18 DECEMBER 2023 # EAST TROUGH FIRST-TIME MINERAL RESOURCE #### **KEY POINTS** - First-time Mineral Resource estimate records 3,000 tonnes of nickel metal at 2.7% East Trough resource complements future Baker nickel mine, with mineralisation remaining open down plunge - 85H Mineral Resource estimate also updated - Company ends 2023 with 2½ times more nickel metal than at June 2021 listing on ASX Lunnon Metals Limited (**ASX: LM8**) (the **Company** or **Lunnon Metals**) is pleased to report a first-time, initial JORC (2012) nickel Mineral Resource estimate (**MRE**) for the East Trough deposit, located to the immediate south-west of the Baker deposit at the Kambalda Nickel Project (**KNP**). The initial East Trough MRE stands at: 108,000 tonnes at 2.7% nickel for 3,000 contained nickel tonnes, all classified as Inferred Resource The Company also reports that the 85H MRE at the historical Foster mine has been updated following a metallurgical diamond drill (**DD**) program. Only four new DD holes were completed within the limits of the previously reported resource and therefore the MRE did not change materially (see ASX announcement dated 8 February 2023 & 24 November 2022 for details of the drilling results). These latest updates result in Lunnon Metals' global MRE across the KNP increasing to **3.8 million tonnes @ 2.7% nickel for 104,400 contained nickel tonnes**¹, a threefold increase in tonnes and more than 2½ times more nickel metal in MRE than at the time of the Company's Initial Public Offering in June 2021. Key implications of this initial East Trough MRE include: - Potentially economic mineralisation in close proximity to Baker - Nickel sulphide mineralisation remains open down plunge beyond 500 metres from surface - Complementary production source for a future Baker underground mine The grade of this initial MRE, its proximity to Baker and down-plunge potential makes East Trough a compelling opportunity that will likely enhance Baker's economics. ## Managing Director, Edmund Ainscough, commenting said: "The drill program in the Baker locality has delineated East Trough and provided a growth opportunity in close proximity to any future potential underground mine at Baker. Advancing East Trough to an Inferred Resource category status allows us to factor its potential impact into the technical studies ongoing for Baker and Foster. The East Trough channel is open down plunge and as with a lot of the Kambalda nickel channels, offers the prospect of continuing discovery and extensions well into the future". ¹ A classification breakdown of the current KNP MRE is tabulated and appended to this report on page 19. #### **MATERIAL INFORMATION SUMMARY – MINERAL RESOURCE ESTIMATION** Pursuant to ASX Listing Rule 5.8.1 and complementing JORC Table 1, Sections 1, 2 and 3, contained in the Annexure to this announcement, Lunnon Metals is pleased to provide the following information. The East Trough MRE was completed internally by Lunnon Metals based upon geological interpretations and 3D models compiled by its employees. Commentary on the relevant input parameters for the MRE process is contained at the end of this announcement. #### **East Trough Summary Result** The results reflect a combination of massive nickel sulphide, adjacent matrix and disseminated nickel sulphide mineralisation within the Inferred Mineral Resource classification. The breakdown of the MRE as at 18 December 2023 at a 1.0% Ni cut-off grade is as follows. **Table 1:** MRE for the East Trough Nickel Deposit as at 18 December 2023. | East Trough | tonnes | Ni % | Cu% | Co% | Pd g/t | Pt g/t | As ppm | Ni metal | |-------------|---------|------|------|------|--------|--------|--------|----------| | Inferred | 108,000 | 2.7 | 0.20 | 0.06 | 0.43 | 0.22 | <10 | 3,000 | | Total | 108,000 | 2.7 | 0.20 | 0.06 | 0.43 | 0.22 | <10 | 3,000 | Note: tonnes have been rounded to 3 significant figures, grade to 2 significant figures and nickel metal has been rounded to the nearest 100t. #### East Trough Comparison with Previous MRE Results This MRE is a first-time, initial MRE for East Trough. #### **LOCATION** The KNP area is located approximately 570km east of Perth and 50-70km south-southeast of Kalgoorlie, in the Eastern Goldfields of Western Australia (GDA94/MGA zone 51 – refer **Figure 1**). The KNP is approximately 47km² in size comprising two parcels of 19 (Foster and Baker or **FBA**) and 20 (Silver Lake and Fisher or **SLF**) contiguous granted mining leases, all situated within the famous Kambalda Nickel District, which extends for more than 70km south from the township of Kambalda. Each Mining Lease has dimensions of approximately 1,500 metres by 800 metres. The KNP is broadly surrounded by tenements held by St Ives Gold Mining Co. Pty Ltd (**SIGM**), the Company's major shareholder. The KNP is located in the semi-arid climatic region of the Goldfields and experiences cool winters and hot, generally dry summers. The average daily maximum temperature is approximately 34.8°C in summer and 19.7°C in winter. The two components of the KNP are located to the immediate north (SLF) and south (FBA) of Lake Lefroy. The KNP is accessed via public roads, well-established mine road infrastructure and the main SIGM lake causeway which extends from the northern shoreline near the Kambalda township to the south side of the lake adjacent to the SIGM main administration office, which itself is 3.5km north of the KNP site office at the historical Foster nickel mine offices. East Trough is located to the immediate south-west of the Baker deposit within the FBA. The Kambalda nickel concentrator owned and operated by BHP Group Limited subsidiary, BHP Group Limited subsidiary, BHP Nickel West Pty Ltd (**Nickel West**), is located to the immediate east of the SLF component of the KNP and approximately 25km by road to the north of the current MRE at East Trough. #### **HISTORY AND PRIOR PRODUCTION** Two historical nickel mines are located on the FBA. Foster nickel mine operated between 1981 and 1994, delivering 2.37 million tonnes of ore grading 2.57% Ni for 61,129 tonnes of nickel metal². The Jan nickel mine, accessed via the Jan Shaft, produced 1.1 million tonnes @ 2.82% Ni for 30,270 tonnes of nickel metal² before closing in 1987. The East Trough nickel deposit is approximately 1.5km north of Jan Shaft and just 450 metres to the immediate southwest of the Company's Baker deposit. East Trough has never been mined. #### DISCOVERY AND EXPLORATION PROGRAM The East Trough prospect, located adjacent to the Baker deposit (see **Figure 2**), is currently recognised to extend for at least 1.2km between historical holes CD230 to CD546 (see **Figure 3**) with the depth to the prospective basalt contact ranging from 100m to 680m below surface over that distance. A near surface elongate 650m long nickel oxide anomaly greater than 0.3% Ni is positioned immediately above the trough trend at its north-western extent but has not been modelled or estimated. The reported MRE itself is defined over a plunge extent of 550m within the currently understood trough structure. Historically, this trend was poorly tested with an irregular, WMC vintage (~1970s) drill hole spacing of approximately 250m at depth and 125m where shallow. Previous mineralised intercepts to date have tended to be relatively narrow. However, the presence of massive nickel sulphide at the important komatiite-basalt contact is considered a key indicator for prospectivity along the trough structure which is deeply incised into the underlying Lunnon Basalt footwall. WMC historical East Trough intercepts (>1.0% Ni cut off; see **Figure 3** for location; see ASX announcements dated 27 July 2021 and 1 October 2021 for further details) include: CD555 0.40m @ 9.41% Ni (from 197.25m) • CD587 2.25m @ 3.37% Ni (from 285.00m) CD315 3.33m @ 2.75% Ni (from 479.90m) CD315W4 0.78m @ 4.94% Ni (from 482.80m) Each of these intercepts contain zones of massive nickel sulphides in what are otherwise intervals of matrix to disseminated sulphides, consistent with the typical "Kambalda style" nickel sulphide mineralisation profile. With the understanding that Kambalda style nickel sulphide deposits tend to form in trough or channel structures with large length to width aspect ratios, the East Trough prospect presented itself as a compelling target. This, coupled with the understanding gained from discovering and delineating nearby Baker, where narrow mineralised intercepts can be indicative of much thicker and higher-grade zones, encouraged Lunnon Metals to further test the East Trough prospect in follow up to its 2021 early success with drill hole ECO21RC_005³. The basis of the Company's initial DD program was to test the broader gaps in the historical drilling with DD where target depths were modest, while testing on a closer spacing when target depths were permissive using reverse circulation (**RC**) drilling. ² Based on historical WMC Resources Ltd ore production and delivery records. ³ See ASX announcement dated 28/09/2021. Figure 1: The KNP (red outline) with Kambalda regional geology and location of key mines/infrastructure. **Figure 2:** Perspective view looking from the komatiite hanging wall towards the basalt footwall illustrating spatial relationship between East Trough (to the left) and Baker (to the right). The most recent RC program targeting the trough structure up-plunge of ECO21RC_005 intersected multiple mineralised positions at the important komatiite-basalt contact which appears to be possibly overturned in some positions. Significant intercepts >1.0% Ni cut off (see announcement dated 4 July 2023) included: ECO23RC_098 5.00m @ 1.51% Ni (from 182.0m); ECO23RC_100 2.00m @ 2.03% Ni (from 209.0m); ECO23RC_103 1.00m @ 5.01% Ni (from 262.0m); and ECO23RC_103 2.00m @ 4.96% Ni (from 266.0m); ECO23RC_111 1.00m @ 3.53% Ni (from 138.0m); ECO23DD_025 0.85m @ 1.41% Ni (from 308.4m); and • ECO23DD_025 0.30m @ 3.08% Ni (from 314.0m).
Figure 3: Plan view of East and West Trough targets highlighting Company drilling results. The yellow wireframe Digital Terrain Model (DTM) surface is the interpreted komatiite-basalt contact with contours in metres below surface (m BS). #### **GEOLOGY** The KNP sits within the Kambalda-St Ives region, itself part of the Norseman-Wiluna greenstone belt, which comprises regionally extensive volcano-sedimentary packages. These rocks were extruded and deposited in an extensional environment between 2,700Ma and 2,660Ma. The mining district is underlain by a north-northwest trending corridor of basalt and komatiite rocks with several prominent dolerite intrusions (see **Figure 1** above). Nickel mineralisation is normally accumulated towards the base of the thick Silver Lake Member of the Kambalda Komatiite Formation immediately above or on the contact with the Lunnon Basalt. The Lunnon Basalt and favourable komatiite stratigraphy is exposed around the Kambalda Dome, then again in the Company's FBA area, and also in the Lanfranchi-Tramways area further south due to structural folding and later thrust faulting. The East Trough nickel mineralisation is an entirely separate mineralised nickel channel historically drilled by WMC on a broad spacing, with additional delineation possible following drilling by Lunnon Metals in the gaps between the historical drill coverage. The Company's exploration programme since its IPO in June 2021 has increased the drill coverage in the general area the subject of this first-time MRE (an additional 17 RC holes and 11 DD holes). Combined with the existing historical WMC DD holes, this has allowed for an improved geological model and understanding of the controls to mineralisation. #### **DRILLING TECHNIQUES** Lunnon Metals' drilling was conducted by Blue Spec Drilling of Kalgoorlie using RC and DD techniques. In total some 28 holes (17 RC and 11 DD) have been drilled, sampled and assayed by the Company at the East Trough prospect to assist the interpretation of the geology and subsequent MRE exercise. Of these, five RC and six DD holes were used to directly inform the MRE. A total of nine WMC surface DD holes, drilled in the 1970s and 1980s, were also used to directly inform the MRE, of which seven were accessed and re-cut/re-sampled under the Historical Core Program. All Lunnon Metals' and WMC holes used to directly inform the MRE exercise are provided with collar and assay details in the annexures at the end of this report RC holes were drilled with a 5½-inch bit and face sampling hammer. RC holes are drilled dry with the use of booster/auxiliary air when, or if, ground water is encountered. Lunnon Metals' DD holes were drilled as oriented HQ size (63.5mm core diameter) from surface within weathered and saprolite material before casing off at varying depths within hard rock and completing the hole with NQ2 size (51mm core diameter). Although no documentation is available to describe the drilling techniques used by WMC at the time, it is understood that conventional drilling methods were used consistent with industry standards. None of the WMC diamond drill core was oriented. #### SAMPLING AND SUBSAMPLING TECHNIQUES RC samples were collected on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. The 1.0m sample mass is typically split to 3.0kg on average. Industry standard quality assurance and quality control (**QAQC**) measures are employed involving certified reference material (**CRM**) standard, blank and field duplicate samples. All samples were dried and pulverised at an independent laboratory prior to analysis. Oriented DD core samples were collected with a DD rig drilling HQ and NQ2 size core. After geological logging, the core was marked up for sampling at a typical minimum interval of 0.3m to ensure adequate sample weight and to a typical maximum interval of 1.0m, constrained by geological boundaries. The selected sample intervals of drill core were cut in half along the length of the drill core. Typically, one half of the drill core is sent to the laboratory for assay and the other half retained in its original core tray. Specific Gravity, or density measurements were taken for each mineralised DD sample for the Lunnon Metals drill holes. Sample weights vary depending on sample length and density of the rock. As described with the RC sampling, industry standard QAQC measures are employed at the sampling stage. Upon receipt, the independent laboratory dried, crushed and pulverised the core samples prior to analysis. In zones of potential economic nickel mineralisation, the half core sample was vacuum sealed and stored refrigerated for later potential use in metallurgical test work. Sample sizes for both RC and DD are considered appropriate for the style of mineralisation (potentially nickeliferous massive, matrix and disseminated sulphides, hosted in komatiite). In regard historical core used in the estimation, WMC typically drilled NQ and BQ size drill holes with core collected in steel or hybrid wooden/steel core trays as observed and validated by Lunnon Metals. Subsampling techniques typically involved half and quarter sawn drill core with the quarter core dispatched for assaying. Sample lengths were similar to those described and used by Lunnon Metals. Where historical core was re-sampled by Lunnon Metals for validation purposes the remaining quarter (or half) core was used. #### SAMPLE ANALYSIS METHOD Lunnon Metals samples were submitted to Intertek Genalysis in Kalgoorlie for sample preparation. Pulverised samples were then transported to Intertek Genalysis in Perth for analysis. Samples were analysed for a multi-element suite including Ni, Cu, Co, Cr, As, Fe, Mg, Pb, S, Ti and Zn as a minimum. Analytical techniques used a four-acid digest (with ICP-OES or ICP-MS finish). Within the expected nickel mineralised zones, the platinum group elements (Pd, Pt, Au) were also analysed using a 50g charge lead collection fire assay method with ICP-MS finish. The resultant Lunnon Metals and laboratory QAQC data is reviewed upon receipt and prior to MRE work and the accuracy and precision of the data has been identified as acceptable. There is no data available pertaining to WMC's assaying and laboratory procedures; however, it is expected that industry standards as a minimum were likely to have been adopted. WMC's samples were typically assayed for nickel and to a lesser extent copper, cobalt and zinc. Lunnon Metals reprocessed, re-logged, cut and assayed WMC historical core representing approximately 73% of historical metres drilled that intersected the geological domains used to derive the MRE. There were no issues noted regarding the representivity of the existing assays previously recorded by WMC for Ni and where relevant Cu. These resampled intervals were also assayed for Ni, Cu, Co, Cr, As, Fe, Mg, Pb, S, Ti and Zn as a minimum and if required, platinum group elements (Pd, Pt, Au) within the expected nickel mineralised zones. #### **GEOLOGICAL MODELLING & INTERPRETATION** The modelled MRE deposit is defined by a main elongate, short strike length, plunging nickel shoot, hosted at the base of the first komatiitic flow within a deeply incised structural embayment in the footwall Lunnon Basalt. The overall average strike and dip is approximately 085°/35° south. The main nickel mineralisation is hosted at the base of the Kambalda Komatiite at its contact with the footwall Lunnon Basalt. This style of mineralisation is the more traditional style in the Kambalda region. Two additional mineralised domains were modelled which remain as unclassified due to lack of drilling density. The domains included a thin discontinuous hanging wall lens immediately above the main contact mineralisation and a small contact mineralisation domain in an overturned basalt contact position. In plan view, the outline of the main contact mineralisation domain is one of an irregular elongate ovoid shape with a long axis plunge of approximately 25° towards 125° currently extending for 550m. The across plunge dimension is on average 50m to 60m. The vertical extent of the deposit is approximately 300m ranging from +130m above sea level (195m below ground level) to -170m above sea level (500m below ground level). The deposit domain wireframes were modelled via a process of drillhole interval selection and 3D implicit 'vein' modelling within the Leapfrog Geo® software. Interval selection is a manual process performed by the geologist (who was the Competent Person) in the Leapfrog Geo® 3D software environment whereby drillhole sample/logging intervals are tagged and coded with the relevant nickel sub-domain ID. The 3D implicit 'vein' modelling, or wireframe generation, is further constrained by control strings or points manually drawn in the Leapfrog Geo® 3D software environment by the geologist to honour the overall geological, mineralisation and structural interpretation. #### **ESTIMATION METHODOLOGY** Lunnon Metals produced a MRE for the East Trough nickel deposit. Validated drillhole data and geological interpretation wireframes were generated and the MRE produced using 3D ordinary kriging (OK) in Leapfrog Geo® 3D software. Estimates were made and are reported for nickel, copper, cobalt, palladium, platinum and arsenic. Arsenic was mostly below detection so the inverse distance squared (ID2) method was used. Bulk density was derived from a regression formula and used to derive tonnage. No previous mining has occurred at East Trough and therefore no previously mined areas needed to be excised. #### **CUT-OFF GRADE** The cut-off grade for reporting the East Trough MRE is above 1.0% nickel, which is the same as the existing MRE cut-offs reported by Lunnon Metals. Given its proximity to the Baker deposit, it is assumed that the East Trough MRE could be mined via underground methods. The cut-off grade chosen aligns with an estimated approximate breakeven grade that will cover benchmarked
mining unit rates, assumed processing recovery and concentrator payability levels together with ore off-take processing costs derived from both data reported publicly by third parties in the Kambalda district and the Company's recent PFS study at the nearby Baker deposit, coupled with averaged analysts' forecasts of future nickel prices and exchange rates. **Figure 4:** Cross Section 6,530,820mN showing geological interpretation and sub-domains, looking north through East Trough mineralised surfaces. Figure 5: Cross Section 6,530,760mN showing geological interpretation, looking north through East Trough mineralised surfaces. #### **RESOURCE CLASSIFICATION CRITERIA** \P n general, classification of the Mineral Resources at East Trough uses the following criteria (see **Figure 6**): - Confidence in the volume, location and orientation of the geological solids which is influenced by drill spacing; - Confidence in the nickel estimate; and - Reasonable prospects for eventual economic extraction. Mineralised blocks typically within about 60m of the drill hole and where the confidence in the interpretation is high have been classified as Inferred. The number of drillholes is taken into account and areas with less than three drillholes are excluded from the Inferred resource. The remaining estimate outside the Inferred Resource area is unclassified as it still has a general drill hole spacing insufficient to classify as Mineral Resource. Isolated mineralisation domains immediately in the hangingwall, and on the edge, of the East Trough deposit are not classified as Mineral Resource and are considered as an internal Exploration Target. The Mineral Resource estimate appropriately reflects the Competent Person's view of the deposit. Further commentary on the relevant input parameters for the Mineral Resource are contained in Table 1, Sections 1, 2 and 3, in the Annexure to this announcement. **Figure 6:** Mineral Resource isometric view looking approx. north-west, illustrating areas of Inferred Resource (green) and Unclassified mineralisation (blue). # REASONABLE PROSPECTS FOR EVENTUAL ECONOMIC EXTRACTION (RPEEE) INCLUDING CONSIDERATION OF MATERIAL MODIFYING FACTORS The East Trough MRE is located on granted Mining Leases and native title has been determined. There is no negotiation step required prior to any mining commencing, however, the Company has entered into a Negotiation Protocol with the relevant native title claimant and is progressing those discussions with agreement and execution expected well before any potential development commences. Prior to any development or mining of East Trough, a Mining Proposal/Mine Closure Plan is required to be submitted to the Western Australian Department of Mines, Industry Regulation and Safety along with a Whole of Mine Risk Assessment. This initial East Trough MRE is a key input into the technical assessment required to commence these submissions. The Company completed and reported a Preliminary Feasibility Study⁴ (**PFS**) into potential underground mining of the Baker nickel deposit, also located nearby on the FBA. A Company employee who is a mining engineer and has ASX:LM8 PAGE 11 • ⁴ See ASX announcement dated 22 May 2023 for full details of the PFS, including input assumptions and parameters and physical and financial results. over 30 years' experience in mining in Western Australia, including 7 years' experience in the relevant commodity at Kambalda, co-ordinated and managed the PFS process and compilation of findings and results. The Baker PFS estimated LOM operating cost for mining, surface haulage, processing, and general and administration to an accuracy level of -15% to +25%. The operating costs were compiled and developed from a variety of sources, including: - First-principle estimates based on a ground up build approach based on key physical drivers, volumes and consumption rates; - Benchmarking by an external consultant against current unit costs for mines operating at a similar scale and utilising similar mine methods; - Contractor request for quotation or request for pricing (RFQ or RFP), in particular for mining, paste-fill, surface haulage, power station, diesel and cement, accommodation, and flights; - Indicative terms for the OTCPA; - Key consultant and vendor recommendations/inputs; - Metallurgical testwork; and - General, administrative costs, personnel num prior experience and input from consultants. The PFS derived the following unit operating costs: General, administrative costs, personnel numbers and salary costs determined by Lunnon Metals, based on C1 cash operating cost estimate: \$279/t ore **Total Operating cost estimate:** \$309/t ore All-in-Sustaining cost estimate: \$340/t ore A fully costed cut-off grade was calculated which included all costs for mining and processing ore material at Baker. This value was used to generate focused mining zones that determine the extents of the ore development. The incremental cut-off grade was applied to low grade development necessary to provide access to high grade areas that would not normally be targeted for mining. Based on the detailed analysis competed at Baker and summarised above, a reporting cut-off of 1.0% Ni has therefore been adopted by the Company when assessing RPEEE and applied for this MRE. The grades and geometry of the East Trough nickel mineralisation are generally amenable to selective, small-scale underground mining, and where widths allow, cut and cemented paste fill, as was contemplated in the Baker PFS. Many nickel surfaces mined historically on both the FBA and SLF areas also exploited similar style mineralisation. Presently, it is forecast that no processing capital will be required as future nickel ore may be sent to the nearby Nickel West concentrator with Nickel West retaining a right of pre-emption in relation to any proposal by Lunnon Metals to enter into any sales contract or other sales arrangement to realise any revenue or other benefit from the treatment or sale of nickel ore, beneficiated nickel ore, nickel concentrate, nickel matte or any other form of refined or smelted nickel won from the KNP. If the Company agreed commercial off-take arrangements with a different concentrator owner, or Nickel West chose not to agree commercial terms for future ore off-take, Nickel West may charge a royalty on any nickel produced from the KNP. PAGF 12 ASX:LM8 Figure 7: Historical nickel metal in ore fed to the Kambalda Concentrator (1967-1997) produced from nickel mines now in Lunnon Metals' portfolio⁵. The initial metallurgical test work at East Trough is yet to be completed, however, as shown in **Figure 7** above, the nickel mines that now sit inside the Lunnon Metals' portfolio contributed a significant proportion of the ore feed to the Kambalda Nickel Concentrator, ranging from 100% (when Silver Lake Shaft was the first and only operational mine), to regularly contributing 25-30% when Foster, Jan and Fisher were also operational. There are no current reasons to consider that future East Trough nickel mineralisation would behave differently when subjected to the same process flow operated by Nickel West. Accordingly, the Competent Persons consider there are reasonable prospects for the eventual future economic extraction of the East Trough nickel deposit. On the basis that future underground exploration yielded positive results and technical studies continued to be supportive of the reasonable prospect of exploiting East Trough, the MRE would be re-estimated in compliance with the JORC Code (2012) at that time. #### **FUTURE PLANS** This new MRE will form the basis of economic studies to investigate the potential to exploit the East Trough deposit in the future as part of a future Baker development. These studies will include mine design and scheduling, estimation of capital access costs, estimation of future operating costs of mining and discussion with potential ore tolling and concentrate purchase partners with respect to the metallurgical recovery and payability terms of future East Trough nickel sulphide production. Lunnon Metals intends to continue to explore and seek to define further MRE potential at East Trough. As a first step in this regard, the current PFS evaluating a combination of development and mining at both Baker and Foster will ⁵ Based on historical WMC Resources Ltd ore production and delivery records. consider the merits of extending an exploration decline or cross-cut from the potential future Baker development/workings. This potential future cross-cut would serve multiple purposes, including: - Underground diamond drill platform to infill and upgrade the MRE and test its extensions; - Double as a necessary future second means of egress from any stoping/production at East Trough upon a restart (i.e. the cross-cut will be required assuming successful integration of East Trough into any future Baker mine). The results of the above studies, if positive, will form the basis of a development study that may lead to the future declaration of a Probable Ore Reserve from those portions of the ultimate Mineral Resource at the Indicated (or higher) classification. This development study will also deliver a mine schedule which will position the Company to review processing alternatives which may include detailed negotiations with potential ore tolling and concentrate purchase (**OTCPA**) partners in the immediate local area. In parallel, regulatory approvals will continue with the relevant government bodies to enable the Baker mine development to be submitted and subsequently approved, with East Trough most logically then accessed as a satellite area from the future Baker underground development. #### NEWS FLOW / MRE UPDATE #### **85H Summary Result** A metallurgical program of four surface DD holes was incorporated in an updated MRE. The MRE did not change materially⁶, as the program was primarily aimed at collecting metallurgical sample. A minor decrease in nickel
metal resulted from additional Specific Gravity (**SG**) data that refined the grade versus SG relationship for the modelled nickel sulphide mineralisation. Insufficient WMC historical assay data exists for copper, cobalt and arsenic in the immediate vicinity of the MRE to report meaningful estimates for those elements. In this regard and as previously reported to the ASX, both the assay results for the Company's own drilling and the metallurgical testwork indicated good copper and cobalt by-product credit levels and minimal arsenic present on the 85H⁷. The breakdown of the updated MRE at a 1.0% Ni cut-off grade is as follows. **Table 2:** MRE for the 85H Nickel Deposit as at 18 December 2023. | 85H | tonnes | Ni % | Ni metal | | |-----------|---------|------|----------|--| | Indicated | 395,000 | 3.2 | 12,800 | | | Inferred | 294,000 | 1.2 | 3,600 | | | Total | 689,000 | 2.4 | 16,400 | | Note: tonnes have been rounded to 3 significant figures, grade to 2 significant figures and nickel metal has been rounded to the nearest 100t. #### 85H Comparison with Previous MRE Results The comparison between the June 2021 MRE reported at the time of the Company's Initial Public Offering and the current updated figures, is as follows: Table 3: Comparison of June 2021 and December 2023 MRE results. | 85H | Ju | une 2021 | MRE | Dece | mber 202 | 3 MRE | Ch | ange % | | |-----------|---------|----------|--------|---------|----------|--------|--------|--------|-------| | оэп | tonnes | Ni % | metal | tonnes | Ni % | metal | tonnes | Ni % | metal | | Indicated | 387,000 | 3.3 | 12,800 | 395,000 | 3.2 | 12,800 | 102% | 98% | 100% | | Inferred | 300,000 | 1.3 | 3,800 | 294,000 | 1.2 | 3,600 | 98% | 98% | 96% | | Total | 687,000 | 2.4 | 16,600 | 689,000 | 2.4 | 16,400 | 100% | 99% | 99% | ⁶ The 85H has not recorded a material change, therefore no JORC Table 1 is appended. The JORC Table 1 in the annexure supports the East Trough MRE. ⁷ See ASX Announcements dated 1 August 2023, 8 February 2023 & 24 November 2022. ⁸ The percentage change is of the underlying unrounded figures. #### **Foster South and Fisher** As was the case with the 85H deposit, the metallurgical DD program at Foster South is also not expected to result in a material change to that deposit's MRE. The first-time MRE for the "F Zone" at the historical Fisher nickel mine resulting from the Company's signature Historical Core Program is close to finalisation and will be reported when complete early in 2024. This release has been approved and authorised for release by the Board. Edmund Ainscough Managing Director Phone: +61 8 6424 8848 Email: info@lunnonmetals.com.au Annexure 1: Diamond Drill Hole Collar Table for East Trough holes informing the MRE | Hole ID | Easting | Northing | Elevation
(m ASL) | Dip | Azimuth | EOH
Drill
Depth
(m) | Hole
Type | Grid | |-------------|-----------|-------------|----------------------|-------|---------|------------------------------|--------------|----------| | ECO21RC_005 | 385,503.4 | 6,530,799.1 | 324.6 | -64.9 | 279.3 | 300.0 | RC | MGA94_51 | | ECO23DD_020 | 385,732.6 | 6,530,659.8 | 328.3 | -70.9 | 275.2 | 501.5 | DD | MGA94_51 | | ECO23DD_023 | 385,506.6 | 6,530,753.8 | 325.5 | -79.9 | 269.2 | 338.0 | DD | MGA94_51 | | ECO23DD_025 | 385,508.2 | 6,530,752.7 | 325.4 | -79.6 | 240.4 | 348.9 | DD | MGA94_51 | | ECO23DD_030 | 385,731.5 | 6,530,658.9 | 328.4 | -75.8 | 267.2 | 500.2 | DD | MGA94_51 | | ECO23DD_031 | 385,505.8 | 6,530,750.5 | 325.5 | -75.6 | 269.3 | 342.2 | DD | MGA94_51 | | ECO23DD_032 | 385,506.5 | 6,530,750.5 | 325.4 | -88.6 | 127.8 | 351.7 | DD | MGA94_51 | | ECO23RC_098 | 385,320.9 | 6,530,839.9 | 322.7 | -78.1 | 94.3 | 264.0 | RC | MGA94_51 | | ECO23RC_099 | 385,321.4 | 6,530,839.9 | 322.7 | -84.8 | 93.1 | 264.0 | RC | MGA94_51 | | ECO23RC_100 | 385,370.2 | 6,530,856.7 | 322.8 | -72.1 | 295.1 | 234.0 | RC | MGA94_51 | | ECO23RC_103 | 385,496.1 | 6,530,805.9 | 324.4 | -67.3 | 277.0 | 300.0 | RC | MGA94_51 | | CD315 | 385,730.1 | 6,530,557.0 | 329.5 | -90.0 | 0.0 | 748.0 | DD | MGA94_51 | | CD315W1 | 385,730.1 | 6,530,557.0 | 329.5 | -90.0 | 0.0 | 526.8 | DD | MGA94_51 | | CD315W3 | 385,730.1 | 6,530,557.0 | 329.5 | -90.0 | 0.0 | 542.0 | DD | MGA94_51 | | CD315W4 | 385,730.1 | 6,530,557.0 | 329.5 | -90.0 | 0.0 | 502.0 | DD | MGA94_51 | | CD546 | 385,826.7 | 6,530,358.0 | 335.2 | -90.0 | 0.0 | 771.0 | DD | MGA94_51 | | CD555 | 385,380.0 | 6,530,853.0 | 322.9 | -90.0 | 0.0 | 250.0 | DD | MGA94_51 | | CD583 | 385,430.0 | 6,530,754.0 | 323.5 | -90.0 | 0.0 | 310.0 | DD | MGA94_51 | | CD587 | 385,480.0 | 6,530,755.0 | 324.0 | -90.0 | 0.0 | 341.0 | DD | MGA94_51 | | SID317 | 385,327.7 | 6,530,854.0 | 320.9 | -90.0 | 0.0 | 357.0 | DD | MGA94_51 | | | | | | | | | | | **Annexure 2: Drill Intercepts informing the East Trough MRE** | Hole ID | From
(drill
depth)
(m) | Width
(m) | Ni
% | Cu % | Co % | Fe % | Mg
% | As
ppm | Pd
g/t | Pt
g/t | Cut-off %
Ni* | |-------------|---------------------------------|--------------|---------|------|------|------|---------|-----------|-----------|-----------|------------------| | ECO21RC_005 | 255.00 | 1.00 | 1.11 | 0.39 | 0.02 | 14.0 | 4.9 | <10 | n/a | n/a | 1.0 | | ECO21RC_005 | 289.00 | 2.00 | 5.07 | 0.14 | 0.06 | 13.5 | 8.1 | <10 | n/a | n/a | 1.0 | | ECO23DD_020 | 389.00 | 1.00 | 1.18 | 0.07 | 0.02 | 7.7 | 16.2 | <10 | n/a | n/a | 1.0 | | ECO23DD_020 | 392.50 | 1.25 | 1.20 | 0.12 | 0.03 | 12.9 | 11.2 | <10 | n/a | n/a | 1.0 | | ECO23DD_023 | 291.00 | 0.40 | 1.26 | 0.09 | 0.03 | 7.3 | 17.4 | <10 | 0.25 | 0.13 | 1.0 | | ECO23DD_023 | 297.20 | 1.47 | 3.93 | 0.15 | 0.06 | 14.8 | 11.0 | <10 | 0.44 | 0.21 | 1.0 | | ECO23DD_025 | 308.40 | 0.85 | 1.41 | 0.06 | 0.02 | 7.9 | 17.8 | <10 | 0.27 | 0.15 | 1.0 | | ECO23DD_025 | 314.00 | 0.30 | 3.08 | 0.23 | 0.05 | 12.3 | 10.6 | 13 | 0.37 | 0.08 | 1.0 | | ECO23DD_030 | 392.45 | 1.35 | 2.00 | 0.19 | 0.04 | 22.3 | 4.4 | <10 | 0.30 | 0.16 | 1.0 | | ECO23DD_031 | 296.00 | 1.80 | 0.85 | 0.03 | 0.02 | 6.6 | 18.2 | <10 | 0.19 | 0.06 | 1.0 | | ECO23DD_031 | 297.80 | 3.95 | 1.92 | 0.12 | 0.04 | 10.1 | 15.0 | <10 | 0.40 | 0.19 | 1.0 | | ECO23DD_032 | 295.50 | 0.50 | 1.01 | 0.11 | 0.02 | 7.6 | 16.5 | <10 | 0.16 | 0.10 | 1.0 | | ECO23DD_032 | 297.00 | 0.70 | 0.81 | 0.07 | 0.02 | 10.4 | 14.5 | <10 | 0.16 | 0.05 | 1.0 | | ECO23RC_098 | 182.00 | 5.00 | 1.51 | 0.08 | 0.02 | 6.9 | 15.0 | <10 | n/a | n/a | 1.0 | | ECO23RC_099 | 173.00 | 1.00 | 0.81 | 0.05 | 0.01 | 9.0 | 6.8 | <10 | n/a | n/a | 1.0 | | ECO23RC_100 | 209.00 | 2.00 | 2.03 | 0.14 | 0.03 | 11.2 | 7.7 | <10 | 0.33 | 0.13 | 1.0 | | ECO23RC_103 | 262.00 | 1.00 | 5.01 | 0.12 | 0.10 | 27.9 | 7.9 | <10 | 0.54 | 0.21 | 1.0 | | ECO23RC_103 | 266.00 | 2.00 | 4.96 | 0.67 | 0.08 | 19.5 | 8.2 | <10 | 0.71 | 0.32 | 1.0 | | CD315 | 479.00 | 4.30 | 2.24 | 0.18 | 0.04 | 15.0 | 10.9 | <10 | n/a | n/a | 1.0 | | CD315W1 | 135.50 | 0.50 | 0.88 | 0.04 | 0.02 | 9.1 | 15.6 | <10 | n/a | n/a | 1.0 | | CD315W3 | 360.55 | 0.45 | 0.85 | 0.06 | 0.02 | 11.5 | 14.3 | <10 | n/a | n/a | 1.0 | | CD315W4 | 208.84 | 0.78 | 5.62 | 0.67 | 0.14 | 35.4 | 3.3 | <10 | n/a | n/a | 1.0 | | CD546 | 711.30 | 1.00 | 1.90 | 0.16 | n/a | n/a | n/a | n/a | n/a | n/a | 1.0 | | CD555 | 197.25 | 0.40 | 9.16 | 0.38 | 0.18 | 37.7 | 3.3 | <10 | n/a | n/a | 1.0 | | CD583 | 270.05 | 1.17 | 1.30 | 0.06 | n/a | n/a | n/a | n/a | n/a | n/a | 1.0 | | CD587 | 279.00 | 1.00 | 0.93 | 0.04 | 0.00 | n/a | 0.0 | n/a | n/a | n/a | 1.0 | | CD587 | 286.00 | 1.25 | 1.28 | 0.15 | 0.07 | 13.9 | 14.0 | <10 | n/a | n/a | 1.0 | | SID317 | 208.14 | 0.86 | 0.82 | 0.02 | 0.01 | 9.1 | 13.2 | <10 | 0.26 | 0.13 | 1.0 | 'n/a' means these elements were not assayed ^{*} Cut-off grade is modelling cut-off as described in the JORC Table 1; although close to 1% Ni cut-off it is not always exactly 1%. #### **COMPETENT PERSON'S STATEMENT & COMPLIANCE** Any information in this announcement that relates to nickel geology, nickel Mineral Resources, Exploration Targets, Exploration Results and the Company's Historical Core Program, which includes the accessing, re-processing, relogging, cutting and assaying of historical WMC Resources Ltd diamond core and the appropriateness of the use of this data and other historical geoscience hard copy data such as cross sections, underground level mapping plans, longitudinal projections and long sections, including commentary relying on personal experience whilst employed at Kambalda by WMC Resources Ltd and Gold Fields Ltd, is based on, and fairly represents, information and supporting documentation prepared by Mr. Aaron Wehrle, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr. Wehrle is a full-time employee of Lunnon Metals Ltd, a shareholder and holder of employee options/performance rights; he has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Wehrle is the Company's principal Competent Person and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears. The information in this announcement that relates to the MRE geostatistics, methodology and estimation is based on, and fairly represents, information and supporting documentation prepared by Mr. Stephen Law, who holds current Chartered Professional (Geology) status with the AusIMM. Mr Law is a full-time employee of Lunnon Metals Ltd; he has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Law consents to the inclusion in
this announcement of the matters based on his information in the form and context in which it appears. The information in this announcement that relates to reporting of prior nickel metallurgical testwork results, was based on, and fairly represents, information and supporting documentation prepared by Mr. Barry Cloutt, who is a Member of the AusIMM. Mr. Cloutt is an external and independent consultant to Lunnon Metals Ltd and has sufficient experience that is relevant to the activity that he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Cloutt consented to the inclusion in those announcements of the matters based on his information in the form and context in which it appears. Any information in this announcement that relates to the mining, metallurgical and environmental modifying factors or assumptions as they may apply to the Company's MREs was based on, and fairly represents, information and supporting documentation prepared by Mr. Max Sheppard, Mr. Wehrle and Mr. Edmund Ainscough, who are Competent Persons and Members of the AusIMM and full time employees of Lunnon Metals Ltd. Mr. Wehrle and Mr. Ainscough are shareholders and all three are holders of employee options/performance rights. All three employees have sufficient experience that is relevant to the style of mineralisation, the types of deposit under consideration, the activity that they are undertaking and the relevant factors in the particular location of the prospect area, the historical Foster mine and the KNP generally, to qualify as Competent Persons as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Sheppard, Mr. Wehrle and Mr. Ainscough consent to the inclusion in this announcement of the matters based on their information in the form and context in which it appears. #### **MINERAL RESOURCES** The detailed breakdown of the Company's Mineral Resources as updated 18 December 2023, is as follows: | | Cut-off | Indi | cated N | i | li | nferred N | i | To | otal Ni | | |----------------|---------|-----------|---------|-----------|-----------|-----------|-----------|-----------|---------|-----------| | | (Ni %) | Tonnes | % | Ni Tonnes | Tonnes | % | Ni Tonnes | Tonnes | % | Ni Tonnes | | FOSTER MINE | | | | | | | | | | | | Warren | 1.0 | 345,000 | 2.6 | 8,800 | 100,000 | 2.4 | 2,400 | 445,000 | 2.5 | 11,200 | | Foster Central | | | | | | | | | | | | 85H | 1.0 | 395,000 | 3.2 | 12,800 | 294,000 | 1.2 | 3,600 | 689,000 | 2.4 | 16,400 | | N75C | 1.0 | 271,000 | 2.6 | 6,900 | 142,000 | 1.9 | 2,600 | 413,000 | 2.3 | 9,500 | | S16C/N14C | 1.0 | - | - | - | 64,000 | 5.7 | 3,700 | 64,000 | 5.7 | 3,700 | | South | 1.0 | 223,000 | 4.7 | 10,500 | 116,000 | 4.8 | 5,500 | 340,000 | 4.7 | 16,000 | | Sub total | | 1,234,000 | 3.2 | 39,000 | 716,000 | 2.5 | 17,800 | 1,951,000 | 2.9 | 56,800 | | BAKER AREA | | | | | | | | | | | | Baker | 1.0 | 638,000 | 3.8 | 24,000 | 291,000 | 2.3 | 6,800 | 929,000 | 3.3 | 30,800 | | East Trough | 1.0 | - | - | - | 108,000 | 2.7 | 3,000 | 108,000 | 2.7 | 3,000 | | Sub total | | 638,000 | 3.8 | 24,000 | 399,000 | 2.5 | 9,800 | 1,037,000 | 3.3 | 33,800 | | SILVER LAKE | | | | | | | | | | | | 25H | 1.0 | 336,000 | 1.6 | 5,300 | 488,000 | 1.7 | 8,500 | 824,000 | 1.7 | 13,800 | | Sub total | | 336,000 | 1.6 | 5,300 | 488,000 | 1.7 | 8,500 | 824,000 | 1.7 | 13,800 | | 9) | | | | | | | | | | | | TOTAL | | 2,208,000 | 3.1 | 68,300 | 1,603,000 | 2.3 | 36,100 | 3,812,000 | 2.7 | 104,400 | Note: Figures have been rounded and hence may not add up exactly to the given totals. The Mineral Resource is inclusive of any reported Ore Reserves. #### **ORE RESERVES** The detailed breakdown of the Company's Baker Ore Reserve as at 30 June 2023, is as follows: | Baker | tonnes | Ni % | Cu% | Co% | Pd g/t | Pt g/t | As ppm | Ni metal | |----------|---------|------|------|-------|--------|--------|--------|----------| | Proved | - | - | - | - | - | - | - | - | | Probable | 612,000 | 2.86 | 0.24 | 0.052 | 0.49 | 0.20 | 110 | 17,500 | | Total | 612,000 | 2.86 | 0.24 | 0.052 | 0.49 | 0.20 | 110 | 17,500 | #### DISCLAIMER References in this announcement may have been made to certain previous ASX announcements, which in turn may have included Exploration Results, Exploration Targets, Mineral Resources, Ore Reserves and the results of Pre-Feasibility Studies. For full details, please refer to the said announcement on the said date. The Company is not aware of any new information or data that materially affects this information. Other than as specified in this announcement and mentioned announcements, the Company confirms it is not aware of any new information or data that materially affects the information included in the original market announcement(s), and in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcement #### ABOUT THE KAMBALDA NICKEL PROJECT (KNP) The Kambalda Nickel Project (**KNP**) (shown in **Figure 8**) features approximately 47km² of tenements in the Kambalda Nickel District. KNP is located approximately 570km east of Perth and 50-70km south-southeast of Kalgoorlie, in the Eastern Goldfields of Western Australia. KNP comprises two project areas, Foster and Baker* (19 contiguous mining leases) and Silver Lake and Fisher⁺ (20 contiguous mining leases). The world-renowned Kambalda Nickel District has produced in excess of 1.4 million tonnes of nickel metal since its discovery in 1966 by WMC Resources Ltd (**WMC**). In addition, close to 15Moz of gold in total has been mined, making the Kambalda/St Ives district a globally significant gold camp in its own right. The KNP is assessed via public roads, well-established mine road infrastructure and the main St Ives causeway over Lake Lefroy. The KNP is broadly surrounded by tenements held by St Ives Gold Mining Co. Pty Ltd (**SIGM**), a wholly lowned subsidiary of Gold Fields Limited (JSE:GFI) and the Company's major shareholder. *SIGM retains rights to explore for and mine gold in the "Excluded Areas", as defined in the subsisting agreements between Lunnon Metals and SIGM, and on the remaining area of the tenements, has select rights to gold in limited circumstances. *The Company has the exclusive rights to nickel on 19 mining leases and related access rights on one additional tenure. Gold Fields retains the rights to the other minerals (except to the extent minerals occur in conjunction with nickel mineralisation or nickel bearing ore but excluding gold). Figure 8: Regional location of the Kambalda Nickel Project and other nearby nickel deposits. ## **JORC TABLE 1** Note: where the acronym MRE is used in the following sections, it continues to mean Mineral Resource estimate and also represents the named deposit or project the subject of this report/announcement. ## **SECTION 1 SAMPLING TECHNIQUES AND DATA** | Criteria | JORC Code explanation | Commentary | |------------------------|---|---| | Sampling
techniques | Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures | All drilling and sampling are undertaken in an industry standard manner both by Lunnon Metals Ltd (Lunnon Metals or the Company) in 2021, 2022 and 2023 and historically by WMC Resources Ltd (WMC). Lunnon Metals' diamond drill (DD) and reverse circulation (RC) holes are completed by Blue Spec Drilling Pty Ltd (Blue Spec) following protocols and QAQC procedures aligned with industry best practice. Any DD holes on the surface of the salt lake, Lake Lefroy, have been drilled to date by Ausdrill Pty Ltd (Ausdrill), using a track-mounted lake rig. RC Lunnon Metals | | | taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. | RC samples are collected directly into calico sample bags on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample mass typically averages 3.0kg splits. | | | Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised
to produce a 30 g | Duplicate samples are also collected directly into calico sample bags from the drill rig cyclone, at a rate of 1 in every 25 samples and more frequently in the expected mineralised zones. Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling. RC samples are appropriate for use in a resource estimate. | | | charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | DD Lunnon Metals Core samples are collected with a DD rig typically drilling HQ (63.5mm core diameter) and/or NQ2 (51mm core diameter) either from surface or as tails from RC pre-collars. All DD core is stored in industry standard plastic core trays labelled with the drill hole ID and core depth intervals. Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling. DD core samples are appropriate for use in any future Mineral Resource estimate. | | | | WMC Historical data Sampling procedures followed by WMC in the drilling, retrieval, and storage of diamond drill core are in line with industry standards at the time (1966 to 2001). Surface diamond drill obtaining NQ and/or BQ diameter drill core, were the standard exploration sample techniques employed by WMC. Underground DD was also used extensively in the operating environment, with drilling of both up and down holes, retrieving typically BQ diameter drill core and to a lesser extent AQ diameter | ASX:LM8 PAGE 21 drill core. The drill core was typically collected in steel core trays of 1.0m lengths comprising five to seven compartments depending on drill | Criteria | JORC Code explanation | Commentary | |---------------------------------------|---|--| | Sampling
techniques
(continued) | | The core trays were labelled with the drill hole number and numbered with the downhole meterage for the start of the first 1 m run and the end of the last 1 m run on the lip of the core tray and typically included core blocks within the core trays demarcating the depth meterage of rod pull breaks. The earlier drilling was collected in wooden, and hybrid wooden/steel core trays and occasionally depths recorded in feet. Handheld XRF Where a handheld XRF tool was used to collect any exploration data reported, it was done so to assess the levels of key elements such as nickel, chromium, copper and zinc. The individual XRF results themselves are not reported and any element ratios are used as a guide only for logging/ sampling and to assist vectoring to potential mineralisation. No XRF results are used in the MRE. | | Drilling
techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). | The current MRE completed by Lunnon Metals utilised a combination of WMC historical vintage surface diamond NQ and BQ size drill core together with Lunnon Metals own surface RC and DD as relevant. RC Lunnon Metals RC holes were drilled with a 5 1/2-inch bit and face sampling hammer. Holes are drilled dry with use of booster/auxiliary air when/if ground water is encountered. DD Lunnon Metals Core samples are collected with a DD rig typically drilling HQ (63.5mm core diameter) and/or NQ2 (51mm core diameter) from surface, or as tails from RC pre-collars, or as wedge holes off parent DD holes. To help accurately test the targets, "navi" or motor drilling is sometimes used over short runs to control the direction of the drill hole. In these instances, no drill core or sample is returned from that portion of the drill hole. No navi drilling is undertaken within expected intervals of mineralisation. Wedge holes, where present, utilise the parent hole to a given depth then branch off from the parent hole using either a casing wedge, a Hall-Rowe wedge, or a natural elbow, or navi bend, in the parent hole from where a lip can be cut with the diamond drill bit and the wedge hole drilled straight off the parent. The DD core is orientated during the drilling process by the drill contractor, using a down hole Reflex ACTIII™ Rapid Descent Digital Core Orientation Tool, and then reconstructed over zones of interest by Lunnon Metals field staff for structural and geotechnical logging. WMC Historical Drilling Historical surface DD completed by WMC typically comprised NQ and BQ size drill core. Pre-collars to the surface diamond drillholes are typically PQ and HQ size and occasionally comprised RC drilling techniques. The pre-collars are not typically mineralised. Underground DD techniques were used extensively in the operating environment. Drilling included both up hole and downhole, | Although no documentation is available to describe the drilling techniques used by WMC at the time it is understood that the various drilling types used conventional drilling methods consistent | Criteria | JORC Code explanation | Commentary | |---------------------------------------|---
--| | Drilling
techniques
(continued) | | with industry standards of the time. None of the historical WMC diamond drill core was oriented. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Every RC sample is assessed and recorded for recovery and moisture by Lunnon Metals field staff in real time during the drilling process. Samples are monitored for possible contamination during the drilling process by Lunnon Metals geologists. DD core recovery is measured for each drilling run by the driller and then checked by the Lunnon Metals geological team during the mark up and logging process. No sample bias is observed. There is no relationship between recovery and nickel grade nor bias related to fine or coarse sample material. There are no available records for sample recovery for DD or RC drilling completed by WMC; however, re-logging exercises completed by Lunnon Metals of surface and underground DD holes from across the KNP between 2017 and present found that on average drill recovery was good and acceptable by industry standards. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. | For both Lunnon Metals RC and DD Geology logging is undertaken for the entire hole recording lithology, oxidation state, mineralisation, alteration, structural fabrics, and veining. DD orientated structural logging, core recovery, and Rock Quality Designation (RQDs) are all recorded from drill core over intervals of interest and relevance. Detailed geotechnical logging and rock property test work is completed over intervals of relevance by independent MineGeoTech Pty Ltd (MGT) contractor geotechnical engineers. Geological logging (and where required, geotechnical logging) is completed in sufficient detail to support future Mineral Resource estimation, mining and metallurgical studies. Metallurgical test work in the broader project area is ongoing in addition to the geological logging and element assaying detailed below. General logging data captured are qualitative (descriptions of the various geological features and units) and quantitative (numbers representing structural attitudes, and vein and sulphide percentages, magnetic susceptibility and conductivity). DD core is photographed in both dry and wet form. RC chip trays are photographed in both dry and wet form. WMC Historical data There is no available documentation describing the logging procedures employed by WMC geologists in the KNP area. However, the historical graphical hardcopy logs and other geoscientific records available for the project are of high quality and contain significant detail with logging intervals down to as narrow as 0.01 m. The geological logs document lithology, textures, structures, alteration, and mineralisation observed in drill core captured both graphically and in a five-character logging code (Lunnon Metals notes that a previous logging legend employed at WMC's Kambalda nickel operations utilised a 3-letter code which is often represented on hard copy plans and cross sections of an older vintage and which < | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Logging
(continued) | | Stratigraphy is also captured in a three-character logging code Sample intervals are recorded on the graphical log. These logging legends are well documented in lieu of a recorded procedure and are utilised by Lunnon Metals in current logging practices. In regard geotechnical logging or procedures, there is no record of any formal relevant procedures or logging and based on personal experience of the Competent Person, such logging was not routinely completed prior to the introduction of Regulation 10:28 in the WAMINE Safety and Inspection Act, requiring the same in approximately 1996. Based on the personal experience of the relevant Competent Person to this announcement, having worked for WMC in Kambalda between 1996 and 2001, it is known that WMC had a rigorous and regimented system for storing and archiving the graphical logging physically, microfilmed, and drafted on to master cross sections plans, and long sections as well as capturing the interval data (logging and assays) digitally in database format. Lunnon Metals sourced historical diamond core from the St Iven Gold Mining Co Pty Ltd (SIGM) Kambalda core yard on Durkin Road | | Sub-sampling
techniques and
sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for | where relevant to its investigations. Lunnon Metals RC Dry RC samples are collected directly into calico sample bags on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample mass typically averages 3.0kg splits. Industry prepared certified reference material (CRM), or standard samples, of various grades appropriate to the mineralisation expected are inserted into the sample batches, approximately
every 50 samples and more frequently in the expected mineralised zones. Lunnon Metals prepared blank samples are inserted, approximately every 50 samples and more frequently in the expected mineralised zones. Blank samples are prepared from barren reject RC chips as verified by laboratory analysis and geological logging. Duplicate samples are also collected from the drill rig cyclone, at a rate of 1 in every 25 samples and more frequently in the expected mineralised zones. After receipt of the RC samples by the independent laboratory the samples are dried and pulverised with >85% pulverised to 75micron or better. For sample weights > 3kg the sample is dried, split and pulverised up to 3kg. | | | field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Lunnon Metals DD DD core samples are collected with a diamond drill rig drilling HC and/or NQ2 size core. After logging, sample interval mark-up photographing, and geotechnical rock property test work, selected sample intervals of drill core are cut in half along the length of the drill core with a diamond saw in a Discoverer® Automatic Core Cutting Facility using a Corewise Auto Core Saw. Typically, one half of the drill core is sent to the laboratory for assay and the other half retained in its original core tray. In zones of potential metallurgical interest, the half core sample is vacuum sealed and stored refrigerated for later use, the remaining half core is further cut into quarters with one quarter sent to the laboratory for assay and the remaining quarter retained in its original core tray. In the case of metallurgical 'twin' holes, the quarter core is sent to the laboratory for assay, while the remaining three quarters of core is vacuum sealed and stored refrigerated. No core is retained in its original core tray. | original core tray. | Criteria | JORC Code explanation | Commentary | |--|-----------------------|--| | Sub-sampling techniques and sample preparation (continued) | | Holes are marked-up and sampled for assaying over mineralised and surrounding intervals at a typical minimum sample interval of 0.3m to ensure adequate sample weight and a typical maximum sample interval of 1.0m, constrained by geological boundaries. Specific Gravity – density measurements are taken for each mineralised DD sample for the Lunnon Metals drill holes. Sample weights vary depending on core diameter, sample length | | | | and density of the rock. Industry prepared certified reference material (CRM), or standard samples, of various grades appropriate to the mineralisation expected are inserted into the sample batches, approximately every 50 samples and more frequently in the identified mineralised zones. Lunnon Metals prepared blank samples are inserted, approximately every 50 samples and more frequently in the identified mineralised zones. Blank samples are prepared from barren non-ultramafic RC chips as verified by laboratory analysis or barren non-ultramafic | | | | Proterozoic Dyke DD core acquired locally and verified by geological logging. Field duplicate samples are collected at a rate of 1 in 25 samples, and more frequently in the identified mineralised zones, by cutting the core into quarters and submitting both quarters to the laboratory for analysis as two separate samples. In the case of the metallurgical holes no field duplicates are collected to preserve a consistent amount of core for metallurgical testwork. After receipt of the DD core samples by the independent laboratory the samples are dried, crushed to ~2mm, and pulverised with >85% | | | | pulverised to 75micron or better. For sample weights >3kg the sample is dried, crushed to ~2mm, split, and pulverised up to 3kg. Sample sizes are considered appropriate for the style of mineralisation (potentially nickeliferous massive, matrix and disseminated sulphides, hosted in komatiite and basalt). Samples are submitted to Intertek Genalysis in Kalgoorlie for sample preparation i.e. drying, crushing where necessary, and pulverising. Pulverised samples are then transported to Intertek Genalysis in Perth for analysis. | | | | WMC Historical Drilling All historical core that was relevant to the mineralisation drilled and sampled by WMC as sighted by Lunnon Metals was sawn with half or quarter core sampling practices. It is assumed that all samples otherwise contributing to any estimation of nickel mineralisation by Lunnon Metals were processed with this standard methodology. In regard historical core used in the MRE, subsampling techniques for WMC drilled NQ and BQ (WMC also occasionally drilled AQ size holes but none were present in this MRE) typically involved half and quarter sawn drill core with the quarter core dispatched for assaying in the case of NQ and BQ (and when relevant half core in the case | | | | of AQ). Portions of drill core distal to the main high-grade mineralisation were sometimes 'chip sampled' by WMC. Lunnon Metals has chosen not to utilise such samples in any estimation of grade or mineralisation. WMC typically sampled in interval lengths relevant to the underlying lithology and mineralisation such that sample interval lengths may vary from between minima of 0.05m and maxima up to 2.00m approximately within any mineralised zone. Intervals of no mineralisation or interest were not sampled. Review of historical drill core by Lunnon Metals indicated that there | | Criteria | JORC Code explanation | Commentary | |--|---|---| | Sub-sampling techniques and sample preparation (continued) | | were no areas of interest relevant to nickel mineralisation that were not half or quarter core sawn and sampled by WMC and that the sample sizes were appropriate for the type, style and thickness of mineralisation being tested with sample breaks corresponding to lithological or mineralisation breaks being the norm. Although faded through time, sample depth intervals are evident as marked on the remaining half core as observed by Lunnon Metals and these correlate to sample interval depths in the original paper graphical drill logs and the database. • While the WMC procedures for logging, sampling, assaying and QAQC of drillhole programs, it is interpreted that it was of high quality and in line with industry standards at that time. • It is the opinion of the relevant Competent Person that the sample preparation, security, and
analytical and estimation procedures pertaining to the above-mentioned historical WMC drilling, face sampling and visual estimates are adequate and fit for purpose based on: • WMC's reputation in geoscience stemming from their discovery of nickel sulphides in Kambalda in the late 1960s; • identification of procedures entitled "WMC QAQC Practices for Sampling and Analysis, Version 2 – adapted for St Ives Gold" dated February 2001 and which includes practices for nickel; and • the first-hand knowledge and experience of the Competent Person of this announcement whilst working for WMC at Kambalda between 1996 and 2001. | | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | Samples are submitted to Intertek Genalysis in Kalgoorlie for sample preparation i.e. drying, crushing where necessary, and pulverising. Pulverised samples are then transported to Intertek Genalysis in Perth for analysis. Samples are analysed for a multi-element suite including, as a minimum, Ni, Cu, Co, Cr, As, Fe, Mg, Pb, S, Ti, Zn. Analytical techniques used a four-acid digest (with ICP-OES or ICP-MS finish) of hydrofluoric, nitric, perchloric and hydrochloric acids, suitable for near total dissolution of almost all mineral species including silicabased samples. Within the nickel mineralised zones, the platinum group elements (Pd, Pt, Au) are also analysed using a 50g charge lead collection fire assay method with ICP-MS finish. These techniques are considered quantitative in nature. As discussed previously, CRM standard, and blank samples are inserted by Lunnon Metals into sample batches, and the laboratory also carries out internal standards in individual batches. The resultant Lunnon Metals and laboratory QAQC data is reviewed upon receipt to determine that the accuracy and precision of the data has been identified as acceptable prior to being cleared for upload to the database. This project-wide Lunnon Metals KNP Geobank® database (Database) is now hosted and maintained in-house by a Lunnon Metals Database Administrator. WMC Historical data There is no data available at the time of this announcement pertaining to the assaying and laboratory procedures nor the historical field or laboratory quality assurance and quality control (QAQC), if any, undertaken by WMC drilling programs in the KNP area; however, it is expected that industry standards as a minimum | | Criteria | JORC Code explanation | Commentary | |---|---|--| | Quality of assay lata and aboratory tests continued) Verification of ampling and ssaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | were likely to have been adopted in the KNP area and the analytic laboratory. Extensive re-sampling and re-assaying by Lunnon Metals of historical WMC DD core has returned consistency in nickel value when compared to the original WMC nickel assay values, furths supporting the expected appropriateness of the WMC assay data. For both Lunnon Metals RC and DD Numerous DD twin holes of original RC holes, and DD wedge tw holes from original DD parent holes now completed at KN demonstrate acceptable correlation and verification of the associated significant intersections reported. The distance between the original and twin holes typically ranges between 0.5m and 5.0r Prior to drilling, all planned collar data is captured in a digit drillhole collar register stored on a secure site-based server which backed up to Perth based server continuously. The collar register updated as drilling progresses and is completed. Logging and sample intervals are captured in digital QAQC spreadsheets via rugged field based laptops (known a "Toughbooks"). After internal sign-off, these digital sampling an logging registers are saved by geologists in the designated fold on the server. After further data validation by the Database administrator, the items in the upload folder are uploaded to a secure digital databas on a separate sequel sever. Since September 2023 the data collected on the Toughbool synchronises directly to the Database stored on a separate secule sequel server. A set of buffer tables store the data before the database administrator does a second validation of the data (drive by in-built validation rules in the Database) before loading to the production data tables. Assays from the laboratory are sent directly to the Database administrator via a dedicated Lunnon Metals assays email addrewhere they are all checked and verified by the Lunnon Metabase. No adjustments are made to the original assay data. WMC Historical data Diamond core data – across the KNP, Lunnon Metals has undertake exhaustive assessment of hist | | | | completed and also demonstrate acceptable correlation and verification of the associated historical significant intersection. Lunnon Metals notes that the Kambalda style of nick mineralisation is highly visible permitting the nickel grade to be relatively accurately estimated by experienced geologists to validate the laboratory assay grade; this is a practise that is not uncommo | | Criteria | JORC Code explanation | Commentary | |-------------------------------|--
---| | Location of data | Accuracy and quality of surveys | For both Lunnon Metals RC and DD | | points | used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | RC and DD hole collar locations are located initially by handheld GPS to an accuracy of +/- 3m. Subsequently, drill hole collar locations are then picked up by a licensed surveyor using DGPS methods following the completion of the drilling. All drill holes are typically surveyed downhole at 5m intervals using the REFLEX gyro Sprint-IQ (north seeking gyro) system for both azimuth and dip measurements. Some of the more recent drillholes are being downhole surveyed with the new REFLEX gyro OMNIx42, which is stated to have an even greater accuracy than the Sprint-IQ. Downhole surveys are uploaded by Blue Spec (and if relevant Ausdrill) to the IMDEXHUB-IQ, a cloud-based data management program where surveys are validated and approved by trained Lunnon Metals staff. Surveys can now be validated live and in 3D with the introduction of Seequent Central to the process, a cloud-based management system with direct integration between IMDEX and Leapfrog Geo (3D geology modelling software). Approved exports are then downloaded to the server and after additional QAQC checks and sign off the survey data is uploaded to the Database. The input file is the same file directly downloaded from IMDEX hub, so data entry errors are avoided. The grid projection is GDA94/ MGA Zone 51. Diagrams and location data tables have been provided in the previous reporting of exploration results where relevant. | | | | WMC Historical data | | | | Historical methods of drill collar survey pick-up are not known however WMC did employ surface surveyors dedicated to the collection of exploration collar data. The easting, northing and elevation values were originally recorded in local KNO ('Kambalda Nickel Operations') grid and later converted to the currently used GDA94/MGA Zone 51 grid. Both the original KNO grid coordinates and the converted coordinates are recorded in the Database. A representative number of historical drill collars were located in the field and their locations cross checked via differential GPS and/or handheld GPS to validate the Database collar coordinates. Historical hardcopy downhole survey data is generally available for the majority of surface drillholes and the records show that single shot magnetic instruments were used. A representative number of these hardcopy downhole survey records have been cross checked against the digital records in the Database. Downhole surveys of select historical surface DD have been conducted using modern gyro systems as described above and no significant errors or inconsistencies were deemed present. Lunnon Metals has corrected where necessary incorrect data in the Database where down hole measurements from the hardcopy data were incorrectly processed. No other significant errors or inconsistencies were deemed present or capable of being detrimental to any interpretation of nickel mineralisation including any MRE work. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate | The RC and DD programmes at KNP comprise drillhole spacings that are dependent on the target style, orientation and depth. Drillholes are not necessarily drilled to set patterns or spacing at the exploration stage of the programme. | | Criteria | JORC Code explanation | Commentary | |--|--|--| | Data spacing and distribution (continued) | for the Mineral Resource and Ore
Reserve estimation procedure(s)
and classifications applied
Whether sample compositing has
been applied. | Previous drill spacing varies greatly, again subject to the target style dimensions, orientation and depth and inherent geological variability and complexity. All holes have been geologically logged and provide a strong basis for geological control and continuity of mineralisation. No sample compositing has been applied except at the reporting stage of drill intercepts within a single hole. WMC Historical data The typical spacing for the early WMC DD surface drill traverses varies but is typically approximately 200m to 400m apart with | | | | drillhole spacing along the traverses at 100m to 50m. In areas of shallower RC drilling this drill spacing is sometimes improved to 100m by 50m or even 50m by 50m. The drill spacing for areas the subject of underground DD holes was variable but was on average spaced at approximately 20m along the strike of a mineralised zone with fans or rings of DD holes that deliver pierce points in the dip orientation at variable spacing, but typically 10m to 20m apart. The drill spacing for the MRE deposit, with both Lunnon Metals and WMC surface DD is variable but ranges from approximately 25m to 140m for surface holes. | | Orientation of
data in relation
to geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. | The preferred orientation of drilling at KNP is designed to intercept the target approximately perpendicular to the strike and dip of the mineralisation where/if known. Subsequent sampling is therefore considered representative of the mineralised zones if/wher intersected. In the broader project area, the majority of historical drill holes were collared vertically and lifted/drifted in towards close to perpendicular to the mineralisation with depth as the nickel contact was approached. The chance of bias introduced by sample orientation relative to | | | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | structures, mineralised zones or shears at a low angle to the drillhold is possible, however quantified orientation of the intercepted interval allows this possible bias to be assessed. Where drilling intercepts the interpreted mineralisation as planned, bias is considered non-existent to minimal. • Lunnon Metals does not consider that any bias was introduced by the orientation of sampling resulting from either drilling techniques. • Where drilling intercepts the interpreted mineralisation as planned bias is considered non-existent to minimal. | | Sample security | The measures taken to ensure sample security. | The calico sample bags are collected by Lunnon Metals personne stationed at the drill rig typically at the end of each day. The calico samples are collected sequentially in groups of five and placed into polyweave bags which are labelled and secured with cable ties. The polyweave bags are in turn placed in bulka bags which are secured on wooden pallets and transported directly via road freight to the laboratory with a
corresponding submission form and consignment note. The laboratory checks the samples received against the submission form and notifies the Company of any inconsistencies. Once the laboratory has completed the assaying, the pulp packets, pulp residues and coarse rejects are held in the Laboratory's secure warehouse until collected by the Company or approves them to be discarded. | | Criteria | JORC Code explanation | Commentary | |------------------|--------------------------------|--| | Sample security | | Lunnon Metals DD | | continued) | | After the drill core is cut and returned to its original position in the core tray, Lunnon Metals' geologists mark up the drill core for sampling and records the sample intervals against unique sample numbers in a digital sample register. A Lunnon Metals core farm technician then collects the cut core samples into calico bags guided by the sample register and sampling information contained therein. The calico samples are collected sequentially in groups of five and placed into polyweave bags which are labelled and secured with cable ties. The polyweave bags are in turn placed in bulka bags which are secured on wooden pallets and transported directly via road freight to the laboratory with a corresponding submission form and consignment note. The laboratory checks the samples received against the submission form and notifies Lunnon Metals of any inconsistencies. Once the laboratory has completed the assaying, the pulp packets, pulp residues and coarse rejects are held in the laboratory's secure warehouse until collected by Lunnon Metals or approval is provided for them to be discarded. | | | | WMC Historical data | | udits or reviews | The results of any audits or | There is no documentation which describes the historical sample handling and submission protocols during the WMC drilling programmes; however, it is assumed that due care was taken with security of samples during field collection, transport and laboratory analysis. The historical drill core remaining after sampling was stored and catalogued at the KNO core farm (now Gold Fields, SIGM core farm) and it remains at this location to the present day. No external audits or reviews have been undertaken at this stage of | | | reviews of sampling techniques | the program. | | | and data. | WMC Historical data | | | | Cube Consulting Pty Ltd (Cube) are independent of Lunnon Metals and have been previously retained by Lunnon Metals to complete the grade estimation for nickel mineralisation models and MRE exercises but also to review and comment on the protocols developed by Lunnon Metals to deal with, and thereafter utilise, the historical WMC Resources' data, in particular the re-sampling and QAQC exercise completed by Lunnon Metals such that the data is capable of being used in accordance with current ASX Listing Rules where applicable and JORC 2012 guidelines and standards for the generation and reporting of MREs. Cube has documented no fatal flaws in the work completed by Lunnon Metals in this regard. | # **SECTION 2 REPORTING OF EXPLORATION RESULTS** | Criteria | JORC Code explanation | Commentary | |---|--|--| | Mineral tenement and land tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The property is located on granted Mining Leases. Although all the tenements wholly or partially overlap with areas the subject of determined native title rights and interests, the Company notes that the original grant of the right to mine pre-dates 23 December 1996 and as such section 26D of the Native Title Act will be applied to exempt any future renewals or term extensions from the right to negotiate in Subdivision P of the Act. The complete area of contiguous tenements on which the Silver Lake-Fisher project and rights is located is, together with the wholly owned Foster-Baker project area on the south side of Lake Lefroy, collectively referred to as the Kambalda Nickel Project ("KNP") area. Gold Fields Ltd's wholly owned subsidiary, SIGM, remains the registered holder and the beneficial owner of the Silver Lake-Fisher area. Lunnon Metals holds: 100% of the rights and title to the Foster-Baker (FBA) area of KNP, its assets and leases, subject to certain select reservations and excluded rights retained by SIGM, principally relating to the right to gold in defined areas and the rights to process any future gold ore mined at their nearby Lefroy Gold Plant; The FBA project area of KNP comprises 19 tenements, each approximately 1,500 m by 800 m in area, and three tenements on which infrastructure may be placed in the future. The tenement numbers are as follows: M15/1546; M15/1548; M15/1557; M15/1550; M15/1553; M15/1553; M15/1556; M15/1577; M15/1577; M15/1576; M15/1577; M15/1577; M15/1579; M15/1599; M15/1599; M15/1599; M15/1599; M15/1599; M15/1599; M15/1599; | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | In relation to nickel mineralisation, WMC, now BHP Nickel West Pty Ltd and a wholly owned subsidiary of BHP Group Ltd, conducted all relevant exploration, resource estimation, development and mining of the mineralisation at Foster and Jan mines from establishment of the mineral licences through to sale of the properties to SIGM in December 2001. Approximately over 550,000m of DD was undertaken on the | | Criteria | JORC Code explanation | Commentary | |--
--|--| | Exploration done by other parties (continued) Geology | Deposit type, geological setting and style of mineralisation. | properties the subject of the FBA and SLF area by WMC prior to 2001. SIGM has conducted later gold exploration activities on the KNP area since 2001, however until nickel focused work recommenced under Lunnon Metals management, no meaningful nickel exploration has been conducted since the time of WMC ownership and only one nickel focussed surface diamond core hole (with two wedge holes), was completed in total since WMC ownership and prior to Lunnon Metals' IPO. On the KNP, past total production from underground mining in contained nickel metal terms by WMC was: Foster 61,129 nickel tonnes; Jan 30,270 nickel tonnes; Fisher 38,070 nickel tonnes; Fisher 38,070 nickel tonnes. The KNP area is host to both typical 'Kambalda' style, komatiitic hosted, nickel sulphide deposits and Archaean greenstone gold deposits such as routinely discovered and mined in Kambalda/St lves district. The project area is host to nickel mineralisation and elements | | Drillhole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: • easting and northing of the drillhole collar • elevation or RL (elevation above sea level in metres) of the drillhole collar • dip and azimuth of the hole • down hole length and interception depth hole length. | associated with this nickel mineralisation, such as Cu, Co, Pd and Pt. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. | Grades have been reported as intervals recording down-hole length and interpreted true width where this estimation is able to be made. Any grades composited and reported to represent an interpreted mineralised intercept of significance are reported as sample-length weighted averages over that drill intercept. The Company currently considers that grades above 0.5% N and/or 1.0% Ni are worthy of consideration for individua reporting in any announcement of Exploration Results in additional details tables provided. Composite nickel grades may be calculated typically to a 0.5% N cut-off with intervals greater than 1.0% reported as "including" in any zones of broader lower grade mineralisation. Other composite grades may be reported above differing cut-offs however in such cases the cut off will be specifically stated. Reported intervals may contain minor internal waste (samples with values below stated cut-off grade) however the resultant composite must be greater than either the 0.5% Ni or 1.0% Ni as relevant (or the alternatively stated cut-off grade). | | Criteria | JORC Code explanation | Commentary | |--|---|---| | Data aggregation methods (continued) Relationship between mineralisation widths and intercept lengths | If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | As per other Kambalda style nickel sulphide deposits the Lunnon Metals composites reported may include samples of very high nickel grades down to lower grades approaching the 0.5% Ni or 1.0% Ni cut-off as relevant. No top-cuts have been applied to reporting of drill assay results and no metal equivalent values have been reported. Other elements of relevance to the reported nickel mineralisation, such as Cu, Co, Fe, Mg, Pd and Pt and the like, are reported where the nickel grade is considered significant, if they have been assayed. Historical WMC drilling in the project area was typically only assayed for Ni and less frequently for Cu, Zn and Co. In regard to nickel exploration, the general strike and dip of the Lunnon Basalt footwall contact and by extension any hanging wall related nickel mineralised surfaces, if present, are considered to be well defined by past drilling which generally allows for true width calculations to be made regardless of the density or angle of drilling. For nickel exploration in the broader project area, if possible due to the shallow depth, drillhole design has generally allowed drill holes to intersect target surfaces at approximately perpendicular to the strike of mineralisation. Previously reported intersections have included approximate | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views. | true widths, but these may not be true widths, as ongoing interpretation of the geology and mineralisation may result in that drilling not always being exactly perpendicular to the strike/dip of mineralisation once interpreted. • Plans, long projections and sections, and isometric imagery where able to clearly represent the results of drilling, have been included in this report or previously been provided in prior lodged reports. | | Balanced
reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | Drill collar locations of WMC Historical and current drilling completed by Lunnon Metals have been previously lodged on the ASX platform and all results of the drilling have also been previously reported. WMC Historical DD holes may have informed the margins, periphery or extents of the current MRE, but themselves were not significantly mineralised. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | The KNP has a long history of
geological investigation, primarily for nickel, but also gold to a lesser degree. Datasets pertinent to the KNP that represent other meaningful and material information include: Geophysics - multiple ground and aerial based surveys of magnetic, gravity, Sub Audio Magnetics, electro magnetics, and down hole transient electromagnetic surveys. Geochemistry - nickel and gold soil geochemistry datasets across the KNP and rock chip sampling in areas of outcrop. Select historical production data recording metallurgical performance of the mines located on the KNP and the nickel metal delivered to the Kambalda Concentrator is also available in aggregated format. Metallurgical test work on drill core from the KNP is carried out by external consultants, currently Independent Metallurgical Operations Pty Ltd using methodologies consistent with the type | | Criteria | JORC Code e | xplanation Commentary | | |---|------------------|--|--| | Criteria Other substant explorat (continu | tive
ion data | of mineralisation encountered and the likely future processing route. • The Company has developed a testwork program that best approximates the treatment conditions at the Kambalda Concentrator. • Whilst no specific metallurgical testwork has been completed on East Trough nickel mineralisation, the Baker deposit to the immediate east of East Trough has been extensively tested. Further, East Trough is predominantly hosted on the komatiite-basalt contact and the Kambalda nickel district has a long history of successful processing of this style of mineralisation at the proximal Kambalda Concentrator, since the field was discovered in 1966. • The process covering the ongoing collection and handling of the metallurgical samples and the supervision of the testwork that aligns with Nickel West's process flow is being managed by Mr Barry Cloutt, an external independent metallurgical consultant who previously worked for WMC in Kambalda in the 1990s and directly managed the Kambalda Concentrator. This was a period | | | | | in time when the plant was receiving nickel ore from between 10 and 15 separate underground sources across the Kambalda and Widgiemooltha districts from various ore suppliers. Geotechnical test work on this drill core is carried out by independent consultants MGT involving on-site geotechnical logging of the DD core and off-site rock property testing of selected DD core samples. Downhole Transient Electro-magnetic (DHTEM) surveys, when conducted, use the DigiAtlantis system and DRTX transmitter. The readings are typically recorded at 2.5m to 10m intervals. The survey used loops ranging from 300m x 200m to 690m x 290m in orientations designed relative to the target and stratigraphic setting. If required, the Company generally retains ABIM Solutions Pty Ltd (ABIMS) to use the latest generation QL40 OBI Optical Televiewer (OTV) and a customized logging vehicle, to conduct OTV wireline surveys in the project area in select holes. | | | | | The OTV survey generates an oriented 360-degree image of the borehole wall by way of a CCD camera recording the image reflected from a prism. The OTV wireline surveys in RC holes, if applicable, are particularly useful in defining geological and structural orientation data, data that is otherwise unobtainable from RC drill chips. Where completed, these OTV surveys identified the downhole extents of the sulphide mineralisation, the down hole depths of other key contacts, and enabled the visual reconciliation of the 1m Ni assay results received with the apparent styles of nickel sulphide mineralisation imaged downhole, and provided the orientation of important shear structures within the selected RC | | | | | If required, ABIMS are also used to collected down-hole imaging data using the latest generation ABI40 Acoustic Televiewer (ATV) and a customised logging vehicle. The ATV wireline survey in DD holes provides down-hole geological definition, geotechnical rock mass characterisation, determination of fracture frequency and orientation, and primary stress orientation. The ABI40 ATV generates an image of the drillhole wall by transmitting ultrasound pulses from a rotating sensor and recording the amplitude and travel time of the signals reflected from the | | | Criteria | JORC Code explanation | Commentary | |--|--|---| | Other substantive exploration data (continued) | a | drillhole wall. Data is transferred back to the surface via a wireline in real time. Such data collected is used by the Company's geologists in support of deposit geological and structural modelling and by geotechnical consultants for geotechnical assessment purposes. • If required, Southern Geoscience Consultants Pty Ltd (SGC) provide an ultrasonic velocity meter for the collection of velocity data measurements on DD. Data from this coupled with density measurements will provide acoustic impedance information, enabling the reflectivity in the seismic section to be tied to the geology in the borehole. | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). | Since the Company's IPO, over 76,000m of either diamond or RC | | | | | # **SECTION 3 ESTIMATION AND REPORTING OF MINERAL RESOURCE ESTIMATE** | Criteria | JORC Code explanation | C | ommentary | |------------------------------|---|---|---| | Database integrity | Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. | • | The Database is now hosted and maintained in-house by a Lunnon Metals Database Administrator. No data is transcribed manually between its initial collection, be it logging or assay data, and its use in the
MRE. All data is exported directly from the Database and imported into the Leapfrog Geo® software where the MRE geological and mineralisation solid modelling is undertaken. The Database, and that portion pertaining directly to the MRE area, was originally sourced from the historical database transferred from SIGM, as per the provisions of either the Option and Joint Venture Agreement or the SLF MRA (as applicable) and as such has been deemed in a general sense to be suitable for use in MRE for the KNP. This database was validated and improved by Lunnon Metals staff based on the local knowledge identifying obvious gaps in the data as it was originally handed over to Lunnon Metals. The local knowledge and experience of the relevant Lunnon Metals geoscientific staff with respect to the history of data collected at St lves by SIGM is also a very effective verification tool. During 2017, an updated Database extract was received from MaxGeo which incorporated feedback from Lunnon Metals regarding errors and omissions identified in the previous database extracts (remediation and additional data loading). Lunnon Metals has significantly added to this Database at both the FBA and SLF through the completion of its extensive RC and DD program. As such, in regard to this MRE exercise, the data is a combination of data generated by Lunnon Metals activities post the Company's IPO in June 2021 and the original WMC data. During the MRE process, a more thorough validation of those portions of the database pertaining to the MRE area directly was undertaken. This included cross checking representative amounts of historical hard copy assays, downhole surveys, collar surveys, and lithological logging | | Site visits | Comment on any site visits undertaken by the Competent Person and the outcome of those visits. | • | data against the digital database. The relevant Competent Persons have visited the KNP and MRE deposit locale on numerous occasions for the purposes of conducting surface exploration activities, desktop and bandon under retrieval and review. | | | If no site visits have been undertaken indicate why this is the case | • | hardcopy data retrieval, and review. The principal Competent Person is Mr Aaron Wehrle, the Company's Exploration and Geology Manager. Mr Wehrle has been the principal Competent Person since the Company's IPO and has directly managed or overseen all logging and sampling of historical WMC drill core and more recently, logging and sampling of the Company's own drill programs. Mr Wehrle previously worked at St Ives for WMC and Gold Fields in the period 1996 to 2005. | | Geological
interpretation | Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. | • | The deposit types in Kambalda generally are well understood through decades of nickel mining within the KNP area and immediate surrounds. The MRE deposit has direct mineralisation analogues previously mined in the district including many surfaces at the nearby Foster mine. No new detailed studies or re-interpretation of the deposit | | Criteria | JORC Code explanation | Commentary | |---|---|--| | Geological interpretation (continued) Dimensions | Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. | styles were undertaken as part of the MRE, nor are deemed to be required. Accordingly, the understanding of the general deposit styles is taken directly from previous experts and authors in the field and supported by direct observations of the relevant Competent Person during logging and sampling exercises of the current RC chips and DD core (as applicable). The Company's exploration program has verified the geological model and understanding of the controls to mineralisation through collecting drill sample and related data. The majority of the mineralisation is interpreted to be hosted at the base of the main komatitic flow, the more traditionally prospective basal komatitie flow in contact with the Lunnon basalt footwall(main contact mineralisation). The geological model is based on 5 RC and 6 DD holes drilled by Lunnon Metals and 9 historical WMC DD holes and associated assay data. The additional data supports the interpretation of base of main komatiite flow mineralisation. The modelled MRE deposit is defined by a main elongate, short strike length, plunging nickel shoot, hosted within a deeply incised structural embayment in the footwall Lunnon basalt. The overall average strike and dip is approximately 085°/35° south. In plan view, the outline of the MRE deposit is one of an irregular elongate ovoid shape with a long axis plunge of approximately 25° towards 125° currently extending for 550m. The across plunge dimension is on average 50m to 60m. The vertical extent of the deposit is approximately 300m ranging from +130m above sea level (195m below ground level) to -170m above sea level (500m below ground level) to the northeast by limited RC drilling. The down plunge remains open to the southeast. Although there is anomalous oxide nickel mineralisation approximately 350m up plunge of the reported MRE, this mineralisation has not been modelled or reported. The modelled MRE is below the weathered regolith zone, | | Estimation and modelling techniques | The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine | drillhole interval selection and 3D implicit "vein" modelling within the Leapfrog Geo® software. Interval selection is a manual process performed by the geologist (and relevant Competent Person) in the Leapfrog Geo® 3D software environment whereby drillhole sample/logging intervals are tagged and coded with the relevant nickel sub-domain ID. The general rule of thumb used for the mineralised interval | # Criteria #### **JORC Code explanation** #### Commentary Estimation and modelling techniques (continued) production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of
validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available. when supported by the position relative to the footwall contact and surrounding drillholes. - Internal dilution (Ni <1.0%) was considered on a hole-by-hole basis, rarely involving assays <0.5% Ni while the overall averaged intercept grade typically remained above the 1.0% Ni cut-off. Occasionally hanging wall samples <1.0% Ni were included if supported by the geological logging as containing noteworthy sulphides, however, samples with grades of less than 0.5% Ni in this hanging wall position were not included. - The Leapfrog Geo® implicit "vein" modelling function was used to construct the deposit wireframes by using mathematical algorithms to derive best fit 3D model volumes from the interval selection data. The geometry, thickness and extent of the deposit wireframes are defined primarily by the footwall and hanging wall depth positions down the drillholes denoted by the selected interval. - The relevant Competent Person has further refined the geometries to honour the geological interpretation by manually creating 3D polylines and points which help shape the 3D model particularly where there is insufficient drilling data to define the interpreted location, thickness and geometry of the deposit. - The MRE deposit has not been previously mined so no depletion due to mining was necessary. - A Resource Geologist employed by Lunnon Metals produced a mineral resource grade and tonnage estimate (the MRE) for the nickel deposit. Validated drillhole data and geological interpretation wireframes were supplied by Lunnon Metals, and the MRE was developed using standard processes and procedures including data selection, compositing, variography, estimation into geological domains, using Ordinary Kriging (OK) or Inverse Distance Squared (ID2). - The estimation work and resource classification is to a standard consistent with the JORC (2012) guidelines, and the resulting Mineral Resource classification was established by Lunnon Metals. The Resource Geologist holds current Chartered Professional (Geology) status with the AusIMM and is the Competent Person for the MRE and geostatistics, methodology and estimation. #### **Estimation Input Data** Lunnon Metals produced wireframe solids in Leapfrog software. The final interpretation was completed on 12 December 2023. The MRE was completed using Leapfrog Edge – the integrated resource modelling module of Leapfrog Geo. This negates any requirement to export input drilling files. Basic data validation for historical holes (pre-2023) was conducted and all lab QAQC data for the 2023 drillholes and 2023 re-assaying of historical holes was reviewed prior to loading to the Geobank database. There were 55 individual samples from 28 drill intercepts identified for the MRE deposit including 40 for the main contact mineralisation domain and 8 for a thin discontinuous second hanging wall mineralised lens and 7 for a small discontinuous zone of contact mineralisation on an overturned contact position. Nickel, copper, cobalt, arsenic, palladium and platinum estimates are reported. | | LIONG C. L | | |---------------------------|-----------------------|--| | Criteria | JORC Code explanation | Commentary | | Estimation and modelling | | Visual validation of the coded drillhole intervals against the wireframes was completed and no issues were identified. | | techniques
(continued) | | Compositing Raw sample interval lengths in the mineralised domains varied between 0.16m and 1.00m. The mean sample length for the MRE deposit was 0.71m, but the most frequent sample interval was 1.00m. Therefore, 1.00m was chosen as the composite length for the MRE deposit. A minimum composite size was set to 0.5m – any "residual" composites of less than 0.5m at the lower limit of a sub-domain were "added" back to the final downhole composite per sub-domain. | | | | Bulk Density Values were determined using the Archimedes principle for some 116 DD core samples, including 24 samples from reassayed historical WMC core, within and about the mineralised domains with missing density values populated using a regression equation to ensure bulk density values were available for all samples to be used for the density weighting for the composites. | | | | Exploratory Data Analysis Compositing and statistical and geostatistical analysis was completed using Leapfrog Edge. | | | | The mean nickel grade for the composited samples (weighted by SG) at the MRE deposit for the main MIN zone is 2.75% Ni (vs 2.62% unweighted by SG). There is no difference between SG weighted and non-weighted means for the 2 discontinuous mineralised lenses. The nickel distributions are positively skewed, with minor extreme values greater than 9% Ni. | | | | Grade Capping Grade capping was not used for nickel in the MRE. The grade distribution, even though positively skewed, is continuous and the higher-grade zones were relatively consistent spatially. | | | | Estimation Estimates for the MRE deposit were run using Standard OK within the ~1.0% Ni domain boundaries (a similar approach to previous estimates completed by Cube prior to and post the Company's IPO at the KNP). Arsenic was estimated by ID ² as almost all values were below detection. | | | | Variography Given the tightly constrained geometry for the sub-domains, the data configuration essentially controlled the variography. Experimental variograms for nickel were produced in the plane of continuity for the MRE deposit (dip 36°, dip azimuth 167°, pitch 68°), with the minor direction perpendicular to the major directions, and the variograms were modelled with a nugget effect and two spherical structures. | | | | These variogram parameters were also used for the other mineralised sub-domains, with appropriate rotations applied per sub-domain. For the OK estimate, the nickel grade variograms directions were consistent with those defined for the overall domain. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Estimation and modelling techniques (continued) | | Block Model Definition The parent block size of 10mE x 10mN x 10mRL was chosen to be compatible with the geometry of the mineralisation. Minimum sub-block size of 0.3125mE x 0.3125mN x 0.3125mRL was used to appropriately fill the mineralisation volumes. The block model volumes compared to the deposit wireframe volumes showed a very close result of 100%. | | | | Estimation Parameters Grade estimates for nickel above and below the threshold were into the 10mE x 10mN x 10mRL parent blocks and the block discretisation was set at 5 x 5 x 5. | | | | The search radius for the MRE deposit is 85m down plunge, 55m along strike, and 10m across thickness. A minimum number of samples required was set at 3, maximum number of samples was set at 16, and a limit of 2 samples per drillhole. If a block was not estimated with the first search pass, a second pass twice the size of the first is used, and minimum samples set to 1. | | | | Any blocks not estimated were set to the lower quartile of the sample population (for all elements). Generally less than 2% of blocks were required to be filled in this way. | | | | There has been no previous mining in the MRE, so no mining depletion was required. | | | | Model Validation Model validation was conducted to check that the grade estimates within the model were an appropriate reflection of the underlying composite sample data, and to confirm that the interpolation parameters were applied as intended. Checks of the estimated block grade with the corresponding composite dataset were completed using several approaches involving both numerical and spatial aspects. | | | | It is Lunnon Metals opinion that the nickel, other element and density estimates in the MRE deposit are valid and satisfactorily represent the informing data. The output for this estimate is a block model in csv format named "ECO_East_Trough_MRE_1223". | | Moisture | Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. | Tonnage is estimated on a dry, in-situ basis. | | Cut-off
parameters | The basis of the adopted cut-off grade(s) or quality parameters applied. | All material modifying factors have been considered and accommodated in the chosen reporting cut-off grade, which is > 1% Ni. This cut-off grade was calculated as the attributed breakeven grade that in aggregate covers assumed processing and mining benchmarked unit rates, taking into account an AUD:USD exchange rate of approx. 0.679, an assumed processing recovery, concentrator payability and standard other associated costs reported
publicly, by other third parties in the Kambalda District during the operational period of nearby similar nickel mines. | #### Criteria **JORC Code explanation** Commentary Mining factors or Assumptions made regarding possible A Company employee, a mining engineer, has seven years' assumptions mining methods, minimum mining experience in the relevant commodity at Kambalda and has dimensions and internal (or, advised on appropriate access, development and stoping applicable, external) mining dilution. It methodologies. is always necessary as part of the Company analysis at the nearby Baker PFS coupled with process of determining reasonable benchmarking of current industry capital start-up, prospects for eventual economic development and operating costs indicate that reasonable extraction to consider potential mining prospects for eventual economic extraction of the MRE exist. methods, but the assumptions made The assumptions made regarding possible mining methods regarding mining methods and parameters have not yet been rigorously tested, parameters when estimating Mineral however, the tonnage of mineralisation, the grade of Resources may not always be rigorous. mineralisation above the reporting cut-off and its location, Where this is the case, this should be both geographically (at Kambalda) and locally proximal to a reported with an explanation of the suitable portal site in an existing development in the basis of the mining assumptions made. historical Foster mine, all support this assessment. Access to the mineralisation at the MRE deposit would be via a future Baker decline development, with the designed Baker workings just 470m at an assumed 1:8 decline gradient. Only minimal new waste development would be required to access the mineralised shoots due to its proximal position to the proposed capital development for a potential future Baker mine. Conventional selective underground stoping techniques would be employed as applied routinely and successfully in the immediate Kambalda District nickel operations. Metallurgical The for Primary nickel mineralisation predominantly consists of hasis assumptions factors or predictions regarding metallurgical pyrrhotite-pentlandite-pyrite plus subordinate chalcopyrite assumptions amenability. It is always necessary as and magnetite. part of the process of determining Specific metallurgical testwork for the MRE deposit is yet to reasonable prospects for eventual be completed however the Company has in place a rigorous testwork program that has been developed to best economic extraction to consider potential metallurgical methods, but approximate the treatment conditions at the Kambalda assumptions regarding Concentrator. metallurgical treatment processes and Rougher/Cleaner optimisation tests are typically conducted parameters made when reporting at a grind size of P80 53 µm, chosen in consultation with Mineral Resources may not always be Nickel West technical personnel, to simulate the process rigorous. Where this is the case, this flow at their Kambalda Concentrator. Testwork results from programs completed for the should be reported with an explanation of the basis of the Company's existing Mineral Resources have all shown high metallurgical assumptions made. nickel recoveries whilst producing a very clean concentrate that is low in contaminates and high in saleable nickel, copper and cobalt. The process covering the ongoing collection and handling of the metallurgical samples and the supervision of the testwork that aligns with Nickel West's process flow is being managed by Mr Barry Cloutt, an external independent metallurgical consultant who previously worked for WMC in Kambalda in the 1990s and directly managed the Kambalda Concentrator. This was a period in time when the plant was receiving nickel ore from between 10 and 15 separate underground sources across the Kambalda Widgiemooltha districts from various ore suppliers. Both the principal and relevant Competent Persons have ASX:LM8 PAGE 41 the KNP. concluded that there are reasonable prospects that the nickel sulphide mineralisation at the MRE deposit will be amenable to treatment at nickel concentrators proximal to | (| Criteria | JORC Code explanation | Commentary | |---|--------------------------------------|--|--| | | Environmental factors or assumptions | Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. | granted Mining Leases with all significant supporting infrastructure already in place or able to be constructed on previously disturbed ground. Any future mine workings will require dewatering to a permitted discharge point on tenements held by SIGM. Binding legal agreements are in place with the relevant parties to do so. Ore treatment is yet to be finalised but can potentially be carried out offsite by third parties under a typical Ore Tolling and Concentrate Purchase arrangement with nickel concentrating facilities in proximity to the KNP. | | 5 | Bulk density | Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. | During the Lunnon Metals exploration program, drill core bulk density measurements were routinely taken as determined by the standard gravimetric water immersion technique (Archimedes Principle). The drill core is generally competent and non-porous with | | Criteria | |----------------| | Classification | | ion | the average reported MRE Ni % grade (assuming typical | Criteria | JORC Code explanation | Commentary | |--|---|--| | Classification
(continued) | | metallurgical recoveries) that exceed the potential future operating cost. Publicly available data for feasibility studies for similar projects (e.g. Mincor Resources Kambalda Nickel Project, 25 March 2020¹0) together with the Company's own detailed PFS analysis11 for the Baker deposit record operating and sustaining capital costs in a range of
between \$250/t (for Mincor's estimates applying quoted A\$/lb Ni AISC on a 100% recovered basis over the stated ore tonnage to be mined) and \$340/t ore for Baker. - Incremental capital costs to access and develop are considered to be modest due to the proximity of potential future underground development at Baker. - Therefore, there is no apparent reason the reported MRE nickel deposit could not be mined economically in the future. The classification results reflect the Lunnon Metals Competent Person's view of the deposit. | | Audits or reviews | The results of any audits or reviews of Mineral Resource estimates. | Internal reviews have been completed by senior Lunnon Metals personnel which verified the technical inputs, methodology, parameters and results of the geological interpretation and mineralisation modelling exercise (solid wireframe models) to the satisfaction of the relevant Competent Persons. As part of the ITAR to the Prospectus (22 April 2021), Optiro reviewed the then Mineral Resources and confirmed the tonnage and nickel grades reported from the block models. The quality of input data, QAQC, interpretation and sample spacing was considered suitable and this information has been considered in applying the Mineral Resource classification. In Optiro's opinion the Mineral Resource models developed by Lunnon Metals and Cube for the KNP were appropriate and provided a realistic estimation and classification of the global Mineral Resources. Whilst not reviewed directly by Optiro or others in this case, the same procedure and processes as reviewed by Optiro have been employed in the current MRE by Lunnon Metals. | | Discussion of relative accuracy/confidence | Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to | Resource confidence is reflected in its classification into Inferred Resource and Indicated Resource, and is primarily based on the quality, quantity and distribution of data which supports the continuity of geology and grade distribution of the deposit. The MRE nickel grades are comparable with the historical WMC mined head grades at similar local nickel deposits. Likewise, the style of mineralisation and tonnages associated with the MRE are comparable with previous mineralisation styles and tonnages mined at Silver Lake, Fisher, Foster and Jan by WMC. | ¹⁰ Reference ASX: MCR announcement dated 25/03/2020. ¹¹ See ASX announcement dated 22 May 2023 for full details of the PFS, including input assumptions and parameters and physical and financial results. | Criteria | JORC Code explanation | Commentary | |---|--|------------| | Discussion of relative accuracy/ confidence (continued) | technical and economic evaluation. Documentation should include assumptions made and the procedures used. | | | | These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. |)) | | | | | | | | | | | | | | |