

ASX ANNOUNCEMENT 21/12/2023

WIDE LITHIUM INTERCEPTS FROM DIAMOND DRILLING AT LEIA

Highlights

Assays returned from first diamond drill holes at Leia include:

- o <u>99.0m @ 1.2%</u> Li₂O from 207.0m (TARC234D) (est. true width)
 - Within <u>135.0m</u> @ 0.9% Li₂O from 179.0m
- o <u>69.9m @ 1.2%</u> Li₂O from 399.0m (TARC245D) (est. true width)
 - Within <u>123.4m</u> @ 0.9% Li₂O from 350.7m
- o <u>60.3m at 1.4%</u> Li₂O from 297.8m (TARC161AD) (est. true width)
 - Within <u>111.4m</u> at 0.9% Li2O from 246.6m
- <u>64.4m @ 1.3%</u> Li2O from 225.0m (TARC154AD) (est. true width)
 Within <u>94.0m</u> @ 1.0 % Li₂O from 206.0m
- o <u>44.7m at 1.3%</u> Li₂O from 406.3m (TARC2644D) (est. true width)
 - Within <u>94.8m</u> at 0.9% Li₂O from 361.9m
- Leia is the largest of six mineralised pegmatite prospects at Tabba Tabba, WA Leia remains open, is more than 2.2km in strike, outcrops for 1km, has been intercepted 450m+ vertically from surface and is up to 180m wide
- 36 drill holes into Leia are awaiting assay, with the company averaging 8 holes per week
 in late 2023, with continued ramp up planned in early 2024

Australian lithium developer Wildcat Resources Limited (ASX: WC8) ("Wildcat" or the "Company") is pleased to announce initial diamond drill results at its Tabba Tabba Lithium Project, near Port Hedland, WA. Among other encouraging results, were five diamond holes that have returned significant lithium intersections over widths of 92m to 135m (see Appendix 1, Tables 1-3; and Figures 3-7).

Figure 1 – Drone image of the progress of exploration and resource drilling at Leia. Drilling is focused on the thick northern end of the Leia Pegmatite. View looks towards the north.

Wildcat Managing Director Samuel Ekins said: "Leia's first diamond core assay results are impressive and reinforce our belief that the Tabba Tabba pegmatite system and in particular Leia, has potential to be amongst the tier one lithium projects globally, located on granted mining leases, close to some of WA's biggest lithium operations and infrastructure. Of the six pegmatite prospects we have identified at Tabba Tabba, Leia is the largest and we continue to unlock significant value in drilling."

Tabba Tabba is near some of the world's largest hard-rock lithium mines, 47km from Pilbara Minerals' (ASX: PLS) 414Mt Pilgangoora Project, 87km from Mineral Resources' (ASX: MIN) 259Mt Wodgina Project and is only 80km by road to Port Hedland.

The exciting Leia Pegmatite is one of six significant pegmatite prospects within the 3.2km long field. All the pegmatite prospects at Tabba Tabba remain open and the Company is continuing with an aggressive exploration campaign.

Discussion of Exploration Activities

Wildcat has now completed 174 RC drill holes, 24 diamond tails and four full length diamond drill holes for 42,838m since drilling commenced at Tabba Tabba in July 2023.

Drilling remains focussed on the giant Leia Pegmatite but will also progress to exploration drilling of the other lithium bearing pegmatite prospects at Tabba Tabba (e.g. Chewy, Boba, The Hutt, Han and others) once additional drilling capacity is achieved. One RC rig has been drilling pre-collars, operating on a single shift, and two diamond rigs have been drilling on double shift. Drilling has ceased for a short break over Christmas and New Year but will restart in early 2024, with additional rigs used as required.

Mineralogy

Fourier-transform infra-red (FTIR) analysis confirmed spodumene as the dominant lithium mineral at Leia (see ASX announcement 23 October 2023). Quantitative x-ray diffraction (XRD) analysis is underway, and Wildcat looks forward to reporting on the results in the first quarter of 2024. Ongoing work to understand the mineralogy and geochemical characteristics of the pegmatites is continuing.

Leia Pegmatite and Central Cluster

Leia Pegmatite extends for more than 2.2km laterally along strike, 450m vertically from surface, and is up to 180m in true width.

Significant intercepts received since WC8's announcement on 29 November 2023 are shown in Appendix 1, Table 2. The best intercepts include:

- 135m @ 0.9% Li₂O from 179m (TARC234D) including 99m @ 1.2% Li₂O from 207m;
- 123.4m @ 0.9% Li₂O from 350.7m (TARC245D), including 69.9m @ 1.2% Li₂O from 399m;
- 111.4m at 0.9% Li₂O from 246.6m (TARC161AD), including 60.3m at 1.4% Li₂O from 297.8m;
- 94m @ 1% Li₂O from 206m (TARC154AD), including 64.4m @ 1.3% Li₂O from 225m; and
- 94.8m at 0.9% Li₂O from 361.9m (TARC2644D), including 44.7m at 1.3% Li₂O from 406.3m.

Cross sections are located on Figure 2. Cross Section 1 through the northern part of the Leia orebody and TARC264D is presented in Figure 6. Cross Section 2 through TARC245D is approximately 160m south of Section 1 and is presented in Figure 5. Cross Section 3 through TARC161AD and TADD008 is approximately 220m south of section 2 and is presented in Figure 4. Cross section 4 through TARC154AD is approximately 160m south of section 3 and is presented in Figure 3.

The sections are presented to demonstrate the thick width and continuity of the Leia lithium deposit along a 500m section of strike where assays have recently been received.

In most drilling to date, nearly all of the pegmatite is mineralised at grades which are considered economically significant. However, in a few instances e.g. TARC247 (figure 5) the interval of lithium mineralisation within the pegmatite interval is significantly less than neighbouring drill holes. The

geological team believe this could be due to localised stoping by a later stage of pegmatite intrusions however further work is required to evaluate the few localities where this occurs. Such instances will be investigated further after follow-up and infill drilling is completed.

The diamond results include the **highest-grade** single sample lithium assays intersected to date, with **4.97% Li₂O** being achieved in TARC245D from 369-369.4m and the adjacent sample assaying **4.63% Li₂O** at 369.4-370.2m. These zones correlate with geological logging of intervals of abundant coarse spodumene.

An isometric view of the evolving geological model for the central pegmatite cluster is shown on Figure 7. Only the Leia Pegmatite is presented in this view (the models for the adjacent mineralsed pegmatites are not shown for illustrative clarity).

The stacked Chewy pegmatite system is located to the east of, and in the hangingwall to the Leia system, it is more than 1km in strike and comprises multiple lithium mineralised pegmatites up to 42m wide. The Boba pegmatite is located to the southwest of, and in the footwall of Leia. Whilst several holes have partially intersected the Boba pegmatite, drilling is limited and further exploration is planned in for the Boba pegmatite and other targets in 2024.

Next Steps

- Commence drilling ramp up in January
- Continue to explore for the limits of Leia
- Drill Tabba Tabba's numerous high-priority pegmatites that remain under-explored / undrilled
- Commence infill drilling at Leia
- Progress permitting and evaluation studies for Tabba Tabba.

This announcement has been authorised by the Board of Directors of the Company.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Mr. Samuel Ekins Managing Director Tel: +61 (8) 6555 2950 info@wildcatresources.com.au

Mr. Matthew Banks **Executive Director** Tel: +61 (8) 6555 2950 <u>info@wildcatresources.com.au</u> Nathan Ryan **NWR Communications** Tel: +61 420 582 887 <u>nathan.ryan@</u> nwrcommunications.com.au

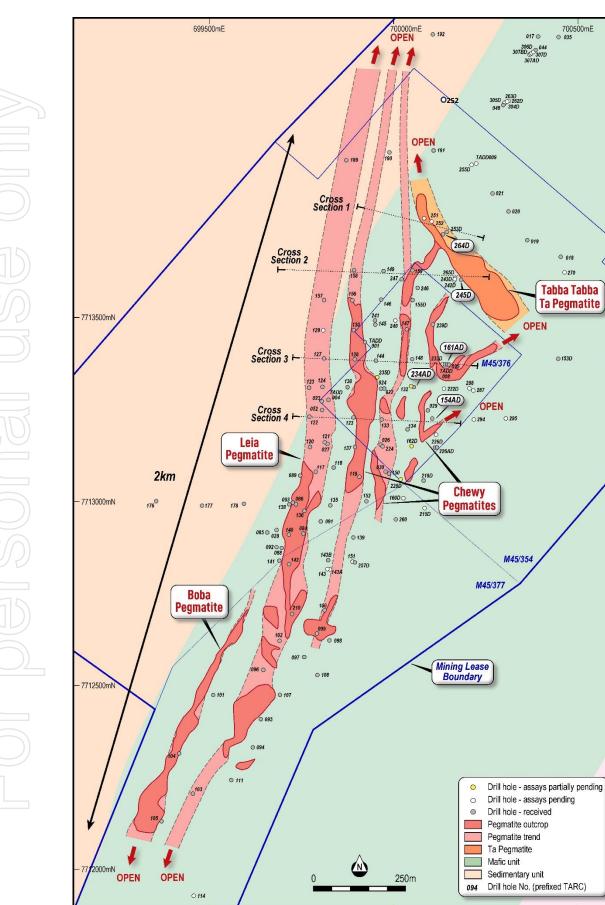


Figure 2 – The Leia pegmatite at Tabba Tabba has been intersected by drilling over a 2.2km strike length. Section Location 1-4 are shown.

301

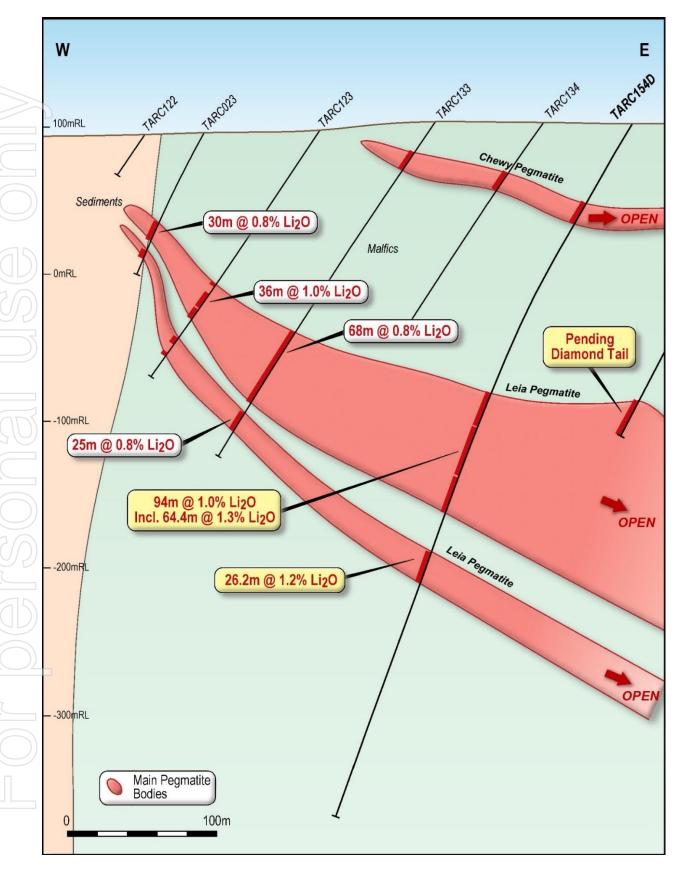


Figure 3 – Cross Section 4 through Leia showing TARC154D which returned 94m @ 1% Li2O from 206m, including 64.4m @ 1.3% Li2O from 225m.

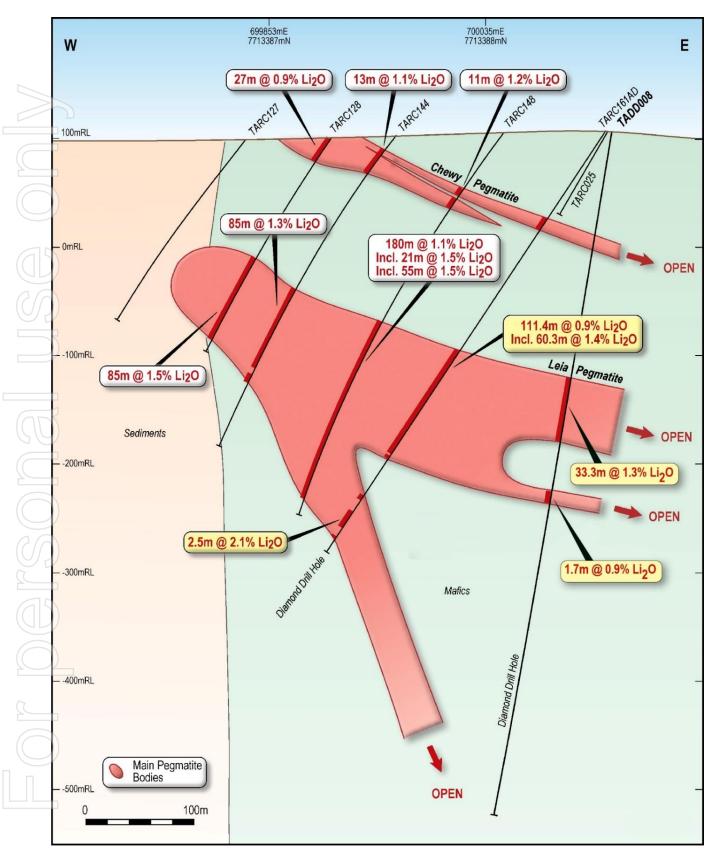


Figure 4 – Section 3, through TARC161AD, which returned 111.6m at 0.9% Li2O 246.6m (est. true width), including 60.3m at 1.4% Li2O from 297.8m and TADD008 which returned 33.3m @ 1.3% Li2O from 228.4m. Both holes are down dip of 180m at 1.1% Li₂O from 206m (TARC148) and 85m at 1.5% Li₂O from 133m (TARC128) (est. true width)¹

¹ ASX announcement 6th November 2023: <u>https://www.investi.com.au/api/announcements/wc8/da50d2db-3cd.pdf</u>

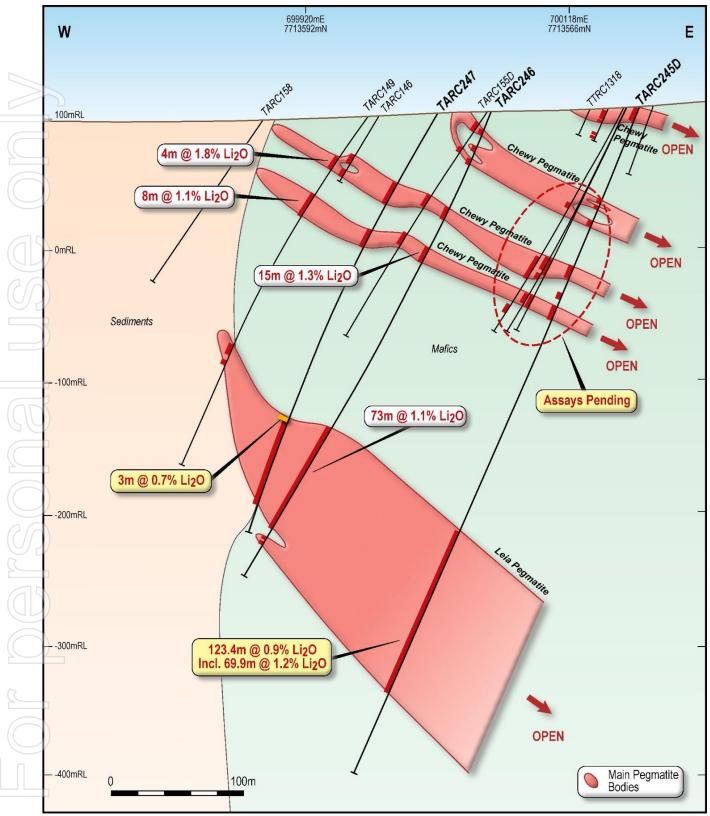


Figure 5 – Cross Section 2 through Leia showing TARC245D which returned 123.4m @ 0.9% Li2O from 350.7m, including 69.9m @ 1.2% Li2O from 399m.

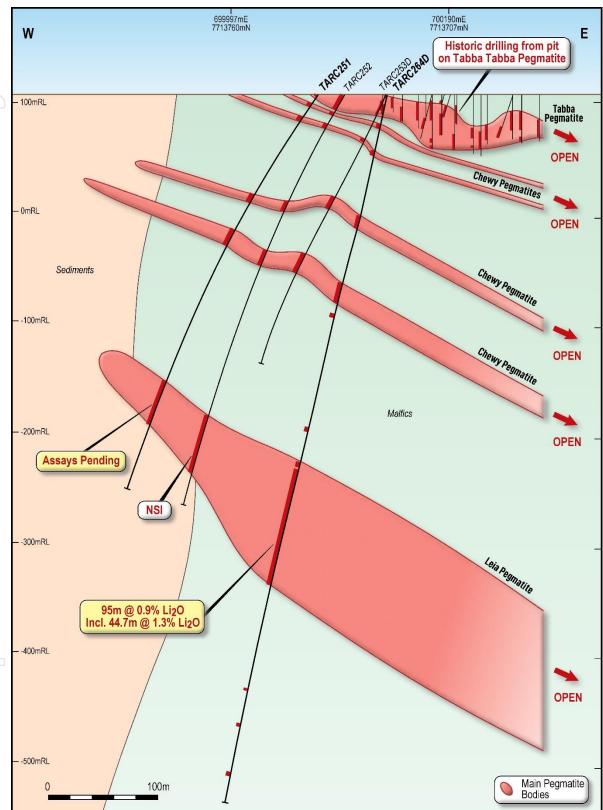


Figure 6 – Section 1, through TARC264D, which returned - 94.8m at 0.9% Li2O from 361.9m, including 44.7m at 1.3% Li2O from 406.3m.

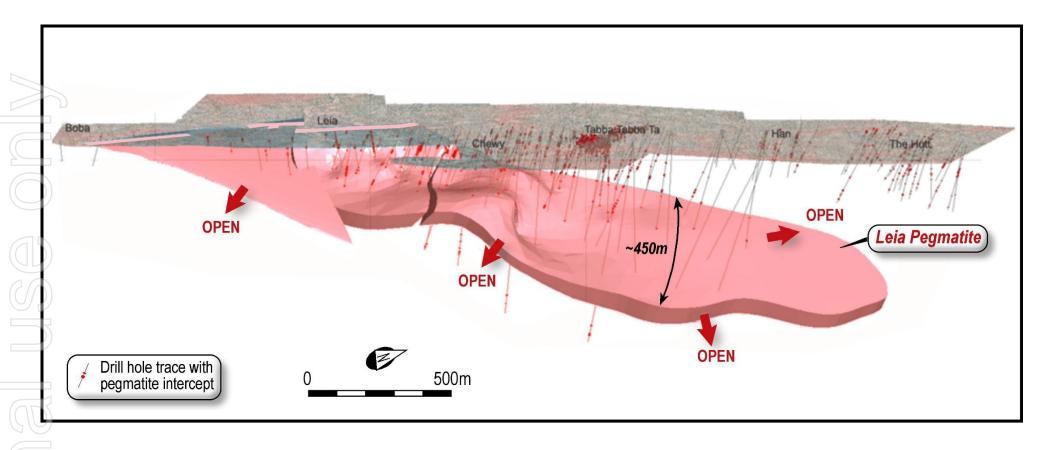


Figure 7 – Isometric view of the evolving geological model for the Leia Pegmatite. Note that the other pegmatite wireframes are not shown for illustrative clarity. View is looking down towards the west.

ENDS –

About Tabba Tabba

The Tabba Tabba Lithium-Tantalum Project is an advanced lithium and tantalum exploration project that is located on granted Mining Leases just 80km by road from Port Hedland, Western Australia. It is nearby some of the world's largest hard-rock lithium mines (47km by road from the 414Mt Pilgangoora Project² and 87km by road to the 259Mt Wodgina Project³) (Figure 8 and 9).

The Tabba Tabba project was one of four significant LCT pegmatite projects in WA, previously owned by Sons of Gwalia. The others were Greenbushes, Pilgangoora and Wodgina which are now Tier-1 hard-rock lithium mines. Tabba Tabba is the last of these assets to be explored for lithium mineralisation.

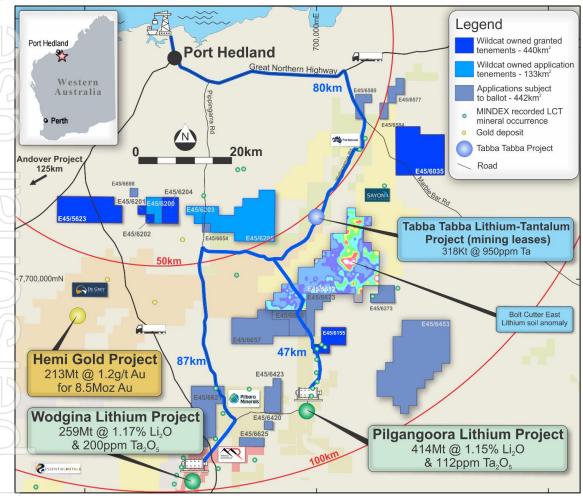


Figure 8 – Location of the Tabba Tabba Project

Wildcat announced that it had entered an exclusive, binding agreement to acquire 100% of the Tabba Tabba Lithium-Tantalum Project on the 17th of May, 2023⁴. On the 5th October, 2023 the Company provided an update on the progress of the acquisition⁵ and on 12th October, 2023 Wildcat announced it has successfully completed the acquisition of the Project.

² Pilbara Minerals Ltd ASX announcement 7 August 2023:

https://1pls.irmau.com/site/pdf/3c3567af-c373-4c3c-ba7a-af0bc2034431/Substantial-Increase-in-Mineral-Resource.pdf

³ Mineral Resources Ltd ASX announcement 23 October 2018:

http://clients3.weblink.com.au/pdf/MIN/02037855.pdf

⁴ ASX announcement 17th May 2023: <u>https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf</u>

⁵ ASX announcement 5th October 2023: <u>https://www.investi.com.au/api/announcements/wc8/79100ff0-b08.pdf</u>

Figure 9 – The Tabba Tabba Pegmatite Field comprises six prospects, the largest, so far, is Leia

700,000mE

Thirty-eight (38) outcropping pegmatite bodies have been mapped within the Mining Leases at Tabba Tabba, however only the pegmatite body hosting the Tabba Tabba Tabba Tantalum deposit had been extensively drilled and most of the samples were not assayed for lithium. The lack of drilling offered significant upside for Wildcat for lithium exploration (Figure 8)

Greenstone

L45/323

Mining Lease boundary

OPEN

1km

The Hutt Pegmatite

M45/375

TabbaTabba Pegmatite

N

Granite

M45/376

Chewy

Pegmatite

Han

Pegmatite

The pegmatite body that contains the high-grade Tabba Tabba tantalum deposit has a Mineral Resource estimate of 318Kt at 950ppm Ta₂O₅ for 666,200lbs Ta₂O₅ at a 400ppm Ta₂O₅ lower cut-off grade³. The resource drilling on the Tabba Tabba pegmatite was limited to only 35m depth, and the tantalum mineralisation is open in most directions.

Only four drill holes were completed outside of the Tabba Tabba tantalum deposit, these were drilled in 2013 and three intersected pegmatite that returned **8m at 1.42% Li₂O from 4m (TDRC02)**, **16m at 0.9% Li₂O from 10m (TDRC03) and 1m at 2.00% Li₂O from 40m to EOH (TDRC04)**. This single pegmatite has an outcrop expression that is 300m long³.

In May 2023 Wildcat commenced exploration activities with a drone photographic survey to map and validate the pegmatite outcrops on the Tabba Tabba mining tenements⁶. The Company announced that it had identified substantially more pegmatite outcrop through interpretation of the drone data in July 2023⁷.

Also in July 2023, Wildcat commenced an RC drilling program to systematically explore the Tabba Tabba mining tenement package for lithium mineralisation⁸. A major lithium discovery was announced by the Company on the 18th September, 2023⁹ after assay results confirmed thick intersections of lithium mineralised pegmatites were returned from multiple RC holes in the central and northern pegmatite clusters. Wildcat is continuing with an aggressive and systematic campaign of RC and DD drilling across the Mining Leases and to explore and evaluate this very significant lithium tantalum project.

Leia is emerging as a Tier-1 lithium pegmatite. Some of the best intercepts from Leia announced to date include:

- $_{\odot}$ 45m at 1.1% Li_2O from 24m (TARC150) (est. true width)
- o 180m @ 1.1% Li₂O from 206m (TARC148) (est. true. width)
- 39m at 1.4% Li₂O from 271m (TARC147) (est. true width)
- o 73m at 1.1% Li₂O from 266m (TARC246) (est. true. width)
 - including 10m at 2% Li₂O from 328m
- o 70m at 1.0% Li₂O from 183m (TARC145) (est. true width)
 - including 47m at 1.5% Li₂O from 183m
- \circ 85m at 1.3% Li_2O from 167m (TARC144) (est. true width)
 - Including 10m at 2.5% Li₂O from 175m
- \circ 40m at 1.2% Li₂O from 135m (TARC137) (est. true width)
- \circ 52m at 1.3% Li₂O from 117m (TARC131) (est. true width)
- \circ 85m at 1.5% Li₂O from 133m (TARC128) (est. true width)
 - Including 9m at 3.0% Li₂O from 199m
- o 35m at 1.0% Li₂O from 127m (TARC123) (est. true width)
- o 38m at 1.1% Li₂O from 132m (TARC118) (est. true width)

⁶ ASX announcement 31st May 2023: <u>https://www.investi.com.au/api/announcements/wc8/20e4fead-fa5.pdf</u>

⁷ ASX announcement 5th June 2023: <u>https://www.investi.com.au/api/announcements/wc8/f08da5f1-19e.pdf</u>

⁸ ASX announcement 14th July 2023: <u>https://www.investi.com.au/api/announcements/wc8/0d6e63aa-fbc.pdf</u>

⁹ ASX announcement 18th September 2023: <u>https://www.investi.com.au/api/announcements/wc8/bd9e13dc-76f.pdf</u>

o 35m @ 1.5% Li2O from 200m (TARC024) (est. true width)

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Wildcat Resources Limited's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Wildcat Resources Limited believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Competent Person's Statement

The information in this announcement that relates to Exploration Results for Tabba Tabba Project is based on, and fairly represents, information compiled by Mr Samuel Ekins, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Ekins is a fulltime employee of Wildcat Resources Limited. Mr Ekins has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Ekins consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

<u>No New Information or Data</u>: This announcement contains references to exploration results, Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived from the production targets, all of which have been cross-referenced to previous market announcements by the relevant Companies. Wildcat confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements. In the case of Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived from the production targets, all material assumptions and technical parameters underpinning the estimates, production targets and forecast financial information targets contained in the relevant market announcement continue to apply and have not materially changed in the knowledge of Wildcat.

This document contains exploration results and historic exploration results as originally reported in fuller context in Wildcat Resources Limited ASX Announcements - as published on the Company's website. Wildcat confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements. In the case of Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived from the production targets, all material assumptions and technical parameters underpinning the estimates, production targets and forecast financial information targets contained in the relevant market announcement continue to apply and have not materially changed in the knowledge of Wildcat.

Appendix 1

Table 1: Significant intercepts - Assays reported 0.1% Li₂O cut-off grade with 10m internal dilution for aggregated intercepts and 0.3% Li₂O cut-off and 3m of dilution for internal high-grade zones. Widths are rounded to one decimal and grades to two decimals.

Hole ID	From (m)	To (m)	Intercept Length (m)	Est. True Width (m)	Grade (Li2O %)	Prospect
TADD001	5.8	38.4	32.6	32.6	0.91	Leia
including:	6.8	18.0	11.2		0.95	
and:	22.3	37.0	14.7		1.18	
and:	156.5	230.5	74.0		0.83	
including:	156.5	173.9	17.5		2.07	
and:	177.9	194.5	16.6	16.6	1.18	
and:	199.4	200.7	1.3	1.3	1.25	
and:	211.2	212.0	0.8	0.8	0.52	
				•	•	
TADD004	93.0	175.4	82.4	78	0.60	Leia
including:	99.7	103.5	3.8		1.29	
	108.8	109.1	0.3		2.82	
	126.7	140.2	13.5		1.22	
	149.2	164.0	14.8		1.27	
and:	177.6	210.5	33.0	32	1.01	
including:	177.9	202.0			1.33	
				•	•	
TADD008	228.4	261.7	33.3	33.3	1.32	Leia
and:	280.0	281.7	1.7		0.87	
TARC133	185.0	253.0	68.0	68	0.76	Leia
including:	193.0	246.0	53.0		0.94	
and:	270.0	295.0	25.0	25	0.79	
including:	270.0	292.0	22.0		0.88	
TARC154AD	206.0	300.0	94.0	94	1.04	Leia
including:	225.0	289.4	64.4		1.30	
and:	321.8	348.0	26.2	26.2	1.19	
TARC161	238.0	241.0	3.0		0.58	Leia
including:	297.0	318.0	21.0		1.56	
TARC161AD	246.6	358.0	111.4	111.4	0.91	Leia
including:	279.6	293.9	14.3		0.90	
	297.8	358.0	60.3		1.39	
and:	370.2	375.1	4.9	4.9	0.59	
and:	413.9	416.4	2.5	2.5	2.14	
and:	424.1	426.0	1.9	1.9	0.81	Ī

Hole ID	From (m)	To (m)	Intercept Length (m)	Est. True Width (m)	Grade (Li2O %)	Prospect
TARC210	130.0	146.0	16.0	16.0	1.01	Leia
		•				
TARC219D	162.8	169.0	6.2	6.2	1.17	Leia
and:	175.4	176.4	1.0	1.0	0.59	
and:	199.9	225.0	25.1	25.1	0.82	
including:	201.9	225.0	23.1		0.87	
and:	246.2	272.6	26.4	26.4	0.74	
including:	249.6	269.3	19.7		0.93	
74 002200		22.0			4.40	
TARC220D	25.0	32.0	7.0	7.0	1.19	Leia
TARC224	49.0	52.0	3.0	3.0	0.56	Leia
and:	298.0	304.0	6.0	6.0	0.67	
TARC226AD	203.0	317.0	114.0	114.0	0.64	Leia
including:	240.0	282.6	42.6		0.84	
and:	289.1	317.0	27.9	27.9	1.22	
TARC234D	179.0	314.0	135.0	125.0	0.87	Leia
including:	207.0	306.0	99.0		1.15	
and:	350.0	411.0	61.0	56.0	0.57	
including:	370.0	385.2	15.2		1.09	
including:	388.6	406.0	17.4		0.92	
		[T			
TARC235D	19.0	20.0	1.0	1.0	1.17	Leia
and:	37.0	38.0	1.0	1.0	0.84	
and:	174.0	179.0	5.0	5.0	0.67	
and:	192.0	204.0	12.0	12.0	1.48	
and:	210.0	212.0	2.0	2.0	0.72	
TARC240	52.0	56.0	4.0	4.0	1.13	Leia
and:	98.0	109.0	11.0	11.0	0.55	
and:	100.0	108.0	8.0	8.0	0.69	
and:	188.0	190.0	2.0	2.0	0.77	1
and:	246.0	327.0	81.0	81.0	0.54	1
including:	266.0	274.0	8.0		1.63	
and:	279.0	294.0	15.0	15.0	1.09	
and:	300.0	313.0	13.0	13.0	0.71	
			I			
TARC241	18.0	37.0	19.0	19.0	0.99	Leia
including:	20.0	31.0	11.0		1.62	

Hole ID	From (m)	To (m)	Intercept Length (m)	Est. True Width (m)	Grade (Li2O %)	Prospect
and:	62.0	64.0	2.0	2.0	0.72	
and:	70.0	74.0	4.0	4.0	0.73	
and:	192.0	237.0	45.0	45.0	1.13	
including:	198.0	237.0	39.0	39.0	1.28	
TARC245D	350.7	474.0	123.4	123.4	0.95	Leia
including:	357.0	359.5	2.5		0.75	
	363.5	373.9	10.4		1.96	
	383.8	384.7	0.9		3.42	
	390.4	393.0	2.6		1.19	
	399.0	468.9	69.9		1.20	
/	472.7	473.1	0.4		1.43	
TARC247	59.0	81.0	22.0	22.0	0.52	Leia
including:	60.0	75.0	15.0		0.70	
and:	256.0	259.0	3.0	3.0	0.66	
TARC264D	339.7	351.0	11.3	11.3	0.55	Leia
including:	339.7	347.7	8.0		0.72	
and:	361.9	456.7	94.8	94.8	0.86	
including:	361.9	362.4	0.5		1.48	
	371.4	378.2	6.8		1.35	
	381.8	391.4	9.6		1.11	
	406.3	451.0	44.7		1.28	

Table 2: Drill hole collar table

Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth (m)	Azimuth	Dip	Assay Status	Prospect	Comments
TADD001	DD	699,923	7,713,434	100	300	268	-63	Received	Leia	Complete
TADD004	DD	699,822	7,713,277	96	219	268	-80	Received	Leia	Complete
TADD008	DD	700,147	7,713,373	104	640	272	-81	Received	Leia	Complete
TADD009	DD	700,224	7,713,919	107	640	262	-75	Pending	Leia	Complete
TARC001	RC	700,746	7,714,624	106	222	233	-54	Received	The Hutt	Complete
TARC002	RC	700,554	7,714,519	113	198	231	-56	Received	The Hutt	Complete
TARC003	RC	700,604	7,714,563	117	150	224	-55	NSI	The Hutt	Complete
TARC004	RC	700,649	7,714,603	110	168	226	-56	NSI	The Hutt	Complete
TARC005	RC	700,726	7,714,658	110	228	232	-55	Received	The Hutt	Complete
TARC006	RC	700,783	7,714,590	105	216	225	-56	Received	The Hutt	Complete
TARC007	RC	700,815	7,714,562	105	150	229	-55	Received	The Hutt	Complete
TARC008	RC	700,878	7,714,514	105	150	233	-54	Received	The Hutt	Complete

	Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth (m)	Azimuth	Dip	Assay Status	Prospect	Comments
	TARC009	RC	700,766	7,714,428	107	240	196	-55	Received	The Hutt	Complete
\geq	TARC010	RC	700,641	7,714,472	109	162	223	-55	Received	The Hutt	Complete
	TARC011	RC	700,539	7,714,621	113	168	224	-56	Received	The Hutt	Complete
	TARC012	RC	700,480	7,714,676	114	174	225	-54	NSI	The Hutt	Complete
	TARC013	RC	700,669	7,714,723	109	192	222	-55	Received	The Hutt	Complete
	TARC014	RC	700,835	7,714,753	104	288	227	-56	Received	The Hutt	Complete
	TARC015	RC	700,902	7,714,697	104	156	224	-55	Received	The Hutt	Complete
	TARC017	RC	700,392	7,714,261	113	156	269	-56	Received	Han	Complete
15	TARC018	RC	700,453	7,713,663	102	150	236	-60	NSI	Tabba	Complete
2	TARC019D	RCDD	700,363	7,713,709	111	174	227	-61	NSI	Leia	Pending DD Tail
6	TARC020D	RCDD	700,311	7,713,788	115	635	227	-61	Received	Leia	Pending DD Tail
12	TARC021	RC	700,266	7,713,837	109	168	235	-60	NSI	Tabba	Complete
1	TARC022	RC	699,972	7,713,305	100	150	81	-60	Received	Chewy	Complete
	TARC023	RC	699,803	7,713,271	96	276	70	-59	Received	Chewy	Complete
	TARC024	RC	699,967	7,713,305	100	258	254	-56	Received	Chewy	Complete
	TARC025	RC	700,146	7,713,372	104	120	240	-55	NSI	Chewy	Complete
\square	TARC026	RC	699,965	7,713,156	100	115	65	-60	Received	Chewy	Complete
	TARC027	RC	699,818	7,713,158	95	180	104	-59	Received	Leia	Complete
	TARC028	RC	699,679	7,712,922	99	132	91	-55	Received	Leia	Complete
	TARC029	RC	700,091	7,713,248	103	150	274	-54	NSI	Chewy	Complete
	TARC030	RC	699,987	7,713,074	99	96	178	-57	Received	Chewy	Complete
\geq	TARC031	RC	700,508	7,714,568	112	90	170	-55	NSI	The Hutt	Complete
\bigcap	TARC032	RC	700,615	7,714,567	115	52	89	-60	NSI	The Hutt	Complete
L	TARC033	RC	700,485	7,714,465	113	48	10	-55	NSI	The Hutt	Complete
10	TARC034	RC	700,767	7,714,435	106	102	340	-55	Received	The Hutt	Complete
	TARC035	RC	700,448	7,714,260	116	192	248	-61	Received	Han	Complete
\sum	TARC036	RC	700,334	7,714,376	120	150	247	-60	Received	Han	Complete
	TARC039	RC	700,411	7,714,335	116	204	246	-60	Received	Han	Complete
	TARC041	RC	700,408	7,714,401	114	210	238	-60	Received	Han	Complete
	TARC044	RC	700,381	7,714,222	111	204	241	-61	NSI	Han	Complete
	TARC048	RC	700,296	7,714,075	110	150	67	-60	NSI	Han	Complete
	TARC052	RC	699,806	7,713,247	95	108	258	-59	Received	Chewy	Complete
\geq	TARC055	RC	700,861	7,714,593	103	204	229	-70	Received	The Hutt	Complete
	TARC059	RC	700,697	7,714,698	107	228	230	-90	Received	The Hutt	Complete
	TARC060	RC	700,695	7,714,696	107	225	225	-55	Received	The Hutt	Complete
	TARC064	RC	700,508	7,714,639	113	168	227	-56	NSI	The Hutt	Complete
	TARC065	RC	700,540	7,714,566	114	150	227	-55	NSI	The Hutt	Complete
	TARC070	RC	700,967	7,714,687	104	234	232	-81	Received	The Hutt	Complete
	TARC072	RC	700,921	7,714,530	103	198	236	-71	Received	The Hutt	Complete
	TARC076	RC	700,927	7,714,722	105	246	223	-75	Received	The Hutt	Complete
	TARC082	RC	700,829	7,714,634	103	186	227	-70	Received	The Hutt	Complete
	TARC082	RC	699,754	7,712,911	103	150	92	-60	Received	Leia	Complete

	Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth (m)	Azimuth	Dip	Assay Status	Prospect	Comments
	TARC085	RC	699,654	7,712,916	98	228	95	-60	Received	Leia	Complete
\geq	TARC086	RC	699,735	7,712,994	98	162	95	-59	Received	Leia	Complete
	TARC088	RC	699,693	7,712,873	101	240	91	-60	Received	Leia	Complete
	TARC089	RC	699,748	7,713,075	95	234	98	-61	Received	Leia	Complete
	TARC091	RC	699,802	7,712,945	99	174	272	-55	Received	Leia	Complete
	TARC092	RC	699,686	7,712,872	100	24	279	-60	Received	Leia	Complete
	TARC093	RC	699,726	7,712,995	98	18	270	-60	NSI	Leia	Complete
	TARC094	RC	699,617	7,712,331	103	156	310	-57	NSI	Boba	Complete
	TARC095	RC	699,639	7,712,409	106	150	301	-55	NSI	Boba	Complete
	TARC096	RC	699,646	7,712,540	101	210	298	-55	Received	Boba	Complete
	TARC097	RC	699,755	7,712,576	96	198	301	-55	NSI	Boba	Complete
	TARC098	RC	699,830	7,712,624	95	300	302	-55	NSI	Boba	Complete
	TARC099	RC	699,790	7,712,645	94	210	297	-56	NSI	Boba	Complete
	TARC100	RC	699,811	7,712,707	98	234	300	-55	Received	Boba	Complete
	TARC101	RC	699,509	7,712,473	98	108	302	-56	NSI	Boba	Complete
	TARC102	RC	699,688	7,712,623	101	180	301	-56	Received	Boba	Complete
	TARC103	RC	699,452	7,712,211	100	132	2	-55	Received	Boba	Complete
	TARC104	RC	699,415	7,712,314	99	84	301	-56	NSI	Boba	Complete
	TARC105	RC	699,378	7,712,127	100	150	273	-55	Received	Boba	Complete
	TARC107	RC	699,689	7,712,473	99	180	301	-56	NSI	Boba	Complete
	TARC108	RC	699,794	7,712,528	95	276	307	-55	NSI	Boba	Complete
	TARC111	RC	699,557	7,712,245	101	120	305	-55	Received	Boba	Complete
	TARC114	RC	699,456	7,711,927	102	102	302	-56	NSI	Boba	Complete
	TARC117	RC	699,783	7,713,078	94	102	269	-57	Received	Leia	Complete
	TARC118	RC	699,838	7,713,095	98	198	266	-56	Received	Leia	Complete
	TARC119	RC	699,905	7,713,070	97	276	270	-55	Received	Leia	Complete
	TARC120	RC	699,770	7,713,149	94	150	271	-56	NSI	Leia	Complete
	TARC121	RC	699,810	7,713,162	95	132	264	-56	Received	Leia	Complete
	TARC122	RC	699,771	7,713,232	95	36	269	-56	NSI	Leia	Complete
	TARC123	RC	699,890	7,713,228	99	204	271	-56	Received	Leia	Complete
	TARC124	RC	699,768	7,713,308	96	156	268	-57	NSI	Leia	Complete
	TARC125	RC	699,806	7,713,311	97	120	270	-57	NSI	Leia	Complete
	TARC127	RC	699,813	7,713,388	99	204	266	-54	NSI	Leia	Complete
	TARC128	RC	699,896	7,713,387	100	228	270	-55	Received	Leia	Complete
	TARC129	RC	699,809	7,713,468	98	150	270	-55	NSI	Leia	Complete
	TARC130	RC	699,890	7,713,469	100	288	268	-55	Received	Leia	Complete
	TARC131	RC	699,875	7,713,310	99	176	273	-56	Received	Leia	Complete
	TARC132	RC	700,052	7,713,312	101	336	273	-55	Received	Leia	Complete
	TARC133	RC	699,964	7,713,222	104	330	270	-55	NSI	Leia	Complete
	TARC134	RC	700,037	7,713,196	103	378	273	-55	Received	Leia	Complete
	TARC135	RC	699,827	7,712,988	94	216	272	-55	Received	Leia	Complete
	TARC136	RC	699,756	7,712,977	98	180	271	-55	Received	Leia	Complete

	Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth (m)	Azimuth	Dip	Assay Status	Prospect	Comments
	TARC137	RC	699,892	7,713,148	98	294	270	-56	Received	Leia	Complete
\geq	TARC138	RC	699,714	7,712,992	98	120	270	-56	Received	Leia	Complete
	TARC139	RC	699,892	7,712,903	96	300	271	-55	Received	Leia	Complete
	TARC140	RC	699,714	7,712,911	102	150	270	-55	Received	Leia	Complete
	TARC141	RC	699,689	7,712,840	99	120	274	-60	Received	Leia	Complete
7	TARC142	RC	699,717	7,712,831	97	180	271	-60	Received	Leia	Complete
1	TARC143	RC	699,822	7,712,818	97	36	270	-60	Received	Leia	Abandoned
	TARC143A	RC	699,823	7,712,818	97	36	268	-56	Not Sampled	Leia	Abandoned
5	TARC143B	RC	699,819	7,712,842	98	216	273	-55	Received	Leia	Complete
1	TARC144	RC	699,951	7,713,384	102	330	255	-55	Received	Leia	Complete
2	TARC145	RC	699,949	7,713,481	101	372	266	-60	Received	Leia	Complete
E	TARC146	RC	699,965	7,713,548	102	348	266	-60	Received	Leia	Complete
	TARC147	RC	700,034	7,713,467	106	366	267	-54	Received	Leia	Complete
1	TARC148	RC	700,051	7,713,386	105	402	270	-55	Received	Leia	Complete
	TARC149	RC	699,971	7,713,626	101	300	270	-55	Received	Leia	Complete
	TARC150	RC	699,983	7,713,078	99	348	252	-60	Received	Leia	Complete
	TARC151	RC	699,892	7,712,839	97	324	267	-56	Received	Leia	Complete
9	TARC152	RC	699,925	7,713,003	97	324	271	-55	Received	Leia	Complete
	TARC153D	RCDD	700,446	7,713,385	99	228	259	-72	NSI	Leia	Pending DD Tail
	TARC154AD	RCDD	700,104	7,713,227	103	516	272	-60	Precollar	Leia	Complete
	TARC154D	RCDD	700,104	7,713,225	103	270	273	-61	Not Sampled	Leia	Abandoned
2	TARC155D	RC	700,049	7,713,549	106	384	268	-55	Received	Leia	Complete
9	TARC156	RC	699,889	7,713,547	99	246	266	-56	Received	Leia	Complete
7	TARC157	RC	699,810	7,713,546	99	150	268	-55	Received	Leia	Complete
	TARC158	RC	699,893	7,713,629	100	150	270	-55	NSI	Leia	Complete
	TARC159	RC	700,051	7,713,630	103	372	269	-55	Received	Leia	Complete
\leq	TARC160AD	RC	700,025	7,713,006	96	156	260	-52	Pending	Leia	Pending DD Tail
	TARC160D	RCDD	700,082	7,712,980	95	66	274	-60	Pending	Leia	Abandoned
	TARC161	RC	700,145	7,713,373	104	318	275	-55	Received	Leia	Complete
	TARC161AD	RCDD	700,143	7,713,372	104	468	270	-55	Received	Leia	Complete
	TARC162D	RCDD	700,049	7,713,151	100	477	271	-60	Precollar	Leia	Complete
	TARC176	RC	699,357	7,713,001	99	198	272	-54	NSI	Lando	Complete
-	TARC177	RC	699,479	7,712,989	98	180	273	-55	NSI	Lando	Complete
	TARC178	RC	699,592	7,712,994	96	198	270	-55	NSI	Lando	Complete
	TARC189	RC	699,871	7,713,927	101	180	266	-55	NSI	Lando	Complete
	TARC190	RC	699,989	7,713,947	102	198	267	-55	NSI	Lando	Complete
	TARC191	RC	700,107	7,713,953	104	300	266	-55	NSI	Lando	Complete
	TARC192	RC	700,107	7,714,266	106	198	266	-55	NSI	Lando	Complete
	TARC210	RC	699,723	7,712,696	97	348	297	-55	Received	Boba	Complete
	TARC215D	RCDD	700,081	7,712,980	95	222	269	-57	Pending	Leia	Pending DD Tail
	TARC219D	RCDD	700,081	7,713,059	96	366	269	-58	Received	Leia	Complete
	TARC220D	RCDD	700,020	7,713,060	98	126	270	-56	Pecollar	Leia	Pending DD Tail

Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth (m)	Azimuth	Dip	Assay Status	Prospect	Comments
TARC224	RC	699,965	7,713,156	100	342	267	-55	Received	Leia	Complete
TARC226AD	RCDD	700,118	7,713,149	98	475	267	-56	Received	Leia	Complete
TARC226D	RCDD	700,112	7,713,148	98	72	267	-56	Not Sampled	Leia	Abandoned
TARC230D	RCDD	700,113	7,713,179	100	192	267	-55	Pending	Leia	Pending DD Tail
TARC232D	RCDD	700,135	7,713,305	99	180	271	-61	Pending	Leia	Pending DD Tail
TARC233D	RCDD	700,130	7,713,372	105	222	258	-62	Pending	Leia	Complete
TARC234D	RCDD	700,049	7,713,314	102	431	282	-67	Precollar	Leia	Complete
TARC235D	RCDD	699,955	7,713,337	100	312	266	-55	Precollar	Leia	Complete
TARC239D	RCDD	700,105	7,713,481	115	390	274	-58	Pending	Leia	Pending DD Tail
TARC240	RC	700,005	7,713,490	104	366	269	-60	Received	Leia	Complete
TARC241	RC	699,949	7,713,493	102	300	276	-56	Received	Leia	Complete
TARC242D	RCDD	700,165	7,713,605	105	558	237	-55	Pending	Leia	Complete
TARC243D	RCDD	700,164	7,713,602	105	198	244	-58	Pending	Leia	Pending DD Tail
TARC245D	RCDD	700,181	7,713,603	105	552	267	-62	Received	Leia	Complete
TARC246	RC	700,064	7,713,578	105	401	272	-69	Received	Leia	Complete
TARC247	RC	700,022	7,713,602	102	348	268	-60	Received	Leia	Complete
TARC251	RC	700,083	7,713,770	106	402	270	-55	Pending	Leia	Complete
TARC252	RC	700,104	7,713,761	106	402	267	-60	NSI	Leia	Complete
TARC253D	RCDD	700,135	7,713,727	106	270	277	-66	Pending	Leia	Pending DD Tail
TARC255D	RCDD	700,212	7,713,914	107	420	265	-56	Pending	Leia	Complete
TARC257D	RCDD	699,891	7,712,844	97	372	267	-72	Pending	Leia	Complete
TARC260	RC	700,006	7,712,953	94	342	247	-56	Received	Leia	Complete
TARC262D	RCDD	700,309	7,714,087	110	150	264	-59	Pending	Leia	Pending DD Tail
TARC263D	RCDD	700,304	7,714,085	109	150	260	-68	Pending	Leia	Pending DD Tail
TARC264D	RCDD	700,135	7,713,727	106	661	282	-79	Received	Leia	Complete
TARC265D	RCDD	700,165	7,713,604	105	198	256	-56	Pending	Leia	Pending DD Tail
TARC270D	RCDD	700,463	7,713,622	101	799	264	-66	Pending	Leia	Pending DD Tail
TARC273	RCDD	700,453	7,713,548	102	402	276	-56	Pending	Leia	Pending DD Tail
TARC287	RC	700,215	7,713,300	98	222	271	-56	Pending	Leia	Pending DD Tail
TARC288	RC	700,205	7,713,306	98	234	268	-67	Pending	Leia	Pending DD Tail
TARC294	RCDD	700,216	7,713,221	96	240	269	-56	Pending	Leia	Pending DD Tail
TARC295	RC	700,303	7,713,223	97	282	270	-56	Pending	Leia	Pending DD Tail
TARC301	RC	700,608	7,713,386	98	192	269	-67	Pending	Leia	Pending DD Tail
TARC302	RC	700,776	7,713,385	102	198	271	-62	Pending	Leia	Pending DD Tail
TARC304D	RCDD	700,302	7,714,083	110	660	248	-65	Pending	Leia	Complete
TARC305D	RCDD	700,299	7,714,080	110	426	253	-59	Pending	Leia	Complete
TARC306D	RCDD	700,372	7,714,215	110	96	241	-63	Pending	Leia	Pending DD Tail
TARC307AD	RCDD	700,375	7,714,217	111	54	246	-76	Pending	Leia	Abandoned
TARC307BD	RCDD	700,374	7,714,214	111	696	229	-75	Pending	Leia	Complete
TARC307D	RCDD	700,378	7,714,218	111	96	253	-74	Pending	Leia	Abandoned

Table 3: Intervals logged as pegmatite (no estimation of mineral abundance) – where the dominant rock type is logged as pegmatite. There may be instances where pegmatite occurs in an interval as the subordinate rock type mixed with host lithology and these zones are not included. Because of this some significant intercepts of mineralised intervals may be marginally wider than the pegmatite dominant intervals listed in the table.

Hole	e ID	From (m)	To (m)	Thickness (m)	Rock type	Assay Status
TARC1	60AD	154	156	2	Pegmatite	Pending
TARC2	239D	42	44	2	Pegmatite	Pending
		101	113	12	Pegmatite	Pending
		145	149	4	Pegmatite	Pending
TARC	294	235	240	5	Pegmatite	Pending
TARCE	304D	188.8	189.2	0.4	Pegmatite	Pending
TARC	287	55	57	2	Pegmatite	Pending
Ð		104	117	13	Pegmatite	Pending
TARC	288	45	46	1	Pegmatite	Pending
		95	105	10	Pegmatite	Pending
		197	200	3	Pegmatite	Pending
		215	226	11	Pegmatite	Pending
D.C.		228	234	6	Pegmatite	Pending
TARC	294	64	66	2	Pegmatite	Pending
		77	86	9	Pegmatite	Pending
		213	235	22	Pegmatite	Pending
TARC	304D	287.8	294.7	6.9	Pegmatite	Pending
1		394	403.8	9.8	Pegmatite	Pending
(421.3	462.8	41.5	Pegmatite	Pending
T7		465.1	465.7	0.6	Pegmatite	Pending
		556	561.6	5.6	Pegmatite	Pending
TARC	305D	190.8	191.6	0.8	Pegmatite	Pending
		268.3	273.9	5.6	Pegmatite	Pending
		280.4	302.5	22.1	Pegmatite	Pending
		54	56	2	Pegmatite	Pending
TARC	306D	66	67	1	Pegmatite	Pending
TARC3	07AD	18	19	1	Pegmatite	Pending
		16	17	1	Pegmatite	Pending
1		56	59	3	Pegmatite	Pending
		69	70	1	Pegmatite	Pending
		15	16	1	Pegmatite	Pending
		19	21	2	Pegmatite	Pending
		57	60	3	Pegmatite	Pending
		65	66	1	Pegmatite	Pending
		72	74	2	Pegmatite	Pending
TARC2	230D	16	17	1	Pegmatite	Pending
		48	67	19	Pegmatite	Pending
		12	16	4	Pegmatite	Pending

Hole ID	From (m)	To (m)	Thickness (m)	Rock type	Assay Status
TARC233D	55	58	3	Pegmatite	Pending
	91	103	12	Pegmatite	Pending
TARC307BD	329.5	329.7	0.2	Pegmatite	Pending
1	413.7	419.7	6	Pegmatite	Pending
]	458	462.6	4.6	Pegmatite	Pending
1	491.6	492.75	1.15	Pegmatite	Pending
	505.4	505.6	0.2	Pegmatite	Pending
/	520	521.85	1.85	Pegmatite	Pending
	524.3	534	9.7	Pegmatite	Pending
	558	559.6	1.6	Pegmatite	Pending
	584.4	585.45	1.05	Pegmatite	Pending
)	592	595.45	3.45	Pegmatite	Pending
7	598.3	599.8	1.5	Pegmatite	Pending
)	626.25	626.6	0.35	Pegmatite	Pending

Cautionary note: In relation to the disclosure of visual observations of rock type, the Company cautions that visual estimates of pegmatite should never be considered a proxy for lithium mineralisation or a substitute for laboratory analysis. Laboratory assay results are required to determine the widths, mineralogy, and grade of lithium within the visible intercepts of pegmatite reported. The status of assays for each hole are listed in Table 3.

Appendix 2

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Criteria	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and' the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation and diamond drilling completed by TopDrill Drilling. All RC drilling samples were collected as 1m composites, a 3-4kg sub-sample was collected for every 1m interval using a static cone splitter with the sub-sample placed into calico sample bags and the bulk reject placed in rows on the ground. Diamond core samples were collected in plastic core trays, sequence checked, metre marked and oriented using the base of core orientation line. It was then cut longitudinally down the core axis (parallel to the orientation line where possible) and half the core sampled into calico bags using a minimum interval of 30cm and a maximum interval of 1m. Pegmatite intervals were assessed visually for LCT mineralisation by the rig geologist assisted by tools such as ultraviolet light and LIBS analyser. All samples with pegmatite and adjacent wall rock samples were sent to ALS laboratories in Perth for chemical analysis. The entire 3kg sub-sample was pulverised in a chrome steel bowl which was split and an aliquot obtained for a 50gm charge assay. LCT mineralisation was assessed using the MS91-PKG package which uses sodium peroxide fusion followed by dissolution and analysis with ICP-AES and ICP-MS. Additional multielement analyses (48-element suite) using 4-Acid digest ICP-MS were requested at the rig geologist's discretion but have not yet been evaluated and are not reported in this announcement.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Reverse circulation and diamond drilling with orientation surveys taken every 30m to 60m and an end of hole orientation using a Reflex gyro tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Sample recovery (poor/good) and moisture content (dry/wet) was recorded by the rig geologist in metre intervals. The static cone splitter was regularly checked by the rig geologist as part of QA/QC procedures.
$\sum_{n=1}^{\infty}$		 Sub-sample weights were measured and recorded by the laboratory. No analysis of sample recovery versus grade has been made at this time.

	•	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.		
Logging	•	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	• • • •	All RC samples were qualitatively logged by the rig geologist. The rock types were recorded as pegmatite, basalt, and dolerite/gabbro. Pegmatite intervals were assessed visually for lithium mineralisation by the rig geologist assisted by tools such as ultraviolet light and LIBS analyser. All chip trays were photographed in natural light and ultraviolet light and compiled using Sequent Ltd's Imago solution. All diamond core was qualitatively logged by a site geologist and the core trays photographed
Sub-sampling techniques and sample preparation	• • • •	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	• • • •	3kg to 4kg sub-samples of RC chips were collected from the rig-mounted static cone splitter into uniquely numbered calico bags for each 1m interval. Diamond core is drilled with HQ or NQ diameter and is cut longitudinally down the core axis (along the orientation line where possible) with an Almonte core saw and half core samples between 30cm and 1m in length are sampled and collected in numbered calico bags. Duplicates, blanks and standards inserted at the same rate as for the RC samples. Sample sizes are appropriate to the crystal size of the material being sampled. Sub-sample preparation was by ALS laboratories using industry standard and appropriate preparation techniques for the assay methods in use. Internal laboratory standards were used, and certified OREAS standards and certified blank material were inserted into the sample stream at regular intervals by the rig geologist. Duplicates were obtained from piles of cuttings placed in rows on the ground using an aluminium scoop at the site geologist's discretion in zones containing visual indications of mineralised pegmatite.
Quality of assay data and laboratory tests	•	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	• • •	The RC and diamond core cuttings were analysed with MS91-PKG at ALS using sodium peroxide fusion ICP-AES for a LCT suite, fire assay for gold, and 4-acid digest ICP-AES and ICP-MS for multi-element analysis. Appropriate OREAS standards were inserted at regular intervals. Blanks were inserted at regular intervals during sampling. Certified reference material standards of varying lithium grades have been used at a rate not less than 1 per 25 samples.
Verification of sampling and assaying	•	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	•	No independent verification of significant intersections has been made. Significant intersections were checked by the Exploration Manager and the Managing Director. No twinned holes have been drilled at this time.

	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Industry standard procedures guiding data collection, collation, verification, and storage were followed.
	Discuss any adjustment to assay data.	 No adjustment has been made to assay data as reported by the laboratory other than calculation of Li₂O% from Li ppm using a 2.153 conversion factor.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Location of drill holes were recorded by tablet GPS. Locational accuracy is +-1m in the XY and +-5m in the Z orientation. The first 87 RC holes drilled YTD have been had collars surveyed using a DGPS. Remaining holes will be surveyed using DGPS on a campaign basis. All current data is in MGA94 (Zone 51).
		 Topological control is via GPS and DEM calculated from a drone photographic survey. The DEM is accurate to approximately 1m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes are spaced at 40m to 160m intervals. There is abundant pegmatite outcrop and the drilling is spaced to determine continuity along strike and down dip. Infill drilling will also aim to close-off mineralisation along strike. At this stage there is insufficient data at a sufficient spacing to determine a Mineral Resource estimate. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No fabric orientation data has been obtained from the RC holes, although some holes have been logged with DH optical televiewer (OTV) and some structural data may be determined from this. Where OTV has been used on holes drilling from the northeast into Leia, the pegmatite has been intercepted at a perpendicular orientation to the hole axis, making the intercepts close to true width. These are also estimated against the geological model.
,0		• All diamond holes are oriented with a base of hole orientation line and any relevant structures and fabrics are recorded qualitatively by the site geologist and recorded in the database. All diamond holes have intercepted the pegmatite at close to perpendicular to the core axis, making the intervals close to true width.
		 True width has been estimated from a 3D geological model built using Leapfrog software. True width has not been estimated for holes which have potentially drilled down-dip of pegmatite bodies as the geometry of the pegmatite intersections cannot currently be determined. These holes include TARC028, TARC085, and TARC088 in previous announcements.
Sample security	The measures taken to ensure sample security.	• All samples were packaged into bulka bags and strapped securely to pallets on site and delivered by TopDrill to freight depots in Port Hedland. The samples were transported from Port Hedland to Perth ALS laboratories via Toll or Centurian freight contractors.

Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audit has been completed.
-------------------	---	------------------------------

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status Exploration	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties. 	 Global Advanced Metals Ltd (GAM) owns 100% of the Tabba Tabba Project Mining Leases (M45/354; M45/375; M45/376 and M45/377) A binding agreement is in place between Wildcat and GAM for Wildcat to acquire the Tabba Tabba Project as announced on 17th May 2023: <u>https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf</u> No known impediments. Goldrim Mining Ltd and Pancontinental Mining Ltd ("PanCon") completed 24 OHP, 59
done by other parties		 RC and 3 DD holes between 1984 and 1991. GAM drilling of 29 RC holes in 2013. Pilbara Minerals Ltd (PLS) completed 5 diamond holes in November 2013.
Geology	Deposit type, geological setting and style of mineralisation.	• The Tabba Tabba pegmatites are part of the later stages of intrusion of Archaean granitic batholiths into Archaean metagabbros and metavolcanics. Tantalum mineralisation occurs in zoned pegmatites that intruded a sheared Archaean metagabbro. The pegmatite contains in outcrop a symmetrically disposed outer cleavlandite zone, mica zone and a megacrystic K feldspar zone with a centrally disposed quartz zone associated with an albitic replacement unit. The zones generally dip in sympathy with pegmatite margins. (Sourced from PanCon historical reports).
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drillhole collar location information is provided in Appendix 1. True width estimations are provided for all holes. 164 RC drill holes, eight diamond tails and four diamond drill holes have been drilled by Wildcat Resources and assays have been returned for 129 holes. These are from an area in the north of the tenement package focussed on two outcropping pegmatites (Hut and Han), an area in the centre of the tenement package focussing on two outcropping pegmatites (Leia and Chewy), the south at the Boba Pegmatite, and four holes down dip from the Tabba Tabba tantalum resource pegmatite. There are over 50 outcropping pegmatite bodies mapped over the tenement package and the drilling returned to date represents only a small area of the prospective pegmatite system that outcrops over 3.2km of strike. Note also that much of the area to the west is under alluvial cover.

	JORC Code explanation	Commentary
Data aggregation methods	and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	• No top cut off has been used. All samples represent 1m composites obtained from the RC drill rig, so no weighted averaging technique has been used to report significant intervals. Aggregated pegmatite intercepts calculated at a 0.1% Li ₂ O cutoff grade with a maximum of 10m consecutive internal dilution and reporting overall intercepts with an average grade >0.5%. All smaller significant intercepts and the high-grade intervals included within broader aggregated intercepts have been separately reported and calculated using 0.3% Li ₂ O cut off and a maximum of 3m of internal dilution. All pegmatite intercepts listed in Appendix 1, Table 3 are calculated from dominant rock type from database logged geology table as a composite allowing for 2m internal dilution of "other rock". But note the following point:
		• Minor discrepancies between pegmatite thickness and mineralised intercepts may arise due to subjective interpretation of mixed intervals of pegmatite and host rock, i.e. in RC drilling where rock 1 is logged as mafic and estimated to constitute 60% of the logged interval and rock 2 is logged as pegmatite and constitute 40%. This may mean that the true boundary of the pegmatite may be wider than logged as rock type 1.
D		All aggregated intercepts have included separately reported significant intercepts.No metal equivalents have been used.
Relationship between mineralization widths and intercept lengths	 Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 Most pegmatite intervals intercepted have returned assay results >0.3% Li₂O, some are mineralised in totality, others are partially mineralised with localised zones of lithium mineralisation below 0.3%Li₂O. This is expected in fractionated, zoned pegmatite systems. All holes in this announcement have intercepted the pegmatites at a favourable angle.
Diagrams •	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See this announcement for appropriate maps and sections.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• All significant intercepts greater than 0.3% Li ₂ O have been reported in a separate table. All other intercepts or insignificant intercepts are reported in the collar table. To further provide a representative example of low and high grades a section has been provided on Figures 3, 4 and 5 to show the gross interval, internal high-grade intervals and areas less than 0.3% Li ₂ O are shown as blank.
Other substantive	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey 	 The dominant lithium mineral species appears to be spodumene based on geological observations, observations of salmon orange fluorescence under ultraviolet light, and

Criteria	JORC Code explanation	Commentary
exploration data	results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Fourier Transform Infra-Red (FTIR) analysis of one RC hole to date (the technique will be run on all holes once compared with the pending XRD to confirm robustness of the method). The FTIR technique uses reflected light spectra collected across the near (NIR), mid (MIR) and far (FIR) infra-red spectral ranges. When the sample is illuminated with infrared radiation, it absorbs certain frequencies of light that are characteristic of its chemical composition and crystal structure. ALS's FTIR-MIN method compares the absorption spectra with a library of known mineral spectra to identify the minerals present in the sample. Collected spectral data are fed into a mineral quantification model that uses a diverse range of thousands of real-world geological samples for which FTIR and quantitative XRD mineralogy data are available. A machine learning algorithm is used to associate the quantitative grams of homogenous, pulverised sample can be used to identify minerals based on their infrared absorption spectra. Further mineralogical work is in progress including quantitative XRD and thin sections.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 An ongoing campaign of drilling with a minimum of two diamond rigs and a RC drill rig to confirm the nature, orientation and extent of lithium mineralisation throughout the Tabba Tabba pegmatite field. An optical televiewer tool may be further trialled to obtain coherent data from drilled RC holes.