29 December 2023

High Grade HREE \& Nb Results From Diamond Drilling at Machinga

HIGHLIGHTS

- Assays received from the 8-diamond drill hole program (totalling 900m) at Machinga
- Significant intercepts include:
- 15.1m @ 1.01\% TREO, $\mathbf{0 . 3 6 \%} \mathrm{Nb}_{2} \mathrm{O}_{5}$ from 23.9m (3.71\% DyTb/TREO) incl. $4 m$ @ 1.75\% TREO, 0.63\% $\mathrm{Nb}_{2} \mathrm{O}_{5}$ from 33m (3.8\% Dy/Tb/TREO) drilled downdip (MDD007)
- $9 m$ @ 0.70% TREO, $0.3 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ from $3 m$ (3.84\% DyTb/TREO) incl. $2 m$ @ 1.2\% TREO, $0.58 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ from $6 m$ (3.64\% Dy/Tb/TREO) and 5.2 m @ 1.61\% TREO, 0.66\% $\mathrm{Nb}_{2} \mathrm{O}_{5}$ from 41.4m (3.99\% DyTb/TREO) incl. 1m @ 2.67\% TREO, 1.01\% $\mathrm{Nb}_{2} \mathrm{O}_{5}$ from 44m (3.9\% Dy/Tb/TREO) drilled downdip (MDD006)
- 6.1m @ 1.09\% TREO, $0.4 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ from 22.5m (3.78\% DyTb/TREO) (MDD004)
- 7.3m @ 0.8\% TREO, 0.33\% Nb ${ }_{2} \mathrm{O}_{5}$ from 22.7m (3.70\% DyTb/TREO) (MDD005)
- 9m @ 1.11\% TREO, $0.41 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ from 41m (3.72\% DyTb/TREO) incl. 3m @ 1.56\% TREO, $0.49 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ from 45 m (4.1\% Dy/Tb/TREO) drilled downdip (MDD008)
- Results returned an average of 29\% HREO:TREO and 3.6\% DyTb:TREO at a cutoff grade of $>0.25 \%$ TREO (consistent with RC holes' final results)
- Results highlight the near-surface and thick intersection intercepted in RC holes MARC005 and MARC016

DY6 Metals Ltd (ASX: DY6) ("DY6", the "Company"), a strategic metals explorer targeting Heavy Rare Earths (HREE) and critical metals in southern Malawi, is pleased to announce the assay results from the 8 -diamond drill (DD) holes (totalling 900m) at its flagship Machinga Project in southern Malawi.

The Company's CEO, Mr Lloyd Kaiser said:

"The assay results are showing outstanding intersections across multiple drill holes, especially MMD007 returning 15.1m @ 1.01\%TREO with substantial Niobium grade, and a high proportion of valuable heavy rare earth elements from holes drilled for metallurgical material. The successful RC and DD drilling program has greatly improved the geological team's interpretation of the Machinga system including the structural and lithological controls. The final assay results and historic intersections will feed into our current geological model to guide our next exploration program design. The Company now moves towards progressing a technical evaluation of the mineralisation to target a REO concentrate and Niobium by-product".

METALS

A strongly mineralised hydrothermal breccia system striking NW-SE and dipping shallowly $\sim 35^{\circ}$ to the NE has been confirmed by the recent drilling. Pleasingly, very high-grade zones have been intersected from the diamond drill holes, as well as the suggestion of the mineralised zones thickening at depth and open to the NE. Significant drill intercepts received from the final batch of assays are included in Table 2. Significant intercepts include:

- 15.1m @ 1.01\% TREO, $\mathbf{0 . 3 6 \%} \mathrm{Nb}_{2} \mathrm{O}_{5}$ from 23.9m (3.71\% DyTb/TREO) incl. 4 m @ 1.75\% TREO, $\mathbf{0 . 6 3 \%} \mathrm{Nb}_{2} \mathrm{O}_{5}$ from $\mathbf{3 3 m}$ (3.8\% Dy/Tb/TREO) (MDD007);
- $9 \mathrm{~m} @ \mathbf{0 . 7 0 \%}$ TREO, $\mathbf{0 . 3} \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ from 3 m (3.84\% DyTb/TREO) incl. 2m @ 1.2\% TREO, $0.58 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ from 6 m (3.64\% Dy/Tb/TREO) and $5.2 \mathrm{~m} @ 1.61 \%$ TREO, $0.66 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ from 41.4 m (3.99\% DyTb/TREO) incl. 1m @ 2.67\% TREO, 1.01\% $\mathrm{Nb}_{2} \mathrm{O}_{5}$ from 44m (3.9\% Dy/Tb/TREO) (MDD006);
- 6.1m @ 1.09\% TREO, 0.4\% $\mathrm{Nb}_{2} \mathrm{O}_{5}$ from 22.5m (3.78\% DyTb/TREO) (MDD004);
- 7.3m @ 0.8\% TREO, 0.33\% $\mathrm{Nb}_{2} \mathrm{O}_{5}$ from 22.7m (3.70\% DyTb/TREO) (MDD005); and
- 9 m @ 1.11\% TREO, $0.41 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ from 41m (3.72\% DyTb/TREO) incl. 3m @ 1.56\% TREO, $0.49 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ from 45 m (4.1\% Dy/Tb/TREO) (MDD008).
(Results returned an average of 29% HREO:TREO and 3.6% DyTb:TREO at a cutoff grade of $>0.25 \%$ TREO)
Diamond drill holes MDD006, MDD007 and MDD008 were drilled downdip to obtain sufficient sample material to initiate the metallurgical test work program in Q1, 2024. The assay results are positive and significant for the Company as they continue to demonstrate continuity of mineralisation down dip and along strike of Machinga with excellent width and grade of mineralisation for a heavy rare earth rich deposit. As part of the upcoming metallurgical test work program, using core from this campaign, the Company will assess the amenability of the mineralisation to be treated through a relatively simple beneficiation process.

Figure 1. Machinga Project location in Southern Malawi (U radiometric)

The diamond drill program consisted of 5 holes to 150 m and 3 holes to 50 m depths to determine the structural setting and geology of the Machinga deposit and to obtain material for initial metallurgical studies.

The first 5 holes were to understand the geological nature of the deposit, its structural configuration and obtain contextual data to the results of the RC drillholes, both recent and historical.

Figure 2. Drill collar locations at Machinga North prospect - 8 DD hole collars

The diamond holes confirmed the shallow northeasterly dips (Figure 3) inferred from the RC drilling with several of the zones showing downdip consistency (DY6 Metals ASX releases $10^{\text {th }}$ Oct and $26^{\text {th }}$ Oct, 2023) with numerous apparently more discontinuous mineralisation zones.

The mineralised zones have been geologically logged as hydrothermal breccias; no petrological work has been undertaken as yet, samples for petrological study and XRD analysis are being collected from the core and to assessed by ALS in Perth in Q1, 2024. XRD of selected RC samples containing high to low rare earth mineralisation and host rocks is under review and to be reported in Q1. The mineralogy and quantitative assessment of minerals contained in the core will provide valuable liberation characteristics of target minerals to guide the Company in formulating an initial metallurgical test program.

Figure 3. Drill Section DY6 Metals holes MDD004, 007 \& 008, RC hole MR002 with historical intersections from Globe MARC005, 015, 016, 029 \& 030.

Holes MDD001-005 were drilled at -55° to southwest attempting to intersect the mineralised zones at right angles; hence intersections within these holes approximate the true width of the mineralised zones at that location. Holes MDD006, MDD007 and MDD008 were drilled at -45 ${ }^{\circ}$ to the east and northeast, being down the estimated dip of the mineralisation. This was to maximise material available for the initial metallurgical stage.

The core is shown in the photographs of the half core in Figure 4 from hole MDD007.
These photographs show gneissic foliation approximately 45° to the core axis suggesting a near vertical dip in the sequence foliation, whereas the mineralisation, the pink and tan zones, are irregularly orientated suggesting hydrothermal alteration. The core being too fractured for downhole orientation.

Rare earth rich mineralisation within the hydrothermal breccia were intersected in drillhole MDD007 from 23.9 m for 15.1 m with high TREO grade zones of $1.79 \mathrm{wt} \%$ TREO @ 29 m to 30 m , $1.31 \mathrm{wt} \%$ TREO @ 33 m to $34 \mathrm{~m}, 1.89 \mathrm{wt} \%$ TREO @ 34 m to 35 m and $2.12 \mathrm{wt} \%$ TREO from 35 m to 36 m (Figure 5).

The TREO distribution of this exceptional 15.1m intersection of MDD007 has shown a high proportion of heavy rare earth oxides (HREO) at 27.7\% HREO/TREO and 3.7\% DyTb:TREO along with valuable magnetic rare earths NdPr oxide of 15.2%.

The high proportion of $\mathrm{Nd}+\mathrm{Pr}+\mathrm{Dy}+\mathrm{Tb}$ oxides identified at Machinga is highly valuable to the EV permanent magnets and defence industries, with a basket price of US\$28 per kg TREO (using

METALS
a 2500 ppm TREO cutoff). The Company believes this compares very favourable relative to peers that are focussed predominately on light rare earth projects ${ }^{1}$.

The initial focus of DY6 during the maiden drilling program was to test the known strike of the confirmed historic drill results in the northern anomalous zone. The next stage of the exploration program is already underway with further rock chip sampling at Machinga focused on stepping out NW of the phase 1 drilling campaign and along the southern zone of Machinga into EL0705 following the anomalous contour to delineate high priority drill targets for the phase 2 drill program next year.

[^0]
MDD007 26.74-30.81m

MDD007 30.81-35.22m

MDD007 35.22-40.40m

Figure 4. Half drill core of MMD007 showing high-grade rare earth mineralisation in the Machinga deposit.

Figure 5. Drill Section DY6 Metals holes MDD003 \& MDD005.
The Company plans to prepare a bulk ore sample using the diamond core collected from the Machinga central drill program to produce a representative ore sample to commence beneficiation test work program in Q1, 2024 based on the 3 downdip holes MDD006, 007 and 008.

Upon completion and interpretation of XRD analysis on RC samples and minerology of selected pieces of diamond core, a beneficiation test work program will be planned with the Company's consulting metallurgist.
-ENDS-
This announcement has been authorised by the Board of DY6.

More information

Mr Lloyd Kaiser	Mr John Kay	Mr Luke Forrestal
CEO	Director \& Company Secretary	Investor Relations
lloyd.kaiser@dy6metals.com	john.kay@dy6metals.com	+61411479144

METALS

Abbreviations

- TREO = Total Rare Earth Oxides $-\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{CeO}_{2}, \mathrm{Pr}_{6} \mathrm{O}_{11}, \mathrm{Nd}_{2} \mathrm{O}_{3}, \mathrm{Sm}_{2} \mathrm{O}_{3}, \mathrm{Eu}_{2} \mathrm{O}_{3}, \mathrm{Gd}_{2} \mathrm{O}_{3}, \mathrm{~Tb}_{4} \mathrm{O}_{7}, \mathrm{Dy}_{2} \mathrm{O}_{3}$, $\mathrm{Ho}_{2} \mathrm{O}_{3}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{Tm}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Lu}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}$
- HREO = Heavy Rare Earth Oxides $-\mathrm{Tb}_{4} \mathrm{O}_{7}, \mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{Ho}_{2} \mathrm{O}_{3}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{Tm}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Lu}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}$
- HREO\% = HREO/TREO * 100
- DyTb:TREO $=\left(\mathrm{Dy}_{2} \mathrm{O}_{3}+\mathrm{Tb}_{4} \mathrm{O}_{7}\right) /$ TREO * 100

Competent Persons Statement

The Information in this announcement that relates to exploration results, mineral resources or ore reserves is based on information compiled by Mr Allan Younger, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Younger is a consultant of the Company. Mr Younger has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the `Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Younger consents to the inclusion of this information in the form and context in which it appears in this announcement. Mr Younger holds shares in the Company.

Table 1. Drill Collar Locations

Hole ID	Depth	Easting	Northing	Elevation	Datum	Dip	Azimuth
MDD001	150	750066.73	8320879.90	752.51	UTM84-36S	-55	225
MDD002	150	750046.92	8320922.44	752.54	UTM84-36S	-55	225
MDD003	150	749978.92	8320962.46	752.86	UTM84-36S	-55	225
MDD004	150	750096.19	8320827.65	753.76	UTM84-36S	-55	225
MDD005	150	749998.35	8320992.27	748.81	UTM84-36S	-55	225
MDD006	50	750058.17	8320824.77	756.18	UTM84-36S	-45	45
MDD007	50	750071.39	8320801.66	758.00	UTM84-36S	-45	70
MDD008	50	750072.96	8320803.66	757.96	UTM84-36S	-45	45

Table 2. Significant Intersections
Based on >2500ppm Weighted Average TREO cutoff, minimum 3 m width and maximum 2 m internal dilution

All values weighted average grades in ppm unless stated

Hole ID	From	To	Length	TREO	$\begin{gathered} \text { TREO } \\ \% \\ \hline \end{gathered}$	MREO	HREO/TREO	$\mathrm{La}_{2} \mathrm{O}_{3}$	CeO_{2}	Pr_{6}	$\mathrm{Nd}_{2} \mathrm{O}_{3}$	$\mathrm{b}_{4} \mathrm{O}_{7}$	$\mathrm{Dy}_{2} \mathrm{O}_{3}$	$\mathrm{Lu}_{2} \mathrm{O}_{3}$	$\mathrm{Y}_{2} \mathrm{O}_{3}$	$\begin{array}{\|c\|} \hline \mathrm{Nd}_{2} \mathrm{O}_{3} \\ +\mathrm{Pr}_{6} \mathrm{O}_{11} \\ \hline \end{array}$	HREO	$\mathrm{Nb}_{2} \mathrm{O}_{5}$	$\mathrm{Ta}_{2} \mathrm{O}_{5}$
MDD001	0	7	7	3324		626	26.06\%	574	1207	120	393	15	98	7	601	513	866	1194	64
MDD001	12	15.2	3.2	3469		645	31.07\%	545	1155	120	395	17	114	11	737	514	1078	1450	58
MDD001	27	30.4	3.4	5824		1042	34.21\%	954	1794	188	615	30	209	23	1326	803	1992	2744	142
MDD002	30	34.6	4.6	5921		1035	34.53\%	961	1834	185	607	32	210	23	1379	792	2044	2300	120
MDD002	94	97	3	4344		827	27.06\%	786	1484	155	517	22	134	9	813	671	1176	1237	68
MDD003	8.7	12.5	3.8	8313		1465	32.99\%	1312	2755	263	862	42	298	26	1854	1125	2742	4152	181
MDD003	98.7	101.8	3.1	3697		727	31.76\%	549	1184	136	457	18	117	11	826	593	1174	1415	57
MDD004	22.5	28.6	6.1	10901	1.09\%	2078	28.91\%	1895	3643	389	1278	55	357	26	2157	1666	3151	4032	194
MDD004	46	49	3	2555		514	21.21\%	483	967	103	334	10	67	4	366	437	542	741	34
MDD004	138	141.2	3.2	2470		457	34.33\%	354	779	86	292	10	69	14	570	378	848	1978	89
MDD005	22.7	30	7.3	8006		1537	27.48\%	1405	2754	288	953	39	258	17	1496	1241	2200	3330	138
MDD005	65.2	68	2.8	2820		537	30.86\%	443	935	101	336	12	87	9	604	437	870	1353	50
MDD005	96	99	3	3685		685	27.16\%	620	1341	137	430	15	103	14	669	567	1001	5777	222
MDD005	126.5	132.5	6	2639		515	27.25\%	449	913	98	324	12	81	6	494	422	719	1136	50
MDD006	3	12	9	7046		1142	28.61\%	912	2929	201	670	33	237	25	1274	872	2016	2973	163
MDD006	41.4	46.6	5.2	16061	1.61\%	2953	30.49\%	2721	5333	541	1772	80	560	48	3249	2313	4897	6583	337
MDD007	0	6.5	6.5	6368		877	33.85\%	662	2669	152	481	30	214	24	1457	633	2156	3207	138
MDD007	18	21	3	5658		956	24.28\%	843	2417	183	579	26	168	14	880	762	1374	2680	121
MDD007	23.9	39	15.1	10064	1.01\%	1900	27.69\%	1786	3439	363	1164	51	322	23	1879	1527	2787	3587	174
MDD008	2	5	3	4159		791	29.93\%	717	1337	157	495	19	120	13	859	652	1245	1135	58
MDD008	9	13	4	2615		514	22.51\%	428	1028	103	337	11	63	5	405	441	588	1113	39
MDD008	32	35	3	3136		615	26.62\%	532	1104	120	387	15	93	6	577	507	835	1118	47
MDD008	41	50	9	11074	1.11\%	2112	27.54\%	1926	3835	404	1295	57	355	25	2053	1699	3050	4099	197

Table 3. Assay Results

Samples with >2500ppm TREO

Hole ID	From	To	Length	Sample $\begin{gathered}\text { (} \\ \text { pem } \\ \text { ppm }\end{gathered}$	$\begin{gathered} \mathrm{Dy} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Er} \\ \mathrm{ppm} \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Eu} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Gd} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{Ho} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \hline \mathrm{La} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Lu} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{\|c} \hline \mathrm{Nd} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Pr} \\ \mathrm{ppm} \end{gathered}$	Sm ppm	$\begin{array}{\|c\|} \hline \mathrm{Ta} \\ \mathrm{ppm} \end{array}$	Tb ppm	$\begin{gathered} \mathrm{Tm} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{Y} \\ \mathrm{ppm} \end{array}$	$\begin{array}{\|c} \mathrm{Yb} \\ \mathrm{ppm} \end{array}$	TREO ppm
MDD001	5	6	1	MD050061632.5	159.0	100.3	8.1	119.9	32.4	850.7	10.4	1095.2	557.3	165.5	114.3	91.4	23.2	13.5	832.4	83.5	5674
MDD001	6	7	1	MD050073676.3	298.4	188.9	17.4	257.6	63.3	1935.1	18.4	3103.01	1343.4	393.7	274.4	197.5	46.3	27.0	1646.6	157.7	12471
MDD001	13	13.9	0.9	MD050141244.2	111.4	73.7	5.9	93.2	23.1	602.5	10.0	1390.0	454.5	135.0	97.5	64.0	16.7	11.7	643.3	71.5	4337
MDD001	13.9	14.5	0.6	MD050152782.9	303.5	216.0	12.6	220.9	8.1	1377.1	32.2	3059.	973.2	283.4	212.3	144.7	43.5	34.3	1719.	245.8	10290
MDD001	19.8	20.8	1	MD05025 882.8	101.3	72.7	5.2	73.0	22.2	490.3	10.2	698.9	334.4	98.6	73.6	41.2	14.3	11.	553.3	74.3	3398
MDD001	21.4	22	0.6	MD050271037.0	117.8	74.2	6.8	94.5	24.5	547.8	7.7	782.2	405.5	115.8	89.3	44.1	17.7	10.4	609.9	63.7	3886
MDD001	28.5	29.2	0.7	MD050352726.9	379	310.2	13.5	239.4	86.8	1529.2	51.0	4417.9	976.3	287.7	208.6	265.9	51.7	52	2329.8	359.5	11598
MDD001	29.2	29.8	0.6	MD050364373.0	537.3	395.0	21.2	368.6	119.5	2460.8	54.2	5259.91	1544.6	461.4	340.1	334.1	76.5	62.1	2921.	415.2	17071
MDD001	54	55	1	MD050682698.4	235.6	132.2	12.5	212.4	45.9	358.3	12.4	2630.61	1076.2	304.7	213.6	119.7	37.7	19.1	209.8	109.0	9253
MDD001	65.7	66.2	0.5	MD050801116.6	117.7	109.1	5.0	75.6	29.7	593.0	21.2	2448.2	385.3	114.7	71.0	127.8	15.7	18.7	842.7	144.4	4423
MDD001	87.3	87.7	0.4	MD051091809.0	179.9	140.7	7.8	125.2	41.7	956.7	23.9	3903.1	640.4	187.2	125.8	203.8	25.8	23.5	1183	159.8	6801
MDD001	109	109.7	0.7	MD05135 949.7	83.8	53.2	4.9	66.7	18.0	498.2	5.8	1189.9	348.2	100.6	70.1	52.7	12.7	7.7	482.1	48.3	3318
MDD001	109.7	110.2	0.5	MD05136 933.8	103.7	95.3	4.2	63.6	25.9	467.5	20.0	2477.2	327.9	98.4	64.8	118.3	13.8	16.7	756.6	124.1	3768
MDD001	112.8	113.3	0.5	MD05140 688.0	64.6	61.3	3.0	39.0	16.2	362.3	11.8	2248.8	230.8	69.9	41.5	102.9	8.8	10.5	472.3	75.3	2604
MDD001	139.9	140.6	0.7	MD05174 791.7	89.2	99.4	3.2	50.8	22.8	422.3	20.7	2466.4	276.4	84.4	53.4	130.5	10.7	16.9	690.0	134.9	3344
MDD002	30	31	1	MD052212176.8	235.8	181.3	11.0	180.1	57.8	1183.1	25.6	2366.6	760.5	223.6	160.0	123.0	35.6	31.	1455.8	179.2	8328
MDD002	31	32	1	MD052222799.4	334.1	239.3	13.4	237.4	78.9	1545.1	29.8	2770.0	951.2	281.8	203.9	181.4	50.4	38.4	1772.4	214.7	10606
MDD002	32	34	2	MD052231462.4	229.8	208.6	7.2	144.4	61.4	818.0	37.6	2066.9	517.2	153.8	115.2	134.8	31.8	37.4	1588.	40.5	6840
MDD002	34	72.6	38.6	MD052261104.8	133.7	92.5	5.6	6. 3	30.6	604.6	11.1	1149.4	397.8	115.3	84.2	75.6	19.5	15.2	700.6	8.6	4218
MDD002	72.6	94	21.4	MD052711108.4	63.5	46.4	4.4	64.2	14.4	521.1	8.6	1676	437.1	125.7	77.3	64.3	10.3	8.8	419.2	54.1	3571
MDD002	94	95	1	MD05296 932.8	74.7	46.8	6.9	69.9	15.9	518.0	4.4	619.5	348.8	100.6	67.5	36.0	12.5	7.1	411.9	36.9	3199
MDD002	95	110	15	MD052972325.8	246.4	163.7	12.3	199.3	56.0	304.0	18.1	1694.4	840.1	243.9	173.3	120.9	39.0	24.7	1343.	130.7	8590
MDD002	110	110.9	0.9	MD05312 862.0	107.6	93.8	3.7	80.1	28.1	463.3	16.9	1316.1	319.9	93.6	63.7	74.6	15.7	17.6	761.9	110.1	3673
MDD002	110.9	117	6.1	MD053131397.5	134.0	108.3	5.7	100.7	32.5	748.9	17.9	3047.9	485.9	145.7	91.5	151.6	19.9	18.	854.2	114.	5161
MDD002	117	118	1	MD05320 990.1	78.2	47.6	4.6	65.9	16.5	525.8	5.0	950.4	356.7	105.2	68.7	44.6	12.4	7.3	411.0	41.8	3298
MDD002	124.5	0	124.5	MD053311626.5	121.6	114.9	4.9	7.9	30.3	846.9	22.8	7186.2	515.3	160.9	87.7	384.4	16.2	20.3	837.9	153.5	597
MDD003	0	1	1	MD05338 936.2	81.9	67.0	3.6	38.8	9.8	258.9	8.2	1047.1	172.4	52.6	33.9	59.3	10.1	10.3	449.8	68.8	2682
MDD003	1	2	1	MD05339 516.7	73.0	37.1	10.7	83.9	13.5	519.0	3.2	329.9	439.1	115.6	86.9	19.4	13.8	4.9	367.8	25.3	2768
MDD003	8.7	9.3	0.6	MD053501995.7	258.8	196.1	10.4	160.6	59.9	1051.8	21.5	2687.3	674.1	196.9	139.1	140.3	35.2	28.	1466.2	178.3	7820
MDD003	9.3	10	0.7	MD053512861.2	284.4	187.8	12.2	197.8	60.4	1388.9	19.2	3269.1	938.5	275.7	197.1	134.5	41.3	27.4	1525	165.1	9879
MDD003	10	11	1	MD053521673.2	209.0	157.0	8.1	129.6	46.4	898.7	21.7	1678.9	572.8	167.4	118.8	94.5	28.9	25.5	1250.	166.7	6614
MDD003	11	11.7	0.7	MD053532885.7	347.9	273.2	12.6	211.7	80.5	1411.2	37.9	4531.4	946.2	278.1	188.8	246.7	48.1	44.0	2032.5	293.0	10986
MDD003	11.7	12.5	0.8	MD053542036.2	223.1	144.7	8.8	143.4	48.4	952.4	14.4	2846.9	640.1	191.1	133.8	147.5	30.8	20.6	1160	26.0	7096
MDD003	34	35	1	MD053771543.9	101.2	60.1	8.1	101.4	20.9	692.1	8.8	1158.1	656.5	186.0	124.4	32.6	16.6	9.7	582.2	68.6	5036
MDD003	54.4	54.5	0.1	MD053852405.9	219.7	155.7	11.6	182.6	48.6	1196.4	24.8	2634	950.4	274.4	184.3	96.2	32.8	25.1	1464.3	187.7	8891
MDD003	66.8	67	0.2	MD053932354.9	189.1	139.2	10.4	154.3	43.2	1069.9	23.8	7572	874.9	266.4	169.3	348.4	28.2	22.8	1444.9	173.4	8420
MDD003	67	67.6	0.6	MD053941243.2	98.6	73.2	5.6	7.6	21.9	589.7	13.3	2862.7	467.4	140.3	81.8	136.6	13.5	12.3	754.0	93.6	4455
MDD003	75	76	1	MD05404 961.3	58.9	47.4	5.6	45.0	14.1	541.3	8.7	1314	320.4	102.2	52.7	65.4	8.8	8.0	400.4	60.5	3177
MDD003	76	76.6	0.6	MD05405 812.6	62.5	50.7	3.9	45.8	4.7	406.8	9.1	1739	302.3	91.9	51.9	86.8	8.8	8.1	437.0	63.7	2860
MDD003	76.6	77.2	0.6	MD054061044.6	97.2	63.0	5.3	73.1	20.6	557.3	7.8	1289.4	384.2	114.6	71.9	65.5	14.3	9.8	522.7	64.5	3678
MDD003	93	93.6	0.6	MD05416 588.9	80.4	53.9	3.4	56.8	17.4	274.3	7.2	498.0	248.8	70.6	53.8	28.1	11.4	8.1	545.3	58.6	2516
MDD003	99.3	100.3	1	MD05427 829.5	77.8	53.2	4.3	62.8	17.2	400.7	6.9	822.6	339.7	97.9	68.6	39.0	11.7	7.9	489.9	55.4	3046
MDD003	100.8	101.8	1	MD054291693.2	177.8	122.8	8.2	136.6	41.3	832.4	18.5	1897.7	668.2	193.0	144.8	88.1	26.4	20.5	1148.8	146.6	6497
MDD003	123.6	124.2	0.6	MD054431114.5	65.9	85.5	2.3	34	20.3	567.3	25.6	7728.2	318.5	109.5	38.9	459.6	7.5	17.2	676.2	150.5	3909
MDD003	124.2	125	0.8	MD05444 705.0	64.1	82.8	2.5	34.7	20.3	361.5	23.8	4118.8	226.0	73.5	32.3	256.2	7.8	16.9	646.4	142.3	2953
MDD004	16	16.5	0.5	MD054591108.6	87.4	48.5	5.5	82.0	17.1	529.6	4.7	1197.5	499.3	136.4	101.1	40.8	14.2	6.8	456.0	39.5	3777
MDD004	16.5	17.2	0.7	MD054601953.4	175.5	110.0	9.1	139.8	37.6	1000.4	11.0	1779.4	730.5	210.2	147.1	88.1	26.9	15.5	951.7	91.2	6766
MDD004	22.5	23.5	1	MD05470 727.8	69.6	38.4	4.5	54.2	14.2	369.4	4.1	597.7	276.8	82.6	55.1	21.0	10.6	5.8	390.3	33.4	2579
MDD004	23.5	24.4	0.9	MD054712655.1	270.3	168.7	12.0	207.0	59.1	1411.7	18.4	3039.8	983.2	291.6	204.9	141.3	40.9	26.0	1490.2	153.1	9643
MDD004	24.4	25	0.6	MD054726316.9	735.5	506.1	30.3	527.5	166.0	3508.6	56.4	6428.12	2354.9	679.5	493.5	357.1	108.2	72.6	4027.7	446.9	24169
MDD004	25	26	1	MD054733367.	369.7	246	16.5	27	84.2	1842.9	26.6	3200.51	1256.7	367.3	256.2	. 6	55.6	36.0	2029	219.5	12609

Hole ID	From	To	Length	Sample ${ }_{\text {enem }}^{\text {cee }}$	$\begin{aligned} & \text { Dy } \\ & \mathrm{ppm} \end{aligned}$	ppm	ppm	ppm	ppm	La ppm	ppm	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{Nb} \\ \mathrm{ppm} \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{Nd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Pr} \\ \mathrm{ppm} \end{array}$	Sm	$\begin{array}{\|c} \hline \mathbf{c}+ \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{c} \\ \mathrm{ppm} \end{gathered}$	ppm	ppm	$\begin{aligned} & \mathrm{Yb} \\ & \mathrm{ppm} \end{aligned}$	TREO ppm
MDD004	26	27		MD054742414.6	216.8	136.3	11.0	177.7	46.2	248	13.8	2054	912.0	265.2	180.2	107.0	33.4	19.6	89.	117.8	8420
004	27	27.9	0.9	MD054754965.4	504.0	340.9	22.7	375.4	114.7	279	37.3	4477.2	1769.0	528.6	359.2	285.7	75.9	49.6	2733.8	298.2	18054
MDD004	27.9	28.6	0.7	[0054761329.0	148.	101.3	6.9	106.1	33.6	724.1	12.11	1025.7	494.0	145.0	105.9	84.4	22.1	15.2	764.5	91.5	4942
MDD004	46	47		484118	105.7	65.8	5.6	86.6	21.8	614.8	6.5	893.9	433.1	127.3	80.6	47.6	15.6	9.4	522	57.5	4029
MDD004	47	48		MD05485854.9	55.6	33.1	4.9	50.7	11.0	454.5	3.4	526.3	307.1	92.2	57.0	26.5	8.5	4.3	27.5	28.3	2696
MDD004	4.6	55.2	0.6	MD054933035.5	300	211.9	13.3	224.5	67.	1652.1	23.2	5113.8	105	315.7	202.9	298	42.0	29.7	1490.9	195.7	10676
MDD004	55.2	56	0.8	105	63.9	45.2	5.0	53.5	13.4	493.5	5.72	2921.	335.4	101.7	55.7	164.6	9.2	6.4	329.3	47.	3049
MDD004	80.6	81.6	1	MD055071385.6	175.0	140.2	7.6	131.0	39.6	692.9	23.21	1568.0	531.6	152.8	118.8	74.1	24.8	22.5		165.	
MDD004	103.9	104.7	0.8	MD055241771.4	150	118.2	8.2	116.4	33.1	950.6	19.13		619.4	188.7	117.	188.7	21.3	19.3	875.5	138.	204
004	109	109.	0.6	1105530	143.0	106.3	8.4	117.0	30.8	1001.9	14.91	1714.8	587.8	178.3	109.7	87.5	20.6	16.4	837.3	116.	073
004	138.6	139	1	005545617.8	82.1	103.3	2.7	41.7	23.4	311.8	25.8	2304.	203.7	63.5	34.6	132.	9.5	20.4	739.6	159	2954
004	139.6	140.6		55461	81.1	63.7	5.6	76.5	18.1	507.6	10.5	1886	445.0	124	84.4	93.	13.1	10.0		68.	66
MDD005	22.7	23.3	0.6	MD056651	182.0	120.5	8.5	137.9	38.3	1023.2	11.9	2755		199.0	131.3	114.1	26.	16.5	925.5	100	6673
MDD005	23.3	24	0.7	MD056664	529.8	356.9	22.2	380.5	112	2616.1	35.8	4401.7		490.7	347.4	257.1	74.0	49.		304	17409
MDD005	24	25		5672	246.1	167.0	11.0	174.4	53.7	1214.8	17.8	1929.3	771.7	226.5	159.0	112.7	34.9	23.0	294.		
MDD005	25	26		MD056683308.0	306.3	198.3	16.1	249.0	62.6	1712.7	19.83	3314.5	1254.4	360.9	255.7	146.1	46.4	26.2	603.		
MDD005	27.6	28.2	0.6	MDO	340.3	228.2	19.1	295.0	71.3	2049.5	22.	4469.0	1463.5	427.4	291.5	189.3	52.4		876.6		
MDD005	29	30	1	MD055733837.4	385.7	252.7	18.3	295.9	80.1	2051.1	25.24	4209.7	1395.8	408.6	280.3	196.9	56.6		2030.6	207	
MDD005	65.2	60.2	1	MD055911040.6	82.5	60.6	5.2	65.2	17.6	559.5	9.81	1187.	356.0	107.9	67.4		11.9	10.6	509.8		
MDD005	66.2	67	0.8	MD055921225.9		107.0	6.7	100.2	32.8	563.5	14.8	1693.9	491.8	139.2	96.7	63.0	19.1	16.5	924.0	105	820
MDD005	81.8	82.6	0.8	MD055981590.4	193.1	188.3	6.3	110.8	49.0	822.4	41.54	4455	534.4	164.0	100.5	240.8	24.1	33.6			6673
MDD005	97	98		MD05613 965.0	69.1		2.3	41.8	15.6	469.9	11.4	007.5	302.1	96.5	43.9	234.4	8.5	. 8			192
MDD005	98	99		MD056141766.0	146.8	103.1	6.3	104.0	31.3	861.2	20.76	6625.5	568.2	180.0	103.2	279.9	21.1		794.5	136	861
MDD005	126.5	127.5		5627	105.5	72.3	5.6	76.8	22.1	496.5	10.2	891.5	360.4	102.9	73.9	51.3	14.4	0.7	567.1		555
MDD005	127.5	128.5		MD05628 928.3	84.2	56.6	4.4	70.9	18.1	471.0	7.91	1397.1	341.0	100.0	68.4	70.1	12.4	3.6	513.2	59.6	312
MDD005	129.5	130.5		MD05630 752.6	66.8	43.8	4.1	55.4	14.5	383.8	4.7	794.7	286.0	83.1	57.4	36.7	10.2	6.1		38.	629
MDD005	131.5	132.5		MD056321036.4	490	56.9	5.0	77.0	19.3	538.3	5.81	1069.0	379.4	112.0	76.6	57.0	12.9	7.7	480.6	50.7	3555
MDD006	3	4		05641	1177.6	145.0	4.2	69.1	42.7	243.1	20.81	1435.0	154.4	49.2	41.8	98.5	20.6	21.8		156.	649
MDD006	4.6	5.2	0.6	MD056431333.3	375	45.9	4.3	58.5	14.8	367.5	5.71	1444.	312.5	90.1	65.0	65.2	10.8	6.8	321.3	47.0	3335
MDD006	5.2	6	0.8	056	299.8	240.4	12.5	184.5	68.2	965.3	39.5	3498.9	738.1	215.4	179.9	239.6	39.9	39.3		292.	10386
MDD006	6	7	1	0564	363.4		14.9	228.0	77.9	1362.0	38.5	3641.0	1004.2	291.4	226.6	249.3	50.1	41.2	1448.	296	1753
MDD006	7	8	1	MD056464972.8	3302.0		14.4	220.6	63.0	1348.6	24.0	4464.		301.9	236.3	281.3	45.1	30.2	195.		2300
MDDOOO	8	8.6	0.6	10564	545.4		11.4		51.2	1286	19.6	218.2		253.6	182.9	127.5	35.2				
MDD006	8.6	9.4	0.8	MD056482164.8	352.0		13.5		84.5	1052.7	56.11	1862.	799.6	221.2		123.3	45.3				950
MDD006	9.4	10	0.6	MD056492863	227.1	144.	12.4	175.3	46.0	122	16.92	238	809.2	234.2	176.3	56.	33.3	214			
UDD006	11	12		MD056511310.8	138.1	95.6	7.6	98.5	29.8	591.5	10.91	1141	432.5	124	91.4	62.3	19.2	13.5	23.2	86.4	556
MDD006	41.4	42	0.6	MD056694885.4	506.5	345.5	21.5	358.1	109.3	2652.1	38.6	7777.2	1652.1	498.0	336.	421.0	71.3	49.7	2575		17385
MDD006	42	43		MD056705160.7	578.6	404.2	24.9	426.1	124.4	2801.7	44.5	5115.2	1854.5	541.9	394.9	287.0	81.8	56.9	3031		19174
MDD006	43	44		MD056711849	162.3	102.4	9.0	140.7	33.9	910	10.71	1565.5	713.8	202.9	144.7	76.8	25.1	14.5	329.2		6314
MDD006	44	45		MD056727413.	800.9	557.2	34.1	579.0	177.0	3995.3	61.97	707	2507.8		534.	464.8	114.2	78.9	4056		26732
MDD006	45	45.	0.8	MD056	361.2	288.5	13.0	228.4	83	139	46.5	208	916	270.5	204.4	160.8	46.9	46.9	2135.6	341	10837
MDD006	45.	46.6	0.8	D056	501.2	380.1	18.2	324.3	113.1	2063.9	50.74	4803.9	137	399.9	294.8	282.3	67.5	56.3	2668.	393.	15245
100007	0	1		MD056794004.2	314.2	311	7.9	130.4	84.3	447.8	54.4	5150.	348	109.6	104.5	265.7	38.4	51.6	2139.	380	10392
MDD007	1	2		005	67.5	147.9	5.4	79.8	43.	356.7	19.7	2410.0	256	82.5	66.9	124.1	21.2	22.9	1028.	151.	6028
MDD007	2	3		0568	5134.9	128.3	4.1	60.1	35.6	265.4	18.11	1085.3	197	62.1	49.9	66.7	16.9	19.8	939.9	135	4500
MDD007	4.7	5.5		D056842135	188.8	123.1	9.9	150.8	40.	909.3	12.8	210	665.	200.5	155.4	82.2	30.4	16.3	122	100	7086
MDD007	5.5	6.5		10056853807	3 378.2	271.8	15.3	234.7	86.9	329	29.13	3890.7	924	278.4	218.5	192.0	54.4	36.8	2142	237.2	12167
MDDOO	18	19		0066	205.6	153.3	9.0	150.5	47.4	932.0	17.6	1933.	647	194.2	153.	111.3	30.8	21.	05		7024
,	19	20		0066	186.2	33.3	9.0	138.4	40.8	977.8	15.73	3035	672	207.0	147.	151.9	28.7	18.5	828.	125	8153
MDD007	23.9	24.8		D05707 924.4	104.0	73.1	4.9	74.3	24.2	486.2	8.0	861.3	328.	98.2	79.8	56.0	16.2	10.0	526.	63.2	3403
MDD	24.8	25.4		D057081	8181.6	129.5	9.1	143.2	42.6	945.3	14.41	1510	638	188.	145.	101.7	29.1	18.2	947.	113	6433
D00	25.4	26		D05709	29.6	97.9	5.7	93.5	30.5	616.4	10.8	1093	409.8	123.7	92.9	65.3	19.6	13.7	672.8	79.7	4443
MDDOO	26	27		D0571023	207.0	142.6	11.4	170.0	45.7	277	14.62	2059.5	833.5	252.5	183.2	93.9	33.4	19.5	1109	118.	8152
MDD007	27	28		1005711104	10.3	79.0	5.7	86.0	25.1	524.	7.5	838.	385.4	114.9	90.0	41.0	17.1	9.9	606.8	64.2	3828
MDD007	28	29		LD057121549.6	6 148.4	02.0	8.5	19.6	33.5	85.	9.9	1183.	583	174.1	134.0	56.0	23.6	13.5	780.8	79.1	5481
MDD007	29	30		MD057134843.8	512.0	376.2	22.2			2743.4	37.8		1712.8	523.2		247.4	79.0	49.6	2750.9	308.3	17918

Hole ID	From	To	Length	Sample $\begin{gathered}\text { (} \\ \\ \text { Pem } \\ \text { ppm }\end{gathered}$	$\begin{gathered} \hline \mathrm{Dy} \\ \mathrm{ppm} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{Er} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Eu} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \hline \mathrm{Gd} \\ \mathrm{ppm} \end{gathered}$	Ho ppm	$\begin{gathered} \hline \mathrm{La} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Lu} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \hline \mathrm{Nb} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Nd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Pr} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{Sm} \\ & \mathrm{ppm} \end{aligned}$	Ta ppm	$\begin{array}{\|c\|} \hline \text { Tb } \\ \text { ppm } \\ \hline \end{array}$	Tm ppm	$\begin{gathered} \mathrm{Y} \\ \mathrm{ppm} \end{gathered}$	Yb ppm	TREO ppm
MDD007	30	31		MD057142911.2	268.5	178.0	14.7	223.3	58.8	1502.5	17.4	2799.1	1075.4	318.3	238.1	116.9	42.9	23.9	1459.0	146.3	10224
MDD007	31	32		MD05715 824.9	71.9	47.4	4.5	62.4	15.5	404.0	4.6	681.7	333.1	95.3	70.3	22.4	11.3	6.6	408.3	37.3	2891
MDD007	32	33		MD057163079.6	296.7	204.4	14.9	243.4	65.9	1653.0	21.8	2818.9	1080.4	326.2	240.0	135.9	46.6	29.2	1619.4	174.6	10970
MDD007	33	34		MD057173629.2	376.5	261.5	17.4	285.2	84.1	2080.5	27.0	3668.2	1235.7	384.7	275.8	225.8	58.5	34.3	1909.3	217.1	13111
MDD007	34	35		MD057185154.3	547.0	390.4	23.9	406.9	124.6	2916.2	40.4	4876.01	757.2	535.6	389.8	321.2	83.4	53.1	2920.5	322.0	18894
MDD007	35	36		MD057195763.4	630.5	448.7	28.0	469.5	141.7	3173.9	46.8	4788.8	2079.3	614.6	474.1	346.5	94.7	61.7	3217.9	367.2	21232
MDD007	36	37		MD057204720.3	469.2	332.4	22.7	358.9	107.1	2644.2	34.6	4301.8	680.8	506.7	363.5	253.5	74.6	45.3	2409.7	267.7	16919
MDD007	37	38		MD057212415.0	217.7	141.8	11.6	177.3	46.7	1259.6	13.7	2034.8	892.1	263.7	191.5	91.9	34.3	19.3	1187.2	111.4	8421
MDD007	38	39		MD057221312.4	98.8	60.5	6.0	90.6	20.7	654.8	6.7	1103.6	500.0	146.9	103.5	44.4	16.3	8.3	520.9	54.5	4338
MDD008	2	3		MD057262903.1	272.6	225.4	13.7	195.5	66.5	1415.3	32.8	2207.6	963.2	299.4	215.4	133.2	40.0	34.2	1815.3	240.0	10551
MDD008	9	10		MD05733 740.4	76.1	63.5	4.1	50.0	18.6	342.6	8.6	594.8	236.8	72.2	51.0	32.9	11.1	9.5	462.1	67.4	2675
MDD008	12	13		MD057361861.5	93.9	61.2	7.5	101.5	20.0	794.1	7.0	1851.3	626.3	185.6	119.8	73.2	17.2	8.6	513.5	55.0	5391
MDD008	21.4	22.1		MD057492546.7	198.1	156.5	10.3	146.9	46.6	999.1	19.5	2816.3	811.4	244.0	164.6	76.1	30.1	21.7	1285.8	148.8	8258
MDD008	33	34		MD057621088.4	100.9	69.1	5.8	77.8	22.3	552.4	6.2	1016.5	398.4	118.7	81.6	41.7	15.7	8.9	580.5	51.9	3836
MDD008	34	35		MD057631336.7	117.6	77.9	7.6	96.5	25.8	673.7	8.2	999.9	493.8	147.2	97.4	60.9	18.9	10.7	622.0	65.7	4581
MDD008	37.6	38.2		MD057672128.1	233.6	173.3	11.6	161.0	53.3	1133.4	20.2	1701.5	749.8	225.4	159.4	118.1	34.6	24.3	1271.4	158.3	7888
MDD008	41	42		MD05771 861.0	68.4	43.3	6.8	64.8	14.6	461.5	6.0	690.9	321.8	96.0	69.0	43.7	12.3	6.2	346.2	40.4	2912
MDD008	42	43		MD057721169.1	83.8	45.9	5.5	86.5	17.1	593.2	4.1	1182.8	430.3	128.8	92.2	59.2	15.6	6.0	391.1	35.7	3738
MDD008	43	44		MD057732853.6	209.6	117.5	14.2	201.9	41.3	1472.2	11.8	2950.0	1032.7	308.5	218.9	134.1	36.8	15.8	946.1	94.0	9118
MDD008	44	45		MD057742888.8	208.1	126.7	12.4	194.3	43.5	1521.1	13.4	3105.9	1032.1	312.2	210.5	141.9	35.1	16.5	990.7	100.8	9278
MDD008	45	46		MD057752721.2	299.5	217.1	14.2	214.3	69.0	1452.6	22.4	1888.6	962.3	293.1	207.0	133.5	44.6	29.8	1630.0	183.7	10088
MDD008	46	47		MD057763314.1	345.4	237.6	16.4	258.9	78.4	1758.7	24.9	2727.4	1197.8	361.2	262.5	176.4	53.7	31.8	1801.5	199.0	11989
MDD008	47	48		MD057776458.6	785.2	583.7	33.0	522.7	183.1	3405.4	61.6	5705.6	2277.0	682.4	498.1	375.2	114.1	82.0	4242.3	501.0	24660
MDD008	48	49		MD057783866.5	421.0	292.5	18.9	297.1	93.6	2008.5	28.7	3565.4	1373.6	413.0	297.1	193.5	64.2	38.5	2162.2	237.3	14008
MDD008	49	50		MD057793963.0	365.2	256.0	18.1	280.1	82.6	2110.5	26.1	3973.2	1366.8	415.3	270.0	195.5	58.3	35.4	2040.6	211.1	13873

JORC Code, 2012 Edition - Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	- DY6 diamond drilling at Machinga was to test mineralisation identified in trenching and validate historical drill results. - This drilling was nominally sampled at one metre intervals, this varied when lithological or structural breaks deemed significant were encountered. - Core was halved using a diamond saw with one half bagged generating a $2-4 \mathrm{~kg}$ sample for laboratory multi-element analysis including: Be, Ca, Ce, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Li, Lu, Nb, Nd, P, Pr, Sm, Sn, Ta, Tb, Th, Tm, U, W, Y, Yb, Zr - Core was tested with 4 measurements per for radioactive content using a hand-held scintillometer; based on these results, zones of apparently low-grade mineralization were not sampled.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	- A total of 900 m of diamond drilling was been completed at Machinga in 2023, with a maximum hole depth of 150 m . - The Diamond drill rig was supplied by Thompson Drilling of Tete, Mozambique. - Both types of drilling were surveyed downhole using REFLEX GYRO SPRINTIQ north seeking gyroscopic units at 5m intervals.
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential	- The diamond drilling core was measured by the geologist during logging with core recovery being determined and structural index $R Q D$ also calculated. - Insufficient data exists to determine whether a relationship exists between grade and recovery. This will be assessed when sufficient statistical data is available.

Logging
loss/gain of fine/coarse material.

- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
- The total length and percentage of the relevant intersections logged.

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.
- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.
- Drill samples were geologically logged over $1 m$ lengths intervals to an appropriate level of detail to correlate specifically with sampling.
- Geological logging of drilling was quantitative in nature.
- All RC drill holes were logged in full.
- All diamond drill holes are being geologically logged in detail.
- The RC drill $\sim 30 \mathrm{~kg}$ samples were riffle split in the field to obtain a representative sub-sample of $2-4 \mathrm{~kg}$.
- All portions of the samples were weighted.
- Samples were mostly dry.
- Diamond core was not subsampled
- The field sample size of approximately 2 kg or greater is appropriate to the grain size of material sampled.
- Appropriate industry standard quality control procedures were adopted at each stage of sub-sampling to maximize representivity of samples, with reference standards inserted during drilling, nominally every 20 samples.
- Field duplicates were used at a rate of 5% and analyzed to ensure representivity of in situ material, nominally every 20 samples.
- Diamond drill is being halved for analysis with the sample being weighted.
- Sample intervals are nominally $1 m$ intervals and varied based on lithological or mineralization contacts as required.
- Samples from the DY6 DDH drilling were submitted to Intertek Minerals Laboratory Services in Kitwe, Zambia for sample preparation prior to export to Perth, Western Australia for analysis sodium peroxide fusion (DX) with hydrochloric acid digest ICP/OES or MS finish as appropriate.
- At Intertek, samples were dried, then crushed to either - $2 m m$ or 10 mm as appropriate. Large samples were riffle split and the excess stored. Samples were pulverized in an enclosed unit to 85\% 75micron. A 120-150gm analytical split was taken for export to Australia and the pulp residue was retained and stored.
- Elements analysed for the drill samples were: Ce, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sm, Sn, Ta, Tb, Th, Tm, U, Y, Yb, Zr.
- A field duplicate, blank (silica sand) and a CRM (certified reference material) were inserted approximately every 20 samples for the drilling samples. CRM codes were recorded to maintain on-going quality assurance and acceptable levels of accuracy and precision.
- Three separate CRM were utilised of low, medium and high REE content in a rolling sequence during drilling.

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.
- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
- Specification of the grid system used.
- Quality and adequacy of topographic control.

Location of data points

- Assay results are reviewed by 2 company personnel.
- No adjustments to data were considered necessary.
- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
- Whether sample compositing has been applied.

Orientation of
data in relation to geological structure

Sample security

- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.
- If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.
- The measures taken to ensure sample security.
- Drillhole collars were surveyed using DGPS on completion of the program by a licensed surveyor.
- The grid system used is UTM Zone 36S, WGS 84.
- Approximately 50% of the historical drill collars were located and resurveyed to ensure coherency between both phases of drilling.
-
- Current drillhole spacing is irregular as the program was first pass evaluation.
- Drill samples were collected on $1 m$ intervals on site and composited to 3 m samples in zones indicated by the scintillometer to be only weakly mineralized or barren.
- All other drill samples were submitted on as collected on a 1 m basis.
- Drilling has been undertaken and orientated perpendicular to the inferred orientation of the mineralised structures based on the trench mapping and previous drilling results.
- Three core holes were orientated to drill down the mineralized structures to generate material for metallurgical testwork.
- Samples were collected from the drill site and delivered by secure transport to Intertek Commodities preparation facility in Kitwe, Zambia.
- Chain of custody was overseen by the Geology Manager.

Audits or
reviews

- The results of any audits or reviews of sampling techniques and data.

Data was reviewed and audited on a regular basis, along with QAQC checks, no problematic issues were identified.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Commentary

Exploration is conducted within several licenses in Malawi, being:

- Machinga EL0529 which is held 100\% by Green Exploration Limited covering an area of 42.9 km 2 .
- Machinga South EL0705 of 157.5km2 is held by Green Exploration Limited. All licenses are in good standing and no known impediments area known to exist.

Exploration done by other parties

- Acknowledgment and appraisal of exploration by other parties.
\square

\author{

}

Machinga was first identified by the American Smelting and Refining Company and the Atomic Energy Division of the Geological Survey of Britain in 1955 who completed preliminary geological work (Scintillometer survey, mapping trenching and drilling). Radiometric anomalies were found but none of the factual data is available.
Detailed geological mapping of the Malosa-Zomba mountains was completed by Bloomfield et al in 1965.
In 1986, the United Nation Development Program sponsored an airborne magnetic and radiometric survey was undertaken by Huntington Geology and Geophysics Limited. Interpretation was completed by Paterson, Grant \& Watson Limited in 1987. The survey located Uranium channel anomalies in the region.
In 2009 Resource Star Limited completed an orientation soil sampling program over the Machinga Main Anomaly, 149 samples were collected.

Globe Metals then joint ventured into the property and completed a trenching and follow-up drilling programs in 2010 and 2102 with 1635 m of trenching and 4045m of RC drilling completed.
(See DY6 ASX release July 6th 2023.)
A total of 281 samples were submitted from the trench sampling and 2130 samples were submitted from the $R C$ drilling.

Criteria	JORC Code explanation	Commentary
Geology	- Deposit type, geological setting and style of mineralisation.	The area of the Machinga licence is dominated by rocks of the Mesozoic Chilwa Alkaline Province; consisting of granite, syenite, nephelinesyenite plutons with associated volcanic vents characterized by carbonatite and agglomerate. The Malosa Pluton consists of a heterogeneous mixture of syenitic and granitic units. The REE-Nb-Ta mineralisation at Machinga is associated with the eastern margin of the Malosa Pluton of the Chilwa Alkaline Province. Uranium and thorium anomalies are associated with the REE-Nb-Ta mineralisation.
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Drill hole positions located in the field during using handheld GPS units prior to a full survey being undertaken.
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	Core Intersection lengths are length weighted, a minimum width of $3 m$ was used with weighted average grade required to be >2500ppm TREO to be deemed significant. Numerous individual samples with values >2500ppm TREO were excluded as when calculated over a $3 m$ interval did not exceed the threshold. No metal equivalent values are being used.
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true	Core drilling intersection widths approach true widths of the mineralization in holes MDD001-005 which were drilled normal to the structure. Due to the low to moderate dips identified in the trenching and drilling to date, it is expected true widths will be less than reported downhole

Criteria	JORC Code explanation	Commentary
	width not known').	thicknesses.
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Location maps of projects within the release with relevant exploration information contained.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting of exploration results is considered balanced by the competent person. All results have been reported.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration to report.
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Mineralisation has been identified at the project area; with the worldwide focus transition to renewal energy requiring major new sources of elements critical to this transition. This project has been shown to host potentially economic grades of mineralisation but has not been fully explored to define the extent of this mineralisation.

[^0]: ${ }^{1}$ Source: Lindian Resources Rare Earth distribution from 'Mineral Resource Estimate of 261 million LIN:ASX Announcement 3 August 2023'. Rare Earth Basket Price is calculated using NdPr, Dy and Tb oxide prices as at Oct 31st, 2023 from Baiinfo Market Intelligence.

