ASX Announcement ASX:DY6

High Grade HREE & Nb Results From Diamond Drilling at Machinga

HIGHLIGHTS

- Assays received from the 8-diamond drill hole program (totalling 900m) at Machinga
- Significant intercepts include:
 - 15.1m @ 1.01% TREO, 0.36% Nb₂O₅ from 23.9m (3.71% DyTb/TREO) incl. 4m @ 1.75% TREO, 0.63% Nb₂O₅ from 33m (3.8% Dy/Tb/TREO) drilled downdip (MDD007)
 - 9m @ 0.70% TREO, 0.3% Nb₂O₅ from 3m (3.84% DyTb/TREO) incl. 2m @ 1.2% TREO, 0.58% Nb₂O₅ from 6m (3.64% Dy/Tb/TREO) and 5.2m @ 1.61% TREO, 0.66% Nb₂O₅ from 41.4m (3.99% DyTb/TREO) incl. 1m @ 2.67% TREO, 1.01% Nb₂O₅ from 44m (3.9% Dy/Tb/TREO) drilled downdip (MDD006)
 - 6.1m @ 1.09% TREO, 0.4% Nb₂O₅ from 22.5m (3.78% DyTb/TREO) (MDD004)
 - 7.3m @ 0.8% TREO, 0.33% Nb₂O₅ from 22.7m (3.70% DyTb/TREO) (MDD005)
 - 9m @ 1.11% TREO, 0.41% Nb₂O₅ from 41m (3.72% DyTb/TREO) incl. 3m @ 1.56% TREO, 0.49% Nb₂O₅ from 45m (4.1% Dy/Tb/TREO) drilled downdip (MDD008)
- Results returned an average of 29% HREO:TREO and 3.6% DyTb:TREO at a cutoff grade of >0.25%TREO (consistent with RC holes' final results)
- Results highlight the near-surface and thick intersection intercepted in RC holes MARC005 and MARC016

DY6 Metals Ltd (ASX: DY6) ("DY6", the "Company"), a strategic metals explorer targeting Heavy Rare Earths (HREE) and critical metals in southern Malawi, is pleased to announce the assay results from the 8-diamond drill (DD) holes (totalling 900m) at its flagship Machinga Project in southern Malawi.

The Company's CEO, Mr Lloyd Kaiser said:

"The assay results are showing outstanding intersections across multiple drill holes, especially MMD007 returning 15.1m @ 1.01%TREO with substantial Niobium grade, and a high proportion of valuable heavy rare earth elements from holes drilled for metallurgical material. The successful RC and DD drilling program has greatly improved the geological team's interpretation of the Machinga system including the structural and lithological controls. The final assay results and historic intersections will feed into our current geological model to guide our next exploration program design. The Company now moves towards progressing a technical evaluation of the mineralisation to target a REO concentrate and Niobium by-product".

Registered Office Level 8, 99 St Georges Terrace Perth WA 6000

P: +61 8 9486 4036 **E**: info@dy6metals.com

dy6metals.com

A strongly mineralised hydrothermal breccia system striking NW-SE and dipping shallowly ~35° to the NE has been confirmed by the recent drilling. Pleasingly, very high-grade zones have been intersected from the diamond drill holes, as well as the suggestion of the mineralised zones thickening at depth and open to the NE. Significant drill intercepts received from the final batch of assays are included in Table 2. Significant intercepts include:

- 15.1m @ 1.01% TREO, 0.36% Nb₂O₅ from 23.9m (3.71% DyTb/TREO) incl. 4m @ 1.75% TREO, 0.63% Nb₂O₅ from 33m (3.8% Dy/Tb/TREO) (MDD007);
- 9m @ 0.70% TREO, 0.3% Nb_2O_5 from 3m (3.84% DyTb/TREO) incl. 2m @ 1.2% TREO, 0.58% Nb_2O_5 from 6m (3.64% Dy/Tb/TREO) and 5.2m @ 1.61% TREO, 0.66% Nb_2O_5 from 41.4m (3.99% DyTb/TREO) incl. 1m @ 2.67% TREO, 1.01% Nb_2O_5 from 44m (3.9% Dy/Tb/TREO) (MDD006);
- 6.1m @ 1.09% TREO, 0.4% Nb₂O₅ from 22.5m (3.78% DyTb/TREO) (MDD004);
- 7.3m @ 0.8% TREO, 0.33% Nb₂O₅ from 22.7m (3.70% DyTb/TREO) (MDD005); and
- 9m @ 1.11% TREO, 0.41% Nb₂O₅ from 41m (3.72% DyTb/TREO) incl. 3m @ 1.56% TREO, 0.49% Nb₂O₅ from 45m (4.1% Dy/Tb/TREO) (MDD008).

(Results returned an average of 29% HREO:TREO and 3.6% DyTb:TREO at a cutoff grade of >0.25%TREO)

Diamond drill holes MDD006, MDD007 and MDD008 were drilled downdip to obtain sufficient sample material to initiate the metallurgical test work program in Q1, 2024. The assay results are positive and significant for the Company as they continue to demonstrate continuity of mineralisation down dip and along strike of Machinga with excellent width and grade of mineralisation for a heavy rare earth rich deposit. As part of the upcoming metallurgical test work program, using core from this campaign, the Company will assess the amenability of the mineralisation to be treated through a relatively simple beneficiation process.

Figure 1. Machinga Project location in Southern Malawi (U radiometric)

The diamond drill program consisted of 5 holes to 150m and 3 holes to 50m depths to determine the structural setting and geology of the Machinga deposit and to obtain material for initial metallurgical studies.

The first 5 holes were to understand the geological nature of the deposit, its structural configuration and obtain contextual data to the results of the RC drillholes, both recent and historical.

Figure 2. Drill collar locations at Machinga North prospect - 8 DD hole collars

The diamond holes confirmed the shallow northeasterly dips (Figure 3) inferred from the RC drilling with several of the zones showing downdip consistency (DY6 Metals ASX releases 10th Oct and 26th Oct, 2023) with numerous apparently more discontinuous mineralisation zones.

The mineralised zones have been geologically logged as hydrothermal breccias; no petrological work has been undertaken as yet, samples for petrological study and XRD analysis are being collected from the core and to assessed by ALS in Perth in Q1, 2024. XRD of selected RC samples containing high to low rare earth mineralisation and host rocks is under review and to be reported in Q1. The mineralogy and quantitative assessment of minerals contained in the core will provide valuable liberation characteristics of target minerals to guide the Company in formulating an initial metallurgical test program.

Figure 3. Drill Section DY6 Metals holes MDD004, 007 & 008, RC hole MR002 with historical intersections from Globe MARC005, 015, 016, 029 & 030.

Holes MDD001-005 were drilled at -55° to southwest attempting to intersect the mineralised zones at right angles; hence intersections within these holes approximate the true width of the mineralised zones at that location. Holes MDD006, MDD007 and MDD008 were drilled at -45° to the east and northeast, being down the estimated dip of the mineralisation. This was to maximise material available for the initial metallurgical stage.

The core is shown in the photographs of the half core in Figure 4 from hole MDD007.

These photographs show gneissic foliation approximately 45° to the core axis suggesting a near vertical dip in the sequence foliation, whereas the mineralisation, the pink and tan zones, are irregularly orientated suggesting hydrothermal alteration. The core being too fractured for downhole orientation.

Rare earth rich mineralisation within the hydrothermal breccia were intersected in drillhole MDD007 from 23.9m for 15.1m with high TREO grade zones of 1.79wt% TREO @ 29m to 30m, 1.31wt% TREO @ 33m to 34m, 1.89wt% TREO @ 34m to 35m and 2.12wt% TREO from 35m to 36m (Figure 5).

The TREO distribution of this exceptional 15.1m intersection of MDD007 has shown a high proportion of heavy rare earth oxides (HREO) at 27.7% HREO/TREO and 3.7% DyTb:TREO along with valuable magnetic rare earths NdPr oxide of 15.2%.

The high proportion of Nd+Pr+Dy+Tb oxides identified at Machinga is highly valuable to the EV permanent magnets and defence industries, with a basket price of US\$28 per kg TREO (using

a 2500ppm TREO cutoff). The Company believes this compares very favourable relative to peers that are focussed predominately on light rare earth projects¹.

The initial focus of DY6 during the maiden drilling program was to test the known strike of the confirmed historic drill results in the northern anomalous zone. The next stage of the exploration program is already underway with further rock chip sampling at Machinga focused on stepping out NW of the phase 1 drilling campaign and along the southern zone of Machinga into EL0705 following the anomalous contour to delineate high priority drill targets for the phase 2 drill program next year.

¹ Source: Lindian Resources Rare Earth distribution from 'Mineral Resource Estimate of 261 million LIN:ASX Announcement 3 August 2023'. Rare Earth Basket Price is calculated using NdPr, Dy and Tb oxide prices as at Oct 31st, 2023 from Baiinfo Market Intelligence.

MDD007 26.74 - 30.81m

MDD007 30.81 -35.22m

MDD007 35.22 - 40.40m

Figure 4. Half drill core of MMD007 showing high-grade rare earth mineralisation in the Machinga deposit.

Figure 5. Drill Section DY6 Metals holes MDD003 & MDD005.

The Company plans to prepare a bulk ore sample using the diamond core collected from the Machinga central drill program to produce a representative ore sample to commence beneficiation test work program in Q1, 2024 based on the 3 downdip holes MDD006, 007 and 008.

Upon completion and interpretation of XRD analysis on RC samples and minerology of selected pieces of diamond core, a beneficiation test work program will be planned with the Company's consulting metallurgist.

-ENDS-

This announcement has been authorised by the Board of DY6.

More information

Mr Lloyd Kaiser	Mr John Kay	Mr Luke Forrestal
CEO	Director & Company Secretary	Investor Relations
lloyd.kaiser@dy6metals.com	john.kay@dy6metals.com	+61 411 479 144

Abbreviations

- TREO = Total Rare Earth Oxides La2O3, CeO2, Pr6O11, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3, Lu2O3, Y2O3
- HREO = Heavy Rare Earth Oxides Tb4O7, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3, Lu2O3, Y2O3
- HREO% = HREO/TREO * 100
- **DyTb:TREO** = (Dy₂O₃ + Tb₄O₇)/TREO * 100

Competent Persons Statement

The Information in this announcement that relates to exploration results, mineral resources or ore reserves is based on information compiled by Mr Allan Younger, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Younger is a consultant of the Company. Mr Younger has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the `Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Younger consents to the inclusion of this information in the form and context in which it appears in this announcement. Mr Younger holds shares in the Company.

Hole ID	Depth	Easting	Northing	Elevation	Datum	Dip	Azimuth
MDD001	150	750066.73	8320879.90	752.51	UTM84-36S	-55	225
MDD002	150	750046.92	8320922.44	752.54	UTM84-36S	-55	225
MDD003	150	749978.92	8320962.46	752.86	UTM84-36S	-55	225
MDD004	150	750096.19	8320827.65	753.76	UTM84-36S	-55	225
MDD005	150	749998.35	8320992.27	748.81	UTM84-36S	-55	225
MDD006	50	750058.17	8320824.77	756.18	UTM84-36S	-45	45
MDD007	50	750071.39	8320801.66	758.00	UTM84-36S	-45	70
MDD008	50	750072.96	8320803.66	757.96	UTM84-36S	-45	45

Table 1. Drill Collar Locations

Table 2. Significant Intersections

Based on >2500ppm Weighted Average TREO cutoff, minimum3m width and maximum 2m internal dilution

All values weighted average grades in ppm unless stated

Hole ID	From	То	Length	TREO	TREO %	MREO	HREO/TREO	La₂O₃	CeO ₂	Pr₀O₁₁	Nd₂O₃	Tb₄O ₇	Dy₂O₃	Lu ₂ O ₃	Y ₂ O ₃	Nd₂O₃ +Pr₀O₁1	HREO	Nb ₂ O ₅	Ta₂O₅
MDD001	0	7	7	3324		626	26.06%	574	1207	120	393	15	98	7	601	513	866	1194	64
MDD001	12	15.2	3.2	3469		645	31.07%	545	1155	120	395	17	114	11	737	514	1078	1450	58
MDD001	27	30.4	3.4	5824		1042	34.21%	954	1794	188	615	30	209	23	1326	803	1992	2744	142
MDD002	30	34.6	4.6	5921		1035	34.53%	961	1834	185	607	32	210	23	1379	792	2044	2300	120
MDD002	94	97	3	4344		827	27.06%	786	1484	155	517	22	134	9	813	671	1176	1237	68
MDD003	8.7	12.5	3.8	8313		1465	32.99%	1312	2755	263	862	42	298	26	1854	1125	2742	4152	181
MDD003	98.7	101.8	3.1	3697		727	31.76%	549	1184	136	457	18	117	11	826	593	1174	1415	57
MDD004	22.5	28.6	6.1	10901	1.09%	2078	28.91%	1895	3643	389	1278	55	357	26	2157	1666	3151	4032	194
MDD004	46	49	3	2555		514	21.21%	483	967	103	334	10	67	4	366	437	542	741	34
MDD004	138	141.2	3.2	2470		457	34.33%	354	779	86	292	10	69	14	570	378	848	1978	89
MDD005	22.7	30	7.3	8006		1537	27.48%	1405	2754	288	953	39	258	17	1496	1241	2200	3330	138
MDD005	65.2	68	2.8	2820		537	30.86%	443	935	101	336	12	87	9	604	437	870	1353	50
MDD005	96	99	3	3685		685	27.16%	620	1341	137	430	15	103	14	669	567	1001	5777	222
MDD005	126.5	132.5	6	2639		515	27.25%	449	913	98	324	12	81	6	494	422	719	1136	50
MDD006	3	12	9	7046		1142	28.61%	912	2929	201	670	33	237	25	1274	872	2016	2973	163
MDD006	41.4	46.6	5.2	16061	1.61%	2953	30.49%	2721	5333	541	1772	80	560	48	3249	2313	4897	6583	337
MDD007	0	6.5	6.5	6368		877	33.85%	662	2669	152	481	30	214	24	1457	633	2156	3207	138
MDD007	18	21	3	5658		956	24.28%	843	2417	183	579	26	168	14	880	762	1374	2680	121
MDD007	23.9	39	15.1	10064	1.01%	1900	27.69%	1786	3439	363	1164	51	322	23	1879	1527	2787	3587	174
MDD008	2	5	3	4159		791	29.93%	717	1337	157	495	19	120	13	859	652	1245	1135	58
MDD008	9	13	4	2615		514	22.51%	428	1028	103	337	11	63	5	405	441	588	1113	39
MDD008	32	35	3	3136		615	26.62%	532	1104	120	387	15	93	6	577	507	835	1118	47
MDD008	41	50	9	11074	1.11%	2112	27.54%	1926	3835	404	1295	57	355	25	2053	1699	3050	4099	197

Table 3. Assay Results

Samples with >2500ppm TREO

Description per per <th< th=""><th></th><th>From</th><th>та</th><th>l an aith</th><th>Samula</th><th>Ce</th><th>Dy</th><th>Er</th><th>Eu</th><th>Gd</th><th>Но</th><th>La</th><th>Lu</th><th>Nb</th><th>Nd</th><th>Pr</th><th>Sm</th><th>Та</th><th>Tb</th><th>Tm</th><th>Y</th><th>Yb</th><th></th></th<>		F rom	та	l an aith	Samula	Ce	Dy	Er	Eu	Gd	Но	La	Lu	Nb	Nd	Pr	Sm	Та	Tb	Tm	Y	Yb	
NDOD01 6 7 1 NDOSYDBYRS.3284 188.8 197.4 188.2 188.2 188.4 197.4 197.2 197.1	Hole ID	From	То	Length	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	TREO ppm
11 13 13 13 13 13 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 <th16< th=""> 16 16 16<!--</th--><th>MDD001</th><th>5</th><th>6</th><th>1</th><th>MD05006</th><th>1632.5</th><th>159.0</th><th>100.3</th><th>8.1</th><th>119.9</th><th>32.4</th><th>850.7</th><th>10.4</th><th>1095.2</th><th>557.3</th><th>165.5</th><th>114.3</th><th>91.4</th><th>23.2</th><th>13.5</th><th>832.4</th><th>83.5</th><th>5674</th></th16<>	MDD001	5	6	1	MD05006	1632.5	159.0	100.3	8.1	119.9	32.4	850.7	10.4	1095.2	557.3	165.5	114.3	91.4	23.2	13.5	832.4	83.5	5674
International biol 198 458 68 1000000 198 208 1 177 122 2093 173 212 143 133 153 740 286 1020 10211 1021 10211 <t< td=""><td>MDD001</td><td>6</td><td>7</td><td>1</td><td>MD05007</td><td>3676.3</td><td>298.4</td><td>188.9</td><td>17.4</td><td>257.6</td><td>63.3</td><td>1935.1</td><td>18.4</td><td>3103.0</td><td>1343.4</td><td>393.7</td><td>274.4</td><td>197.5</td><td>46.3</td><td>27.0</td><td>1646.6</td><td>157.7</td><td>12471</td></t<>	MDD001	6	7	1	MD05007	3676.3	298.4	188.9	17.4	257.6	63.3	1935.1	18.4	3103.0	1343.4	393.7	274.4	197.5	46.3	27.0	1646.6	157.7	12471
ND:001 188 208 1 ND:0022/828 101 27 22 301 102 689 334 496 736 472 413 113 553 733 3388 ND:001 124 22 0.5 ND:0033/2745 373 1302 135 234 66. 1522 1417.9 773 722 142 1441.7 177 172 126 117.7 141 177 176 127 126 117.7 142 128 142 126 117.7 157 127 126 117.7 176 127 126 117.7 176 127 176 127 176 127 176 127 176 127 176 127 178 128 188 128 128 128 148 1183 118 108 127 1442 148 1183 118 128 128 128 128 128 128 128 128	MDD001	13	13.9	0.9	MD05014	1244.2	111.4	73.7	5.9	93.2	23.1	602.5	10.0	1390.0	454.5	135.0	97.5	64.0	16.7	11.7	643.3	71.5	4337
BODD01 21.4 22 6.8 MODB02/P0137 11.7.2 11.2.2 11.7.2 11.2.2 11.7.2 11.2.2 <td>MDD001</td> <td>13.9</td> <td>14.5</td> <td>0.6</td> <td>MD05015</td> <td>2782.9</td> <td>303.5</td> <td>216.0</td> <td>12.6</td> <td>220.9</td> <td>68.1</td> <td>1377.1</td> <td>32.2</td> <td>3059.1</td> <td>973.2</td> <td>283.4</td> <td>212.3</td> <td>144.7</td> <td>43.5</td> <td>34.3</td> <td>1719.0</td> <td>245.8</td> <td>10290</td>	MDD001	13.9	14.5	0.6	MD05015	2782.9	303.5	216.0	12.6	220.9	68.1	1377.1	32.2	3059.1	973.2	283.4	212.3	144.7	43.5	34.3	1719.0	245.8	10290
ND001 28.2 29.2 20.4 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 28.6 29.7 29.6 29.7 29.6 29.7 29.6 29.7 29.6 29.7 29.6 29.7 29.6 29.7 29.7 29.6 29.7 29.7 29.6 46.7 18.7 49.2 58.7 19.7 29.6 46.7 18.7 49.2 58.7 19.7 29.7 29.6 46.6 18.3 31.7 40.6 29.7 29.7 29.6 46.6 18.3 31.7 40.6 31.7 30.7 30.8 46.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 <t< td=""><td>MDD001</td><td>19.8</td><td>20.8</td><td>1</td><td>MD05025</td><td>882.8</td><td>101.3</td><td>72.7</td><td>5.2</td><td>73.0</td><td>22.2</td><td>490.3</td><td>10.2</td><td>698.9</td><td>334.4</td><td>98.6</td><td>73.6</td><td>41.2</td><td>14.3</td><td>11.3</td><td>553.3</td><td>74.3</td><td>3398</td></t<>	MDD001	19.8	20.8	1	MD05025	882.8	101.3	72.7	5.2	73.0	22.2	490.3	10.2	698.9	334.4	98.6	73.6	41.2	14.3	11.3	553.3	74.3	3398
International Participant	MDD001	21.4	22	0.6	MD05027	1037.0	117.8	74.2	6.8	94.5	24.5	547.8	7.7	782.2	405.5	115.8	89.3	44.1	17.7	10.4	609.9	63.7	3886
NDD001 54 55 1 MODGREGERGA (25.6) 102.2 12.2 44 45.83 12.4 26.83 12.4 26.83 11.4 27.1 19.1 20.81 10.00 66.7 66.2 0.5 MODGREGERGERG 10.7 10.1 56.2 47.1 966.7 23.8 903.1 14.4 17.1 12.7 14.4 44.33 MODDOI 169.7 0.7 MODS1394801 17.8 17.2 25.8 149.2 14.2 14.2 14.3 35.1 14.3 15.7 16.8 14.9 34.2 16.8 17.7 14.4 45.3 35.3 12.2 17.2 22.8 14.2 14.1 17.7 14.2 14.3 33.4 MDD001 10.3 14.0 14.0 14.3 14.1 14.3 14.3 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4	MDD001	28.5	29.2	0.7	MD05035	2726.9	379.1	310.2	13.5	239.4	86.8	1529.2	51.0	4417.9	976.3	287.7	208.6	265.9	51.7	52.1	2329.8	359.5	11598
HODDOI 65.7 65.7 65.7 65.7 63.7 63.0 112 112 112 112 112 112 112 112 112 112 112 112 112 112 113 114 113 114 113 114 1143 1143 1145 114 1143 114 1143 114 1143 1143 1145 1144 1144 1144 1144 113 113 1147 1144 1144 1144 1144 11	MDD001	29.2	29.8	0.6	MD05036	4373.0	537.3	395.0	21.2	368.6	119.5	2460.8	54.2	5259.9	1544.6	461.4	340.1	334.1	76.5	62.1	2921.1	415.2	17071
MD001 If is is is is is is is it is	MDD001	54	55	1	MD05068	2698.4	235.6	132.2	12.5	212.4	45.9	1358.3	12.4	2630.6	1076.2	304.7	213.6	119.7	37.7	19.1	1209.8	109.0	9253
IPDOD01 109 107 NOB313 987 38.8 35.2 4.9 6.67 16.0 498.2 5.8 1193 34.2 100.1 127 127 7.7 482.1 433.18 MDD001 110.2 113 10.5 MD01444888 10.5 M12.3 10.5 MD0144888 10.5 M12.3 10.5 M12.3 10.5 M12.3 10.5 M0014171 89.2 99.4 31.4 100517.471.7 89.2 99.4 32.5 10.0 10.0 10.7 11.8 22.6 22.6 10.0 120.3 11.4 87.4 12.7 7.7 89.4 14.4 10.4 11.8 22.6 22.6 10.0 12.0 13.4 12.4 14.4 10.1 11.8 12.7 15.3 14.4 10.4 14.4 10.4 11.8 10.7 15.3 14.2 14.8 10.0 10.3 10.4 12.4 14.4 10.4 14.4 11.4 14.1 14.3	MDD001	65.7	66.2	0.5	MD05080	1116.6	117.7	109.1	5.0	75.6	29.7	593.0	21.2	2448.2	385.3	114.7	71.0	127.8	15.7	18.7	842.7	144.4	4423
MDD001 109.7 110.2 0.5 MDD05143 93.3 103.7 95.3 4.2 63.6 25.9 467.5 20.0 247.2 27.2 29.8 4.64.8 118.3 13.8 16.7 75.66 12.4.1 37.68 MDD000 112.8 110.3 0.5 MDD5747917.7 89.29 94.3 23 0.7 26.64 76.64 45.4 15.0 17.6 60.00 174.9 33.44 MDD002 30 1 1 MD05222176.8 25.85 181.3 13.0 10.1 17.6 60.00 13.4 37.4 78.9 154.5 12.98 270.9 95.1 281.6 0.43 13.4 177.4 168.0 172.1 153.8 1152.1 10.6 44.4 14.4 11.4 11.4 13.97 14.4 64.4 64.4 164.5 11.4 14.93.7 13.84 173.6 43.4 14.2 14.5 11.1 14.93.9 13.9 13.0 13.0 30.4 14.2 14.5 11.1 11.9 13.9 13.0 13.0 13	MDD001	87.3	87.7	0.4	MD05109	1809.0	179.9	140.7	7.8	125.2	41.7	956.7	23.9	3903.1	640.4	187.2	125.8	203.8	25.8	23.5	1183.5	159.8	6801
ND0001 112.8 113.3 0.5 MD0514/9187.7 82.2 94.3 30.6 22.3 21.8 2248.8 23.0 69.9 41.5 102.9 8.8 10.5 472.3 75.3 2604 MD0002 31 1 MD052211718.2 225.8 11.0 10.0 10.9 60.0 13.4 34.4 33.4 10.0 15.8 11.1 10.0052211718.2 25.8 11.6 10.0 15.8 11.4 10.0052211718.2 25.8 11.6 11.0 13.4 14.4 10.0 12.6 25.6 11.0 11.4 34.4 34.4 34.7 13.8 11.4 10.0 35.6 11.4 10.0 11.6 10.0 12.5 11.4 10.0 10.0 10.0 10.0 12.5 11.4 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	MDD001	109	109.7	0.7	MD05135	949.7	83.8	53.2	4.9	66.7	18.0	498.2	5.8	1189.9	348.2	100.6	70.1	52.7	12.7	7.7	482.1	48.3	3318
MD0001 138 9 140.6 0.7 MD0522/176, 92.86 181, 110 180.1 57.8 17.83 12.6 22.66, 8 22.8 42.3 20.7 26.64, 27.64 84.4 53.4 130.5 10.7 16.9 69.00 13.49 33.44 MD0002 3 1 MD05222794.94 123.4 13.4 131.7 142.5 172.7 28.724 128.5 120.95 123.1 14.4 61.4 61.0 11.1 143.8 31.8 37.4 158.8 20.6 64.4 11.1 114.9 39.7 13.4 14.8 81.8 37.4 158.8 24.0 64.4 44.2 14.4 11.8 114.9 42.75.6 19.5 15.0 14.4 61.6 11.1 14.9 42.75.6 19.5 15.0 14.4 61.6 11.1 14.9 10.8 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6	MDD001	109.7	110.2	0.5	MD05136	933.8	103.7	95.3	4.2	63.6	25.9	467.5	20.0	2477.2	327.9	98.4	64.8	118.3	13.8	16.7	756.6	124.1	3768
MDD002 30 31 1 MD05221 21768 235.8 1813 110 180.1 57.8 1183.1 25.6 266.6 760.5 223.6 160.0 123.0 35.6 31.1 1455.8 179.2 8328 MD0002 34 2 1 M05222142242 288 208.0 17.4 161.4 180.1 152.8 115.2 203.9 161.4 153.6 152.2 106.6 644.0 110.1 1144.4 614.8 110.1 1144.9 138.1 113.2 113.8 115.2 176.6 846.4 44.4 642.1 144.5 114.9 398.1 153.8 152.7 106.8 446.1 53.0 115.3 163.0 153.0 150.7 133.1 120.9 30.0 247.1 133.8 143.9 133.8 120.9 30.0 247.1 133.9 30.8 100.0 143.9 143.9 143.9 143.9 143.9 143.9 143.8 143.9 133.8 143.9 143.8	MDD001	112.8	113.3	0.5	MD05140	688.0	64.6	61.3	3.0	39.0	16.2	362.3	11.8	2248.8	230.8	69.9	41.5	102.9	8.8	10.5	472.3	75.3	2604
MDD002 31 32 1 MD05222799.4 34.1 239.3 13.4 237.4 78.9 1545.1 29.8 27.00 951.2 281.8 20.3 181.4 50.4 38.4 177.2 21.4 16666 MDD002 72.6 38.4 177.2 21.4 153.8 21.4 51.8 31.6 21.4 53.8 27.6 155.7 156.8 24.4 25.7 157.7 164.3 10.3 88.8 419.2 54.1 35.7 25.7 141.9 36.8 319.9 54.6 14.4 61.9 54.84 160.6 17.1 144.9 12.7 141.9 36.8 319.9 36.0 12.7 141.9 36.8 319.9 36.0 13.1 139.9 36.3 37.7 10.7 30.7 90.7 36.3 37.7 10.7 30.7 10.7 36.3 37.7 10.7 30.7 10.7 16.8 16.7 16.6 16.9 16.5 16.9 16.5 1	MDD001	139.9	140.6	0.7	MD05174	791.7	89.2	99.4	3.2	50.8	22.8	422.3	20.7	2466.4	276.4	84.4	53.4	130.5	10.7	16.9	690.0	134.9	3344
MD0002 32 34 2 MD022214624 228 208.6 7.2 144.4 61.4 818.0 37.6 2065.9 517.2 15.3 81.2 13.4 31.8 37.4 158.8 22 5.6 64.0 MD0002 94 95 1 MD02271262.8 224.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4 51.6 11.4 14.4 51.6 11.4 14.4 51.6 11.4 14.4 51.6 11.4 41.4 51.6 11.6 11.4 41.4 51.6 11.6 11.4 14.6 14.2	MDD002	30	31	1	MD05221	2176.8	235.8	181.3	11.0	180.1	57.8	1183.1	25.6	2366.6	760.5	223.6	160.0	123.0	35.6	31.1	1455.8	179.2	8328
MDD002 34 72.6 36.6 MD05228 111 1149.4 397.8 115.3 84.2 75.6 19.5 15.2 700.6 84.6 4218 MDD002 72.6 94 21.4 M0052917108.4 63.3 46.4 44.2 14.4 621.1 157.7 73.6 10.3 10.8 819.2 54.1 137.7 141.9 39.8 37.1 141.9 39.8 37.1 141.9 39.8 33.7 163.1 169.1 151.6 149.9 38.6 17.4 15.1 110.1 367.3 100.7 32.7 140.1 22.7 749.9 17.9 30.6 63.7 74.6 15.7 151.6 19.8 142.7 15.16 19.8 43.7 140.1 24.7 140.1 361.3 140.8 30.8 63.7 74.6 15.7 151.6 19.8 43.7 141.1 141.8 141.1 141.8 141.1 141.8 140.7 31.1 10.3 30.8 <td< th=""><th>MDD002</th><th>31</th><th>32</th><th>1</th><th>MD05222</th><th>2799.4</th><th>334.1</th><th>239.3</th><th>13.4</th><th>237.4</th><th>78.9</th><th>1545.1</th><th>29.8</th><th>2770.0</th><th>951.2</th><th>281.8</th><th>203.9</th><th>181.4</th><th>50.4</th><th>38.4</th><th>1772.4</th><th>214.7</th><th>10606</th></td<>	MDD002	31	32	1	MD05222	2799.4	334.1	239.3	13.4	237.4	78.9	1545.1	29.8	2770.0	951.2	281.8	203.9	181.4	50.4	38.4	1772.4	214.7	10606
MDD002 72.6 94 21.4 MDD027 110.8 63.5 46.4 4.4 64.2 14.4 52.1 86 167.60 437.1 125.7 77.3 64.3 10.3 88 419.2 54.1 3571 MDD002 95 110 15 MD0523722528 824.4 163.7 12.3 193.3 120.9 39.0 24.7 141.9 369.9 139.9 93.6 63.7 74.6 15.7 163.7 163.7 153.1 139.9 93.6 63.7 74.6 15.7 163.9 139.4 854.9 151.6 193.8 63.7 74.6 157.1 134.7 141.1 5161.1 134.9 144.1 5161.1 134.9 144.1 143.8 249.2 144.1 145.1 141.1 143.8 249.1 143.8 149.8 143.8 149.8 143.8 249.3 143.8 149.8 143.8 249.1 143.8 149.8 143.8 249.1 144.8 249.17.8 <td>MDD002</td> <td>32</td> <td>34</td> <td>2</td> <td>MD05223</td> <td>1462.4</td> <td>229.8</td> <td>208.6</td> <td>7.2</td> <td>144.4</td> <td>61.4</td> <td>818.0</td> <td>37.6</td> <td>2066.9</td> <td>517.2</td> <td>153.8</td> <td>115.2</td> <td>134.8</td> <td>31.8</td> <td>37.4</td> <td>1588.8</td> <td>240.5</td> <td>6840</td>	MDD002	32	34	2	MD05223	1462.4	229.8	208.6	7.2	144.4	61.4	818.0	37.6	2066.9	517.2	153.8	115.2	134.8	31.8	37.4	1588.8	240.5	6840
MDD002 94 95 1 MDD029 93 1 MDD029 151 MOD528 93.8 17.7 46.8 6.9 95.9 150.0 140.0 18.1 169.4 48.0 17.3 12.9 39.0 24.7 143.7 130.7 85.90 MDD002 110 10.9 0.9 MDD5312 862.0 107.6 38.8 7 80.1 28.1 169.1 116.1 19.9 36.6 63.7 74.6 15.7 71.6 15.1 16.9 18.4 84.2 114.1 1.3673 MDD002 110.7 118 1 MDD5332 82.9 17.9 30.4 94.9 28.7 16.5 15.6 10.5 16.5 15.6 10.4 10.7 39.0 84.9 22.8 74.4 16.8 18.4 10.3 10.3 44.9 36.7 3.5 55.9 10.3 43.8 57.7 10.7 48.4 14.9 17.4 28.6 10.3 3.5 55.9 10.3 3.5 55.9 10.3 3.5 53.9 53.1	MDD002	34	72.6	38.6	MD05226	1104.8	133.7	92.5	5.6	96.3	30.6	604.6	11.1	1149.4	397.8	115.3	84.2	75.6	19.5	15.2	700.6	84.6	4218
MDD002 95 110 15 MD0529723258 246.4 163.7 12.3 199.3 66.0 1304.0 18.1 1694.4 840.1 24.3 17.3 12.0 30.0 24.7 134.7 130.7 8590 WDD002 110 110 0.0 MD05312 662.0 107.6 93.8 3.7 80.1 22.7 74.9 17.9 304.7 46.5 15.5 15.6 10.5 50.4 50.5 50.4 50.5 50.4 50.5 50.4 50.5 50.4 50.5 50.4 50.5 50.7 10.5 10.0 87.7 38.4 162.2 73.0 30.7 10.7 33.3 10.0 70.7 34.4 162.2 73.3 57.7 57.7 10.4 10.4 10.4 10.5 10.1 10.3 36.7 25.3 278.0 MDD003 1.0 1.1 MD053301995.7 73.0 17.7 13.3 17.0 83.3 17.7 10.7	MDD002	72.6	94	21.4	MD05271	1108.4	63.5	46.4	4.4	64.2	14.4	521.1	8.6	1676.0	437.1	125.7	77.3	64.3	10.3	8.8	419.2	54.1	3571
WDD002 110 110.9 0.9 MD0312 862.0 107.6 93.8 3.7 80.1 28.1 463.3 16.9 316.1 319.9 93.6 63.7 74.6 15.7 17.6 76.1 110.1 3673 MDD002 1109 117 6.1 MD033313/357 13/40 108.3 5.7 100.7 32.5 74.9 17.9 947.4 455.9 16.5 15.5 15.6 950.4 356.7 162.2 66.7 44.6 12.4 7.3 37.1 13.3 33.86.9 2.8 716.2 15.5 160.9 87.7 38.4 142.2 20.8 39.7 15.5 169.9 10.1 10.3 44.9 78.9 14.9 17.9 22.6 13.0 17.1 10.7 83.0 13.5 519.0 32.2 28.9 13.0 11.1 10.3 48.9 82.2 17.6 83.0 13.0 14.0 39.2 13.0 14.0 32.2 14.0	MDD002	94	95	1	MD05296	932.8	74.7	46.8	6.9	69.9	15.9	518.0	4.4	619.5	348.8	100.6	67.5	36.0	12.5	7.1	411.9	36.9	3199
MDD002 110.9 117 6.1 MD05201 190.1 182.1 183.1 5.7 100.7 32.5 748.9 17.9 304.7 485.9 145.7 91.5 151.6 199 18.4 854.2 114.1 5161 MDD000 117 118 1 MD05201 91.0 7.2 47.6 4.6 65.5 150.5 160.9 87.7 84.4 16.2 20.3 837.9 153.5 5597 MDD003 0 1 2 1 MD05339 516.7 73.0 37.1 10.7 83.9 13.5 519.0 3.2 29.9 439.1 115.6 86.9 19.4 13.8 49 367.8 25.3 2768 MDD003 1.0 0.7 MD053516732 28.0 190.1 10.4 160.6 599 10.1 15.0 877.3 17.1 140.3 35.2 28.1 146.6 18.9 14.2 14.8 48.4 48.4 92.2	MDD002	95	110	15	MD05297	2325.8	246.4	163.7	12.3	199.3	56.0	1304.0	18.1	1694.4	840.1	243.9	173.3	120.9	39.0	24.7	1343.7	130.7	8590
MDD002 117 118 1 MD0332 990.1 78.2 47.6 4.6 65.9 16.5 52.8 5.0 95.4 356.7 105.2 68.7 44.6 12.4 7.3 411.0 41.8 3298 MDD002 124.5 0 -124.5 M005331 1626.5 121.6 114.9 49.7 77.9 30.8 46.9 22.8 7186.2 51.5 160.9 87.7 38.4 162.2 30.3 83.0 10.1 10.0 33.9 10.5 31.35 510.9 12.2 10005339 13.5 10.3 31.35 510.9 11.1 10.005351 17.2 22.6 10.51.8 21.5 2667.3 67.1 11.40.3 35.2 150.4 166.1 98.7 MDD003 10 11 1 MD05352 17.37.2 12.2 17.7 80.5 17.8 17.2.8 16.4 188.9 19.2 167.4 188.8 28.4 74.4 14.4 28.2 <td>MDD002</td> <td>110</td> <td>110.9</td> <td>0.9</td> <td>MD05312</td> <td>862.0</td> <td>107.6</td> <td>93.8</td> <td>3.7</td> <td>80.1</td> <td>28.1</td> <td>463.3</td> <td>16.9</td> <td>1316.1</td> <td>319.9</td> <td>93.6</td> <td>63.7</td> <td>74.6</td> <td>15.7</td> <td>17.6</td> <td>761.9</td> <td>110.1</td> <td>3673</td>	MDD002	110	110.9	0.9	MD05312	862.0	107.6	93.8	3.7	80.1	28.1	463.3	16.9	1316.1	319.9	93.6	63.7	74.6	15.7	17.6	761.9	110.1	3673
MDD002 124.5 0 -124.5 MD05331 1626.5 121.6 114.9 4.9 77.9 30.3 846.9 22.8 7186.2 515.3 160.9 87.7 384.4 162.2 20.3 837.9 153.5 5597 MDD003 0 1 1 MD05338 936.2 119 67.0 3.6 38.8 198 258.9 8.2 1047.1 172.4 52.6 33.9 59.3 10.1 10.3 449.8 68.8 2682 MDD003 1 2 1 MO05335 166.7 10.4 160.6 59.9 1051.8 21.5 268.7 67.4 198.5 139.1 140.3 3.52 28.1 1466.2 178.3 782.0 MDD003 10 11 1 MD05352 167.3 27.9 17.1 1678.9 57.2 167.4 118.8 94.5 28.9 25.5 125.0 166.7 66.1 MDD003 11.7 11.2 5.0 MD05352 27.7 15.7 116 114.2 27.9 454.9 </td <td>MDD002</td> <td>110.9</td> <td>117</td> <td>6.1</td> <td>MD05313</td> <td>1397.5</td> <td>134.0</td> <td>108.3</td> <td>5.7</td> <td>100.7</td> <td>32.5</td> <td>748.9</td> <td>17.9</td> <td>3047.9</td> <td>485.9</td> <td>145.7</td> <td>91.5</td> <td>151.6</td> <td>19.9</td> <td>18.4</td> <td>854.2</td> <td>114.1</td> <td>5161</td>	MDD002	110.9	117	6.1	MD05313	1397.5	134.0	108.3	5.7	100.7	32.5	748.9	17.9	3047.9	485.9	145.7	91.5	151.6	19.9	18.4	854.2	114.1	5161
MDD003 0 1 MD05338 936.2 81.9 67.0 3.6 38.8 19.8 258.9 8.2 1047.1 172.4 52.6 33.9 59.3 10.1 10.3 449.8 68.8 2682 MDD003 1 2 1 MD05303 516.7 73.0 37.1 10.7 83.9 13.5 519.0 3.2 329.9 439.1 115.6 68.9 19.4 13.8 4.9 367.8 25.3 2768 MDD003 10 0.7 MD053512681.2 284.4 187.8 12.2 197.8 60.4 188.9 19.2 3269.1 38.5 275.7 197.1 134.5 43.2 28.5 125.0 166.1 498.9 12.2 17.7 197.9 453.4 946.2 278.1 178.1 188.9 42.7 125.0 166.1 48.1 48.4 95.2 141.1 39.2 10.1 13.3 44.7 50.8 26.6 148.3 48.4	MDD002	117	118	1	MD05320	990.1	78.2	47.6	4.6	65.9	16.5	525.8	5.0	950.4	356.7	105.2	68.7	44.6	12.4	7.3	411.0	41.8	3298
MDD003 1 2 1 MD05339 51.6.7 73.0 37.1 10.7 83.9 13.5 51.0 3.2 32.9 43.1 115.6 86.9 19.4 13.8 4.9 367.8 25.3 2768 MDD003 8.7 9.3 0.6 MD05350 1995.7 258.8 196.1 10.4 160.6 59.9 1051.8 21.5 2867.3 674.1 196.9 131.1 14.0.3 35.2 28.1 1466.2 178.3 7820 MDD003 10 0.7 MD05352 1673.2 209.0 157.0 8.1 120.6 64.4 898.7 21.7 167.8 572.8 167.4 188.8 94.5 125.0 160.7 160.1 61.4 10.0 11.1 10.0 140.7 11.4 78.0 141.2 21.7 168.5 174.4 94.6 124.4 94.6 124.4 148.4 94.6 11.1 13.8 147.5 3.8 2.0 160.7 162.2 126.0 170.9 11.1 13.8 145.4 144.4 148.4	MDD002	124.5	0	-124.5	MD05331	1626.5	121.6	114.9	4.9	77.9	30.3	846.9	22.8	7186.2	515.3	160.9	87.7	384.4	16.2	20.3	837.9	153.5	5597
MDD003 1 2 1 MD05339 51.6.7 73.0 37.1 10.7 83.9 13.5 51.90 3.2 32.9 43.91 11.5.6 86.9 19.4 13.8 4.9 36.7.8 25.3 2768 MDD003 9.3 10 0.7 MD05352 285.1 186.1 10.4 160.6 59.9 105.8 21.5 2867.3 67.1 19.9.1 14.0.3 35.2 28.1 146.2 178.3 7820 MDD003 9.3 10 0.7 MD05352 2867.1 18.1 12.2 178.6 64.4 983.7 17 18.8 94.5 25.5 125.0 166.1 160.7 661.4 MD0003 11 11.1 0.7 MD05352 285.7 137.7 27.2 12.6 21.1 20.5 14.1 27.4 14.8 94.2 18.4 94.2 18.4 94.2 18.4 94.2 18.4 94.2 18.4 94.2 18.4 94.2 18.4 94.2 18.4 94.2 18.4 94.2 18.4	MDD003	0	1	1	MD05338	936.2	81.9	67.0	3.6	38.8	19.8	258.9	8.2	1047.1	172.4	52.6	33.9	59.3	10.1	10.3	449.8	68.8	2682
MDD003 9.3 10 0.7 MD053512861.2 284.4 187.8 12.2 197.8 60.4 1388.9 19.2 3269.1 938.5 275.7 197.1 134.5 41.3 27.4 152.5 166.1 9879 MDD003 10 11 1 MD053521673.2 20.90 157.0 8.1 129.6 46.4 898.7 27.1 167.8 188.8 94.5 28.9 25.5 125.0.4 166.7 6614 MDD003 11 11.7 0.7 MD05352885.7 347.9 27.2 12.6 211.7 80.5 141.2 37.9 453.1.4 946.2 278.1 188.8 246.7 48.1 44.0 203.2 29.0 160.2 126.0 7096 MDD003 34 35 1 MD05382405.9 219.7 155.7 116.1 126.0 176.4 248.3 96.2 22.8 25.1 146.4 34.7 8891 MDD003 54.4 54.5 0.1 MD053924234.9 104.1 154.3 32.1 167.4 140.3 81	MDD003	1	2	1	MD05339	516.7	73.0	37.1	10.7	83.9	13.5	519.0	3.2	329.9	439.1	115.6	86.9	19.4	13.8	4.9	367.8	25.3	2768
MDD003 10 11 1 MD053521673 2090 157.0 8.1 129.6 46.4 898.7 21.7 167.8 167.4 118.8 94.5 28.9 25.5 125.0 166.7 6614 MDD003 11 11.7 0.7 MD053532885.7 347.9 273.2 12.6 211.7 80.5 141.2 37.9 453.4 946.2 278.1 188.8 246.7 48.1 44.0 2032.5 293.0 10986 MDD003 34 35 1 MD053542036.2 22.11 14.4.7 8.8 143.4 48.4 952.4 14.4 286.6 640.1 191.1 133.8 147.5 30.8 20.6 1160.2 126.0 7096 MDD003 54.4 54.5 0.1 MD0535292392.9 191.7 157.7 16.8 164.3 32.7 164.7 168.9 23.8 757.5 87.4 266.4 169.3 34.4 28.2 28.8 14.4 48.4 48.2 24.8 264.1 163.3 34.8 28.2 17.8 88.0	MDD003	8.7	9.3	0.6	MD05350	1995.7	258.8	196.1	10.4	160.6	59.9	1051.8	21.5	2687.3	674.1	196.9	139.1	140.3	35.2	28.1	1466.2	178.3	7820
MDD003 11 11.7 0.7 MD053532885.7 347.9 27.3.2 12.6 211.7 80.5 141.2 37.9 4531.4 946.2 278.1 188.8 246.7 48.1 44.0 2032.5 293.0 10986 MDD003 11.7 12.5 0.8 MD053542036.2 223.1 144.7 8.8 143.4 48.4 952.4 14.4 2846.9 64.0 191.1 133.8 147.5 30.8 20.6 1160.2 126.0 7096 MDD003 34 35 1 MD053771543.9 101.2 60.1 8.1 101.4 20.9 692.1 8.8 1158.1 656.5 186.0 124.4 184.3 962.2 22.8 144.4 187.7 8891 MDD003 66.8 67 0.2 MD053941243.2 98.6 73.2 5.6 7.6 1.9 80.4 13.5 17.3 134.1 30.4 132.1 134.1 30.4 141.4 14.3 87.7 141.4 14.3 14.1 14.1 14.3 14.4 14.3 14.5	MDD003	9.3	10	0.7	MD05351	2861.2	284.4	187.8	12.2	197.8	60.4	1388.9	19.2	3269.1	938.5	275.7	197.1	134.5	41.3	27.4	1525.4	165.1	9879
MDD003 11.7 12.5 0.8 MD05354 2036.2 223.1 144.7 8.8 143.4 48.4 952.4 14.4 2846.9 640.1 191.1 133.8 147.5 30.8 20.6 160.2 126.0 7096 MDD003 34 35 1 MD053771543.9 101.2 60.1 8.1 101.4 20.9 692.1 8.8 1158.1 656.5 186.0 124.4 32.6 16.6 9.7 582.2 68.6 5036 MDD003 54.4 54.5 0.1 MD053392324.9 189.1 139.2 10.4 154.3 32.2 169.9 23.8 757.5 874.9 266.4 169.3 348.4 28.2 22.8 144.4 9.3.6 4455 MDD003 67 67.6 0.6 MD05409 613.3 88.9 47.4 5.6 77.6 21.9 589.7 13.3 2862.7 467.4 40.3 81.8 13.6 13.5 12.3 754.0 9.3.6 4455 MDD003 76 76.6 0.6 MD05	MDD003	10	11	1	MD05352	1673.2	209.0	157.0	8.1	129.6	46.4	898.7	21.7	1678.9	572.8	167.4	118.8	94.5	28.9	25.5	1250.4	166.7	6614
MDD003 34 35 1 MD053771543.9 101.2 60.1 8.1 101.4 20.9 692.1 8.8 1158.1 656.5 186.0 124.4 32.6 16.6 9.7 582.2 68.6 5036 MDD003 54.4 54.5 0.1 MD053852405.9 219.7 155.7 11.6 182.6 48.6 1196.4 24.8 2634.1 950.4 274.4 184.3 96.2 32.8 25.1 1464.3 187.7 8891 MDD003 66.8 67 0.2 MD053941243.2 98.6 73.2 5.6 77.6 21.9 589.7 13.3 2862.7 467.4 140.3 81.8 136.6 13.5 12.3 754.0 93.6 4455 MDD003 76 76.6 0.6 MD05405 812.6 62.5 50.7 3.9 45.8 14.7 406.8 9.1 173.9 130.2.3 91.9 51.9 86.8 8.8 8.1 437.0 63.7 2860 MDD003 76.6 77.2 0.6 MD05405 812.6 62.5	MDD003	11	11.7	0.7	MD05353	2885.7	347.9	273.2	12.6	211.7	80.5	1411.2	37.9	4531.4	946.2	278.1	188.8	246.7	48.1	44.0	2032.5	293.0	10986
MDD003 54.4 54.5 0.1 MD05388 2405.9 219.7 155.7 11.6 182.6 48.6 1196.4 24.8 263.1 950.4 274.4 184.3 96.2 32.8 25.1 1464.3 187.7 8891 MDD003 66.8 67 0.2 MD05393 2354.9 189.1 139.2 10.4 154.3 43.2 1069.9 23.8 757.5 874.9 266.4 169.3 346.4 28.2 22.8 1444.9 173.4 8420 MDD003 67 67.6 0.6 MD05394 1243.2 98.6 73.2 5.6 77.6 1.3 2862.7 467.4 140.3 81.8 13.6.6 13.5 12.3 754.0 93.6 4455 MDD003 76 76.6 0.6 MD05406 1044.6 97.2 63.0 5.3 73.1 20.6 557.3 7.8 128.9 384.2 114.6 171.9 55.5 14.3 98.6 52.7 64.5 36.7 MDD003 93.9 30.6 0.6 MD05407	MDD003	11.7	12.5	0.8	MD05354	2036.2	223.1	144.7	8.8	143.4	48.4	952.4	14.4	2846.9	640.1	191.1	133.8	147.5	30.8	20.6	1160.2	126.0	7096
MDD003 66.8 67 0.2 MD05333 235.4 189.1 139.2 10.4 154.3 43.2 1069.9 23.8 757.5 874.9 266.4 169.3 348.4 28.2 22.8 1444.9 173.4 8420 MDD003 67 67.6 0.6 MD053941243.2 98.6 73.2 5.6 77.6 21.9 589.7 13.3 2862.7 467.4 140.3 81.8 136.6 13.5 12.3 754.0 93.6 4455 MDD003 75 76 1 MD05404 961.3 58.9 47.4 5.6 45.0 14.1 541.3 8.7 1314.1 320.4 102.2 52.7 65.4 8.8 8.0 400.4 60.5 3177 MDD003 76.6 77.2 0.6 MD054061044.6 97.2 63.0 5.3 73.1 20.6 57.7.3 7.8 1289.4 384.2 14.6 71.9 65.5 14.3 9.8 52.7 64.5 367.5 36.6 27.7 64.5 367.5 36.6 27.7	MDD003	34	35	1	MD05377	1543.9	101.2	60.1	8.1	101.4	20.9	692.1	8.8	1158.1	656.5	186.0	124.4	32.6	16.6	9.7	582.2	68.6	5036
MDD003 67 67.6 0.6 MD053941243.2 98.6 73.2 5.6 77.6 21.9 589.7 13.3 2862.7 467.4 140.3 81.8 13.6 13.5 12.3 754.0 93.6 4455 MDD003 75 76 1 MD05404 961.3 58.9 47.4 5.6 45.0 14.1 541.3 8.7 1314.1 320.4 102.2 52.7 65.4 8.8 8.0 400.4 60.5 3177 MDD003 76.6 77.2 0.6 MD5405 812.6 62.5 50.7 3.9 45.8 14.7 406.8 9.1 1739.1 302.3 91.9 51.9 86.8 8.8 8.1 437.0 63.7 2860 MDD003 76.6 77.2 0.6 MD54061044.6 97.2 63.0 5.3 73.1 20.6 57.3 7.8 1289.4 384.2 114.6 71.9 65.5 14.3 9.8 522.7 64.5 3678 MDD003 99.3 100.3 1 MD5429 89.2 <td>MDD003</td> <td>54.4</td> <td>54.5</td> <td>0.1</td> <td>MD05385</td> <td>2405.9</td> <td>219.7</td> <td>155.7</td> <td>11.6</td> <td>182.6</td> <td>48.6</td> <td>1196.4</td> <td>24.8</td> <td>2634.1</td> <td>950.4</td> <td>274.4</td> <td>184.3</td> <td>96.2</td> <td>32.8</td> <td>25.1</td> <td>1464.3</td> <td>187.7</td> <td>8891</td>	MDD003	54.4	54.5	0.1	MD05385	2405.9	219.7	155.7	11.6	182.6	48.6	1196.4	24.8	2634.1	950.4	274.4	184.3	96.2	32.8	25.1	1464.3	187.7	8891
MDD003 75 76 1 MD05404 961.3 58.9 47.4 5.6 45.0 14.1 541.3 8.7 1314.1 320.4 102.2 52.7 65.4 8.8 8.0 400.4 60.5 3177 MDD003 76 76.6 0.6 MD05405 812.6 62.5 50.7 3.9 45.8 14.7 406.8 9.1 1739.1 302.3 91.9 51.9 86.8 8.8 8.1 437.0 63.7 2860 MDD003 76.6 77.2 0.6 MD05406 104.4 97.2 63.0 5.3 73.1 20.6 57.3 7.8 1289.4 38.2 11.6 71.9 65.5 14.3 9.8 52.7 64.5 367.8 MDD003 93 93.6 0.6 MD05427 82.9 77.8 53.2 4.3 62.8 17.2 400.7 69.8 82.6 39.7 97.9 68.6 39.0 11.7 7.9 489.9 55.4 3046 MDD003 103.8 101.8 1 MD0542	MDD003	66.8	67	0.2	MD05393	2354.9	189.1	139.2	10.4	154.3	43.2	1069.9	23.8	7572.5	874.9	266.4	169.3	348.4	28.2	22.8	1444.9	173.4	8420
MDD003 76 76.6 0.6 MD05405 812.6 62.5 50.7 3.9 45.8 14.7 406.8 9.1 1739.1 302.3 91.9 51.9 86.8 8.8 8.1 437.0 63.7 2860 MDD003 76.6 77.2 0.6 MD054061044.6 97.2 63.0 5.3 73.1 20.6 557.3 7.8 1289.4 384.2 114.6 71.9 65.5 14.3 9.8 522.7 64.5 3678 MDD003 93 93.6 0.6 MD05416 588.9 80.4 53.9 3.4 56.8 17.4 274.3 7.2 498.0 248.8 70.6 53.8 28.1 11.4 81 545.3 58.6 2516 MDD003 100.8 101.8 1 MD05429 692.1 177.8 82.6 34.0 20.3 567.3 25.6 772.2 318.5 109.5 38.9 459.6 7.5 17.2 676.2 <td< td=""><td>MDD003</td><td>67</td><td>67.6</td><td>0.6</td><td>MD05394</td><td>1243.2</td><td>98.6</td><td>73.2</td><td>5.6</td><td>77.6</td><td>21.9</td><td>589.7</td><td>13.3</td><td>2862.7</td><td>467.4</td><td>140.3</td><td>81.8</td><td>136.6</td><td>13.5</td><td>12.3</td><td>754.0</td><td>93.6</td><td>4455</td></td<>	MDD003	67	67.6	0.6	MD05394	1243.2	98.6	73.2	5.6	77.6	21.9	589.7	13.3	2862.7	467.4	140.3	81.8	136.6	13.5	12.3	754.0	93.6	4455
MDD003 76 76.6 0.6 MD05405 812.6 62.5 50.7 3.9 45.8 14.7 406.8 9.1 1739.1 302.3 91.9 51.9 86.8 8.8 8.1 437.0 63.7 2860 MDD003 76.6 77.2 0.6 MD054061044.6 97.2 63.0 5.3 73.1 20.6 557.3 7.8 1289.4 384.2 114.6 71.9 65.5 14.3 9.8 522.7 64.5 3678 MDD003 93 93.6 0.6 MD05416 588.9 80.4 53.9 3.4 56.8 17.4 274.3 7.2 498.0 248.8 70.6 53.8 28.1 11.4 81 545.3 58.6 2516 MDD003 100.8 101.8 1 MD05429 692.1 177.8 82.6 34.0 20.3 567.3 25.6 772.2 318.5 109.5 38.9 459.6 7.5 17.2 676.2 <td< td=""><td></td><td>75</td><td>76</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>60.5</td><td>3177</td></td<>		75	76																			60.5	3177
MDD003 76.6 77.2 0.6 MD05406 1044.6 97.2 63.0 5.3 73.1 20.6 557.3 7.8 1289.4 384.2 114.6 71.9 65.5 14.3 9.8 52.7 64.5 3678 MDD003 93 93.6 0.6 MD05416 588.9 80.4 53.9 3.4 56.8 17.4 274.3 7.2 498.0 248.8 70.6 53.8 28.1 11.4 8.1 545.3 58.6 2516 MDD003 99.3 100.3 1 MD05427 82.9.5 77.8 53.2 4.3 62.8 17.2 400.7 69.8 282.6 39.0 11.4 8.1 54.5 36.6 24.9 384.2 144.8 88.1 26.4 20.5 144.8 44.6 64.97 MDD003 123.6 124.2 0.6 MD05443 114.5 65.9 85.5 2.3 34.0 20.3 567.3 27.6 73.5 32	MDD003	76	76.6	0.6	MD05405	812.6	62.5	50.7	3.9	45.8			9.1	1739.1	302.3	91.9	51.9	86.8	8.8	8.1	437.0	63.7	2860
MDD003 93 93.6 0.6 MD05416 588.9 80.4 53.9 3.4 56.8 17.4 274.3 7.2 498.0 248.8 70.6 53.8 28.1 11.4 8.1 545.3 58.6 2516 MDD003 99.3 100.3 1 MD05427 829.5 77.8 53.2 4.3 62.8 17.2 400.7 6.9 822.6 339.7 97.9 68.6 39.0 11.7 7.9 489.9 55.4 3046 MDD003 100.8 101.8 1 MD05429 1693.2 177.8 122.8 8.2 136.6 41.3 832.4 18.5 1897.7 668.2 193.0 144.8 88.1 26.4 20.5 1148.8 146.6 6497 MDD003 123.6 124.2 0.6 MD05443 114.5 65.9 85.5 2.3 34.0 20.3 567.3 25.6 77.8 32.3 266.2 73.5 32.3 266.2 7.5 17.2 67.62 15.5 3909 MDD003 124.2 1		76.6																				64.5	
MDD003 100.8 101.8 1 MDD5429 693.2 177.8 122.8 8.2 136.6 41.3 832.4 18.5 1897.7 668.2 193.0 144.8 88.1 26.4 20.5 1148.8 146.6 6497 MDD003 123.6 124.2 0.6 MD5443 114.5 65.9 85.5 2.3 34.0 20.3 567.3 25.6 7728.2 318.5 109.5 38.9 459.6 7.5 17.2 676.2 150.5 3909 MDD003 124.2 125 0.8 MD5444 705.0 64.1 82.8 2.5 34.7 20.3 361.5 23.8 411.8 22.6 73.5 32.3 256.2 7.8 16.9 64.64 142.3 2953 MDD004 16 16.5 0.5 MD05459 108.6 87.4 48.5 5.5 82.0 17.1 529.6 4.7 1197.5 499.3 136.4 101.1 40.8 14.2 6.8 456.0 39.5 3777 MDD004 16.5 17.2	MDD003	93	93.6	0.6	MD05416	588.9	80.4	53.9	3.4	56.8	17.4	274.3	7.2	498.0	248.8	70.6	53.8	28.1	11.4	8.1	545.3	58.6	2516
MDD003 123.6 124.2 0.6 MD05443 114.5 65.9 85.5 2.3 34.0 20.3 567.3 25.6 7728.2 318.5 109.5 38.9 459.6 7.5 17.2 676.2 150.5 3909 MDD003 124.2 125 0.8 MD05444 705.0 64.1 82.8 2.5 34.7 20.3 361.5 23.8 4118.8 26.0 7.3 32.3 25.6 7.8 16.9 64.4 142.3 2953 MDD004 16 16.5 0.5 MD05459 108.6 87.4 48.5 5.5 82.0 17.1 529.6 4.7 1197.5 499.3 136.4 101.1 40.8 14.2 6.8 456.0 39.5 3777 MDD004 16.5 17.2 0.7 MD05460 195.3 17.5 110.0 9.1 139.8 37.6 100.4 11.0 17.7 499.3 136.4 101.1 40.8 14.2 6.8 450.0 39.5 37.7 MDD004 16.5 17.2 0	MDD003	99.3	100.3	1	MD05427	829.5	77.8	53.2	4.3	62.8	17.2	400.7	6.9	822.6	339.7	97.9	68.6	39.0	11.7	7.9	489.9	55.4	3046
MDD003 124.2 125 0.8 MD05444 705.0 64.1 82.8 2.5 34.7 20.3 361.5 23.8 411.8 226.0 73.5 32.3 256.2 7.8 16.9 64.64 142.3 2953 MDD004 16 16.5 0.5 MD05459 108.6 87.4 48.5 5.5 82.0 17.1 529.6 4.7 1197.5 499.3 136.4 101.1 40.8 14.2 6.8 456.0 39.5 3777 MDD004 16.5 17.2 0.7 MD05460 1953.4 175.5 110.0 9.1 139.8 37.6 1000.4 11.0 177.9 73.5 210.2 147.1 88.1 26.9 15.5 951.7 91.2 6766 MDD004 22.5 23.5 1 MD05470 72.8 69.6 38.4 4.5 54.2 14.2 369.4 4.1 597.7 276.8 82.6 55.1 21.0 10.6 5.8 39.0.3 33.4 2579 MDD004 23.5 24.4 0.9	MDD003	100.8	101.8	1	MD05429	1693.2	177.8	122.8	8.2	136.6	41.3	832.4	18.5	1897.7	668.2	193.0	144.8	88.1	26.4	20.5	1148.8	146.6	6497
MDD003 124.2 125 0.8 MD05444 705.0 64.1 82.8 2.5 34.7 20.3 361.5 23.8 411.8 226.0 73.5 32.3 256.2 7.8 16.9 64.64 142.3 2953 MDD004 16 16.5 0.5 MD05459 108.6 87.4 48.5 5.5 82.0 17.1 529.6 4.7 1197.5 499.3 136.4 101.1 40.8 14.2 6.8 456.0 39.5 3777 MDD004 16.5 17.2 0.7 MD05460 1953.4 175.5 110.0 9.1 139.8 37.6 1000.4 11.0 177.9 73.5 210.2 147.1 88.1 26.9 15.5 951.7 91.2 6766 MDD004 22.5 23.5 1 MD05470 72.8 69.6 38.4 4.5 54.2 14.2 369.4 4.1 597.7 276.8 82.6 55.1 21.0 10.6 5.8 39.0.3 33.4 2579 MDD004 23.5 24.4 0.9								1															3909
MDD004 16 16.5 0.5 MD05459 108.6 87.4 48.5 5.5 82.0 17.1 529.6 4.7 1197.5 499.3 136.4 101.1 40.8 14.2 6.8 45.0 39.5 3777 MDD004 16.5 17.2 0.7 MD05469 193.4 175.5 110.0 9.1 139.8 37.6 100.4 11.0 177.4 730.5 210.2 147.1 88.1 26.9 15.5 951.7 91.2 6766 MDD004 22.5 23.5 1 MD05470 72.8 69.6 38.4 4.5 54.2 14.2 369.4 4.1 597.7 276.8 82.6 55.1 21.0 10.6 5.8 390.3 33.4 2579 MDD004 23.5 24.4 0.9 MD05471 255.1 270.3 16.8 141.1 18.4 303.9 983.2 291.6 204.9 14.3 40.9 26.0 1490.2 15.3 9643 MDD004 24.4 25 0.6 MD05472 631.6 7																							
MDD004 16.5 17.2 0.7 MD05460 953.4 175.5 110.0 9.1 139.8 37.6 100.4 11.0 177.4 730.5 210.2 147.1 88.1 26.9 15.5 951.7 91.2 6766 MDD004 22.5 23.5 1 MD05470 727.8 69.6 38.4 4.5 54.2 14.2 369.4 4.1 597.7 276.8 82.6 55.1 21.0 10.6 5.8 390.3 33.4 2579 MDD004 23.5 24.4 0.9 MD05471 265.1 270.3 16.87 12.0 207.0 59.1 1411.7 18.4 3039.8 983.2 291.6 204.9 141.3 40.9 26.0 1490.2 15.3.1 9643 MDD004 24.4 25 0.6 MD05472 631.6 73.5 506.1 30.3 527.5 166.0 508.6 56.4 6428.1 235.9 679.5 493.5 357.1 108.2 72.6 402.7 446.9 24169 MDD04 24.4 25 </td <td></td>																							
MDD004 22.5 23.5 1 MD05470 727.8 69.6 38.4 4.5 54.2 14.2 369.4 4.1 597.7 276.8 82.6 55.1 21.0 10.6 5.8 390.3 33.4 2579 MDD004 23.5 24.4 0.9 MD054712655.1 270.3 168.7 12.0 207.0 59.1 1411.7 18.4 3039.8 983.2 291.6 204.9 141.3 40.9 26.0 1490.2 153.1 9643 MDD004 24.4 25 0.6 MD054726316.9 735.5 506.1 30.3 527.5 166.0 350.8 56.4 6428.1 235.9 679.5 493.5 357.1 108.2 72.6 402.7 446.9 24169																							
MDD004 23.5 24.4 0.9 MD054712655.1 270.3 168.7 12.0 207.0 59.1 1411.7 18.4 3039.8 983.2 291.6 204.9 141.3 40.9 26.0 1490.2 153.1 9643 MDD004 24.4 25 0.6 MD054726316.9 735.5 506.1 30.3 527.5 166.0 3508.6 56.4 6428.1 235.9 679.5 493.5 357.1 108.2 72.6 4027.7 446.9 24169																							
MDD004 24.4 25 0.6 MD054726316.9 735.5 506.1 30.3 527.5 166.0 3508.6 56.4 6428.1 2354.9 679.5 493.5 357.1 108.2 72.6 4027.7 446.9 24169																							
	MDD004	25	26						16.5														12609

	Hole ID	From	То	Length	Sample	Ce	Dy	Er	Eu	Gd	Но	La	Lu	Nb	Nd	Pr	Sm	Та	Tb	Tm	Y	Yb	TREO ppm
		00	07	4	-	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
t i	MDD004	26	27	1	MD05474			136.3	11.0	177.7	46.2	1248.1		2054.1			180.2	107.0	33.4		1189.2		8420
\neg	MDD004	27	27.9	0.9	MD05475			340.9	22.7	375.4		2794.7				528.6		285.7	75.9		2733.8		18054
1	MDD004	27.9	28.6	0.7	MD05476			101.3	6.9	106.1	33.6	724.1	12.1	1025.7		145.0	105.9	84.4	22.1	15.2	764.5	91.5	4942
	MDD004	46	47	1	MD05484			65.8	5.6	86.6	21.8	614.8	6.5		433.1	127.3	86.6	47.6	15.6	9.4	522.2	57.5	4029
	MDD004	47	48	1	MD05485		55.6	33.1	4.9	50.7	11.0	454.5	3.4	526.3	307.1	92.2	57.0	26.5	8.5	4.3	273.5	28.3	2696
ŀ	MDD004	54.6	55.2	0.6	MD05493			211.9	13.3	224.5	67.3	1652.1	23.2		1053.5		202.9	298.6	42.0	29.7	1490.9		10676
	MDD004 MDD004	55.2	56	0.8	MD05494		63.9	45.2	5.0	53.5	13.4	493.5	5.7	2921.1		101.7	55.7	164.6	9.2	6.4	329.3	47.1	3049 5751
-		80.6	81.6	1	MD05507			140.2	7.6	131.0	39.6	692.9	23.2	1568.0 2541.4		152.8	118.8	74.1	24.8 21.3	22.5	1148.3 975 5		
ŀ	MDD004	103.9	104.7	0.8	MD05524 MD05530		150.8	118.2	8.2	116.4	33.1	950.6 1001.9	19.1	3541.4		186.7	117.9	188.7		19.3	875.5 837.3	138.8	6204
	MDD004	109 138.6	109.6 139.6	0.6	MD05530		143.0 82.1	106.3 103.3	8.4 2.7	117.0 41.7	30.8 23.4	311.8	14.9 25.8	1714.8 2304.0		178.3 63.5	109.7 34.6	87.5 132.0	20.6 9.5	16.4 20.4	739.6	116.8 159.2	6073 2954
ľ	MDD004			1				63.7				507.6									739.0 524.4		
-1	MDD004	139.6 22.7	140.6 23.3	0.6	MD05546 MD05565			120.5	5.6 8.5	76.5 137.9	18.1 38.3	1023.2	10.5 11.9	1886.1 2755.7		124.8 199.0	84.4 131.3	93.3 114.1	13.1 26.1	10.0 16.5	925.5	68.6 100.8	3766 6673
11	MDD005	22.7	23.3 24	0.0	MD05566			356.9	0.5 22.2	380.5		2616.1			1658.1			257.1	74.0		925.5 2709.8		17409
	MDD005	23.3 24	24	0.7	MD05567			167.0	11.0	174.4				1929.9		226.5		112.7	34.9	49.0 23.0	27 09.0 1294.6		8113
: /ł	\cap	24 25	25 26	4			-				53.7	1214.8							34.9 46.4				
	MDD005 MDD005	27.6	28.2	1 0.6	MD05568 MD05571			198.3 228.2	16.1 19.1	249.0		1712.7 2049.5				360.9		146.1 189.3	40.4 52.4	26.2 32.0	1603.3 1876.6		11558 13629
										295.0					1463.5				56.6				
ľ	MDD005	29	30	1	MD05573			252.7	18.3	295.9		2051.1						196.9			2030.6		13700
- İ	MDD005	65.2 66.2	66.2 67	0.8	MD05591 MD05592			60.6	5.2 6.7	65.2	17.6 32.8	559.5 563.5	9.8	1187.6 1693.9		107.9	67.4 96.7	58.9 63.0	11.9 19.1	10.6 16.5	509.8 924.0	66.1	3583 4820
ľ	MDD005							107.0		100.2			14.8			139.2					924.0 1399.7	105.8	
	MDD005	81.8	82.6	0.8	MD05598			188.3	6.3	110.8	49.0	822.4		4455.9 5007 5		164.0		240.8 234.4	24.1 8.5	33.6		-	6673 3192
- 1	MDD005	97	98 99	1	MD05613		69.1	58.1	2.3	41.8	15.6	469.9	11.4	5007.5		96.5	43.9	279.9	0.5 21.1	9.8	474.0	74.5	5861
-18	MDD005	98 100 5		1	MD05614			103.1	6.3	104.0	31.3	861.2	20.7	6625.5		180.0				17.2	794.5	136.9	
1	MDD005	126.5	127.5	1	MD05627		105.5	72.3	5.6	76.8	22.1	496.5	10.2	891.5		102.9	73.9	51.3	14.4 12.4	10.7	567.1	70.0	3555 3312
	MDD005	127.5	128.5	1	MD05628		84.2	56.6	4.4	70.9	18.1	471.0	7.9	1397.1		100.0	68.4	70.1		8.6	513.2 272.1	59.6 29.5	
_	MDD005	129.5	130.5	1	MD05630		66.8 00.0	43.8	4.1	55.4	14.5	383.8	4.7 5 0		286.0	83.1	57.4	36.7	10.2	6.1	373.1	38.5	2629
	MDD005	131.5 3	132.5 4	1	MD05632		90.0	56.9	5.0 4.2	77.0 69.1	19.3 42.7	538.3 243.1	5.8 20.8	1069.0 1435.0		112.0 49.2	76.6	57.0 98.5	12.9 20.6	7.7 21.8	480.6 1014.4	50.7	3555 4649
1	MDD006 MDD006	4.6	4 5.2	0.6	MD05641 MD05643		177.6 75.5	145.0 45.9	4.2	58.5	42.7	367.5	20.0 5.7	1435.0			41.8 65.0	96.5 65.2	10.8	6.8	321.3	156.9 47.0	3335
-	MDD000	4.0 5.2	6 6	0.0	MD05644			45.9 240.4	4.3 12.5	184.5	68.2	965.3	39.5	3498.9		90.1 215.4		239.6	39.9		321.3 1470.6		10386
1	MDD006	<u>5.2</u> 6	7	1	MD05644			240.4	14.9	228.0	77.9	1362.0	38.5		1004.2			239.0	59.9 50.1		1448.8		11753
-/1	MDD000	7	8	1	MD05646			198.6	14.9	220.0	63.0	1348.6			1004.2			249.3	45.1	30.2	1440.0		12300
_	MDD006	8	8.6	0.6	MD05647			161.1	11.4	186.1	51.2	1286.1	19.6	2218.2		253.6	182.9	127.5	35.2	23.6	1181.7	164.5	8832
-	MDD000	8.6	9.4	0.0	MD05648		-	311.9	13.5	221.9	84.5	1052.7	56.1	1862.9		221.2	186.7	127.3	45.3	23.0 50.0	2276.9		9950
-	MDD000	9.4	10	0.6	MD05649			144.4	12.4	175.3	46.0	1122.4		2238.4		234.2	176.3	156.9	33.3	21.4	953.6	142.2	8415
11	MDD000	11	12		MD05651			95.6	7.6	98.5	29.8	591.5			432.5		91.4	62.3	19.2	13.5	723.2	86.4	4556
- 1	MDD000	41.4	42	0.6	MD05669				21.5	358.1		2652.1				498.0			71.3		2575.9		17385
	MDD006	42	43	1	MD05670				24.9			2801.7				541.9					3031.2		19174
ŀ	MDD006	43	44	1	MD05671				9.0	140.7		910.4				202.9		76.8	25.1		829.2		6314
i i	MDD006	44	45	1	MD05672				34.1			3995.3				748.4					4056.4		26732
ŀ	MDD006	45	45.8	0.8	MD05673				13.0	228.4		1392.1				270.5			46.9		2135.6		10837
- F	MDD006	45.8	46.6		MD05674				18.2			2063.9				399.9			67.5		2668.4		15245
- 1	MDD007	0	1	•	MD05679				7.9	130.4	84.3	447.8				109.6			38.4		2139.1		10392
	MDD007	1	2		MD05680				5.4	79.8	43.5	356.7		2410.0			66.9	124.1	21.2		1028.5		6028
	MDD007	2	3		MD05681			128.3	4.1	60.1	35.6	265.4	18.1	1085.3		62.1	49.9	66.7	16.9		939.9		4500
- 1	MDD007	4.7	5.5		MD05684				9.9	150.8		909.3		2106.0				82.2	30.4		1122.4		7086
11	MDD007	5.5	6.5		MD05685				15.3	234.7		1329.4				278.4			54.4		2142.4		12167
-1	MDD007	18	19		MD05698				9.0	150.5	47.4	932.0			647.6				30.8		1050.4		7024
- 1	MDD007	19	20		MD05699				9.0	138.4		977.8		3035.1				151.9	28.7		828.4		8153
ľ	MDD007	23.9	24.8		MD05707			73.1	4.9	74.3	24.2	486.2	8.0		328.8	98.2	79.8	56.0	16.2	10.0	526.7	63.2	3403
ŀ	MDD007	24.8	25.4		MD05708				9.1	143.2		945.3			638.6			101.7	29.1	18.2	947.0		6433
ľ	MDD007	25.4	26		MD05709			97.9	5.7	93.5		616.4	10.8		409.8		92.9	65.3	19.6	13.7	672.8	79.7	4443
	MDD007	26	27		MD05710			142.6	11.4	170.0	45.7	1277.2		2059.5		252.5		93.9	33.4		1109.1		8152
	MDD007	27	28		MD05710			79.0	5.7	86.0	25.1	524.2	7.5	838.1	385.4	114.9	90.0	41.0	17.1	9.9	606.8	64.2	3828
- r	MDD007	28	29		MD05712	15496	148 4	102.0	8.5	119.6	33.5	785.6	9.9	11836	583.9	174.1	134.0	56.0	23.6	13.5	780.8	79.1	5481

	Hole ID	From	То	Length	Sample	Ce ppm	Dy ppm	Er ppm	Eu ppm	Gd ppm	Ho ppm	La ppm	Lu ppm	Nb ppm	Nd ppm	Pr ppm	Sm ppm	Ta ppm	Tb ppm	Tm ppm	Y ppm	Yb ppm	TREO ppm
	MDD007	30	31		MD05714	2911.2	268.5	178.0	14.7	223.3	58.8	1502.5	17.4	2799.1	1075.4	318.3	238.1	116.9	42.9	23.9	1459.0	146.3	10224
	MDD007	31	32		MD05715	824.9	71.9	47.4	4.5	62.4	15.5	404.0	4.6	681.7	333.1	95.3	70.3	22.4	11.3	6.6	408.3	37.3	2891
	MDD007	32	33		MD05716	3079.6	296.7	204.4	14.9	243.4	65.9	1653.0	21.8	2818.9	1080.4	326.2	240.0	135.9	46.6	29.2	1619.4	174.6	10970
	MDD007	33	34		MD05717	3629.2	376.5	261.5	17.4	285.2	84.1	2080.5	27.0	3668.2	1235.7	384.7	275.8	225.8	58.5	34.3	1909.3	217.1	13111
	MDD007	34	35		MD05718	5154.3	547.0	390.4	23.9	406.9	124.6	2916.2	40.4	4876.0	1757.2	535.6	389.8	321.2	83.4	53.1	2920.5	322.0	18894
7	MDD007	35	36		MD05719	5763.4	630.5	448.7	28.0	469.5	141.7	3173.9	46.8	4788.8	2079.3	614.6	474.1	346.5	94.7	61.7	3217.9	367.2	21232
_	MDD007	36	37		MD05720	4720.3	469.2	332.4	22.7	358.9	107.1	2644.2	34.6	4301.8	1680.8	506.7	363.5	253.5	74.6	45.3	2409.7	267.7	16919
	MDD007	37	38		MD05721	2415.0	217.7	141.8	11.6	177.3	46.7	1259.6	13.7	2034.8	892.1	263.7	191.5	91.9	34.3	19.3	1187.2	111.4	8421
	MDD007	38	39		MD05722	1312.4	98.8	60.5	6.0	90.6	20.7	654.8	6.7	1103.6	500.0	146.9	103.5	44.4	16.3	8.3	520.9	54.5	4338
7	MDD008	2	3		MD05726	2903.1	272.6	225.4	13.7	195.5	66.5	1415.3	32.8	2207.6	963.2	299.4	215.4	133.2	40.0	34.2	1815.3	240.0	10551
	MDD008	9	10		MD05733	740.4	76.1	63.5	4.1	50.0	18.6	342.6	8.6	594.8	236.8	72.2	51.0	32.9	11.1	9.5	462.1	67.4	2675
_	MDD008	12	13		MD05736	1861.5	93.9	61.2	7.5	101.5	20.0	794.1	7.0	1851.3	626.3	185.6	119.8	73.2	17.2	8.6	513.5	55.0	5391
	MDD008	21.4	22.1		MD05749	2546.7	198.1	156.5	10.3	146.9	46.6	999.1	19.5	2816.3	811.4	244.0	164.6	76.1	30.1	21.7	1285.8	148.8	8258
J	MDD008	33	34		MD05762	1088.4	100.9	69.1	5.8	77.8	22.3	552.4	6.2	1016.5	398.4	118.7	81.6	41.7	15.7	8.9	580.5	51.9	3836
1/	MDD008	34	35		MD05763	1336.7	117.6	77.9	7.6	96.5	25.8	673.7	8.2	999.9	493.8	147.2	97.4	60.9	18.9	10.7	622.0	65.7	4581
J,	MDD008	37.6	38.2		MD05767	2128.1	233.6	173.3	11.6	161.0	53.3	1133.4	20.2	1701.5	749.8	225.4	159.4	118.1	34.6	24.3	1271.4	158.3	7888
	MDD008	41	42		MD05771	861.0	68.4	43.3	6.8	64.8	14.6	461.5	6.0	690.9	321.8	96.0	69.0	43.7	12.3	6.2	346.2	40.4	2912
	MDD008	42	43		MD05772	1169.1	83.8	45.9	5.5	86.5	17.1	593.2	4.1	1182.8	430.3	128.8	92.2	59.2	15.6	6.0	391.1	35.7	3738
	MDD008	43	44		MD05773	2853.6	209.6	117.5	14.2	201.9	41.3	1472.2	11.8	2950.0	1032.7	308.5	218.9	134.1	36.8	15.8	946.1	94.0	9118
	MDD008	44	45		MD05774	2888.8	208.1	126.7	12.4	194.3	43.5	1521.1	13.4	3105.9	1032.1	312.2	210.5	141.9	35.1	16.5	990.7	100.8	9278
	MDD008	45	46		MD05775	2721.2	299.5	217.1	14.2	214.3	69.0	1452.6	22.4	1888.6	962.3	293.1	207.0	133.5	44.6	29.8	1630.0	183.7	10088
	MDD008	46	47		MD05776	3314.1	345.4	237.6	16.4	258.9	78.4	1758.7	24.9	2727.4	1197.8	361.2	262.5	176.4	53.7	31.8	1801.5	199.0	11989
	MDD008	47	48		MD05777	6458.6	785.2	583.7	33.0	522.7	183.1	3405.4	61.6	5705.6	2277.0	682.4	498.1	375.2	114.1	82.0	4242.3	501.0	24660
51	MDD008	48	49		MD05778	3866.5	421.0	292.5	18.9	297.1	93.6	2008.5	28.7	3565.4	1373.6	413.0	297.1	193.5	64.2	38.5	2162.2	237.3	14008
	MDD008	49	50		MD05779	3963.0	365.2	256.0	18.1	280.1	82.6	2110.5	26.1	3973.2	1366.8	415.3	270.0	195.5	58.3	35.4	2040.6	211.1	13873

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 DY6 diamond drilling at Machinga was to test mineralisation identified in trenching and validate historical drill results. This drilling was nominally sampled at one metre intervals, this varied when lithological or structural breaks deemed significant were encountered. Core was halved using a diamond saw with one half bagged generating a 2-4kg sample for laboratory multi-element analysis including: Be, Ca, Ce, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Li, Lu, Nb, Nd, P, Pr, Sm, Sn, Ta, Tb, Th, Tm, U, W, Y, Yb, Zr Core was tested with 4 measurements per for radioactive content using a hand-held scintillometer; based on these results, zones of apparently low-grade mineralization were not sampled.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 A total of 900m of diamond drilling was been completed at Machinga in 2023, with a maximum hole depth of 150m. The Diamond drill rig was supplied by Thompson Drilling of Tete, Mozambique. Both types of drilling were surveyed downhole using REFLEX GYRO SPRINTIQ north seeking gyroscopic units at 5m intervals.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential 	 The diamond drilling core was measured by the geologist during logging with core recovery being determined and structural index RQD also calculated. Insufficient data exists to determine whether a relationship exists between grade and recovery. This will be assessed when sufficient statistical data is available.

Criteria	JORC Code explanation	Commentary
	loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drill samples were geologically logged over 1m lengths intervals to an appropriate level of detail to correlate specifically with sampling. Geological logging of drilling was quantitative in nature. All RC drill holes were logged in full. All diamond drill holes are being geologically logged in detail.
Sub-sampling techniques and sample preparation		 The RC drill ~30kg samples were riffle split in the field to obtain a representative sub-sample of 2-4kg. All portions of the samples were weighted. Samples were mostly dry. Diamond core was not subsampled The field sample size of approximately 2kg or greater is appropriate to the grain size of material sampled. Appropriate industry standard quality control procedures were adopted at each stage of sub-sampling to maximize representivity of samples, with reference standards inserted during drilling, nominally every 20 samples. Field duplicates were used at a rate of 5% and analyzed to ensure representivity of in situ material, nominally every 20 samples. Diamond drill is being halved for analysis with the sample being weighted. Sample intervals are nominally 1m intervals and varied based on lithological or mineralization contacts as required.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples from the DY6 DDH drilling were submitted to Intertek Minerals Laboratory Services in Kitwe, Zambia for sample preparation prior to export to Perth, Western Australia for analysis sodium peroxide fusion (DX) with hydrochloric acid digest ICP/OES or MS finish as appropriate. At Intertek, samples were dried, then crushed to either -2mm or - 10mm as appropriate. Large samples were riffle split and the excess stored. Samples were pulverized in an enclosed unit to 85% - 75micron. A 120-150gm analytical split was taken for export to Australia and the pulp residue was retained and stored.
	16	

Criteria	JORC Code explanation	Commentary
)		 Elements analysed for the drill samples were: Ce, Dy, Er, Eu, Ga, Gd Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sm, Sn, Ta, Tb, Th, Tm, U, Y, Yb, Zr. A field duplicate, blank (silica sand) and a CRM (certified reference material) were inserted approximately every 20 samples for the drilling samples. CRM codes were recorded to maintain on-going quality assurance and acceptable levels of accuracy and precision. Three separate CRM were utilised of low, medium and high REE content in a rolling sequence during drilling.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Assay results are reviewed by 2 company personnel. No adjustments to data were considered necessary.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drillhole collars were surveyed using DGPS on completion of the program by a licensed surveyor. The grid system used is UTM Zone 36S, WGS 84. Approximately 50% of the historical drill collars were located and resurveyed to ensure coherency between both phases of drilling.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Current drillhole spacing is irregular as the program was first pass evaluation. Drill samples were collected on 1m intervals on site and composited to 3m samples in zones indicated by the scintillometer to be only weakly mineralized or barren. All other drill samples were submitted on as collected on a 1m basis.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling has been undertaken and orientated perpendicular to the inferred orientation of the mineralised structures based on the trench mapping and previous drilling results. Three core holes were orientated to drill down the mineralized structures to generate material for metallurgical testwork.
Sample security	The measures taken to ensure sample security.	 Samples were collected from the drill site and delivered by secure transport to Intertek Commodities preparation facility in Kitwe, Zambia.

Criteria	JORC Code explanation	Commentary
		Chain of custody was overseen by the Geology Manager.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Data was reviewed and audited on a regular basis, along with QAQC checks, no problematic issues were identified.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration is conducted within several licenses in Malawi, being: Machinga EL0529 which is held 100% by Green Exploration Limited covering an area of 42.9km2. Machinga South EL0705 of 157.5km2 is held by Green Exploration Limited. All licenses are in good standing and no known impediments area known to exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Machinga was first identified by the American Smelting and Refining Company and the Atomic Energy Division of the Geological Survey of Britain in 1955 who completed preliminary geological work (Scintillometer survey, mapping trenching and drilling). Radiometric anomalies were found but none of the factual data is available. Detailed geological mapping of the Malosa-Zomba mountains was completed by Bloomfield et al in 1965. In 1986, the United Nation Development Program sponsored an airborne magnetic and radiometric survey was undertaken by Huntington Geology and Geophysics Limited. Interpretation was completed by Paterson, Grant & Watson Limited in 1987. The survey located Uranium channel anomalies in the region. In 2009 Resource Star Limited completed an orientation soil sampling program over the Machinga Main Anomaly, 149 samples were collected. Globe Metals then joint ventured into the property and completed a trenching and follow-up drilling programs in 2010 and 2102 with 1635m of trenching and 4045m of RC drilling completed. (See DY6 ASX release July 6th 2023.) A total of 281 samples were submitted from the trench sampling and 2130 samples were submitted from the RC drilling.

Criteria	JORC Code explanation	Commentary
Geology	• Deposit type, geological setting and style of mineralisation.	The area of the Machinga licence is dominated by rocks of the Mesozoic Chilwa Alkaline Province; consisting of granite, syenite, nepheline- syenite plutons with associated volcanic vents characterized by carbonatite and agglomerate. The Malosa Pluton consists of a heterogeneous mixture of syenitic and granitic units. The REE-Nb-Ta mineralisation at Machinga is associated with the eastern margin of the Malosa Pluton of the Chilwa Alkaline Province. Uranium and thorium anomalies are associated with the REE-Nb-Ta mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drill hole positions located in the field during using handheld GPS units prior to a full survey being undertaken.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Core Intersection lengths are length weighted, a minimum width of 3m was used with weighted average grade required to be >2500ppm TREC to be deemed significant. Numerous individual samples with values >2500ppm TREO were excluded as when calculated over a 3m interval did not exceed the threshold. No metal equivalent values are being used.
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Core drilling intersection widths approach true widths of the mineralization in holes MDD001-005 which were drilled normal to the structure.
intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true 	Due to the low to moderate dips identified in the trenching and drilling to date, it is expected true widths will be less than reported downhole

JORC Code explanation	Commentary
width not known').	thicknesses.
• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Location maps of projects within the release with relevant exploration information contained.
• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting of exploration results is considered balanced by the competent person. All results have been reported.
• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration to report.
 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Mineralisation has been identified at the project area; with the worldwide focus transition to renewal energy requiring major new sources of elements critical to this transition. This project has been shown to host potentially economic grades of mineralisation but has not been fully explored to define the extent of this
	 width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas,