

Disclaimer

This Presentation has been prepared as a summary only and does not contain all information about Future Metals NL's ("Future", "FME" or the "Company") assets and liabilities, financial position and performance, profits and losses, prospects and rights. The information in this Presentation and made to you verbally is subject to updating, completion, revision, further verification and amendment without notice

The information contained in this Presentation or subsequently provided to the Recipient of this Presentation whether orally or in writing by or on behalf of FME or its employees, agents or consultants is provided to the Recipients on the terms and conditions set out in this notice. The purpose of this Presentation is to provide Recipients with Information relating to FME. The Presentation has been prepared by FME and each Recipient must make his/her own independent assessment and investigation of FME and its business and assets and should not rely on any statement or the adequacy and accuracy of any Information contained in this Presentation.

FME makes no representation or warranty (express or implied) as to the accuracy, reliability or completeness of the information. FME and its directors, employees, agents and consultants shall have no liability (including liability to any person by reason of negligence or negligent misstatement) for any statements, opinions, information or matters (express or implied) arising out of, contained in or derived from, or for any omissions from the Presentation, except liability under statue that cannot be excluded.

The performance and operations of FME may be influenced by a number of factors, many of which are outside the control of FME. No representation or warranty, express or implied, is made by FME or any of its directors, officers, employees, advisers or agents that any intentions, expectations or plans will be achieved either totally or partially or that any particular rate of return will be achieved This Presentation does not constitute in any way an offer or invitation to subscribe for securities in FME pursuant to the Corporations Act.

Statements regarding FME's plans with respect to its mineral properties are forward looking statements. There can be no assurance that FME's plans for development and or sale of its mineral properties will proceed as currently expected. There can also be no assurance that FME will be able to confirm the presence of mineral deposits, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of FME's mineral properties.

Mineral Resources

The information in this document that relates to Mineral Resources has been extracted from the ASX announcement titled: "Resource Upgrade Defines Panton Impressive Grade & Scale", 26 October 2023. This announcement is available to view on the Company's website at future-metals.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the estimates in the original release continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the relevant original market announcement.

Metallurgy

The information in this document that relates to metallurgical test work managed by Independent Metallurgical Operations Pty Ltd (IMO) is based on, and fairly represents, information and supporting documentation reviewed by Mr Peter Adamini, BSc (Mineral Science and Chemistry), who is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM). Mr Adamini is a full-time employee of IMO, who has been engaged by FME to provide metallurgical consulting services. Mr Adamini has approved and consented to the inclusion in this presentation of the matters based on his information in the form and context in which it appears.

Mining

The information in this document that relates to mine planning, design and scheduling managed by ABGM Pty Ltd ("ABGM") is based on, and fairly represents, information and supporting documentation reviewed by Mr Anton von Wielligh, B.Sc. (Hons) in Engineering (Mining), who is a Fellow of AuslMM. Mr von Wielligh is a full-time employee of ABGM, who has been engaged by Future Metals NL to provide mining consulting services. Mr von Wielligh has approved and consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Exploration and Metallurgical Results

The Information in this presentation that relates to previous exploration results for the Projects is extracted from the following ASX announcements:

- 27 July 2022 High Grade Ni-Cu-PGE sulphides confirmed at Panton
- 13 February 2023 | Mining and Processing Breakthrough at Panton
- 21 March 2023 High Grade PGM Mineralisation from 350m Step Out Drilling
- 4 May 2023 | Drilling to commence at Nickel Sulphide Targets
- 24 May 2023 | RC drilling commences at Panton Ni-Cu-PGM Targets
- 11 July 2023 | Step Change in PGM Recovery Improved to 86%
- 5 October 2023 | FME Doubles Strategic Exploration Position Near Panton
- 26 October 2023 | Panton Resource Upgrade Delivers Opportunity for High-Grade, Long-Life Operation

The above announcements are available to view on the Company's website at future-metals.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant original market announcements. The Company confirms that the information and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Investment Highlights

Panton has potential to become one of the top PGM producers in the western world

Near-term development opportunity leveraging >A\$50m investment, technically de-risked and on granted Mining Leases

Compelling Scoping Study economics underpinned by high-grade deposit and long mine life

Conventional flow sheet and low capital intensity support reduced time-to-market

Significant upside near-term drivers including resource growth, PFS delivery and drilling of advanced exploration targets

Refreshed board & management to drive Project towards development

DECEMBER 2023 | INVESTOR PRESENTATION

Project Overview

Highest grade PGM Resource in Australia

- High-grade, scalable deposit to underpin long-life, low capital planned operations:
 - 37.2Mt @ 3.3 g/t PdEq¹ for 3.9Moz (Reef & High Grade Dunite focus of Scoping Study), including:
 - Reef deposit of 10.8Mt @ 7.0g/t PdEq¹ for 2.4Moz
- Total Resource of 92.9Mt @ 2.0g/t PdEq¹ for 6Moz

Jurisdiction Advantage

- Strategic asset location (Western Australia) vs ~85% of PGM supply from high sovereign risk locations (South Africa, Russia & Zimbabwe)
- 1km off sealed highway; 70km from sealed airstrip and multiple operations nearby
- Deep water port access 3 hours trucking north, proximity to end users via shipping

Metallurgy De-Risked

- Conventional crush-grind-flotation flowsheet, generating overall PGM recoveries of ~90%
- PGM flotation delivers a high concentrate grade up to 160g/t PGM_{3F}^{2,3} with nickel credit
- Additional production of chromite concentrate via flotation of PGM tails stream
- Further potential value add to PGM concentrate via inclusion of copper, cobalt, rhodium & iridium as payable by-product credits

Accelerated Path to Production

- Granted mining leases
- ~45,000m drilling at Panton completed to date
- Established ~500m long exploration decline in place with access to orebody
- Comprehensive bulk metallurgical testwork completed

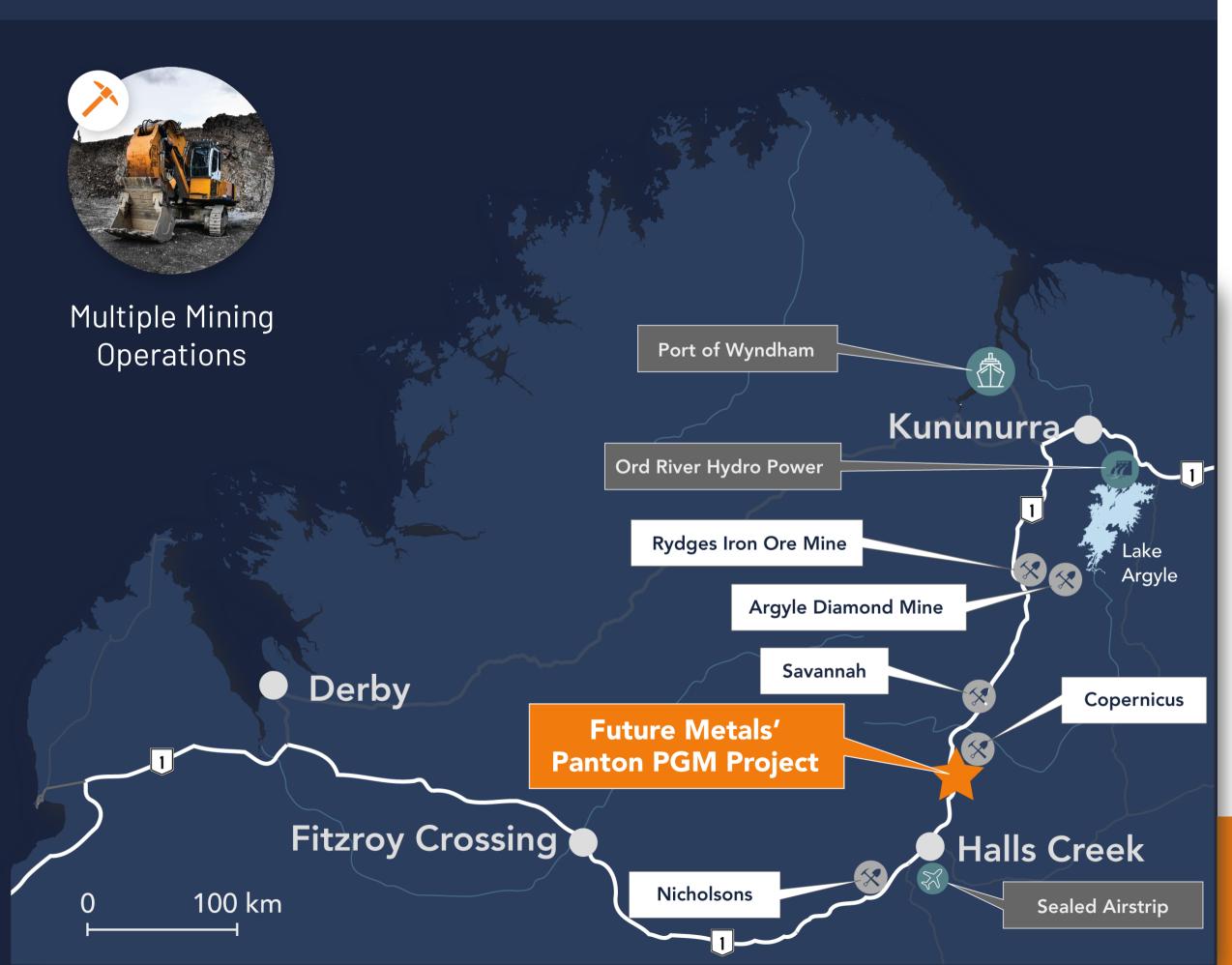
Panton mining portal

- 1: PdEq (Palladium Equivalent). Refer to Appendix for calculation details
- 2: Refer to Panton Scoping Study announcement on 7 December 2023 for more details on flotation test work
- 3: Platinum-Group-Metals 3E refers to platinum, palladium and gold

Strategic Location and Infrastructure

A well serviced and active mining region

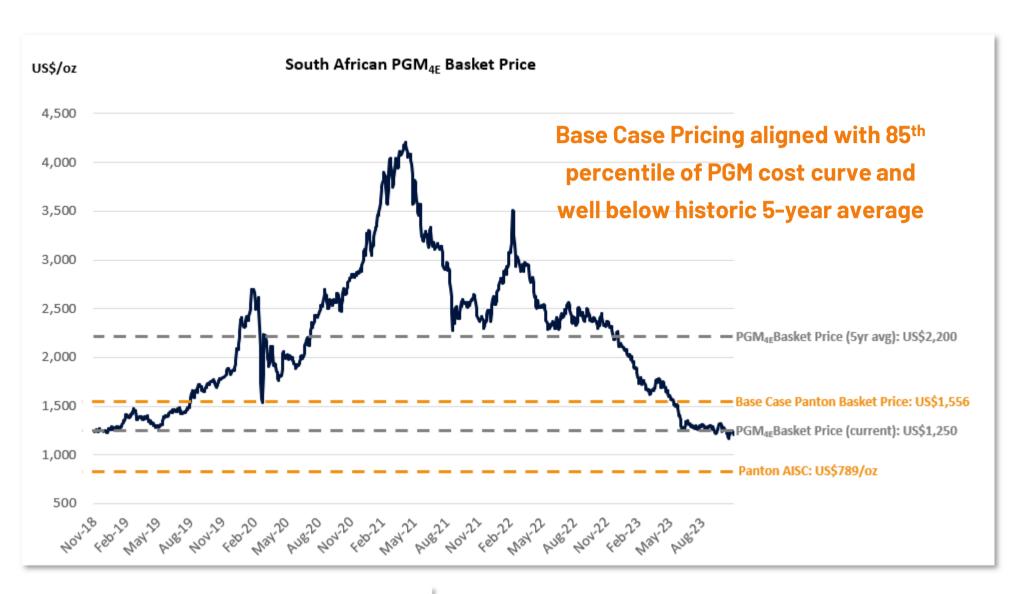
Port Facilities
(~3 hrs trucking
from Panton)


Sealed Airstrip

Hydropower

Great Northern Highway

Scoping Study Highlights⁴ - Robust Project Economics


Panton delivers operating margin in all phases of the PGM price cycle and is highly leveraged toward a PGM price rebound

Valuation Scenarios	Base Case	5yr Avg PGM Price Case
NPV ₈ (pre-tax / post)	A\$250M / 153	A\$477m / 311
IRR (pre-tax / post)	26% / 21%	39% / 31%
Operating Cash Flow	A\$91m p.a.	A\$119m p.a.
Operating Free Cash Flow	A\$72m p.a.	A\$100m p.a.
Payback Period	4.1 years	3.2 years

Mining						
LOM	~9 years (scoping study utilises only 26% of current high-grade resource)					
Throughput	1,250ktpa					
ROM Grade	3.60g/t PGM _{3E}	4.77g/t PdEq⁵				
Production						
PGM _{3E}	117,000 oz pa					
Nickel	1,200 tpa					
Chromite Conc.	134,000 tpa					
PdEq⁵	161,000 oz pa					

Capex & Opex	
Capex (pre-prod)	A\$267m (inc. A\$32m contingency)
AISC*	US\$789/oz (2 nd quartile)

^{*} Net of by-products. Based on SFA (Oxford) calculation methodology utilising CY2022 prices. See Panton Scoping Study for more details

Price Scenarios		Base Case ⁶	5yr Avg PGM Price Cas				
Pt	US\$/oz	1,285	1,400				
Pd	US\$/oz	1,400	2,115				
Au	US\$/oz	2,000	1,870				
Rh ⁷	US\$/oz	4,450	12,450				
PGM _{4E} Basket Price	US\$/oz	1,556	2,200				
Ni	US\$/t	20,000	20,000				
Cr ₂ O ₃ (40-42%)	US\$/t	282	282				

⁴ Refer to Scoping Study announcement (7 December 2023) for full Scoping Study technical & economic metrics

⁵ Rh not included in Scoping Study economic evaluation. For comparison to South African PGM basket price only

⁶ Base Case long term PGM basket price modelled on the ~85th percentile of the PGM cost curve (see slide 8)

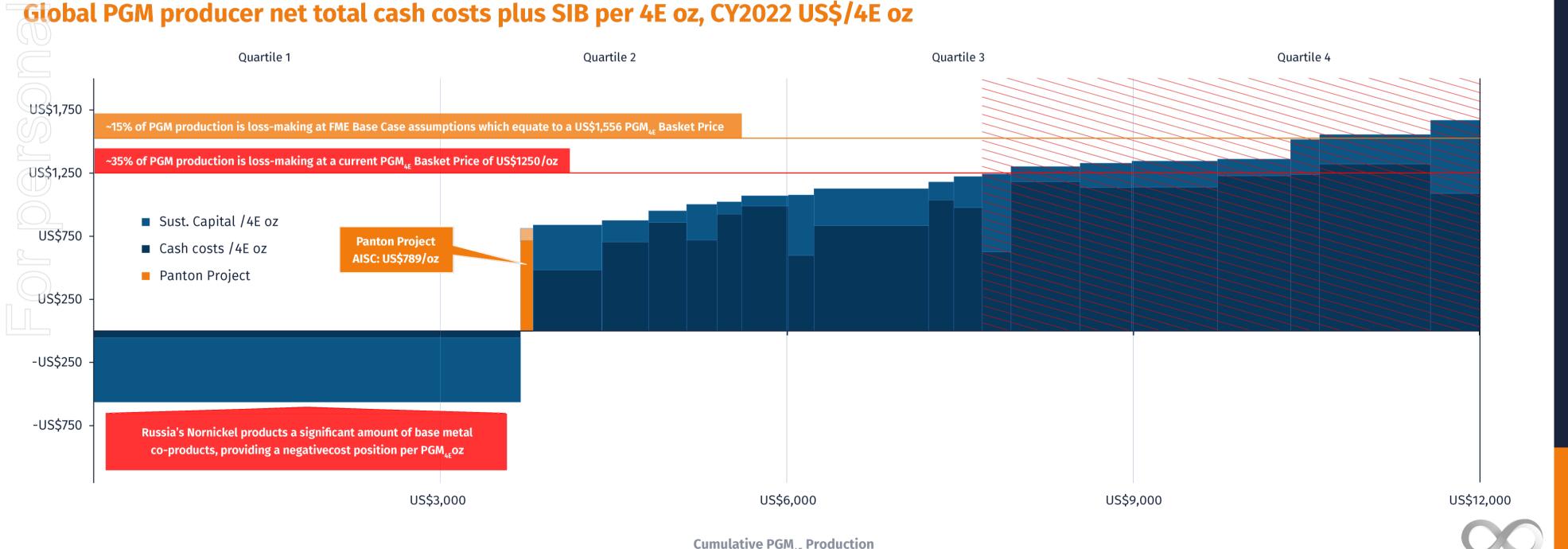
⁷ Rh not included in Scoping Study economic evaluation. For comparison to South African PGM basket price only

al use on

Western world PGM Projects

PGM supply ex-South Africa and Russia is dominated by diversified majors

- ~85% of PGM production derived from high sovereign risk jurisdictions (Sth Africa, Russia & Zimbabwe)
- Other study-stage projects are large and low grade, with significant capital and permitting requirements
- Future Metals Advantage:
 - The only near term pure-play PGM project of globally significant scale in the western world
 - Low capital intensity driven by superior grades
 - The standout opportunity for investor exposure to the PGM price rebound

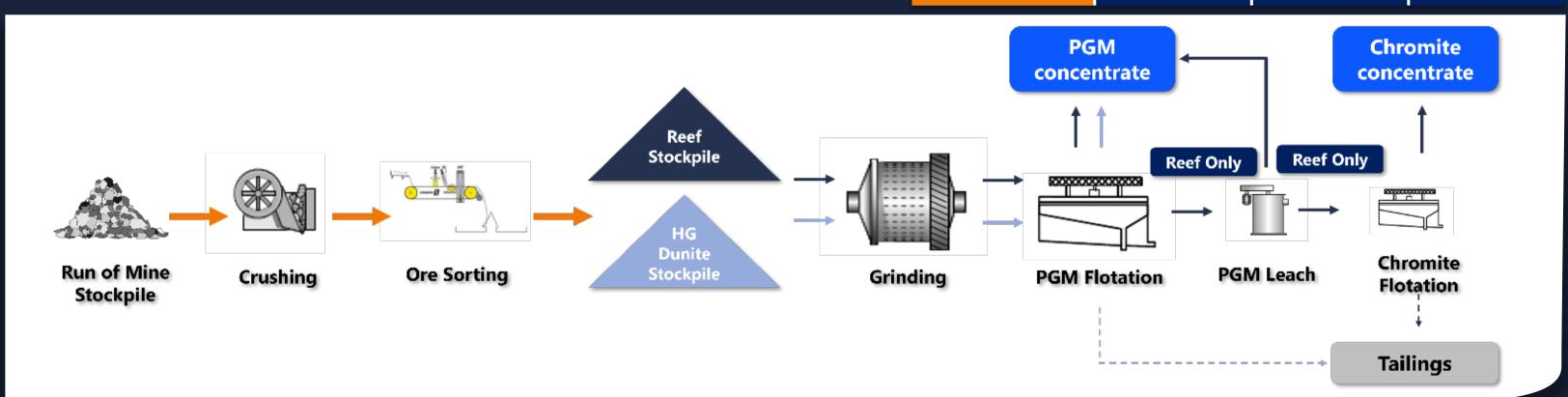

Project	Owner	Location	Upfront Pre- Production Capital (A\$m)	PGM _{3E} Grade (g/t)	Life of Mine (Years)	PGM _{3E} Production (Koz, LOM Avg)	Co-Product Production (LOM Avg)
Panton	Future Metals	Australia	267	3.60	~9	117	1kt nickel 134kt chromite concentrate
Gonneville (15Mt)	Chalice Mining	Australia	1,600	0.95	19	280	9kt nickel 10kt copper 0.8kt cobalt
Marathon	Generation Mining	Canada	1,243*	0.90	12.5	216	9kt copper 248koz silver

^{*} Pre-production capital estimate of C\$1,110. AUD:CAD exchange rate of 0.89 applied

PGM Cost Curve Analysis

Projected 2nd quartile AISC demonstrates Panton's ability generate operating margin through the price cycle

- Current PGM basket price deep into the cost curve (~35% of mines loss making) not sustainable
- Supply cuts underway and likely to drive strong price rebound
- Panton is well positioned in the 2nd quartile of the cost curve
- Scoping study Base Case long term PGM basket price modelled at ~85th percentile of cost curve


Processing & Marketing Overview

FUTURE METALS

Panton flowsheet built on >200 batch scale flotation tests and pilot scale flotation and leaching testwork

- Conventional crush, grind and flotation to produce PGM concentrate from separate trains for Reef & Dunite
- Reef material will also be subject to tailings leaching and chromite flotation to produce a chromite concentrate

Scoping Study Recovery Assumptions											
		Reef	Dunite	Total							
Palladium	%	96%	76%	92 %							
Platinum	%	82%	73%	81%							
Gold	%	98%	86%	95%							
Nickel	%	43%	35%	40%							
Chromite	%	73%	-	73 %							

- PGM concentrate grading 80-160g/t PGM_{3E} and ~3-4% Ni
- Chromite concentrate grading 40-42% Cr₂O₃
- Offtake fully uncommitted (competitive indicative terms received)
- Opportunity for additional recovered by-products in Cu, Rh, Ir and Co

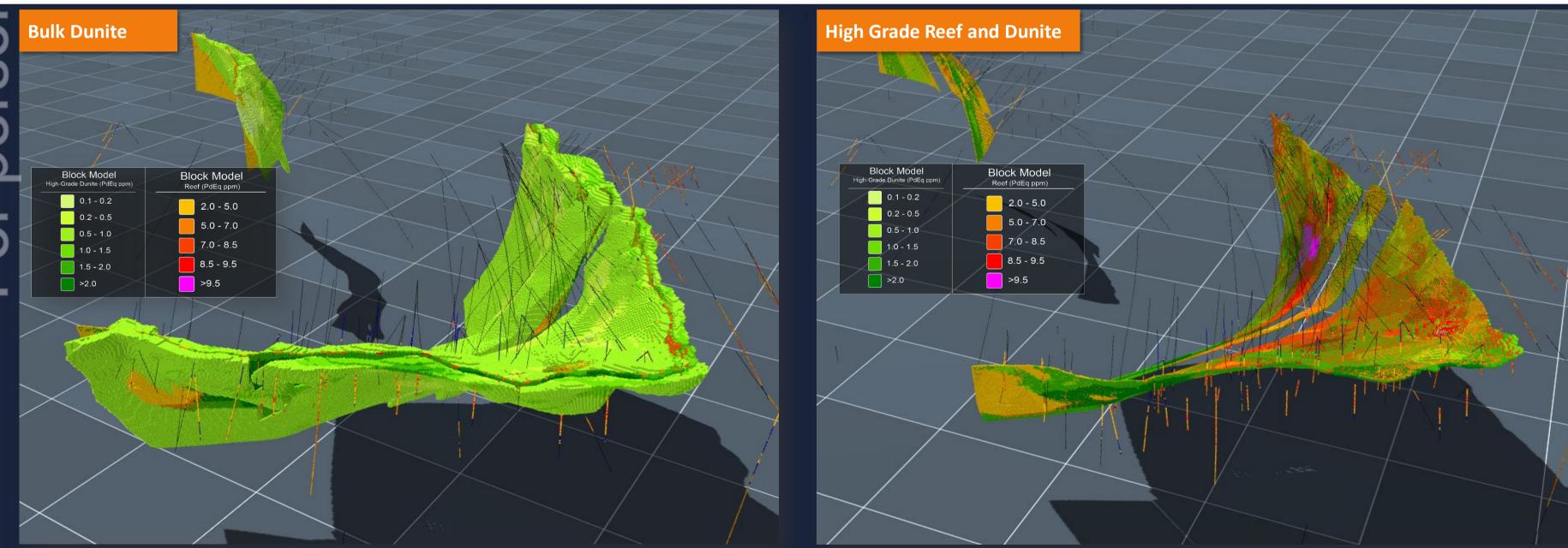
Scoping Study Offtake Assumptions											
Metal	Payability (%)	Treatment Ch. (US\$/dmt)	Refining Ch. (US\$/oz)								
Palladium	92%		25								
Platinum	92%	90	25								
Gold	80%	90	25								
Nickel	55%										

INVESTOR PRESENTATION

How Panton Metallurgy Has Been Unlocked

FUTURE METALS

Scoping Study built upon Future Metals' systematic de-risking of key value drivers


	Description	Key Outcome
Flotation Optimisation	 Change in flotation reagents (analogous to Mt Keith Ni ops) to achieve 20-35x head grades while maintaining strong recoveries 	 ✓ Elimination of hydrometallurgical flowsheet ('Panton Process') ✓ Improved marketability of concentrate ✓ Reduced smelting charges ✓ Reduced logistics costs
Dunite Flotation	 Established flotation regime to effectively recover PGMs from Dunite material 	 Enables processing of previously considered mineralised waste Increases mining rates and reduces mining costs Higher metal production
Ore Sorting	 Established effectiveness of ore sorting in separating Reef and Dunite material post mining 	 ✓ Improved mining ore recovery ✓ Increases mining & development rates, reducing mining costs ✓ Consistent processing performance through separate trains
Tailings Leaching	 Recovery of Pd and Au from flotation tailings 	✓ Improves robustness of flowsheet ✓ Incremental gain in overall PGM recoveries
Chromite Flotation	 Established ability to produce a saleable chromite concentrate from PGM flotation tailings 	 ✓ Improves overall economics ✓ Substantial reduction in tailings at site

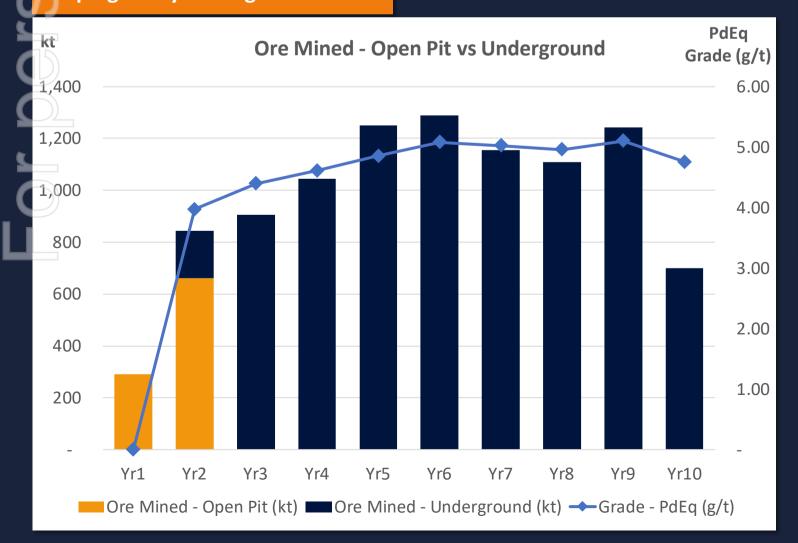
Panton Deposit

FUTURE METALS

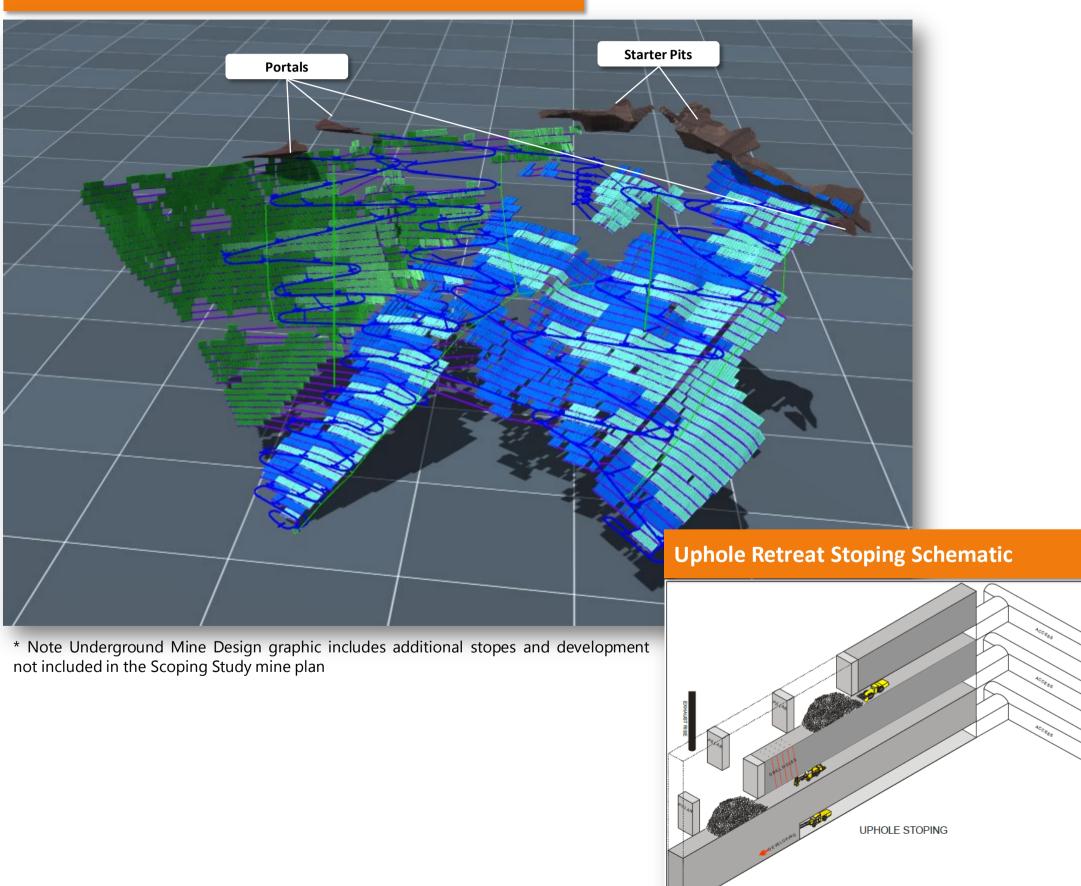
Panton is the highest grade PGM and chromite deposit in Australia with significant expansion potential

Focus of the Panton Scoping Study Panton Total Mineral Resource Estimate Panton Total Mineral Resource - Reef & High-Grade Dunite Panton Total Mineral Resource - Reef PGM _{3E} ³ Ni Cr ₂ O ₃ PdEq¹ (g/t) (%) (%) (%) (g/t) Mass (Mt) (g/t) (%) (%) (%) (g/t) (%) (g/t) Panton Total Mineral Resource - Reef PGM _{3E} ³ Ni Cr ₂ O ₃ PdEq¹ (Mt) (g/t) (%) (g/t) (%) (g/t) (%) (g/t) (%) (g/t) Panton Total Mineral Resource - Reef Panton Total Mineral		Bulk Dunite								High Gr	ade Reef a	and Dunite			/_	/-	/ /	
Panton Total Mineral Resource Estimate						Inc	cludes					Inc	ludes					
Anton Total Mineral Resource Estimate Panton Total Mineral Resource - Reef & High-Grade Dunite Panton Total Mineral Resource - Reef Mass PGM _{3E} ³ Ni Cr ₂ O ₃ PdEq ¹ Mt) Grade Panton Total Mineral Resource - Reef Mass PGM _{3E} ³ Ni Cr ₂ O ₃ PdEq ¹ Mt) Grade Panton Total Mineral Resource - Reef Mass PGM _{3E} ³ Ni Cr ₂ O ₃ PdEq ¹ Mt) Grade Panton Total Mineral Resource - Reef Mass PGM _{3E} ³ Ni Cr ₂ O ₃ PdEq ¹ Mt) Grade Frade Panton Total Mineral Resource - Reef Frade Frade		Contained Metal	4.5	185	2.8	6.0		Contained Metal	3.1	83	2.2	3.9		Contained Metal	2.0	29	1.6	2.4
Anton Total Mineral Resource Estimate Panton Total Mineral Resource - Reef & High-Grade Dunite Panton Total Mineral Resource - Reef Wass PGM _{3E} Ni (g/t) (%) (%) (%) (%) (%) (%) (%) (2.9		(Moz)	(kt)	(Mt)	(Moz)	37.2		(Moz)	(kt)	(Mt)	(Moz)	10.8		(Moz)	(kt)	(Mt)	(Moz)
Anton Total Mineral Resource Estimate Panton Total Mineral Resource - Reef & High-Grade Dunite Panton Total Mineral Resource - Reef Mass PGM _{3E} ³ Ni Cr ₂ O ₃ PdEq ¹ (Mt) (g/t) (Mt) Cr ₂ O ₃ PdEq ¹ (Mt) (g/t) (Mt) Panton Total Mineral Resource - Reef Mass PGM _{3E} ³ Ni Cr ₂ O ₃ PdEq ¹ (Mt) (g/t) (Mt) (g/t) (Mt) (g/t) (Mt) Panton Total Mineral Resource - Reef		Grade	1.5	0.20	3.1	2.0		Grade	2.6	0.22	6.2	3.3		Grade	5.6	0.27	14.6	7.0
Anton Total Mineral Resource Estimate Panton Total Mineral Resource - Reef & High-Grade Dunite Panton Total Mineral Resource - Reef Mass PGM _{3E} Ni Cr ₂ O ₃ PdEq ¹ Mass PGM _{3E} Ni Cr ₂ O ₃ PdEq ¹ Panton Total Mineral Resource - Reef			(g/t)	(%)	(%)	(g/t)	(Mt)		(g/t)	(%)	(%)	(g/t)	(Mt)		(g/t)	(%)	(%)	(g/t)
			PGM _{3E} ³	Ni	Cr ₂ O ₃	PdEq ¹	Mass		PGM _{3E} ³	Ni	Cr ₂ O ₃	PdEq ¹	Mass		PGM _{3E} ³	Ni	Cr ₂ O ₃	PdEq ¹
Focus of the Panton Scoping Study ————————————————————————————————————	ntor	n Total Mineral Res	source Esti	mate			Panto	on Total Mineral Re	source - R							eef		
							←			— Foc	us of t	he Pan	ton Sc	oping Study	/			

Mining Overview

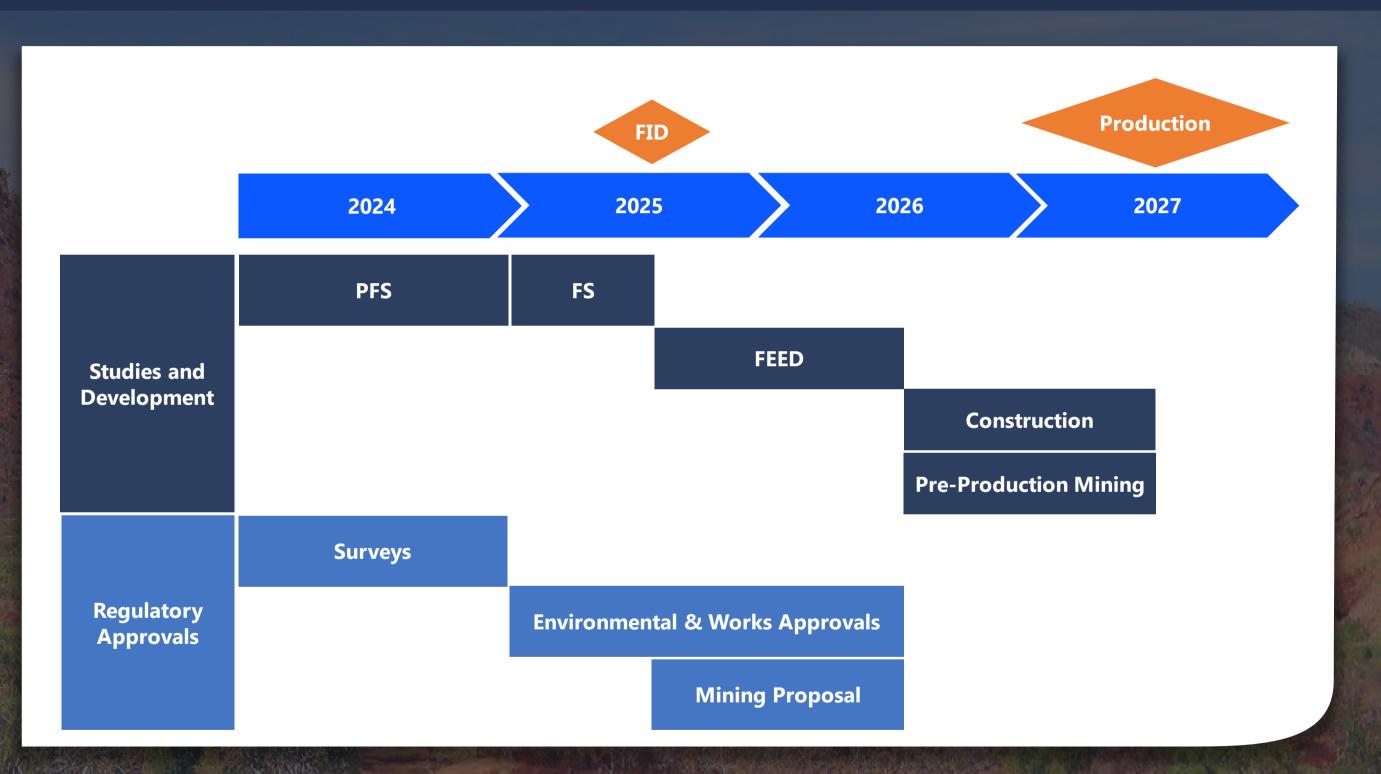


Open pit mining will commence during plant construction ahead of transitioning to underground mining


Underground mining will be mechanised, capitalising on productivity and ability of world-class Western Australian mining contractors

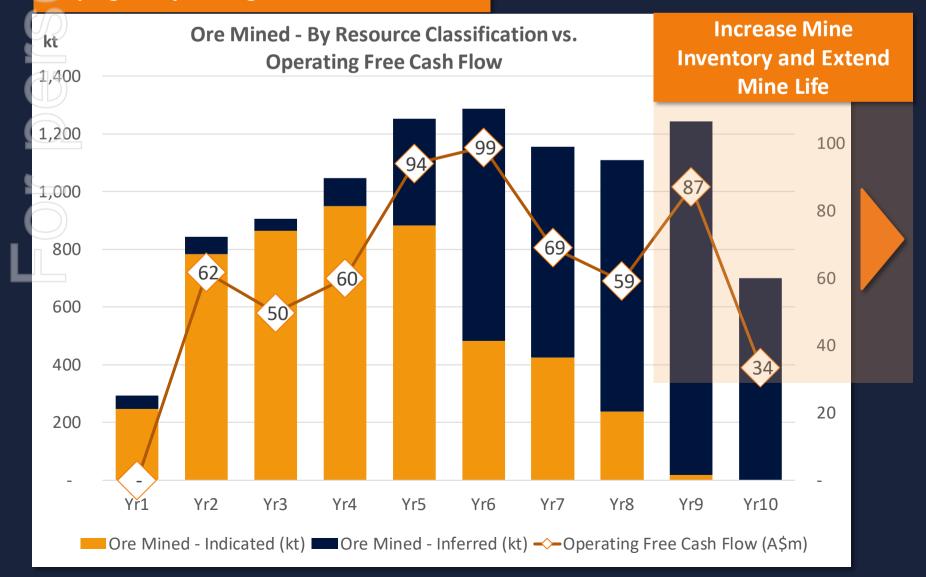
Conventional long haul open stoping to be utilised

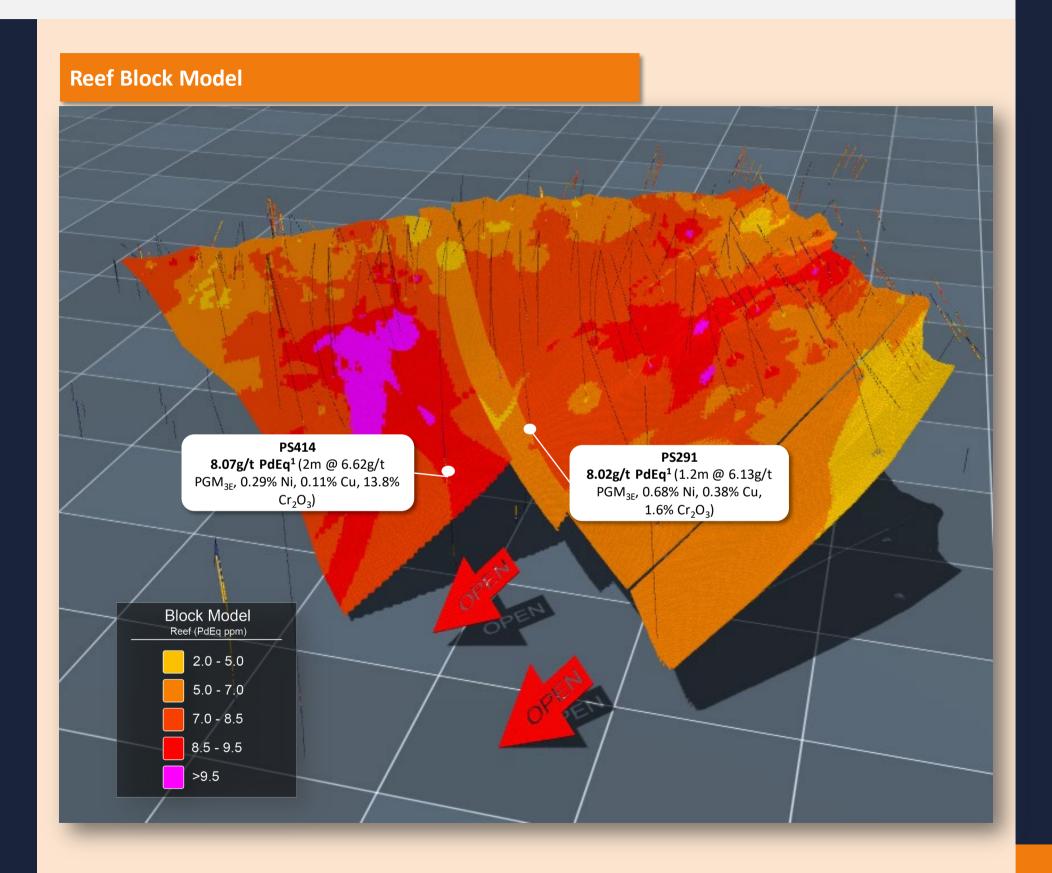
Scoping Study Mining Profile


Open Pit and Underground Mine Design

Development Timeline and Forward Work Programme

The Company plans to progress Panton swiftly through the feasibility and design stages in order to be production-ready for the next PGM price upswing




Opportunities: Resource Upgrade & Growth

FUTURE METALS

- Study includes just 26% of Reef & High Grade Dunite MRE average annual free cash flows of A\$72m demonstrate upside of mine life additions from upgrading Resource and extending
- Mineralisation open at depth with drillhole on largest step-out demonstrating increasing grades and thickening in mineralisation (PS414)
- Examining existing database and core for other zones of mineralisation outside of MRE. Evidence of different styles of reef which are sulphide-rich (PS291) rather than chromitite analogous to Merensky reef which sits above the chromite UG2 reef in South Africa

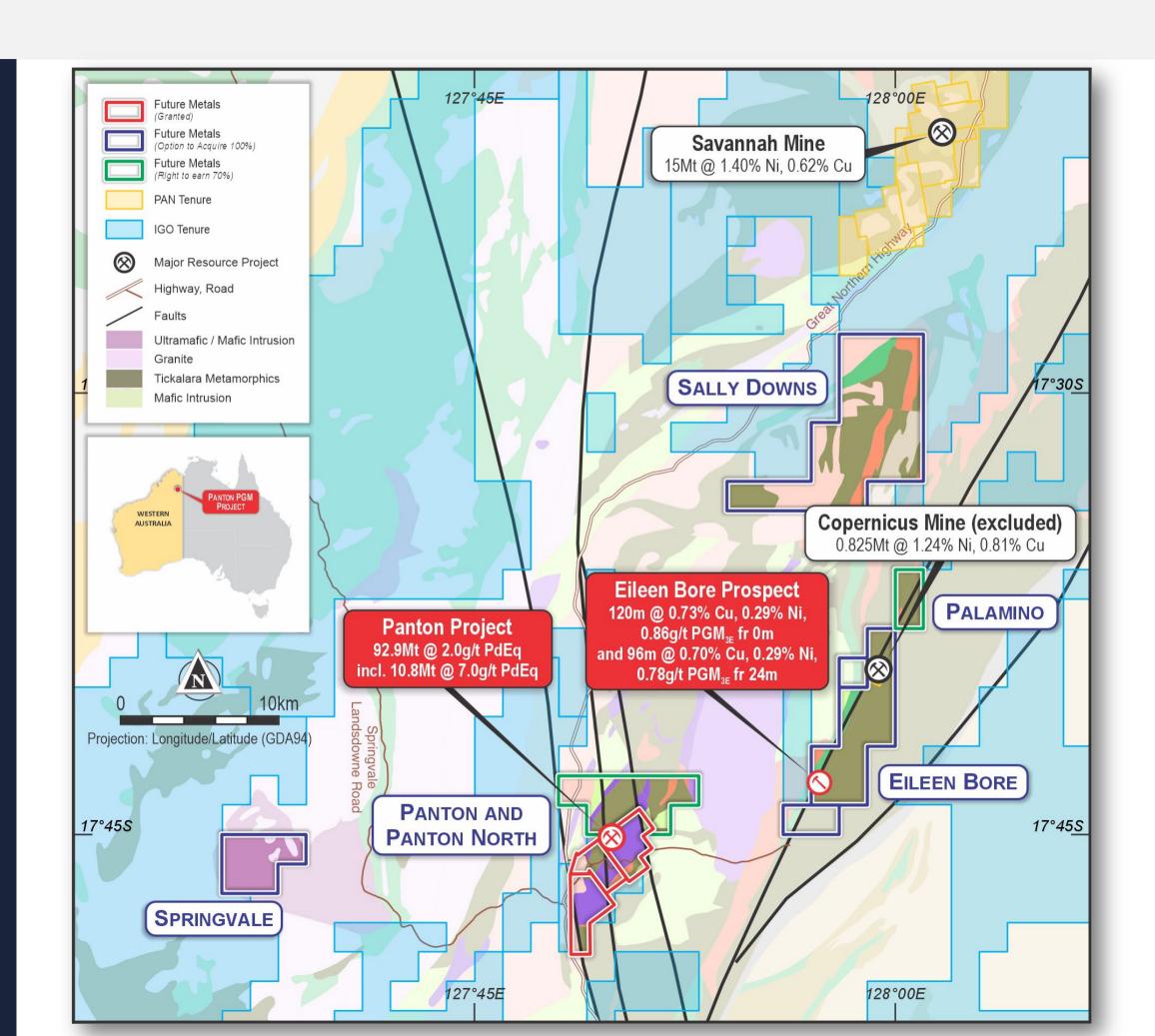
Scoping Study Mining Profile

Opportunities: Regional Exploration

Significant Ni-Cu-PGM discovery potential within trucking distance of Panton to complement development plans

East Kimberley has frontier discovery potential

Future Metals' holds 176km² granted tenement package


IGO Ltd has consolidated a 15,255km² land position in the Kimberley region

Exploration model guided by **Ni-Cu-PGM expert Jon Hronsky**

Eileen Bore

Broad intersections of Cu-Ni-PGM mineralisation drilled over ~300m strike

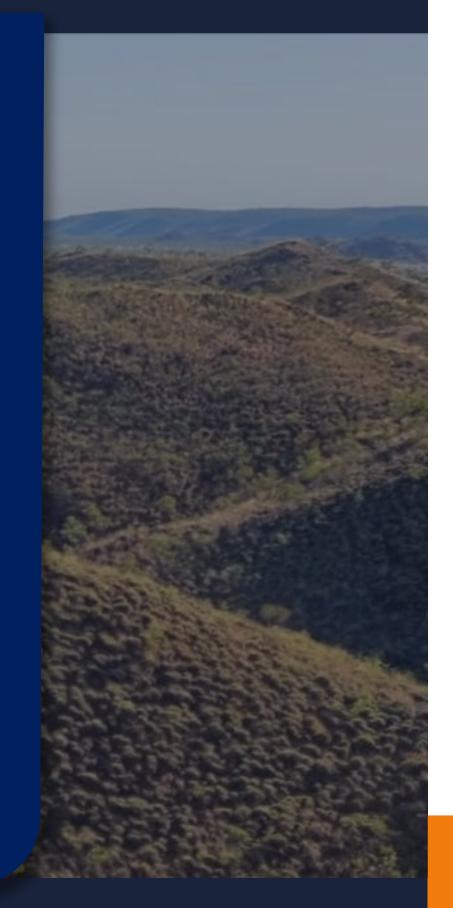
- Open at depth and down plunge, with multiple targets along strike
- Potential to quickly establish an MRE & metallurgical performance and incorporate into development plans

Why Invest in Future Metals?

Scoping Study demonstrates compelling project economics

- Globally significant PGM production
- Projected 2nd quartile All-In Sustaining Costs
- Significant free cash flow generation potential
- Potential multi-decade life
- Low capital intensity

Near-term development potential to capitalise on improved PGM price environment



Significant upside opportunities:

- Resource upgrades & growth
- Regional discoveries to be incorporated into development plans
- Inclusion of other payable metals, and Western or green premiums

Refreshed Board and Management team with capabilities to swiftly progress the Project

JTURE METALS

Corporate Overview

FME
ASX | AIM Code

\$22.1M

Market Cap

5.1 cents

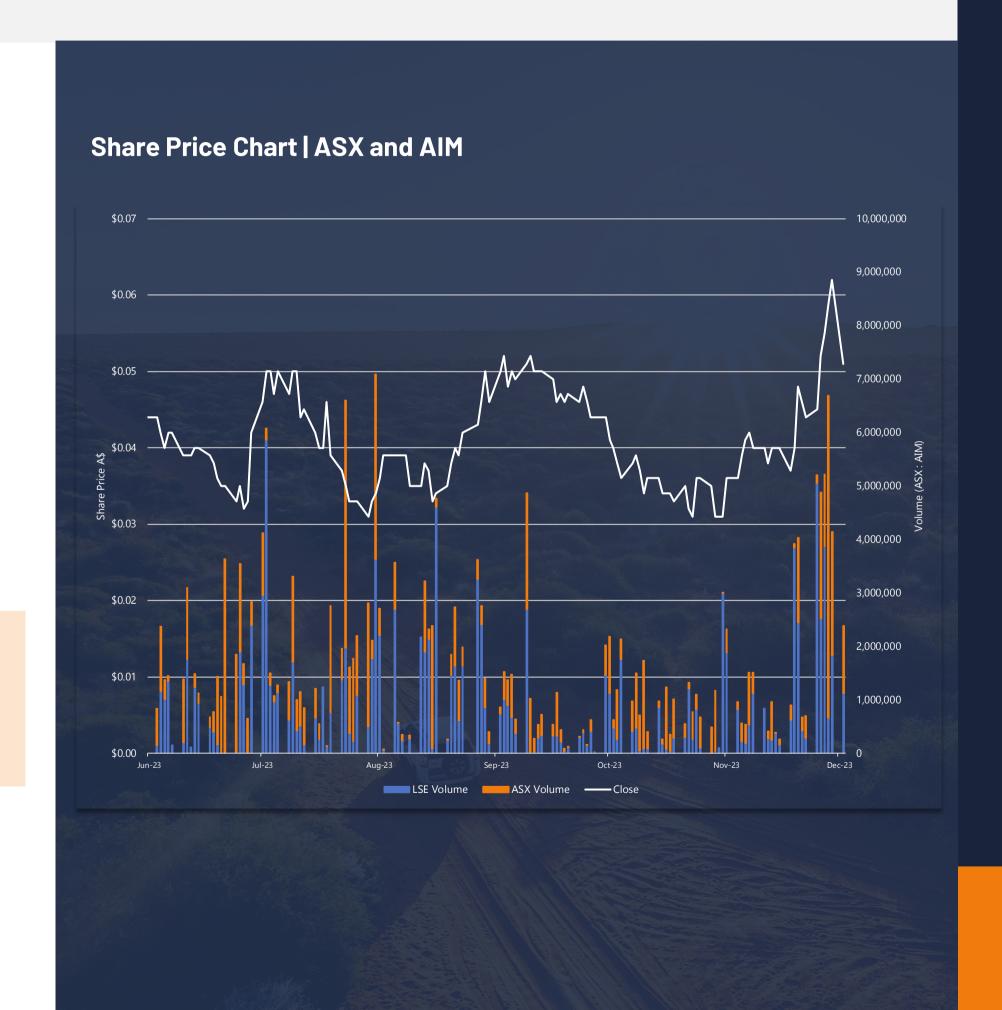
Share Price (4 Dec 2023)

\$20.5M

Enterprise Value

\$1.6M

Cash (30 Sep 2023)


434M Shares on Issue

37.3M Board & Management Performance Rights¹

113.9M Options

- 104.4M Listed 10c Options expiring Jun 2024
- 2.3M Unlisted £0.06 Options expiring June 2024
- 7.0M Unlisted \$0.18 Options expiring Nov 2024

1. Various vesting conditions based on VWAP share prices and project milestones

I INVESTOR PRESENTATION

Board & Management

BOARD OF DIRECTORS

Patrick Walta (Executive Chairman)

- Qualified metallurgist and mineral economist. Most recently Managing Director of New Century Resources Ltd where he led the acquisition, funding, development and operations of the Century Zinc mine
- Century mine was the 13th largest zinc producer in the world and sold to multinational PGM producer Sibanye Stillwater Ltd

Justin Tremain (Non-Executive Director)

- Experienced company director with extensive expertise across the mineral resources sector
- Current MD of West African gold explorer Turaco Gold (ASX:TCG), Non-Executive Chairman of Caspin Resources (ASX:CPN)

Elizabeth Henson (Non-Executive Director)

- Experienced board representative with expertise in governance and finance
- PriceWaterhouseCoopers senior international private tax partner and director based in London

MANAGEMENT TEAM

Jardee Kininmonth (Managing Director and CEO)

- Experienced corporate finance and mining professional
- Prior roles at mining private equity fund EMR Capital, and Galaxy Resources & Allkem
- Multi-commodity experience, with extensive experience in managing crossfunctional teams and working with projects across the mining life cycle

Andrew Shepherd (GM - Project Development)

- Qualified mining professional with +25yrs experience
- Previously manager of technical services at St Barbara
- Planning, development and implementation of complex, global, multidiscipline mining projects

Barbara Duggan (Principal Geologist)

- Geologist with +20yrs experience in mineral exploration
- Extensive experience in Australia and Canada with a focus on nickel sulphide and magmatic hydrothermal mineral systems specialising in integrated mineral systems targeting at a district to deposit scale

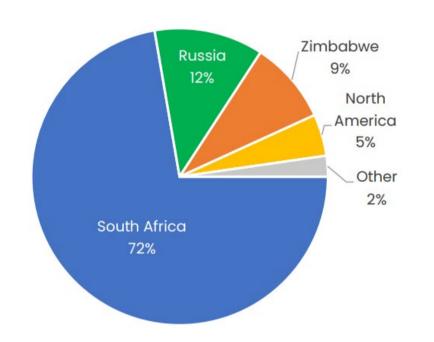
Dr Jon Hronsky (Senior Exploration Advisor)

- +35yrs experience in global mineral exploration with a focus on magmatic layered intrusives
- Targeting work led to discovery of West Musgrave nickel sulphide province
- Consultant to major mining companies for past 15 years previously head of generative exploration at BHP and global geoscience leader for WMC Resources

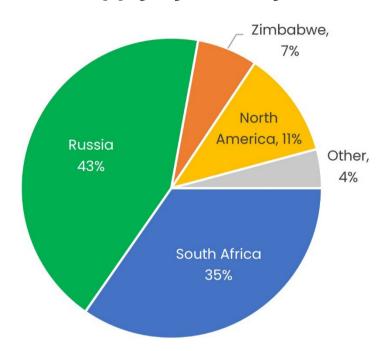
ECEMBER 2023 | INVESTOR PRESENTATION

PGM Macro Environment

PGM Supply


- Global PGM supply dominated by Sth Africa, Russia and Zimbabwe (~85%)
 - Sth African operations predominately 4th quartile on the cost curve with aging infrastructure & deep mines
 - Russian supply to face ongoing sanctions
 - Global supply of PGMs likely to remain challenged without strong price incentivisation

PGM Demand


Platinum demand drivers:

- Massive demand growth anticipated from hydrogen fuel cell EVs
- Fuel cell EVs use up to 8x more Pt than ICE vehicles
- Pt also essential in PEM electrolysers to produce green hydrogen
- Palladium demand drivers:
 - Continued global vehicle production growth
 - Stricter auto emission controls increase Pd loading
 - Growth in hybrid EVs, sustaining auto demand for Pd and offsetting loss from transition to battery EVs
 - Hybrid EVs utilise ~15% more Pd than ICE vehicles

Platinum Supply By Country (2022)

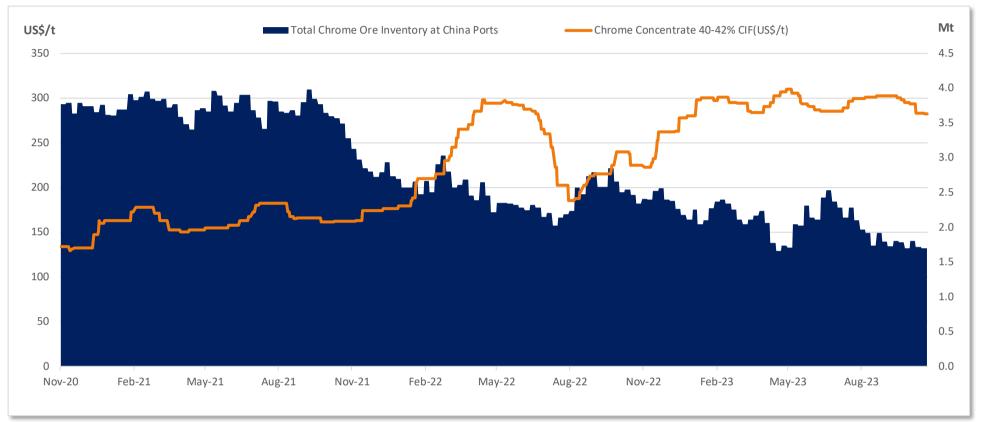
Palladium Supply By Country (2022)

Forecast solid Platinum demand growth and stable palladium demand growth

Source: Metals Focus 2019 – 2022 (Pd) and 2019 – 2023 (Pt), WPIC research onwards.

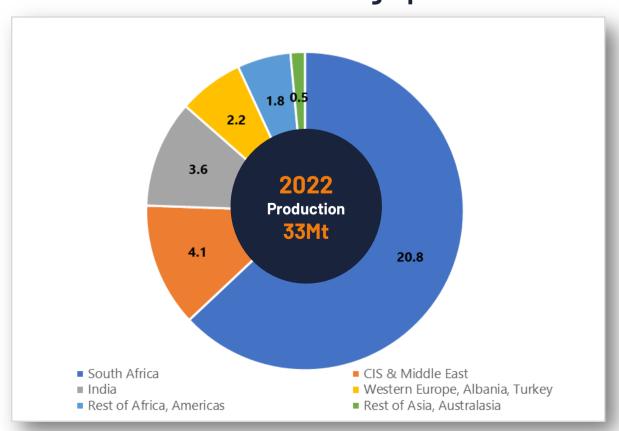
Chromite Concentrate Market

FUTURE METALS


Stainless Steel Demand Driven Market

- Metallurgical chrome ore is the predominant form of global production (Source: International Chromium Development Association)
 - Metallurgical Grade (32Mt)
 - o Chemical Grade (0.8Mt)
 - Foundry Sand (0.3Mt)
- Metallurgical chrome ore is used in the production of ferrochrome, which is a key input into the production of stainless steel.
 - Non-substitutable in the production of stainless steel which has chromium content of between 10-20% (Source: International Chromium Development Association)

Critical Mineral


- Major suppliers (exporters) of chrome ore include South Africa, Turkey, Zimbabwe & Albania
- Major importers include China, Indonesia, Sweden, USA
- Listed as a critical mineral in the United States, Australia,
 Japan and India (see details @ www.industry.gov.au/publications/australias-critical-minerals-list)

Chromite Concentrate Price Chart (40-42% Cr₂0₃, South African)

Source: Mining Bulletin

Global Chromite Concentrate Market - Geographic Production Distribution

Source: International Chromium Development Association

Delivering Value Through Sustainable Development

FUTURE METALS

Future Metals is committed to growing value for shareholders while maintaining high ESG standards

Creating a positive case study for community engagement in the East Kimberley

- Partnership agreement with the Traditional Owners; the Malarngowem people
- Ongoing reciprocal education to build trust and acceptance
- Commitment to provide economic opportunities in line with project maturity
- Hiring from local towns, now and into the future

Environmental stewardship

- Minimise impact where possible; from exploration activities through to construction & operations
- Work with regulators and Traditional Owners so community expectations are managed and met
- Sustainability at the core of project development decisions; renewable power, water usage & recycling, emissions minimisation, supplying customers focussed on the clean energy transition

Health, Safety and Wellbeing

People & Opportunity

Community & Social Investment

Environmental Stewardship

Panton JORC 2012 Mineral Resource

Category	Mass					Grade									ntained M				
	(Mt)	Pd	Pt	Au	PGM _{3E}	Ni (o/)	Cr ₂ O ₃	PdEq	Cu	Co	Pd	Pt	Au	PGM _{3E}	Ni	Cr ₂ O ₃	PdEq ¹	Cu	Co
		(g/t)	(g/t)	(g/t)	(g/t)	(%)	(%)	(g/t)	(%)	(ppm)	(Koz)	(Koz)	(Koz)	(Koz)	(kt)	(kt)	(Koz)	(kt)	(kt)
Upper Ree	f																		
Indicated	3	3.3	2.8	0.5	6.5	0.29	15.5	7.9	0.08	217	318	272	46	635	9	472	771	2	0.7
Inferred	4.9	3.2	2.7	0.4	6.4	0.3	15.6	7.8	0.1	221	506	431	65	1,003	15	761	1,227	5	1.1
Subtotal	7.9	3.2	2.8	0.4	6.4	0.3	15.6	7.8	0.09	219	824	703	111	1,637	23	1,233	1,998	7	1.7
Lower Ree	f																		
Indicated	1.4	1.3	1.7	0.1	3.1	0.17	10.7	4.1	0.04	200	59	79	6	143	2	151	186	1	0.3
Inferred	1.4	1.6	2.1	0.1	3.8	0.19	13	4.9	0.05	215	73	95	5	173	3	185	223	1	0.3
Subtotal	2.8	1.4	1.9	0.1	3.5	0.18	11.8	4.5	0.04	208	132	174	11	316	5	337	409	1	0.6
Total Reef																			
Indicated	4.5	2.6	2.4	0.4	5.4	0.25	14	6.7	0.07	211	377	350	51	778	11	623	957	3	0.9
Inferred	6.3	2.9	2.6	0.3	5.8	0.28	15	7.2	0.09	220	579	526	70	1,175	17	946	1,450	5	1.4
Subtotal	10.8	2.8	2.5	0.4	5.6	0.27	14.6	7	0.08	216	956	876	122	1,954	29	1,569	2,407	8	2.3
Shink Crade	Dunite //	la de gerario	ت برمام ما ام	700 ma DI 1	/ ~/+ DdF~	+													
					.4g/t PdEq				0.07	454	400	400	70	252	40	470	77.		
Indicated	5.9	0.6	0.6	0.2	1.4	0.2	2.2	1.7	0.04	151	120	109	30	259	12	132	334	2	0.9
Inferred	20.5	0.6	0.6	0.1	1.3	0.21	2.3	1.8	0.04	160	425	373	87	885	43	478	1,154	9	3.3
Subtotal Poof & High	26.4	0.6	0.6	0.1	1.3	0.21	2.3	1.8	0.04	158	545	482	118	1,144	54	610	1,488	11	4.2
Reef + High Indicated	10.4	1.5	1.4	0.2	3.1	0.22	7.3	3.9	0.05	177	497	459	81	1,037	23	755	1,291	5	1.8
Inferred	26.8	1.2	1	0.2	2.4	0.22	5.3	3	0.05	174	1,004	899	158	2,061	60	1,424	2,604	14	4.7
Subtotal	37.2	1.3	1.1	0.2	2.6	0.22	5.9	3.3	0.05	175	1,501	1,358	239	3,098	83	2,179	3,895	19	6.5
	0112							3.5			.,	.,000		0,000		_,	3,000		
Bulk Dunite	e (Near su	ırface, abo	ve 300mRI	L, 0.9g/t P	dEq cut-of	f)													
Indicated	30.3	0.4	0.4	0.1	0.9	0.18	1.1	1.3	0.03	144	384	363	103	850	56	337	1,220	9	4.4
Inferred	25.3	0.3	0.3	0.1	0.7	0.18	1.3	1.1	0.03	140	273	230	61	564	46	329	873	8	3.5
Subtotal	55.7	0.4	0.3	0.1	0.8	0.18	1.2	1.2	0.03	142	657	593	164	1,414	102	666	2,094	17	7.9
Total Reso	uroe																		
		0.7	0.6	0.1	1 /	0.19	2.7	1.9	0.04	153	881	022	184	1,887	79	1,002	2 E11	15	6.2
Indicated	40.7 52.1		0.6	0.1	1.4							822 1 120				1,092 1,753	2,511 3 / 79		6.2
Inferred	52.1	0.8	0.7	0.1	1.6	0.2	3.4	2.1	0.04	157 155	1,277	1,129	219	2,625	106	1,753	3,478	22 37	8.2
Total	92.9	0.7	0.7	0.1	1.5	0.2	3.1	2	0.04	155	2,158	1,951	403	4,512	185	2,846	5,989	37	14.4

Palladium Equivalent Calculation

Palladium Metal Equivalents

Metal recoveries used in the palladium equivalent (PdEq) calculations for each element are based on metallurgical test work undertaken to date at Panton. It should be noted that palladium, platinum and chromite grades reported in this announcement are lower than the palladium and platinum grades of samples that were subject to metallurgical test work (grades of other elements are similar).

Mineral Resource Estimate PdEq1

Metal recoveries used in the palladium equivalent (PdEq) calculations are shown below:

- Reef: Palladium 80%, Platinum 80%, Gold 70%, Nickel 45% and Chromite 70%
- Dunite: Palladium 75%, Platinum 75%, Gold 85% and Nickel 40%

Assumed metal prices used are also shown below:

■ Palladium US\$1,500/oz, Platinum US\$1,250/oz, Gold US\$1,750/oz, Nickel US\$20,000/t and US\$175/t for chromite concentrate (40-42% Cr₂0₃)

Metal equivalents were calculated according to the follow formulae:

- Reef: PdEq (Palladium Equivalent g/t) = Pd(g/t) + 0.833 x Pt(g/t) + 1.02083 x Au(g/t) + 2.33276 x Ni(%) + 0.07560 x Cr₂O₃(%)
- Dunite: PdEq (Palladium Equivalent g/t) = Pd(g/t) + 0.833 x Pt(g/t) + 1.322 x Au(g/t) + 2.2118 x Ni(%)

Scoping Study PdEq⁵

Metal prices used are based on consensus forecasts of analysts estimates and the Company's analysis. Spot prices for The chromite concentrate price used is a conservative estimate based on historical pricing of South African chrome ore (40-42%, CIF China).

Metal recoveries used in the palladium PdEq calculations are shown below:

- Reef: Palladium 96.4%, Platinum 81.9%, Gold 99.2%, Nickel 43% and Chromite 73%
- Dunite: Palladium 73.1%, Platinum 75.6%, Gold 85.8% and Nickel 35%

Assumed metal prices used are also shown below:

■ Palladium US\$1,400/oz, Platinum US\$1,285/oz, Gold US\$1,980oz, Nickel US\$20,000/t and US\$282/t for chromite concentrate (40-42% Cr₂0₃ CIF South Africa)

Metal equivalents were calculated according to the follow formulae:

- Reef: PdEq (Palladium Equivalent g/t) = Pd(g/t) + 0.7798 x Pt(g/t) + 1.45595 x Au(g/t) + 1.98199 x Ni(%) + 0.11861 x $Cr_2O_3(\%)$
- Dunite: PdEq (Palladium Equivalent g/t) = Pd(g/t) + 0.94925 x Pt(g/t) + 1.66 x Au(g/t) + 2.12746 x Ni(%)

Peer Benchmarking References

Peer Benchmarking References - Study-Stage PGM Projects

Project	Company	Study Stage	Release Date	Source
Gonneville	Chalice	Scoping	29 August 2023	Gonneville Nickel-Copper-PGE Project Scoping Study
Marathon	Generation Mining	Feasibility	31 March 2023	Marathon 2023 Feasibility Study Update