

Metallurgical Testwork Confirms Outstanding Ionic Clay Recoveries for Caldeira REE Project

Highest globally reported Ionic Adsorption Clay recoveries using a standard AMSUL wash.

Highlights

Metallurgical testwork results continue to show excellent leach extractions for Ionic Clays¹ at the Caldeira Project.

Rare Earth Element recoveries across all six deposits tested display consistent strong ionic behaviour over thick intervals using a standard AMSUL wash test (unoptimised).

Exceptional Magnet Rare Earth Element² (MREE) leach extractions, include;

- 48 different metallurgical composites across ALL deposits had a TREO head grade of >4,000ppm and achieved average Magnetic REE leach extractions of 73% with 74% Nd, 71% Pr, 57% Tb and 56% Dy with a standard AMSUL wash (unoptimised) at pH4.
- 81% magnet metal extractions over 10.4m from CVNDD001 with a high of 88% including 90% for Nd, 86% for Pr, 79% for Tb and 84% for Dy.
- 73% magnet metal extractions over 8.4m from SBDD009 with a high of 75% including 76% for Nd, 73% for Pr, and 63% for Tb & Dy respectively.
- 80% magnet metal extractions over 5.6m from DM2DD001 with a high of 85% including 87% for Nd, 81% for Pr, 73% for Tb and 77% for Dy.
- 73% magnet metal extractions over 8.7m from CDMDD009 with a high of 75% including 77% for Nd, 74% for Pr, 55% Tb and 55% for Dy.

Meteoric Resources NL (**ASX: MEI**) (**Meteoric** or the **Company**) is pleased to report additional results of the metallurgical test work being undertaken on its 100%-owned Caldeira Rare Earth Ionic Clay Project, in the state of Minas Gerais, Brazil.

Meteoric has engaged Australia's leading laboratory in ionic clay leaching – Australian Nuclear Science and Technology Organisation (**ANSTO**) to assist with process flowsheet development. The testwork reported is from diamond drill cores collected during a metallurgical sampling program completed by Meteoric across the six deposits with defined Inferred Resources. These results build on historical testwork from a single composite sample at the Capo do Mel deposit which produced outstanding results including leachability averaging 70%.

¹ ASX:MEI 20/12/2023 Caldeira Confirmed as Ionic Adsorption Clay REE Project

² Magnetic Rare Earth Elements (MREE) = Pr, Nd, Tb, Dy

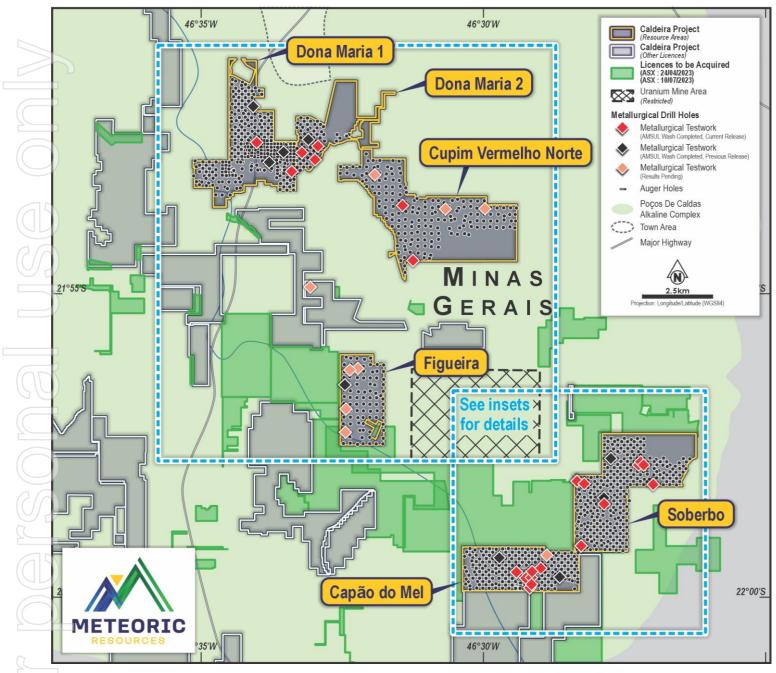
Chief Executive Officer, Nick Holthouse said,

"We are delighted by more great results from the metallurgical testwork program which continues to build on the exceptional Recovery to Leach results announced earlier this year.

The recoveries not only confirm that the vast majority of samples tested are truly ionic and amenable to low Capex, low Opex AMSUL leaching at pH 4.0 but also that the ionic clays_extend significantly below the existing resource profile. All of the results add value to the schedule through increased scale and scheduling flexibility.

Importantly, the latest results focus on de-risking process recoveries for the Southern Licenses of Capão do Mel and Soberbo, both integral as near-term sources of ore feed for Meteoric's proposed Southern license processing plant location and the ongoing focus for resource infill drilling, engineering and permitting packages."

New ANSTO Metallurgical Leach Results


Metallurgical testwork commenced at ANSTO in July 2023 on 3m composite samples from forty-one (41) diamond drill cores completed as part of the Company's metallurgical sampling program in March-July 2023. The program targeted the six deposits which currently define the Company's stated Inferred Resource Estimates: Capão Do Mel, Soberbo, Figueira, Cupim Vermelho Norte, Donna Maria 1, and Donna Maria 2 (Figure 1 & Appendix 1). Standard AMSUL washes have been completed for 33 diamond drill holes to date for a total of 190 composite diagnostic leaches. The remaining results are pending and are expected in December 2023-January 2024.

The metallurgical testwork program was designed to:

- Validate the results of previous testwork undertaken by JOGMEC in 2019 and reported to the ASX by MEI in December 2022; and
- Assess the metallurgical variability both laterally and at depth across each of the deposits, paying particular attention to the clay zone below known JOGMEC drilling, the current resource estimation boundary, and the previous SGS testwork.

Composite samples (3m) were collected from beneath the soil horizon (2m depth), starting in the clay zone and progressing down the hole until the intrusive basement was reached. Whilst the soil from the deposit does contain strongly elevated REE, it was not included in the testwork as it is planned for stockpiling and subsequent replacement and revegetation after mining.

Results

Mineralisation across all deposits tested so far displays strong ionic behaviour over thick intervals using a standard AMSUL wash test. The best results from each of the tenements include:

81% magnet metal extractions over 10.4m from CVNDD001 with a high of 88% including 90% for Nd, 86% for Pr, 79% for Tb and 84% for Dy.

73% magnet metal extractions over 8.4m from SBDD009 with a high of 75% including 76% for Nd, 73% for Pr, and 63% for Tb & Dy respectively.

80% magnet metal extractions over 5.6m from DM2DD001 with a high of 85% including 87% for Nd, 81% for Pr, 73% for Tb and 77% for Dy.

73% magnet metal extractions over 8.7m from CDMDD009 with a high of 75% including 77% for Nd, 74% for Pr, 55% Tb and 55% for Dy.

72% magnet metal extractions over 6.6m from CDMDD010 with a high of 78% including 80% for Nd, 77% for Pr, 47% Tb and 43% for Dy.

Typically, the holes that displayed the highest metallurgical recoveries are in the strongly weathered clay zone above the transition zone and the basement. Samples in the top part of the hole (from 2-4m) show a cerium enrichment zone, where cerium has been oxidised from Ce+3 to Ce+4, which has resulted in significant precipitation of Cerianite (CeO₂) whilst the remaining liberated rare earth elements travel down the profile until they physically adsorb onto the kaolinite clay surface. The zone of enrichment of rare earth elements is observed to be 5-30m thick and shows exceptional recoveries under standard ammonium sulphate leaching conditions.

The results clearly show the rare earth extractions achieved from the six deposits evaluated under standard ammonium sulphate wash conditions (currently still unoptimised) respond extremely favourably, and unequivocally validate the historical recoveries that this is a true rare earth ionic clay deposit.

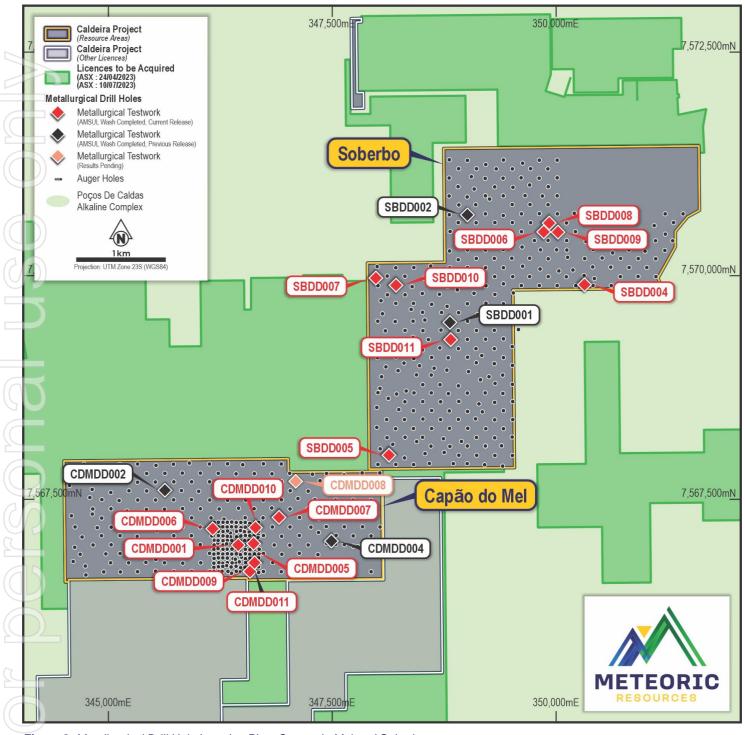


Figure 2: Metallurgical Drill Hole Location Plan, Capao do Mel and Soberbo tenements

Table 1: Capão Do Mel Metallurgical Drill Holes – REE recoveries by depth (leach extractions above 45% are highlighted in bold type)

	type)													
	Drill Hole		Interval		Lithology		Assayed Head	l (ppm)	Pr	Nd	Tb	Dy	MREE Recovery	TREE-Ce Recovery
>	2	From	То	m		TREO	TREE-Ce	MREE	%	%	%	%	%	%
	Þ	2.2	5.5	3.3	Clay	7,418	4,999	1,631	67	69	44	36	67	65
		5.5	8.5	3.0	Clay	5,021	3,276	1,063	49	52	30	28	50	51
		8.5	11.3	2.8	Clay	6,378	4,793	1,380	64	66	51	47	65	67
		11.3	14.0	2.7	Clay	6,272	4,898	1,329	60	62	45	44	61	61
	CDMDD001	14.0	17.5	3.5	Clay	5,549	4,148	1,106	67	70	56	54	69	67
\square		17.5	21.0	3.5	Fresh Rock	3,392	2,307	745	8	9	6	8	8	9
\subseteq)	21.0	24.0	3.0	Fresh Rock	1,774	845	263	17	19	10	13	18	19
		24.0	26.5	2.5	Fresh Rock	1,098	418	137	10	12		9	12	11
		2.0	5.0	3.0	Clay	2,639	991	344	43	44	24	24	43	42
615		5.0	8.0	3.0	Clay	2,940	2,057	673	44	45	19	14	43	36
UL,	CDMDD002	8.0	11.0	3.0	Clay	5,596	3,787	1,415	70	77	49	48	74	68
\sim		11.0	15.2	4.2	Clay	5,908	4,550	1,711	77	84	62	58	81	79
C/Γ		15.2	18.5	3.3	Transition2	3,076	2,144	740	43	45	30	31	44	43
95		2.6	6.0	3.4	Clay	7,296	2,235	5,786	83	89	66	61	87	84
	2	6.0	9.0	3.0	Clay	10,468	2,930	7,991	86	92	72	71	90	90
	CDMDD004	9.0	12.0	3.0	Transition 1	7,649	2,220	6,254	83	90	69	68	87	86
		12.0	16.4	4.4	Transition 1	3,587	795	2,345	29	31	28	26	30	32
	CDMDD005	2.0	5.4	3.4	Clay	9,621	7211	2,316	49	53	41	40	52	54
		3.0	6.0	3.0	Clay	2,545	916	295	37	38	13	10	36	36
	1	6.0	7.9	1.9	Clay	2,920	1,020	332	47	46	10	10	42	44
		7.9	10.8	2.8	Clay	2,947	1,226	381	82	79	27	23	76	73
36)	10.8	13.0	2.3	Clay	1,880	1,034	313	65	64	23	19	62	65
		13.0	15.0	2.0	Clay	1,905	1,434	397	76	74	39	35	73	73
	CDMDD006	15.0	19.0	4.0	Transition 1	2,956	1,579	454	51	50	14	11	48	51
		19.0	23.0	4.0	Transition 1	2,927	1,623	477	44	43	15	10	41	47
\square		23.0 27.0	27.0 30.0	4.0 3.0	Transition 1 Transition 1	3,317 2,330	2,463 1,670	708 502	44	43 36	34 18	27 19	43 35	46
\bigcirc		27.0 30.0	30.0 33.0	3.0	Transition 2	2,330	1,070	315	36 25	25	13	13	25	43 30
		33.0	36.0	3.0	Transition 2	1,870	1,181	356	10	10	12	7	10	14
210)	3.0	5.8	2.8	Clay	3,615	2,156	680	67	67	49	44	66	66
95	2	5.8	8.0	2.2	Clay	3,200	1,491	492	65	65	50	45	64	62
	_	8.0	11.0	3.0	Clay	1,865	698	237	52	53	34	26	52	53
		11.0	14.0	3.0	Clay	1,825	703	239	57	61	32	30	59	60
615		14.0	17.0	3.0	Clay	2,526	1,058	349	54	57	32	30	55	53
UL,	CDMDD007	17.0	20.0	3.0	Clay	2,482	1,058	356	48	49	28	26	47	47
)	02	20.0	23.0	3.0	Clay	2,158	706	242	52	-5 54	28	20	51	52
\square		23.0	26.0	3.0	Clay	714	382	123	49	52	19	20	49	48
	2	26.0	29.0	3.0	Transition 1	584	305	84	38	41	22	13	49 38	40 34
		20.0	29.0 31.6	2.6	Transition 2	876	540	143	22	22	11	7	21	19
~		29.0 31.6	33.3	1.7	Transition 2	1,176	605	175	9	9		5	9	19
		1.7	4.0	2.4	Clay	4,778	2,160	741	63	63	39	39	62	60
		4.0	7.0	3.0	Clay	5,460	4,137	1,333	70	76	63	64	74	70
()		4.0 7.0	10.0	3.0	Clay	2,214	1,459	414	63	67	62	65	65	61
\subseteq		10.0	13.0	3.0	Clay	913	404	102	-	-	-	-		-
		13.0	16.0	3.0	Clay	822	397	94	-	-	-	-	-	-
	CDMDD008	16.0	19.0	3.0	Clay	894	423	110	-	-	-	-	-	-
		19.0	22.1	3.1	Clay	1,019	485	135	-	-	-	-	-	-
		22.1	25.0	2.9	Transition 2	764	353	108	-	-	-	-	-	-
		25.0	28.0	3.0	Transition 2	787	391	116	-	-	-	-	-	-
		28.0	29.7	1.7	Transition 3	1,045	486	135	-	-	-	-	-	-
		29.7	33.0	3.3	Transition 3	828	396	93	-	-	-	-	-	-
		33.0	36.8	3.8	Transition 3	970	447	112	-	-	-	-	-	-

	2.3	4.8	2.5	Clay	7,431	5,067	1,542	72	75	59	57	73	71
	4.8	8.0	3.2	Clay	3,519	2,403	705	74	77	55	55	75	73
CDMDD009	8.0	11.0	3.0	Clay	1,875	1,299	374	68	77	38	36	71	68
	11.0	14.0	3.0	Transition 3	1,730	810	256	31	34	18	10	32	33
	14.0	16.9	2.9	Transition 3	2,388	967	303	20	23	8	9	21	21
	2.4	6.0	3.6	Clay	4,202	2,989	848	77	80	47	43	78	78
	6.0	9.0	3.0	Clay	5,180	1,880	545	62	69	42	40	66	71
	9.0	11.8	2.8	Clay	2,728	1,247	349	57	65	28	20	59	62
	11.8	15.0	3.3	Clay	3,371	945	262	55	57	10	6	50	47
	15.0	19.3	4.3	Clay	3,516	1,248	383	51	53	18	12	50	54
CDMDD010	19.3	22.8	3.6	Transition 3	2,796	1,547	475	38	41	15	12	39	44
CDIVIDDO 10	22.8	27.0	4.2	Transition 3	2,336	1,184	385	21	24	8	7	22	25
	27.0	31.0	4.0	Fresh Rock	2,036	743	248	7	8	-	2	7	8
5	31.0	34.7	3.7	Fresh Rock	2,067	754	248	6	7	-	2	6	6
	34.7	39.0	4.3	Fresh Rock	2,770	1,199	377	5	5	-	3	5	5
	39.0	43.0	4.0	Fresh Rock	1,060	516	162	4	4	-	2	4	3
	43.0	47.9	4.9	Fresh Rock	2,361	1,043	347	8	9	9	7	9	8
J	2.0	5.0	3.0	Clay	13,351	11,583	3,888	95	104	88	92	101	100
	5.0	8.5	3.5	Clay	13,202	11,025	3,566	88	104	84	89	99	94
1	8.5	11.0	2.5	Clay	5,519	4,653	1,484	92	105	84	87	101	96
CDMDD011	11.0	13.7	2.7	Clay	4,752	3,774	1,192	84	90	74	79	88	85
	13.7	18.0	4.4	Transition 3	4,486	2,846	919	51	57	50	48	55	57
	18.0	21.5	3.5	Transition 3	2,017	1,096	349	24	28	24	21	27	29
	21.5	25.0	3.4	Fresh Rock	2,042	930	287	13	16	9	10	15	12

 $TREO = La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Lu_2O_3 + Y_2O_3 + TREE-Ce = La + Pr + Nd + Sm + Eu + Gd + Tb + Dy + Ho + Er + Tm + Yb + Lu + Y$

Note: "-"denotes assays pending

METEORIC

Table 2: Capão Do Mel Metallurgical Drill Holes – AVERAGE leach extractions by lithology classification, recovery and Head grade

Criteria	#of	A	verage Head	(ppm)					% Extraction	IS	
ontenta	samples	TREO	MREE	TREE-Ce	Pr	Nd	Tb	Dy	Magnets	TREE	TREE-Ce
Avg ALL CLAY & Transition	64	3,298	655	2,263	53	56	35	31	54	38	54
Avg >45% MREE Recovery	36	4,410	922	3,075	64	68	43	40	65	46	65
Avg ALL Clay	37	4,181	845	2,886	62	65	40	37	63	43	62
Avg ALL Transition	18	2,683	537	1,904	34	36	23	19	35	27	37
Avg Transition 1	7	3,336	749	2,720	46	48	29	25	46	38	49
Avg Transition 2	4	2,003	388	1,545	25	26	17	15	25	20	27
Avg Transition 3	6	2,626	448	1,408	31	35	21	18	33	22	35
Avg Fresh Rock	0	2,067	313	1,182	9	10	8	6	9	7	9
Avg Head >4000ppm TREO	17	6,108	1,420	4,597	70	74	54	52	72	57	71
Avg Head > 5000 ppm TREO	13	6,587	1,572	5,106	70	75	54	52	73	59	72
ANSTO MAX	-	10,468	2,930	7,991	86	92	72	71	90	78	90
JOGMEC CDM	-	5,000	-	-	75	78	66	64	-	68	-

Note: "-" denotes no data

	Drill Hole		Interval		Lithology	ļ	Assayed Head	(ppm)	Pr	Nd	Tb	Dy	MREE Recovery	TREE-Ce Recovery
		From	То	m		TREO	TREE-Ce	MREE	%	%	%	%	%	%
		2	5	3	Clay	2,777	1,709	640	36	40	21	20	38	35
	SBDD001	5	9	4	Clay	3,286	2,119	827	49	50	31	28	49	46
		9	13	4	Clay	5,768	4,469	1,707	47	51	35	34	50	48
)	2	5	3	Clay	2,690	845	313	46	49	21	17	47	42
		5	8	3	Clay	2,550	1,106	397	34	38	22	21	36	31
		8	11	3	Clay	2,054	1,077	394	46	51	32	23	49	42
20		11	14	3	Clay	4,502	2,013	809	77	83	41	32	80	74
	SBDD002	14	17	3	Clay	4,238	3,344	1,337	85	91	60	57	89	85
3 P		17	20	3	Clay	4,008	2,966	1,086	80	86	63	59	84	81
26		20	23.7	3.7	Transition 1	4,538	3,534	1,295	83	89	73	67	87	83
\bigcup)	23.7	26.1	2.5	Transition 1	5,383	4,130	1,604	52	55	70	68	55	57
<u> </u>	-	3	6	3	Clay	4,394	3,329	1,236	74	74	58	60	74	71
	4	6	9	3	Clay	4,100	3,024	1,053	68	66	61	61	67	65
	SBDD004	9	14	5	Clay	1,289	674	238	47	49	39	42	48	47
		14	19	5	Transition 1	1,227	624	215	30	32	26	18	30	30
		19	23	4	Transition 2	1,349	682	247	21	23	13	14	22	23
	-	2.0	5.0	3.0	Clay	1,271	591	181	9	10	-	2	9	7
	ζ	5.0	8.3	3.3	Clay	1,507	617	194	12	14	-	4	13	10
ςU	SBDD005	8.3	13.0	4.7	Clay	1,606	717	229	11	13	-	4	12	10
	~	13.0	17.0	13.0	Clay	1,780	898	307	40	45	15	14	42	34
		2.5	5.3	2.8	Clay	1,355	175	50	23	27		4	23	16
	SBDD006	5.3	7.5	2.3	Transition 1	1,634	651	249	42	45	24	25	43	36
		2.0	4.8	2.8	Clay	3,711	2,680	952	56	59	49	49	58	61
\frown	SBDD007	4.8	6.5	1.7	Clay	4,775	3,865	1,359	64	65	51	52	64	67
\subseteq)	6.5	8.8	2.3	Transition 1	6,694	5,230	1,855	51	52	45	46	52	54
16		3.0	7.0	4.0	Clay	1,286	657	234	34	35	11	8	33	28
())	7.0	11.0	4.0	Clay	2,148	1,278	513	33	36	16	14	34	33
96	00000000	11.0	15.0	4.0	Clay	2,567	1,505	567	46	47	27	21	46	44
	SBDD008	15.0	19.0	4.0	Clay	5,347	4,069	1,469	60	58	42	43	58	56
-		19.0	21.7	2.7	Clay	5,255	4,216	1,539	72	71	64	64	71	70
215		21.7	26.2	4.5	Transition 2	4,227	3,354	1,201	64	65	58	58	65	65
)	2.8	7.0	4.2	Clay	1,858	868	313	28	29	8	9	27	24
\sim		7.0	9.7	2.7	Clay	2,208	1,393	523	40	42	21	18	40	38
\frown	SBDD009	9.7	14.0	4.3	Clay	4,008	2,948	1,101	62	62	50	46	61	59
	SPDD009	14.0	18.5	4.5	Clay	6,012	4,942	1,770	73	76	63	63	75	72
		18.5	22.4	3.9	Transition 1	5,833	4,634	1,619	70	72	62	63	71	70
		22.4	26.2	3.8	Transition 2	3,495	2,597	894	57	54	43	45	54	56
	_	2.0	6.5	4.5	Clay	1,424	568	174	36	37	13	9	34	28
		6.5	11.0	4.5	Clay	2,717	1,539	530	58	60	34	29	59	54
\sim	0000040	11.0	15.7	4.7	Clay	6,172	4,516	1,433	70	77	59	57	74	68
	SBDD010	15.7	21.0	5.3	Clay	3,834	2,786	825	65	65	52	53	65	61
		21.0	24.3	3.3	Clay	1,342	798	254	45	44	32	27	43	44
		24.3	38.7	14.4	Fresh Rock	1,030	337	108	4	5	-	-	4	4
	_	2.6	6.0	3.4	Clay	1,056	178	48	28	29	-	3	25	17
		6.0	10.0	4.0	Clay	1,195	226	57	23	25	-	5	21	15
		10.0	14.5	4.5	Clay	1,749	931	312	17	18	8	9	17	13
		10.0	11.0											
	SBD011	10.0	18.4	3.9	Clay	4,399	3,253	1,143	47	50	34	36	48	43
	SBD011				-	4,399 3,844	3,253 2,868	1,143 1,043	47 55	50 58	34 39	36 39	48 56	43 54

Table 3: SOBERBO Metallurgical Drill Holes – REE recoveries by depth (leach extractions above 45% are highlighted in bold type)

 Table 4: Soberbo
 Metallurgical Drill Holes – AVERAGE leach extractions by lithology classification, recovery and Head grade

	Criteria	#of samples	Av	verage Head	(ppm)					% Extraction	s	
	Cintena	#or samples	TREO	MREE	TREE-Ce	Pr	Nd	Tb	Dy	Magnets	TREE	TREE-Ce
	Avg ALL CLAY and ALL Transition	44	3,313	812	2,256	51	54	39	35	52	38	49
	Avg >45% MREE Recovery	28	4,255	1,114	3,090	62	65	48	47	64	51	61
	Avg ALL Clay	33	3,214	764	2,123	51	53	37	33	51	36	48
(C	Avg ALL Transition	11	3,609	956	2,654	54	56	44	43	55	44	54
	Avg Transition 1	7	4,165	1,126	3,096	58	62	49	47	60	47	58
(((((((((((((((((((Avg Transition 2	4	2,636	659	1,880	47	47	36	36	46	38	47
0	Avg Transition 3	0	-	-	-	-	-	-	-	-	-	-
	Avg Fresh Rock	1	1,030	108	337	4	5	0	0	4	2	4
$(\Box$	Avg Head >4000ppm TREO	18	4,981	1,368	3,769	68	71	55	54	69	58	67
9	Avg Head > 5000 ppm TREO	8	5,808	1,625	4,526	65	68	55	55	66	57	65
(2)	ANSTO MAX	-	5,201	0	0	85	91	60	57	89	78	85
U	JOGMEC CDM	-	5,000	-	-	75	78	66	64	-	68	-

*Note SBDD005 has been omitted from the statistical analysis as it is being re-assayed.

Note: "-"denotes no data

Meteoric Resources ABN 64 107 985 651 Level 1, 35 Ventnor Avenue, West Perth WA 6005 www.meteoric.com.au | Page 9 of 22

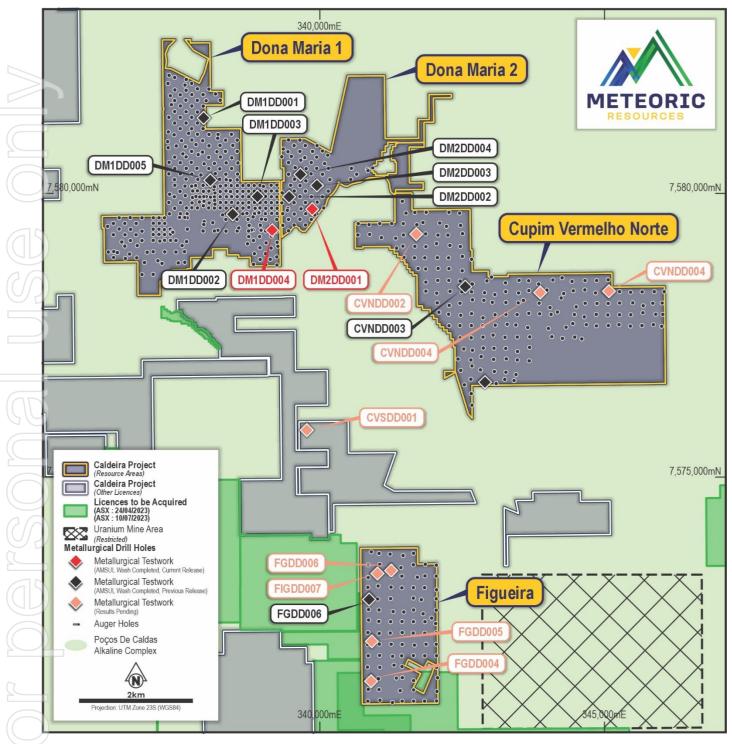


Figure 3: Metallurgical Drill Hole Location Plan, Dona Maria 1 & 2, Cupim Vermelho Norte and Figueira tenements

METEORIC RESOURCES

 Table 5: DONA MARIA 1 Metallurgical Drill Holes – REE recoveries by depth (leach extractions above 45% are highlighted in bold type)

Drill Hole		Interval		Lithology	ļ	Assayed Head	(ppm)	Pr	Nd	Tb	Dy	MREE Recovery	TREE-Ce Recovery
2	From	То	m		TREO	TREE-Ce	MREE	%	%	%	%	%	%
	2.8	6.0	3.2	Clay	2,616	1,675	729	58	64	45	37	61	56
	6.0	8.7	2.7	Clay	3,697	2,812	1,195	68	73	66	67	71	70
	8.7	12.0	3.3	Transition 2	4,303	3,533	1,401	69	75	73	75	73	74
DM1DD001	12.0	15.0	3.0	Transition 2	2,575	1,936	755	67	71	72	73	71	71
	15.0	18.0	3.0	Transition 3	1,518	899	338	28	32	37	35	31	29
	18.0	20.4	2.4	Transition 3	845	419	151	16	18	17	37	18	15
	2.2	5.0	2.8	Clay	2,503	1,436	549	87	90	51	42	88	87
	5.0	8.0	3.0	Clay	5,567	4,004	1,531	93	92	77	76	91	93
	8.0	11.0	3.0	Clay	5,201	3,951	1,459	95	94	81	75	94	96
	11.0	14.0	3.0	Clay	4,155	3,142	1,119	89	89	76	71	88	90
DM1DD002	14.0	17.0	3.0	Clay	3,046	2,152	760	86	89	70	70	88	90
DIMITEDOUZ	17.0	20.9	3.9	Clay	1,469	727	219	64	69	41	29	66	60
	20.9	24.0	3.1	Transition 2	3,056	873	249	74	77	31	30	73	75
	24.0	27.0	3.0	Transition 2	1,847	997	278	86	87	72	49	85	88
	27.0	31.0	4.0	Transition 3	943	487	122	69	73	41	26	68	64
	31.0	34.6	3.6	Transition 3	1,095	449	549	42	45	20	16	42	42
	2.0	5.0	3.0	Clay	5,616	3,778	1,457	85	83	51	48	83	84
DM1DD003	5.0	7.0	2.0	Clay	8,195	6,520	2,428	87	91	71	73	89	90
	7.0	9.9	2.9	Transition 1	3,928	2,901	1,017	85	88	75	72	87	90
1	4.0	7.0	3.0	Clay	1,781	1,389	350	78	81	58	57	78	78
DMIDDOO	7.0	9.5	2.5	Clay	1,445	1,157	293	75	78	54	53	75	74
DM1DD004	9.5	14.46	5.0	Clay	1,829	1,446	370	81	84	70	68	82	83
	14.46	17.5	3.0	Transition 2	1,781	1,389	350	78	81	58	57	78	78

Table 6: DONA MARIA 2 Metallurgical Drill Holes – REE & REO recoveries by depth (leach extractions above 45% are highlighted in bold type)

Drill Hole		Interva I		Lithology	Ass	sayed Head (p	pm)	Pr	Nd	Tb	Dy	MREE Recovery	TREE-Ce Recovery
1.1	From	То	m		TREO	TREE-Ce	MREE	%	%	%	%	%	%
	2.0	5.0	3.0	Clay	3,138	2,392	791	81	87	73	77	85	82
	5.0	7.58	2.6	Clay	2,764	1,846	610	75	76	67	69	75	73
DM2DD001	7.6	10.0	2.4	Clay	2,016	1,276	431	59	60	50	49	59	58
	10.0	14.0	4.0	Clay	1,277	684	238	28	29	22	15	28	27
	14.0	15.6	1.6	Transition 3	1,060	604	217	21	23	12	8	22	23
	2.0	5.0	3.0	Clay	2,245	1,751	460	88	87	64	61	86	80
DMaDDoor	5.0	8.0	3.0	Transition 3	866	435	97	39	41	-	8	38	30
DM2DD002	8.0	11.0	3.0	Transition 3	809	404	90	22	22	-	4	20	16
	11.0	13.6	2.6	Transition 3	896	436	111	37	40	27	12	38	34
	2.0	5.3	3.3	Clay	2,783	2,007	706	74	74	54	58	73	71
DM2DD003	5.3	8.5	3.3	Clay	1,794	1,167	429	56	57	35	38	56	57
DivizDD003	8.5	12.2	3.6	Clay	1,617	1,067	375	63	64	41	45	63	62
	12.2	15.3	3.1	Transition 3	1,820	1,114	405	37	38	25	24	37	39
	2.0	5.0	3.0	Clay	1,113	556	228	53	55	18	20	53	49
DM2DD00	4 5.0	8.0	3.0	Clay	3,987	2,875	1,168	88	93	63	67	91	87
	11.0	15.6	4.6	Transition	4,497	3,503	1,195	8	8	5	8	8	9

Note: "-"denotes assays pending

 Table 7: Dona Maria 1 & 2 Metallurgical Drill Holes – AVERAGE leach extractions by lithology classification, recovery and Head grade

Criteria	#of samples	Av	erage Head	(ppm)					% Extraction	IS	
Cillena	#or samples	TREO	MREE	TREE-Ce	Pr	Nd	Tb	Dy	Magnets	TREE	TREE-Ce
Avg ALL CLAY and ALL Transition	38	2,510	602	1,733	66	68	53	47	66	52	65
Avg >45% MREE Recovery	29	2,937	727	2,083	77	79	60	57	77	62	77
Avg ALL Clay	22	3,007	762	2,158	75	77	57	55	75	61	74
Avg ALL Transition	16	1,826	381	1,149	53	56	46	36	54	41	53
Avg Transition 1	2	2,878	694	2,173	83	86	72	70	85	75	86
Avg Transition 2	5	2,722	611	1,757	75	79	64	59	77	56	78
Avg Transition 3	9	1,095	184	583	35	37	26	16	35	25	32
Avg Fresh Rock	0	-	-	-	-	-	-	-	-	-	-
Avg Head >4000ppm TREO	6	5,506	1,566	4,155	86	87	72	70	87	74	88
Avg Head > 5000 ppm TREO	4	6,145	1,719	4,563	90	90	70	68	89	76	91
ANSTO MAX	-	5,201	-	-	95	94	81	75	94	82	96
JOGMEC CDM	-	5,000	-	-	75	78	66	64	-	68	-

Note: "-" denotes no data

Table 8:	FIGU	EIRA	Metallu	irgical E	Drill Holes – R	EE recoveri	es by depth	(leach extra	ctions	abov	e 45%	are h	nighlighted	in bold type)
Drill Ho	ole		Interval		Lithology	Ass	sayed Head (p	om)	Pr	Nd	Tb	Dy	MREE Recovery	TREE-Ce Recovery
	F	rom	То	m		TREO	TREE-Ce	MREE	%	%	%	%	%	%
		2.3	6.0	3.7	Clay	4,819	2,688	883	50	49	35	27	48	47
		6.0	9.0	3.0	Clay	5,310	3,529	1,153	64	69	47	42	67	65
		9.0	12.0	3.0	Clay	7,370	5,957	1,843	81	88	65	66	86	84
()	1	12.0	15.0	3.0	Clay	4,458	3,510	1,067	77	82	63	63	80	80
FIGDDO	03 1	15.0	19.0	4.0	Clay	2,244	1,437	436	48	52	44	40	50	55
\mathcal{A}	1	19.0	22.6	3.6	Transition 3	2,848	1,606	460	8	10	18	18	10	11
	2	22.6	26.0	3.4	Fresh Rock	1,877	886	263	11	12	11	10	12	12
1	2	26.0	29.0	3.0	Fresh Rock	3,487	1,573	485	3	4	7	4	4	4

Table 9: CUPIM VERMELHO NORTE Metallurgical Drill Holes – REE & REO recoveries by depth (leach extractions above 45% are highlighted in bold type)

Drill Hole		Interval		Lithology	Ass	sayed Head (p	pm)	Pr	Nd	Tb	Dy	MREE Recovery	TREE-Ce Recovery
	From	То	m		TREO	TREE-Ce	MREE	%	%	%	%	%	%
	3.7	6.0	2.3	Clay	2,461	1,780	641	71	72	49	47	71	65
	6.0	8.5	2.5	Clay	3,700	2,957	1,067	81	83	64	70	82	78
CVNDD001	8.5	11.0	2.5	Clay	4,664	3,779	1,415	78	83	72	78	82	78
	11.0	14.1	3.1	Clay	5,874	4,851	1,776	86	90	79	84	88	85
1	14.1	19.5	5.4	Transition 1	2,689	1,880	712	51	52	41	43	52	53
	1.7	6.1	4.4	Clay	1,055	233	53	21	21	-	2	17	10
	6.1	9.0	2.9	Clay	1,253	758	234	17	17	7	4	16	13
	9.0	12.0	3.0	Clay	1,191	781	276	31	31	9	10	29	27
	12.0	15.0	3.0	Clay	554	437	171	91	96	59	60	94	90
CVNDD003	15.0	17.8	2.8	Clay	1,783	1,278	495	43	46	24	27	45	43
	17.8	20.7	2.8	Clay	1,085	628	255	36	38	23	22	37	37
	20.7	24.1	3.5	Transition 1	2,834	2,239	758	14	15	9	11	14	13
	24.1	28.0	3.9	Transition 2	12,731	11,270	3,983	1	1	1	1	1	1
	28.0	32.4	4.4	Transition 3	1,329	716	248	0.4	1	-	-	0.5	0.4

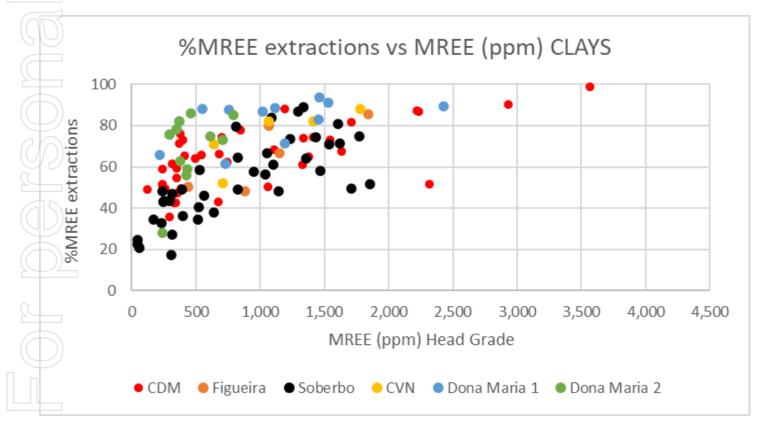


Table 10: ALL Metallurgical Drill Holes across ALL tenements – AVERAGE leach extractions by lithology classification, recovery and Head grade (refer ASX announcement 27 September 2023 for further information)

	Criteria	#of samples	Ave	erage Head	l (ppm)					% Extraction	s	
	Cintena	#or samples	TREO	MREE	TREE-Ce	Pr	Nd	Tb	Dy	Magnets	TREE	TREE-Ce
	Avg ALL CLAY and ALL Transition	157	3,176	713	2,160	57	59	42	38	57	43	56
	Avg >45% MREE Recovery	103	3,948	937	2,769	68	71	51	48	69	53	68
	Avg ALL Clay	101	3,642	827	2,475	62	64	45	41	63	46	61
	Avg ALL Transition	47	2,612	584	1,816	45	48	36	31	46	36	46
(Avg Transition 1	17	3,585	895	2,761	56	58	43	40	57	46	57
J	Avg Transition 2	14	2,382	530	1,649	48	50	41	36	48	37	50
	Avg Transition 3	16	1,778	300	956	32	34	23	17	33	23	32
1	Avg Fresh Rock	17	2,113	307	992	6	7	8	5	7	5	7
Y	Avg Head >4000ppm TREO	48	5,597	1,429	4,117	71	74	57	56	73	60	72
21	Avg Head > 5000 ppm TREO	29	6,374	1,634	4,744	71	75	57	56	73	61	72
9	ANSTO MAX	-	5,201	1,459	3,951	95	94	81	75	94	82	96
	JOGMEC CDM	-	3,948	-	-	75	78	66	64	-	68	-

Note SBDD005 & CVNDD003 have been omitted from the statistical analysis as they are being re-assayed. Note: "-"denotes no data

Figure 4: Graph of MREE grades vs desorption extractions in ALL CLAYS across ALL Tenements with standard pH4 AMSUL wash



Figure 5: Graph of TREE-Ce grades vs desorption extractions in ALL CLAYS across ALL Tenements with standard pH4 AMSUL wash

Figures 4 & 5 above show high MREE and TREE-Ce extractions across all six deposit areas.

The graphs also show high extractions across the full grade spectrum, but interestingly the extractions tend to increase with grade. One 3m interval in CDMDD006 with 1.05% TREO head grade, achieved an astonishing 90% magnet element extractions.

This initial testwork has contributed significantly to MEI's knowledge base on metallurgical performance laterally, at depth and across different lithologies. The new information will be built into a geometallurgical model for the Caldeira Project. Further leaching parameters will be investigated in Q4 2023 to further optimise recoveries.

Next Steps

Leaching Program

Diagnostic leach tests will continue throughout December and January on the remaining metallurgical holes that sit outside the 10-year mine plan. Importantly, the CDM and Soberbo deposits that underpin the starter pits in the scoping study have been completed. A master composite of the CDM deposit is currently being constructed from all of the metallurgical drill holes that return satisfactory metallurgical performance. The leaching program will aim to optimise the extractions by evaluating different lixiviants, lixiviant concentration, % solids and pH.

Impurity Removal

Following the leaching program, impurity removal optimisations will be performed to improve the rejection of deleterious elements such as aluminium, iron, silica, calcium, thorium and uranium, whilst maximising the recovery of the rare earths. The testwork will aim to evaluate impurity removal conditions including pH, alkali type, temperature, residence time, % solids and solid liquid separation performance.

Rare Earth Precipitation

Following the impurity removal program, rare earth precipitation tests will be performed to generate a saleable rare earth product. The testwork will evaluate the type of precipitation agent, pH, temperature, residence time, % solids and solid liquid separation performance.

Schedule

The metallurgical scope is comprehensive and will run until the end of April to enable adequate characterisation of each of the prospects. Some delays have been experienced with assay turnaround times which is currently a problem all over Australia. As milestone results come to hand, they will be reported to the market. The precipitation of MREC from the CDM master composite is targeted in late January – early February.

About ANSTO

ANSTO has extensive experience in rare earth process development with several rare earth experts in its team having a combined ~30 years' experience dating back to early work on the Mt Weld deposit (monazite mineralogy) in Western Australia in the early 1990s. Over the past 10-15 years, ANSTO has worked on numerous rare earth projects covering process development, piloting (Peak Resources, Arafura Rare Earths, ASM, Northern Minerals, Hastings Technology Metals, Mkango Resources, Iluka Resources) and providing expert advice.

Over the past five years, ANSTO's expertise has shifted to an increasing number of ionic adsorption and clayhosted REE projects (>15 currently in progress), including the more advanced Aclara (Chile), Ionic Rare Earths (Uganda) and Australian Rare Earths (South Australia) projects. Work on these projects has included leaching/desorption, solid/liquid separation, impurity removal and rare earth precipitation, mineralogy, radionuclide deportment and removal, process modelling and mini-plant circuit operations.

Background Information on Ionic Clay REE Deposits

Geologically, the Caldeira REE Project is classified as an Ionic Adsorption Clay REE Deposit, which is characterised by the following key criteria:

- Formed in the saprolite (clay) zone of the weathering profile.
- The majority of the REE's are **adsorbed** onto clay minerals and accumulate in the clay zone of the regolith profile.

Adsorbed REEs are ionically attached to the clay minerals and can be liberated by washing in a weak solution of ammonium sulphate (or other metal salt) at near neutral pH.

Ionic Adsorption Clay REE deposits are typically found near surface, often at depths of less than 10m.

The U and Th levels in Ionic Clay REE deposits are typically low, as these elements are less soluble in ground waters and are not preferentially adsorbed by clays during the weathering and leaching processes.

JORC Tonnes TREO **Pr₆O**₁₁ Nd₂O₃ Tb₄O₇ Dy₂O₃ MREO MREO/TREO Licence Category Mt % ppm ppm ppm ppm ppm ppm Capão do Mel Inferred 68 2,692 148 399 4 22 21.3% 572 Cupim Vermelho Inferred 104 2,485 152 472 5 26 655 26.4% Notre Dona Maria 1 & 2 Inferred 135 404 94 2,320 5 25 569 24.5% 135 377 26 Figueira Inferred 50 2.811 5 542 19.3% Soberbo Inferred 92 2,948 190 537 6 27 759 25.8% 5 Total Inferred 409 2.626 154 447 25 631 24.0%

Mineral Resource Statement – Caldeira Project (ASX:MEI 1/5/2023)

Table 11: Caldeira REE Project 2023 Mineral Resource Estimate- by licence at 1,000ppm TREO cut-off

 $TREO = La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Lu_2O_3 + Y_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Fr_2O_3 + Tb_2O_3 + Lu_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Fr_2O_3 + Tb_2O_3 + Lu_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Fr_2O_3 + Tb_2O_3 + Lu_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Fr_2O_3 + Tb_2O_3 + Lu_2O_3 + CeO_2 + Fr_2O_3 + Fr_2O$ $MREO = Pr_{6}O_{11} + Nd_{2}O_{3} + Tb_{4}O_{7} + Dv_{2}O_{3}$

This release has been approved by the Board of Meteoric Resources NL.

For further information, please contact:

Dr Andrew Tunks Executive Chairman

Meteoric Resources NL E ajtunks@meteoric.com.au T +61 400 205 555

Ben Creagh

Investor and Media Relations NWR Communications E benc@nwrcommunications.com.au

T +61 417 464 233

The information in this announcement that relates to exploration results is based on information reviewed, collated and fairly represented by Dr Carvalho a Competent Person and a Member of the Australasian Institute of Mining and Metallurgy and is a non executive director Meteoric Resources NL. Dr. Carvalho has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr. Carvalho consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

The information in this announcement that relates to the metallurgical results were compiled by Tony Hadley who is the Metallurgy Manager of Meteoric Resources and is a Member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr. Hadley has sufficient experience that is relevant to the metallurgical testwork which was undertaken to qualify as a Competent Person as defined in the 2012 JORC Code. Mr. Hadley consents to the inclusion in this announcement of the matters based on the information in the form and context in which it appears.

The information in this release that relates to Mineral Resource Estimates was prepared by BNA Mining Solutions and released on the ASX platform on 1 May 2023. The Company confirms that it is not aware of any new information or data that materially affects the Mineral Resources in this publication. The Company confirms that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the BNA Mining Solutions findings are presented have not been materially modified.

APPENDIX 1

Collar Table of holes reported in this release.

Target	Hole_ID	East	North	RL	Hole Depth
Capao do Mel	CDMDD001	346439	7566998	1342	50.00
Capao do Mel	CDMDD002	345621	7567611	1339	50.00
Capao do Mel	CDMDD004	347477	7567043	1326	50.00
Capao do Mel	CDMDD005	346611	7567015	1316	9.78
Capao do Mel	CDMDD006	346155	7567180	1250	46.35
Capao do Mel	CDMDD007	346893	7567307	1288	39.44
Capao do Mel	CDMDD008	347079	7567709	1272	40.58
Capao do Mel	CDMDD009	346570	7566704	1277	29.61
Capao do Mel	CDMDD010	346631	7567194	1308	57.75
Capao do Mel	CDMDD011	346621	7566802	1296	25.95
Cupim Vermelho Notre	CVNDD001	342883	7576678	1445	23.25
Cupim Vermelho Notre	CVNDD002	341677	7579289	1382	28.05
Cupim Vermelho Notre	CVNDD003	342535	7578361	1421	42.95
Cupim Vermelho Notre	CVNDD004	343854	7578258	1434	31.10
Cupim Vermelho Notre	CVNDD005	345060	7578282	1272	22.75
Cupim Vermelho Sul	CVSDD001	339750	7575833	1463	149.49
Dona Maria 1	DM1DD001	337939	7581336	1353	33.25
Dona Maria 1	DM1DD002	338450	7579638	1367	37.25
Dona Maria 1	DM1DD003	338886	7579953	1382	15.05
Dona Maria 1	DM1DD004	339141	7579358	1374	21.20
Dona Maria 2	DM2DD001	339847	7579729	1391	22.05
Dona Maria 2	DM2DD002	339441	7579946	1346	22.35
Dona Maria 2	DM2DD003	339930	7580144	1396	23.20
Dona Maria 2	DM2DD004	339639	7580340	1407	18.62
Figueira	FIGDD003	340847	7572850	1282	50.00
Figueira	FIGDD004	340882	7571408	1343	111.87
Figueira	FIGDD005	340893	7572111	1330	20.74
Figueira	FIGDD006	341233	7573358	1250	58.99
Figueira	FIGDD007	340994	7573308	1406	71.04
Soberbo	SBBDD001	348798	7569484	1307	50.00
Soberbo	SBBDD002	349087	7568044	1298	50.00
Soberbo	SBBDD004	350298	7569905	1218	31.10
Soberbo	SBBDD005	348119	7568003	1313	23.40
Soberbo	SBBDD006	349845	7570492	1296	10.25
Soberbo	SBBDD007	347973	7569979	1290	11.14
Soberbo	SBBDD008	349905	7570592	1209	29.25
Soberbo	SBBDD009	350003	7570490	1263	29.57
Soberbo	SBBDD010	348197	7569898	1238	38.69
Soberbo	SBBDD011	348806	7569291	1236	28.85

ASX:MEI

Meteoric Resources ABN 64 107 985 651 Level 1, 35 Ventnor Avenue, West Perth WA 6005 www.meteoric.com.au | Page 18 of 22

APPENDIX 2 - JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria

Criteria	Commentary
Sampling techniques	 The drilling utilises a conventional wireline diamond drill rig (Mach 1200) with HQ diameter. The core is collected in core trays with depth markers at the end of each drill run (blocks). In the saprolite zone the core is halved with a metal spatula and bagged in plastic bags, the fresh rock was halved by a powered saw and bagged.
Drilling techniques	 The drilling uses a diamond drill rig (Mach 1200) with HQ diameter using the wireline technique. Each drill site was cleaned and levelled with a backhoe loader. All holes are drilled vertical. Drilling is stopped once intersection with unweathered basement intrusives is confirmed = +5m of fresh rock.
Drill sample recovery	 Core recoveries were measured after each drill run, comparing length of core recovered vs. drill depth. Overall Core recoveries are 92.5%, achieving 95% in the saprolite target horizon, 89% in the transitional rock (fresh fragments in clay), and 92.5% in fresh rock.
Logging	 The geology was described in a core facility by geologist - logging focused on the soil (humic) horizon, saprolite and fresh rock boundaries. Depth of geological boundaries are honoured and described with downhole depth – not meter by meter. Other important data parameters collected include: grainsize, texture and colour, which can help to identify the parent rock before weathering. All drilled holes have a digital photographic record. The log is stored in Microsoft Excel template with inbuilt validation tables and pick list to avoid data entry errors. All geological data are imported into a Microsoft Access database and validated.
Sub-sampling techniques and sample preparation	 Metallurgical samples consist of ³⁄₄ of the drill core, except for the CDMDD001 where the entire core was sampled due to the drill core being NQ. The samples were generally composited into 3m composites, however on occasions the composites were reduced/extended based on geologic boundaries (clay zone v transition v fresh rock). Composites ranged from 2.0m – 4.6m. The top 2m of material was excluded from shipments to avoid problems importing organic material within the soils into Australia. Fresh rock was also excluded from the testwork as it is clearly not related to ionic clay mineralisation. The metallurgical samples were dried at 60 degrees Celsius and stage crushed to –1mm followed by pulverising in a ring mill. An 80 gram sub sample was used in each diagnostic leach at 4% solids, using 0.4M ammonium sulphate solution, ambient temperature and 30 minutes leaching time at pH 4.0. The % extractions are calculated using the head and the liqour assays.
Quality of assay data and laboratory tests	 All samples were assayed by three ALS methods: ME-MS81 – Lithium borate fusion prior acid dissolution and ICP-MS analysis for Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sc, Sm, Sn, Sr, Ta, Tb, Th, Ti, Tm, U, V, W, Y, Yb, Zr Me-4ACD81 - Lithium borate fusion prior acid dissolution and ICP-MS analysis for Ag, Au, Cd, Co, Cu, Li, Mo, Ni, Pb, Sc, Tl, Zn. ME-ICP06 – X-Ray Fluorescence (XRF) and acid ICP-AES analysis for Al₂O₃, BaO, CaO, Cr₂O₃, Fe₂O₃, K₂O, MgO, MnO, Na₂O, P₂O₅, SiO₂, SrO, TiO₂, LOI. Laboratory inserted its own QA/QC controls, with standards, blanks and duplicates to assure the quality and standards of the lab.

	 The QA/QC data includes standard sample in each 3 Head, liqour and residue r where the samples underv La, Ce, Pr, Nd, Sm, Eu, read by ICP-MS. ANSTO namely AI, Fe, K, Mg, Mn, 	30 samples. netallurgical sampl vent a lithium bora Gd, Tb, Dy, Ho, read all of the gang Ca, Si and Zn.	es were sent to te fusion prior to Er, Tm, Yb, L gue elements us	ALS in Brisbane acid dissolution and u , Y, Th & U were sing ICP-OES,
Verification of sampling and assaying	 All data is in digital format and stored in a cloud server, also the company maintains a back up in a desktop computer to assure that the data could be restored if any problem occurs with the cloud or with the desktop server. Raw assays are received as Elemental data (ppm) from ALS laboratories. The Elemental data is converted to Element Oxide data using the following conversion factors: 			
76	Element (Conversion Factor	Oxide	
	Ce	1.2284	CeO2	
1	Dy	1.1477	Dy2O3	
(\cap)	Er	1.1435	Er2O3	
	Eu	1.1579	Eu2O3	
	Gd	1.1526	Gd2O3	
	Но	1.1455	Ho2O3	
	La	1.1728	La2O3	
	Lu	1.1371	Lu2O3	
	Nd	1.1664	Nd2O3	
	Pr	1.2082	Pr6011	
	Sc	1.5338	Sc2O3	
	Sm	1.1596	Sm2O3	
	Tb	1.1762	Tb407	
	Tm	1.1421	Tm2O3	
	Y	1.2699	Y2O3	
	Yb	1.1387	Yb2O3	
	15	1.1507	10203	
Location of data points	 All collars were surveyed is SIRGAS 2000 is a South . 84. At present the survey of continuity of the survey of continuity of the survey of continuity of the survey of the s	American Datum w ollars was made w estimation work the s made by by Norte s surveyors. The G ying out data surve matic), consisting accuracy, in RTK, were provided in th datum - georefere ialtimetric maps (D n a region with mo	which is very sim tha handheld C holes will be su ear Topografia e PS South Galax eys and kinemat of two GNSS re is 8mm + 1ppm e following form nced to spindle EM), drones we re dense vegeta	hilar with the WGS GPS. Prior to urveyed by a RTK Projectos Ltda., by G1 RTK GNSS tic locations in real ceivers, a BASE and a, and vertical 15mm hats: Sirgas 2000 23S. Pre used with control ation), in addition to
Data spacing and	Collar plan displayed in the	e body of the releas	se.	
distribution	 No new resources are rep 			
Orientation of	The mineralisation is flat ly		nin the saprolite	/clay zone of a deeply
data in relation to geological structure	 developed regolith (reflect the diamond holes is appr Diamond drill core is ackn 	ing topography and opriate.	d weathering). \	/ertical sampling from

Sample security	 Samples are removed from the field and transported back to a Core shad to be logged and sampled as reported before. Composited samples were given unique identifiers and placed in plastic bags, before being packed into plastic drums suitable for export via airfreight to ANSTO in Australia. Export drums were shipped via FedEx Airfreight. Samples were collected from Meteoric core shed in Pocos de Caldas and tracked online to their destination in Sydney, Australia (ANSTO).
Audits or reviews	 MEI conducted a review of assay results as part of its Due Diligence prior to acquiring the project. Approximately 5% of all stored coarse rejects from auger drilling were resampled and submitted to two (2) labs: SGS Geosol and ALS Laboratories. Results verified the existing assay results, returning values +/-10% of the original grades, well within margins of error for the grade of mineralisation reported. (see ASX:MEI 13/03/23 for a more detailed discussion). No independent audit of sampling techniques and data has been completed.

Section 2 Reporting of Exploration Results

	Criteria	Commentary
D	Mineral tenement and land tenure status	 No change since previous report. Given the rich history of mining and current mining activity in the Poços de Caldas there appears to be no impediments to obtaining a License to operate in the area.
$\sum_{i=1}^{n}$	Exploration done by other parties	 Licenses under the TOGNI Agreement: significant previous exploration exists in the form of surface geochem across 30 granted mining concessions, plus: geologic mapping, topographic surveys, and powered auger (1,396 holes for 12,963 samples). MEI performed Due Diligence on historic exploration and are satisfied the data is accurate and correct (refer ASX Release 13 March 2023 for a discussion). Licenses under VAGINHA and RAJ Agreements: no previous exploration exists for REEs.
5	Geology	 The Alkaline Complex of Poços de Caldas represents in Brazil one of the most important geological terrain which hosts deposits of ETR, bauxite, clay, uranium, zirconium, rare earths and leucite. The different types of mineralization are products of a history of post-magmatic alteration and weathering, in the last stages of its evolution (Schorscher & Shea, 1992; Ulbrich et al., 2005), The REE mineralisation discussed in this release is of the lonic Clay type as evidenced by development within the saprolite/clay zone of the weathering profile of the Alkaline syenite basement as well as enriched HREE composition.
5	Drill hole Information	Reported in body of report and Appendix 1.

Data aggregation methods	 Mineralised Intercepts are reported with a minimum of 4m width, lower cut-off 1000ppm TREO, with a maximum of 2m internal dilution. High-Grade Intercepts reported as "including" are reported with a minimum of 2m width, lower cut-off 3000 ppm TREO, with a maximum of 1m internal dilution. Ultra High-Grade Intercepts reported as "with" are reported with a minimum of 2m width, lower cut-off 10,000 ppm TREO, with a maximum of 1m internal dilution.
Mineralisation widths and intercept lengths	 All holes are vertical and mineralisation is developed in a flat lying clay and transition zone within the regolith. As such, reported widths are considered to equal true widths.
Diagrams	Reported in the body of the text.
Balanced reporting	 All metallurgical recoveries for all samples are published in table 1 in body of report Highlights of the Mineralised Intercepts are reported in the body of the text with available results from every drill hole drilled in the period reported in the Mineralised Intercept table for balanced reporting.
Other substantive exploration data	• A maiden Inferred resource was published to the ASX on May 1 st 2023.
Further work	 Proposed work is discussed in the body of the text.