	Claystone	Puggy
$(\mathbf{I}$	AL02	85	100	Unknown	Gravel - fine	Polymictic fine grained
H	AL02	100	105	Unknown	Mixed clay-gravel	Gravelly
$\left(\int \right)$	AL02	105	120	Unknown	Gravel - fine	Polymictic fine grained
9	AL02	120	130	Unknown	Mixed clay-gravel	Gravelly in part
	AL02	130	135	Unknown	Gravel – fine	Polymictic fine grained
	AL02	135	150	Unknown	Mixed clay-gravel	Gravelly in part
Y	AL02	150	155	Unknown	Gravel – fine	Polymictic fine grained
0	AL02	155	160	Unknown	Mixed clay-gravel	Gravelly in part
$(\mathbf{U}$	AL02	160	210	Unknown	Gravel – fine	Polymictic fine grained
	AL02	210	250	Unknown	Claystone	Hard. Minor gravel in part
	AL02	250	265	Unknown	Gravel – fine	Polymictic fine grained
	AL02	265	270	Unknown	Claystone	Hard light brown green claystone
	AL02	270	330	Unknown	Gravel – fine	Polymictic fine grained
	AL02	330	345	Unknown	Claystone	Hard light brown green claystone
(1	AL02	345	365	Unknown	Claystone	Hard
9	AL02	365	370	Unknown	Claystone	Puggy clay
A	AL02	370	415	Unknown	Gravel – fine	Polymictic fine grained
24	AL02	415	420	Unknown	Claystone	Hard light brown green claystone
	AL02	420	425	Unknown	Mixed clay-gravel	Gravel with same claystone as prior interval
((AL02	425	430	Unknown	Claystone	Hard light brown green claystone
A	AL02	430	435	Unknown	Mixed clay-gravel	Gravel with same claystone as prior interval
(C	AL02	435	445	Unknown	Gravel - fine	Polymictic fine grained
2	AL03	0	45	Unconsolidated	Gravel med-coarse	Polymictic coarse grained
\geq	AL03	45	140	Unconsolidated	Gravel med-coarse	Polymictic medium grained
A	AL03	140	240	Unconsolidated	Gravel med-coarse	Polymictic coarse grained
Y	AL03	240	460	Unknown	Gravel - fine	Polymictic fine grained
	AL03	460	465	Unknown	Mixed clay-gravel	Orange-brown puggy clay with minor gravel
Q	AL03	465	505	Unknown	Gravel - fine	Polymictic fine grained
	AL03	505	525	Siebert	Mixed clay-gravel	Blue-green-grey clay with fine gravel
$\overline{\alpha}$	AL03	525	560	Siebert	Claystone	Blue-green-grey to creamy grey claystone
27	AL03	560	580	Siebert	Mixed clay-gravel	Blue-green-grey clay with fine gravel
A	AL01	0	225	Unconsolidated	Gravel med-coarse	Pebbly, rounded to angular and polymictic
Q	AL01	225	235	Unconsolidated	Gravel - fine	Rounded to angular and polymictic
	AL01	235	275	Siebert	Mixed clay-gravel	Variable light orange brown clay content
	AL01	275	370	Siebert	Claystone	Tan to light olive to Bluey green claystone
	AL01	370	385	Siebert	Mixed clay-gravel	Bluey green claystone in part
	AL01	385	395	Siebert	Claystone	Bluey green claystone
	AL01	395	405	Siebert	Mixed clay-gravel	Bluey green claystone in part
	AL01	405	445	Siebert	Claystone	Bluey green claystone
ſ	AL01	445	475	Siebert	Mixed clay-gravel	Bluey green claystone in part
	AL01	475	595	Siebert	Claystone	Blue-green to Dark grey green claystone

APPENDIX 3 – Altair Drilling Sample Assay Table

	Sample ID	Hole ID	From (ft)	To (ft)	Li (ppm)	Sample ID	Hole ID
	701701	AL02	0	5	21.7	701748	AL02
	701702	AL02	5	10	20.8	701749	AL02
Ľ	701703	AL02	10	15	23.3	701750	AL02
	701704	AL02	15	20	22.1	701751	AL02
()	701705	AL02	20	25	21.7	701752	AL02
Ċ	701706	AL02	25	30	24	701753	AL02
(701707	AL02	30	35	19.7	701754	AL02
	701708	AL02	35	40	19.5	701755	AL02
	701709	AL02	40	45	29.1	701756	AL02
(701710	AL02	45	50	20.6	701757	AL02
0	701711	AL02	50	55	14.9	701758	AL02
	701712	AL02	55	60	24.5	701759	AL02
(701713	AL02	60	65	22.1	701760	AL02
	701714	AL02	65	70	20.9	701761	AL02
	701715	AL02	70	75	26.4	701763	AL02
	701716	AL02	75	80	72.2	701764	AL02
	701717	AL02	80	85	131.5	701765	AL02
	701718	AL02	85	90	92.6	701766	AL02
	701719	AL02	90	95	42	701767	AL02
	701721	AL02	95	100	24.7	701768	AL02
(701722	AL02	100	105	77.7	701769	AL02
Ċ	701723	AL02	105	110	46.8	701770	AL02
(701724	AL02	110	115	19	701771	AL02
	701725	AL02	115	120	27.7	701772	AL02
(701726	AL02	120	125	93.9	701773	AL02
4	701727	AL02	125	130	125	701774	AL02
2	701728	AL02	130	135	74.8	701775	AL02
	701729	AL02	135	140	96	701776	AL02
	701730	AL02	140	145	59.7	701777	AL02
	701731	AL02	145	150	67.1	701778	AL02
(701732	AL02	150	155	49.3	701779	AL02
	701733	AL02	155	160	77.2	701780	AL02
6	701734	AL02	160	165	70	701781	AL02
2	701735	AL02	165	170	31.2	701782	AL02
6	701736	AL02	170	175	28.8	701784	AL02
1	701737	AL02	175	180	40.1	701785	AL02
	701738	AL02	180	185	41.5	701787	AL02
	701739	AL02	185	190	53.8	701788	AL02
	701740	AL02	190	195	76	701789	AL02
	701742	AL02	195	200	76.3	701790	AL02
	701743	AL02	200	205	30.6	701791	AL02
	701744	AL02	205	210	22.8	701792	AL02
	701745	AL02	210	215	43.9	701793	AL02
	701746	AL02	215	220	38.2		
	701747	AL02	220	225	39		

		C -7		ALL NO.
701748	AL02	225	230	43.8
701749	AL02	230	235	42
701750	AL02	235	240	39.1
701751	AL02	240	245	49.3
701752	AL02	245	250	67.3
701753	AL02	250	255	32.4
701754	AL02	255	260	20.1
701755	AL02	260	265	38.9
701756	AL02	265	270	41.5
701757	AL02	270	275	20.9
701758	AL02	275	280	19.4
701759	AL02	280	285	29.4
701760	AL02	285	290	31.5
701761	AL02	290	295	24.7
701763	AL02	295	300	26.1
701764	AL02	300	305	26.8
701765	AL02	305	310	37.8
701766	AL02	310	315	34.8
701767	AL02	315	320	41.8
701768	AL02	320	325	28.3
701769	AL02	325	330	53.5
701770	AL02	330	335	47.6
701771	AL02	335	340	58.7
701772	AL02	340	345	56
701773	AL02	345	350	67
701774	AL02	350	355	88.2
701775	AL02	355	360	148.5
701776	AL02	360	365	99.5
701777	AL02	365	370	84.7
701778	AL02	370	375	42.4
701779	AL02	375	380	22.9
701780	AL02	380	385	25.7
701781	AL02	385	390	30.2
701782	AL02	390	395	24.6
701784	AL02	395	400	29.1
701785	AL02	400	405	32.1
701787	AL02	410	415	22
701788	AL02	415	420	52.3
701789	AL02	420	425	69.5
701790	AL02	425	430	71.7
701791	AL02	430	435	109
701792	AL02	435	440	58.1
701793	AL02	440	445	58

From

APPENDIX 3 – Altair Drilling Sample Assay Table

Sample	Hole	From	To (m)	Li	Sampl	e Hole
7015.00		(11)		(ppm)	701570	
701532	ALU3	150	155	24 45.0	70157	
701033	ALUS	100	160	40.9	70150	
701534	ALUS	160	100	34.Z	70150	
701535	ALUS	100	170	30.9 20 F	70150	
701536	AL03	170	1/5	29.5	701584	
701537	ALU3	1/5	180	31.8 06.5	70158	ALU3
701536	ALOS	100	100	20.0	701500	
701539	ALUS	100	190	34.0 97	70150	
701540	ALU3	190	200	27	701500	
701542	ALOS	195	200	3Z 2E 0	70150	
701543	ALOS	200	205	20.9	701590	
701544	ALUS	205	210	23.2	70159	
701545	ALU3	210	215	23.9	701592	
701540	ALU3	210	220	29.7	70159	ALU3
701547	ALU3	220	220	23.3	701592	+ ALU3
701540	AL03	220	230	20.6	70159	
701550	AL03	230	235	20.0	701590	7 ALO3
701550	ALU3	235	240	23.2	70159	
701551	ALU3	240	240	25 5	701590	
701552	ALU3	245	250	25.5	701593	
701553	ALOS	250	200	23.1	701000	
701555	AL03	200	200	27.3	70160	
701556	AL03	200	203	23.3	701002	
701550	AL03	200	275	24.1	70100	5 ALO3
701558	AL03	275	275	23.3	70100	
701550	AL03	270	200	20.7	70160	7 4103
701560	AL03	285	200	21.0	701608	
701561	AL00	290	295	23.3	701609	
701563	AL00	295	300	23.0	70160	
701564	AL00	300	305	20.2	70161	
701565	AL00	305	310	21.0	701612	
701566	AL00	310	315	21.2	701612	
701567	AL03	315	320	19.8	701614	
701568	AL00	320	325	21.3	701615	
701569	AL03	325	330	22.10	701616	
701570	AL00	330	335	25	701617	γ <u>ΑΙ</u> 03
701571	AL03	335	340	23.9	701618	
701572	AL00	340	345	26.5	701619	
701573	AL03	345	350	24.5	701620	
701574	AL03	350	355	26.6	70162	
701575	AL03	355	360	35.8	, 0102	
701576	AL03	360	365	24.6		
701577	AL03	365	370	24.7		
701578	AL03	370	375	23.6		
	/	575	575	20.0		

Sample	Hole	From	То	Li
ID	ID	(ft)	(ft)	(ppm)
701579	AL03	375	380	28.7
701580	AL03	380	385	27.5
701581	AL03	385	390	26.9
701582	AL03	390	395	30.7
701584	AL03	395	400	27.4
701585	AL03	400	405	27.6
701586	AL03	405	410	28.3
701587	AL03	410	415	31.2
701588	AL03	415	420	30.1
701589	AL03	420	425	32.4
701590	AL03	425	430	29.5
701591	AL03	430	435	35.4
701592	AL03	435	440	30.9
701593	AL03	440	445	28.6
701594	AL03	445	450	32.8
701595	AL03	450	455	36.3
701596	AL03	455	460	25.3
701597	AL03	460	465	34.6
701598	AL03	465	470	37.9
701599	AL03	470	475	33.8
701600	AL03	475	480	34.4
701601	AL03	480	485	45.4
701602	AL03	485	490	52.1
701603	AL03	490	495	54.7
701605	AL03	495	500	48.1
701606	AL03	500	505	39.6
701607	AL03	505	510	65.3
701608	AL03	510	515	130.5
701609	AL03	515	520	156
701610	AL03	520	525	107.5
701611	AL03	525	530	276
701612	AL03	530	535	292
701613	AL03	535	540	405
701614	AL03	540	545	392
701615	AL03	545	550	458
701616	AL03	550	555	377
701617	AL03	555	560	335
701618	AL03	560	565	246
701619	AL03	565	570	329
701620	AL03	570	575	510
701621	AL03	575	580	232